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1 Introduction

This work is based on projects from the book N.L Biggs, A.T White- Permu-
tation groups and combinatorial structures. It will cover project 4.1 which is
about the full automorphism groups of graphs as well as some of 4.2 which is
about strongly regular graphs. chapther 1-5 will cover necessary theory with
the two projects being solved in chapter 6 and 7 respectively.

2 Permutations

This work will make heavy use of permutations and permutation groups so the
first chapter is dedicated towards them. We start with a definition,

Definition 2.1: A permutation is a bijection α : X → X from a set X to
itself.

Thus a permutation is map that rearranges a set as you can see in the fol-
lowing example:

Example 2.2: Let A = {1, 2, 3}, the function f defined by f(1) = 2, f(2) = 1
and f(3) = 3 is bijection since it maps the set to itself.

We can describe a permutation in several different ways. A easy one is by
a permutation scheme were a element is mapped to the on below it, so the
permutation from example 2.2 would be represented as:

(
1 2 3
2 1 3

)

A much more compact way of describing a permutation is by using cycle
notation. In cycle notation we use cycles to describe a permutation. The cycle
(a1, a2, ..., an) denotes the permutation that maps a1 to a2, a2 to a3 and so
on with an mapping back to a1 completing the cycle. Any permutation thus
consists of one or more cycles. A cycle is categorised by its length, and a cycle
of length n is called a n-cycle. With cycle notation the permutation in example
2.3 would be written as (12)(3). This indicates that 1 is mapped to 2 and that 2
is mapped back to 1, completing a cycle. While 3 is mapped to itself. Thus this
permutation consists of a 2-cycle and a 1-cycle. Often 1-cycles will be left out
without any loss of information if the permuted set is clear from the context.
Thus we can only write (12) to describe the given permutation.

Example 2.3: Let α be a permutation that maps the elements 1, 2, 3, 4,
5, 6 to 3, 2, 4, 1, 6, 5 respectively.

α =

(
1 2 3 4 5 6
3 2 4 1 6 5

)
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To write α in cycle notation we start by looking at a number and to where
its mapped, and then continuing with the number until we finish a cycle. We see
that 1 is mapped to 3, 3 is mapped to 4 and 4 is mapped back to 1, so we have
a cycle (134). We continue with 2 which is mapped to itself creating a 1-cycle.
Finally we see that 5 is mapped to 6 and 6 is mapped back to 5 creating the
cycle (56). So we have α = (134)(56).

Cycle notation is however not unique, a permutation can be described in
many different ways using cycle notation as we will see in the following section.

2.1 Composition of permutations

This section will aim to cover the composition of permutations.

Let X be a set and α and β be two permutations of this set. The composi-
tion γ = βα is the permutation we get by first permuting by α and then by β.
So if for example is the permutation from example 2.3, and β is the permutation:

β =

(
1 2 3 4 5 6
1 5 3 4 6 2

)

Or written in cycle notation we can write this as β = (256). The composition
βα would then be computed by:

βα =




1 2 3 4 5 6
3 2 4 1 6 5
3 5 4 1 2 6


 ,

where the middle row is the result after α and the final row is the result after
the composition βα. In cycle notation we would write this as βα = (134)(25),
with (6) being left out as it is an 1-cycle.

3 Groups

This section will cover permutation groups as well as groups in general, estab-
lishing some important definitions and theorems. We start with the definition
of a group.

Definition 3.1: A group is and ordered pair (G, ∗) where G is a set and *
is a binary operation on G satisfying the following axioms:

1. (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a,b,c∈G.

2. There exists an element e in G, called the identity of G such that for all
g∈G we have e ∗ g = g ∗ e = g.

3. For each a in G there is an element a−1 in G such that a∗a−1 = a−1∗a = e
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Just like a set can have subsets, a group can also have subgroups, the defi-
nition of a subgroup is as follows:

Defintion 3.2: We say that (H, ∗) is a subgroup of a group (G, ∗) if H is
a subset of G and if (H, ∗) also forms a group.

Most often the operation * will be clear from the context and so we will re-
fer to a group (G, ∗) with subgroup (H, ∗) as just G with a subgroup H and
omit the operation.

When talking about groups we would like to have some notion of their sizes,
some groups are larger than others. For this we use the term order, which is
the number of elements in the groups underlying set.

Defintion 3.3: Let (G, ∗) be a group, then the order of the group, denoted
|G|, is the cardinality of G.

Some very important theorem regarding groups are the Sylows theorems, in
this work we will make use of the first of the theorems. First we need the fol-
lowing definition.

Definition 3.3 Let G be a group and let p be a prime. If G is a group of
order pam where p does not divide m, then a subgroup of order pa, if such a
subgroup exists, is called a Sylow p-subgroup of G. The set of Sylow p-subgroups
of G is denoted by Sylp(G) (and the number of Sylow p-subgroups of G is de-
noted by np(G)).

Now, what the first sylow theorem actually says, is that it asserts the exis-
tence of the sylow subgroups.

Sylow theorem 1 Let G be a group of order pam, where p is a prime that
does not divide m. Then Sylow p-subgroups exist, i.e Sylp(G) 6= ∅.

Proof: See for example Abstract Algebra, D. Dummit, R. Foot.

With the notion of order we can compare the sizes of groups, we would also
like to compare their structures. This can be done by maps between them,
specifically we want maps that preserves a groups structure. We call these
maps homomorphisms.

Definition 3.4: Given two groups (G, ∗) and (H, ◦) a map h from G to H
is a homomorphism if h(a ∗ b) = h(a) ◦ h(b) for all a, b ∈ G.

Thus, it does not matter if we first calculate a*b and then apply the homo-
morphism to the result, or instead apply the homomorphism to a and b first
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and then calculate h(a) ◦ h(b). In both cases we will get the same result. In-
tuively when we have a homomorphism from a group G to a group H, we can
think of it as the group structure of G exists inside the structure of H. If a ho-
momorphism is bijective we call it an isomorphism and say that the two groups
are isomorphic. Then not only does the structure of G exist in the structure
of H but also the other way around, meaning that the groups share the same
structure. Isomorphic groups are thus essentially the same, they behave in the
exact same way and only differ, possibly, in their notation.

Definition 3.5: Let h be a homomorphism from a group G to another group
H. The set {g ∈ G|h(g) = 1}, where 1 is the identity element of H, is called the
kernel of h and denoted by Ker(h).

The kernel is thus the set of all elements that gets mapped to the identity.
The kernel will in fact be a subgroup.

Proposition 3.6 Let h be a homomorphism from the group (G, ∗) to (H, ◦).
Then Ker(h) forms a subgroup of (G, ∗)

Proof: Let G,H be as in the proposition and e be the identiy of G and 1
the identity of H. The kernel is a subset of G, it remains to show that it
forms a group. The identity element e must belong to Ker(h) since it has
to be mapped to the identity 1 of H: h(g) = h(e ∗ g) = h(e) ◦ h(g). To show
that every element in Ker(h) has an inverse, suppose that g ∈ Ker(h). Then
1 = h(gg−1) = h(g) ∗ h(g−1) = 1 ∗ h(g−1) so g−1 must be in the kernel as well.
Lastly, associativity follows from the associativity of G. Thus Ker(h) is a group,
completing the proof. �

Defintition 3.7: Let G be a group and H a subgroup, the set gH = {gh|h ∈ H}
is called a left coset of H in G.

Proposition 3.8: Let G be a group and H any subgroup. The set of left
cosets of H partition G.

Proof: First we show that G =
⋃
g∈G gH. Since H is a subgroup e ∈ H

and g ∗ 1 ∈ gH for all g. To show that all the cosets are dissjoint, suppose
that gH ∩ jH 6= ∅. Let x be any element contained in the intersection. Then
x = gh = jh′ for some h, h′ ∈ H. Multiplying the equality gh = jh′ by h−1

from the right gives g = jh1 where h1 = h′h−1 ∈ H. For any element gh of gH
we get gh = j(h1h) ∈ jH. Thus gH ⊆ jH, in the same way we can show that
jH ⊆ gH, so jH=gH. Thus all cosets are dissjoint and the cosets partion G. �.

Proposition 3.8 gives motivation for the following definition of the index of
a subgroup:

Definition 3.9 Let G be a group and H a subgroup of G. The number of
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left cosets of H in G is called the index of H in G and is denoted |G : H|.

3.1 Permutation Groups

We shall see that the set of all permutations of a set X form a group under
composition.

Example 3.1.1: The set of all permutations of a set X form a group un-
der composition, defined by αβ(x) = α(β(x)). This group is called Sym(X). We
show that Sym(x) does indeed satisfy the definition of a group.

1. Composition of permutations are associative as we have already shown.

2. Let e be the identity permutation of the set X, i.e it maps every element
to itself.

3. Let α be any permutation on a set X, and let −1 be the permutation that
reverses α such that α−1(α(x)) = x. Then α ∗ α−1 = e.

Since Sym(X) consists of all permutations of X, we have that |Sym(X)| =
|X|! is the order of Sym(X).

Definition 3.1.2 If G is a subgroup of Sym(X) we say that the pair (G,X)
is a permutation group of degree |X|.

3.2 Group actions

This section will introduce group actions and several related definitions. Group
action are a very important concept and tool in group theory, which in short
consists of letting groups act on sets.

Definition 3.2.1 If G is a group and X is a set, then a function

φ : G×X → X, (g, x)→ φ(g, x)

is a left group action if it satisfies the following two conditions:

i)∀x ∈ X,φ(e, x) = x

ii)∀g, h ∈ G,∀x ∈ X,φ(gh, x) = φ(g, φ(h, x))

where e denotes the identity element of G.

Group actions are closely related to permutations and permutation groups. If
we fix g for φ, we get a map from X to X. This map is in fact a permutation of X.

Proposition 3.2.2 For each g ∈ G, the map φg from X to X defined by
φg(x) = φ(g, x) is a permutation of X.
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Proof: To show that φg is a permutation of X is to show that it is a bijec-
tive map, we do this by showing that φg has a 2-sided inverse. Since G is a
group g will have an inverse g−1, then φ−1g will be a 2-sided inverse of φg:

φg(φ
−1
g (x)) = φ(g, φ(g−1, x)) = φ(gg−1, x) = φ(e, x) = x

φ−1g (φg(x)) = φ(g−1, φ(g, x)) = φ(g−1g, x) = φ(e, x) = x

Thus φg is a permutation of X for each g ∈ G �.

Due to G being a group, we see that each φg acts as a permutation. Simi-
larliy we can see that the set of all φg forms a group under composition, this
group will in fact be homomorphic to a permutation group, as summarised by
the following proposition.

Proposition 3.2.3 The set of maps φg from X to X for all g ∈ G from a
left group action forms a group Φ under composition that is isomorphic to a
permutation group of degree |X|.

Proof: First we prove that this does indeed form a group, and afterwards
we show that the group is isomorphic to a permutation group of degree |X|. We
have already showed that every element φg has an inverse φ−1g , it remains to
show that it has an identity and that the composition is associative. Let e be
the identity element of the group G, then φe will be the identity element of Φ.

φg(φe(x)) = φ(g, φ(e, x)) = φ(ge, x) = φ(g, x)

φe(φg(x)) = φ(e, φ(g, x)) = φ(eg, x) = φ(g, x)

Similarly we can show that the composition is associative, we here use ◦ to
denote composition.

((φg ◦ φh) ◦ φj)(x) = φ((g ∗ h) ∗ j, x)

(φg ◦ φh(◦φj))(x) = (g ∗ (h ∗ j), x)

Where * is the operation of the group G, associativity then follows from the
associativity of G. We have then shown that Φ is a group.

To show that Φ is isomorphic to a permutation group of degree |X|, we start
by defining a homomorphism from Φ to SX by sending φg to its corresponding
permutation. The image of this map is then isomorphic to |Phi| and is also a
permutation group of rank |X|. �.

Definition 3.2.4: Let G be a group acting on a non empty set X. The set
{g ∈ G|φ(g, x) = x} is called the stabilizer of x and will be denoted Gx

Definition 3.2.5: Let G be a group acting on the nonempty set X. The set
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{φ(g, x)|g ∈ G} is called the orbit of x, which contains all the elements that x
can be mapped to by the group action.

On any given group action we can see that a element only belongs to a sin-
gle orbit and that the orbits form a equivalence relation on the underlying set
of the group action. To see this we first note that an element x is always in its
own orbit, since φ(e, x) = x. If x is in the orbit of y, then there exists a g ∈ G
such that φ(g, x) = y. Then

x = φ(g−1g, x) = φ(g−1, φ(g, x)) = φ(g−1, y),

so y is also in the orbit of X. Lastly if x is the orbit of y, and y is in the orbit
of z, then there exists g, h ∈ G such that φ(g, x) = y and φ(h, y) = x. Thus we
see that

φ(hg, x) = φ(g, φ(h, x) = φ(g, y) = z

so x is also in the orbit of z. This shows that belonging to the same orbit is a
equivalence relation.

Definition 3.2.6: A group action is transitive if it only has one orbit.

Since we have seen the connection between permutation groups and group ac-
tions the notions of orbits and stabilzers makes sense for Permutation groups
as well. We say that for a permutation group (G,X), the orbit of an element
x ∈ X is the set {gx|g ∈ G}, that is all elements x can be permuted to. We
similarliy say that a permutation group is transitive if it only has one orbit.

Definition 3.2.7: Let (G,X) be a transitive permutation group, and sup-
pose R is an equivalence relation on X. R is said to be G-admissible if (x, y) ∈ R
implies (gx, gy) ∈ R for all g ∈ G.

The universal relation X ×X and the equality relation, (x, y) ∈ R iff x = y, are
always G-admissible. We say that these relations are trivial. Note that the orbit
relation here will always be G-admissable as it is in fact the Universal relation
since G is transitive.

Definition 3.2.8: The transitive permutation group (G,X) is primitive if there
are no non trivial G-admissible equivalence relations R on X.

Last for this section is a definition that we will see is more important later
in section 5.

Definition 3.2.9: Let (G,X) be a transitive permutation group, then the rank
of (G,X) is the number of orbits of Gx on X.
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4 Graphs

This section will aim to quickly cover some basic definitions and results for
graphs. We start with the definition of an undirected graph or digraph for sort.

Definition 4.1: An undirected graph consists of a finite nonempty vertex
set V, and an edge set E ⊆ V ×V . The egde set is symmetric, if (a, b) ∈ E then
(b, a) ∈ E, and both (a, b) and (b, a) represent the same edge.

In a directed graph, or digraph for sort, the edge set does not have to be sym-
metric and (a, b) is different from (b, a). The former represents an edge from a
to b while the latter represents and edge from b to a.

Definition 4.2: A walk in a graph from a vertex a to a vertex b is a series of
vertices a = v1, v2, ..., vr = b such that (a, v2), (v2, v3), ..., (vr−1, b) are all edges.

Definition 4.3: Let (V,E) be an undirected graph. For every vertex v ∈ V
the degree of v, denoted deg(v), is the number of edges from the vertex v.

When looking at groups acting on graphs we will mostly be interested in
regular graphs, which are graphs where all vertices are of the same degree.
Even more interesting are strongly regular graphs which will be covered in the
next section.

5 Groups and Graphs together

In this section we aim to connect permutation groups and graphs with each
other, in particular we aim to develop methods to use graphs to study permu-
tation groups and vice versa.

As mentioned previously the rank of a transitive group is the number of or-
bits of the stabilizer Gx on X. The following lemma gives us another way of
calculating the rank of a transitive permutation group (G,X) by letting G act
on the Cartesian product X ×X.

Proposition 5.1 Let (G,X) be a transitive permutation group and suppose
that G has r orbits on X ×X. Then r is the rank of (G,X).

We will denote the orbits by D0, D1, ..., Dr−1, with D0 denoting the diago-
nal orbit containing all elements on the form (x,x) for x ∈ X and will remain
the convention for this work. This orbit will always exist as G is presumed to
be transitive.

Proof of 5.1: Suppose that G has r orbits, D0, D1, ..., Dr−1 on X × X. Fix
x ∈ X and let Di(x) = {y ∈ X|(x, y) ∈ Di}. Then if y ∈ Di(x) then (x, y) ∈ Di.
Since all Di are orbits of G any g ∈ GX will send all elements of Di(x) to Di(x).
Since Di(x) for i = 0, 1, ...r − 1 is a partition of X, they will correspond to the
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orbits of Gx on X. Thus Gx has r orbits and the rank of G is r. �

We also note that each of the orbits Di defines a relation Ri on X by (x, y) ∈ R
if and only if (x, y) ∈ Di. For example D0 always defines the identity relation
on X. These relations can be represented as a graph by letting each element of
X represent a vertex, where there is an edge from x to y if (x, y) ∈ Di for i 6= 0.
This gives a digraph representing the relation, for any orbit D we denote the
corresponding graph by Γ(D). Thus for D0 the graph will just consist of loops
from each vertex to itself.

Example 5.2 Consider Sn, n ≥ 2, acting on {1, ..., n} × {1, ..., n}. One orbit
will be the diagonal orbit D0. Consider an element (x,y) with x, y ∈ {1, ..., n}
and x 6= y, then (x,y) does not belong to D0. For any pair (x′, y′) of the same
form as (x, y) the permutation (xx′)(yy′) ∈ Sn takes (x,y) to (x’,y’) so they
belong to the same orbit. Thus there are only two orbits and Sn is of rank 2.

We will now see that we can study properties of the permutation group by
studying properties of these digraphs.

Theorem 5.3 Let (G,X) be a transitive permutation group. (G,X) is prim-
itive iff the digraph Γ(D) is connected for each orbit D 6= D0 on X ×X.

Proof: Suppose first that (G,X) is primitive and let D be any orbit except
D0. Define the relation R by (x, y) ∈ R iff x and y may be joined by a walk in
Γ(D), R is then an equivalence relation. If x = v0, v1, ..., vr = y are vertices of a
walk joining x and y that means that (x, v0), (v0, v1), ..., (vr, y) ∈ D. Since D is
an orbit of G on X ×X we also have that (gx, gv0), (gv0, gv1), ..., (gvr, gy) ∈ D,
so gx = gv0, gv1, ..., gvr = gy is a walk joining gx and gy. This shows that R is
G-admissible. Since G acted primitively R is trivial and since D 6= D0 R must
be the universal relation R = X × X so Γ(D) is connected. This shows that
Γ(D) (D 6= 0) is connected if (G,X) is primitive.

Now instead suppose that (G, x) is not primitive and R is a non-trivial G-
admissible equivalence relation on X. Since R is non trivial and thus not the
equality relation we can choose distinct points a,b such that (a, b) ∈ R. Now
(a, b) will be in some orbit D(6= D0) of G on X ×X. R is G-admissible so since
R contains one element from D it will also contain the entire orbit. Since by as-
sumption R is not the universal relation we can choose c,d such that (c, d) 6∈ D.
Suppose Γ(D) is connected, then there is a walk c = v0, v1, ..., vr = d and so
(c, v1), (v1, v2), ..., (vr−1, d) ∈ D and thus also (c, v1), (v1, v2), ..., (vr−1, d) ∈ R.
However, R is an equivalence relation so it follows that (c, d) ∈ R which is a
contradiction so Γ(D) has to be disconnected. �
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6 Some graphs and their automorphism groups

In this section we begin by introducing automorphism groups of graphs and
continue to explore the automorphism groups of some particular graphs. We
start with the definition of an automorphism and automorphism group.

Definition 6.1 An automorphism of a graph is a permutation α of the ver-
tices such that if (a,b) is an edge then αa, αb will also be an edge.

Definition 6.2 The automorphism group of a graph G, also called the full
automorphism group, is the group consisting of all automorphisms of the graph
and is denoted Aut(G)

A group of autmorphisms of graph G is thus not the same as a graphs automor-
phism group. The former need not contain all automorphisms of the graph and
is a subgroup of the Aut(G)

Definition 6.3 A graph is vertex transitive if it admits a group of automor-
phisms acting transitively on the vertices.

For a graph to be vertex transitive it must most definitely be regular, since
an automorphism can only map vertices to vertices of the same degree. Being
regular is however only a necessary condition but not a sufficient one.

The following two theorems shows a connection between the automorphism
group of a vertex transitive graph and the associated graph of a transitive per-
mutation group.

Theorem 6.4 Let (G,X) be a transitive permutation group and D a symmetric
orbit of G on X ×X. Then the associated graph Γ(D) admits G as a group of
automorphisms.

Proof: Let {x, y} be any edge of Γ(D). Then (x, y) ∈ D and since D is an
orbit (gx, gy) ∈ D for all g ∈ G. Thus {gx, gy} is an edge in Γ(D) for all g ∈ G
which shows that G acts as a group of automorphisms on Γ(D). �

Theorem 6.5 Let Γ = (V,E) be a vetex transitive graph and suppose that
G is a group of automorphisms of Γ acting transitively on the vertex set V.
Then there is a family D of orbits such that

{u, v} ∈ E ⇔ (u, v) ∈ D
for some D ∈ D.

Proof Suppose that Γ = (V,E) is vertex transitive graph and that G is a
group of automorphisms acting transitively on the vertex set V. We start by
defining a family D. Let a orbit D be in the family D if there exists an edge
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{x, y} such that (x, y) ∈ D. This guarantees that {u, v} ∈ E → (u, v) ∈ D for
some D ∈ D. To show the other implication note that if (u, v) ∈ D ∈ D there
is some edge {x, y} such that (x, y) ∈ D. Since D is an orbit there exists a g
such that gx = u and gy = v. G is an automorphism so thus {u, v} must be an
edge, showing the left implication. �

6.1 Tools for estimating an automorphism group

This section develop some tools for estimating an upper bound for the order
of the automorphism group of a graph. This will be used in the subsequent
sections to find the the automorphism group of the graphs Ok and Kn,n.

Let Γ = (V,E) be a vertex transitive graph and suppose that x, y are vertices
such that {x, y} is an edge. Let G be a group of automorphisms of Γ acting
transitively on the vertex set V and on the set of ordered pairs of adjacent
vertices. Define

Lx = {g ∈ Gx|g fixes each vertex adjacent to x}

Lxy = Lx ∩ Ly
Lemma 6.1.1 Let k denote the valency of Γ, then |Gx : Lx| ≤ k!.

Proof: Fix a vertex x in Γ, we denote its k adjacent vertices by 1, 2, ..., k.
Define a homomorphism from Gx to a permutation group P of degree k by how
g permutes the vertices 1, 2, ..., k. The kernel of this homomorphism are all el-
ements that gets mapped to identity permutation. These are the elements of
Gx that fixes all adjacent vertices of x, so the kernel of this homomorphism is
Lx. There are a maximum of k! different permutations of k elements. So we
can conclude |Gx : Lx| ≤ k!.

Proposition 6.1.2 If x and y are adjacent vertices and Lxy = e, then |Gx| ≤
k!(k − 1)!.

Proof: Fix x,y such that they are adjacent vertices. We want to proceed
in a similar fashion as in the previous lemma to show that |Lx : Lxy| ≤ (k− 1)!.
Define a homomorphism from Lx to permutation group P of degree k-1 by how
it permutes the k-1 vertices of y except x. The kernel of this homomorphism is
all elements of G that fixes all k-1 vertices, this amounts exactly to Lxy. Since
there are at most (k−1)! different permutations we get that |Lx : Lxy| ≤ (k−1)!.
Now if Lxy = 1 we get that |Lx| ≤ (k − 1)! and then by Lemma 6.1.1 we get
that |Gx| ≤ k!|Lx| ≤ k!(k − 1)! which is what we wanted to show.
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6.2 The complete bipartite graph Kn,n

We now have the results we need to start looking at the automorphism group of
the complete bipartite graph. The graph consits of a vertex set that is the dis-
joint union of to sets V = A∪B and with the edge set E = {{a, b}|a ∈ A, b ∈ B}.
By using proposition 6.1.2 we can find a upper bound for the full automorphism
group |Aut(Kn,n)|.

Proposition 6.2.1 |Aut(Kn,n)| ≤ 2(n!)2

Proof: Suppose G is a group of automorphisms of Aut(Kn,n). Let V = A ∪B
and x and y be adjacent vertices. Since x and y are adjacent they belong to
different sets of the union, suppose without loss of generality that x ∈ A and
y ∈ B. Then x is adjacent to every element of B and y is adjacent to every
element of A, thus Lx,y = e since it fixes every vertex. By proposition 6.1.2
then |Gx| ≤ n!(n − 1)!. From proposition ?.? we have |Gx||Gx| = |G|, since
there is only one orbit, it is the size of the whole vertex set |Gx| = 2n. Putting
it together we get |G| ≤ 2(n!)2 which is what we wanted to show �.

If we can find a group of automorphisms of Kn,n of order 2(n!)2, then by
proposition 6.2.1 that has to be Aut(Kn, n). Let A = {a1, a2, ..., an} and
B = {b1, b2, ..., bn} be the two dissjoint vertex sets of Kn,n. Consider the set of
permutations consisting of Sym(A), Sym(B) and the permutation that swaps A
and B by sending ai to bi for i = 1, 2, ..., n as well as any composition of those.
Here we consider the permutations of Sym(A) and Sym(B) as permutations of
the whole vertex set by letting the the permutations of Sym(A) fix all vertices
in B and the permutations of Sym(B) fix all vertices in A. The order of this
set is exactly 2(n!)2, since Sym(A) gives n! permutatons of A, Sym(B) gives n!
independent permutations of B and for a total of (n!)2 permutations. Finally,
for any permutations we can also swap A, B which gives the total of 2(n!)2. We
call this set Ψ, if we can show that all of the elements of Ψ are a group of auto-
morphisms of Kn,n under composition, then that means that Ψ = Aut(Knn

).

Lemma 6.2.2 Ψ is a set of automorphisms of Kn,n.

Proof: Since all vertices of A have edges to the exact same edges, namely all
vertices in B, any permutation of just vertices in A will be an automorphism.
Thus Sym(A) is a set of automorphisms, similarly Sym(B) is also a set of auto-
morphisms. The permutation swapping A and B is also an automorphism since
any edge (ai, bj) will be mapped to (bi, aj) which is again an edge. Finally, a
composition of automorphims will again be an automorphism, thus Ψ is a set
of automorphisms. �

Lemma 6.2.3 Ψ forms a group under composition.

Proof: As we know already, composition is associative. We have to show that
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there exists an identity element and that every element has an inverse. The
identity element from either Sym(A) and Sym(B) are here the same element,
it fixes all elements and is thus the identity permutation. Every element of
Sym(A) and Sym(B) has an inverse and the permutation swapping A and B is
its own inverse. If α is a permutation of Ψ then it is a composition of permuta-
tions, say p1, p2...pn, that all have inverses in Ψ. Then p−1n ...p−12 , p−11 belongs to
Ψ and is the inverse of α. This shows that Ψ forms a group under composition. �

With the above reasoning together with lemma 6.2.2 and 6.2.3 we can finally
reach the following proposition:

Proposition 6.2.4 Ψ is the full automorphism group of Kn,n.

6.3 The odd Graph Ok

We will now take a look at another a specific type of graph, called the odd
graph, which we will denote by Ok. The odd Graph Ok is defined as follows
(for k ≥ 2). The vertice set V, is the set of (k-1)-subsets of a fixed (2k-1)-set,
and the edge set E, is the set of pairs {v, w} for v, w ∈ V such that v and w are
disjoint sets.

Example:(pictures of O2 and O3)

Proposition 6.3.1 The odd graph Ok has
(
2k−1
k−1

)
vertices and

k(2k−1
k−1 )
2 edges.

Proof: The number of vertices follows straight from the definition of Ok, there
is a vertex for every k-1 subset of the 2k-1 set, which gives

(
2k−1
k−1

)
vertices. Every

vertex has an edge to all vertices it shares no element with. Since the vertex
consists of k-1 elements there are k elements remaining. Removing any one of
these elements will give arise to a disjoint k-1 subset, thus every vertex has k
edges. This gives a total of k

(
2k−1
k−1

)
/2 edges. �
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Trying to find a group of automorphisms of Ok we can see that S2k−1 acts
as a group of automorphisms by permuting the underlying (2k-1)-set as shown
in the following lemma:

Lemma 6.3.2: S2k−1 acts as a group of automorphisms on Ok and is tran-
sitive on the vertices and on ordered pair of adjacent vertices.

Proof: We let S2k−1 act on the vertices by permuting the fixed (2k-1)-set.
If α ∈ S2k−1 and {v, w} ∈ E, since v and w are disjoint and α is a bijection, αv
and αw will also be disjoint so {αw,αv} ∈ E, which shows that S2k−1 acts as a
group of automorphisms. It is clear that it is transitive on vertices since S2k−1
can permute any (k-1)-subset to any other (k-1)-subset. Let (a, b)〉 and (c, d)
be two ordered pairs of adjacent vertices, then a and b are disjoint and together
contain 2k-2 distinct elements, the same is true for c and d. Consider a permu-
tation that bijectively maps a to c, b to d and the one element not in a∪b to the
one element not in c∪ d, such a permutation exists and is an elements of S2k−1
which shows that S2k−1 acts transitively on ordered pairs of adjacent vertices. �

What is the rank of this automorphism group? From propsition 5.1 we know
that the rank of the group (S2k−1, X) is equal to the number of orbits of S2k−1
on X × X. We already showed that S2k−1 is transitive on ordered pairs of
adjacent vertices, thus all pairs of k-1 subsets of S2k−1 × S2k−1 which have no
elements in common are contained in the same orbit. It is also clear that this
orbit contains no other elements, since if a pair of subsets share some elements
it can only be mapped to a pair of subset sharing the same number of elements.
Thus ordered pairs of subsets sharing no elements will constitute one orbit.

Similarly we can show that S2k−1 is transitive on ordered pairs of subsets
sharing n elements with 0 ≤ n ≤ k−1. Let 〈a, b〉 and 〈c, d〉 be two ordered pairs
of subsets with each pair having n elements in common. Then there exists a bi-
jection α that maps the n shared elements from a, b to the n shared elements of
c, d and that maps the remaining k-1-n elements of a to the remaining elements
of c and the same from b to d. This shows that S2k−1 is indeed transitive on
ordered pairs of subsets sharing n elements with 0 ≤ n ≤ k− 1. With the same
argument as when n=0 we can show that for each n there is a unique orbit.
Thus there are k orbits which gives us the following proposition

Proposition 6.3.3 (S2k−1, Ok) is a permutation group of rank k.

It can now be interesting to ask ourselves if S2k−1 is the full automorpishm
group of Ok or not. We will come back to this question but first we will study
the structure of the graph Ok some more with the following lemma:

Lemma 6.3.4 If a,b,c,d are distinct vertices of Ok such that {a, b}, {b, c} and
{c, d} are edges. Then a,b,c,d determine a unique pair of vertices e 6= c and
f 6= b such that {d, e}, {e, f} and {f, a} are edges.
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Proof:
a,b,c,d are vertices of Ok, so they are all (k-1)-subsets of a set with 2k-1

elements with a ∩ b = ∅, b ∩ c = ∅ and c ∩ d = ∅. Thus a ∪ b consists of 2k-2
different elements. We denote the elements of a by 1, 2, ...k−1 and the elements
of b by k, k + 1, .., 2k − 2. Now we know that c is disjoint with b, so c contains
k-1 elements of the k elements 1, 2, ..., k− 1, 2k− 1. Since c is also distinct from
a, the one element it does not contain has to be in a, otherwise a=c. Since the
names of the elements of a is arbitrary, let the element that is in a but not in c be
1. Thus c consists of the elements 2, 3, .., k−1, 2k−1. For d, we have the possi-
bilities of k-1 elements from the k elements 1, k, k+1..., 2k−2.. The one element
of these not in d has to be an element of b, so we choose one of the elements of
k, k+1, .., 2k−2 to remove, and again since the naming was arbitrary, we can say
that this is the element k. We can thus, without any loss of generality denote the
vertices by a = {1, 2, ...k− 1}, b = {k, k+ 1, .., 2k− 2}, c = {2, 3, .., k− 1, 2k− 1}
and d = {1, k+1, k+2, ..., 2k−2}. We now want to show that the new vertices,
e and f are uniquely determined. Since {d, e} and {f, a} are edges, e and f are
restricted to k-1 of the k elements 2, 3, ..., k, 2k−1 and k, k+1, ..., 2k−1 respec-
tively. We also have that e 6= c and f 6= b. So for e we have to remove one of the
elements in c = {2, 3, .., k−1, 2k−1} from 2, 3, ..., k, 2k−1, and for f we have to
remove one of the elements in b = {k, k + 1, .., 2k − 2} from k, k + 1, ..., 2k − 1,
thus we have k ∈ e and 2k − 1 ∈ f . The final remaining criterion is that {e, f}
is an edge, i.e disjoint sets. So k /∈ f and 2k − 1 /∈ e, which then gives the only
possibilities e = {2, 3, ..., k} and f = {k + 1, k + 2, ..., 2k − 1}, so e and f are
uniquely determined. �

While not immediately useful, the proof of lemma 6.2.2 gives us more insight
into the structure of the odd graph Ok. Suppose that G is the full group of
automorphisms of Ok. If α ∈ La then α only permutes the elements 1,2,...,k-1
of a and fixes everything else. Similarly if α ∈ Lb then α only permutes the
elements k, k + 1, ..., 2k − 2 and fixes everything else. Thus, if α ∈ La,b then α
fixes everything not in a and not in b. Since a and b are disjoint sets, we get
that α fixes everything so α = e. We summarize this result in the follwoing
lemma:

Lemma 6.3.5 Let G be the full automorphism group of Ok If x and y are
adjacent vertices then Lx,y=e

Using Lemma 6.2.5 we are now ready to return to question of whether or not
S2k−1 is the full automorphism group of Ok and show that this is indeed the case.

Proposition 6.3.6 S2k−1 is the full automorphism group of Ok.

Proof: Suppose G is the full automorphism group of Ok. From 6.2.5 and
6.1.2 we get that that |Gx| ≤ k!(k − 1)!. Since G is transitive we have that
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|Gx| =
(
2k−1
k−1

)
and so

|G| = |Gx||Gx| ≤
(2k − 1)!

(k − 1)!k!
k!(k − 1)! = (2k − 1)!

Thus the full automorphism group of Ok cannot be larger than (2k− 1)! which
is exactly the order of S2k−1, so S2k−1 is the full automorphism group of Ok. �

7 Strongly regular graphs

This section will cover strongly regular graphs, hinted at in section 4. We will
present the definition and main theorem for strongly regular graphs and use
these to show a number of interesting results. We start with the definition:

Definition 7.1 A regular graph of valency k is said to be strongly regular
if every pair of adjacent vertices has a constant number α of vertices adjacent
to both of them, and every pair of non adjacent vertices has a constant number
γ adjacent to both of them.

Theorem 7.2 Let (G,X) be a transitive permutation group of rank 3. Suppose
that D( 6= D0) is a symmetric orbit of G on X ×X, then the associated graph
Γ(D) is strongly regular.

Proof First we show that Γ(D) is indeed regular. Let N(x) be the set of
vertices adjacent to x defined by N(x) = {y ∈ X|(x, y) ∈ D}. Let x and y be
any two vertices in D, then there exists g ∈ G such that gx = y. By theorem
6.4 G is a group of automorphisms of Γ(D) so |N(x)| = |N(gx)| = |N(y)| = k
which shows that Γ(D) is regular with valency k.

Now let N(x,y) be the set of vertices adjacent to both x and y defined as
N(x, y) = {z ∈ X|. Suppose that x, y, x′, y′ are vertices in D with x, y and
x′, y′ being distinct such that {x, y} and {x′, y′} are edges. Since D is a orbit
there exists a g ∈ G such that gx = x′ and gy = y′. The permutation g also
gives induces a map from N(x, y) to N(x′, y′) by sending z to gz. Since g is
a permutation this map is a bijection, thus N(x, y) = N(x′, y′) = α for some
constant α.

Now instead suppose that x, y, x′, y′ are vertices in D with x, y and x′, y′

being distinct such that (x, y) and (x′, y′) are not edges. Then since (G,X) is
of rank 3, and (x, y), (x′, y′) 6∈ D0, they must both belong to the same orbit D’.
Then again there is a g such that gx = x′ and gy = y′ which induces a bijection
sending z to gz. This gives that N(x, y) = N(x′, y′) = γ for some constant γ.
This shows that Γ(D) is strongly regular. �

It can be interesting to study what parameters (k, α, γ) are feasible for a strongly
regular graph, as there are clearly combinations that are not possible. Most ob-
vious might be the condition k ≥ γ and k ≥ α since the shared adjacent vertices
cannot be higher than the valency.
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The following theorem is an important theorem for strongly regular graphs
and impose severe restriction on the realisability of the parameters. The proof
is however somewhat involved and does not fit into the scope of this work. For
a proof see for example 4.4 in 4.4 N.L Biggs, A.T White- Permutation groups
and combinatorial structures.

Theorem 7.3: If a strongly regular graph Γ with parameters (k, α, γ) exists,
then either:
i) k = 2γ and α = γ − 1, or
ii) (α− γ)2 + 4(k − γ) is a perfect square, say s2, and the expression:

m =
k

2ys
((k − 1 + γ − α)(s+ γ − α)− 2γ)

is a positive integer.

We can use this theorem to see if some parameters (k, α, γ) are feasible for
a strongly regular graph. If neither i) nor ii) holds, the parameters are not
possible.

Example 7.4:
Lets look at the parameters (k, 0, 1). These will all be graphs with no cycles

of length 3, since α = 0 means that no adjacent vertices shares another adjacent
vertex creating a 3-cycle.

We know that either i) or ii) from theorem 7.1.2 must hold. If i) is true we
get that k=2. If ii) is true we get

s2 = (α− γ)2 + 4(k − γ) = 4k − 3

m =
k

2s
(ks+ k − 2)

where s,m are integers.

By substituting in k = s2+3
4 into the expression for m we eliminate k and

get the following expression.

m =
(s2 + 3)( 1

4s(3 + s2) + 1
4 (3 + s2)− 2)

8s

We can gather the different s terms to get a polynomial in s:

s5 + s4 + 6s3 − 2s2 + (9− 32m)s− 15 = 0

From this expression we see that s must divide 15, so s = 1, 3, 5, 15. Putting

these values into the expression k = s2+3
4 gives us k = 1, 3, 7, 57. Thus the

parameters (k, 0, 1) are only feasible for k = 1, 3, 7, 57

What can we say about graphs with the more general parameters (k, 0, γ),
γ ≥ 2? We will show the following proposition:
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Proposition 7.5 For each value of

γ 6= 2, 4, 6

the parameters (k, 0, γ), γ ≥ 2, only have a finite number of corresponding
values of k.

Proof The proof follows the same idea as the previous example. If the
parameters (k, 0, γ), γ ≥ 2 are feasible then by theorem 7.2 we have that either
i) k = 2γ and α = y − 1 or ii) must hold. Since γ ≥ 2 and α = 0, therefore
α = y − 1 cannot be true and thus ii) has to be satisfied. This gives

s2 = γ2 + 4k − 4γ

and that

m =
k

2ys
((k − 1 + γ)(s+ γ)− 2γ)

is a positive integer. Substituting k = s2−γ2+4γ
4 into the expression for m yields:

m =
(s2 + 4γ − γ2)(−2γ + (s+ γ)(−1 + γ + 1

4 (s2 + 4γ − γ2)))

8γs

Continuing with gathering the terms for s and simplifying gives the following
expression,

m =
s4

32γ
+
s3

32
+

(s2(−1 + 3− γ2

2 ))

8γ
+
s(−3γ + 3γ2 − γ3/2))

8γ
+

+
−4γ + 9γ2 − 3γ3 + γ4

4

8γ
+
−12γ2 + 11γ3 − 3γ4 + γ3

4

8sγ

(1)

Finally by writing (1) as a polynomial in s:

0 =
s5

4
+
γs4

4
+ (−1 + 3γ − γ2

2
)s3 + (−3γ + 3γ2 − γ3/2))s2+

(−4γ + 9γ2 − 3γ3 +
γ4

4
− 8γm)s+ (−12γ2 + 11γ3 − 3γ4 +

γ3

4
)

(2)

Thus

−12γ2 + 11γ3 − 3γ4 +
γ3

4

must be divisible by s. Calculating the roots gives γ1 = 2, γ2 = 4 and γ3 = 6.
Thus for γ 6= 2, 4, 6 there are only a finite number of possibilities for s, i.e the
divisors of

−12γ2 + 11γ3 − 3γ4 +
γ3

4
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and thus also only a finte number of corresponding values of k. �

What can then be said for γ = 2, 4, 6? We look at the specifc case where
γ = 2 and prove the following proposition:

Proposition 7.6: The parameters (k, 0, 2) are feasible if and only if k = t2 + 1,
where t is an integer not congruent to 0 (mod 4).

Proof: We start by assuming that the parameters (k, 0, 2) are feasible. Then
by theorem 7.1.2 we have that

s2 = γ2 + 4k − 4γ = 4k − 4

is a perfect square and that

m =
k

2ys
((k + 1)(s+ 2)− 4)

is an integer. From s2 = 4k − 4 we get that s = 2
√
k − 1 is an integer. For this

to be true
√
k − 1 = t for some positive integer t, which gives that k is on the

form k = t2 + 1. Making the substitutions s = 2t and k = t2 + 1 in the equation
for m and simplifying gives

m =
t4 + t3 + 3t2 + t+ 2

4

Now, since m is an integer t4 + t3 +3t2 + t+2 has to be divisible by 4, this gives
that t4 + t3 + 3t2 + t is an even number that is not divisible by 4. Since every
term contains t, t also cannot be divisible by 4. Thus t has to be a positive
integer that is not congruent to 0 (mod 4) which is what we wanted to show. �

Using proposition 7.6 we see that the parameter (5, 0, 2) should be feasible.
What would such a graph look like? We will try to create such a graph in the
following example.

Example 7.7:
Suppose that Γ5 is a strongly regular graph with parameters (5, 0, 2). We

let * be any vertex and label its adjacent vertices by 1,2,3,4 and 5. These
vertices then all need to be adjacent to 4 more veritces but cannot be adjacent
to eachother since α = 0. Thus 1 must be adjacent to 4 new vertices, we label
these 12,13,14 and 15.

The vertex 1 currently shares one vertex, *, with all the vertices 2, 3, 4
and 5, but since they are not adjacent they need to share 2 adjacent ver-
tices. Therefore the vertices 2,3,4,5 all need to be connected to 1 of the ver-
tices 12,13,14,15 each. Without any loss of generality say that these edges are
{12, 2}, {13, 3}, {14, 4}, {15, 5}.
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From here we see vertex 2 is currently adjacent to two vertices but need to
have 5 neighbours. Any new edge from vertex 2 to another vertex would create
a 3-circuit, so we need 3 new vertices adjacent to 2. We label these 23,24 and
25. Again now, vertex 2 only share 1 adjacent vertex with 3,4 and 5. By the
same reasoning we need to add edges {23, 3}, {24, 4}, {25, 5}.

Following this procedure we see that we need to add vertices 34, 35 adjacent
to vertex 3, as well as the edges {34, 4} and {35, 5} and finally add a vertex 45
adjacent to 4 and 5. From here we can again look at vertex 12. It is not and
can not be adjacent to vertices 3,4,5 since this would create a 3-circuit. Thus
it needs to share 2 adjacent vertices with all of these. The only possibility for
this that avoids 3-circuits is to add the edges {12, 34}, {12, 35}, {12, 45} and 12
now have all of its five adjacent vertices as well as sharing two adjacent ver-
tices with all nonadjacent vertices. Proceeding in the exact same way see that
we need to add the edges {13, 24}, {13, 25}, {13, 45} completing vertex 13, edges
{14, 23}, {14, 25}, {14, 35} completing vertex 14, edges {15, 23}, {15, 24}, {15, 34}.
The remaining vertices 23,24,25,34,35,45 have already had edges added to them.
They still have however have unique edges that needs to be added, these are
{23, 45}, {24, 35}, {25, 34} completing the graph.
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8 Final remarks

As we have seen algebraic methods from group theory provide powerful tools
to study combinatorial objects like graphs, while graphs in turn can be used
to study the properties of groups. Tools and concepts from different parts of
mathematics can often find use in a different branch, showing a cohesiveness
and beauty of mathematics. For further interest in the topic the reader can
look into project 4.2 which also connects the topic to combinatorial- designs
which fell outside the scope of this work.

23



9 References

Dummit,David. Foot. Richard. 2004. Abstract Algebra. 3rd edition. John
Wiley Sons, Inc.

Grimaldi, Ralph. 2003. Discrete and combinatorial mathematics. 5th edi-
tion. Pearson Addison Wesley.

Biggs, N., White, A. (1979). Permutation Groups and Combinatorial Struc-
tures (London Mathematical Society Lecture Note Series). Cambridge: Cam-
bridge University Press. doi:10.1017/CBO9780511600739

24


