
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK
MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Type theoretic semantics for first order logic

av

Oskar Berndal

2020 - No M1

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

Type theoretic semantics for first order logic

Oskar Berndal

Självständigt arbete i matematik 30 högskolepoäng, avancerad nivå

Handledare: Peter Lumsdaine

2020

Abstract

Whereas the semantics of first order logic are well-understood, many
questions remain regarding the semantics of type theory. There is not
even an established and unified notion of what precisely is a type theory.

In a recent work by Uemura, a general notion of type theories is pro-
posed together with semantics for these type theories. The aim of this
work is to present a type theory within this framework such that its se-
mantics recovers the semantics for first order logic.

The main obstacle is the mismatch between what one takes as a mor-
phism in the semantics: In first order logic one takes the functional rela-
tions whereas in type theory one essentially takes its terms. In order to
bridge this gap we introduce terms for definite descriptions to the type
theory.

Acknowledgements

I would like to thank Peter for making me feel that my word is taken
seriously. I would like to thank Axel for opening his house and listening
to me a Friday evening when I really needed it. I would like to thank
Tiger for his insistent purring and demands of scratches.

1

Contents

1 Background 3
1.1 Primer on first order logic . 5

1.1.1 Specification of first order logic 5
1.1.2 The syntactic category . 7
1.1.3 Functorial semantics of first order logic 8

1.2 Basics of type theory . 10

2 Syntax 13
2.1 First order logic as a type theory 13

2.1.1 Raw syntax . 14
2.1.2 Rules for symbols from the signature 15
2.1.3 Logical and structural rules 16
2.1.4 Rules for axiom terms . 18

2.2 Some syntactic conveniences . 19
2.2.1 Heyting structure on term model 22

2.3 Translating judgements into definite description free fragment . . 23
2.3.1 Specification and soundness clauses 24
2.3.2 Definitions and partial soundness results 26
2.3.3 Substitution and soundness 38
2.3.4 Translating sequents . 44

2.4 The syntactic equivalence . 45

3 Semantics 48
3.1 Modelling type theory . 48

3.1.1 Logical structure on judgement fibrations 49
3.1.2 Signature and axiom structures 55
3.1.3 A comment on the framework 56
3.1.4 Logical structures on the standard pair 58

3.2 Recovering functorial semantics for first order logic 63

4 Further directions 65
4.1 Semantics for a proof relevant version with homotopy type theory 65

2

1 Background

Let us broadly state some of the central concepts of mathematical logic.

Formal system
Some set of syntactic expressions, together with some rules for derivability.

Model (of a formal system)
A mathematical structure which in particular supports an interpretation
of the syntactic expressions.

Semantics
A specification of precisely what things we shall consider to be models.

Soundness
All derivable expressions of the formal system are true when interpreted
in a model.

For instance, one may take a formal system of vector spaces and one may
give a semantics where the models of this system are Rn for all n ≥ 0. Sound-
ness would tell us that all things which we can formally derive are true when
interpreted in Rn. For a taste of how this works, let the following be a derivable
expression of our formal system,

∀x, y : X x+ y = (y + x) + 0

which reasonably would, when interpreted in R3, correspond to the fact that

for any tuples (a1, b1, c1), (a2, b2, c2) ∈ R3, we have that

(a1, b1, c1) + (a2, b2, c2) = [(a2, b2, c2) + (a1, b1, c1)] + (0, 0, 0).

The families formal systems that we will be interested in are theories in first
order logic and type theories.

In a common semantics for first order logic the models are sets-with-structure
and the logical formulas correspond to subsets (think Venn diagrams). This
would be more general than the semantics provided above because there are
many finite dimensional vector spaces which are not Rn (although every finite
dimensional vector space is isomorphic to some Rn).

There is a generalization of sets-with-structure-semantics where instead of
sets one takes objects of some category, instead of structure one takes arrows in
this category, and instead of subsets one takes subobjects in the category. One
can prove that this semantics has an initial category C, which classifies all other
models. This means that for any theory of first order logic, there is a category C
such that for any (sufficiently nice) category C there is a correspondence between

3

models in C and (sufficiently nice) functors C→ C,

O

N ' C

M

whence one says that theories of first order logic have an initial object.
The story is messier for type theories. It is harder to define a general notion

for what a type theory is. The purpose of this work is to introduce a type theory
such that we can recover the functorial semantics of first order logic within
the semantics of the type theory. To achieve this end, we use a framework
introduced by Uemura in [7] to equip every type theory (for some such notion)
with a semantics that is sound and that comes with its own initial object I.

The way that this will be done is that we first show that the initial objects
C and I are equivalent as categories. Then we show that certain models in the
type theoretic sense are the same things as sufficiently nice functors from I into
sufficiently nice categories.

The main obstruction in trying to give a type theory such that C and I are
equivalent is in a mismatch between the way that the arrows of the respective
categories are formed: In I, the arrows are immediately formed from terms in
the type theory. In C they are however formed from those propositions which
one can prove are functional relations. So on the first order logic side, the arrows
do not “immediately appear” in the syntax, whereas on the type theory side,
the have to “immediately appear” in the syntax.

The way we rectify this is that, aside from giving constructors corresponding
to the logical connectives and logical rules, we add terms corresponding to def-
inite descriptions to the type theory. These are in essence terms corresponding
to functional relations.

Because we can have proof-terms as arguments in type theory one does not
run into the same kinds of problems that one does if one tries to add definite
descriptions to first order logic. The only issue is that as they do not have a
counterpart in the syntax of first order logic, one somehow needs to eliminate
them in order to translate back and forth.

Section 1 recounts syntax and semantics of first order logic, and gives a short
introduction to type theory.

Section 2 introduces and investigates the syntax of our type theory with the
main goal of proving that I and C are equivalent.

Section 3 introduces the semantics of our type theory with the main goal
of showing how the semantics of first order logic correspond to a subset of the
type theoretic semantics.

Section 4 concludes with some further directions for the semantics of the
type theory.

4

1.1 Primer on first order logic

Our formulation of first order logic is based on the one presented by Jacobs in
Chapter 4 of [3]. The expressions of first order logic consist mainly of sequents
of the form

x : σ. y : σ. z : N | x =σ f(y), ϕ(z) ` ψ(y, z)

where the sequent is supposed to be read as saying that

Let x, y be arbitrary σ and z be an arbitrary natural number.
If x and f(y) are equal, and z satisfies the proposition ϕ,

then y, z satisfy the proposition ψ.

Left of the vertical line is a specification of what variables can appear in the
expressions to the right and x : σ reflects that x only can take σ-values for some
such notion.

1.1.1 Specification of first order logic

A sequent system is a specification of the set of sequents together with some
rules for making inferences. These rules are of the form

A B C

D

and mean that if A, B and C are derivable sequents then so is D. The sequents
of first order logic are all of the form

Γ | J

where Γ will be called the sort-context and J the judgement. The judgements
come in three forms,

sort judgement sort term proposition judgement proposition sequent
σ sort t : σ ϕ prop Θ ` ϑ

where the Θ of the proposition sequent is a list of propositions. Let us first
define what our propositions are. The notion for capturing this is that of a
signature. A first-order signature Σ is specified by

• the set of sorts corresponding to what kind of values the terms are allowed
to take,

• non-logical symbols and what kind of arguments they accept.

We have

σ ∈ sortsΣ Ξ ∈ atomsnΣ, arityΞ = ~σ ∈ (sortsΣ)n

f ∈ functionsnΣ, arity f = (σ1, . . . , σn, σ) ∈ (sortsΣ)n+1

5

with rules for these symbols,

σ sort

Γ | t1 : σ1 · · · Γ | tn : σn

Γ | f(t1, . . . , tn) : σ

Γ | t1 : σ1 · · · Γ | tn : σn

Γ | Ξ(t1, . . . , tn) prop

Next let us introduce the structural rules, which concern how our variables
and terms interact

Γ.∆ | J σ sort

Γ. x : σ.∆ | J
Γ. x : σ.∆ | J Γ | t : σ

Γ.∆ | J [x\t]

σ sort

x : σ | x : σ

Basic rules for forming compound formulas

Γ | ϕ prop Γ | ψ prop

Γ | ϕ© ψ prop

Γ. x : σ | ϕ prop

Γ | Q x : σ ϕ prop

Γ | ϕ prop

Γ | ϕ ` ϕ

Here © stands for the binary connectives ∧,∨,⇒ and Q stands for the quanti-
fiers ∀,∃. Finally let us look at the rules corresponding to logical laws. Let first
introduce the abbreviation

Γ | Θ prop for Γ | θ1 prop . . . Γ | θn prop

for Θ = θ1, . . . , θn.

Γ | Θ prop

Γ | Θ ` >
Γ | Θ ` ⊥ Γ | ϑ prop

Γ | Θ ` ϑ
Γ | t : σ Γ | τ : σ

Γ | t =σ τ prop

Γ | t : σ Γ | Θ prop

Γ | Θ ` t =σ t

Γ. x : σ | ϕ prop Γ | Θ ` t =σ τ Γ | Θ ` ϕ [x\t]

Γ | Θ ` ϕ [x\τ]

Γ | Θ ` ϕ Γ | Θ ` ψ
Γ | Θ ` ϕ ∧ ψ

Γ | Θ ` ϕ ∧ ψ
Γ | Θ ` ϕ

Γ | Θ ` ϕ ∧ ψ
Γ | Θ ` ψ

Γ | Θ ` ϕ Γ | ψ prop

Γ | Θ ` ϕ ∨ ψ
Γ | Θ ` ψ Γ | ϕ prop

Γ | Θ ` ϕ ∨ ψ

Γ | Θ ` ϕ ∨ ψ Γ | Θ, ϕ ` ϑ Γ | Θ, ψ ` ϑ
Γ | Θ ` ϑ

6

Γ | Θ, ϕ ` ψ
Γ | Θ ` ϕ⇒ ψ

Γ | Θ ` ϕ⇒ ψ Γ | Θ ` ϕ
Γ | Θ ` ψ

Γ | t : σ Γ. x : σ | ϕ prop Γ | Θ ` ϕ [x\t]

Γ | Θ ` ∃x : σ ϕ

Γ | Θ ` ∃x : σ ϕ Γ | ϑ prop Γ. x : σ | Θ, ϕ ` ϑ
Γ | Θ ` ϑ

Γ. x : σ | Θ ` ϕ Γ | Θ prop

Γ | Θ ` ∀x : σ ϕ

Γ | Θ ` ∀x : σ ϕ Γ | t : σ

Γ | Θ ` ϕ [x\t]

Next we introduce the rules for adding axioms in order to obtain a theory.
Given a signature Σ, for any sequent Γ | Θ ` ϑ such that

Γ | θi prop Γ | ϑ prop

are all derivable (where θi are the components of Θ) will be called a good sequent.
A theory T over Σ is a set of good sequents (called axioms). The derivable
sequents given by Σ and T is the extension of the one given by Σ by the following
for each axiom of T ,

| Θ ` ϑ
where the empty context signifies that all the variables of the sequent must be
bound.

1.1.2 The syntactic category

Definition 1.1. The syntactic category CΣ,T of a first order theory T in sig-
nature Σ is a category whose

• objects are sort-contexts Γ with a list of propositions Θ = θi such that for
each i

Γ | θi prop
is derivable, such an object will be denoted by {Γ | Θ}

• morphisms from {Γ | Θ} to {∆ | Λ} are propositions φ with Γ.∆ | φ prop

and

Γ.∆ | φ ` θi, Γ.∆ | φ ` λj Γ. ~x : ∆. ~y : ∆ | φ [~x], φ [~y] ` ~x =~σ ~y

Γ | Θ ` ∃∆ φ

modulo provable equivalence, φ ∼ ψ if both

Γ.∆ | φ ` ψ and Γ.∆ | ψ ` φ

are derivable from T .

7

1.1.3 Functorial semantics of first order logic

A commonly used semanticcs for first order logic is the Heyting categories that
will be defined in this section. The propositions of a first-order theory will be
interpreted as subobjects and Γ | ϕ ` ψ being derivable will correspond to ψ
being interpreted as a smaller subobject of Γ than ϕ.

Definition 1.2. A cartesian category is a finitely complete category.

A cartesian category is suitable for interpreting conjunction, via subobject
intersections, and equality, via equalizers. We can also interpret substitution
via pullbacks of subobjects, which will be denoted by f∗(U) for a subobject U .
Next we will show how to interpret existential quantification.

Definition 1.3. Given a subobject I ⊆ Γ′ and an arrow f : Γ′ → Γ assume
that there is a subobject ΣfI ⊆ Γ such that for any subobject U ⊆ Γ

I ≤ f∗U ⇔ ΣfI ≤ U .

We then call ΣfI the dependent sum of I along f .

Remark 1.4. Dependent sums are uniquely defined from their input data,
should they exist.

Definition 1.5. A regular category is a finitely complete category such that all
subobjects have dependent sums along all morphisms.

Lemma 1.6. Let a pullback square f ′ ◦ g′ = f ◦ g in a regular category be
given. Then we have

Σg′g
∗(X) = f ′∗Σf (X)

for any subobject X.

Next up are the models for binary disjunctions and false, which allow us to
interpret finite disjunctions.

Definition 1.7. Given two subobjects I, J ⊆ Γ, assume that there is a subob-
ject I ∪ J such that for any subobject U ⊆ Γ

I ∪ J ≤ U ⇔ I ≤ U and J ≤ U .

We then call I ∪ J ⊆ Γ the union of I and J .

Definition 1.8. Suppose we have a subobject ⊥Γ ⊆ Γ such that for any other
subobject U ⊆ Γ we have ⊥ ≤ U . We then call ⊥Γ the initial subobject of Γ.

Remark 1.9. Unions and initial subobjects are uniquely defined from their
input data, should they exist.

Definition 1.10. A cartesian category is said to have finite well-behaved unions
if it has all binary unions and initial subobjects, and they commute with pull-
backs. More precisely, for any f : Γ′ → Γ and I, J ⊆ Γ we have

8

• f∗(⊥Γ) = ⊥Γ′

• f∗(I ∪ J) = f∗(I) ∪ f∗(J)

Finally the models for universal quantification.

Definition 1.11. Given a subobject I ⊆ Γ′ and an arrow f : Γ′ → Γ assume
that there is a subobject ΠfI ⊆ Γ such that for any subobject U ⊆ Γ

f∗U ≤ I ⇔ U ≤ ΠfI .

We then call ΠfI the dependent product of I along f .

Remark 1.12. Once again, the dependent product is uniquely defined from its
input data whenever it exists.

Definition 1.13. A Heyting category is a regular category with finite well-
behaved subobject unions and dependent products.

Lemma 1.14. Let a pullback square f ′ ◦ g′ = f ◦ g in a Heyting category be
given. Then we have

Πg′g
∗(X) = f ′∗Πf (X)

for any subobject X.

The Heyting categories are the domains for the models of our first order
theories in these semantics. As Sets also is a Heyting category, this is a gener-
alization of the notion of model as sets-with-structure.

Definition 1.15. A Σ-structure in a Heyting category C is an assignment of

• an object [[σ]] ∈ C for each σ ∈ sortsΣ

• a morphism [[f]] : [[σ1]] × . . . × [[σn]] → [[σ]] for each function symbol f of
arity (~σ, σ)

• and a subobject [[Ξ]] ⊆ [[σ1]]× . . .× [[σn]] for each atomic proposition Ξ of
arity (~σ).

Let us use the abbreviation [[x1 : σ1. xn : σn]] = [[σ1]] × . . . × [[σn]]. Let
us also denote the projection map from [[Γ. x : σ.∆]] to [[σ]] by π[[σ]] Now we can
interpret every judgement of the form

Γ | t : σ

as an arrow [[Γ]]→ [[σ]] in the following way,

[[Γ. x : σ.∆ | x : σ]] = π[[σ]]

[[Γ | f(~τ) : σ]] = [[f]] ◦ [[Γ | ~τ : ~σ]]

where [[Γ | ~τ .t : ~σ.σ]] abbreviates

[[[Γ | ~τ : ~σ]], [[Γ | t : σ]]] : [[Γ]]→ [[~σ]]× [[σ]].

9

Let us now denote the projection map from [[Γ. x : σ]] to [[Γ]] by π. We
interpret the propositional judgements

Γ | ϕ prop

as a subobject of [[Γ]] in the following way,

[[Γ | > prop]] = [[Γ]]

[[Γ | ⊥ prop]] = ⊥[[Γ]]

[[Γ | ϕ ∧ ψ prop]] = [[Γ | ϕ prop]] ∩ [[Γ | ψ prop]]

[[Γ | ϕ ∨ ψ prop]] = [[Γ | ϕ prop]] ∪ [[Γ | ψ prop]]

[[Γ | ϕ⇒ ψ prop]] = Π[[Γ|ϕ prop]]([[Γ | ψ prop]])

[[Γ | ∃x : σ ϕ prop]] = Σπ([[Γ. x : σ | ϕ prop]])

[[Γ | ∀x : σ ϕ prop]] = Ππ([[Γ. x : σ | ϕ prop]])

[[Γ | t =σ τ prop]] = Eq([[Γ | t : σ]], [[Γ | τ : σ]])

[[Γ | Ξ(~τ)prop]] = [[Γ | ~τ : ~σ]]∗([[Ξ]])

and we say that a model of Σ, T in a Heyting category C is a Σ-structure in C
such that for every axiom

| Θ ` ϑ
in T , we have that

∩([[Θ]]) ≤ [[ϑ]]

as subobjects of the terminal object. Here ∩([[Θ]]) denotes the subobject inter-
section of all [[θi]].

The fact that CΣ,T is an initial object for these models can be stated in the
following way.

Theorem 1.16. There is a bijection between the models M of Σ, T in C and
the Heyting functors F : CΣ,T → C.
Proof. See D1.4 of [4].

This can be understood as saying that CΣ,T is a standard interpretation of
Σ, T .

Remark 1.17. The syntactic category actually has an even stronger classifying
property. One can define the notion of homomorphism between Σ-structures in
a category C. The homomorphisms between models then correspond to natural
transformations between Heyting functors out of CΣ,T . We will however not
recover this desirable property on the type theoretic side.

1.2 Basics of type theory

Similar to first order logic, in type theory one has sequents of different kinds,
where the left side contains variables together with information about what kind
of values they take. They look like this.

x : A. y : B(x) ` C(x, y) type

10

Unlike first order logic one does not have a separation between concepts like
sorts or propositions. Both these concepts are represented by ’types’ which
work uniformly. Note that one of the ’variable holders’ of the context, B(x), is
dependent on x. This is an important feature of the type theories that we will
investigate here: Their contexts can be very rich.

From the above sequent we can derive

` x : A. y : B(x). z : C(x, y) ctxt

which indicates that the list x : A. y : B(x). z : C(x, y) is a well-formed context.
The idea is that all the things in the context that depend on a variable x are
situated to the right of that variable, which allows one to formulate good rules
for substitution. Suppose for instance that we have a term

x : A. y : B(x). z : C(x, y) ` t(x, y, z) : α(x, y)

and that we have a term

x : A ` b(x) : B(x),

we can then substitute this term for y and get

x : A. z : C(x, b(x)) ` t(x, b(x), z) : α(x, b(x)).

This sets type theories apart from first order logic. Another important dif-
ference is that we take a sort of equality judgement to be primitive to the type
theory: We may have

x : A. z : C(x, b(x)) ` t(x, b(x), z) = s(x, z) : α(x, b(x))

which essentially means that in this context, we may substitute the terms
t(x, b(x), z) and s(x, z) for eachother. This is a bit different from the propo-
sitional equality for first order logic. The judgement t(x, b(x), z) = s(x, z) :
α(x, b(x)) is not represented by a type but is a primitive. Nothing stops you
from adding a type for representing equality, though! This equality may have a
behaviour that is wildly different from the judgemental equality present in the
sequent above. This will however not be the case for the type theory studied
here.

Similar to the first order logic is that we have a model of the type theory
built from the syntax. The objects of this type theory are the contexts up to
renaming of variables. This means that the contexts

` x : A. z : C(x, b(x)) ctxt ` y : A. x : C(y, b(y)) ctxt

represent the same object. The morphisms are generated by the terms of the
type theory, in the sense that we need to provide a term for each component of
a context, but in a way that respects the way the context depends on itself. Let
us for instance say that we have

` x : A. z : C(x, b(x)) ctxt ` y : D.w : E(y) ctxt,

11

let us call them Γ′ and Γ for brevity. To provide a context morphism Γ′ → Γ
we need to provide first a term

x : A. z : C(x, b(x)) ` r(x, z) : D.

Then we also need to provide a term of E, but in order to respect the way the
context depends on itself, we need it to be E(r(x, z)),

x : A. z : C(x, b(x)) ` h(x, z) : E(r(x, z)).

This generates a context morphism. They are identified up to judgemental
equality, which for another context morphism r′(x, z).h′(x, z) would mean that
we have the judgements

x : A. z : C(x, b(x)) ` r(x, z) = r′(x, z) : D

x : A. z : C(x, b(x)) ` h(x, z) = h′(x, z) : E(r(x, z)).

Note that a priori we would not even expect the judgement h′(x, z) : E(r(x, z))
to typecheck (only h′ : E(r′(x, z))) but in the presence of the judgement r(x, z) =
r′(x, z) : D it works out.

12

2 Syntax

This section we will introduce and investigate the syntax of a type theory
FOT (Σ, T) for a first order theory T over a signature Σ. The main results
that we wish to prove are the following.

• The term model IΣ,T is equivalent to the syntactic category CΣ,T .

• This equivalence is a Heyting equivalence.

This way we establish that Heyting functors out of IΣ,T are the same thing as
Heyting functors out of CΣ,T . We will not be explicit about ensuring that the
equivalence that we construct is a Heyting equivalence, but rather only provide
the Heyting structure on IΣ,T .

The way that we go about constructing this equivalence is that we find
translations back and forth between FOT (Σ, T) and the first order theory T
over Σ. The main obstacle is the appearance of definite descriptions in the
propositions of FOT (Σ, T), in trying to translate into first order logic. The
goal of Section 2.3 is to show how these definite descriptions may be eliminated
from the syntax for the propositional judgements in definite description free
contexts.

We subsequently factor the translation into some intermediate stages, each
of which straightforwardly yields an equivalence of categories.

2.1 First order logic as a type theory

First order logic has sorts, which describe how the terms of the language fit
together. It also has propositions or predicates which are used to express facts
about its terms. In type theory one does not make such a distinction between
the sorts and the propositions. Rather, one represents the truth of a proposition
by a proof-term, where there are potentially distinct proof-terms of the same
proposition. These proof-terms carry information about how the truth of the
proposition was derived. No such information is retained in first order logic.

The definition we give here is within framework provided by [7], where a
general method for constructing a type theory is given. A common feature of
these type theories is that they have the weakening and substitution rules.

The subsection that follows is essentially one long definition where all the
rules of the type theory are presented. First, let us look at our judgement forms,

Γ ctxt ϕ prop σ sort ρ : ϕ t : σ

which are the ones that we will be devoting the most attention to, but we also
have judgement forms for equalities.

Γ = ∆ ctxt ϕ = ψ prop σ = σ′ sort ρ = δ : ϕ t = τ : σ

The judgement forms for contexts will only take an empty context as a primitive,
although we will derive how to consider contexts over other contexts. The

13

equality judgement form for sorts is an artefact from the framework we are
using (two sorts will only be judged equal in some context if the are syntactically
identical to begin with). We will also use the abbreviation α type to signify
that the same rule applies regardless of whether α is judged to be a proposition
or a sort.

Given a first-order signature Σ and theory T over Σ, let us begin defining
the type theory FOT (Σ, T). First we define what the sequents of the type
theory are (via the raw syntax) and then we introduce the rules, by which we
single out the derivable sequents.

2.1.1 Raw syntax

A first-order signature consists of a set of sort symbols, sortsΣ, a set of function
symbols functionsnΣ and a set of atomic propositional symbols atomsnΣ, the
latter two of which can be graded by the number of arguments they take.

Definition 2.1. The following clauses define the raw syntax of FOT (Σ, T).
Quantifiers like ∀x : σ ϕ and variable bindings like x.τ indicate that x is now
a bound variable of the entire expression and the clause only applies if x is not
bound in ϕ or τ respectively. We will also not distinguish between renaming of
bound variables. Also, every axiom of the theory

| Θ ` ϑ

can be graded by the number of formulas in Θ.
Clauses for sorts

σ ≡ A (A ∈ sortsΣ)

Clauses for raw sort-terms

t, τ ≡ x, y (sort-variables) | ιx : σ ϕ (ρ, δ)

| f(~τ) (f ∈ functionsnΣ, ~τ n-tuple of raw sort-terms)

Clauses for raw proof-terms

ρ, δ, π ≡ p, q (proof-variables) |=I(σ, t)

| ∨IL(ϕ,ψ, ρ) | ∨IR(ϕ,ψ, ρ) | ∨E(ϕ,ψ, ϑ, p.ρ, q.δ, π)

| ∃ I(σ, x.ψ, t, ρ) | ∃ E(σ, x.ψ, ϑ, ρ, x.p.δ)

| ∀I(σ, x.ψ, x.ρ) | ∀E(σ, x.ψ, ρ, t)

| ∃ I(ϕ, x.ϕ, t, ρ) | ∃ E(ϕ, p.ψ, ϑ, ρ, p.q.δ)

| ∀I(ϕ, p.ψ, p.ρ) | ∀E(ϕ, p.ψ, ρ, δ)

| ρx : σ ϕ (ρ, δ)

| A(~ρ) (A ∈ axioms Tn)

14

Clauses for raw formulas

ϕ,ψ, ϑ ≡ > | ⊥ | ϕ ∨ ψ
| ∃x : σ ψ | ∀x : σ ψ

| ∃ p : ϕ ψ | ∀ p : ϕ ψ

| t =σ τ

| Ξ(~τ) (Ξ ∈ atomsnΣ, ~τ n-tuple of raw sort-terms)

Expressions of the form

ιx : σ ϕ (ρ, δ) and ρx : σ ϕ (ρ, δ)

are the terms for definite descriptions, representing the thing described by ϕ
and the canonical proof that it satisfies ϕ respectively, and are said to be ι-
expressions. Expressions which contain no ι-term as a subexpression are said
to be ι-free.

Given that we now have all the raw symbols of the type theory, we can define
the sequents as being expressions of the form

Γ ` J
where Γ is an expression like x : α. w : ϕ where each entry is a raw formula
or sort α with a variable x of the appropriate kind such that all the variables
are distinct, and J is one of the judgement forms

Γ ctxt ϕ prop σ sort ρ : ϕ t : σ

or

Γ = ∆ ctxt ϕ = ψ prop σ = σ′ sort ρ = δ : ϕ t = τ : σ.

2.1.2 Rules for symbols from the signature

These are the rules for the function symbols and atomic formulas of a signature
Σ of first order logic. For each sort σ of Σ we introduce a judgement

Γ ctxt

Γ ` σ sort

and for each function symbol f : ~σ → σ we introduce a term of arity ~σ with the
introduction rule

Γ ` τ1 : σ1 . . . Γ ` τn : σn

Γ ` f(~τ) : σ

For each atomic formula Ξ with formula arity ~σ we give the introduction rule

Γ ` τ1 : σ1 . . . Γ ` τn : σn

Γ ` Ξ(~τ) prop

These are the rules that give us access to the symbols of the signature.

15

2.1.3 Logical and structural rules

Now for the lion part of the rules. Note that the diamond shape ♦ is a place-
holder for the length 0 context as defined in the raw syntax.

Context rules:

` ♦ ctxt

` Γ ctxt Γ ` α type

` Γ. x : α ctxt

` Γ. x : α.∆ ctxt

Γ. x : α.∆ ` x : α

Structural rules:

Substitution
Γ ` α type Γ.∆ ` J

Γ. x : α.∆ ` J

Weakening
Γ ` t : α Γ. x : α.∆ ` J

Γ.∆ [x\t] ` J [x\t]

The terms associated to the type given by a first order formula ϕ are to be
understood as proofs of ϕ and for now we don’t distinguish between different
proofs but take them to be the same, as stated in the following equality rule.

Proof irrelevance
Γ ` ϕ prop Γ ` ρ : ϕ Γ ` δ : ϕ

Γ ` ρ = δ : ϕ

We describe the type theoretic judgements corresponding to the different logical
rules. First the truth and false:

` Γ ctxt

Γ ` > prop

` Γ ctxt

Γ ` >I : >
` Γ ctxt

Γ ` ⊥ prop

Γ ` ρ : ⊥ Γ ` ϕ prop

Γ ` ⊥E(ϕ, ρ) : ϕ

Equality:

Γ ` σ sort Γ ` t : σ Γ ` τ : σ

Γ ` t =σ τ prop

Γ ` σ sort Γ ` t : σ

Γ `=I(σ, τ) : t =σ t

Γ ` σ sort Γ ` t : σ Γ ` τ : σ Γ ` ρ : t =σ τ

Γ ` t = τ : σ

Disjunction:

Γ ` ϕ prop Γ ` ψ prop

Γ ` ϕ ∨ ψ prop

Γ ` ϕ prop Γ ` ψ prop

Γ ` ρ : ϕ

Γ ` ∨IL(ϕ,ψ, ρ) : ϕ ∨ ψ

Γ ` ϕ prop Γ ` ψ prop

Γ ` ρ : ψ

Γ ` ∨IR(ϕ,ψ, ρ) : ϕ ∨ ψ

Γ ` ϕ prop Γ ` ψ prop Γ ` ϑ prop

Γ ` π : ϕ ∨ ψ Γ. p : ϕ ` ρ : ϑ Γ. q : ψ ` δ : ϑ

Γ ` ∨E(ϕ,ψ, ϑ, π, p.ρ, q.δ) : ϑ

16

Existential quantification for sorts:

Γ ` σ sort Γ. x : σ ` ψ prop

Γ ` ∃x : σ ψ prop

Γ ` σ sort Γ. x : σ ` ψ prop

Γ ` t : σ Γ ` δ : ψ [x\t]

Γ ` ∃ I(σ, x.ψ, t, δ) : ∃x : σ ψ

Γ ` σ sort Γ. x : σ ` ψ prop Γ ` ϑ prop

Γ ` ρ : ∃x : σ ψ Γ. x : σ. p : ψ ` δ : ϑ

Γ ` ∃ E(σ, x.ψ, ϑ, ρ, x.p.δ) : ϑ

Universal quantification for sorts:

Γ ` σ sort Γ. x : σ ` ψ prop

Γ ` ∀x : σ ψ prop

Γ ` σ sort Γ. x : σ ` ψ prop

Γ. x : σ ` ρ : ψ

Γ ` ∀I(σ, x.ψ, x.ρ) : ∀x : σ ψ

Γ ` σ sort Γ. x : σ ` ψ prop

Γ ` ρ : ∀x : σ ψ Γ ` t : σ

Γ ` ∀E(σ, x.ψ, ρ, t) : ψ [x\t]

The most drastic departure from the standard components of first order logic is
a term which can be introduced by supplying a proof of existence and uniqueness
of a variable satisfying some predicate, i.e., a definite description operator.

Γ ` σ sort Γ. x : σ ` ψ prop

Γ ` ε : ∃x : σ ψ Γ. x : σ. p : ψ. y : σ. q : ψ [x\y] ` υ : x =σ y

Γ ` ιx : σ ψ(ε, x.p.y.q.υ) : σ

Γ ` σ sort Γ. x : σ ` ψ prop

Γ ` ε : ∃x : σ ψ Γ. x : σ. p : ψ. y : σ. q : ψ [x\y] ` υ : x =σ y

Γ ` ρx : σ ψ(ε, x.p.y.q.υ) : ψ [x\ ιx : σ ψ(ε, x.p.y.q.υ)]

Because we get sort-terms which depend on proof-terms in this type theory and
because propositions in first order logic are formed from sort-terms, the formu-
las corresponding to a conjunction or implication will have the second argument
depend on the first one. This is not needed in standard first order logic as there
sort-terms cannot be formed from proof-terms. Instead of conjunction and im-
plication we will call them existential quantification and universal quantification

17

but for propositions. Rules for existential quantification for propositions:

Γ ` ϕ prop Γ. p : ϕ ` ψ prop

Γ ` ∃ p : ϕ ψ prop

Γ ` ϕ prop Γ. p : ϕ ` ψ prop

Γ ` ρ : ϕ Γ ` δ : ψ [p\ρ]

Γ ` ∃ I(ϕ, p.ψ, ρ, δ) : ∃ p : ϕ ψ

Γ ` ϕ prop Γ. p : ϕ ` ψ prop Γ ` ϑ prop

Γ ` ρ : ∃ p : ϕ ψ Γ. p : ϕ. q : ψ ` δ : ϑ

Γ ` ∃ E(ϕ, p.ψ, ϑ, ρ, p.q.δ) : ϑ

Universal quantification for propositions:

Γ ` ϕ prop Γ. p : ϕ ` ψ prop

Γ ` ∀ p : ϕ ψ prop

Γ ` ϕ prop Γ. p : ϕ ` ψ prop

Γ. p : ϕ ` ρ : ψ

Γ ` ∀I(ϕ, p.ψ, p.ρ) : ∀ p : ϕ ψ

Γ ` ϕ prop Γ. p : ϕ ` ψ prop

Γ ` ρ : ∀ p : ϕ ψ Γ ` δ : ϕ

Γ ` ∀E(ϕ, p.ψ, ρ, δ) : ψ [p\δ]

Note that we have not shown the equality rules here. There is an equality rule
for each argument of a symbol, making sure that if we provide two arguments
that are judged equal by the type theory then the result is judged equal as well.
There are also rules for making sure that judgemental equality is an equivalence
relation, and that anytime two expressions are judged equal, one may replace
one by the other in sequents. See [7] for the full definition.

2.1.4 Rules for axiom terms

Now that we have all the rules for deriving propositions, we will add the symbol
rules for the proof-terms witnessing the axioms.

Γ ` ~τ : ~σ Γ ` ρ1 : θ1(~τ) . . . Γ ` ρn : θn(~τ)

Γ ` A(~τ , ~ρ) : ϕ(~τ)

We note here that the formulas θi(~τ) and ϕ(~τ) are not precisely the same as
the assumptions and conclusion of an axiom of T

∆ | Θ ` ϕ

but we have replaced conjunction and implication by prop-existential quantifi-
cation and implication by prop-universal quantification.

18

2.2 Some syntactic conveniences

Here we will provide some syntactic sugar and prove that IΣ,T is a Heyting
category.

In practice we will be a little more verbose when specifying the variable
bindings of terms than needed. For instance, instead of writing

∃ E(ϕ, p.ψ, ϑ, ρ, p.q.δ)

we would rather write

∃ E{
p : ϕ ` ψ,
ϑ,

ρ,

p : ϕ. q : ψ ` δ
}

or something of the sort. We will also seldom work directly with quantification
over a sort or proposition, rather working with quantification over a context.
First we introduce some notation for basic judgements with contexts. If Γ.∆ is
a derivable context we will sometimes write

Γ ` ∆ ctxt

and we will define context morphisms between contexts over Γ by induction on
the context lengths

Γ ` ∆1 ctxt Γ ` ∆2. y : ϕ ctxt Γ ` f : ∆1 → ∆2 Γ.∆1 ` τ : ϕ [f]

Γ ` f.τ : ∆1 → ∆2. y : ϕ

where the substitution of a judgement J along a context morphism is given by

Γ ` ∆1,∆2. y : ϕ ctxt Γ.∆2. y : ϕ ` J Γ ` f.τ : ∆1 → ∆2. y : ϕ

Γ.∆1 ` J [f] [y\τ]

and we also denote Γ ` f : ♦→ ∆ by

Γ ` f : ∆.

Let us now pack together the fact that if two compound formulas of the same
connective have equivalent subformulas, then they themselves are equivalent.

Proposition 2.2. For each logical connective © (including quantifiers) and
pairs of formulas ϕ1, ϕ2 and ψ1, ψ2 approperiate for the connective such that

Γ ` ϕ1 prop Γ ` ψ1 prop

19

are derivable and equivalent in the sense that we have i1, j1 such that

Γ ` i1 : ϕ1 → ψ1 Γ ` j1 : ψ1 → ϕ1

are derivable, and the corresponding thing holds for ϕ2, ψ2 with i2, j2 (the
precise formulation depends on the connective), we can form terms

i〈©〉(i1, j1, i2, j2) and j〈©〉(i1, j1, i2, j2)

such that the following are derivable

Γ ` i〈©〉(i1, j1, i2, j2) : ϕ1© ϕ2 → ψ1© ψ2,

Γ ` j〈©〉(i1, j1, i2, j2) : ψ1© ψ2 → ϕ1© ϕ2.

Similarly for sort-quantification we can construct equivalences for Q x : σ ϕ and
Q x : σ ψ from an equivalence for ϕ,ψ.

Proof. A matter of using the introduction and elimination rules for each con-
nective ©.

We also have type inference. We will state this the following way, and only
need it for proof-terms.

Proposition 2.3. We can define the formula p(ρ) of a proof-term ρ over Γ
called the inferred type of ρ such that if

Γ ` ρ : ϑ

is derivable, then so is
Γ ` ρ : p(ρ).

Proof. Both the definition and proof proceed by case analysis on ρ. If ρ is a
variable, just take p(ρ) to be the formula in the context that it came from.

If ρ is a logical symbol, the outermost part of ρ contains all he information
needed to infer the type, and admissability guarantees that we can derive Γ `
ρ : p(ρ). For instance, if ρ is existential introduction, we have

∃ I(y : σ ` ϕ, t, δ)

from which we take p(ρ) = ∃ y : σ ϕ and if we have

Γ ` ∃ I(y : σ ` ϕ, t, δ) : ϑ

then by admissibility we also have

Γ ` σ sort Γ. y : σ ` ϕ prop Γ ` t : σ Γ ` δ : ϕ [x\t]

which allows us to apply existential introduction and get

Γ ` ∃ I(y : σ ` ϕ, t, δ) : ∃ y : σ ϕ.

20

If ρ is an axiom term A(~ρ), we take p(ρ) to be the conclusion of the axiom.
By admissibility we get

Γ ` ρi : θi

for each i if Γ ` A(~ρ) : ϑ, then we apply the symbol rule for the axiom term
and get the desired conclusion.

Let us state some propositions which we will not properly prove but subse-
quently use.

Proposition 2.4. If Γ ` ϕ = ψ prop then ϕ and ψ come from the same term
constuctor, and their arguments are judged equal too.

Proof. Essentially, the only equality rules for propositions are those from the
symbol rules, where the propositions are judged equal if one can “substitute” in
equal subterms (not necessarily substitute in the sense of applying substitution
rule in the type theory, but in the sense that ϕ and ψ have been substituted
into ϕ ∨ ϑ and ψ ∨ ϑ).

Proposition 2.5. If Γ ` ρ : ϕ and Γ ` ρ : ψ then Γ ` ϕ = ψ prop.

For the quantifications over contexts, we have the following

Γ ` ∆ ctxt Γ.∆ ` ψ prop

Γ ` ∃∆ ψ prop

where ∃∆ ψ is defined by generating cases

∃x : σ.∆ ψ = ∃x : σ ∃∆ ψ and ∃ p : ϕ.∆ ψ = ∃ p : ϕ∃∆ ψ

and similar for universal quantification. We can straightforwardly define proof-
terms using the generating cases satisfying

Γ ` ∆ ctxt Γ.∆ ` ψ prop Γ ` f : ∆ Γ ` ρ : ψ [f]

Γ ` ∃ I(∆ ` ψ, f, ρ) : ∃∆ ψ

Γ ` ∆ ctxt Γ.∆ ` ψ prop Γ ` ϑ prop

Γ ` ρ : ∃∆ ψ Γ.∆. p : ψ ` δ : ϑ

Γ ` ∃ E(∆ ` ψ, ϑ, ρ, ∆. p : ψ ` δ)

and similarly for universal quantification we can define proof-terms by replacing
the sort or proposition being quantified over by a context.

Also, we can extend propositional equality to contexts by

(f.ρ =Γ. p:ϕ g.δ) = (f =Γ g) (f.t =Γ. x:σ g.τ) = (∃ p : t =σ τ) f =Γ g

with base case f =♦ g = >. It has

Γ ` ∆ ctxt Γ ` f : ∆ Γ ` g : ∆

Γ ` f =∆ g prop

Γ ` ∆ ctxt Γ ` f : ∆

Γ `=I(∆, f) : f =∆ f

21

and also satisfies

Γ ` ∆ ctxt Γ ` f, g : ∆ Γ ` ρ : f =∆ g

Γ ` f = g

which allows us to extend the definite descriptions by the rules

Γ ` ∆ ctxt Γ.∆ ` ϕ prop Γ ` ε : ∃∆>
Γ. x : ∆. p : ϕ [x]. y : ∆. ϕ [y] ` υ : x =∆ y

Γ ` ι∆ ϕ(ε, υ) : ∆

Γ ` ∆ ctxt Γ.∆ ` ϕ prop Γ ` ε : ∃∆>
Γ. x : ∆. p : ϕ [x]. y : ∆. ϕ [y] ` υ : x =∆ y

Γ ` ρ∆ ϕ(ε, υ) : ϕ [ι∆ ϕ(ε, υ)]

2.2.1 Heyting structure on term model

We now show that IΣ,T has the structure of a Heyting category. First note
that we get the factorization into regular epi followed by mono by factorizing
f : Γ→ ∆ as

f.ρ : Γ→ ∆. p : ∃Γ f =∆ y y : ∆. p : ∃Γ f =∆ y→ Γ

where y are the variables in ∆. The term ρ is given by existential introduction
on the equality intro on (f =∆ y [f]) = f =∆ f .

Proposition 2.6. The above factorization is a regular epi followed by a mono.

Proof. The latter arrow is a monomorphism by proof irrelevance. To show that
the former is a regular epi, take some other factorization

f = g ◦ h : Γ→ ∆′ → ∆

and construct the arrow ∆. p : ∃Γ f =∆ y→ ∆′ by the following observation:
If g : ∆′ → ∆ is mono then there is a proof-term δ such that

∆. v : ∆′.w : ∆′. p : g [v] =∆ g [w] ` δ : v =∆′ w

is derivable. This means that there is a proof-term υ such that

∆. v : ∆′. p : g [v] =∆ y.w : ∆′. q : g [w] =∆ y ` υ : v = w

and we can from p : ∃Γ f =∆ y get ε : ∃∆′ g =∆ y by doing an existential
elimination on p to get some x : Γ such that f(x) =∆ y. The factorization
f = g ◦ h means that we can do existential introduction on h(x) together with
the given proof that g ◦ h(x) =∆ y. This makes the following diagram commute
with t = ι∆′ (g =∆ y)(ε, υ),

∆′

Γ ∆. p : ∃Γ f =∆ y ∆

g

f.ρ

h t

y

.

22

Remark 2.7. This does not only give us a regular factorization on IΣ,T , it also
gives us that any monomorphism can be represented by a proposition, hence
any subobject can be represented by a proposition. This representation can
then be exploited to construct the subobject intersections, unions, dependent
sums and dependent products using our logical connectives, see Johnstone [4,
D1.4]. We will list them below.

Let f : Γ′ → Γ be an arrow of the term model, where Γ′ has variables x and
Γ has variables y.

• The terminal object is given by ` ♦ ctxt.

• The objects ` Γ ctxt and ` Γ′ ctxt have the product given by ` Γ.Γ′ ctxt.

• Two arrows f, g : Γ′ → Γ has equalizer given by Γ′ ` f(x) =Γ g(x) prop.

• The initial subobjects are given by Γ ` ⊥ prop.

• The subobject union of Γ ` ϕ prop and Γ ` ψ prop is given by Γ `
ϕ ∨ ψ prop.

• The dependent sum of a subobject Γ′ ` ϕ prop along f is given by Γ `
∃Γ′ f(x) = y.

• The dependent product of a subobject Γ′ ` ϕ prop along f is given by
Γ ` ∀Γ′ f(x) = y.

2.3 Translating judgements into definite description free
fragment

The conservativity of definite descriptions over first order logic has already been
established, see for example Fourman [1] for a topos theoretic perspective. The
goal of this section is to prove a “type theoretic” conservativity of the definite
descriptions in order to get an equivalence of categories between the term model
IΣ,T and the syntactic category CΣ,T .

To translate into a definite description free fragment of the type theory, we
will begin by translating judgements in ι-free contexts. This definition will be
made by induction on the structure of the judgement, i.e., the translation will
built by first translating the subexpressions and then putting them together in
an appropriate way.

The main goal of the translation is that we translate a sequent like

Γ ` ϕ prop

into one like
Γ ` t (ϕ) prop

where t (ϕ) is ι-free, and the second sequent is derivable whenever the first
one is. To prove such a thing one usually has to do an induction on trees of

23

derivation, i.e., go through all the rules of the type theory, assume that it works
for the premises of the rule and use that to prove that it works for the conclusion
as well.

To do get all of this working, we will define some secondary terms and verify
that some invariants of the translation hold. We will be call a sequent translation
sound if this umbrella of conditions holds for the sequent.

2.3.1 Specification and soundness clauses

Let us introduce the different components of the translation and then define
what it means for a sequent to be translation sound. The actual definitions of
the components of the translation will be given in the next subsection.

Definition 2.8. For each symbol of FOT (Σ, T) we will associate the following
data, all of it ι-free by construction,

Sort-term t
We will to each sort-term t associate

• a sort-term f(t), the unbinding of t,

• a context c(t), the freeing context of t,

• and a proof-term e(t), the existence witness of t.

such that if Γ ` t : σ is derivable and Γ is ι-free then the following are
derivable,

Γ ` c(t) ctxt Γ. c(t) ` f(t) : σ Γ ` e(t) : ∃ c(t) >

Formula ϕ
We will to each formula ϕ associate

• a formula t (ϕ), the translation of ϕ,

• proof-terms i(ϕ) and j(ϕ), the translation equivalences of ϕ,

such that if Γ ` ϕ prop is derivable and Γ is ι-free then the following are
derivable,

Γ ` t (ϕ) prop Γ ` i(ϕ) : t (ϕ)→ ϕ Γ ` j(ϕ) : ϕ→ t (ϕ)

and to each pair of formulas ϕ,ψ of the same kind

• proof-terms k (ϕ;ψ) and h (ϕ;ψ), the equality equivalences of ϕ, ψ,

such that over any context that judges ϕ and ψ equal we have

Γ ` k (ϕ;ψ) : t (ϕ)→ t (ψ) Γ ` h (ϕ;ψ) : t (ψ)→ t (ϕ) .

Proof-term ρ
We will to each proof-term ρ associate

24

• a proof-term t (ρ), the translation of ρ,

such that if Γ ` ρ : ϕ is derivable then so is

Γ ` t (ρ) : t (p(ρ))

where p(ρ) is the inferred type of ρ from Proposition 2.3.

Given the definitions in the next chapter, we take the following:

Definition 2.9. A sequent Γ ` t : σ sort-term t is translation sound if the
following sequents are derivable,

(i) Γ ` c(t) ctxt

(ii) Γ. c(t) ` f(t) : σ

(iii) Γ ` e(t) : ∃ c(t) >

(iv) Γ. c(t) ` t = f(t) : σ

and a derivable sequent Γ ` t = τ : σ with t, τ being sort-terms is translation
sound if both Γ ` t : σ and Γ ` τ : σ are translation sound.

Remark 2.10. It would be reasonable to include that if Γ ` t = τ : σ is
derivable for t, τ sort-terms then so is Γ. c(t). c(τ) ` f(t) = f(τ) : σ but that is
satisfied by clause (iv).

Definition 2.11. A sequent Γ ` ϕ prop is translation sound if the following
sequents are derivable,

(i) Γ ` t (ϕ) prop

(ii) Γ. p : t (ϕ) ` i(ϕ)(p) : ϕ

(iii) Γ. p : ϕ ` j(ϕ)(p) : t (ϕ)

and a sequent Γ ` ϕ = ψ prop is translation sound if the following are derivable,

(iv) Γ ` k (ϕ;ψ) : t (ϕ)→ t (ψ)

(v) Γ ` h (ϕ;ψ) : t (ψ)→ t (ϕ)

Remark 2.12. The above definition allows us to extend translation soundness
to contexts over Γ, by first letting t (σ) = σ and i(σ), j(σ) be identity substi-
tutions. Then we let the following clauses extend the notions to a context,

t(∆. x : σ) = t(∆). x : σ t(∆. p : ϕ) = t(∆). p : t (ϕ [i(∆)])

i(∆. x : σ) = i(∆).x i(∆. p : ϕ) = i(∆).i(ϕ [i(∆)])(p)

j(∆. x : σ) = j(∆).x j(∆. p : ϕ) = j(∆).j(ϕ [i(∆)])(p)

and we say that a sequent Γ ` ∆ ctxt is translation sound if

25

(i) Γ ` t(∆) ctxt

(ii) Γ ` i(∆) : t(∆)→ ∆

(iii) Γ ` j(∆) : ∆→ t(∆)

Definition 2.13. A sequent Γ ` ρ : ϕ with proof-term ρ is said to be translation
sound if Γ ` p(ρ) = ϕ prop is translation sound and the following is derivable,

(i) Γ ` t (ρ) : t (p(ρ)).

Definition 2.14. A rule of the type theory is translation soundness preserving
if whenever the context Γ of the conclusion is ι-free and all the assumption
sequents

Γ.∆ ` J
have that all

Γ. t(∆) ` J [i(∆)]

are translation sound then so is the conclusion.

2.3.2 Definitions and partial soundness results

Let us now give the concrete definitions. Note that we have chunked up the
definitions into the categories of sort-terms, formulas and proof-terms. These
definitions will actually depend on each other so the entire chapter is like a long
definition. We will however intersperse the definitions with some results about
translation soundness preservation because we will not require all the definitions
laid out at the same time to prove them.

Definition 2.15. Define the freeing context c(t), the unbinding and the ex-
istence witness e(t) f(t) of a sort-term t in ι-free context Γ by induction on
its structure. First we make an auxiliary definition for how to iterate over a
sequence ~τ of terms,

f(~τ .t) = f(~τ). f(t) c(~τ .t) = c(~τ). c(t).

where we suppress some variable renaming from the notation to avoid variable
collision. Now for the actual definition: The definite descriptions will give us
our generating clause. We take

f(ιx : σ ϕ) = x c(ιx : σ ϕ) = x : σ. p : t (ϕ)

f(f(~τ)) = f(f(~τ)) c(f(~τ)) = c(~τ)

f(x) = x c(x) = ♦

Note that we left out the arguments for the definite description terms because
they do not matter for the definition. Now for the existence witnesses. Once

26

again the definite descriptions give us our generating clause,

e(ιx : σ ϕ(ε, υ)) =∃ E{
x : σ ` t (ϕ) ,

∃x : σ ∃ p : t (ϕ) >,
k (p(ε);∃x : σ ϕ)(t (ε)),

x : σ. p : t (ϕ) ` >I : >,
}.

Now we turn to the auxiliary definition e(~τ) for how to iterate over a number
of sort-terms,

e(~τ .τ) =∃ E{ c(~τ) ` >, ∃ c(~τ .t) >, e(~τ),

v : c(~τ). : > ` ∃ E{ c(t) ` >, ∃ c(~τ .t) >, e(t),

x : c(t). : > ` ∃ I(c(~τ .t) ` >, v.x, >I) } }

which allows us to give us our definitions for function symbols and variables,

e(f(~τ)) = e(~τ), e(x) = >I.

Note that the freeing context

c(ιx : σ ϕ) = x : σ. p : t (ϕ)

calls the translation of the formula ϕ and likewise the existence witness e(ιx :
σ ϕ(ε, υ)) calls the translation of the proof-term ε.

As we will be eliminating on the existential witness a lot, we also use the
following notation for brevity,

(
E(t){ ϑ,
c(t) ` ρ }

)
=

(
∃ E{ c(t) ` >, ϑ, e(t),

c(t). : > ` ρ }

)

Lemma 2.16. The symbol rules for the sort-terms are translation soundness
preserving whenever the context Γ is ι-free.

Proof. We handle the three syntactic cases (definite description term, function
symbol, variable) separately.

Definite description sort-term

Γ ` σ sort Γ. x : σ ` ϕ prop Γ ` ε : ∃x : σ ϕ
Γ. x : σ. p : ϕ. y : σ. q : ϕ [x\y] ` υ : x =σ y

Γ ` ιx : σ ϕ(ε, υ) : σ

By translation soundness of the premises, the sequents

Γ. x : σ ` t (ϕ) prop Γ ` k (p(ε); ∃x : σ ϕ)(t (ε)) : ∃x : σ t (ϕ)

27

are derivable. The first one gives us that

Γ ` x : σ. p : t (ϕ) ctxt Γ. x : σ. p : t (ϕ) ` x : σ

are derivable which gives us the correct typing for our freeing context and
unbinding, respectively. We can also apply existential elimination to get
typing for the existence witness,

Γ ` σ sort Γ. x : σ ` t (ϕ) prop Γ ` ∃x : σ ∃ p : t (ϕ) > prop

Γ ` k (p(ε);∃x : σ ϕ)(t (ε)) : ∃x : σ t (ϕ)
Γ. x : σ. p : t (ϕ) ` ∃ I(x, p,>I) : ∃x : σ ∃ p : t (ϕ) >

Γ ` ∃ E(σ, x.t (ϕ) ,∃x : σ ∃ p : t (ϕ) >, t (ε) , x.p.∃ I(x, p>I))
: ∃x : σ ∃ p : t (ϕ) >

where all the premises are derivable by translation soundness of the premises.
For the unbinding equality, with the notation that

t = ιx : σ ϕ(ε, υ) ρ = ρx : σ ϕ(ε, υ)

note that we have

Γ. x : σ. p : t (ϕ) ` υ(t, ρ, x, i(ϕ)(p)) : t =σ x

where derivability of

Γ. p : t (ϕ) ` i(ϕ)(p) : ϕ

is given by soundness induction hypothesis.

Function symbol

Γ ` ~τ : ~σ

Γ ` f(~τ) : σ

By translation soundness of the premises we get that

Γ. c(τi) ` f(τi) : σi

are derivable for every component τi : σi of ~τ : ~σ. But by weakening we
have that

Γ. c(~τ) ` ~τ : ~σ and thus Γ. c(~τ) ` f(f(~τ)) : σ

are derivable which means that we have correct typing of our unbinding.
Similarly we can show correct typing of freeing context and unbinding
equality. Correct typing of existence witness can be verified by iterating
over ~τ .

28

Sort-variable

` Γ. x : σ.∆ ctxt

Γ. x : σ.∆ ` x : σ

From this we directly get correct typing of the freeing context,

Γ. x : σ.∆ ` ♦ ctxt

correct typing of the unbinding,

Γ. x : σ.∆.♦ ` x : σ

and unbinding equality

Γ. x : σ.∆.♦ ` x = x : σ.

Also note that >I can be introduced from any context so we have correct
typing of the existence witness.

Definition 2.17. Define the translation t (ϕ) together with the translation
equivalences i(ϕ) and j(ϕ) for formulas ϕ by induction on the structure of ϕ.
For compound formulas the translation is trivial, combining using the given
connective,

t (ϕ ∨ ψ) = t (ϕ) ∨ t (ψ)

t (∃x : σ ψ) = ∃x : σ t (ψ)

t (∀x : σ ψ) = ∀x : σ t (ψ)

and for the formulas with propositional quantifiers we also do a substitution
along a translation equivalence,

t (∃ p : ϕ ψ) = ∃ p : t (ϕ) t (ψ [i(ϕ)])

t (∀ p : ϕ ψ) = ∀ p : t (ϕ) t (ψ [i(ϕ)])

For atomic formulas we capture the freeing context of its arguments in an exis-
tential quantifier,

t (Ξ(~τ)) = ∃ c(~τ) Ξ(f(~τ))

Now we turn to the defining clauses for i(ϕ) and j(ϕ). For compound formulas,
appeal to the equivalence of its subformulas. For instance, with ϕ ∨ ψ we take

i(ϕ ∨ ψ)(ρ) = ∨ E{ t (ϕ) , t (ψ) , ϕ ∨ ψ,
p : t (ϕ) ` ∨IL(ϕ,ψ, i(ϕ)(p)),

q : t (ψ) ` ∨IR(ϕ,ψ, i(ψ)(q)),

ρ

}.

29

For ∃ p : ϕ ψ, let ψ [p\i(ϕ)(p′)] = ψ′ and take

i(∃ p : ϕ ψ)(ρ) =∃ E{ p′ : t (ϕ) ` t (ψ′) ,

∃ p : ϕ ψ,

ρ,

p′ : t (ϕ) . q′ : t (ψ′) ` ∃ I(

p : ϕ ` ψ, i(ϕ)(p′), i(ψ′)(q′)

)

}.

For atomic formulas Ξ(~τ) we take the translation

t (Ξ(~τ)) = ∃ c(~τ) Ξ(f(~τ))

with translation equivalences given by

i(Ξ(~τ))(p) =∃ E{
c(~τ) ` Ξ(f(~τ)),

Ξ(~τ),

p,

c(~τ). q : Ξ(f(~τ)) ` q,
}

and

j(Ξ(~τ))(p) =∃ E{
c(~τ) ` >,
∃ c(~τ) Ξ(f(~τ)),

e(~τ),

c(~τ). : > ` ∃ I(c(~τ) ` Ξ(f(~τ)), f(~τ), p),

}.

Let us now turn to the definition of k (ϕ;ψ). We will only bother defining
it when ϕ and ψ come from the same constructor as that is a prerequisite for
Γ ` ϕ = ψ prop, Lemma 2.4.

If ϕ,ψ are composite, we appeal to Proposition 2.2. If they are atomic
formulas Ξ(~τ1) and Ξ(~τ2) we only eliminate on the existential witnesses,

k (Ξ(~τ1); Ξ(~τ2))(p) = E(~τ1){ ∃ c(~τ2) Ξ(f(~τ2)),

c(~τ1) ` E(~τ2){ ∃ c(~τ2) Ξ(f(~τ2)), p } }.

and h (Ξ(~τ1); Ξ(~τ2)) looks identical. (It does not matter which order we eliminate
on the existential witnesses.)

30

Because the terms k (p(ρ);ϕ)(t (ρ)) will be used heavily during the transla-
tion, we abbreviate that as simply

k (ρ;ϕ).

Remark 2.18. Any composite formula © can be presented as

©(αk, αk(l) ` ψl)
with symbol rule

Γ ` αk type Γ. xl : αk(l) ` ψl prop
Γ ` ©(αk, xl : αk(l) ` ψl) prop

where indices k and l are understood to range over their values in the premise.
With this presentation in mind, the translation according to the above definition
is

t
(
©(αk, xl : αk(l) ` ψl)

)
=©(t (αk) , xl : t (αk(l)) ` t (ψl [i(αk(l))]))

where we take t (α) = α and i(α), j(α) to be the identity substitutions when α
is a sort.

Lemma 2.19. The symbol rules for propositions are translation soundness
preserving.

Proof. Let us treat the composite and atomic formulas separately.

Composite formulas

Γ ` αk type Γ. xl : αk(l) ` ψl prop
Γ ` ©(αk, xl : αk(l) ` ψl) prop

By translation soundness of the first premise, we have that

Γ ` t (αk) type Γ ` i(αk(l)) : t
(
αk(l)

)
→ αk(l)

are derivable and therefore, by substitution, also that

Γ. xl : t
(
αk(l)

)
` ψl [i(αk(l))] prop

is derivable. Translation soundness of the second premise gives us that

Γ. xl : t
(
αk(l)

)
` t
(
ψl [i(αk(l))]

)
prop

is derivable. Applying the symbol rule for the formula gives us correct
typing of the translation

Γ ` t (αk) type Γ. xl : t
(
αk(l)

)
` t
(
ψl [i(αk(l))]

)
prop

©(t (αk) , t
(
αk(l)

)
` t (ψl [i(αk(l))])) prop

The correct typing of the translation equivalences i, j is given by appealing
to the respective terms on subformulas in accordance with the fact that
equivalent subformulas make up equivalent compound formulas in first
order logic.

31

Atomic formulas

Γ ` ~τ : ~σ

Γ ` Ξ(~τ) prop

In a similar way to correct typing of the unbinding of a function symbol,
appealing to translation soundness of the premises and weakening gives
us that

Γ. c(~τ) ` Ξ(f(~τ)) prop

is derivable but then so is

Γ ` ∃ c(~τ) Ξ(f(~τ)) prop

so we have correct typing of the translation. For correct typing of trans-
lation equivalences, let us first handle i(Ξ(~τ)). The translation soundness
of the premises gives us the unbinding equality,

Γ. c(~τ) ` ~τ = f(~τ) : ~σ and therefore Γ. c(~τ) ` Ξ(~τ) = Ξ(f(~τ)) prop

are derivable. We can conclude that the following is derivable

Γ. c(~τ). q : Ξ(f(~τ)) ` q : Ξ(~τ)

hence we can use existential elimination on p

Γ. p : t (Ξ(~τ)) . c(~τ) ` Ξ(f(~τ)) prop
Γ. p : t (Ξ(~τ)) ` Ξ(~τ) prop Γ. p : t (Ξ(~τ)) ` p : ∃ c(~τ) Ξ(f(~τ))
Γ. p : t (Ξ(~τ)) . c(~τ). q : Ξ(f(~τ)) ` q : Ξ(~τ)

Γ. p : t (Ξ(~τ)) ` ∃ E(. . .) : Ξ(~τ)

where the bottom term is precisely i(Ξ(~τ)).

The procedure is similar for j(Ξ(~τ)) in that we once again use the unbind-
ing equality for ~τ to show that

Γ. p : Ξ(~τ). c(~τ) ` p : Ξ(f(~τ))

is derivable but this time we also utilize the existence witness of ~τ in order
to access the context c(~τ) of the unbinding equality,

Γ. p : Ξ(~τ). c(~τ) ` > prop

Γ. p : Ξ(~τ) ` ∃ c(~τ) Ξ(f(~τ)) prop Γ. p : Ξ(~τ) ` e(~τ) : ∃ c(~τ) >
Γ. p : Ξ(~τ). c(~τ). : > ` ∃ I(c(~τ) ` Ξ(f(~τ)), f(~τ), p) : ∃ c(~τ) Ξ(f(~τ))

Γ. p : Ξ(~τ) ` ∃ E(. . .) : ∃ c(~τ) Ξ(f(~τ))

once again the bottom term is precisely j(Ξ(~τ)).

32

We can similarly show that the equality rules for the propositions are sound-
ness preserving. Let us highlight the most interesting case, for atomic formulas
Ξ.

We will sloppily assume that ~τ1 = ~τ2. Let us bring up k (Ξ(~τ1); Ξ(~τ2)),

k (Ξ(~τ1); Ξ(~τ2))(p) = E(~τ1){ ∃ c(~τ2) Ξ(f(~τ2)),

c(~τ1) ` E(~τ2){ ∃ c(~τ2) Ξ(f(~τ2)), p } },

and we have that Γ ` ~τ1 : ~σ and Γ ` ~τ2 : ~σ are translation sound. We get by
the unbinding equalities that over Γ. c(~τ1). c(~τ2) we have

Γ. c(~τ1). c(~τ2) ` Ξ(f(~τ1)) = Ξ(f(~τ2)) prop

so that we indeed get

Γ. q : Ξ(f(~τ1)). c(~τ1). c(~τ2) ` q : Ξ(f(~τ2))

which means that, because the existence witnesses are derivable, we have

Γ. q : Ξ(f(~τ1)) ` k (Ξ(f(~τ1)); Ξ(f(~τ2))).

Lemma 2.20. If Γ ` ϕ prop is derivable and translation sound, we have

• Γ ` k (ϕ;ϕ) : t (ϕ)→ t (ϕ),

• Γ ` h (ϕ;ϕ) : t (ϕ)→ t (ϕ).

Proof. Induction on the structure of ϕ.

Let us take stock of where we are so far. While the existential witnesses and
the translation equivalences have called the translation of proof-terms in their
definitions, the freeing context and unbinding of sort-terms, and the translation
of propositions only call each other.

Their definitions are therefore finished at this point. Now we will prove
some useful lemmas for how these syntactically interact with substitution, before
resuming with a definition of the translation of the proof-terms.

Lemma 2.21. For any sort-term t, proposition ϕ, proof-variable p and proof-
term ρ we have the following syntactic identities

c(t) [p\ρ] = c(t [p\ρ]) = c(t) f(t) [p\ρ] = f(t [p\ρ]) = f(t)

t (ϕ) [p\ρ] = t (ϕ [p\ρ]) = t (ϕ) .

Proof. The first three are given by noting that they are all ι-free and ι-free
sort-terms and propositions do not depend on proof-variables. The last identity
follows essentially because unlike for formulas, the subexpressions of unbindings
are never bound.

33

Let us introduce a small substitution lemma to net us some relevant proof
terms that will be used for defining the translation. The lemma depends on the
grand substitution lemma that will be treated later.

Lemma 2.22. For any sort-term t, proposition ϕ, and sort-term a, we have
that whenever Γ ` a : α and Γ. x : α are translation sound then we have

Γ. ` c(t [x\a]) ctxt and Γ. c(a) ` c(t) [x\f(a)] ctxt

and
Γ ` t (ϕ [x\a]) prop and Γ. c(a) ` t (ϕ) [x\f(a)] prop.

We also have terms s(ϕ;x\a), z(ϕ;x\a) such that we also have

Γ. c(a).∆ ` s(ϕ;x\a) : t (ϕ) [x\f(a)]→ t (ϕ [x\a])

Γ. c(a).∆ ` z(ϕ;x\a) : t (ϕ [x\a])→ t (ϕ) [x\f(a)].

Proof. Apply the substitution lemma for sort-terms. We let

s(ϕ;x\a) = i(ϕ [x\a]) ◦ (j(ϕ) [x\f(a)])

: t (ϕ) [x\f(a)]→ ϕ [x\f(a)] = ϕ [x\a]→ t (ϕ [x\a])

where the middle equality holds by a = f(a) being derivable over c(a). Similarly,

z(ϕ;x\a) = j(ϕ [x\a]) ◦ (i(ϕ) [x\f(a)]) : t (ϕ [x\a]) → t (ϕ) [x\f(a)]

Most of the logical symbols can be handled in a uniform way, we will call
them simple. We make this precise with the following definition.

Definition 2.23. The proof-terms for introduction rules which have the form

Γ ` αk type Γ. xl : αk(l) ` ψl prop Γ.∆m ` ρm : ϕm

Γ ` ©I(αk, αk(l) ` ψl,∆m ` ρm) :©(αk, αk(l) ` ψl)

where the ∆m only has types among αk and ψl and likewise the ϕm are among
αk and ψl are called simple introduction proof-terms. Similarly, for elimination
rules which have the form

Γ ` αk type Γ. αk(l) ` ψl prop
Γ ` δ :©(αk, αk(l) ` ψl) Γ.∆m ` ρm : ϕm

Γ ` ©E(αk, αk(l) ` ψl, δ,∆m ` ρm) : α0

the proof-term is called a simple elimination proof-term. The simple proof-
terms are truth intro, false elim, disjunction intros and elim, existential elims
and universal intros.

34

Definition 2.24. Define the translation t (ρ) of the proof-term ρ by induction
on its structure. First for the main generating clause, the proof-term for definite
descriptions. Note that t (ϕ) and t (ϕ) [x\ ιx : σ ϕ(ε, υ)] are syntactically
identical. With Lemma 2.22 we take the translation to be

t (ρx : σ ϕ(ε, υ)) =∃ E{
x : σ ` t (ϕ) ,

t (ϕ [x\ ιx : σ ϕ(ε, υ)]) ,

k (p(ε);∃x : σ ϕ){t (ε)},
x : σ. p : t (ϕ) ` s(ϕ;x\ ιx : σ ϕ(ε, υ))(p)

}.
For translating simple proof-terms ρ, the main tool in constructing t (ρ) is by
looking at what typing t (ϕ) the term ought to have, and then replacing ρ by
k (ρ;ϕ). We first need to do substitution with i(ϕ) whenever a term depends
on a proof-term variable. For instance, for disjunction elimination we take

t (∨E(ϕ,ψ, ϑ, π, p.ρ, q.δ)) = ∨ E{ t (ϕ) , t (ψ) , t (ϑ) ,

k (π;ϕ ∨ ψ),

p : t (ϕ) ` k (ρ [i(ϕ)];ϑ),

q : t (ψ) ` k (δ [i(ψ)];ϑ),

}.
For prop-existential intro and prop-universal elim are similar because t (ψ) does
not depend on proof-term variables and therefore

t (ψ [p\ρ]) = t (ψ) [p\ρ] = t (ψ)

so we can translate the entire expression by simply translating the subexpres-
sions in the same way we did here. For sort-existential intro and sort-universal
elim, do a similar kind of translation but wrap the entire expression in an ex-
istential elimination on e(t) and apply Lemma 2.22 where necessary to handle
substitutions. For instance, with sort-universal elim we take

t (∀E{x : σ ` ψ, ρ, t}) = E(t){ t (ψ [x\t]) ,

c(t) ` z(ψ;x\t)(∀E{ x : σ ` t (ψ) , k (ρ;ψ), f(t), }) }.
For equality intro we only need wrap the expression in an existential elimination
on e(t) and translate subexpressions,

t (=I(σ, t)) = E(t){ ∃ c(t) f(t) =σ f(t),

w : c(t) ` ∃ I(c(t) ` f(t) =σ f(t), w, =I(σ, f(t))) }.
For variables the translation acts as the identity. For axiom terms A, we simply
take

t (A(ρ1, . . . , ρn)) = A(k (ρ1; θ1), . . . , k (ρn; θn))}

35

Now we have finished defining all the components of the translation.

Lemma 2.25. The symbol rules for proof-terms are translation soundness pre-
serving.

Proof. In all cases, the translated term will be typed as the translation of the
inferred type, which follows because we apply the appropriate symbol rule. For
the equality equivalences, note that what we will want to derive will be

k (p(ρ); p(ρ))

which we have by Lemma 2.20.

Definite description proof-term

Γ ` σ sort Γ. x : σ ` ϕ prop

Γ ` ε : ∃x : σ ϕ Γ. x : σ. p : ϕ. y : σ. q : ϕ [x\y] ` υ : x =σ y

Γ ` ρx : σ ϕ(ε, υ) : ψ [x\ ιx : σ ϕ(ε, υ)]

Translation soundness of premises gives us that

Γ. x : σ ` t (ϕ) prop Γ ` k (ε;∃x : σ ϕ) : ∃x : σ t (ϕ)

are derivable, and by applying Lemma 2.22 we get that

Γ. x : σ. p : t (ϕ) . q : t (ϕ) [x\f(ιx : σ ϕ)] `
s(ϕ;x\ ιx : σ ϕ)(q) : t (ϕ [x\ ιx : σ ϕ])

is derivable but since f(ιx : σ ϕ) is x we have

t (ϕ) [x\f(ιx : σ ϕ)] = t (ϕ)

and we can use substitution to derive

Γ. x : σ. p : t (ϕ) ` s(ϕ;x\ ιx : σ ϕ)(p) : t (ϕ [x\ ιx : σ ϕ]) .

Now we can apply existential elimination

Γ. x : σ ` t (ϕ) prop

Γ ` t (ϕ [x\ ιx : σ ϕ]) prop Γ ` k (ε;∃x : σ ϕ) : ∃x : σ t (ϕ)
Γ. x : σ. p : t (ϕ) ` s(ϕ;x\ ιx : σ ϕ)(p) : t (ϕ [x\ ιx : σ ϕ])

Γ ` ∃ E(. . .) : t (ϕ [x\ ιx : σ ϕ])

where the bottom term is our translation and the type is the translation
of the inferred type for the definite description proof-term.

Simple proof-terms
Let us illustrate with prop-universal introduction.

Γ ` ϕ prop Γ. p : ϕ ` ψ prop Γ. p : ϕ ` ρ : ψ

Γ ` ∀I(p : ϕ ` ψ, p : ϕ ` ρ) : ∀ p : ϕ ψ

36

By translation soundness of the premises, we get that

Γ ` t (ϕ) prop Γ. p : t (ϕ) ` t (ψ) prop

Γ. p : t (ϕ) ` k (ρ [i(ϕ)];ψ) : t (ϕ)

are derivable, so we apply the symbol rule and get

Γ ` ∀I{ p : t (ϕ) ` t (ψ) , p : t (ϕ)) ` k (ρ [i(ϕ)];ψ)}
: ∀ p : t (ϕ) t (ψ) .

This is just what we wanted, we have that the translation of our term is
typed as the translation of its inferred type t (∀ p : ϕ ψ).

Prop-existential intro, prop-universal elim
Let us illustrate with prop-existential intro.

Γ ` ϕ prop Γ. p : ϕ ` ψ prop Γ ` ρ : ϕ Γ ` δ : ψ [p\ρ]

Γ ` ∃ I(. . .) : ∃ p : ϕ ψ

Translation soundness of the premises gives us exactly what we need to
apply the symbol rule and derive what we want. Let us just highlight
what happens with the last premise. Translation soundness gives us

Γ ` k (δ;ϕ [p\ρ]) : t (ϕ [p\ρ])

but as t (ϕ [p\ρ]) = t (ϕ) this is what we need in order to apply the
symbol rule and get the translated term.

Sort-existential intro, sort-universal elim
Let us illustrate with sort-universal elim.

Γ ` σ sort Γ. x : σ ` ϕ prop Γ ` π : ∀x : σ ϕ Γ ` t : σ

Γ ` ∀E(x : σ ` ϕ, π, t) : ϕ [x\t]

By translation soundness of t we are allowed to eliminate on its existential
witness. Furthermore we can get

Γ. c(t) ` ∀E(x : σ ` t (ϕ) , k (π;∀x : σ ϕ), f(t)) : t (ϕ) [x\f(t)]

by translation soundness of π : ∀x : σ ϕ and ϕ. Wrapping this in z(ϕ;x\t)
and an elimination on the existential witness gives us what we wanted.

Variable

` Γ. p : ϕ.∆ ctxt

Γ. p : ϕ.∆ ` p : ϕ

Note that ϕ is ι-free because the bottom context is ι-free.

We will not show more cases.

37

2.3.3 Substitution and soundness

We will soon show that all ι-free sequents are translation sound. First we show
that the substitution rules are soundness preserving.

Lemma 2.26. The substitution rules are translation soundness preserving.

Proof. Let us split into two cases, either we are substituting in a proof-term or
we are substituting in a sort-term. Let us first deal with the sort-term case,

Γ ` a : α Γ. x : α.∆ ` J
Γ.∆ [x\a] ` J [x\a]

ι-freeness of ∆ [x\a] gives us that ∆ is ι-free just as the previous case, and
also that ∆ [x\a] = ∆ [x\f(a)]. Either way, if we translate the assumptions
and then apply the substitution, we get

Γ.∆ [x\a]. c(a) ` J [x\f(a)]

where we could swap the order of ∆ [x\a] and f(a) because they are independent
over Γ. We will now proceed by induction on the structure of the argument that
if the assumptions

Γ ` a : α and Γ. x : α.∆ ` J
are translation sound, then so is the sequent

Γ.∆ [x\a] ` J [x\a].

Let us proceed, starting with the sort-terms.

Sort-variable
Let t be y. We need to split the cases on whether x = y or x 6= y.

When x = y, the context c(a). c(y) [x\f(a)] (which we can derive over
Γ.∆ [x\a] by substitution) is actually identical with c(y [x\a]) so we
get the freeing context. We also get that f(x) [x\f(a)] is identical with
f(y [x\a]), the unbinding. By translation soundness of a, we certainly
have

Γ. c(a) ` >I : > and Γ ` e(a) : ∃ c(a) >
which gives us our existence witness. In a similar fashion, we get by
translation soundness for a that both the unbinding equality is derivable.

If x 6= y, of course ♦ is derivable, and as

f(y [x\a]) = y

we have that both the unbinding is over the freeing context. Also, the
existence witness is quite simply derivable. The unbinding equality are
also derivable, quite tautological.

38

Definite description sort-term
We have

Γ. x : α.∆ ` ιy : σ ϕ(ε, υ).

Therefore we in particular also have

Γ. x : α.∆y : σ ` ϕ prop Γ. x : α.∆ ` ε : ∃ y : σ ϕ

which means by inductive hypothesis that the are derivable,

Γ.∆ [x\a]. y : σ ` t (ϕ [x\a]) prop and

Γ ` t (ε [x\a]) : ∃ y : σ t (ϕ [x\a])

which nets us our freeing context and existence witness. We get the un-
binding equality by applying i to p : t (ϕ [x\a]), allows us to use υ [x\a] to
get propositional equality from which we can get the judgemental equality.

Function symbol
As c(f(~τ) [x\a]) is the concatenation of c(τi [x\a]) we get that the freeing
context is derivable by inductive hypothesis.

Now because the unbindings f(τi [x\a]) are derivable terms over Γ.∆ [x\
a]. c(τi [x\a]) we get the derivability of the unbinding of f(~τ [x\a]) by
applying weakening to the terms.

Now we will treat the formulas.

Atomic proposition
The derivability of

Γ.∆ [x\a] ` ∃ c(~τ [x\a]) Ξ(f(~τ [x\a])) prop

follows from the inductive hypothesis on ~τ . For the translation equiva-
lences, we need to be a bit craftier. Let us inspect the term what we need
to derive for j,

Γ.∆ [x\a]. q : Ξ(~τ [x\a]) ` ∃ E{
c(~τ [x\a]) ` >, ∃ c(~τ [x\a]) Ξ(f(~τ [x\a])), e(~τ [x\a]),

z : c(~τ [x\a]) ` ∃ I(c(~τ [x\a]). : > ` Ξ(f(~τ [x\a])), z, q,) }
: ∃ c(~τ [x\a]) Ξ(f(~τ [x\a])).

We almost get derivability directly from the derivability of the subterms.
The only thing we need to prove as well is that

q : Ξ(~τ [x\a]). z : c(~τ [x\a]) ` q : Ξ(f(~τ [x\a])) [z]

but here we apply the unbinding equality to get

Ξ(~τ [x\a]) = Ξ(f(~τ [x\a]))

from which it follows.

39

Composite formulas
Let us illustrate with ∃ p : ϕ ψ. The rest of the cases work the same way.
We have

Γ. x : α.∆ ` ∃ p : ϕ ψ prop

which gives us

Γ. x : α.∆ ` ϕ prop and Γ. x : α.∆. p : ϕ ` ψ prop.

We apply inductive hypothesis that the following are derivable

Γ.∆ [x\a] ` t (ϕ [x\a]) prop

Γ.∆ [x\a]. p : t (ϕ [x\a]) ` t (ψ [x\a]) prop.

(Here we used that t (ψ [x\a] [i(ϕ [x\a])]) = t (ψ [x\a]).) This gives us
that the following is derivable,

Γ.∆ [x\a] ` ∃ p : t (ϕ [x\a]) t (ψ [x\a]) .

For the translation equivalences, note that as i〈∃〉 and j〈∃〉 of Proposi-
tion 2.2 are defined by the translation equivalences for the subexpressions
so we can apply the inductive hypothesis.

Simple proof-terms, prop-universal elim, prop-existential intro
Let us treat the case where our proof-term is prop-existential elimination
for an illustrating example. Here’s what the term δ looks like when it’s
derivable in a context,

Γ. x : α.∆ ` ∃ E{ p : ϕ ` ψ, θ, π, p : ϕ. q : ψ ` ρ } : ϑ

and the arguments look as follows after we substitute in a,

Γ.∆ [x\a] ` ϕ [x\a] prop Γ.∆ [x\a]. p : ϕ ` ψ prop

Γ.∆ [x\a] ` π : ∃ϕ [x\a] ψ [x\a]

Γ. p : ϕ [x\a]. q : ψ [x\a] ` ρ [x\a] : θ [x\a]

If we apply existential elimination we can therefore derive

Γ.∆ [x\a] ` δ [x\a] : θ [x\a]

on the other hand direct application of substitution gives us

Γ.∆ [x\a] ` δ [x\a] : ϑ [x\a]

and therefore by Proposition 2.5 they are judged equal,

Γ.∆ [x\a] ` θ [x\a] = ϑ [x\a] prop.

40

Apply the inductive hypothesis to this judgement to get k, h between
t (θ [x\a]) and t (ϑ [x\a]). If we apply the inductive hypothesis to the
arguments we can follow up with the existential elimination rule to get

Γ.∆ [x\a] ` t (δ [x\a]) : t (θ [x\a])

and note that because θ [x \ a] is p(ρ [x \ a]) this gives us translation
soundness for this case, as we have

(i) Γ.∆ [x\a] ` t (δ [x\a]) : t (p(δ [x\a])) ,

(ii) Γ.∆ [x\a] ` k (p(δ [x\a]);ϑ [x\a]) : t (p(δ [x\a]))→ t (ϑ [x\a]) ,

(iii) Γ.∆ [x\a] ` h (p(δ [x\a]);ϑ [x\a]) : t (ϑ [x\a])→ t (p(δ [x\a])).

Let us also treat left disjunction intro, as the intro rules work slightly
differently.

Γ. x : α.∆ ` ∨IL(ϕ1, ϕ2, ρ) : ϑ

The difference is that we do not have p(δ) directly as an argument of δ (as
it is an introduction rule) so we need to work a bit more for our equality
equivalences k, h. By admissibility and Propositions 2.4, 2.5 we have that
ϑ = ψ1 ∨ ψ2 for some ψ1, ψ2. We also have

Γ. x : α.∆ ` ϕ1 = ψ1 prop and Γ. x : α.∆ ` ϕ2 = ψ2 prop.

Inductive hypothesis applied to the judgements

Γ.∆ [x\a] ` ϕ1 [x\a] = ψ1 [x\a] prop

Γ.∆ [x\a] ` ϕ2 [x\a] = ψ2 [x\a] prop

nets us our h, k for the pairs ϕ1, ψ1 and ϕ2, ψ2. But this gives us our h, k
as they are defined via i〈∨〉, j〈∨〉 of Proposition 2.2 on

k (ϕ1 [x\a];ψ1 [x\a]) h (ϕ1 [x\a];ψ1 [x\a])

k (ϕ2 [x\a];ψ2 [x\a]) h (ϕ2 [x\a];ψ2 [x\a]).

Sort-universal elim, sort-existential intro
This one is a bit different because we need to apply the inductive hypoth-
esis twice. Let us display sort-existential intro.

Γ. x : α.∆ ` ∃ I(y : σ ` ϕ, t, ρ) : ϑ

Just as in the left intro for disjunction we can get that ϑ = ∃ y : σ ψ for
some ψ such that

Γ. x : α.∆. y : σ ` ϕ = ψ prop

41

and we use this to get

Γ.∆ [x\a] ` k (∃ y : σ ϕ [x\a];∃ y : σ ψ [x\a])

: ∃ y : σ t (ϕ [x\a])→ ∃ y : σ t (ψ [x\a]) and

Γ.∆ [x\a] ` h (∃ y : σ ϕ [x\a];∃ y : σ ψ [x\a])

: ∃ y : σ t (ψ [x\a])→ ∃ y : σ t (ϕ [x\a]) .

We can also first do a substitution of x for a on ϕ, where translation
soundness is preserved by inductive hypothesis and we get

Γ.∆ [x\a]. y : σ ` j(ϕ [x\a]) : ϕ [x\a]→ t (ϕ [x\a]) .

If we directly apply substitution of y for f(t) to j(ϕ [x\a]) over the context
c(t) we get

Γ.∆ [x\a]. c(t) ` j(ϕ [x\a]) [y\f(t)]

: ϕ [x\a] [y\f(t)]→ t (ϕ [x\a]) [y\f(t)]

whereas if we apply the inductive hypothesis for substituting y for t in
t (ϕ [x\a]) we get

Γ.∆ [x\a] ` i(ϕ [x\a] [y\t]) : t (ϕ [x\a] [y\t])→ ϕ [x\a] [y\t].

These can be composed over c(t) (by unbinding equality) to get

Γ.∆ [x\a]. c(t) ` s(ϕ [x\a]; y\t)
: t (ϕ [x\a] [y\t])→ t (ϕ [x\a]) [y\f(t)].

Now we can get the translation of the existential intro,

Γ.∆ [x\a] ` E(t){ ∃ y : σ t (ϕ [x\a]) ,

c(t) ` ∃ I(

y : σ ` t (ϕ [x\a]) ,

f(t),

s(ϕ [x\a]; y\t)(k (ρ [x\a];ϕ [x\a] [y\t]))

) } : ∃ y : σ t (ϕ [x\a])

which correctly has the typing of the translation of the type inference of
the original term. Therefore we finally have translation soundness.

Equality intro, axiom terms
The same way as the other ones.

Definite description proof-term
The main thing to use is that we actually get the translation of the defi-
nite description proof-term over the context Γ. x : α.∆. Apply inductive
hypothesis to get the substituted versions of the arguments.

42

Proof-variable
Not treated here.

The proof is the same for the most part for proof-term substitution except
that we don’t need to write out as many substitutions.

Theorem 2.27. All derivable sequents Γ ` J with ι-free contexts Γ are trans-
lation sound.

Proof. Proceed by induction on trees of derivation. We begin with handling the
structural rules. For weakening,

Γ.∆ ` J Γ ` α type

Γ. x : α.∆ ` J

where we immediately get translation soundness because our translation does
not depend on the context. For instance, if J = ϕ prop then by inductive
hypothesis we have that

Γ.∆ ` t (ϕ) prop

Γ.∆. p : t (ϕ) ` i(ϕ)(p) : ϕ Γ.∆. p : ϕ ` j(ϕ)(p) : t (ϕ)

and since Γ ` α type is derivable we can apply weakening and derive the desired
sequents,

Γ. x : α.∆ ` t (ϕ) prop,

Γ. x : α.∆. p : t (ϕ) ` i(ϕ)(p) : ϕ, Γ. x : α.∆. p : ϕ ` j(ϕ)(p) : t (ϕ) .

For substitution,

Γ. x : α.∆ ` J Γ ` t : α

Γ.∆ [x\t] ` J [x\t]

we apply Lemma 2.26. The symbol rules are also translation soundness pre-
serving as already observed. For the equality rules coming from symbol rules
they follow from the fact that translation soundness gives us strong enough
assumptions to directly apply the rule itself. For the following equality rule,

Γ ` t : σ Γ ` τ : σ Γ ` ρ : tστ

Γ ` t = τ : σ

the translation soundness of the premises gives us the translation soundness of
the conclusion.

As all the rules of the type theory are translation soundness preserving, then
all the ι-free sequents are translation sound.

This concludes the most labour intensive part of handling the syntax.

43

2.3.4 Translating sequents

With the translation of judgements in ι-free contexts set up it is an easier task
to translate entire sequents. We will define the translation t(Γ) together with
a substitution i(Γ) with the intention that

t(Γ) ` i(Γ) : Γ Γ ` j(Γ) : t(Γ)

Definition 2.28. Define the translation of a context t(Γ) together with its
context substitutions i(Γ) and j(Γ) by induction on the length of Γ and based
on case analysis on whether the rightmost type is a proposition or a sort,

t(Γ. x : σ) = t(Γ). x : σ t(Γ. p : ϕ) = t(Γ). p : t (ϕ [i(Γ)])

i(Γ. x : σ) = i(Γ).x i(Γ. p : ϕ) = i(Γ).i(ϕ [i(Γ)])(p)

j(Γ. x : σ) = j(Γ).x j(Γ. p : ϕ) = j(Γ).j(ϕ [i(Γ)])(p)

Proposition 2.29. If Γ is a raw context such that Γ ` ctxt is derivable then

(i) t(Γ) ` ctxt, t(Γ) ` i(Γ) : Γ and t(Γ) ` j(Γ) : Γ are derivable,

(ii) t(Γ) is an ι-free context.

Proof. Straightforward induction on the length of Γ, applying Theorem 2.27
when the last type is a proposition.

Proposition 2.30. The category IΣ,T is equivalent to the full subcategory
DΣ,T consisting only of ι-free contexts.

Proof. We construct the equivalence by first showing that, as context mor-
phisms, i(Γ) and j(Γ) are inverse to eachother. On the sort components of Γ
it is immediately clear as both i(Γ) and j(Γ) just take the literal variable. On
the propositional components it follows from the fact that any two proof-terms
of the same proposition are judged equal.

Next we see that they are both equal to the identity when Γ is ι-free. It is
clear on sort components and on propositional components this follows because
when p : ϕ in Γ is ι-free we have that t (ϕ) = ϕ and any two proof-terms of ϕ
are equal.

This exhibits DΣ,T as a retract equivalent of IΣ,T .

The next step is translating back and forth between this ι-free fragment
of the type theory and the corresponding first order logic. We will take small
intermediate steps by structuring up the contexts of the type theory using the
following facts about type theory.

Proposition 2.31. The order of parts of a context which don’t depend on each
other does not matter, i.e., if Γ ` ∆ ctxt, Γ ` ∆′ ctxt and Γ.∆.∆′ ` J are
derivable then so is Γ.∆′.∆ ` J .

44

Proof. By induction on the length of ∆. First when ∆ has length 1, assume
that Γ ` α type and Γ ` ∆′ ctxt (it does not matter whether type is sort or
prop). Also assume that Γ. x : α. y : ∆′ ` J is derivable. Then by weakening,
Γ. x : α. y : ∆′. z : α ` J is derivable, but then by substitution, Γ. y : ∆′. z : α `
J [x\z].

Proposition 2.32. If Γ. p : ϕ ` ψ prop or Γ. p : ϕ ` t : σ is derivable where ϕ
is a proposition and ψ, t are ι-free then Γ ` ψ prop or Γ ` t : σ is derivable.

Proof. Induction on the structure of ψ, t. The only sort-terms have a proof-term
subexpression is the ι-term and propositions have either other propositions or
sort-terms as subexpressions.

This allows us to translate each sequent into one where the sorts are to the
left and the propositions are to the right.

Proposition 2.33. For each derivable ι-free sequent Γ ` J we have that

Γsort.Γprop ` J

is derivable, where Γsort is the subcontext of sorts and Γprop is the subcontext
of propositions.

Proposition 2.34. The category DΣ,T is equivalent to the category EΣ,T which
is the full subcategory of DΣ,T whose objects are those contexts of the form
Γsort.Γprop.

2.4 The syntactic equivalence

In this section we will define an equivalence of categories by defining functors
between the syntactic category of the first order theory CΣ,T and the ι-free
term category EΣ,T . This will be made by pairing ι-free sequents Γsort.Γprop `
ρ : ϕ with first-order sequents, and then giving a proposition corresponding to
a context morphism which can be translated to a functional relation.

We first define the pairing by induction on the structure of ϕ.

Definition 2.35. Define the translation of ι-free propositions into first order
logic by letting

fol(>) = >
fol(⊥) = ⊥
fol(ϕ ∨ ψ) = ϕ ∨ ψ
fol(∃x : σ ψ) = ∃x : σ ψ

fol(∀x : σ ψ) = ∀x : σ ψ

fol(∃ p : ϕ ψ) = ϕ ∧ ψ
fol(∀ p : ϕ ψ) = ϕ⇒ ψ

fol(Ξ(~τ)) = Ξ(~τ)

45

and translate Γprop by fol(Γprop. p : ϕ) = fol(Γprop, fol(ϕ)). Also call the
inverse of the above map fol−1.

Theorem 2.36. A ι-free sequent Γsort.Γprop ` ρ : ϕ is derivable in FOT (Σ, T)
iff the sequent Γsort | fol(Γprop) ` fol(ϕ) is derivable in first order logic, and
an ι-free sequent Γsort.Γprop ` t : σ for a sort-term t is derivable iff the sequent
Γsort | t : σ is derivable in first order logic.

Proof. Proof by induction on trees of derivation. We can basically pair the
symbol rules of the type theory with rules from first order logic and check that
they are equivalent. We have a perfect match for the ι-free terms. To get
equivalence for propositions we use that the propositions from first order logic
are admissible in the sense that for example if

Γ | ϕ ∧ ψ prop

is derivable then

Γ | ϕ prop Γ | ψ prop

are derivable, to get a perfect match for most of the symbol rules. Some care is
needed to the rules involving conjunction and implication, but here we utilize
Proposition 2.32 to get that the rules are equivalent.

Now we will define
F : EΣ,T → CΣ,T ,

first F0 on objects

F0(Γsort.Γprop) = {Γsort | fol(Γprop)}.

For F0(Γ) to be an object of the syntactic category we need that Γsort | ϕ prop

for each component ϕ of fol(Γprop) but this is the case by Theorem 2.36. Next
we define the action F1 on a context morphism f : Γ′ → Γ by using the equality
predicate on the context Γsort.Γprop = Γ to

[fol(t (f [x] =Γ y))] : {Γ′sort | fol(Γ′prop)} → {Γsort | fol(Γprop)}

where x : Γ′. y : Γ ` f [x] =Γ y prop is derivable in the type theory. It is a
functional relation by the properties of the equality predicate and by soundness
of translation. Also, it respects the judgemental equality of the type theory,
because if Γ ` f = g : Γ′ then the propositions f [x] =Γ y and g [x] =Γ y are
equivalent. For the other direction G, we let

G0{Γ | Θ} = Γ. fol−1(Θ)

where soundness once again is used to prove that Γ ` θ for each component θ
of fol−1(Θ). On arrows [φ] : {Γ | Θ} → {∆ | Λ} we take

G1[φ] = ι(∆. fol−1(Λ)) fol−1(φ)(ε, υ)

46

where ε and υ are given by φ being a functional relation together with proof-
terms witnessing those things in the type theory by Theorem 2.36. It takes
equivalent functional relations to judgementally equal context morphisms be-
cause if ψ is equivalent to φ then

Γ. ~x : ∆. ~y : ∆ | ψ [~x] =∆ φ [~y]

is derivable which means that they are taken to propositionally equal context
morphisms in the type theory, but then we get judgemental equality.

47

3 Semantics

3.1 Modelling type theory

A standard way of modelling type theory is with a so-called Category with
Families. Here is a definition.

Definition 3.1. A category with families consists of

(i) a category C with a (specific) terminal object ~, called its base category,

(ii) two presheaves Type and Tm on C, called the type and term presheaves,

(iii) a natural transformation tm : Tm→ Type,

and an operation taking an object Γ in C and A ∈ Type(Γ) to the following
pullback diagram in the presheaf category over C,

Γ�A Tm

Γ Type

pΓ,A

qΓ,A

tm

‘A’

where Γ and Γ.A are Yoneda embedded objects of C and ‘A’ is induced by
A ∈ Type(Γ) with the Yoneda lemma. The data of that diagram is called the
comprehension of A in Γ.

We will also be using the following notation.

• The arrow action on presheaves will be denoted from the right, so if f :
Γ′ → Γ and A ∈ Type(Γ), we will denote Type(f)(A) ∈ Type(Γ′) by A{f}.
Note that because of contravariance, A{g ◦ f} = A{g}{f}.

• Instead of writing tm−1(Γ, A) where A ∈ Type(Γ), we will write Tm(Γ, A).

• Although the data of a judgement fibration actually is given by a triple
(Type,Tm, tm), we will most of the time only be writing Type. Confusion
should not arise because we will not consider different judgement fibrations
with the same presheaf for Type.

• The names for judgement fibrations we will be using are Prop (or (Prop,Pf, pf))
and Sort (or (Sort,Tm, tm)).

• We will usually not be writing out the context in pΓ,A, preferring just to
write pA.

• By the universal property of the pullback, arrows ‘(’t) : Γ → Tm not
only correspond to elements t ∈ Tm(Γ, A) (Yoneda lemma), they also
correspond to sections ptq : Γ→ Γ�A of pA.

48

For an expository treatment, see Hofmann [2]. We will work with several
such structures on the same category but the above terminology is unsuitable
for talking about that. Keeping with the proud tradition of introducing different
names for concepts similar to categories with families, we will use the following
terminology.

Definition 3.2. A judgment fibration on a category C with terminal object ~
is a category with families whose base category is (C,~).

We call it a fibration because the presheaves on a category are equivalent to
the discrete fibrations on that same category. We will not prefer one of these
perspectives over the other throughout the text, rather, we will use whichever
seems more convenient to the author at that moment.

3.1.1 Logical structure on judgement fibrations

Now we will define the structure needed to model FOT (Σ, T) with judgement
fibrations. These semantics are those provided by the framework in [7] although
we will present them slightly differently. We will pick out some properties
familiar from functorial semantics using the following suggestive notation.

Definition 3.3. A judgement fibration Prop over C is said to be proof irrelevant
if given any Γ ∈ C, ϕ ∈ Prop(Γ) and ρ, δ ∈ Pf(Γ, ϕ), ρ and δ are identical
elements of Pf(Γ, ϕ).

Remark 3.4. We have the following facts about proof irrelevant judgement
fibrations:

• A judgement fibration is proof irrelevant iff the map pf : Pf → Prop is
mono.

• Any pair of arrows ‘ρ’, ‘δ’ : Γ → Pf for ρ, δ ∈ Pf(Γ, ϕ) where Prop is a
proof irrelevant judgement fibration has Γ as equalizer.

Definition 3.5. A judgement fibration pair Prop,Sort over C is said to carry
an equality structure if there is a function natural in Γ assigning

(i) to each σ ∈ Sort(Γ), t, τ ∈ Tm(Γ, σ)

t =σ τ ∈ Prop(Γ)

(ii) to each σ ∈ Sort(Γ), t ∈ Tm(Γ, σ)

=I(σ, t) ∈ Pf(Γ, t =σ t)

(iii) such that if ρ ∈ Pf(Γ, t =σ τ) then t and τ are identical elements of
Tm(Γ, σ).

49

Proposition 3.6. For an equality structure on Prop,Sort, the arrow

p(t=στ) : Γ� (t =σ τ)→ Γ

is a weak equalizer for
ptq, pτq : Γ→ Γ�σ

given any σ ∈ Sort(Γ) and t, τ ∈ Tm(Γ, σ).

Proof. Assume that we have an equality structure. Clauses (ii) and (iii) of
Definition 3.5 together with a little diagram chasing gives us a section s of

pt=στ : Γ� (t =σ τ)→ Γ

precisely when ptq = pτq. This is the equalizing condition for the diagram

Γ

Γ� (t =σ τ) Γ Γ�σ

s
1

pσ ptq
pτq

which we want to generalize to any f : Γ′ → Γ in C. Given such an arrow, we
can use naturality by pulling back along f and get a section of

p(t=στ){f} : Γ′� (t =σ τ){f} → Γ′

precisely when ptq ◦ f = pτq ◦ f . But as

Γ′� (t =σ τ){f} Γ� t =σ τ

Γ′ Γ
f

is pullback by the universal property of the pullback such sections correspond
uniquely to maps f ′ : Γ′ → Γ� (t =σ τ) where f = pt=στ ◦ f ′.

Definition 3.7. Given a judgement fibration pf : Pf → Prop over C and given
any ϕ,ψ ∈ Prop(Γ), we denote the space of morphisms

Γ�ϕ→ Γ�ψ over Γ by ϕ ≤Γ ψ.

Remark 3.8. Even though ϕ ≤Γ ψ may contain many elements in general,
when Prop is proof irrelevant it contains at most one element and behaves like
a proposition. As this is the case we will take interest in, we use this notation.

Definition 3.9. A judgement fibration Prop over C can carry a truthity struc-
ture, which consists of functions natural in Γ ∈ C assigning

(i) an element > ∈ Prop(Γ),

(ii) an element >I ∈ Pf(Γ,>).

50

Definition 3.10. A judgement fibration pair Prop,Sort over C can carry a left-
adjoint structure, which consists of functions natural in Γ ∈ C assigning

(i) to each ϕ ∈ Prop(Γ) and ψ ∈ Prop(Γ�ϕ)

∃P(ϕ,ψ) ∈ Prop(Γ),

(ii) to each ϕ ∈ Prop(Γ), ψ ∈ Prop(Γ�ϕ), ρ ∈ Pf(Γ, ϕ) and δ ∈ Pf(Γ, ψ{pρq})

∃PI(ϕ,ψ, ρ, δ) ∈ Pf(Γ,∃P(ϕ,ψ)),

(iii) to each ϕ, ϑ ∈ Prop(Γ), ψ ∈ Prop(Γ�ϕ), ρ ∈ Pf(Γ,∃P(ϕ,ψ)) and δ ∈
Pf(Γ�ϕ�ψ, ϑ{pϕ}{pψ})

∃PE(ϕ,ψ, ϑ, ρ, δ) ∈ Pf(Γ, ϑ),

(iv) to each σ ∈ Sort(Γ) and ψ ∈ Prop(Γ�σ)

∃S(σ, ψ) ∈ Prop(Γ),

(v) to each σ ∈ Sort(Γ), ψ ∈ Prop(Γ�σ), t ∈ Tm(Γ, σ) and δ ∈ Pf(Γ, ψ{ptq})

∃SI(ϕ,ψ, t, δ) ∈ Pf(Γ,∃S(ϕ,ψ)),

(vi) and to each σ ∈ Sort(Γ), ϑ ∈ Prop(Γ), ψ ∈ Prop(Γ�σ), ρ ∈ Pf(Γ,∃S(ϕ,ψ))
and δ ∈ Pf(Γ�σ�ψ, ϑ{pσ}{pψ})

∃SE(σ, ψ, ϑ, ρ, δ) ∈ Pf(Γ, ϑ).

Proposition 3.11. For a judgement fibration pair Prop,Sort over C with a left-
adjoint structure, we have for each Γ ∈ C and ϕ, ϑ ∈ Prop(Γ) and ψ ∈ Prop(Γ�ϕ)
functions

(i) ψ ≤Γ�ϕ ϑ{pϕ} → ∃P(ϕ,ψ) ≤Γ ϑ,

(ii) ∃P(ϕ,ψ) ≤Γ ϑ→ ψ ≤Γ�ϕ ϑ{pϕ},

and for each σ ∈ Sort(Γ), ϑ ∈ Prop(Γ) and ψ ∈ Prop(Γ�σ) functions

(iii) ψ ≤Γ�σ ϑ{pσ} → ∃S(σ, ψ) ≤Γ ϑ,

(iv) ∃S(σ, ψ) ≤Γ ϑ→ ψ ≤Γ�σ ϑ{pσ}.

Proving this is a matter of diagram chasing with pullbacks. We will not
provide the proof to this proposition, or the similar propositions that follow,
here.

Definition 3.12. A judgement fibration Prop can carry a falsity structure,
which consists of functions natural in Γ ∈ C assigning

51

(i) an element ⊥ ∈ Prop(Γ),

(ii) to each ρ ∈ Pf(Γ,⊥) and ϕ ∈ Prop(Γ),

⊥E(ϕ, ρ) ∈ Pf(Γ, ϕ).

Definition 3.13. A judgement fibration Prop can carry a disjunction structure,
which consists of functions natural in Γ ∈ C assigning

(i) to each ϕ,ψ ∈ Prop(Γ),

∨(ϕ,ψ) ∈ Prop(Γ),

(ii) to each ϕ,ψ ∈ Prop(Γ) and ρ ∈ Pf(Γ, ϕ)

∨IL(ϕ,ψ, ρ) ∈ Pf(∨(ϕ,ψ),Γ),

(iii) to each ϕ,ψ ∈ Prop(Γ) and ρ ∈ Pf(Γ, ψ)

∨IR(ϕ,ψ, ρ) ∈ Pf(∨(ϕ,ψ),Γ),

(iv) and to each ϕ,ψ, ϑ ∈ Prop(Γ), ρ ∈ Pf(Γ�ϕ, ϑ{pϕ}), δ ∈ Pf(Γ�ψ, ϑ{pψ})
and π ∈ Pf(Γ, ϑ)

∨E(ϕ,ψ, ϑ, ρ, δ, π) ∈ Pf(Γ,∨(ϕ,ψ)).

Proposition 3.14. For a judgement fibration Prop over C with a disjunction
structure, we have for each Γ ∈ C and ϕ,ψ, ϑ ∈ Prop(Γ) functions

(i) ϑ ≤Γ ϕ→ ϑ ≤Γ ∨(ϕ,ψ) and ϑ ≤Γ ψ → ϑ ≤Γ ∨(ϕ,ψ),

(ii) (ϕ ≤Γ ϑ)× (ψ ≤Γ ϑ)→ ∨(ϕ,ψ) ≤Γ ϑ.

Definition 3.15. A judgement fibration pair Prop,Sort over C can carry a
right-adjoint structure, which consists of functions natural in Γ ∈ C assigning

(i) to each ϕ ∈ Prop(Γ) and ψ ∈ Prop(Γ�ϕ)

∀P(ϕ,ψ) ∈ Prop(Γ),

(ii) to each ϕ ∈ Prop(Γ), ψ ∈ Prop(Γ�ϕ) and ρ ∈ Pf(Γ�ϕ,ψ)

∀PI(ϕ,ψ, ρ) ∈ Pf(Γ,∀P(ϕ,ψ)),

(iii) and to each ϕ ∈ Prop(Γ), ψ ∈ Prop(Γ�ϕ), ρ ∈ Pf(Γ, ϕ) and δ ∈ Pf(Γ, ψ{pρq})

∀PE(ϕ,ψ, ρ, δ) ∈ Pf(Γ, ψ),

52

(iv) to each σ ∈ Sort(Γ) and ψ ∈ Prop(Γ�σ)

∀S(σ, ψ) ∈ Prop(Γ),

(v) to each σ ∈ Sort(Γ), ψ ∈ Prop(Γ�σ) and ρ ∈ Pf(Γ�σ, ψ)

∀SI(σ, ψ, ρ) ∈ Pf(Γ,∀S(σ, ψ)),

(vi) and to each σ ∈ Sort(Γ), ψ ∈ Prop(Γ�σ), t ∈ Tm(Γ, σ) and δ ∈ Pf(Γ, ψ{ptq})

∀SE(σ, ψ, t, δ) ∈ Pf(Γ, ψ).

Proposition 3.16. For a judgement fibration pair Prop,Sort over C with a right-
adjoint structure, we have for each Γ ∈ C and ϕ, ϑ ∈ Prop(Γ) and ψ ∈ Prop(Γ�ϕ)
functions

(i) ϑ{pϕ} ≤Γ�ϕ ψ → ϑ ≤Γ ∀P(ϕ,ψ),

(ii) ϑ ≤Γ ∀P(ϕ,ψ)→ ϑ{pϕ} ≤Γ�ϕ ψ,

and for each σ ∈ Sort(Γ), ϑ ∈ Prop(Γ) and ψ ∈ Prop(Γ�σ) functions

(iii) ϑ{pσ} ≤Γ�σ ψ → ϑ ≤Γ ∀S(σ, ψ),

(iv) ϑ ≤Γ ∀S(σ, ψ)→ ϑ{pσ} ≤Γ�σ ψ.

Definition 3.17. A unique-choice structure on Prop, Sort consists of func-
tions natural in Γ ∈ C assigning to each σ ∈ Sort(Γ), ϕ ∈ Prop(Γ�σ), ε ∈
Pf(Γ,∃S(σ, ϕ)) and υ ∈ Pf(Γ�σ�ϕ�σ{pσ}{pϕ}�ϕ{pϕ}{pσ{pσ}{pϕ}})

ι(σ, ϕ, ε, υ) ∈ Tm(Γ, σ) and ρ(σ, ϕ, ε, υ) ∈ Pf(Γ, ϕ{p ι(σ, ϕ, ε, υ)q}).

Remark 3.18. The pairs of elements x ∈ Tm(Γ, σ) and ρ ∈ Pf(Γ, ϕ{x}) are
equivalent to sections of the map

pϕ ◦ pσ : Γ�σ�ϕ→ Γ.

Definition 3.19. We bundle up the above defined structures by the term logical
structure, i.e., a logical structure is one of the following,

• an equality structure,

• a truthity structure,

• a left-adjoint structure,

• a disjunction structure,

• a falsity structure,

• a right-adjoint structure,

53

• or a unique-choice structure.

And thusly we have defined the structures in play. Let us now turn to the
morphisms between these structures. We will be short here but see Newstead
[6] for a more detailed account of these morphisms.

Definition 3.20. A morphism from a judgement pair PropC , SortC over C to a
pair PropD, SortD over D consists of a

(i) base morphism basepoint-preserving functor F : C → D
(ii) natural maps above C

FProp : PropC → PropD ◦ F FPf : PfC → PfD ◦ F
FSort : SortC → SortD ◦ F FTm : TmC → TmD ◦ F

(iii) such that the following diagrams commute,

PfC PfD ◦ F

PropC PropD ◦ F

FPf

pfC pfD◦F
FProp

TmC TmD ◦ F

SortC SortD ◦ F

FTm

tmC tmD◦F
FProp

(iv) and such that for any Γ ∈ C, ϕ ∈ PropC(Γ) and σ ∈ SortC(Γ) the induced
maps

F (Γ�ϕ)→ F (Γ)�FProp(ϕ) F (Γ�σ)→ F (Γ)�FSort(σ)

are isomorphisms.

We will sometimes hide the subscripts in FProp and FSort.

Remark 3.21. The notation used here suggests that all the four comprehen-
sions above are the same but this is not the case. Each comprehension is made
in a different judgement fibration.

Definition 3.22. A morphism of judgement fibration pairs is said to preserve
a logical structure if both the domain and codomain pairs are equipped with
the corresponding structure and if the morphism is equivariant with respect to
these structure maps. This means for instance that the morphism F preserves
disjunction structures if the following equations are satisfied for any input data,

F ∨C (ϕ,ψ) = ∨D(Fϕ, Fψ) F ∨ ICL(ϕ,ψ, ρ) = ∨IDL (Fϕ, Fψ, Fρ)

F ∨ ICL(ϕ,ψ, δ) = ∨IDL (Fϕ, Fψ, Fδ)

F ∨ EC(ϕ,ψ, ϑ, π, ρ, δ) = ∨ED(Fϕ, Fψ, Fϑ, Fπ, Fρ, Fδ)

Definition 3.23. A 2-morphism between morphisms F and G of judgement
fibration pairs is a natural transformation η between their respective base mor-
phisms such that, for each Γ ∈ C, ϕ ∈ PropC(Γ) and σ ∈ SortC(Γ)

F (ϕ) = G(ϕ){ηΓ}, F (σ) = G(σ){ηΓ}.

54

3.1.2 Signature and axiom structures

We will now define the relevant structures for interpreting the signature and
axioms of a first order theory.

Definition 3.24. A signature structure on C of Σ are functions natural in Γ ∈ C

(i) for each sort σ of Σ assigning an element

[[σ]] ∈ Sort(Γ)

(ii) for each function symbol f with arity f = (σ1, . . . , σn, σ) assigning to
terms τi ∈ Tm(Γ, σi) an element

[[f]](~τ) ∈ Tm(Γ, [[σ]])

(iii) for each atomic formula Ξ with arityΞ = (σ1, . . . , σn) assigning to terms
τi ∈ Tm(Γ, σi) an element

[[Ξ]](~τ) ∈ Prop(Γ)

This is sufficient structure to interpret each derivable sequent

` Γ ctxt Γ ` ϕ prop Γ ` σ sort

Γ ` t : σ Γ ` ρ : ϕ

of the signature Σ as elements

[[Γ]] ∈ C [[ϕ]] ∈ Prop([[Γ]]) [[σ]] ∈ Sort([[Γ]])

[[t]] ∈ Tm([[Γ]], [[σ]]) [[ρ]] ∈ Pf([[Γ]], [[ϕ]])

by interpreting the logical symbols with logical structures and interpreting the
signature symbols with signature structures. Now for interpreting the axioms,

Definition 3.25. An axiom structure on C of Σ are for each axiom | Θ ` ϑ an
assignment of ρi ∈ Pf(Γ, [[θi]]) an element

[[A]](~ρ) ∈ Pf(Γ, [[ϑ]])

Proposition 3.26. Here are some facts about signature and axiom structures
of Σ, T to make our life easier down the road.

(i) Each function symbol is completely described by an arrow in C, in the sense
that if we define Γ� [[~σ]]Γ ∈ C for every Γ ∈ C by repeatedly extending Γ by

55

the interpretations of σi, we get a commutative diagram

Γ� [[~σ]]Γ Γ� [[σ]]Γ

~� [[~σ]]~ ~� [[σ]]~

Γ

~

Cf

where all the square sides are pullback and the subscript on the interpreta-
tions denote which context the interpretation was evaluated in. This yields
a natural bijection between the parametrization of [[f]](~τ) ∈ Tm(Γ, [[σ]])
by τi ∈ Tm(Γ, [[σ]]i) and the parametrization of Cf ◦ g by arrows g : Γ →
~� [[~σ]]~.

(ii) An axiom structure can similarly be classified by an arrow (necessarily
mono if Prop is proof irrelevant)

~� [[Θ]]~ → ~� [[ϑ]]~.

We finally arrive at the definition of model.

Definition 3.27. A model M of FOT (Σ, T) is a judgement fibration pair
with logical structures, a signature structure and an axiom structure. The
morphisms of models are the morphisms of judgement fibration pairs that are
equivariant with respect to these structures. The 2-morphisms of models are
the 2-morphisms of judgement fibration pairs.

3.1.3 A comment on the framework

To see how this presentation of the semantics connects to those given by Uemura
in [7], let us take a specific look at the disjunction structure. By the magic
of discrete fibrations, the functions specifying a disjunction structure perfectly
correspond to morphisms of discrete fibrations over C. For instance, the function
∨(ϕ,ψ) corresponds to morphism Prop× Prop→ Prop over C. Further, the left
and right intro functions correspond to discrete fibrations L∨IL ,L∨IR which are

56

limits over the diagrams

L∨IL

Prop

Pf Prop2 Prop

Prop

∨

L∨IR

Prop Pf

Prop2 Prop

Prop

∨

where the maps Pf → Prop are pf. We also have morphisms ∨IL,∨IR over the
diagram making the following commute

Pf L∨IR

L∨IL

Prop Pf

Pf Prop2 Prop

Prop

∨IR

∨IL

∨

and the elimination rule corresponds similarly to a discrete fibration L∨E which
is a limit of the following diagram except for the dashed morphism. It comes

57

with a morphism ∨E over C the diagram commute,

L∨E

Pf abspfPf

Prop Pf abspfProp

abspfPf Prop2 Prop

abspfProp Prop Prop2

Prop2 Prop

∨E

∨

here the abspf is the polynomial functor given by pf which models abstraction
over a proposition, the arrow into abspfProp models weakening and the arrow
out of abspfProp picks out which proposition it is abstracting over.

So L∨IL ,L∨IR ,L∨E model type theoretic contexts from a semantic type the-
ory T given in [7] and the morphisms ∨IL,∨IR,∨E induce morphisms from
L∨IL ,L∨IR ,L∨E into the limit of larger diagrams such that they are sections
from the projection maps from the limit of the larger diagram into the limit of
the smaller diagram.

3.1.4 Logical structures on the standard pair

Here we will introduce the two natural judgement fibrations associated with a
Heyting category. First the subobject fibration,

Definition 3.28. Let • denote the final fibration over C which pointwise picks
out a single element and Sub the subobject fibration which over Γ picks out all
monos T � Γ modulo isomorphism. This description of Sub only makes it a
fibration if Sub has pullbacks of all monos. Let max denote the map • → Sub
which pointwise picks out the maximal subobject of Γ.

Proposition 3.29. Let C be a category with pullbacks of all monos. A choice
of representative for each subobject J ⊆ Γ makes the map max : • → Sub a
judgement fibration.

Proof. By the Yoneda lemma, let ‘J ’ : Γ → Sub pick out the subobject J ⊆ Γ.
Let J be represented by j : T � Γ. Then the following diagram is pullback,

58

T •

Γ Sub

j max

‘J’

which can be proven using the description of subobjects of representable fibra-
tions as sieves. This technical description is beyond the scope of this work, see
MacLane and Moerdijk [5, I.4] for a treatment.

Definition 3.30. Let Ob denote the fibration over C which pointwise is con-
stantly equal to the set of all objects of C, and Ar which pointwise over Γ picks
out the set morphisms out of Γ.

Proposition 3.31. Let C be a category with binary products. Then cod : Ar→
Ob which pointwise picks out the codomain of each morphism is a judgement
fibration.

Proof. By Yoneda lemma, let ‘A’ : Γ → Ob pick out the object A in C and let
‘π2’ : Γ × A → Ar pick out the morphism π2 : Γ × A → A. Then the following
diagram is pullback,

Γ×A Ar

Γ Ob

π1

‘π2’

cod

‘A’

which can be seen by considering it pointwise over Γ′,

T

Hom(Γ′,Γ×A)
∑
X∈Ob C Hom(Γ′, X)

Hom(Γ′,Γ) Ob C
f 7→π1◦f

f 7→f∗(π2)=π2◦f

cod

f 7→f∗(A)=A

where the maps out of T commuting means that the upper map factors through
Hom(Γ′, A) and by the universal property of the product, we get a unique arrow
T → Hom(Γ′,Γ×A) making the diagram commute.

Definition 3.32. We say that C has subobject intersections over Γ if for each
ϕ,ψ ⊆ Γ there is a ϕ ∩ ψ with the universal properties that

(i) if ϑ ⊆ Γ satisfies that ϑ ≤Γ ϕ and ϑ ≤Γ ψ then ϑ ≤Γ ϕ ∩ ψ,

(ii) both ϕ ∩ ψ ≤Γ ϕ and ϕ ∩ ψ ≤Γ ψ.

We say that C has subobject intersections if it has subobject intersections over
all Γ ∈ C

59

Definition 3.33. We will call C a suitable base category if it has binary prod-
ucts, pullbacks of all monos and a choice of representative for each subobject.
We will call the judgement fibration pair Sub, Ob the standard pair on C when
C is a suitable base category.

Proposition 3.34. If C is a suitable base category then it has subobject inter-
sections and Sub has a truthity structure, and is proof irrelevant.

Proof. If ϕ,ψ ⊆ Γ are subobjects of Γ then their intersection is given by the
pullback

Γ�ϕ{pψ} Γ�ϕ

Γ�ψ Γ

pϕ

pψ

.

and the truthity structure is given by taking Γ ⊆ Γ for each Γ. It is proof
irrelevant because • is a singleton above each Γ.

Proposition 3.35. The standard pair carries an equality structure iff the base
category has equalizers.

Proof. Assume that they carry an equality structure. Take two parallel arrows
f, g : Γ′ → Γ. We get two sections [f,1], [g,1] of the context projection Γ′×Γ→
Γ which correspond to two elements t, τTm(Γ′,Γ). By Proposition 3.6 we get
ptq, pτq have a weak equalizer if Sub, Sort carry an equality structure. By proof
irrelevance and the weak equalizer being the extension of Γ′ by t =Γ τ (see
Remark 3.4), the equalizing arrow Γ′� t =Γ τ → Γ′ is a mono. Therefore the
weak equalizer is in fact an equalizer.

Now assume that the base category has equalizers. Assign to two parallel
arrows the subobject given by their equalizer. We get the structure maps of
an equality structure and naturality by the fact that any two equalizers of the
same map induce equal subobjects.

Definition 3.36. If C is a suitable base category we say that it has subobject
intersections if for all Γ ∈ C, ϕ ⊆ Γ and ψ ⊆ Γ, there is a ϕ ∪ ψ ⊆ Γ such that

ϕ ≤Γ ϕ ∪ ψ, ψ ≤Γ ϕ ∪ ψ, if ϕ ≤Γ ϑ and ψ ≤Γ ϑ then ϕ ∪ ψ ≤Γ ϑ

and if f : Γ′ → Γ then (ϕ ∪ ψ){f} = ϕ{f} ∪ ψ{f}.

Definition 3.37. If C is a suitable base category we say that it has initial
subobjects if for every Γ there is a ⊥Γ ⊆ Γ such that for every ϑ ⊆ Γ we have
⊥Γ ≤Γ ϑ, and for any f : Γ′ → Γ we have that ⊥Γ′ = ⊥Γ{f}.

Lemma 3.38. We characterize disjunction and falsity structures for the stan-
dard pair.

• Disjunction structures carried by the standard pair are equivalent to sub-
object unions in C.

60

• Falsity structures carried by the standard pair are equivalent to initial
subobjects in C.

Proof. First note that the universal properties of subobject unions and initial
subobjects define them uniquely when they exist so they are mere properties of
C. Therefore we do not need to check that the constructions that will constitute
our equivalence are mutually inverse.

Proposition 3.14 together with the naturality condition in Definition 3.13
means that a disjunction structure gives us subobject unions. To see that sub-
object unions give us a disjunction structure, note that the universal property
of the subobject unions gives us the following for each Γ ∈ C,

(i) for each ϕ,ψ ⊆ Γ, a subobject ϕ ∪ ψ ⊆ Γ,

(ii) such that if ϕ is maximal in Γ then so is ϕ ∪ ψ,

(iii) and if ψ is maximal in Γ then so is ϕ ∪ ψ,

(iv) and whenever a subobject ϑ ⊆ Γ has that both

ϑ{pϕ} ⊆ Γ�ϕ and ϑ{pψ} ⊆ Γ�ψ

are maximal and ϕ ∪ ψ ⊆ Γ is maximal, then so is ϑ.

The final clause follows because ϑ{pϕ} is maximal precisely when ϕ ≤Γ ϑ.
Naturality of this assignment needs only be checked for (i), it then follows by
proof irrelevance for (ii)-(iv). But it holds immediately for (i) by definition.

The procedure is similar for a falsity structure.

Proposition 3.39. Every morphism in a suitable base category factors as a
mono followed by a product projection.

Proof. A morphism f : Γ′ → Γ together with 1 : Γ′ → Γ′ induces an arrow
[f,1] : Γ′ → Γ× Γ′ that is a mono.

Lemma 3.40. Now we exploit the above factorization.

• Left-adjoint structures carried by the standard pair are equivalent to de-
pendent sums for subobjects in C.

• Right-adjoint structures carried by the standard pair are equivalent to
dependent products for subobjects in C.

Proof. Both items work much the same way so let us treat the first one. First
let us note that given ϕ ∈ Sub(Γ), ψ ∈ Sub(Γ′) and f : Γ′ → Γ the condition on
ϑ ∈ Sub(Γ) that

ψ ≤Γ′ ϕ{f} ⇔ ϑ ≤Γ ϕ

uniquely determines the subobject ϑ if it exists. Therefore, by Proposition 3.11,
if the standard pair carries a left-adjoint structure and C has dependent subob-
ject sums then they coincide.

61

Also note that if C has dependent subobject sums then we get an induced
left-adjoint structure: We can take the dependent subobject sum along monos
and product projections to define

(i) for subobjects i : ϕ� Γ and j : ψ� ϕ let ∃P(ϕ,ψ) = Σi(ψ)

(ii) which means that if ϕ is maximal in Γ and ψ{i−1} is maximal in Γ then
so is Σi(ψ) in Γ

(iii) and if Σi(ψ) is maximal in Γ then for any k : ϑ� Γ such that ϑ{j ◦ i} is
maximal in ψ then so is ϑ in Γ

where the two latter clauses hold by the universal properties of dependent sums,
and

(iv) for each objects Γ, σ of C and j : ψ� Γ× σ let ∃S(σ, ψ) = Σπ1(ψ)

(v) which means that for any map f : Γ → σ that makes ψ{[1, f]} maximal
in Γ then Σπ1

(ψ) is also maximal in Γ

(vi) and if Σπ1(ψ) is maximal in Γ then for any k : ϑ� Γ such that ϑ{j ◦ π1}
is maximal in ψ then so is ϑ in Γ

and the same is true for the final two clauses. This precisely corresponds to
the clauses of Definition 3.10 with Prop = Sub and Pf = •. Let us end by
expanding on how the universal properties of the dependent sums give us the
last two clauses.

For (v) note that the unit of the adjunction gives us ψ ≤Γ×Σ Σπ1
(ψ){π1}

which we can pull back both along [1, f] to get

ψ{[1, f]} ≤Γ Σπ1
(ψ){π1 ◦ [1, f]}

but as [1, f] is a section of π1 and ψ{[1, f]} is maximal in Γ the clause is satisfied.
For (vi) note that ϑ{j ◦ π1} is maximal in ψ precisely when

ψ ≤Γ ϑ{π1}

which by adjointness means that

Σπ1(ψ) ≤Γ ϑ

and since Σπ1 is maximal in Γ then so is ϑ.

Lemma 3.41. If the standard pair carries a left-adjoint and an equality struc-
ture then it also carries a (necessarily unique) unique-choice structure.

Proof. If it has a left-adjoint structure and an equality structure then the base
category is regular and the equality predicate is modelled by equalizers. With
a left-adjoint structure then whenever ∃S(σ, ϕ) ⊆ Γ is maximal then the map

u = pσ ◦ pϕ : Γ�σ�ϕ→ Γ�σ → Γ

62

is a regular epimorphism. And with an equality structure then whenever (v1 =σ

v2) ⊆ Γ�σ�ϕ�σ�ϕ is maximal then u is a monomorphim. But as maps that
are both regular epi and mono are isomorphisms, we can take its (necessarily
unique) inverse to get a section of u : Γ�σ�ϕ. This gives us the structure maps
of a unique-choice structure, and the unicity of the inverse ensures that the
structure maps are natural so we indeed have a unique-choice structure.

3.2 Recovering functorial semantics for first order logic

We will now show how any Heyting functor out of IΣ,T corresponds to a first-
order morphism out of IΣ,T .

Lemma 3.42. A judgement fibration pair morphism from IΣ,T to a standard
pair is equivariant with respect to unique-choice structures.

Proof. Any functor preserves isomorphisms.

Theorem 3.43. Each Heyting functor F : IΣ,T → C induces uniquely a first-
order morphism (F, FProp, FSort) : IΣ,T → C for a standard pair on C.

Proof. As a Heyting functor is a functor that preserves finite limits and is equiv-
ariant with respect to finite subobject unions, dependent sums and dependent
products. In particular the image of ♦, the selected terminal object of IΣ,T , is
taken to a terminal object ~ which we take as our selected terminal object of
the base category.

Let us describe the judgement fibration pair morphism. For the propositional
part, we get FProp by taking the proposition over Γ given by Γ ` ϕ prop to the
subobject given by F (Γ. p : ϕ)� F (Γ) where the monomorphism is preserved
because F preserves finite limits, and FPf is given by noting that whenever
Γ ` ρ : ϕ then Γ is isomorphic to Γ. p : ϕ, so F (Γ. p : ϕ) yields the maximal
subobject of Γ. This gives us by definition that F (Γ. p : ϕ) ∼= F (Γ)�F (ϕ).

Now note that if F preserves finite limits then it preserves terminal objects
(truthity structure) and equalizers (equality structure). As it is equivariant with
respect to finite subobject unions, dependent sums, and dependent products, we
get that it preserves falsity, disjunction, left-adjoint and right-adjoint structures.

Finally, it is equivariant with respect to unique-choice structure.
For the preservation of the signature and axiom structures, the preservation

of the signature structure is given by functoriality and the axiom structure is
given by functoriality together with cartesian functors preserving monos.

Theorem 3.44. The base functor of a first-order morphism (F, FProp, FSort) :
IΣ,T → C is a Heyting functor.

Proof. For equalizer preservation, we need to prove it by induction on the length
of quantifying context. For product preservation, we need to prove that if
` Γ ctxt and ` Γ′ ctxt then F (Γ.Γ′) is the product of F (Γ) and F (Γ′).

For finite union preservation we can simply use falsity and disjunction equiv-
ariances.

63

For preservation of dependent sums and dependent products we once again
need to do induction on the length of the quantifying context.

This takes us to the main result of this work, showing that we recover the
functors of the functorial semantics within the semantic framework of Uemura.
Let us first see the precise statement that we are relying upon.

Theorem 3.45 (Uemura [7, Theorem 6.9].). LetM be a model of FOT (Σ, T).
The category of morphisms of models FOT (Σ, T)→M is contractible.

Contractibility of this functor category means that there is at least one such
functor, and that any other functor must be isomorphic to that one. But as we
will see now, if two morphisms FOT (Σ, T)→M are isomorphic then they are
equal.

Lemma 3.46. Let M be a standard model of FOT (Σ, T) on a suitable base
category C and let F,G be two morphisms of models IΣ,T → M. If F and G
are naturally isomorphic in the 2-categorical sense of Definition 3.23 then they
are equal.

Proof. Assume ηΓ : F ⇒ G is such an isomorphism. We need to prove that

(i) F (Γ) = G(Γ),

(ii) Fsort(Γ, σ) = Gsort(Γ, σ),

(iii) Fprop(Γ, ϕ) = Gprop(Γ, ϕ).

We will need to proceed by induction on the length of Γ. Let us just first note
that because whenever Γ ` σ sort is derivable we have ♦ ` σ sort we get

Fsort(Γ, σ) = Fsort(♦, σ){!F (Γ)}
where !F (Γ) denotes the morphism to the terminal object. But because F is a
morphism of models we must have Fsort(♦, σ) = [[σ]]~ and similar for G.

Let us now proceed with the induction. Because the base functors preserve
basepoint we have F (♦) = G(♦) = ~.

Now let Γ be such that F (Γ) = G(Γ). We get that

(i) Fsort(Γ, σ) = [[σ]]~{!F (Γ)} = [[σ]]~{!G(Γ)} = Gsort(Γ, σ)

(ii) Fprop(Γ, ϕ) ⊆ F (Γ) is isomorphic to Gprop(Γ, ϕ) ⊆ G(Γ) over F (Γ) =
G(Γ) because of the action of the natural isomorphism ηΓ on propositions
satisfying Gprop(Γ, ϕ){ηΓ} = Fprop(Γ, ϕ). But that means that they are
equal as subobjects.

This means that when we extend F (Γ) = G(Γ) by the image of a proposition
or sort, they agree for F and G and therefore the extensions are also equal.

Theorem 3.47. If C is a suitable base category, the standard models of

FOT (Σ, T)

on a category C correspond bijectively to functorial models of the first order
theory Σ, T in C.

64

4 Further directions

Let us conclude with some suggestions on how to develop this line of thought.
With functorial semantics we have a richer universal property for the syn-

tactic category because we not only get that Heyting functors correspond to
first-order models, but we also that a certain notion of morphism of models
corresponds to natural transformations of Heyting functors.

These do not seem to be captured by the semantics of Uemura [7] although
there is a notion of theory over a type theory given there which might be devel-
oped such that morphisms of models of a theory over a type theory recover the
morphisms of models in the functorial sense.

4.1 Semantics for a proof relevant version with homotopy
type theory

In this section we will (very broadly) sketch an interpretation of a proof relevant
version of FOT in homotopy type theory. Let us remove the rule for proof
irrelevance from FOT and replace the equality rule

Γ ` σ sort Γ ` t : σ Γ ` τ : σ Γ ` ρ : t =σ τ

Γ ` t = τ : σ

by a proof-relevant version,

Γ ` σ sort Γ. x : σ ` ϕ prop

Γ ` t : σ Γ ` τ : σ Γ ` α : t =σ τ Γ ` ρ : ϕ [x\t]

Γ `=E(σ, x.ϕ, t, τ, α, ρ) : ϕ [x\τ]

As H T T satisfies weakening and has substitution and none of the terms in the
free first order type theory satisfy any equations we can provide a sound model
of it by interpreting the symbols of FOT in a well-typed way in H T T .

Definition 4.1. A translation model in H T T of FOT (Σ, T) is a function T
taking each type judgement form of FOT to a type judgement form in H T T ,
each type symbol of FOT (Σ) to a type in H T T and each term symbol of
FOT (Σ, T) to a term in H T T such that if Γ ` J is a derivable judgement
of FOT (κ), then T (Γ) ` T (J) is a derivable judgement of H T T (where an
equality judgement in FOT is taken to an equality judgement in H T T).

The particular translation models we will highlight are those where each sort
will be interpreted as an n+ 1-type and each proposition as an n-type.

Definition 4.2. Define the n-model of FOT as the model in H T T of FOT
given by interpreting the propositional judgement as belonging to the n-types,
the sort judgement as belonging to the n + 1-types, the propositional symbols
in the following way:

65

T (>) 1

T (⊥) |0|n
T (φ ∨ ψ) |T (φ) + T (ψ)|n
T (∀ p : ψ ϕ) Π p : T (ψ) T (ϕ)

T (∃ p : ψ ϕ) Σ p : T (ψ) T (ϕ)

T (∀x : σ ϕ) Πx : T (σ) T (ϕ)

T (∃x : σ ϕ) |Σx : T (σ) T (ϕ)|n
T (x =σ y) x =T (σ) y

The atomic propositions can straightforwardly be interpreted as an n-type
living above the interpretation of its arity. Proof terms can be interpreted as
the intro rules and eliminators for the types on the right hand side. Providing
a term for the definite descriptions amounts to constructing a term of

(Πxx′ : A, p : ϕ(x) p′ : ϕ(x′) x = x)× (|Σx : A ϕ|n)→ Σx : A ϕ

for any n-type ϕ and n + 1-type A. We claim that the target actually is an
n-type when an element of the first argument is given, which means that we
simply can eliminate out of the second term.

Theorem 4.3. Given an n-type ϕ(x) dependent on the type x : A such that
we have a term u of type

u : Πxx′ : A, p : ϕ(x) p′ : ϕ(x′) x = x

we have that for each x, x′ : A and p : ϕ(x) p′ : ϕ(x′), x = x′ is contractible.

Proof. We proceed by induction on n. We begin by verifying that it holds for the
minimal case, n = −2. Then ϕ(x) is contractible for every x and we equivalently
to the hypothesis we have a term u of type

u : Πxx′ : A x = x′

(in other words, we don’t need to depend and the terms of ϕ anymore) from
which we can conclude that x = x′ is contractible according to Lemma 3.11.10
of the homotopy type theory book [8].

For the induction step we will argue by passing to the loop space and ticking
down the homotopy level, allowing us to use the induction hypothesis. First we
do some path algebra to set us up. Allow some x : A and p : ϕ(x) together
with u to be given. We wish to prove that for any x′ and α : x = x′ we have an
equality

α = u−1(x, x, p, p) · u(x, x′, p, t̂α (p)).

We provide it by path induction on α based at x. The expression reduces to

reflx = u−1(x, x, p, p) · u(x, x, p, t̂ reflx (p))

66

which we certainly can prove. Now, given any x, x′ : A and p : ϕ(x), p′ : ϕ(x′),
consider the type

Σα : x = x′ t̂α (p) = p′.

The homotopy level of t̂α (p) = p′ is lower than that of ϕ(x) and given any
α, α′ : x = x′ and t :t̂α (p) = p′, t′ :t̂α′ (p) = p′, we get an equality

α = u−1(x, x, p, p) · u(x, x′, p, t̂α (p)) =

= u−1(x, x, p, p) · u(x, x′, p, p′) =

= u−1(x, x, p, p) · u(x, x′, p, t̂α′ (p)) = α′

which means that we can apply the induction hypothesis to get that α = α′

is contractible. This means that x = x′ is a mere proposition. The inhabitant
u(x, x′, p, p′) : x = x′ then gives that x = x′ is contractible.

References

[1] Michael P Fourman. The logic of topoi. In Studies in Logic and the Foun-
dations of Mathematics, volume 90, pages 1053–1090. Elsevier, 1977.

[2] Martin Hofmann. Syntax and semantics of dependent types. In Extensional
Constructs in Intensional Type Theory, pages 13–54. Springer, 1997.

[3] Bart Jacobs. Categorical logic and type theory, volume 141. Elsevier, 1999.

[4] Peter T Johnstone. Sketches of an elephant: A topos theory compendium,
volume 2. Oxford University Press, 2002.

[5] Saunders MacLane and Ieke Moerdijk. Sheaves in geometry and logic: A
first introduction to topos theory. Springer Science & Business Media, 2012.

[6] Clive Newstead. Algebraic models of dependent type theory. PhD thesis,
Carnegie Mellon University, 2018.

[7] Taichi Uemura. A general framework for the semantics of type theory. arXiv
preprint arXiv:1904.04097, 2019.

[8] The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. https://homotopytypetheory.org/book, In-
stitute for Advanced Study, 2013.

67

