
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK
MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Formalizing Cartesian Cubical Sets in UniMath

av

Elisabeth Bonnevier

2020 - No M2

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

Formalizing Cartesian Cubical Sets in UniMath

Elisabeth Bonnevier

Självständigt arbete i matematik 30 högskolepoäng, avancerad nivå

Handledare: Anders Mörtberg

2020

Abstract

Homotopy type theory is a new formal system for doing constructive
mathematics. As a system for logical deductions, its consistency must
be verified by models. We will look at an axiomatization of constructive
presheaf models of homotopy type theory and show that cartesian cubical
sets satisfy four of these axioms. These results are formalized using the
UniMath library for the proof assistant Coq, to which we also give an
introduction.

Acknowledgements

I would like to thank my thesis advisor Anders Mörtberg for his unlim-
ited patience with my many questions and for always finding time for me
when I needed guidance. I would also like to thank Guillaume Brunerie
for helpful discussions about Coq.

1

Contents

1 Introduction 3

2 Dependent type theory 4
2.1 The Curry-Howard isomorphism 4
2.2 Judgments and structural typing rules 6

2.2.1 Judgments . 6
2.2.2 Contexts . 6
2.2.3 Structural rules . 7
2.2.4 Admissible rules . 7
2.2.5 Universes . 8
2.2.6 Groups of typing rules . 8

2.3 Dependent function types . 8
2.4 Dependent pair types . 9
2.5 Coproducts . 10
2.6 General inductive types . 11

2.6.1 The natural numbers . 11
2.6.2 The empty type . 12
2.6.3 The unit type . 12
2.6.4 The booleans . 12

2.7 The identity type . 12
2.7.1 Symmetry . 13
2.7.2 Transitivity . 14

2.8 Homotopy type theory . 14
2.9 The univalence axiom . 17

2.9.1 Homotopies . 17
2.9.2 Equivalence of types . 18

2.10 Cubical set models of univalence 19

3 Coq 20
3.1 The UniMath library . 22

4 Category theory 25
4.1 The evaluation functor . 27
4.2 Adjunctions . 27
4.3 Products . 28
4.4 Exponentials . 31
4.5 The Yoneda lemma . 35
4.6 Exponentiation by representable objects 37

5 Cartesian cubical sets 41
5.1 Binary products in the cartesian cube category 43

6 The formalization 44

7 Conclusion and future work 44

References 46

2

1 Introduction

Like set theory, dependent type theory is a framework for logical deduction.
It was created by Swedish logician, philosopher and mathematical statistician
Per Martin-Löf [11]. It is constructive in nature and implements the Curry-
Howard isomorphism between proofs and computation. Therefore dependent
type theory is very well suited for computer aided theorem proving. As an
example of this, Coq is a tool for (among other things) proving mathematical
theorems with the help of a computer and is built upon a version of dependent
type theory.

In its original formulation, dependent type theory does not have a canonical
way of transporting constructions of one type to a construction of an equivalent
type, which is a property we often want and use in mathematics, i.e. that
any structure/proof that holds for one type holds for any equivalent type. Due
to the late Vladimir Voevodsky, this problem was solved by adding an axiom
called the Univalence Axiom [14, Axiom 2.10.3] to dependent type theory, which
allows us to do such transportations between equivalent types. This version of
dependent type theory is called Homotopy Type Theory (HoTT). The name
comes from the observation that equality between terms behaves very much like
paths between points in a topological space and that we can consider equalities
between equalities like we can consider homotopies between paths.

As Voevodsky added the univalence axiom to dependent type theory he also
began proving basic mathematical results in Coq with the addition of the uni-
valence axiom [15]. This set of formalized mathematics based on univalence has
since been expanded upon and is now called the UniMath library. It contains
among other things formalizations of basic results in category theory which have
been used in the work of this thesis.

With an axiom added to dependent type theory one needs to construct a model
to show that the theory is still consistent, which Voevodsky also did using
simplicial sets [6]. But this model relied on a non-constructive metatheory. In
the quest to find models of HoTT in a constructive metatheory Bezem et al.
found the first such model using cubical sets [2]. After this several more models
using different cubical sets have been found (for an overview see [3, Section
1]).

From these different cubical set models of HoTT, an axiomatization was for-
mulated by Orton and Pitts [12] to construct models of HoTT using presheaf
categories. A summary and updated version of this axiomatization is found in
Coquand’s article A Survey of Constructive Presheaf Models of Univalence [5].
In this article Coquand presents eight axioms on presheaf categories that when
satisfied produce a model of HoTT. Four of these (the axioms labeled B1-B4
in Coquand’s article) concern properties of a certain presheaf, denoted I, that
the category needs to contain. The focus of this thesis has been the presheaf I
and the axioms concerning it. In a recent paper Cavallo, Mörtberg and Swan
show that the fourth of these axioms is actually not needed [3], so it is enough
to consider only on the first three.

The first two axioms are straightforward to show for a given presheaf category
while the third requires more effort. In their article on universes in models of

3

HoTT, Licata et al. give a proof that the interval I in their cubical set model
satisfies the third axiom [9, p. 10]. Their proof is very short and leaves out many
details. The main work of this thesis has been to expand the details of this proof
and generalize it and to formalize this result using the UniMath library. The
remaining work has been to formalize that the interval in the cartesian cubical
sets model of HoTT satisfies the three axioms.

It is important that (at least one of) the constructive models of the univalence
axiom have been formally verified since they show the consistency of homotopy
type theory. Only some of Coquand’s axioms have been verified for the cartesian
cubical set model in this thesis, but this formalization may make the formal
verification of other cubical set models simpler since the code can be used as
a template to start the new formalization from. Moreover, the generalization
of the proof by Licata et al. [9, p. 10] resulted in a set of sufficient conditions
on the cube category used, in order for the interval I to satisfy the third axiom
(see Theorem 4.7). As this theorem has been formalized it can be used for
the verification of this axiom for other presheaf models, again making such a
formalization simpler.

2 Dependent type theory

The usual foundation for mathematics is set theory, which is a system for making
logical deductions. But a proposed new candidate as a foundation is dependent
type theory, which was created by Swedish logician Per Martin-Löf [11]. While
set theory is built on first order logic by adding a set of axioms on top of it,
dependent type theory instead embeds all information needed to do everyday
mathematics within the inference rules. In its original formulation by Martin-
Löf, no axioms were added on top of the theory. However, as we will see later,
the univalence axiom was eventually added to improve the properties of the
system and this extended type theory was given the name of homotopy type
theory.

As the work of this thesis has been to formalize some aspects of constructive
models of the univalence axiom and since the theoretical foundation of the
UniMath library used for this is dependent type theory we begin by giving an
introduction to the subject. We end this section by stating the univalence axiom
and by discussing how to construct models of dependent type theory with this
axiom using presheaf categories. First, we begin by a description of the Curry-
Howard isomorphism upon which dependent type theory is built.

2.1 The Curry-Howard isomorphism

We will assume that the reader is familiar with the λ-calculus and natural deduc-
tion for first order logic. The Curry-Howard isomorphism gives us a one-to-one
correspondence between proofs of propositions and elements of sets.

Say that we, given a variable x ∈ A, have an element u ∈ B (depending on x).
Then we can construct the function λx.u : A ! B (this is the function that

4

maps x to u). We can write this as the deduction rule

x ∈ A ` u ∈ B
` λx.u : A! B .

Similarly, say that we, given that proposition P is true, can show that proposi-
tion Q is true. Then we can conclude that P implies Q. We can write this as
the deduction rule

P ` Q
` P ! Q .

We see that these deduction rules have the same form. Now suppose the other
way around, that we have a function f : A! B and an element a ∈ A. Then we
can get an element in B by applying f to a. We can write this as the deduction
rule

` f : A! B ` a ∈ A
` f(a) ∈ B .

Similarly, say that we know that P implies Q and that P holds. Then we can
conclude that Q also holds. We can write this as the deduction rule

` P ! Q ` P
` Q .

We see again that these rules have the same form. This can be understood by
the Brouwer–Heyting–Kolmogorov interpretation (BHK-interpretation) of what
a proof of a proposition is. A proof that P implies Q is a function that, given
a proof of P returns a proof of Q. So implication on the propositional side
corresponds to functions on the computational side.

Now suppose that we have elements a ∈ A and b ∈ B. Then we can create the
pair (a, b) in the cartesian product A× B. We can write this as the deduction
rule

` a ∈ A ` b ∈ B
` (a, b) ∈ A×B .

Similarly, say that P is true and Q is true, then we can conclude that P ∧Q is
true. We can write this as the deduction rule

` P ` Q
` P ∧Q .

These rules both have the same form.

Now suppose the other way around that we have an element u ∈ A×B. Then
we can take the first projection (pr1) of u to get an element in A and the second
projection (pr2) of u to get an element in B. This can be written as the deduction
rules

` u ∈ A×B
` pr1(u) ∈ A and

` u ∈ A×B
` pr2(u) ∈ B .

Similarly, if we know that P ∧ Q is true then we can conclude that P is true
and that Q is true. These are the deduction rules:

` P ∧Q
` P and

` P ∧Q
` Q .

5

The fact that the rules for sets and propositions are of the same form can be
understood by the BHK-interpretation in that a proof of the proposition P ∧Q
is a pair (p, q) where p is a proof of P and q is a proof of Q.

In the same way as above, logical disjunction corresponds to disjoint union, for
an element in a disjoint union A t B is either a copy of an element in A or an
element in B. Similarly, a proof of the proposition P ∨ Q either consists of a
proof of P or a proof of Q.

The true and false propositions > and ⊥ correspond to the set with one element
and the empty set respectively. The true proposition > only has one canonical
proof; it is always true. The false proposition ⊥ has no proof.

By implementing this correspondence, dependent type theory handles both
propositions and computations simultaneously using the same language.

2.2 Judgments and structural typing rules

The objects of dependent type theory are terms and types. Each term has a
type. Through the Curry-Howard isomorphism, types can be seen both as sets
and as propositions and terms can be seen both as elements and as proofs of
propositions.

The terms and types come with typing rules which we will present in the same
form as the inference rules in natural deduction of first order logic (some of
which we have already discussed in Section 2.1).

2.2.1 Judgments

There are five types of judgments in dependent type theory:

• Γ ctx, which states that Γ is a well-typed context,

• Γ ` A type, which states that A is a well-typed type in context Γ,

• Γ ` A ≡ B type, which states that A and B are definitionally equal types
in context Γ,

• Γ ` a : A, which states that a is a term of type A in context Γ and

• Γ ` a ≡ b : A, which states that a and b are definitionally equal terms of
type A in context Γ.

Any deduction in dependent type theory consists of different instances of these
five judgments. (Some authors leave out the first judgment and consider it
instead as a finite series of judgments of the second type.)

2.2.2 Contexts

A context can be thought of as a list of declared variables on the computational
side, or as a list of assumptions on the propositional side. It is a list of the
form

x1 : A1, x2 : A2, ..., xn : An

6

or an empty list. Such a context is well-typed if it can be derived using the
inference rules

∅ ctx
∅- ctx

Γ ctx Γ ` An+1 type

Γ, xn+1 : An+1 ctx
ctx -ext

where in the second rule, xn+1 must be distinct from all variables in Γ.

2.2.3 Structural rules

Before detailing the different type formers in dependent type theory, we begin
by introducing some general structural rules that ensure that the judgments
behave as expected.

We have the variable rule:

x1 : A1, ..., xn : An ctx

x1 : A1, ..., xn : An ` xi : Ai
var

.

which states that if we have term of type Ai in our context then we can conclude
that we have a term of type Ai.

Then we have the rules that ensure that definitional equality is an equivalence
relation:

Γ ` A type

Γ ` A ≡ A type

Γ ` A ≡ A′ type

Γ ` A′ ≡ A type

Γ ` A ≡ A′ type Γ ` A′ ≡ A′′ type

Γ ` A ≡ A′′ type

Γ ` a : A
Γ ` a ≡ a : A

Γ ` a ≡ a′ : A
Γ ` a′ ≡ a : A

Γ ` a ≡ a′ : A Γ ` a′ ≡ a′′ : A
Γ ` a ≡ a′′ : A .

We also need to ensure that if the type of a term is definitionally equal to
another type then the term also has that type:

Γ ` a : A Γ ` A ≡ A′ type

Γ ` a : A′
Γ ` a ≡ a′ : A Γ ` A ≡ A′ type

Γ ` a ≡ a′ : A′

2.2.4 Admissible rules

There are several rules that cannot be derived in dependent type theory but that
nonetheless do not need to be added because they can be proved using induction
on all possible derivations. These are called admissible rules. Two such rules are
substitution and weakening. We will use a double line when writing admissible
rules to distinguish them from the other typing rules. Let J be one of the last
four types of judgments in Section 2.2.1 and let Γ,∆ be arbitrary well-typed
contexts. Then we have the admissible rules

Γ ` a : A Γ, x : A,∆ ` J
Γ,∆[x := a] ` J [x := a]

subst
Γ ` A type Γ,∆ ` J

Γ, x : A,∆ ` J wkg

where x must be distinct from the variables in Γ,∆ in the second rule.

7

2.2.5 Universes

In order to be able to quantify over types we need some object to quantify
over since everything in type theory is typed. So we need essentially a type
of types, i.e. the terms in this type are types. Such types of types are called
universes and will be denoted by U . There are different ways of constructing
universes, the main two being universes à la Russel and universes à la Tarski.
Coq uses cumulative Russell style universes. So there is a countably infinite
hierarchy U1 : U2 : ... : Un : ... of universes in which each universe is a term of
the next universe and the terms of the first universe are the types. Moreover,
cumulativity means that if A : U i then A : U i+1.

2.2.6 Groups of typing rules

The typing rules of each type former can be categorized into groups as fol-
lows:

Formation rule A rule that describes when the type is well-typed.

Introduction rules Zero, one or more rules which describe how to construct
terms of the type.

Elimination rules One or more rules which describe how to use terms of the
type.

β-reduction For every pair of an introduction and an elimination rule, a β-
reduction rule that states what we get when constructing a term and
immediately eliminating it.

η-expansion Some types with exactly one introduction rule have an η-expansion
rule which states that any term of the type is equal to the constructor ap-
plied to appropriate arguments.

Congruence rules For each formation, introduction and elimination rule, a
congruence rule which states that this rule respects definitional equality.

2.3 Dependent function types

We now move to one of the basic type formers in dependent type theory, the
dependent function type, or Π-type. Given a type A and a family B of types
dependent on A, i.e. for every a : A we have a type B(a), the dependent
function type can be thought of as the type of functions from A to B (note that
the codomain here varies). We denote this type by

∏
x:AB(x). The typing rules

are:

Γ ` A type Γ, x : A ` B(x) type

Γ `∏x:AB(x) type
Π -form

Γ, x : A ` f(x) : B(x)

Γ ` λx.f(x) :
∏
x:AB(x)

Π -intro

8

Γ ` a : A Γ ` f :
∏
x:AB(x)

Γ ` f(a) : B(a)
Π -elim

Γ ` a : A Γ, x : A ` f(x) : B(x)

Γ ` (λx.f(x))(a) ≡ f(a) : B(a)
Π -β

Γ ` f :
∏
x:AB(x)

Γ ` f = λx.f(x) :
∏
x:AB(x)

Π -η

Γ ` A ≡ A′ type Γ, x : A ` B(x) ≡ B′(x) type

Γ `∏x:AB(x) ≡∏x:A′ B
′(x) type

Π -cong1

Γ, x : A ` f(x) ≡ f ′(x) : B(x)

Γ ` λx.f(x) ≡ λx.f ′(x) :
∏
x:AB(x)

Π -cong2

Γ ` a ≡ a′ : A Γ ` f ≡ f ′ :
∏
x:AB(x)

Γ ` f(a) ≡ f ′(a′) : B(a)
Π -cong3

On the propositional side, the Π-type corresponds to universal quantification,
because for any proposition P (x) dependent on an element x ∈ A, a proof of
the proposition

∀x ∈ A : P (x)

is a function that for every element a ∈ A returns a witness (i.e. a term of)
P (a).

If the type B does not depend on A then a term in
∏
x:AB is simply a (non-

dependent) function that for every term a : A returns a term b : B. So in this
case the Π-type is corresponds to the ordinary function type from A to B and
we denote it by A! B.

2.4 Dependent pair types

Another basic type former is the dependent pair type, or Σ-type. Given a type
A and a family B of types dependent on A a term of the dependent pair type
is an object of the form (a, b) where a : A and b : B(a). The typing rules
are:

Γ ` A type Γ, x : A ` B(x) type

Γ `∑x:AB(x) type
Σ -form

Γ ` a : A Γ ` b : B(a) Γ, x : A ` B(x) type

Γ ` (a, b) :
∑
x:AB(x)

Σ -intro

9

Γ ` u :
∑
x:AB(x)

Γ ` pr1(u) : A
Σ -elim1

Γ ` u :
∑
x:AB(x)

Γ ` pr2(u) : B(pr1(u))
Σ -elim2

Γ ` a : A Γ ` b : B(a) Γ, x : A ` B(x) type

Γ ` pr1((a, b)) ≡ a : A
Σ -β1

Γ ` a : A Γ ` b : B(a) Γ, x : A ` B(x) type

Γ ` pr2((a, b)) ≡ b : B(a)
Σ -β2

Γ ` u :
∑
x:AB(x)

Γ ` u ≡ (pr1(u), pr2(u)) :
∑
x:AB(x)

Σ -η

We also have congruence rules which state that the type and term formers and
the elimination rules respect definitional equality, but we will henceforth not
write these out.

On the propositional side, Σ-types correspond to strong existential quantifica-
tion (strong existential quantification requires the construction of an explicit
witness of the proposition under the quantifier), because for any proposition
P (x) dependent on an element x ∈ A, a witness of the proposition

∃x ∈ A : B(x)

consists of a pair (a, b) where a is a witness of A and b is a witness of B(a).

Observe that if B does not depend on A then a term in the type
∑
x:AB is a

pair (a, b) where a : A and b : B. So in this case the Σ-type corresponds to
cartesian product and we denote it by A×B.

2.5 Coproducts

The coproduct type can be thought of as disjoint union, in terms of sets, and
disjunction, in terms of propositional logic. The typing rules are:

Γ ` A type Γ ` B type

Γ ` A tB type
t -form

Γ ` a : A Γ ` B type

Γ ` inl(a) : A tB t -intro1
Γ ` A type Γ ` b : B

Γ ` inr(b) : A tB t -intro2

Γ ` u : A tB
Γ, w : A tB ` P (w) type

Γ, y : B ` dr : P (inr(y))
Γ, x : A ` dl : P (inl(x))

Γ ` elimt,dl,dr (u) : P (u)
t -elim

10

Γ ` a : A
Γ, w : A tB ` P (w) type

Γ, x : A ` dl : P (inl(x))
Γ, y : B ` dr : P (inr(y))

Γ ` elimt,dl,dr (inl(a)) ≡ dl(a) : P (inl(a))
t -β1

Γ ` b : B
Γ, w : A tB ` P (w) type

Γ, x : A ` dl : P (inl(x))
Γ, y : B ` dr : P (inr(y))

Γ ` elimt,dl,dr (inr(b)) ≡ dr(b) : P (inr(b))
t -β2

We will write [dl, dr] for the term λw.elimt,dl,dr (w) :
∏
w:AtB P (w).

2.6 General inductive types

Coproducts are an example of inductive types. One can define a general notion
of inductive types with an algorithm that generates all the typing rules given all
the introduction rules of the type. Loosely speaking, we define zero, one or more
introduction rules for our inductive type. Then we have an induction rule that
states that for any type family B over our inductive type, if we can construct
a term in B(x) for any term x resulting from an introduction rule, then we can
construct a term in B(w) for any term w in the inductive type.

It is also possible to define rules that allow us to use pattern matching when
defining inductive types, which is usually what is done in practice in proof
assistants.

Some common examples of inductive types include coproducts, the natural num-
bers (N), the empty type (∅), the unit type (1) and the booleans (2). We will
now show how the last four of these are defined.

2.6.1 The natural numbers

The type most mathematicians are familiar with as an inductive type are the
natural numbers. We define the ’base element’ 0 and a successor function S :
N ! N that inductively gives us all the natural numbers. The introduction
rules in dependent type theory for the natural numbers are

Γ ctx
Γ ` 0 : N N -intro1

Γ ` n : N
Γ ` Sn : N N -intro2.

The induction rule generated by the algorithm for typing rules of general induc-
tive types then becomes

Γ, x : N ` P (x) type Γ ` p0 : P (0) Γ,m : N ` pS(m) : P (m) ! P (S(m))

Γ ` elimN,p0,pS(m)
(n) : P (n)

N -elim
,

i.e. if we can construct a term of type P (0) and for every natural number m a
function that sends a term of type P (m) to a term of type P (S(m)), then we can
construct a term of type P (n) for any natural number n. When P is seen as a
proposition that depends on N, then this is the usual induction principle on the

11

natural numbers. When P is seen as a set that instead does not depend on N
then this is the usual recursion on the natural numbers, i.e. we define a function
on N by stating where it maps 0 and the successor of any number.

2.6.2 The empty type

The empty type does not contain any terms so we define it as the inductive type
without introduction rules. Since there are no introduction rules the elimination
rule becomes

Γ, x : ∅ ` P (x) type

Γ ` elim∅ :
∏
x:∅ P (x)

∅ -elim
.

As a proposition the empty type corresponds to ⊥ and ∅ -elim corresponds to
ex falso quodlibet.

2.6.3 The unit type

The unit type should contain only one term. So the only introduction rule
is

Γ ctx
Γ ` tt : 1

1 -intro

and the elimination rule is

Γ, x : 1 ` P (x) type Γ ` p : P (tt)

Γ ` elim1,p :
∏
x:1 P (x)

1 -elim
.

As a proposition the unit type corresponds to >.

2.6.4 The booleans

The type of booleans contains exactly two terms, 02 and 12 which correspond
to true and false. There is one introduction rule for each of these terms. Ex-
plicitly:

Γ ctx
Γ ` 02 : 2

2 -intro1
Γ ctx

Γ ` 12 : 2
2 -intro2.

The elimination rule then becomes

Γ, x : 2 ` P (x) type Γ ` p0 : P (02) Γ ` p1 : P (12)

Γ ` elim2,p0,p1 :
∏
x:2 P (x)

2 -elim

2.7 The identity type

We now come to a family of types that is perhaps not as intuitively clear as the
previous types: types corresponding to propositional equality.

In our type system we have a version of definitional equality, but it is not enough
to express all of mathematics. For example, the expressions x + 2 and 2 + x
evaluate to the same natural number for every natural number x so we would
like to have a witness of the equality ”x+ 2 = 2 +x” (in the context x : N), but
this does not hold as a definitional equality.

12

Consider the statement ”a = b”. This is a statement that can either be true or
false, so it is a proposition. Therefore it should correspond to a type (rather than
a term) in dependent type theory. The question is now, how much structure
should this type have? It turns out that it is enough to have a canonical term
of the type a = a and an induction principle for the identity type to behave as
desired. The formation and introduction rules of the identity type are:

Γ ` a : A Γ ` b : A
Γ ` a =A b type

= -form
Γ ` a : A

Γ ` refla : a =A a
= -intro

,

i.e. for any two terms a and b of the same type we can form the proposition
that a is equal to b and we always have a witness that a is equal to itself. We
often leave out the subscript A of the equality sign as this type can be inferred
from the terms a and b. Now, we would like propositional equality to behave
in such a way that if a proposition P (x) dependent on x ∈ A has a witness for
some element a ∈ A, then it should have a witness for any element x ∈ A such
that a = x (propositionally). This is exactly how we define the elimination rule
for propositional equality:

Γ ` a : A Γ, x : A, p : a =A x ` P (x, p) type Γ ` pa : P (a, refla)

Γ ` elim=,a :
∏
x:A

∏
p:a=Ax

P (x, p)
= -elim

(note that P depends on the witness p of the propositional equality). We will
also refer to this rule as path induction for reasons that will be discussed in
Section 2.8. A β-reduction rule is needed that states what happens when we
apply the elimination term to the terms a and refla:

Γ ` a : A Γ, x : A, p : a =A x ` P (x, p) type Γ ` pa : P (a, refla)

Γ ` elim=,a(a, refla) ≡ pa : P (a, refla)
= -β

It is possible to define the identity type with both sides of the equality being
variables (see [14, Section 1.12.2]) but in this text we use based identity types
as that is what is used in the UniMath library.

This is enough structure on the equality types because using path induction we
can show that propositional equality is an equivalence relation.

2.7.1 Symmetry

We begin by constructing a term of the type a =A b ! b =A a. It is possible
to do this as a full deduction tree, but such trees easily become very large and
cumbersome so we will instead write the deduction in text.

By path induction, in order to construct a term of type a = b ! b = a it is
enough to construct a term of type a = a! a = a. For this we can simply take
the identity function

ida=a :≡ λp.p : a = a! a = a.

13

Then we apply path induction to get the term

−1 :≡ elim=,a(b) : (a =A b) ! (b =A a),

i.e. p−1 : b =A a for any term p : a =A b. We leave a, b and A as implicit
arguments because these can all be inferred from p.

2.7.2 Transitivity

To show transitivity we again use path induction. In order to construct a term
of type

(a =A b) ! (b =A c) ! (a =A c)

it is by path induction enough to construct a term of the type

(a =A a) ! (a =A c) ! (a =A c).

For this we can simply take the function that returns the second argument:

λp.λq.q : (a =A a) ! (a =A c) ! (a =A c).

Then we apply path induction to get the term

· :≡ elim=,a(b) : (a =A b) ! (b =A c) ! (a =A c),

i.e. p · q : a =A c for any terms p : a =A b and q : b =A c.

2.8 Homotopy type theory

An observation from Section 2.7.1 and 2.7.2 is that types behave like topological
spaces with the terms corresponding to the points in the space and terms of the
identity type of two terms behave like paths between the points: for any term
p : a =A b if we view it as a path between points a and b in a space A then
we can construct the inverse path p−1 : b =A a from b to a. Given two paths
p : a =A b and q : b =A c, we can compose them to get a path p · q : a =A c. We
also always have the constant path refla : a =A a from a to a.

Since the identity type can be formed between any two terms of any type, we
can form the identity type p =a=Ab q for p, q : a =A b, that is, we can look
at paths between paths, i.e. homotopies between paths. One can continue to
iterate the identity type to get a hierarchy of homotopies between homotopies
one level lower in the hierarchy. In this way it turns out that the identity type
in dependent type theory has a non-trivial structure. The view of the identity
type as a set of paths gave rise to the area of homotopy type theory and it is
due to this view of the identity type that equality elimination is often called
path induction.

Let us now see some more examples of path induction and how to endow the
identity type with a groupoid structure (in the category theoretic sense) viewing
· as composition.

Proposition 2.1. For any term p : x = y we have the equalities reflx · p = p
and p · refly = p (i.e. the types are inhabited).

14

Proof. By the definition of · and the β-reduction of the identity type we have

reflx · p ≡ p.

It follows that
(reflx · p = p) ≡ (p = p)

as types, and for the latter we have the term

reflp : p = p.

For the type p · refly = p we use path induction. Thus it suffices to construct a
term of type

reflx · reflx = reflx .

Again, by definition of · and β-reduction we have

(reflx · reflx = reflx) ≡ (reflx = reflx)

as types, and for the latter we have the term

reflreflx : reflx = reflx .

So refl is both a left and a right unit to composition. We now show that −1 is
an inverse.

Proposition 2.2. For any term p : x = y we have the equalities p · p−1 = reflx
and p−1 · p = refly.

Proof. For p · p−1 = reflx it is enough, by path induction, to construct a term
of type

reflx · refl−1
x = reflx .

By the definition of −1 and the β-reduction for the identity type we have

refl−1
x ≡ reflx .

It follows that

(reflx · refl−1
x = reflx) ≡ (reflx · reflx = reflx)

for which the latter type is inhabited by Proposition 2.1.

For p−1 · p = refly it is enough, by path induction, to construct a term of type

refl−1
x · reflx = reflx .

We have the definitional equality

(refl−1
x · reflx = reflx) ≡ (reflx · reflx = reflx)

of types, for which the latter type is again inhabited by Proposition 2.1.

15

We show that · respects propositional equality. This result will then be used
to show that composition is associative.

Proposition 2.3. For any terms p : x = y, q, r : y = z and s : z = w each of
the following types is inhabited:

q = r ! p · q = p · r and q = r ! q · s = r · s.

Proof. For the first type, by path induction it is enough to construct a term of
type

q = r ! reflx · q = reflx · r
where q, r : x = z. By definition and β-reduction, we have

(reflx · q = reflx · r) ≡ (q = r)

as types. So it is enough to construct a term of type

q = r ! q = r.

For this we can simply take the identity function

λα.α : q = r ! q = r.

For the second type, by path induction it is enough to construct a term of type

q = r ! q · reflz = r · reflz .

By Proposition 2.1 we have terms

ϕ : q · reflz = q and ψ : r · reflz = r.

Thus, for any term σ : q = r we have the term

(ϕ · σ) · ψ−1 : q · reflz = r · reflz .

Thus, by λ-abstraction, we have the term

λσ.((ϕ · σ) · ψ−1) : q = r ! q · reflz = r · reflz

which is of the desired type.

We now show that · is associative.

Proposition 2.4. For any terms p : x = y, q : y = z and r : z = w we have
(p · q) · r = p · (q · r).

Proof. By path induction it is enough to construct a term of type

(p · refly) · r = p · (refly · r)

where r : y =A w. By Proposition 2.1 the types p · refly = p and refly · r = r are
inhabited and thus, by Proposition 2.3 we have terms

ϕ : (p · refly) · r = p · r

16

and
ψ : p · (refly · r) = p · r.

It follows that the term

ϕ · ψ−1 : (p · refly) · r = p · (refly · r)

is of the desired type.

By the propositions above it follows that we can endow any type with a groupoid
structure by defining · as morphism composition, −1 as the inverse and refl
as the unit.

Given two paths p, q : a = b one can ask if we always have p = q. The proposition
that this holds is called Uniqueness of Identity Proofs (UIP). An interesting
consequence of the definition of the identity type is that one cannot prove UIP.
Indeed, this property is independent of dependent type theory since there are
models that satisfy UIP and models that do not satisfy UIP. The groupoid
model [13, p. 83-111] of dependent type theory was the first model to contradict
UIP showing that it cannot be proved. In fact, as observed previously, any
type has a hierarchy of structure consisting of homotopies between lower level
homotopies. For some types this structure may become trivial after a certain
number of levels, but for some types this hierarchy may be non-trivial for all
infinite number of levels. Types in dependent type theory have been shown
to form weak ω-categories by Lumsdaine [10] with respect to this hierarchy of
identity types.

From the homotopy theoretic view of dependent type theory it is not surprising
that UIP is not provable because any two paths in a topological space are not
necessarily homotopic and the infinite structure of paths between paths is much
more natural.

2.9 The univalence axiom

In mathematics we usually have some notion of equivalence in the context we are
working in (bijections of functions, group/ring isomorphisms, homeomorphisms
of topological spaces, etc.) for which two equivalent structures behave the same.
We would like this for our type theory, that two equivalent types have all the
same properties, i.e. that we can transport any property of a type A to any
equivalent type B. It is not inherent in dependent type theory that we can do
this, so the late Vladimir Voevodsky proposed to add an axiom, which he named
the Univalence Axiom (UA), to the type theory that would make this possible.
But in order to state this we must first define equivalence of types.

2.9.1 Homotopies

We say that two functions f, g : A! B are equal if we have f(x) = g(x) for all
x : A. In dependent type theory we denote this by ∼ as follows:

f ∼ g :≡
∏

x:A

f(x) = g(x)

17

and call this the type of homotopies from f to g. The name comes from the
homotopy interpretation of type theory, i.e. that the identity type is the type of
paths between the two endpoints. Then terms of the type f ∼ g are homotopies
from f to g, and the identification of two functions that are equal on all elements
of the domain is the assumption that we have a function

f ∼ g ! f = g.

It is not possible to show that this type is inhabited in dependent type theory,
so we need to add this assumption as an axiom which we call Function Exten-
sionality. But it turns out that this axiom actually follows from the univalence
axiom [14, Section 4.9] which we will now introduce.

2.9.2 Equivalence of types

We need to define equivalence between types. For this we take our intuition
from sets. We say that two sets A and B are equivalent if there is a function
f : A ! B that has a two-sided inverse g : B ! A such that g(f(x)) = x and
f(g(y)) for all x ∈ A and all y ∈ B, i.e. that

f ◦ g ∼ idB and g ◦ f ∼ idA .

But it turns out that the corresponding type

∑

g:B!A

(f ◦ g ∼ idB)× (g ◦ f ∼ idA)

does not behave well [14, Section 2.4]. Fortunately, one can show that this type
is logically equivalent to the much better behaved type

 ∑

g:B!A

f ◦ g ∼ idB

×

(∑

h:B!A

h ◦ f ∼ idA

)
,

see [14, Chapter 4]. We denote this type by isequiv(f) and we say that two types
A and B are equivalent if the type

(A ' B) :≡
∑

f :A!B

isequiv(f)

is inhabited. As an example, for any type A we have the identity equivalence
ideqA : A ' A defined as the term

ideqA :≡ (idA, ((idA, λx. reflx), (idA, λx. reflx))).

Thus for any two types A and B we have the function

idtoequiv : A = B ! A ' B

defined by path induction by sending reflA : A = A to ideqA : A ' A.

We can now formulate the univalence axiom.

Axiom 2.5 (The Univalence Axiom). The function idtoequiv is an equivalence.

18

It follows by the univalence axiom that the following type is inhabited:

∏

A,B type

(A = B) ' (A ' B),

i.e. equivalence between two types is equivalent to equality between the types.

By the univalence axiom we get an inverse to idtoequiv:

equivtoid : (A ' B) ! (A = B),

which is often very useful because it is in general easier to show that two types
are equivalent than that they are equal. Given such an equivalence we can use
equivtoid to construct a path along which we can transport any results from one
type to the other.

2.10 Cubical set models of univalence

When Voevodsky proposed the univalence axiom, he also showed its consis-
tency with a model in Kan simplicial sets [6]. But this model was carried out
using classical logic. In a desire to find a model of univalence in a constructive
mathematical setting, models using cubical sets, a type of presheaf categories,
were created [4, 1] (a presheaf is a functor into the category of sets, see Defini-
tion 4.5).

There was a first axiomatization of sufficient properties of a presheaf category in
order to model type theory with UA by Orton and Pitts [12]. These axioms have
since been revised and condensed by Cavallo et al. [3]. A recent survey article
by Coquand [5] contains a compilation of eight axioms on presheaf categories
that, if satisfied, produces a model of type theory with UA. We will look at four
of these axioms.

Coquand states that the category needs to contain a special presheaf I (thought
of as modeling the unit interval [0, 1] ∈ R) satisfying the axioms

(B1) I has two distinct global elements 0 and 1,

(B2) I(J) has decidable equality for every object J ,

(B3) I is tiny,

(B4) I has connections.

Axiom (B1) means that there should be two distinct natural transformations
from the terminal object to I. Decidable equality in axiom (B2) means that for
every pair of elements in I(J) we can decide if they are equal or if they are not.
Axiom (B3) means that the exponential functor by I has a right adjoint (see
Definition 4.14).

In a recent paper, Cavallo, Mörtberg and Swan show that axiom (B4) is not
needed [3] by building on a model in cubical sets by Angiuli et al. [1]. Therefore
only axioms (B1)-(B3) have been formally verified to hold for cartesian cubical
sets in the work of this thesis. This formalization was done using the proof assis-
tant Coq with the UniMath library, which we will now give a brief introduction
to.

19

3 Coq

Coq is a proof assistant that implements the calculus of inductive constructions,
a variant of type theory. The idea of a proof assistant is that you write code
corresponding to what you want to prove. Then you run the code line by line
and another window will show you at every step what you have yet to prove,
called the goal(s), and all your assumptions/declared variables. If there is any
problem in the proof the assistant will give you an error message and not run
that line. In this way you know that if your proof goes through it holds.

Code in Coq is written using so called tactics which implement backwards rea-
soning, which is the reasoning where a deduction rule is read as ’in order to
prove this I have to prove these premises’. A tactic is followed by a term (of a
specific type) and applied to one of the active goals. Let us do some examples
proving some simple propositions in Coq.

In order to prove something in Coq one first has to state the type that one
wishes to construct a term of, beginning with one of the commands Theorem,
Lemma, Proposition and a few other similar commands. This is then followed
by a name of the theorem. You then write any arguments/assumptions of the
proposition and finally you write the type that you want to create a term of.
For example, if we would like to prove modus ponens, i.e. P ! (P ! Q) ! Q
for propositions P and Q then we would write

Proposition modus ponens (P Q : Type) :

P -> (P -> Q) -> Q.

Every line of code ends with a dot. Here we state that given types P and Q there
is a term, called modus ponens, of type P ! (P ! Q) ! Q. By the Curry-
Howard isomorphism, this can also be seen as stating that there is a function
that takes an element in P , a function from P to Q and returns an element in Q.
This is the interpretation we will use when constructing the desired term.

The execution of this line in our proof assistant will create an output that spec-
ifies the context and the goal. The goal states the type we need to construct a
term of in order to prove the theorem and the context states all our assump-
tions/declared variables. So after running the above line of code our goal would
be

P, Q : Type

--

P -> (P -> Q) -> Q

After this, one begins the proof by the command Proof (with no arguments),
after which one uses tactics to construct a term of the type in the goal. So the
next line of code in our example would be

Proof.

This command does not change anything in the goal window.

We now begin constructing a term of type P ! (P ! Q) ! Q using tactics.
When the type of the goal is a (dependent or non-dependent) product type
we may use the tactic intro to apply the λ-abstraction rule to the goal in a
’backwards reasoning’ way, i.e. in order to construct a term of a product type it

20

is enough to construct a term of the codomain type given a term of the domain
type in the context. So intro essentially moves the domain into the context.
We write a name after intro which is the name given to the term moved into
the context. So in our example we would write

intro p.

which would produce the output

P, Q : Type

p : P

--

(P -> Q) -> Q

when run. The type of the goal is again a product type, so we may use intro

once more:

intro f.

which would produce the output

P, Q : Type

p : P

f : P -> Q

--

Q

So in order to prove our theorem we need only exhibit a term of type Q (because
that is the type in our goal). For this we can apply f to p. In order to pass f(p)
as the term of our goal type we use the tactic exact, which should be followed
by a term of the exact (or convertible to the) type of the goal. So in our example
we would write

exact (f p).

which would complete the goal (in Coq, function application is written without
parentheses around the arguments). After we have proved a theorem we can end
with the command Qed or Defined. The difference between these two is that
Qed makes the term opaque which means that the term cannot be expanded
when used later. On the other hand, Defined makes the term transparent,
so that it is possible to expand later on. The choice between Qed and Defined

depends on the situation. While Qed can make the code faster if the term is very
large, Defined may allow simplifications because the term can be expanded. In
our case the term is not very large and it would be useful to be able to expand
it so we will use

Defined.

This finishes the proof and the term is stored given the name in the beginning.
All together the code above is:

Proposition modus ponens (P Q : Type) :

P -> (P -> Q) -> Q.

Proof.

intro p.

intro f.

21

exact (f p).

Defined.

We will now introduce the UniMath library and show some examples of code
using it because it introduces some new notation and tactics.

3.1 The UniMath library

The UniMath library is a library of formalized mathematics in Coq with the
univalence axiom added. It is based on a repository started by Vladimir Vo-
evodsky in 2010 [15] that was expanded and given the name UniMath in 2014. It
has since been contributed to by 50 people and is still being actively developed.
The repository can be found at https://github.com/UniMath/UniMath.

All the basic types are redefined in the UniMath library and it implements the
notation used in Section 2 (

∏
for dependent function types,

∑
for dependent

sum types, etc.). UniMath also defines its own universe UU as the sort Type,
with the property that UU : UU. This is technically inconsistent. Perhaps
it will be resolved in some future version of UniMath. In the meantime, the
formalization done for this thesis is only of results that do not (explicitly) need
several different universes.

Code using the UniMath library looks slightly different from writing in na-
tive/vanilla Coq. There are also some additional tactics defined in the UniMath
library, most notably the tactic use which tries to match the given term to the
goal but allows variables to be left out in the term. If it succeeds to match
the term to the goal, the tactic returns a new subgoal for each variable left
out in the term (it is just an application of the tactic simple refine in the
background).

Let us see some examples of code using the UniMath library. By importing the
file Foundations/Preamble.v using the line

Require Import UniMath.Foundations.Preamble.

we may define the identity function with the code:

Proposition idfun (A : UU) : A ! A.

Proof.

exact (λx,x).
Defined.

In the UniMath library we can use the notation of λ-calculus. The identity
function can also be directly defined without having to ’prove’ it using the
command Definition as follows:

Definition idfun {A : UU} : A ! A := λx, x.

The command Definition is used like Proposition but at the end it is followed
by := and then a term of the proposed type. Definition then stores that term
under the name given. The {}-brackets around the type A make this argument
implicit which means that Coq will try to infer this type from the context in
which this definition is used. If it fails to infer it an error message is produced.
It is possible to give implicit parameters explicitly by writing @ before the term.
So if we for example wanted the identity function on the unit type, which is

22

denoted unit in the UniMath library, we would write @idfun unit. From here
on we will use the second construction of the identity function, where the type
is an implicit argument.

We now explore the category theory section of the library. Let us define the iden-
tity functor. For this we use the definitions of categories and functors already
formalized. First we need to import the relevant part of the library:

Require Import UniMath.CategoryTheory.Core.Categories.

Require Import UniMath.CategoryTheory.Core.Functors.

We open the notation for categories defined in Core/Categories with the line

Open Scope Cat.

A functor is defined as a term of a Σ-type where the first projection is the functor
data, i.e. the map on objects and morphisms, and the second projection is a
proof that this data satisfies the identity and composition axioms. For many
constructions in the UniMath library, definitions beginning with ’make’ have
been implemented in order to more easily create terms of a desired type. We
begin by defining the map on objects and morphisms using ’make functor data’
and the identity function defined previously:

Definition id functor data (C : category) :

functor data C C :=

make functor data idfun (λ , idfun).

The first argument to ’make functor data’ specifies the function on objects,
i.e. it is a term of type ob C ! ob C. Here we may simply write idfun since we
made the type in the definition of the identity function an implicit argument. In
this case Coq can infer this argument. The second argument specifies the map
on morphisms, i.e. it is a term of the type

∏
a,b:ob C Hom(a, b) ! Hom(Fa, Fb),

where F is the map on objects given in the first argument. The underscores
next to λ are used because we do not need to refer to those variables, so we do
not name them, but we still need some placeholder for them. In this case the
two underscores correspond to the objects a and b. Note that we again do not
have to specify the type of idfun because Coq can infer that argument.

We now prove that this definition satisfies the identity and composition axioms
of functors, named in UniMath as functor idax and functor compax. We
write this as a lemma as follows:

Lemma id functor is functor (C : category) :

is functor (id functor data C).

Proof.

split.

- unfold functor idax.

simpl.

unfold idfun.

intro.

apply idpath.

- unfold functor compax.

simpl.

unfold idfun.

23

intros.

apply idpath.

Defined.

The type is functor F is defined as (functor idax F) × (functor compax

F). The tactic split divides a goal of the type A×B into the two subgoals A
and B, so in our case we divide the goal into the two subgoals functor idax

(id functor data C) and functor compax (id functor data C). We now use
the ’bullet’ - to focus on the first subgoal where we begin by unfolding the term
functor idax, which replaces the name with its definition. The tactic simpl

then tries to reduce the goal while still attempting to keep it readable (so not
fully normalizing it). At this stage our goal window looks something like

C : category

--∏
a : C, idfun (identity a) = identity (idfun a)

together with a message that we have an unfocused subgoal left as well.

We need to unfold idfun in order for the goal to reduce. The equality in the
goal then reduces to identity a = identity a. Since the goal at this point
is a dependent product type we can now use the tactic ’intro’ to apply the λ-
abstraction rule using backwards reasoning, i.e. this moves the object a : C

into the context instead (by leaving out the name after intro we let Coq decide
the name of the term introduced in the context). The goal window at this point
looks like

C : category

a : C

--

identity a = identity a

and we give the reflexivity term by the tactic apply followed by idpath (which
is UniMath’s notation for refl with all arguments implicit), for which we do
not specify the arguments. Coq infers these when using apply (as opposed to
exact where we would need to write out all arguments). This finishes the first
subgoal.

The second subgoal is essentially the same with the only difference that we must
unfold instead functor compax. We end with the command Defined because
we want this term to be expandable and it is not so large as to be likely to
notably slow down any code using it if leaving it transparent.

Now that we have defined the data of the identity functor and proved that
it satisfies the identity and composition axioms we create the functor using
make functor as follows:

Definition id functor (C : category) : C −! C :=

make functor (id functor data C)

(id functor is functor C).

This is only a brief introduction to Coq and the UniMath library, but it should
hopefully make it easier for the reader previously unfamiliar with these to un-
derstand the formalization done for this thesis.

24

Since the axioms in Coquand’s article [5] concern objects of certain categories
we will now give the necessary background in category theory needed to state
and prove some results about these axioms.

4 Category theory

We will assume that the reader is familiar with the basic notions of category
theory (categories, functors, natural transformations, etc.). The goal of this
section is to generalize and expand the details of the proof found in Licata et
al. [9] that the interval object is tiny (see Definition 4.14). We also define the
cartesian cubical sets and show that this particular presheaf category satisfies
axioms (B1)-(B3) in Coquand’s article [5]. This section builds mostly upon
the book Categories for the Working Mathematician by Saunders Mac Lane [7]
together with some results from Sheaves in Geometry and Logic by Saunders
Mac Lane and Ieke Moerdijk [8]. The proofs in the first of these books are
often leave out many details. Therefore, many results in this section build upon
results from the book but the details have been worked out by the author. Some
results do not occur in the same formulation in Mac Lane but may be found
as corollaries of more general results. As the results needed in this section are
not very difficult, the ones not in any of the references have been worked out
by the author (although other people have most certainly found these results
previously). We will indicate when results are expansions of results in any of
the references and when the results were worked out by the author. We begin
with some definitions that will be needed.

Definition 4.1. Given a category C the opposite category Cop has the same
objects as C but the direction of the morphisms is reversed. For a morphism
f ∈ HomC(X,Y) we write fop to denote the corresponding (reversed) morphism
in Cop.

Definition 4.2. Given categories C and D and a functor F : C ! D between
these, the opposite functor F op : Cop ! Dop is given by

• F op(X) = F (X) for objects X ∈ C,

• F op(fop) = F (f) for morphisms fop : Y ! X.

Definition 4.3. Given a category C, a terminal object of C is an object T ∈ C
such that there exists exactly one arrow f : Y ! T for every object Y ∈ C.

Definition 4.4. Given two categories C and D we denote by [C,D] the functor
category from C to D, that is, the category with objects the functors from C to
D and morphisms the natural transformations between these.

We will use the arrow .! to denote natural transformations and we will some-
times say that a family of maps is natural in some object to mean that the
family of maps form a natural transformation between some, often implicitly
understood, functors.

25

Definition 4.5. Given a category C, a functor F : Cop ! Set is called a
presheaf on C. The category [Cop,Set] of presheaves on C will be denoted

by Ĉ.

Definition 4.6. For any morphism f ∈ HomC(X,Y) let f∗ denote precom-
position by f , i.e. the map that sends any morphism g ∈ HomC(Y, Z) to
g ◦ f ∈ HomC(X,Z). Similarly, let f∗ denote postcomposition by f , i.e. the
map that sends h ∈ HomC(W,X) to f ◦ h ∈ HomC(W,Y). The category C will
often be left implicit.

In this text we say that a category is small if both the collection of objects and
every hom-set is a set and not a proper class. Similarly, we say that a category is
locally small to mean that every hom-set is a set and not a proper class. Thus
a category that is small is locally small, but not every locally small category is
small, e.g. the category Set of sets and functions between these.

Definition 4.7. Given a locally small category C and an object X ∈ C we use the
notation Hom(X,) to denote the covariant hom-functor, i.e. the functor
from C to Set given by

• Hom(X,)(Y) = HomC(X,Y) for objects Y ∈ C (note that here we need
C to be locally small to ensure that Hom(X,Y) is a set),

• Hom(X,)(f) = f∗ : HomC(X,Y) ! HomC(X,Z) for morphisms f : Y !
Z.

Similarly we use the notation Hom(, X) to denote the contravariant hom-
functor, i.e. the functor from Cop to Set given by

• Hom(, X)(Y) = HomC(Y,X) for objects Y ∈ C,

• Hom(, X)(f) = f∗ : HomC(Z,X) ! HomC(Y,X) for morphisms f :
Y ! Z.

Here we use postcomposition for the map on morphisms by the covariant hom-
functor and precomposition for the contravariant hom-functor. If we swap pre-
and postcomposition, we can instead define natural transformations between
covariant hom-functors using precomposition and between contravariant hom-
functors using postcomposition.

Proposition 4.1. Given a locally small category C, objects X,Y ∈ C and a
morphism f : X ! Y , precomposition by f gives a natural transformation from
Hom(Y,) to Hom(X,) and postcomposition by f gives a natural transforma-
tion from Hom(, X) to Hom(, Y).

Proof. Both statements follow from the associativity of composition of mor-
phisms. More specifically, for any morphism g : Z !W the following diagrams

26

both commute:

HomC(Y,Z) HomC(Y,W) HomC(W,X) HomC(Z,X)

HomC(X,Z) HomC(X,W) HomC(W,Y) HomC(Z, Y).

g∗

f∗ f∗

g∗

f∗ f∗

g∗ g∗

This proposition does not occur explicitly in Mac Lane [7], but we add it here
as it will be useful later.

4.1 The evaluation functor

For the functor category [C,D] we can define a functor evalX : [C,D] ! D that
evaluates a functor in [C,D] at the object X ∈ C. This is an expansion of the
details of the definition found in Mac Lane [7, p. 61]. Explicitly, for functors F
and G and natural transformation α : F .! G we define evalX as follows:

• evalX(F) = F (X),

• evalX(α) = α(X).

We verify that this definition respects identity morphisms and compositions.

For the identity idF : F .! F we have

evalX(idF) = idF (X) = idF (X) = idevalX(F)

so the map respects identity morphisms.

For any functors F,G,H ∈ [C,D] and any morphisms α : F .! G and β : G .! H
we have

evalX(β ◦ α) = (β ◦ α)(X) = β(X) ◦ α(X) = evalX(β) ◦ evalX(α),

so the map respects composition of morphisms. Thus it is a functor from [C,D]
to D.

4.2 Adjunctions

When we have two functors F : C ! D and G : D ! C for some categories C
and D we may ask if these are related in some way. One way in which two such
functors can be related is by being adjoint.

Definition 4.8. An adjunction from C to D is a pair of functors F : C ! D
and G : D ! C together with a family of bijections

ϕ : HomD(FX, Y) ∼= HomC(X,GY)

27

for all X ∈ C and Y ∈ D which is natural in both X and Y , i.e. for any
morphisms f : X ′ ! X and g : Y ! Y ′ the following diagrams commute:

HomD(FX, Y) HomD(FX ′, Y)

HomC(X,GY) HomC(X ′, GY)

F (f)∗

ϕ ϕ

f∗

and
HomD(FX, Y) HomD(FX, Y ′)

HomC(X,GY) HomC(X,GY ′).

g∗

ϕ ϕ

G(g)

4.3 Products

In many different settings of mathematics we encounter some form of product
of objects, for example the cartesian product of sets, groups and rings. Such
products come with natural projections on the components. This concept can
be generalized to arbitrary categories.

Definition 4.9. Let C be a category. For any two objects X1, X2 ∈ C the
product X1 ×X2 of X1 and X2 (if it exists) is an object in C together with a
pair of morphisms π1 : X1×X2 ! X1 and π2 : X1×X2 ! X2 such that for any
object Y ∈ C and any pair of morphisms f1 : Y ! X1 and f2 : Y ! X2 there
exists a unique morphism f : Y ! X1 × X2 such that the following diagram
commutes:

Y

X1 X1 ×X2 X2.

f1
f

f2

π1 π2

The unique morphism f will often be denoted by (f1, f2).

When the product X1 ×X2 exists for every pair of objects X1, X2 ∈ C we say
that C has binary products.

For the special case when Y is itself a product we will use the notation f1 × f2

for the unique morphism making the following diagram commute:

Y1 Y1 × Y2 Y2

X1 X1 ×X2 X2.

f1

π1

f1×f2

π2

f2

π1 π2

We observe that the morphism idX1×X2
makes the following diagram com-

mute:
X1 X1 ×X2 X2

X1 X1 ×X2 X2.

idX1

π1

idX1×X2

π2

idX2

π1 π2

28

Since idX1
× idX2

is the unique morphism making this diagram commute it
follows that idX1×X2

= idX1
× idX2

.

Moreover, the diagram below commutes:

Z1 Z1 × Z2 Z2

Y1 Y1 × Y2 Y2

X1 X1 ×X2 X2.

f1

π1

f1×f2

π2

f2

g1

π1

g1×g2

π2

g2

π1 π2

Therefore (g1 × g2) ◦ (f1 × f2) makes the following diagram commute:

Z1 Z1 × Z2 Z2

X1 X1 ×X2 X2.

g1◦f1

π1

(g1×g2)◦(f1×f2)

π2

g2◦f2
π1 π2

Since (g1 ◦f1)× (g2 ◦f2) is the unique morphism making this diagram commute
it follows that (g1 × g2) ◦ (f1 × f2) = (g1 ◦ f1)× (g2 ◦ f2).

From these two observations we note that, given an object X ∈ C such that
all binary products with X exist we can define an endofunctor that gives the
product with X.

Definition 4.10. Given a category C and an object X ∈ C such that all binary
products with X exist we define the functor ×X : C ! C by

• (×X)(Y) = Y ×X for objects Y ∈ C,

• (×X)(f) = f × idX for morphisms f : Y ! Z.

We verify that this definition respects identity morphisms and compositions of
morphisms. For the identity idY we have

(×X)(idY) = idY × idX = idY×X = id(×X)(Y)

and for any morphisms f : Y ! Z and g : Z !W we have

(×X)(g ◦ f) = (g ◦ f)× idX = (g× idX) ◦ (f × idX) = (×X)(g) ◦ (×X)(f).

If a category D has binary products then we can also define the product of two
functors F,G : C ! D by pointwise product.

Definition 4.11. Let D be a category with binary products. Given a category
C and functors F,G ∈ [C,D] we define the product functor F ×G by

• (F ×G)(X) = F (X)×G(X) for any X ∈ C,

• (F ×G)(f) = F (f)×G(f) for any f ∈ HomC(X,Y).

The projections, which we denote by Π1 and Π2 to distinguish them from the
projections π1 and π2 on the products in D, are defined by

29

• Π1 : F ×G .! F is the natural transformation given by

Π1(X) := π1 : F (X)×G(X) ! F (X),

• Π2 : F ×G .! G is the natural transformation given by

Π2(X) := π2 : F (X)×G(X) ! G(X).

We now show that this satisfies the definition of binary products. First, we
verify that F ×G is a functor.

For the identity idX : X ! X we have

(F×G)(idX) = F (idX)×G(idX) = idF (X)× idG(X) = idF (X)×G(X) = id(F×G)(X)

and for morphisms f : X ! Y and g : Y ! Z we have

(F ×G)(g ◦ f) = F (g ◦ f)×G(g ◦ f)

= (F (g) ◦ F (f))× (G(g) ◦G(f))

= (F (g)×G(g)) ◦ (F (f)×G(f))

= (F ×G)(g) ◦ (F ×G)(f).

So the pointwise product of two functors is indeed a functor.

We now verify that F ×G is a product in [C,D]. Given a morphism f : X ! Y ,
by the definition of Π1 and Π2, the following diagram commutes:

F (X) F (X)×G(X) G(X)

F (Y) F (Y)×G(Y) G(Y).

F (f)

Π1(X)

F (f)×G(f)

Π2(X)

G(f)

Π1(Y) Π2(Y)

Thus Π1 and Π2 are natural transformations.

Given a functor H ∈ [D, C] and natural transformations α1 : H .! F and
α2 : H .! G, for any object X ∈ C the morphism

(α1(X), α2(X)) : H(X) ! F (X)×G(X)

is the unique morphism making the following diagram commute:

H(X)

F (X) F (X)×G(X) G(X).

α1(X)

(α1(X),α2(X))

α2(X)

Π1(X) Π2(X)

It follows that there is a unique natural transformation (α1, α2) : H .! F × G
making the diagram below commute,

H

F F ×G G

α1

(α1,α2)

α2

Π1 Π2

30

namely the natural transformation defined by

(α1, α2)(X) = (α1(X), α2(X)).

This is a natural because for any morphism f : X ! Y we have

Π1(Y) ◦ (F (f)×G(f)) ◦ (α1(X), α2(X)) = F (f) ◦Π1(X) ◦ (α1(X), α2(X))

= F (f) ◦ α1(X)

= α1(Y) ◦H(f)

= Π1(Y) ◦ (α1(Y), α2(Y)) ◦H(f)

and

Π2(Y) ◦ (F (f)×G(f)) ◦ (α1(X), α2(X)) = G(f) ◦Π2(X) ◦ (α1(X), α2(X))

= G(f) ◦ α2(X)

= α2(Y) ◦H(f)

= Π2(Y) ◦ (α1(Y), α2(Y)) ◦H(f).

Since the morphisms (F (f)×G(f))◦(α1(X), α2(X)) and (α1(Y), α2(Y))◦H(f)
agree on both projections it follows that

(F (f)×G(f)) ◦ (α1(X), α2(X)) = (α1(Y), α2(Y)) ◦H(f)

and thus (α1, α2) is a natural transformation from H to F ×G. The proofs of
the properties of products in this subsection were done by the author as these
were not found in Mac Lane [7] but were not difficult to work out the details
of.

4.4 Exponentials

In the category Set, the functions HomSet(Y, Z) between two sets Y and Z
form a set which we denote by the ’exponential’ ZY . So the exponential is
an object in the category that represents a hom-set between two objects. We
may therefore ask if this can be generalized to arbitrary categories, i.e. for two
objects in the category, is there an object representing the hom-set between
them? To answer this we begin by observations of some properties of the set
ZY of functions from Y to Z.

Given a function f ∈ ZY we can evaluate it at a point y ∈ Y to obtain an element
f(y) ∈ Z, i.e. we have a function e : ZY × Y ! Z defined by e(f, y) = f(y).
Now, given any function g : X × Y ! Z in two variables, it can either be seen
as a function X × Y ! Z or as a function X ! ZY . For if we fix an element
x ∈ X, we get the function λg(x) : Y ! Z defined by

λg(x)(y) = g(x, y).

The relation between λg : X ! ZY and the evaluation e : ZY × Y ! Z can be
described as the commutativity of the diagram

X × Y

ZY × Y Z.

g
λg×idY

e

31

In fact, λg is the unique function making this diagram commute.

From this observation we define exponential objects for an arbitrary category
C. This definition is found in Mac Lane and Moerdijk [8, Section I.6] but here
we write out all the details.

Definition 4.12. Let Y and Z be objects in a category C such that all binary
products with Y exist. An exponential object is an object ZY ∈ C together
with a morphism e : ZY × Y ! Z such that for any object X and morphism
g : X×Y ! Z there is a unique morphism λg : X ! ZY such that the following
diagram commutes:

X × Y

ZY × Y Z.

g
λg×idY

e

Since the morphism λg is required to be unique there is a one-to-one correspon-
dence

HomC(X × Y,Z) ∼= HomC(X,Z
Y).

We will now define the exponential functor and show that this bijection defines
an adjunction.

Definition 4.13. Let Y be an object in a category C such that ZY exists for all
objects Z. Define the exponential functor Y : C ! C by

• Z 7! ZY for any object Z ∈ C and

• f 7! fY := λ(f ◦ e) for any morphism f : X ! Z, i.e. fY is the unique
morphism making the following diagram commute:

XY × Y X

ZY × Y Z.

e

fY ×idY f

e

We verify that this map respects identity morphisms and composition of mor-
phisms.

Since idXY × idY = idXY ×Y , the diagram below commutes

XY × Y X

XY × Y X.

e

idXY × idY idX

e

It thus follows that (idX)Y = idXY .

Given two morphisms f : X ! Z and g : Z ! W , the following diagram

32

commutes:

XY × Y X

ZY × Y Z

WY × Y W

e

fY ×idY f

e

gY ×idY g

e

since both squares commute by the definition of fY and gY . It follows that
(gY × idY) ◦ (fY × idY) makes the diagram below commute

XY × Y X

WY × Y W.

e

(gY ×idY)◦(fY ×idY) g ◦f

e

Since (gY × idY)◦(fY × idY) = (gY ◦fY)× idY it follows that (g◦f)Y = gY ◦fY .
So Y is indeed a functor from C to C.
Now, as noted above, we have a bijection

ϕ : HomC(X × Y, Z) ∼= HomC(X,Z
Y)

for all objects X,Z ∈ C, defined by ϕ(g) = λg. Seen as a candidate for an
adjunction from ×Y to Y we may ask if this bijection is natural in X and
Z.

For naturality in X we need to check that for any morphism f : W ! X the
diagram below commutes:

HomC(X × Y,Z) HomC(W × Y,Z)

HomC(X,ZY) HomC(W,ZY).

(f×idY)∗

ϕ ϕ

f∗

For any morphism g ∈ HomC(X×Y, Z) the following diagram commutes:

W × Y

X × Y

ZY × Y Z

f×idY

gλg×idY

e

by the definition of λg. Thus the diagram below commutes:

W × Y

ZY × Y Z.

g◦(f×idY)
(λg×idY)◦(f×idY)

e

33

Since (λg×idY)◦(f×idY) = (λg◦f)×idY it follows that λ(g◦(f×idY)) = λg◦f .
Hence

ϕ ◦ (f × idY)∗(g) = f∗ ◦ ϕ(g),

i.e. ϕ is natural in X.

For naturality in Z we need to check that for any morphism f : Z ! W the
following diagram commutes:

HomC(X × Y,Z) HomC(X × Y,W)

HomC(X,ZY) HomC(X,WY).

f∗

ϕ ϕ

(fY)∗

For any morphism g ∈ HomC(X × Y,Z), we have the following commutative
diagram:

X × Y

ZY × Y Z

WY × Y W.

gλg×idY

e

fY ×idY f

e

This commutes since the top half commutes by the definition of λg and the
bottom half commutes by the definition of fY . Thus the following diagram
commutes:

X × Y

WY × Y W.

f◦g
(fY ×idY)◦(λg×idY)

e

Since (fY × idY)◦(λg× idY) = (fY ◦λg)× idY it follows that λ(f ◦g) = fY ◦λg.
Hence

ϕ ◦ f∗(g) = (fY)∗ ◦ ϕ(g),

i.e. ϕ is natural in Z.

It thus follows that the exponential functor Y is right adjoint to the product
functor ×Y . One may now ask if the exponential functor is also a left adjoint,
i.e. does it have a right adjoint? This property is given its own name and turns
out to be useful for constructing internal universes in presheaf models of HoTT
[9].

Definition 4.14. Let Y be an object in a category C such that ZY exists for all
objects Z. We say that Y is tiny if the exponential functor Y : C ! C has a
right adjoint.

In order to give conditions under which presheaves are tiny we will need a basic
result in category theory called the Yoneda lemma.

34

4.5 The Yoneda lemma

The Yoneda lemma is an important result in category theory. It is one of the
main results we will use to show that the interval in cartesian cubical sets is
tiny. We begin by defining the Yoneda embedding.

Definition 4.15. Let C be a locally small category. The Yoneda embedding
is the functor yon : C ! Ĉ that sends an object X ∈ C to the contravariant
hom-functor Hom(, X) and a morphism f : X ! Y to the natural transforma-
tion f∗ : Hom(, X) .! Hom(, Y) given by postcomposition by f as shown in
Proposition 4.1.

We verify that the Yoneda embedding respects identity morphisms and compo-
sitions of morphisms.

For the identity idX : X ! X, the Yoneda embedding is, by the property of
identity morphisms, the natural transformation Hom(, X) .! Hom(, X) that
for every object Y ∈ C sends a morphism g ∈ HomC(Y,X) to itself. Hence
yon(idX) = idyon(X).

The fact that yon(f ◦ g) = yon(f) ◦ yon(g) follows from the associativity of
composition of morphisms.

Theorem 4.2 (The Yoneda Lemma). For any locally small category C, functor
F : Cop ! Set and object X ∈ C there is a bijection of sets

HomĈ(yon(X), F) ∼= F (X)

that is natural in both F and X.

Proof. Consider the map

Φ : HomĈ(yon(X), F) ! F (X)

α 7! α(X)(idX)

and set for the moment u := α(X)(idX). For any morphism f : Y ! X the
diagram below commutes since α is a natural transformation, so chasing the
identity morphism idX around the diagram we have:

HomC(X,X) HomC(Y,X)

idX idX ◦f = f

u F (f)(u) = α(Y)(f)

F (X) F (Y).

yon(X)(f)

α(X) α(Y)

F (f)

We see that α is completely determined by u.

35

On the other hand, for any element v ∈ F (X), define the natural transformation
Ψ(v) : yon(X) .! F by Ψ(v)(Y)(f) = F (f)(v). This is a natural transformation
since for any morphism g : Z ! Y we have

(F (g) ◦Ψ(v)(Y))(f) = F (g)(Ψ(v)(Y)(f)) = F (g)(F (f)(v))

= (F (g) ◦ F (f))(v) = F (f ◦ g)(v)

= Ψ(v)(Z)(f ◦ g) = (Ψ(v)(Z) ◦ yon(X)(g))(f).

So Ψ is a map from F (X) to HomĈ(yon(X), F). We now show that Ψ is a
two-sided inverse to Φ.

First, for any element v ∈ F (X) we have

(Φ ◦Ψ)(v) = Φ(Ψ(v)) = Ψ(v)(X)(idX) = F (idX)(v) = idF (X)(v) = v,

and thus Ψ is a right-sided inverse to Φ.

Second, for any natural transformation α : yon(X) .! F we have

(Ψ ◦ Φ)(α)(Y)(f) = Ψ(Φ(α))(Y)(f)

= Ψ(α(X)(idX))(Y)(f)

= F (f)(α(X)(idX))

= α(Y)(f),

and thus Ψ is a left-sided inverse to Φ. It follows that Φ defines a bijection
between HomĈ(yon(X), F) and F (X).

In order to show that Φ is natural inX we consider the functors HomĈ(yon(), F)
and F from Cop to Set where

HomĈ(yon(), F) = yon(F) ◦ yonop

i.e. for any f : Y ! X the element α ∈ HomĈ(yon(X), F) is mapped to the
element β ∈ HomĈ(yon(Y), F) defined by

β(Z)(g) = α(Z)(f ◦ g).

Then we have

(Φ(F, Y) ◦HomĈ(yon(), F)(f))(α) = Φ(F, Y)(β) = β(Y)(idY)

= α(Y)(f ◦ idY) = α(Y)(f)

= F (f)(α(X)(idX)) = F (f)(Φ(F,X)(α))

= (F (f) ◦ Φ(F,X))(α),

so Φ is natural in X.

Now, consider instead the functors evalX and Hom(yon(X),) from Ĉ to Set.

We have for any natural transformation γ : F .! G between presheaves F,G ∈ Ĉ

(Φ(G,X) ◦ (Hom(yon(X),)(γ))(α) = Φ(G,X)(γ ◦ α) = (γ ◦ α)(X)(idX)

= γ(X)(α(X)(idX)) = γ(X)(Φ(F,X)(α))

= (evalX(γ) ◦ Φ(F,X))(α),

so Φ is natural in F .

36

This theorem is found in Mac Lane [7, p. 61] but the all details of the proof are
left out. The details here have been worked out by the author.

So far, all previous results in this section were already formalized in the category
theory section of the UniMath library at the start of this thesis. All formal-
izations done by the author are of results from here on. We will indicate with
footnotes when a proposition or theorem was formalized in connection with this
thesis and give a link to where the code can be found.

A result that will be needed later is that the Yoneda embedding commutes with
binary products. We will now show this.

Recall that if the target category has binary products, then we can define the
product of any functors into that category as the pointwise product (see Defi-
nition 4.11).

Theorem 4.3. Let C be a locally small category with binary products. For any
two objects X,Y ∈ C the functors yon(X×Y) and yon(X)×yon(Y) are naturally
isomorphic.1

Proof. For any object Z ∈ C define the map α(Z) : HomC(Z,X × Y) !
HomC(Z,X)×HomC(Z, Y) by

α(Z)(f) = (π1 ◦ f, π2 ◦ f).

By the definition of binary products, this is a bijection (which is an isomorphism
in Set).

Given a morphism g : W ! Z, consider the diagram:

HomC(Z,X × Y) HomC(W,X × Y)

HomC(Z,X)×HomC(Z, Y) HomC(W,X)×HomC(W,Y).

α(Z)

g∗

α(W)

(g,g)∗

Since (π1 ◦ f, π2 ◦ f) ◦ (g, g) = (π1 ◦ f ◦ g, π2 ◦ f ◦ g) for any morphism f ∈
HomC(Z,X × Y), the diagram commutes. Thus α is a natural isomorphism
from yon(X × Y) to yon(X)× yon(Y).

This theorem occurs as part of the proof in Licata et al. [9, p. 10] that the
interval object is tiny but here we have written all the details out. These were
worked out by the author.

4.6 Exponentiation by representable objects

Let C be a small category. By Proposition 1 in Mac Lane and Moerdijk [8,
p. 46] the category [Cop,Set] of presheaves on C has all binary products and
exponential objects. Thus for any objectX ∈ C the exponential functor yon(X) :

1The formalization of this theorem can be found at https://github.com/UniMath/

UniMath/blob/0e1bd59/UniMath/CategoryTheory/YonedaBinproducts.v#L89-L97

37

Ĉ ! Ĉ exists. We will now show that if C has binary products this functor has
a right adjoint.

In order to show that the exponential functor yon(X) has a right adjoint, we
show that it is naturally isomorphic to the precomposition functor ((×X)op)∗,
because this functor does have a right adjoint.

First we prove a technical result that gives a sufficient condition for constructing
an isomorphism of endofunctors on presheaf categories. We will then use this
result to construct the isomorphism mentioned above. This theorem has not
been found in any of Mac Lane [7] or Mac Lane and Moerdijk [8] but is used
implicitly in the proof in Licata et al. [9, p. 10]. The details of the proof were
worked out by the author.

Proposition 4.4. Let C be a category and let Φ,Ψ : Ĉ ! Ĉ be functors. If there
is a bijection of sets

Φ(F)(X) ∼= Ψ(F)(X)

for all F ∈ Ĉ and all X ∈ C which is natural in both F and X then the functors
Φ and Ψ are naturally isomorphic.2

Proof. Suppose there is a bijection

α(F,X) : Φ(F)(X) ∼= Ψ(F)(X)

that is natural in both F and X. The assumption that α is natural in X
is exactly that α(F) : Φ(F) ! Ψ(F), defined by α(F)(X) = α(F,X), is a
natural transformation. Since α(F,X) is a bijection for every X ∈ C, i.e. an
isomorphism in Set, it follows that α(F) is a natural isomorphism between the
functors Φ(F) and Ψ(F).

The assumption that α is natural in F is exactly that α(, X) : evalX ◦Φ !
evalX ◦Ψ, defined by α(, X)(F) = α(F,X) is a natural transformation.

Now, given a morphism f : F .! G of presheaves, consider the diagram

Φ(F) Φ(G)

Ψ(F) Ψ(G).

α(F)

Φ(f)

α(G)

Ψ(f)

By the assumption that α is natural in F we have

(Ψ(f) ◦ α(F))(X) = Ψ(f)(X) ◦ α(F)(X)

= Ψ(f)(X) ◦ α(, X)(F)

= α(, X)(G) ◦ Φ(f)(X)

= α(G,X) ◦ Φ(f)(X)

= (α(G) ◦ Φ(f))(X)

2The formalization of this proposition was done by Anders Mörtberg in connection with this
thesis and can be found at https://github.com/UniMath/UniMath/blob/0e1bd59/UniMath/

CategoryTheory/Presheaf.v#L389-L419

38

and thus Ψ(f) ◦ α(F) = α(G) ◦ Φ(f) so the diagram commutes. Therefore α
defines a natural transformation Φ .! Ψ.

Since α(F) is an isomorphism for every F ∈ Ĉ it follows that α is a natural
isomorphism from Φ to Ψ.

We are now finally ready to prove our main theorem which gives sufficient
conditions for the exponential functor of a representable presheaf to have a
right adjoint. This is an expansion of the details of the proof found in Licata et
al. [9, p. 10]. First we show that the exponential functor is naturally isomorphic
to the precomposition functor mentioned in the beginning of this section.

Theorem 4.5. Let C be a locally small category with binary products. For any
object X ∈ C, the functors yon(X) and ((×X)op)∗ are naturally isomorphic.3

Proof. By the Yoneda lemma we have a bijection

F yon(X)(Y) ∼= HomĈ(yon(Y), F yon(X)) (1)

of sets that is natural in both F and Y .

By the definition of exponentials, the functor yon(X) is right adjoint to the
functor × yon(X). It follows that there is a bijection

HomĈ(yon(Y), F yon(X)) ∼= HomĈ(yon(Y)× yon(X), F) (2)

of sets that is natural in both Y and F .

By Theorem 4.3 there is an isomorphism

α : yon(Y ×X) ∼= yon(Y)× yon(X).

We thus have a bijection

α∗ : HomĈ(yon(Y)× yon(X), F) ∼= HomĈ(yon(Y ×X), F) (3)

of sets. This bijection is natural in F since for any morphism γ : F .! G of
presheaves, the following diagram commutes:

HomĈ(yon(Y)× yon(X), F) HomĈ(yon(Y)× yon(X), G)

HomĈ(yon(Y ×X), F) HomĈ(yon(Y ×X), G).

γ∗

α∗ α∗

γ∗

Since α is a natural transformation we have the equality

(yon(f)× yon(idX)) ◦ α = α ◦ yon(f × idX)

3The formalization of this theorem can be found at https://github.com/UniMath/

UniMath/blob/0e1bd59/UniMath/CategoryTheory/ExponentiationLeftAdjoint.v#L357-L365

39

for any morphism f : Z ! Y . Hence the diagram below commutes:

HomĈ(yon(Y)× yon(X), F) HomĈ(yon(Z)× yon(X), F)

HomĈ(yon(Y ×X), F) HomĈ(yon(Z ×X), F).

(yon(f)×yon(idX))∗

α∗ α∗

yon(f×idX)∗

So the bijection is also natural in Y .

Finally, by the Yoneda lemma we have a bijection

HomĈ(yon(Y ×X), F) ∼= F (Y ×X) = ((×X)op)∗(F)(Y) (4)

of sets that is natural in both F and Y . It thus follows from equations (1), (2),
(3) and (4) that there is a bijection

F yon(X)(Y) ∼= ((×X)op)∗(F)(Y)

which is natural in both F and Y . Therefore, by Proposition 4.4, the functors
yon(X) and ((×X)op)∗ are naturally isomorphic.

The fact that yon(X) has a right adjoint now follows from the next proposi-
tion.

Proposition 4.6. Let C be a small category with binary products. For any object
X ∈ C the precomposition functor ((×X)op)∗ : Ĉ ! Ĉ has a right adjoint.4

Proof. By Theorem 1 in Mac Lane [7, p. 110], Set is complete. It thus follows by
Corollary 2 in Mac Lane [7, p. 239] that the precomposition functor ((×X)op)∗

has a right adjoint.

We can now give a sufficient condition for the exponentiation of a representable
presheaf to have a right adjoint.

Theorem 4.7. Let C be a small category with binary products. Any repre-
sentable presheaf F ∈ Ĉ is tiny.5

Proof. Assume F is naturally isomorphic to yon(X), for some object X ∈ C.
By Theorem 4.5 the exponential functor yon(X) is naturally isomorphic to the
precomposition functor ((×X)op)∗ : Ĉ ! Ĉ. By Proposition 4.6 the precom-
position functor has a right adjoint. Thus the exponential functor yon(X) has
a right adjoint and it follows that F has a right adjoint.

4The formalization of this proposition, which uses the formalization of right Kan exten-
sions done by Ahrens, Matthes and Mörtberg, can be found at https://github.com/UniMath/
UniMath/blob/0e1bd59/UniMath/CategoryTheory/ExponentiationLeftAdjoint.v#L78-L82

5The formalization of this theorem can be found at https://github.com/UniMath/

UniMath/blob/0e1bd59/UniMath/CategoryTheory/ExponentiationLeftAdjoint.v#L367-L375

40

5 Cartesian cubical sets

In this section we will define the cartesian cubical sets and show that this
presheaf category satisfies axioms (B1)-(B3) in Coquand’s article [5]. We begin
by defining the cartesian cube category which we denote by �. In this section
we will use inl to denote the function A! AtB that maps an element a to its
copy in the disjoint union. Similarly, inr will denote the function B ! A t B
that maps an element b to its copy in the disjoint union. Given two functions
f : A ! C and g : B ! C we will denote by [f, g] : A t B ! C the function
defined by

[f, g](w) =

{
f(w), w ∈ A
g(w), w ∈ B.

Definition 5.1. The cartesian cube category is the category with

• objects: discrete finite sets, i.e. finite sets with decidable equality,

• morphisms: the morphisms Hom(I, J) are the functions J ! I t{0, 1},
• composition: the composition of morphisms f ∈ Hom(I, J) and g ∈

Hom(J,K) is given by
g ? f = [f, inr] ◦ g

where the composition on the right hand side is the usual function compo-
sition,

• identity: the identity morphism is given by

idI := inl : I ! I t{0, 1} .6

We verify that the composition is associative. For any three morphisms f ∈
Hom(I, J), g ∈ Hom(J,K) and h ∈ Hom(K,L) we have

(h ? g) ? f = ([g, inr] ◦ h) ? f = [f, inr] ◦ ([g, inr] ◦ h)

= ([f, inr] ◦ [g, inr]) ◦ h = [[f, inr] ◦ g, inr] ◦ h
= [g ? f, inr] ◦ h = h ? (g ? f)

so the composition is associative.

We have
f ? idI = [inl, inr] ◦ f = f

and
idJ ?f = [f, inr] ◦ inl = f

so the identity morphism is a two-sided identity for the composition. Thus the
definition above defines a category.

6The formalization of the cartesian cube category can be found at https:

//github.com/UniMath/UniMath/blob/0e1bd59/UniMath/CategoryTheory/categories/

CartesianCubicalSets.v#L47-L85

41

Definition 5.2. A cartesian cubical set is a presheaf on the cartesian cube
category, i.e. a functor �op ! Set.

In the cartesian cubical sets model of HoTT we model the interval type I by
the object yon({0}). We will now show that I satisfies axioms (B1) and (B2).
In order to show (B1) we need to find the terminal object of presheaf cate-
gories.

Proposition 5.1. For any category C, the constant functor T : Cop ! Set that
sends all objects to {0} and all arrows to id{0} is a terminal object of Ĉ.

Proof. Let F ∈ Ĉ be an arbitrary presheaf. For any object X ∈ C there exists
a unique function α(X) : F (X) ! T (X), namely the function mapping every
element in F (X) to 0. Therefore α determines the unique family of maps from
F to T . This family is natural since for any morphism f : Y ! X the following
diagram commutes:

F (X) F (Y)

T (X) T (Y).

F (f)

α(X) α(Y)

id{0}

We can now state and prove axiom (B1) for cartesian cubical sets.

Theorem 5.2. The interval object I in cartesian cubical sets has two distinct
global elements, i.e. there exists two distinct natural transformations

0 : T .! I and 1 : T .! I

where T is the terminal object in �̂.7

Proof. For each finite set J ∈ � there are two distinct morphisms f0 and f1 in
hom�(J, {0}) given by

f0(0) = inr(0) and f1(0) = inr(1)

Now define the family of maps 0 : T ! I by 0(J)(0) = f0 and the family of
maps 1 : T ! I by 1(J)(0) = f1. These are both natural since for any morphism
g ∈ hom�(K,J) the following diagrams commute:

{0} {0} {0} {0}

hom�(J, {0}) hom�(K, {0}) hom�(J, {0}) hom�(K, {0}).

id{0}

0(J) 0(K)

id{0}

1(J) 1(K)

g∗ g∗

7The formalization of (a slight variation of) this theorem can be found at https:

//github.com/UniMath/UniMath/blob/0e1bd59/UniMath/CategoryTheory/categories/

CartesianCubicalSets.v#L139-L152

42

The natural transformations 0 and 1 are distinct since the maps f0 and f1 are
distinct.

The fact that axiom (B2) holds for cartesian cubical sets follows almost imme-
diately from the decidable equality on the objects of �.

Theorem 5.3. For every object J ∈ �, the set I(J) has decidable equality.8

Proof. The set I(J) is the set hom�(J, {0}) of functions from {0} to J t {0, 1}.
These functions can be identified with their image of 0. Since J and {0, 1} have
decidable equality it follows that J t {0, 1} has decidable equality. Therefore
the set hom�(J, {0}) has decidable equality.

5.1 Binary products in the cartesian cube category

We want to use Theorem 4.7 to show that axiom (B3) holds for cartesian cubical
sets. For this we need to show that � has binary products.

Theorem 5.4. The cartesian cube category has binary products.9

Proof. Define I × J as the disjoint union I t J and define the projections by

π1 := inl ◦ inl ∈ Hom(I × J, I) and π2 := inl ◦ inr ∈ Hom(I × J, J).

Now, given any finite set K and morphisms f1 ∈ Hom(K, I), f2 ∈ Hom(K,J)
consider the diagram

K

I I × J J

f1 f2

π1 π2

in �. This corresponds to the diagram

K t{0, 1}

I I t J t{0, 1} J

f1

inl ◦ inl

f2

inl ◦ inr

in Set. A morphism f ∈ Hom�(K, I×J) corresponds to a function f : I tJ !
K t{0, 1}. Now any function from I t J to K t{0, 1} making the diagram
commute must send an element i ∈ I to f1(i) and an element j ∈ J to f2(j).
The unique such function is [f1, f2] : I t J ! K t{0, 1}. Thus the function
[f1, f2] ∈ Hom�(K, I × J) is the unique morphism making the first diagram
commute. It follows that the cartesian cube category has binary products.

8The formalization of this theorem can be found at https://github.com/UniMath/

UniMath/blob/0e1bd59/UniMath/CategoryTheory/categories/CartesianCubicalSets.v#

L154-L166
9The formalization of this theorem can be found at https://github.com/UniMath/

UniMath/blob/0e1bd59/UniMath/CategoryTheory/categories/CartesianCubicalSets.v#

L87-L117

43

With this result we can now prove that axiom (B3) holds for the cartesian
cubical sets.

Theorem 5.5. The interval I in cartesian cubical sets is tiny.10

Proof. By Theorem 5.4 and the fact that the category of finite sets is small, it
follows from Theorem 4.7 that exponentiation by I has a right adjoint, i.e. that
I is tiny.

6 The formalization

The work on this thesis began with the author learning the foundations of
homotopy type theory, Coq and category theory, the first two of which were
completely new subjects and the third of which the author knew only the basic
notions. After this, the first formalization was of the cartesian cubical sets
including that the interval in this specific presheaf category is tiny following the
proof in Licata et al. [9, p. 10].

After the formalization that the interval in cartesian cubical sets is tiny, an
interesting inversion of the usual workflow followed: this result was generalized
by testing what assumptions on the interval and the containing category was
necessary for the proof to go through. In this way it was found that the only
properties needed of the category was that it should be small and have binary
products and no assumptions about the object was needed, from which the
formulation and proof of Theorem 4.7 followed. Hence, instead of first doing
the theoretical proof and then formalizing it, the formalization helped produce
the theoretical proof of a more general theorem.

All in all, the formalization done by the author consisted of about 500 significant
lines of code of which there were 30 lemmas/theorems and 22 definitions. The
code has been merged into the UniMath library. A full overview of all the
formalization done in association with this thesis (including the formalization
of Proposition 4.4 by Anders Mörtberg) can be found at https://github.com/
UniMath/UniMath/compare/3832438...0e1bd59.

The formalization built heavily upon already formalized category theory and
other results in the UniMath library. The scope would have been far too large
to encompass in this thesis had the formalization needed to be done from the
very beginning, without any pre-formalized results. So the author is indebted to
the amazing work done by the contributors to the UniMath library that made
this work possible.

7 Conclusion and future work

The formalization done in this thesis for the cartesian cubical sets only concerns
four of the eight axioms stated in Coquand [5] as sufficient for a presheaf category

10The formalization of this theorem can be found at https://github.com/UniMath/

UniMath/blob/0e1bd59/UniMath/CategoryTheory/categories/CartesianCubicalSets.v#

L178-L183

44

to form a model of HoTT. In order to fully formalize that cartesian cubical sets
form a model by this axiomatization one needs to also formalize that the other
four axioms hold. It would be interesting to use such a formalization to see
what conditions on the underlying category and/or presheaves occurring in the
axioms that are necessary for the formalization to go through, as was done for
axiom (B3) in this thesis. It might also be interesting to formalize other cube
categories that are used to give constructive models of the univalence axiom
and prove that they satisfy Coquand’s axioms [5]. Such a formalization of some
other cube category could build upon the one of cartesian cubical sets done here
in order to make the formalization a bit simpler and faster.

Proof assistants provide many new possibilities for the future. One is for mathe-
maticians to verify their results using computers and thus remove the component
of human error. Another is the possibility to have computer aid in finding new
results, as was done for Theorem 4.7 in this thesis. Although this generalization
of the proof in Licata et al. [9, p. 10] could easily have been found without
the aid of a computer, it was very convenient to simply use the formalization
to find the most general conditions under which the theorem holds. It is not
hard to believe that this type of workflow, where the formalization is done first
and the theoretical proof second, may occur many more times in the future if
mathematicians form the habit of formalizing the work they do. Maybe we will
discover results with the aid of computers that we would not otherwise have
discovered, or that would have taken us much longer to discover without com-
puter aid? On the other hand, we may perhaps, in the project of formalizing all
current mathematical knowledge, find that some accepted proofs contain errors
that we would not have otherwise found. In this way, computer formalization
of mathematics has the potential to bring about a fundamental change of the
whole subject. Where this can take us, only the future will tell!

45

References

[1] Carlo Angiuli, Guillaume Brunerie, Thierry Coquand, Kuen-Bang
Hou (Favonia), Robert Harper, and Daniel R. Licata. Syntax and models
of cartesian cubical type theory. Draft available at https://github.com/
dlicata335/cart-cube/blob/master/cart-cube.pdf, 2017.

[2] Marc Bezem, Thierry Coquand, and Simon Huber. The univalence axiom
in cubical sets, 2017.

[3] Evan Cavallo, Anders Mörtberg, and Andrew W. Swan. Unifying cubical
models of univalent type theory. Preprint available at http://staff.math.
su.se/anders.mortberg/papers/unifying.pdf, 2019.

[4] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cu-
bical type theory: a constructive interpretation of the univalence axiom.
CoRR, abs/1611.02108, 2016.

[5] Thierry Coquand. A survey of constructive presheaf models of univalence.
ACM SIGLOG News, 5(3):54–65, July 2018.

[6] Chris Kapulkin and Peter LeFanu Lumsdaine. The simplicial model of
univalent foundations (after Voevodsky), 2012.

[7] Saunders Mac Lane. Categories for the Working Mathematician. Graduate
Texts in Mathematics. Springer New York, 1998.

[8] Saunders Mac Lane and Ieke Moerdijk. Sheaves in Geometry and Logic:
A First Introduction to Topos Theory. Universitext. Springer New York,
1994.

[9] Daniel R. Licata, Ian Orton, Andrew M. Pitts, and Bas Spitters. Internal
universes in models of homotopy type theory. CoRR, abs/1801.07664, 2018.

[10] Peter Lumsdaine. Weak omega-categories from intensional type theory.
Logical Methods in Computer Science, 6(3), Sep 2010.

[11] Per Martin-Löf and Giovanni Sambin. Intuitionistic type theory. Napoli:
Bibliapolis, 1984.

[12] Ian Orton and Andrew M. Pitts. Axioms for modelling cubical type theory
in a topos. CoRR, abs/1712.04864, 2017.

[13] Giovanni Sambin and Jan M. Smith. Twenty Five Years of Constructive
Type Theory. Oxford Logic Guides. Clarendon Press, 1998.

[14] The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. https://homotopytypetheory.org/book,
Institute for Advanced Study, 2013.

[15] Vladimir Voevodsky. An experimental library of formalized mathematics
based on the univalent foundations. Mathematical Structures in Computer
Science, 25(5):1278–1294, 2015.

46

