
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK
MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

An Analysis of Curiens Explicit Syntax
for Dependent Type Theory

av

Philip Stassen

2020 - No M3

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

An Analysis of Curiens Explicit Syntax
for Dependent Type Theory

Philip Stassen

Självständigt arbete i matematik 30 högskolepoäng, avancerad nivå

Handledare: Peter Lumsdaine, Guillaume Brunerie

2020

Abstract
Categorical models of dependent type theories have been extensively

studied over the years. A difficulty that arises is the coherence between
syntactical and semantical substitution. The on-the-nose equalities of the
syntax collide with the up-to-isomorphism equalities of categories. We
say a model is “strict” if this mismatch is resolved and that it is “weak” if
the mismatch persists. Now there are several solutions to that problem,
the most successful one being a method developed by Martin Hofmann in
which the semantical substitution is “strictified”.

We present two dependent type theories, one of which has an addi-
tional term constructor, the explicit coercion. Pierre-Louis Curien has
proven that locally cartesian closed categories provide strict models for
the latter syntax without having to strictify the semantic substitution –
thereby resolving the mismatch by destrictifying the syntax instead. The
type theory with explicit coercions can thus be used as intermediate step
towards weak models for standard dependent type theories.

Curien’s results show that weak models of the standard syntax are
strict models of the explicit syntax. To benefit from that we want to
understand in what sense the syntaxes are equivalent. Therefore, we show
a strong such result by constructing a lifting and proving a soundness
theorem. This function can then be used to prove coherence theorems
and by that could serve as a tool to construct weak models for dependent
type theories.

1

Acknowledgements
While writing my master thesis I benefited from the knowledge and guidance
of my supervisors Peter LeFanu Lumsdaine and Guillaume Brunerie, who were
always very generous with their time and energy. Their advise and insight in
the material was of immense value for this paper.
I am furthermore very grateful for the patient explanations and the thorough
discussions on different strategic approaches.

Also, I want to thank Peter and Guillaume as well as Marcello Garibbo for
their comments and remarks on my draft.

2

Contents

1 Introduction 3

2 Syntax 7
2.1 Variables in de Bruijn style notation 7
2.2 Standard Type Theory . 8

2.2.1 Terms and Types . 8
2.2.2 Raw Contexts and Raw Context Morphisms 9
2.2.3 Judgments . 10
2.2.4 De Bruijn Index Shifting 11
2.2.5 Generalized Index Shifting 11
2.2.6 Generalized Substitution 12
2.2.7 Structural rules . 13
2.2.8 Universe . 14
2.2.9 Pi-Types . 14
2.2.10 Derivability of Contexts and Context Morphisms 15
2.2.11 Admissible rules . 16

2.3 Explicit Syntax . 17
2.3.1 Raw Syntax . 18
2.3.2 Structural rules . 18
2.3.3 Syntax Traces of Context Equalities 19
2.3.4 Explicit Pi-types . 21
2.3.5 Contexts and Context Morphisms 22
2.3.6 Admissible rules . 23

3 Translation 24
3.1 Stripping . 24
3.2 Lift . 27

3.2.1 Unique Typings . 27
3.2.2 Lifting Raw Syntax . 28
3.2.3 The Weakening . 31
3.2.4 Substitution . 32
3.2.5 Soundness of the Lift . 36

4 Conclusion 38
4.1 Further directions . 38
4.2 Concluding Remarks . 39

1 Introduction
In 1983 Robert A. G. Seely described a new categorical interpretation of type
theory [See84]. He observed that locally cartesian closed categories naturally
resemble the kind of logic Martin-Löf type theories (such as [ML85]) are known

3

for. The result of this paper was a rather informal account of how to interpret
ML type theory in a locally cartesian closed category.

Following this paper it became apparent that there are technicalities that
cannot be resolved and because of that the interpretation is not well-defined.
Among others Pierre Louis Curien found out that the combination of conversion
rules, type equalities and substitutions leads to a mismatch between the syntax
and the semantics ([Cur93]).

Substitution is associative, that means that for all appropriate types σ and
substitutions (context morphisms) γ, δ it is the case that

σ[γ][δ] = σ[γ ◦ δ].

However, in general the pullback functor is not a strict 2-functor, but only a
pseudo functor. A pseudo functor does preserve morphism concatenation only
up to isomorphism. For an arbitrary morphism σ and two pseudo functors γ,λ
we have

δ(γ(σ)) ' (δ ◦ γ)(σ)

As a consequence semantically, consecutive substitution will in general only

P

P2 P1 D

A C E

∼=

(p1◦p2)∗

p∗2(p∗1(f)) p∗1(f) f

p2

p1◦p2

p1

Figure 1: Pseudo functoriality of the pullback

be isomorphic to substituting the concatenated morphism. Syntactic substitu-
tion however is strict in that regard. There are two approaches to resolve this
mismatch:

1. Strictify the model by imposing split fibrational hypotheses or

2. Destrictify the syntax – that means, that we interpret judgmental type
equality not as equality but as isomorphism.

The first one has been a very successful approach throughout the years. Well
studied strict models for type theories that satisfy split fibrational hypotheses
are for example categories with families, categories with attributes or contextual
categories. In [Hof95] Martin Hofmann proved coherence for a wide range of

4

models by developing a method how to turn any locally cartesian closed cate-
gory into a category with families while preserving the logical structure of the
category.

Following [CGH13] we distinguish three types of categories of structures

1. SMLS is the category of strict structures and morphisms that strictly
preserve the structure.

2. MLS is the category of non-strict structures with morphisms that strictly
preserve the structure

3. ML is the category of non-strict structures and morphisms that preserve
the structure up to isomorphism

The intuition behind this vague formulation should be that Hofmann’s inter-
pretation of the normal syntax lives in the SMLS categories, while Curien’s
interpretation of the explicit syntax lives in the MLS-category. The ML cat-
egory is inhabited by structures such as locally cartesian closed categories or
more generally fibrations with comprehensions (as used in [CGH13]). Note that
SMLS objects are also MLS objects and similarly MLS objects are also ML
objects.

Both, the normal and the explicit syntax, have a classifying category, denoted
Synt ∈ SMLS, and Synte ∈MLS respectively1. These term models are initial in
their respective category, that is, an interpretation function from the syntax into
a structure also exhibits a morphism from Synt (resp. Synte) into that structure.
Therefore, we may denote with SMLS [Synt,m] an interpretation of the normal
syntax into m, similarly we write MLS [Synte,me] for an interpretation of the
explicit syntax in me.

Now let me ∈ ML be a locally cartesian closed category. Because of the
pseudo functoriality of the pullback, a strict interpretation in MLS[Synt,me]
is not possible. Therefore, in [Cur93] Curien approached the problem differ-
ently and instead interpreted type equality as isomorphism. To achieve this,
the author defines a function into a LCCC by induction on the derivations of
judgments. To furthermore clarify how the raw syntax can be interpreted in
such a category, he proves a coherence result that says that the interpretation
of term expressions is independent from the choice of the derivation.

Theorem 1.1 (Coherence Curien). Any two proofs of a judgment Γ ` M : σ
receive equal interpretations.

Curien’s strategy to establish this coherence result is to use the explicit syntax
(as a mediating syntax), which can be interpreted in a LCCC. This intermediate
syntax reflects the usage of the conversion rule into the terms by using a new
term former, the explicit coercions. Therefore, the author of [Cur93] defines an
interpretation J K ∈MLS[Synte,me].

1As made precise in [CGH13, 5.3]

5

Then in a second step he uses rewriting techniques to relate derivations of
this intermediate syntax with the ones of the original one and by that establishes
the coherence for the latter one.
Following that the aim of this paper is twofold. On one hand we try to give
a precise account of a rule system that has explicit coercions by formalizing it
with the Agda proof assistant.

On the other hand, we try to establish results on how this theory relates
to one that has not explicit coercions as part of its syntax. For that reason
we construct both, a stripping and a lifting function on the raw syntax. While
the stripping turns out to be a functor | | ∈ MLS[Synte, Synt] the situation for
the lifting is less clear. Considering the coherence difficulties that cannot be
circumvented, we cannot expect Synte to be a strict model of the original type
theory. This means that a lift-functor | |−1 can not be functional in a strict
sense since it will not be well-defined as a function of sets (see fig. 2).

Synte

Synt me

| · |
J K

| · |−1

Figure 2: Relation of original and explicit theories and LCCC

Perspecitvely, the lift could be a tool to proof coherence theorems for a wide
range of weak models of dependent type theory as we will briefly discuss in the
last section.

Section 2 gives an exposition of a fairly standard type theory and a type
theory whose syntax has explicit coercions. Suggestively we will refer to them
with original respectively explicit type theory.

Eventually, in section 3 the stripping and a lifting are defined.
In contrast to the type theories discussed in [Cur93] and [CGH13] explicit

substitutions are not used in this paper. Hence, in a sense we study a certain
subsystem of the syntax that Curien employed. The explicit substitution can
be added subsequently if this needed.

This paper is accompanied by a formalization. The code is available on my
Github page:

https://github.com/philippstassen/initiality/tree/develop1

The files that are relevant for this paper are

common.agda, typetheory.agda, typetheorexplicit.agda, reflection.agda,
reflectionexplicit.agda, syntx.agda, syntxexplicit.agda, rules.agda,

rulesexplicit.agda, metatheorems.agda, translation.agda,
reconstruction-approach2.agda.

The Agda code is based on Guillaume Brunerie’s and Menno De Boer’s code
which can be found online at

6

https://github.com/guillaumebrunerie/initiality.

They are working on a formalized proof of the initiality conjecture. The type
theory they use is the type theory that I refer to as original type theory. There-
fore, I was fortunate to be able to use large parts of their work. The files
common.agda, typetheory.agda, reflection.agda, syntx.agda and rules.agda are con-
cerned with the original type theory and therefore did not need many modifica-
tions. The respective *explicit.agda files needed a significant makeover, but still
rely strongly on the work of Brunerie and De Boer.

2 Syntax
We will refer to two different syntaxes: The syntax with explicit coercions and
the one without, which I refer to as explicit syntax and original or normal syntax
respectively.

The meta theory in this work will be Agda. I restrain of using Agda terminol-
ogy in the description but formulate things in a more intuitive way. This implies
that notation sometimes gets ambiguous. Whenever precision is required the
correct precise notation will be used.

Throughout the paper two different notions of equality are used.

1. = is the usual mathematical equality.

2. On the other hand, the judgmental equality Γ ` σ ≡ τ is a specific judg-
ment for types, and Γ ` M ≡ N : σ for terms respectively. Two terms
or types being judgmentally equal means that there is a derivation of an
respective judgment.

2.1 Variables in de Bruijn style notation
We use the de Bruijn style [Bru72] notation for types and terms. De Bruijn
indices are genuinely less pleasant to read compared to named variables but
behave better meta theoretically: The equality up to bound variables, also
known as α-equality, coincides with the syntactic equality. Compare for instance

λx.x =α λy.y

Figure 3: Named variables

λ1 = λ1

Figure 4: De Bruijn indices notation

Furthermore, de Bruijn indices are also to be preferred if one aims to for-
malize the theory in some programming language. They are easier and more
straight forward to manipulate. This is why it is fairly standard to use de Bruijn
indices in discussions on type theory.

A variable is a natural number, that refers back to the binding "environment"
of the term, this includes binder as λ or Π, but also the types in the context.
Having said this, one can think of the variable as some sort of "distance", the

7

larger the number, the earlier the variable must be bound (by a binder or in the
context). To give an example, consider the judgments

σ `λ. 1(2) : ΠΠσττ

x:σ `λf . f(x) : ΠΠσττ

which is a function that applies a function to the variable x.
In the formalization de Bruijn indices are defined to be the elements of Finn,

the finite type with n elements. Intuitively a finite type can be thought of as the
subset of all naturals smaller then some particular natural. In our situation it is
however advantageous to count backwards. Hence, we define Fin0 to be empty
and Finsucn to be generated inductively by

last | prev k

where k ∈ Finn. More precisely, for any n ∈ N the constructors of Finn are

last : Finsucn

prev : Finn → Finsucn

The advantage of this definition is that it anticipates the way contexts are
extended. Extending the context requires that all variables are shifted to sustain
their previous typing. This shifting of the variables will simply be the prev
function.

This notation can be made a bit more appealing by defining

n + 1 := prev . . .prev︸ ︷︷ ︸
n times

last

and thus in particular 1 = last. With this notation, the prev function becomes
the successor function.

2.2 Standard Type Theory
The syntax presented in this chapter is fairly standard, but might throughout
look a bit peculiar since we use de Bruijn indices instead of named variables. A
more intuitive presentation of a comparable syntax can be found in [Hof97b].

The outline of this chapter is very straight forward and basically follows the
formalization. First, Terms and Types are defined followed by raw contexts and
context morphism. Thereafter, the notions of a judgment and a derivation are
introduced such that the full theory can be presented.

2.2.1 Terms and Types

All type and term expressions are indexed by a natural number, the scope.
Usually the scope of a term denotes the set of judgments that bind its free
variables. This naming is analogous, the scope gives an upper bound to the

8

de Bruijn indices and thus ceils the number of variables that may occur in the
term.

Therefore, it is useful to distinguish type and term expressions of a specific
scope. We denote type expressions of scope n by TyExprn and term expressions
respectively by TmExprn. This distinction already comes into play when defining
the type and term constructors, since it allows us to express elegantly that a
term has more free variables than another. In the formalization this n is handled
as an implicit argument that Agda can always solve by unification. Hence, we
are free to omit the scope for brevity and to think of it as quantified over the
naturals, whenever it shows up unbounded.

The raw type expressions are built up inductively for all n by the constructors

U : TyExprn
el : TmExprn → TyExprn
Π : TyExprn → TyExprsucn → TyExprn.

Similarly, the raw term expressions are generated inductively by

n : TmExprn with n ∈ Finn
lam : TyExprn → TyExprsucn → TmExprsucn → TmExprn
app : TyExprn → TyExprsucn → TmExprn → TmExprn → TmExprn.

Observe how this constructors contain more information then the usual re-
cursive definitions of raw syntax

σ = U | elM | Πστ and
M = n | lamστ .M | appστMN

due to the requirements we impose on the free variables via the scope.
Having clarified this we now switch to a more familiar syntax which omits

some information. This is only for convenience and we will turn back to this
syntax at some point (in section 3.2).

λσ.M := lamστ .M
fN := appστfN

2.2.2 Raw Contexts and Raw Context Morphisms

A raw context is list of types, a raw context morphism is a list of terms. Recall
the standard definition of a raw context

Γ = (x1:σ1,x2:σ2, . . . ,xn:σn) (1)

which is list of typed variables. In our situation, we do not name the variables,
but simply list the types.

9

Definition 2.1. A raw-context is a list of types

σ0,σ1, . . . ,σn (2)

such that the scope of σi is equal to i for all 0 ≤ i ≤ n.

Now by construction every σi may have variables in its preceding types. The
set of raw contexts of length n is denoted by Ctxn. Analogously we define a raw
context morphism.

Definition 2.2. A raw (n,m)-context morphism is a list of terms of scope n
that has length m.

M0,M1, . . . ,Mm (3)

such that the scope of Mi is equal to n for all 0 ≤ i ≤ m.
Morn,m is the set of all raw (n,m)-context morphisms

Remark 2.3. It is conventional to write (Γ1, . . . , Γm) instead of Γ. Conversely,
if Γ is a context, then Γi denotes the respective type at the ith position. Similarly
for a context morphism δ and (δ1, . . . , δm).

Throughout the paper contexts will always mean raw contexts and similarly
context morphisms will always be raw (n,m)-context morphisms.

2.2.3 Judgments

There are four kinds of judgments:

Γ ` σ (4)
Γ `M : σ (5)
Γ ` σ ≡ τ (6)
Γ `M ≡ N : σ. (7)

We require context types and terms to have the same scopes. Judgments should
be considered hypothetical as this is standard for intuitionistic type theory and
not be confused with the derivation of a judgment.

Definition 2.4. A derivation of a judgment is inductively generated by the rules
of the type theory. If we have derivations D1, . . . ,Dn of judgments J1, . . . ,Jn
and a rule R such that

J1 . . . Jn
J R

Then we write that R{D1, . . . ,Dn} is a derivation of J .

The set of all derivations for J is denoted by Derivation(J). For brevity,
we may omit the judgment when discussing derivations.

10

2.2.4 De Bruijn Index Shifting

In type theory all expressions are depending on their environment, that is the
context plus the variable binders. Since we are using a name free presentation
of type theory, already enlarging the context requires modifications in the ex-
pressions. For intuition, compare an instance of the Weakening rule for a theory
with and without names

Γ ` x : σ Γ ` τ
Γ, y:τ ` x : σ

Weak1

Figure 5: Named variables

Γ ` 1 : σ Γ ` τ
Γ, τ ` 2 : σ

Weak2

Figure 6: Name free variables
The first rule uses names to denote variables, and thus we may extend our con-
text while preserving the derivability of all judgments. This does not hold true
if we use a name free presentation of the theory. In this case, we refer to the
context by a de Bruijn index. If we extend the context, this de Bruijn index
refers to a different type. Indeed, observe in the situation of fig. 6, the judgment
Γ, τ ` 1 : σ would have been a malformed judgment, since it is clearly the case
that Γ, τ ` 1 : τ .

To formulate such a rule, we need an operation to shift the de Bruijn indices
in the raw syntax. Therefore we define ↑. Formally, this operation should be
mutually defined for types and terms and for all n.

↑: TmExprn → TmExprn+1
n↑= n + 1
(λσ.M)↑= λσ↑.M ↑2
(MN)↑= M ↑ N ↑

↑: TyExprn → TyExprn+1
U ↑= U
(elM)↑= el (M ↑)
(Πστ)↑= Πσ↑(τ ↑2)

Similarly as for the proof of weakening in the standard syntax, during the re-
cursive calls of λσ.M and Πστ we do not want to change the variable that is
bound by the constructor. Hence, we have to shift every de Bruijn index larger
or equal than 2, but not the first one – we denote this operation by ↑2 . This
definition is therefore not sufficient, we need to define a more general version of
the shifting that allows to shift the indices after an arbitrary position.

2.2.5 Generalized Index Shifting

In the previous chapter we used a special case of the weakening rule to motivate
the de Bruijn index shifting. In full generality, the weakening rule is formulated
as

Γ, ∆ `M : σ Γ ` τ
Γ,x:τ , ∆ `M : σ

Weak

11

where Γ and ∆ are of arbitrary length. In this situation we only need to weaken
the variables that previously referred to Γ. However, we need to weaken them
everywhere, including in ∆. Therefore, we need a third operation that shifts
indices in raw contexts. In variable free syntax a similar general weakening rule
should be phrased as follows: If Γ, ∆ is a context – where ∆ has length k, the
weakening before before the kth type (counting backwards) is

Γ, ∆ `M : σ Γ ` τ
Γ, τ , ∆↑k `M ↑k : σ↑k

Weak

The generalized de Bruijn index shifting is a mutual inductive definition for
types, terms and contexts:

↑ : Finn →TmExprn → TmExprn+1
i↑k := i + 1 if i > k

i↑k := i if i ≤ k
(λσ.M)↑k := λσ↑k .M ↑k+1

(MN)↑k := M ↑k N ↑k

↑: Finn →TyExprn → TyExprn+1
U ↑k := U

(elM)↑k := el (M ↑k)
(Πστ)↑k := Πσ↑k τ ↑k+1

↑ : Finn → TyExpr → Ctxn → Ctxn+1

Γ↑τ1 := (Γ, τ)
(Γ,σ)↑τk+1 := (Γ↑τk , τ ↑k)

The weakening of a contexts needs an additional type expression as argument
which is meant to be analogous to the notation Γ, τ , ∆. It is noteworthy that
usually the only requirements on τ is that it has the correct scope to fit the
place it sits in. Therefore, it is included in the notation but barely mentioned
in the hypotheses of a theorem. A more precise account of these operations is
formalized in syntx.agda with the respective declarations weakenTy, weakenTm,
weakenCtx.

2.2.6 Generalized Substitution

In general we have a rule saying that substituting a well-typed term for a free
variable does preserve the validity of the judgment

Γ,x : σ ` y : τ Γ `M : σ
Γ ` y[M/x] : τ [M/x]

Subst

Therefore, we need to define an operation ·[·] that substitutes terms for free
variables in the raw syntax in such a way that the Subst-rule will be admissible.
This is better to phrase working in a variable free syntax, since we do not have
to worry what happens if we substitute a variable that is already listed in the
context.

12

As already the index shifting, substitution will be defined by recursion on
the raw syntax, and therefore we should expect to run into the same subtleties
for the cases λ and Π as before. To cope with that, we need an auxiliary context
morphism whose duty is to protect the first variable from being substituted (as
it is bound by one of the binders).

For this purpose we define the morphism extension such that if Γ ` δ : ∆
and ∆ ` σ then also Γ,σ ` δ+ : ∆,σ.

+ : Morn,m → Morn+1,m+1

δ+ := δ↑ , 1

Having addressed this issue we are now in a position to define the generalized
substitution using the context morphisms. If δ denotes such a morphism, then
we define

[] : TmExprn → Morn,m → TmExprm
k[δ] := δm+1−k

(λσ.M)[δ] := λσ[δ].M [δ+]
(MM2)[δ] := M [δ]M1[δ]

[] : TyExprn → Morn,m → TyExprm
U [δ] := U

(elM)[δ] := el (M [δ])
(Πστ)[δ] := Πσ[δ](τ [δ+])

Note that if λσ.M is in TmExprn, then by construction M is in TmExprn+1.
Therefore, M [δ] would not have been well defined.

Remark 2.5. The generalized substitution subsumes substitution if we choose
δ = (n, n − 1, . . . , 2,M) to be the morphism. Therefore, we will use the same
notation for either substitution. Due to the different choice of variables it should
be unambiguous which substitution is used.

[] :TmExprn+1 → TmExprn → TmExprn
M [N] = M [idn,N]

[] :TyExprn+1 → TmExprn → TyExprn
σ[N] = σ[idn,N]

2.2.7 Structural rules

As already mentioned, we are particularly interested in derivations of judgments.
We begin with presenting the structural rules that are not type or term specific.

Γ ` σ
Γ,σ ` 1 : σ

Var
Γ ` σ Γ ` k : σ

Γ, τ ` k↑: σ Var↑
Γ ` σ

Γ `e σ ∼= σ
TyRefl

13

Γ `M : σ
Γ `e M ≡M : σ

TmRefl
Γ ` σ ≡ τ
Γ ` τ ≡ σ TySymm

Γ `M ≡ N : σ
Γ ` N ≡M : σ

TmSymm

Γ ` σ1 Γ ` σ0 ≡ σ1 Γ ` σ1 ≡ σ2

Γ ` σ0 ≡ σ2
TyTran

Γ `M1 : σ Γ `M0 ≡M1 : σ Γ `M1 ≡M2 : σ
Γ `M0 ≡M2 : σ

TmTrans

Γ ` σ Γ `M : σ Γ ` σ ≡ τ
Γ `M : τ

Conv

Γ ` σ Γ `M ≡ N : σ Γ ` σ ≡ τ
Γ `M ≡ N : τ

Conv≡

Remark 2.6. Something that might draw attention is the fact that Var does
not require a derivation ` Γ as presupposition. Consequently, we will not be
able to prove that from Γ ` σ also ` Γ is derivable. The merit of this variation
is that the definition is less recursive, which is beneficial in many situations.
In the formalization the rules TyRefl and TmRefl are not included but instead
reflexivity rules only for variables. This turns out to be sufficient to derive the
full reflexivity rules.

2.2.8 Universe

The type theory gets immediately more complicated when there are non trivial
type families. This requires a base type and a family of types over this base
type. The simplest instance of a combination like this is a universe U together
with an eliminator el .

Γ ` U U-Form
Γ ` U ≡ U U≡

Γ `M : U
Γ ` elM el

Γ `M ≡ N : U
Γ ` el (M) ≡ el (M)

el ≡

2.2.9 Pi-Types

The generalized function types Πστ map σ to the type family τ , which ranges
over σ.

Γ ` σ Γ,σ ` τ
Γ ` Πστ

Π-Form
Γ ` σ Γ ` σ ≡ σ′ (Γ,σ) ` τ ≡ τ ′

Γ ` Πστ ≡ Πσ′τ
′ Π≡

14

Γ ` σ Γ,σ ` τ Γ,σ `M : τ
Γ ` λσ.M : Πστ

Π-Intro

Γ ` σ Γ,σ ` τ Γ ` f : Πστ Γ ` N : σ
Γ ` fN : τ [N]

ΠElim

Γ ` σ Γ ` σ ≡ σ′ Γ,σ ` τ ≡ τ ′ Γ,σ `M ≡M :′ τ
Γ ` λσ.M ≡ λσ′.M ′ : Πστ

λ≡

Γ ` σ Γ ` σ ≡ σ′ Γ,σ ` τ ≡ τ ′
Γ ` f ≡ f ′ : Πστ Γ ` N ≡ N ′ : σ

Γ ` fN ≡ f ′N ′ : τ [N]
App≡

Γ ` σ Γ,σ ` τ Γ,σ `M : τ Γ ` N : σ
Γ ` (λσ.M)N ≡M [N] : τ [N]

β≡

Γ ` σ Γ,σ ` τ Γ ` f : Πστ

Γ ` f ≡ λσ. ((f ↑)1) : Πστ
η≡

2.2.10 Derivability of Contexts and Context Morphisms

A context is derivable if

` � Ctx
` Γ Γ ` σ
` (Γ,σ)

Ctx.

On the other hand, recall the standard definition of a context morphism.
Let Γ and ∆ = (x1:σ1, . . . ,xm:σm) be contexts. If δ = (M1, . . . ,Mm) we write
Γ ` δ : ∆ and say that δ derivable if the following judgments are valid:

Γ `M1 : σ1 (8)
Γ `M2 : σ2[M1/x] (9)

. . . (10)
Γ `Mm : σm[M1/x1, . . . ,Mm/xm] (11)

We define the variable free version of a context morphism analogously. Let
Γ = (τ1, . . . , τn) and ∆ = (σ1, . . . ,σm) be contexts. Furthermore, let δ =
(M1, . . . ,Mm) be a context morphism. Then Γ ` δ : ∆ is derivable if the
following judgments hold:

Γ `M1 : σ1 (12)
Γ `M2 : σ2[M1]

. . .

Γ `Mm : σm[M1, . . . ,Mm]

15

or more formally we may say that derivability of context morphism is inductively
generated by the rules

Γ ` () : � Mor
Γ ` δ : ∆ Γ `M : σ[δ]

Γ ` (δ,M) : (∆,σ)
Mor

The reader may convince herself that for context morphism derived by these
rules the judgments of (12) hold.

In a similar fashion we can make precise what it means for two contexts
to be judgmentally equal. Derivations of such judgments are generated by the
rules

` � ≡ � Ctx=

` Γ ≡ Γ′ Γ ` σ Γ′ ` τ
Γ ` σ ≡ τ

` (Γ,σ) ≡ (Γ′, τ)
Ctx=

Intuitively this is exactly what we would expect. Two contexts are judgmentally
equal if all the types listed in them are. Similarly, we define what it means for
two context morphisms to be judgmentally equal. Again, our intuition suggests
that a context morphism should be called judgmentally equal if they are as lists
of terms. A more precise account of that is to define the derivation of context
morphisms inductively by the rules

Γ ` () ≡ () : � Mor=
Γ ` δ ≡ δ′ : ∆ Γ `M ≡M ′ : σ[δ]

Γ ` (δ,M) ≡ (δ′,M ′) : (∆,σ)
Mor=

2.2.11 Admissible rules

There are many important meta theoretic results that can be derived in this
theory. A small subset which is needed for the main theorems of this paper are
formalized in the file rules.agda. I would like to emphasize the following, very
essential results. On one hand, these results are needed throughout the paper.
On the other hand, it is insightful to see how these admissible rules compare
to similar ones for the explicit rule system. First to mention are the weakening
rules

Γ ` σ
Γ↑τk ` σ↑k

WeakTy
.

Γ `M : σ
Γ↑τk `M ↑k : σ↑k

WeakTm
.

Γ ` σ1 ≡ σ2

Γ↑τk ` σ1 ↑k ≡ σ2 ↑k
WeakTyEq

Γ `M ≡ N : σ
Γ↑τk `M ↑k ≡ N ↑k : σ↑k

WeakTyEq

Of similar relevance are the rules that are concerned with substitution. The
most basic ones are:

16

∆ ` σ Γ ` δ : ∆
Γ ` σ[δ]

SubstTy
∆ `M : σ Γ ` δ : ∆

Γ `M [δ] : σ[δ]
SubstTm

∆ ` σ ≡ τ Γ ` δ : ∆
Γ ` σ[δ] ≡ τ [δ]

SubstTyEq

∆ `M ≡ N : σ Γ ` δ : ∆
Γ `M [δ] ≡ N [δ] : σ[δ]

SubstTmEq

∆ ` σ Γ ` δ : ∆ Γ ` δ ≡ θ : ∆
Γ ` σ[δ] ≡ σ[θ]

SubstTyMorEq

∆ `M : σ Γ ` δ : ∆ Γ ` δ ≡ θ : ∆
Γ `M [δ] ≡M [θ] : σ[δ]

SubstTmMorEq

Another collection of useful functions are the context conversion lemmas
ConvTy, ConvTm, ConvTyEq and ConvTmEq.

Γ ` σ ` Γ ≡ Γ′

Γ′ ` σ ConvTy
Γ `M : σ ` Γ ≡ Γ′

Γ′ `M : σ
ConvTm

Γ ` σ ≡ τ ` Γ ≡ Γ′

Γ′ ` σ ≡ τ ConvTyEq

Γ `M ≡ N : σ ` Γ ≡ Γ′

Γ′ `M ≡ N : σ
ConvTmEq

A desired feature of the theory is that all presuppositions of a judgment are
derivable. The presuppositions of a judgment J are all judgments that should
be satisfied for J to be derivable. The intuition behind that is clear, for example
if Γ ` σ ≡ τ is derivable, then we expect that also Γ ` σ as well as Γ ` τ are
valid.

Notice, that the rules themselves do not directly require all presuppositions.
Take Π≡ for example, to derive Γ ` Πστ ≡ Πσ1τ1 we do not have to explicitly
include derivations of Γ ` Πστ or Γ ` Πσ1τ1.

This practice is justified by the fact that we are able to proof several lemmas
– TmTy, TyEqTy1, TyEqTy2, TmEqTm1, TmEqTm2 – which witness the fact that
for any derivable judgment all presuppositions are derivable.

2.3 Explicit Syntax
The dependent type theory with explicit coercions has been mentioned in [Cur93]
for the first time. During the process of defining the interpretation of dependent
type theory in a locally cartesian closed category Curien encountered difficul-
ties to prove certain coherence theorems. The explicit coercion is an ad hoc
modification of the syntax with regard to the goal of establishing coherence.

17

The crucial observation about this syntax is the following. We replace the
Conv rule by some other rules that reflect the equality information into the term
via an explicit coercion. We achieve that by introducing another term former,
the coercion cσ,τM of a term. Moreover, modify the rules appropriately.

Similar as in [CGH13] we use `e instead of ` to distinguish the judgments
of the explicit syntax from their normal counterparts. Also it is suggestive to
use ∼= instead of ≡ in Γ `e σ ∼= τ . This anticipates the way type equality will be
interpreted, namely as isomorphism. I restrain to further indicate the explicit
syntax as such since it would overload the notation. Hence, the reader has to
read off from the context whether an expression belongs to the original or the
explicit syntax.

2.3.1 Raw Syntax

In this chapter we will examine this modified syntax. To avoid being too repet-
itive, the description will be brief and the focus more on the differences that
matter.

The constructors of the raw type expressions remain the same as in the
original syntax

σ = U | elM | Πστ . (13)

However, we add another term constructor to the raw term expressions

M = n | λσ.M |MN | cσ,τM (14)

More precisely, we need to specify the implicit information that we suppress:
In addition to the conditions of section 2.2.1 we require another one specifically
for the coerc case: If σ, τ and M have scope n, then so has cσ,τM .

Remark 2.7. Observe that although the constructors of the type expression
have not changed, the set of type expression has. Type and Terms are mutually
recursive and therefore the new termformer also influences the type expressions.

We will not restate the definitions of raw contexts and raw (n,m)-context
morphisms, since they remain the same. Moreover, the de Bruijn index shifting
and syntactic subsitution operation only need to be extended with a case for
the new term constructor – compare the definitions weakenTy and weakenTm in
the files syntx.agda respecitvely syntxexplicit.agda.

2.3.2 Structural rules

The purpose of this modified syntax is to replace the conversion rule Conv with
the rule Coerc such that derivations become unique up to the derivations of
judgmental equalities. Although this seems like a minor altercation of the the-
ory, in fact the makeover is much more drastic. There are many meta theoretic
subtleties to consider, which is why for some of the rules more presuppositions

18

are required. In addition to that the TmRefl and TyRefl rule are not admissible
anymore – at least not as easily as for the original syntax.

Γ `e σ
Γ,σ `e 1 : σ

Var
Γ `e σ Γ `e k : σ

Γ, τ `e k↑: σ Var↑
Γ `e σ

Γ `e σ ∼= σ
TyRefl

Γ `e M : σ
Γ `e M ≡M : σ

TmRefl
Γ `e M ≡ N : σ
Γ `e N ≡M : σ

TmSymm
Γ `e σ ∼= τ

Γ `e τ ∼= σ
TySymm

Γ `e σ1 Γ `e σ0 ∼= σ1 Γ `e σ1 ∼= σ2

Γ `e σ0 ∼= σ2
TyTran

Γ `e M1 : σ Γ `e M0 ≡M1 : σ Γ `e M1 ≡M2 : σ
Γ `e M0 ≡M2 : σ

TmTrans

Γ `e σ Γ `e τ Γ `e M : σ Γ `e σ ∼= τ

Γ `e cσ,τM : τ
Coerc

Γ `e σ Γ `e M ≡ N : σ Γ `e σ ∼= τ

Γ `e cσ,τM ≡ cσ,τN : τ
Coerc≡

Γ `e M : σ
Γ `e cσ,σM ≡M : σ

CoercRefl

Γ `e σ0 Γ `e σ1 Γ `e σ2 Γ `e M : σ0
Γ `e σ0 ∼= σ1 Γ `e σ1 ∼= σ2

Γ `e cσ1,σ2(cσ0,σ1M) ≡ cσ0,σ2M : σ2
CoercTrans

2.3.3 Syntax Traces of Context Equalities

Beside the new conversion rules some congruence rules have also to be revised.
Recall that the equality rules ΠElim, Π≡, λ≡ and App≡ rules require derivations
of

Γ,σ′ ` τ ′ and
Γ,σ ` τ ≡ τ ′

as presuppositions. However, in the explicit syntax an equality like Γ,σ ` τ ≡ τ ′
requires that both Γ,σ ` τ and Γ,σ ` τ ′ which can only be the case if σ′ = σ
all along.
Hence in general, if Γ ` σ ≡ σ′ and Γ,σ′ ` τ ′ then Γ,σ ` τ ′ is not well-typed.
This contrasts the situation in the original type theory that has the Conv rule.

19

More generally, the admissible rules ConvTy, ConvTm, ConvTyEq and ConvTmEq
from section 2.2.11 will not be provable for the explicit theory, if they are for-
mulated like that.

Remark 2.8. In [Cur93], the author needs to further modify the syntax to
cope with this issue. He first includes a new type former, the context coercion

cCtxΓ,Γ′σ,

and then adds a modification of the ConvTy rule to the theory.

`e Γ ≡ Γ′ Γ ` σ
Γ′ ` cCtxΓ,Γ′σ

ConvTy

Here it is helpful that the rules are formulated in terms of the meta theoretic
substitution and not the explicit substitution. This allows us to define the
context coercion in terms of the generalized substitution and to derive ConvTy
as an admissible rule of the theory. We proceed by first defining a morphism
convMorΓ,Γ′ .

Definition 2.9 (convMor in syntxexplicit). Let Γ and Γ′ be contexts. We define
the context morphism convMorΓ,Γ′ by induction on the context

convMor�,� := ()
convMor(Γ,σ),(Γ′,σ′) := convMorΓ,Γ′ , cσ,σ′1

The following lemma justifies that this is a sensible definition.

Lemma 2.10 (convMor-Derivable in rulesexplicit.agda). For any Γ, Γ′ we have,
if `e Γ ≡ Γ′ then

Γ `e convMorΓ,Γ′ : Γ′

Having generalized substitution, this lemma immediately implies the corollary

Corollary 2.11. For any judgment Γ `e σ with `e Γ ≡ Γ′ we have

Γ′ `e σ[convMorΓ′,Γ]

Having these property, we are confident to define

cCtxΓ,Γ′σ := σ[convMorΓ′,Γ]

Going back to the specific situation where Γ := ∆,σ and Γ′ := ∆, τ , we can
use a different morphism that is judgmentally equal to convMorΓ,Γ′ , but easier
to work with:

(∆,σ) `e (id↑ , cσ↑,τ↑1) : (∆, τ).

This motivates to use the following abbreviation going forward.

20

Definition 2.12 (coercTy). Let τ ,σ1 and σ2 be type expressions. We define

cTyσ1,σ2τ := τ [id↑ , cσ2↑,σ1↑1]

.

The idea behind this definition is to think of cTyσ1,σ2τ to be a function that
maps a typing Γ,σ1 `e τ to a typing Γ,σ2 `e cTyσ1,σ2τ .

Definition 2.13 (coercTm). Let M a term and σ1,σ2 be types. Then

cTmσ1,σ2M := M [id↑ cσ2↑,σ1↑1,]

Similar as before, the idea behind this definition is that knowing Γ,σ1 `e M : τ
and Γ `e σ1 ∼= σ2 should give us that

Γ,σ2 `e cTmσ1,σ2τ : cTyσ1,σ2τ .

Remark 2.14. Because of the inductive structure of derivations and the fact
that we included dependent function types in our theory, the more specific
definitions of cTyσ1,σ2τ and cTmσ1,σ2M are sufficient for almost everything we
do in this paper.

2.3.4 Explicit Pi-types

Having addressed the subtleties that we face because of the replacement of the
conversion rule, the path is clear to restate the rules for the explicit Π-types.
We start with the rules that remain in fact unchanged.

Γ `e σ Γ,σ `e τ
Γ `e Πστ

Π-Form
Γ `e σ Γ,σ `e τ Γ,σ `e M : τ

Γ `e λσ.M : Πστ
Π-Intro

Γ `e σ Γ,σ `e τ Γ `e f : Πστ Γ `e N : σ
Γ `e fN : τ [N]

ΠElim

Γ `e σ Γ,σ `e τ Γ,σ `e M : τ Γ `e N : σ
Γ `e (λσ.M)N ≡M [N] : τ [N]

β≡

Γ `e σ Γ,σ `e τ Γ `e f : Πστ

Γ `e f ≡ λσ. ((f ↑)1) :
η≡

The following congruence rules are different and tailored to resemble the idea
behind the explicit syntax.

Γ `e σ Γ `e σ′ (Γ,σ) `e τ
(Γ,σ′) `e τ ′ Γ `e σ ∼= σ′ (Γ,σ) `e τ ∼= cTyσ′,στ ′

Γ `e Πστ ∼= Πσ′τ
′ Π ≡

21

Γ `e σ Γ `e σ′ (Γ,σ) `e τ [. . .]
Γ `e σ ∼= σ′ (Γ,σ) `e τ ∼= cTyσ′,στ ′

(Γ,σ) `e M ≡ c(cTyσ′,στ ′),τcTmσ′,σM
′ : τ

Γ `e λσ.M ≡ cΠσ′τ ′,Πστλσ
′.M ′ : Πστ

λ≡

Γ `e σ Γ `e σ′ (Γ,σ) `e τ [. . .]
Γ `e σ ∼= σ′ (Γ,σ) `e τ ∼= cTyσ′,στ ′

Γ `e f ≡ cΠσ′τ ′,Πστf
′ : Πστ Γ `e N ≡ cσ′,σN ′ : σ

Γ `e fN ≡ cτ ′[N ′],τ [N]f
′N ′ : τ [N]

App≡

Remark 2.15. It is possible, that more presuppositions are needed compared
to the original syntax. For the time being, I decided to add all presuppositions
for these three rules. Some of them may be left away without any inconvenience,
some may cause complications and some may not be omited at all. A simple
guideline: One may omit all preasumptions that are not needed to prove that
ALL presuppositions are admissible.

2.3.5 Contexts and Context Morphisms

The derivation of contexts and context morphisms remains the same, they are
generated by the rules

`e �
Ctx

`e Γ Γ `e σ
`e (Γ,σ)

Ctx.

Γ `e () : � Mor
Γ `e δ : ∆ Γ `e M : σ[M1, · · · ,Mm]

Γ `e (δ,M) : (∆,σ)
Mor

This does not hold true anymore for context and morphism equalities. Here, we
have again to take the more complicated equality rules into consideration.

`e � ≡ �
Ctx=

`e Γ ≡ Γ′ Γ `e σ ∼= cCtxΓ′,Γτ

`e (Γ,σ) ≡ (Γ′, τ)
Ctx=

Similarly, there are subtleties to consider with regard to judgmental equalities
between two context morphism.
Assume for a moment that we still defined Γ `e δ ≡ δ′ : ∆ to be:

Γ `e δ1 ≡ δ′1 : ∆1 (15)
Γ `e δ2 ≡ δ′2 : ∆2[δ1]

. . .

Γ `e δm ≡ δ′m : ∆m[δ1, . . . , δm]

22

The problem with this is, that already Γ `e δ2 ≡ δ′2 : ∆2[δ1] is not derivable.
Indeed, δ′ being a context morphism only hypothesises Γ `e δ′2 : ∆2[δ′1] and
without the Conv rule we cannot simply substitute judgmentally equal types for
another.

Therefore, we restate the definition to

Γ `e δ1 ≡ c∆′1,∆1δ
′
1 : ∆1 (16)

Γ `e δ2 ≡ c∆′2[δ′1],∆2[δ1]δ
′
2 : ∆2[δ1]

. . .

Γ `e δm ≡ c∆′m[...],∆m[...]δ
′
m : ∆m[δ1, . . . , δm],

which is a formulation that is sensible for the explicit syntax, as we will see.
Now we can use Γ `e δ′m : ∆m[δ′1, . . . , δ′m−1] and the Coerc rule to derive
Γ `e c∆′m[...],∆m[...]δ

′
m : ∆m[δ1, . . . , δm−1].

An alternative formulation for the same judgments is to define the judgmental
equality of morphisms inductively (as done in the formalization) by the following
constructors:

Γ `e () ≡ () : � Mor=

Γ `e δ ≡ δ′ : ∆ Γ `e M ≡ cσ[δ′],σ[δ]N : σ
Γ `e (δ,M) ≡ (δ′,N) : (∆,σ)

Mor=

2.3.6 Admissible rules

The selection presented in this chapter is similar to the selection for the normal
syntax. Hence, it might be insightful for the reader to compare the admissible
rules of the normal and the explicit syntax.
We start with the weakening lemmas:

Γ `e σ
Γ↑τk `e σ↑k

WeakTy
.

Γ `e M : σ
Γ↑τk `e M ↑k : σ↑k

WeakTm
.

Γ `e σ1 ∼= σ2

Γ↑τk `e σ1 ↑k ∼= σ2 ↑k
WeakTyEq

Γ `e M ≡ N : σ
Γ↑τk `e M ↑k ≡ N ↑k : σ↑k

WeakTyEq

Except for the different notation, the admissible weakening lemmas seem to
remain the same. This is not the case for substitution, which requires a few
adjustments, to be derivable.

23

∆ `e σ Γ `e δ : ∆
Γ `e σ[δ]

SubstTy
∆ `e M : σ Γ `e δ : ∆

Γ `e M [δ] : σ[δ]
SubstTm

∆ `e σ ∼= τ Γ `e δ : ∆
Γ `e σ[δ] ∼= τ [δ]

SubstTyEq

∆ `e M ≡ N : σ Γ `e δ : ∆
Γ `e M [δ] ≡ N [δ] : σ[δ]

SubstTmEq

∆ `e σ Γ `e δ : ∆ Γ `e θ : ∆
Γ `e δ ≡ θ : ∆ Γ `e θ ≡ δ : ∆

Γ `e σ[δ] ∼= σ[θ]
SubstTyMorEq

∆ `e M : σ Γ `e δ : ∆ Γ `e θ : ∆
Γ `e δ ≡ θ : ∆ Γ `e θ ≡ δ : ∆

Γ `e M [δ] ≡ cσ[θ],σ[δ]M [θ] : σ[δ]
SubstTmMorEq

It should come to nobody’s surprise that the presupposition lemmas are also
provable. These lemmas could become more interesting if one tried to thin out
the rules in section 2.3.4 a little more.

3 Translation
Now we turn to the main result of this paper. We want to make precise in what
sense these two syntaxes are equivalent. Therefore, we first define a stripping
function from the explicit syntax into the normal one and prove a soundness
theorem. In a further step step we construct a lifting from the normal into the
explicit syntax for which we then again can establish a soundness theorem.

3.1 Stripping
The explicit syntax is defined in a way such that the coercions occurring in the
terms of a derivation may be stripped, leading to a derivation in the original
syntax. The stripping is defined on the raw syntax and from there induces a
mapping on judgments and the derivations.

ex.TyExprn
|·|−→TyExprn ex.TmExprn

|·|−→ TmExprn

Derivatione
|·|−→ Derivation

The formalization of this chapter can be found in translation.agda.
Stripping the coercions from the syntax is very straight forward: We erase

every coercion. In a second step we prove that this operation preserves derivabil-
ity and hence that it is sound to interpret the explicit syntax via the stripping.

24

| · | : ex.TyExprn → TyExprn
|U| = U
|el v| = el |v|
|Πστ | = Π|σ||τ |

| · | : ex.TmExprn → TmExprn
|n| = n

|lamστ .M | = lam |σ||τ |. |M |
|appστfN | = app|σ||τ ||f ||N |
|cσ,τM | = M

Having defined the stripping for raw types and terms, it is straightforward
to extend the stripping to contexts and context morphisms

| · | : ex.Ctxn → Ctxn
| � | = �
|Γ,σ| = |Γ|, |σ|

| · | : ex.Morn,m → Morn,m

|()| = ()
|δ,M | = |δ|, |M |

and eventually to the stripping for judgments

| · | : Judgemente → Judgement
Γ `e σ	=	Γ	`	σ				
Γ `e M : σ	=	Γ	`	M	:	σ		
Γ `e σ ∼= τ	=	Γ	`	σ	≡	τ		
Γ `e M ≡ N : σ	=	Γ	`	M	≡	N	:	σ

Now the statement can be be formulated more precisely.

Theorem 3.1 (Soundness theorem). Let Je be a derivable judgment in the
explicit syntax, then |Je| is a derivable judgment in the original syntax.

The proof is very straight forward and the only subtleties arise from substi-
tution, which is used in the ΠElim and β≡ rule, as well as the de Bruijn index
shifting, which occurs in the rules related to variables and η≡.

Therefore, to obtain this soundness result, we first show that these operations
commute with the stripping on the nose.

Lemma 3.2. For any type σ, term M , context morphism δ and k we have

|σ↑k | = |σ|↑k
|σ[δ]| = |σ|[|δ|].

Figure 8: Types

|M ↑k | = |M |↑k
|M [δ]| = |M |[|δ|].

Figure 9: Terms

Furthermore, for context morphisms it is the case that

|δ↑k | = |δ|↑k

Figure 10: Morphisms

|δ+| = |δ|+

Figure 11: Morphism extension

25

Proof. The fact that the commutation is up to equality and the result merely
syntactical makes the induction straight forward. The formalized proofs
WeakenTy’CommStrip, WeakenTm’CommStrip, weakenMorCommStrip
weakenMor+CommStrip, substTyCommStrip and substTmCommStrip
can be found in translation.agda.

Proof (Stripping soundness theorem). The name of the theorem in translation.agda
is DerToNormal. To prove the soundness of the stripping we need to show that
if D is a derivation of J , then |D| is a derivation of |J |. This is proven by
induction on the derivation trees. To illustrate how this is accomplished let us
consider the case were the last rule applied was ΠElim. In this situation we
have

J := Γ `e fN : σ[N] (17)
D := |ΠElim{Dσ,Dτ ,Df ,DN}| (18)

We may assume by induction hypothesis that

1. |Dσ| is a derivation of |Γ| ` |σ|
2. |Dτ | is a derivation of |Γ|, |σ| ` |τ |
3. |Df | is a derivation of |Γ| ` |f | : Π|σ||τ |.
4. |DN | is a derivation of |Γ| ` |N | : |σ|

We need to show that |D| is a derivation of |J |. Since the stripping on the
judgments is defined inductively we know that in fact

|J | := |Γ| ` |f ||N | : |σ[N]|. (19)

Furthermore, we may use ΠElim and the induction hypothesis to get a deriva-
tion.

|Dσ| |Dτ | |Df | |DN |
|Γ| ` |f ||N | : |σ|[|N |] ΠElim

Figure 12

Observe that the judgment in eq. (19) and the conclusion of fig. 12 are almost
identical except for the type, which is |σ[N]| on one hand and |σ|[|N |] on the
other.

Since |σ[N]| = |σ|[|N |] we may rewrite the type expressions and thus the
derivation in fig. 12 is in fact a derivation of |J |.

For either syntaxes, the derivation of a context is an inductively defined
notion that essentially is a list of derivations in disguise. Therefore, the following
corollary is an immediate consequence of the previous theorem.

26

Corollary 3.3 (StripCtx). Let DΓ := (DΓ1 , . . . ,DΓn) be a derivation of `e Γ.
Then

|DΓ|Ctx := (|DΓ1 |, . . . , |DΓn |) (20)

is a derivation of ` |Γ|.

Proof. Given the inductive structure of contexts (that resembles a list structure)
the claim follows from the previous theorem.

3.2 Lift
The lifting shall be used to prove coherence results for the original syntax. We
try to understand in what sense the original syntax could be interpreted in a
locally cartesian closed category.

To achieve that, we define a function that from a mere syntactical standpoint
is a right-inverse of the stripping. Hence we proceed by first defining the lift
as function on the raw syntax. Then we prove that this function preserves
derivability. This soundness theorem is then used to draw conclusions about the
relation between the original and the explicit syntax. There are many different
choices of liftings, not all of them are good for different reasons.

Example 3.4 (Trivial syntactic lifting). Since the explicit syntax is an ex-
tension of the original syntax, there is a trivial lifting that just embeds the
original syntax into the explicit syntax. This lifting however, will not preserve
the derivability of judgments. Consider for instance the judgment Γ ` M : τ
and a derivation D = Conv{Dσ,Dτ ,DM} – i.e. the last rule applied was Conv.
Assume that Dσ, Dτ and DM were also derivations in the explicit system. In
this situation we are in general not in the position to derive Γ `e M : τ , but
instead Γ `e cσ,τM : τ . This is due to the fact that the explicit system replaces
the Conv rule with the Coerc rule.

The most straightforward approach to construct such a better behaving
right-inverse is to wrap a term and all its subterms into coercions. The co-
ercions should be chosen in such a way that for any derivable judgment the use
of the Conv rule can be substituted by the Coerc rule. Then it is very likely
that a soundness result will be provable.

3.2.1 Unique Typings

We need to find a systematic way to patch the syntax with explicit coercions
in a meaningful way. Therefore, observe that we can assign to any term a
canonical type relative to a context. Indeed, this information is already encoded
in grammar of the terms and the context is only needed to determine the typing

27

of the variables.

Ty : Ctxn → TmExprn → TyExprn
TyΓ(k) := Γn−k+1 ↑ . . . ↑︸ ︷︷ ︸

k−1 times

TyΓ(lamστ .M) := Πστ

TyΓ(appστMN) := τ [N]
TyΓ(cσ,τM) := τ

This function plays an important role in the lifting. It is well behaved for our
purposes since it commutes with substitution and weakening syntactically, as
the following two lemmas show.

Lemma 3.5 (weakenTy’-getTy in syntxexplicit.agda). Let Γ be a context and M
a term of the explicit syntax then for any k we have

TyΓ(M)↑k = TyΓ↑τ
k

(M ↑k)

Lemma 3.6 (getty-[]Ty in rulesexplicit.agda). For any explicit term u and con-
text morphism δ such that Γ `e δ : ∆ it is the case that

Ty∆(M)[δ] = TyΓ(M [δ])

The proofs of these lemmas are carried out by induction over the raw term
constructors.

In the explicit syntax it turns out that typings are in fact unique2. That is,
if Γ `e M : σ, then it is already the case that TyΓ(M) = σ. This information is
very valuable in the handling of the explicit coercions.

Note that on a syntactic level, by the previous observation the following
judgments are equal given that they are derivable.

Γ `e cσ,τM : τ
= Γ `e cTyΓ(M),τM : τ .

This makes the first index of cσ,τM redundant which is why it is justifies to
abbreviate to

Γ `e cTy,τM : τ .

Furthermore, the arguments for the Ty function can be omitted since they al-
ready occur in the judgment.

3.2.2 Lifting Raw Syntax

The idea of this lifting is to recursively wrap the terms into coercions. As dis-
cussed in the previous chapter we need to choose the correct coercion. Therefore,

2see also getTy=Ty in rules.agda

28

the term lifting needs a context and another type as argument. For brevity we
define

σ̂ := lifttyΓσ

M̂ := lifttmΓτM

Γ̂ := liftctx Γ

δ̂ := liftmorΓ∆δ

Ĵ := liftjudgJ .

Although this notation will be better to read, it is not ideal as it hides many
details and technical issues by omitting arguments that are relevant. These tech-
nicalities are better visible in the formalization. Since this work is accompanied
by a formalization I decided in favor of simplifications and abuse of notation for
a better reading experience.

We begin now to define the lift on the raw syntax.

liftty : ex.Ctxn → TyExprn → ex.TyExprn
lifttyΓU := U
lifttyΓelM := el M̂
lifttyΓΠστ := Πσ̂ τ̂

lifttm : ex.Ctxn → TmExprn → ex.TyExprn → ex.TmExprn
lifttmΓτk := cΓn−k+1,τk

lifttmΓτ lamσ0σ1.M := cΠσ0̂σ1̂,τ (lamσ0̂σ1̂. M̂)

lifttmΓτappσ0σ1fN := c
σ1̂[N̂],τ (appσ0̂σ1̂ f̂ N̂)

The next step is to define the lifting of contexts and context morphisms.

liftctx : Ctxn → ex.Ctxn
liftctx � := �
liftctx (Γ,σ) := (Γ̂, σ̂)

liftmor : ex.Ctxn → ex.Ctxm → Morn,m → ex.Morn,m

liftmorΓ∆() := ()

liftmorΓ(∆,σ)(δ,M) := (δ̂, M̂)

There are alternative ways of lifting morphisms and contexts. Most notably, we
could be more economical with the use of explicit coercions. However, it turns
out that it is not easy to decide which ones are superfluous. In particular we
need the outer most coercion. Without this outermost coercion, the soundness

29

theorem fails. But there is a price to pay: The lift does not preserve identity
context morphism syntactically. This means that is not the case that

id̂ = id.

This is noteworthy, since although it will still be the case that

Γ `e id̂ ≡ id : Γ

this will cause subtleties. The problem is that – unlike for the stripping – the
following identity fails

σ̂[M̂] := σ̂[(idn, M̂)] 6= σ[(idn,M)]̂ = σ[M]̂.

Figure 13: Substitution and Lifting

The consequences of that and how to get around it will be examined in detail
in section 3.2.4.

Eventually, the lifting of a judgment is defined by

liftjudg : Judgement→ Judgemente
(Γ ` σ)̂ := Γ̂ `e σ̂
(Γ `M : σ)̂ := Γ̂ `e M̂ : σ̂

(Γ ` σ ≡ τ)̂ := Γ̂ `e σ̂ ∼= τ̂

(Γ `M ≡ N : σ)̂ := Γ̂ `e M̂ ≡ N̂ : σ̂.

Remark 3.7. The abbreviated notation σ̂ is only underdetermined if it stands
on its own. When used in the context of a derivable judgment, it is unambiguous.
This is for the reason that for the lift of a judgment to be derivable, there is a
unique choice of auxiliary arguments. Take for instance the judgment Γ `M : σ,
whose lift is

Γ̂ `e M̂ : σ̂.

For this to be derivable it is necessary that σ̂ := lifttyΓ̂σ and M̂ := lifttmΓ̂σ̂M .
Indeed, recall from section 3.2.1 that typings are unique, and thus every deriv-
able term has a unique type. In addition to that, the context of the lift must
agree with the context of the judgment. Otherwise, variables would be wrapped
in nonsense coercions.

Having defined the lift function on the raw syntax, we turn our attention to
the properties we require it to satisfy (recall the non-example example 3.4). We
will prove that the following two statements are valid:

1. for any J ∈ Judgement it is true that |Ĵ | = J and

30

2. The lift is sound, which means that it preserves the derivability of judge-
ments.

The first point is not difficult to establish and we can prove it right away.

Theorem 3.8. The lift is a right inverse to the stripping on the raw syntax and
therefore for all types σ, terms M , contexts Γ, morphisms δ and judgments J
it is the case that

|σ̂| = σ

|M̂ | = M

|Γ̂| = Γ

|δ̂| = δ

|Ĵ | = J

Proof. The result is merely syntactic and a straight forward induction on the
raw types and terms is sufficient to prove it. One proceeds by first showing

|σ̂| = σ and |M̂ | = M ,

which then implies that

|Γ̂| = Γ , |δ̂| = δ and |Ĵ | = J

for contexts, context morphisms and judgments.3.

The rest of this chapter is dedicated to verify that also the second point is
fulfilled.

3.2.3 The Weakening

Proving that the lifting is sound requires that it commutes with de Bruijn index
shifting and substitution. For the de Bruijn index shifting we hence need a
collection of lemmas:

Lemma 3.9. Let Γ `e σ̂ be derivable, then so are

Γ↑τk `e σ↑k̂ Γ↑τk `e σ̂↑k Γ↑τk `e σ̂↑k
∼= σ↑k̂

Lemma 3.10. Let Γ `e M̂ : σ̂ be derivable, then so are

Γ↑τk `e M ↑k̂ : σ↑k̂ Γ↑τk `e M̂ ↑k : σ̂↑k Γ↑k `e M̂ ↑k≡M ↑k̂ : σ̂↑k

Lemma 3.11. Let Γ `e δ̂ : ∆ be derivable, then so are

Γ↑τ `e δ̂↑ : ∆ Γ↑τ `e δ ↑̂ : ∆
3The respective proofs of that are named strip-lift and can be found in reconstruction-

approach2.agda

31

Proof. First, observe that both Γ ↑τk `e σ̂ ↑k and Γ ↑τk `e M̂ ↑k : σ̂ ↑k are the
conclusions of the admissible weakening rules. The other judgments now follow
from the fact that we can prove a much stronger result: The de Bruijn index
shifting and the lift commute up to syntactic equality.

Lemma 3.12 (weakenTy’-liftTy and weakenTm’-liftTm). For any type σ and
natural number k it is the case that

(σ̂)↑k = σ↑k̂
Furthermore, for any term M and natural number k we have

(M̂)↑k = M ↑k̂
Proof. We proceed by induction on the raw types on one hand and on raw terms
on the other hand. By doing that, proving this lemma basically boils down to
the fact that the de Bruijn Index Shifting commutes with Ty (section 3.2.1)
syntactically. Observe that certain subtleties are swept under the rug since we
abuse notation by using the comprised notation of the lifting.

Immediate corollaries of these lemmas are similar results for contexts and
context morphisms.

Corollary 3.13. For any context Γ we have

(Γ̂)↑τk = (Γ↑τk)̂

Corollary 3.14. For any context morphism δ it is the case that

(δ̂)↑k = δ↑k̂
To summarize, we have established commutation results for the lift and the

de Bruijn index shifting up to syntactic equality.

σ̂↑k = σ↑k̂ M̂ ↑k = M ↑k̂ Γ̂↑τk = Γ↑τk̂ δ̂↑k = δ↑k̂ , (21)

Thereby the lemmas that are required to prove the soundness theorem for the
lifting are immediate consequences. Practically, this also means that we are
free to commute ↑ with substitution and the lift while not having to include
additional proof steps. Hence, we treat this result as a freebie to not be bothered
by any subtleties regarding the de Bruijn index shifting anymore.

3.2.4 Substitution

Unlike for the weakening, a merely syntactic result is not feasible for substitu-
tion. In fact to reject the syntactic commutation as

σ[δ]̂ = σ̂[δ̂] M [δ]̂ = M̂ [δ̂]

is not difficult. There are two problems that make commutation up to syntactic
equality between substitution and lifting fail:

32

1. The morphism extension δ+ does not commute with the lift.

2. Redundancy of explicit coercions when substituting a variable

The first issue arises from the fact that substitution utilizes the morphism ex-
tension, which does not commute with the lifting syntactically.

δ+̂ = (δ↑ , 1)̂ =
(
δ ↑̂ , 1̂

)
=
(
δ ↑̂ , cTy,σ1

)
6=
(
δ ↑̂ , 1

)
= δ̂+ .

That these expressions are not syntactically equal is obvious since cTy1,σ1 6= 1.
The second problem is a bit more delicate: When substituting for a vari-

able, there is a redundancy of explicit coercions occurring. Let us construct a
counterexample for this point.
Let (Γ,σ) and (∆, τ) be explicit contexts. Assume (δ,M) that is a context
morphism such that

(Γ,σ) `e (δ̂, M̂) : (∆, τ)

Hence, the lift of (δ,M) has to use (Γ,σ) and (∆, τ) as additional arguments
(that are suppressed in our notation).

Now we see that the equations

1̂[(δ̂, M̂)] (22)

= (cTy,τ↑1)[(δ̂, M̂)] (23)
= cTy[(δ̂,M̂)],τ↑[(δ̂,M̂)]M̂ (24)

6= M̂ (25)

= 1[(δ,M)]̂ (26)

do not hold, since in eq. (24) the additional outermost explicit coercion makes
the syntactic equality fail.

Having said this, a strict equality is a stronger result than needed for the
soundness theorem of the lifting. In fact the following two lemmas are sufficient
for our purposes.

Lemma 3.15 ([]-liftTy1 and []-liftTy1=). Let `e Γ, `e ∆, ∆ `e σ̂ and Γ `e δ̂ :
∆ be derivable, then

Γ `e σ[δ]̂

as well as

Γ `e σ̂[δ̂] ∼= σ[δ]̂

are derivable.

33

Lemma 3.16 ([]-liftTm2 and []-liftTm2=). Let `e Γ, `e ∆, ∆ `e σ̂, ∆ `e M̂ :
σ̂ and Γ `e δ̂ : ∆ be derivable, then

Γ `e M [δ]̂ : σ[δ]̂

and also

Γ `e M̂ [δ̂] ≡ c
σ[δ]̂,σ̂[δ̂]M [δ]̂ : σ̂[δ̂]

are derivable

These two lemmas have to be proven by simultaneous induction on the raw
type expressions and raw term expressions of the original syntax respectively.
The induction is very involving so that it makes sense to promote certain proof
steps to be a lemma on their own. Since we are not replicating the formalized
proofs here only the most relevant ones shall be mentioned. I restrain from
calling these auxiliary lemmas “corollaries” since they are part of a simultaneous
induction and some of them are actually quite complicated to prove.

First, recall that morphism extension does not commute syntactically with
our choice of lifting. Therefore, the following lemma is crucial not only for the
substitution lemmas.

Lemma 3.17 (weaken+-liftd and weaken+-lift=). Let `e Γ, `e ∆, ∆ `e σ̂ and
Γ `e δ̂ : ∆ be derivable. Then

(
Γ,σ[δ]̂

)
`e δ+̂ : (∆, σ̂)

and furthermore
(

Γ,σ[δ]̂
)
`e δ+̂ ≡ δ̂+ : (∆, σ̂)

are derivable.

Proof. Recall the definition of judgmentally equal context morphisms. We need
to show that

Γ,σ[δ]̂ `e δ ↑̂ ≡ δ ↑̂ : ∆ and

Γ,σ[δ]̂ `e 1̂ ≡ c
σ[δ]̂↑,σ̂[δ̂]↑1 : σ̂[δ̂]↑ .

In both cases the derivation follows by the respective reflexivity rules. On the
surface it might seem like this corollary could be proven before the other com-
mutation results. This however is not the case. To derive the second equality,
we need a proof of Γ `e σ[δ]̂ ∼= σ̂[δ̂], this is precisely lemma 3.15.

Following that, the following lemmas will be of great value to conclude the
induction step for cases that involve morphism extension, like for example Π or
λ. These very technical results are not very insightful and thus we will not look

34

into a proof here. The interested reader may be referred to the formalized proof
available on Github4.

Lemma 3.18 (Mor+-[]-liftTyd and Mor+-[]-liftTy=). Let `e Γ and `e ∆ be
derivations of explicit contexts as well as Γ `e δ̂ : ∆ a morphism between them.
Furthermore, let ∆ `e σ̂ and ∆, σ̂ `e τ̂ . Then

(
Γ,σ[δ]̂

)
`e τ [δ+]̂ and

(
Γ, σ̂[δ̂]

)
`e τ̂ [δ̂+] ∼= cTy

σ[δ]̂,σ̂[δ̂]τ [δ+]̂

are derivable.

Lemma 3.19 (Mor+-[]-liftTmd and Mor+-[]-liftTm=). Let `e Γ, `e ∆, Γ `e
δ̂ : ∆ and ∆ `e σ̂ be derivable as in the previous claim. Furthermore, let
(Γ, σ̂) `e M̂ : τ̂ . Then

(
Γ,σ[δ]̂

)
`e M [δ+]̂ : τ [δ+]̂

(
Γ,σ[δ]̂

)
`e M [δ+]̂ ≡ c

Ty,τ [δ+]̂

(
cTm

σ̂[δ̂],σ[δ]̂M̂ [δ̂+]
)

: τ [δ+]̂

Proof of Lemma 3.15 and lemma 3.16. The proof proceeds by induction on the
type and term expressions. Let us examine the induction step case of the type
Πστ . In this situation we are given derivations

`e Γ, `e ∆, Γ `e δ̂ : ∆ and ∆ `e Πσ̂ τ̂ .

We furthermore know that the last derivation must in fact be Π−Form{Dσ̂,Dτ̂}
with derivations

∆ `e σ̂ and (∆, σ̂) `e τ̂ .

By the induction hypothesis all the lemmas may be applied to these derivations
which gives us

Γ `e σ[δ]̂, Γ `e σ̂[δ̂] ∼= σ[δ]̂,
(

Γ,σ[δ]̂
)
`e τ [δ+]̂ and

(
Γ, σ̂[δ̂]

)
`e τ̂ [δ̂+] ∼= cTy

σ[δ]̂,σ̂[δ̂]τ [δ+]̂ (Hypo)

Our goal is to derive

Γ `e Πστ [δ]̂ and Γ `e Πσ τ̂ [δ̂] ∼= Πστ [δ]̂,

which by the definition of the lift and substitution is the same as deriving

Γ `e Π
σ[δ]̂τ [δ+]̂ and Γ `e Π

σ̂[δ̂]τ̂ [δ̂+] ∼= Π
σ[δ]̂τ [δ+]̂. (Goal)

4https://github.com/philippstassen/initiality/blob/develop1/reconstruction-
approach2.agda

35

Having that, the proof tactic for either case becomes clear: We can use Π−Form
respectively Π ≡ to conclude the claim. To avoid being repetitive we will only
inspect the latter derivation.

We need to find derivations for all presuppositions of the rule:

Γ `e σ̂[δ̂] Γ `e σ[δ]̂
(

Γ, σ̂[δ̂]
)
`e τ̂ [δ̂+]

(
Γ,σ[δ]̂

)
`e τ [δ+]̂

Γ `e σ̂[δ̂] ∼= σ[δ]̂
(

Γ, σ̂[δ̂]
)
`e τ̂ [δ̂+] ∼= cTy

σ[δ]̂,σ̂[δ̂]τ [δ+]̂

Γ `e Π
σ̂[δ̂]τ̂ [δ̂+] ∼= Π

σ[δ]̂τ [δ+]̂
Π ≡

From here it is obvious how we need to apply the induction hypothesis and the
auxiliary lemmas:

1. Γ `e σ̂[δ̂] is derivable by the admissibility of substitution and the assump-
tions ∆ `e σ̂ and Γ `e δ̂ : ∆.

2. Γ `e σ[δ]̂ follows from the induction hypothesis

3.
(

Γ, σ̂[δ̂]
)
`e τ̂ [δ̂+] can be derived from with the substitution rule. Note,

that
(

Γ, σ̂[δ̂]
)
`e δ̂+ : (∆, σ̂) is derivable since Γ `e δ̂ : ∆ is5.

4.
(

Γ,σ[δ]̂
)
`e τ [δ+]̂ is derivable by lemma 3.18.

5. Γ `e σ̂[δ̂] ∼= σ[δ]̂ is derivable by the induction hypothesis.

6.
(

Γ, σ̂[δ̂]
)
`e τ̂ [δ̂+] ∼= cTy

σ[δ]̂,σ̂[δ̂]τ [δ+]̂ is derivable by lemma 3.18.

This concludes the induction step for Π.

3.2.5 Soundness of the Lift

Now we may turn our attention to the main result of this paper, the Soundness
theorem for the lifting. A complete and formalized proof of the theorem can be
found in reconstruction-approach2.agda under the name Lift-Der.

Theorem 3.20 (Soundness Theorem for Lifting). The following four claims
are true

1. Let Γ ` σ and `e Γ̂ be derivable, then Γ̂ `e σ̂ is derivable

2. Let Γ `M : σ and `e Γ̂ be derivable, then also Γ̂ `e M̂ : σ̂ is derivable

3. Let Γ ` σ ≡ τ and `e Γ̂ be derivable, then so is Γ̂ `e σ̂ ∼= τ̂

4. Let Γ `M ≡ N : σ and `e Γ̂ be derivable, then also Γ̂ `e M̂ ≡ N̂ : σ̂ is.
5See WeakMor+ in rulesexplicit.agda

36

Proof. The proof proceeds by induction on the derivations of the original theory.
As for the previous lemmas, we will not give a complete proof here. Instead
we sketch the specific case of the App ≡ rule. Admittedly, sketching the proof
strategy does not capture the complexities that arise in the formalization.

By the induction hypothesis we have

1. A derivation of `e Γ̂ and

2. Derivations Dσ̂,Dσ≡̂,Dτ≡̂,Df≡̂,DN≡̂ of the liftings for all presuppositions
of the derivation App ≡ {Dσ,Dσ≡,Dτ≡,Df≡,DN≡} of the judgment Γ `
fN ≡ f ′N ′ : τ [N]. That is derivations of

Γ̂ `e σ̂
Γ̂ `e σ̂ ∼= σ ′̂

Γ, σ̂ `e τ̂ ∼= τ ′̂

Γ̂ `e f̂ ≡ f ′̂ : Πσ τ̂

Γ̂ `e N̂ ≡ N ′̂ : σ̂

Our goal is to derive that Γ̂ `e fN̂ ≡ f ′N ′̂ : τ [N]̂ or more precisely,

Γ̂ `e lifttmΓ̂τ [N]̂(fN) ≡ lifttmΓ̂τ [N]̂(f
′N ′) : lifttyΓ̂τ [N].

Our proof strategy is to apply the App ≡ of the explicit theory to the derivations
we got from the induction hypothesis. This exhibits

Γ̂ `e f̂ N̂ ≡ c
τ̂ [N ′̂],τ̂ [N̂]

f ′̂N ′̂ : τ̂ [N̂] (27)

To complete the proofs this derivation we need to prove additional judgmental
equalities. Hence, let us first discuss what judgments we need to derive and how
we may conclude the main theorem: Using the Coerc≡ and the CoercTrans rule
as well as the previous lemmas, we find derivations for the following equalities:

Γ̂ `e fN̂ ≡ c
τ̂ [N̂],τ [N]̂f̂ N̂ : τ [N]̂ (28)

Γ̂ `e c
τ̂ [N̂],τ [N]̂f̂ N̂ ≡ c

τ̂ [N̂],τ [N]̂cτ̂ [N ′̂],τ̂ [N̂]
f ′̂N ′̂ : τ [N]̂ (29)

Γ̂ `e c
τ [N ′]̂,τ [N]̂

c
τ̂ [N ′̂],τ [N ′]̂

f ′̂N ′ ≡ c
τ̂ [N ′̂],τ [N]̂

f ′̂N ′̂ : τ [N]̂ (30)

Γ̂ `e c
τ̂ [N ′̂],τ [N]̂

f ′̂N ′̂ ≡ f ′N ′̂ : τ [N]̂ (31)

Concatenating these equalities - by using the TmTrans rule successively –
gives the correct result. It remains to show that each of the equalities eq. (28)
- (31) is derivable.

1. Equation (28) and (31) are instances of lemma 3.16.

37

2. Equation (29) can be derived from eq. (27) and the Coerc≡ rule.

3. Equation (30) is the conclusion of the CoercTrans rule.

A simple corollary of that theorem is:

Corollary 3.21 (Lift of Context Derivations). Let ` Γ be derivable, then so is
`e Γ̂.

This concludes the definition of the stripping and the lifting function and
the proofs of their respective soundness theorem. By that, we have proven that
the normal and the explicit syntax are strongly related.

4 Conclusion

4.1 Further directions
Let us go back to the origins of the problem. One way to define an interpretation
function is to first define it for derivations and then show that this function drops
down to the syntax: For every derivable judgment the interpretation does not
depend on the choice of the derivation.

The fact that locally cartesian closed categories resemble the structure of
dependent type theories inspired R.A.G. Seely to try to interpret dependent
type theories in a locally cartesian closed category.

Among others Curien observed that a strict interpretation is not possible due
to the mismatch of syntactic and semantic substitution. The function defined
on the derivations does not drop to the syntax. To cope with that issue, he
defined a modified syntax that has explicit coercions for which coherence could
be established. Hence, locally cartesian closed categories are strict models for
the explicit syntax.

The key observation is that by relating the original and the explicit theory,
certain coherence theorems can still be proven. In a sense locally cartesian
closed categories provide a weaker kind of model for dependent type theories.
In [CGH13] this weak interpretation is made precise by defining it to be a non-
strict morphism in a category of non strict structures (as already mentioned in
the introduction).

Using the results from the previous chapter and in particular theorem 3.20
the following coherence theorems, that relate the original syntax with the ex-
plicit syntax, are provable:

Theorem 4.1. Let `e Γ and Γ `e σ be derivable, then

Γ `e σ ∼= |σ|̂

is derivable.

38

Theorem 4.2. Let `e Γ and Γ `e M : σ be derivable, then

Γ `e M ≡ |M |̂ : σ

is derivable.

Theorem 4.3. Let `e Γ, Γ `e σ, Γ `e τ and |Γ| ` |σ| ≡ |τ | be derivable, then
also

Γ `e σ ∼= τ

is derivable.

Theorem 4.4. Let `e Γ, Γ `e M : σ, Γ `e N : σ and |Γ| ` |M | ≡ |N | : |σ| then
it is also the case that

Γ `e M ≡ N : σ

is derivable

Due to time constraints it was not possible for me to include the proofs of
these theorems into the paper just yet.

These theorems are quite powerful. In combination with the soundness the-
orems and other conversion rules the following coherence results follow:

Theorem 4.5. Let `e Γ and |Γ| ` A be derivable then there exist an σ̄ such
that

Γ `e σ̄ and |Γ| ` |σ̄| ≡ σ

are derivable.

Theorem 4.6. Let Γ `e σ and |Γ| ` M : |σ| be derivable, then there exists a
M̄ such that

Γ `e M̄ : σ and |Γ| ` |M̄ | ≡M : |σ|

are both derivable.

These results are worth mentioning, since they relate to [Hof97a, §3.2.3] and
also to [PLL16, §3.1].

4.2 Concluding Remarks
We defined a syntax that has explicit coercions, and constructed two maps, the
stripping and the lifting. These functions are defined on the raw syntax but for
both cases we were able to establish the soundness theorems 3.1 and 3.20.

These results go a long way to prove certain coherence results that help
characterizing locally cartesian closed categories as weak models. For these
results we assumed that the interpretations defined in [CGH13] work similarly

39

for this “sub-syntax” (without explicit substitutions). Therefore, it would be
interesting to adapt the interpretation of [Cur93] or [CGH13] to interpret the
syntax of this paper.

Furthermore, the very slim type theory could be extended; as suggested
in [CGH13] extensional type theories, intensional type theories as well as ho-
motopy type theories could be investigated by enriching the theory with new
constructors and adapting the equality rules appropriately.

The most direct way to proceed with this work is to finish proving the coher-
ence results from section 4 and thereby also investigate how an interpretation
in a weak model would appear.

Beyond the technical results, I have found it very insightful and fun to work
with Agda, which did not only help organising the proofs but also enforced
precision in a very error-prone field of mathematics.

40

References
[Bru72] Nicolas De Bruijn. Lambda calculus notation with nameless dummies:

A tool for automatic formula manipulation, with application to the
church-rosser theorem. Indagationes Mathematicae, 1972.

[CGH13] P.L Curien, R. Garner, and M. Hofmann. Revisiting the categorical
interpretatino of dependent type theory, 2013.

[Cur93] P.L. Curien. Substitution up to isomorphism. Fundamenta Informat-
icae 19, pages 51–85, 1993.

[Hof95] Martin Hofmann. On the interpretation of type theory in locally
cartesian closed categories. In Leszek Pacholski and Jerzy Tiuryn,
editors, Computer Science Logic, pages 427–441, Berlin, Heidelberg,
1995. Springer Berlin Heidelberg.

[Hof97a] Martin Hofmann. Extensional Constructs in Intensional Type Theory.
Springer Publishing Company, Incorporated, 1st edition, 1997.

[Hof97b] Martin Hofmann. Syntax and semantics of dependent types. In Se-
mantics and Logics of Computation, pages 79–130. Cambridge Uni-
versity Press, 1997.

[ML85] Per Martin-Löf. Intuitionistic Type Theory: predicative part. Studies
in logic and foundations of mathematics, 80:73–118, 1985.

[PLL16] Chris Kapulkin Peter LeFanu Lumsdaine. The homotopy theory of
type theories. arxiv, 2016.

[See84] R. Seely. Locally cartesian closed categories and type theory. Math.
Proc. Camb. Phil. Soc. 95, 33-48, 1984.

41

