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Abstract

In this thesis I will argue that the basic concepts of thermodynamics can be
formalized using notions from control theory. Particular attention is paid
to the distinction between heat and work, and it is argued that an implicit
observability decomposition lies at the heart of the difference between the
two different forms of energy flow. An explicit theory of heat and work for
quantum systems is formulated based on this premise, and its implications
are explored.
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Notation and definitions

Throughout the thesis we’ll employ the following notations and conventions.

• The symbol , denotes equality by definition.

• W denotes work.

• Q denotes heat.

• The inner product 〈·, ·〉 is always taken to be the Hilbert-Schmidt inner
product defined 〈A,B〉 = Tr{A†B} for matrices A and B, where A†

denotes the Hermitian adjoint of A. ||·|| is the induced Hilbert-Schmidt
norm.

• Natural units are used throughout the thesis. In particular, ~ =
k = 1. ~ ≈ 1.055 × 10−34Js is Dirac’s constant, and k ≈ 1.381 ×
10−23m2kg s−2K−1 is Boltzmann’s constant.

• [·, ·] denotes the commutator, defined [A,B] = AB −BA.

• [·, ·]+ denotes the anticommutator, defined [A,B]+ = AB +BA.

• ⊗ denotes the tensor product for operators, and Kronecker product for
matrix representations.

• ⊕ denotes the direct sum.

• i denotes the imaginary number
√
−1.

• U(n) is the unitary group defined

U(n) , {U ∈ GL(n) | U † = U−1},

where GL(n) is the general linear group.

• u(n) is the Lie algebra of U(n) defined

u(n) , {X ∈ GL(n) | X† = −X},

• su(n) is the subset of u(n) defined

su(n) , {X ∈ u(n) | Tr{X} = 0},

• sp(n2 ) is the symplectic Lie algebra defined

sp(
n

2
) , {X ∈ GL(n) | XTJ + JX = 0},

where the T superscript denotes transposition, and

J ,
(

0 I
−I 0

)
.
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• adA is a linear map adA : L → L on a Lie algebra L, that for a given
element A ∈ L is defined adAB , [A,B].

• The expectation value of an observable Ŝ for a state ρ̂ is defined 〈Ŝ〉 ,
Tr{Ŝρ̂}. If the state is pure, i.e. ρ̂ = |ψ〉 〈ψ|, then we also have
〈Ŝ〉 = 〈ψ| Ŝ |ψ〉. Sometimes a subscript may be added to specify the
state for which the expectation value is computed, as in 〈Ŝ〉ρ̂. This
may arise if we are interested in calculating, say, the energy residing
in the unobservable state component specifically (see section 2.2), in
which case the subscript is ρ̂u.

• The expectation value of an observable Ŝ is termed a microcanonical
distribution if 〈Ŝ〉 ∝ Tr{Ŝ}.

• A bounded linear operator T : H → H on a Hilbert space H is said to
be trace-class if Tr{

√
T †T} <∞.

• The rank of an operator T : H → H is the dimension of its image.
All Hilbert spaces considered in this thesis can be taken to be finite-
dimensional.

• Two Lie-subalgebras L1 and L2 of L, are said to be conjugate in L, if
there exists an element g ∈ L such that L2 = gL1g

−1.
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Chapter 1

Introduction

...any logically irreversible
manipulation of information,
such as the erasure of a bit or
the merging of two computation
paths, must be accompanied by
a corresponding entropy increase
in non-information-bearing
degrees of freedom of the
information-processing
apparatus or its environment

Rolf Landauer. 1961

That there is an intimate connection between control theory and ther-
modynamics has been known since the late nineteenth century when J. C.
Maxwell considered a thought experiment wherein a sophisticated entity,
later termed Maxwell’s demon, capable of measuring the positions and ve-
locities of molecules in a gas, and capable of precise control actuation on
a microscopic scale, could potentially reduce the entropy of a system and
thereby extract a larger amount of work from it than is allowed by the second
law of thermodynamics, as classically concieved [1]. A substantial littera-
ture exists where researchers, convinced of the validity of the second law,
have attempted to argue that excess entropy must be produced during the
operations of the demon in order for the total entropy (of the gas and demon
combined) to be non-decreasing. The most widely accepted solution to the
paradox is due to R. Landauer [2], which is that excess entropy is produced
neither during the observation nor the actuation process, but by the end
of the control cycle when the memory storage of the demon is reset to its
initial state. He argued that for each bit of information erased, an amount
of heat Q ≥ T log 2 must be produced, where T is the temperature of the
storage device. While his arguments have been challenged, his conclusion
is widely percieved to be an important physical law connecting information
to entropy. Today the analysis of the thermodynamics of feedback control
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is still an active area of both theoretical and experimental research, with
papers published analyzing both quantum [3] [4] [5] [6] and classical con-
texts [7] [8] [9] [10] [11]. In this thesis I will focus on the quantum context,
although the basic argument can easily be transferred to the classical one.
For a thorough review of the intersection between thermodynamics, infor-
mation theory, and quantum mechanics, I refer the reader to [14].

The subject matter of this thesis is the first law of thermodynamics.
The key insight of the first law is that heat is a form of energy transfer,
distinct from mechanical work, and that once heat is taken into account the
total energy of a system and its environment is seen to be conserved in any
experimental set-up. The first law can be stated in the form ∆E = Q+W ,
meaning that the change in the energy of a system is equal to the sum of the
heat flow into (or out of) the system and the mechanical work performed
on the system (or by the system on its surroundings). Despite its apparent
simplicity, the exact interpretation of the aforementioned equation remains
elusive, particularly in application to quantum phenomena. The problem
can be stated succinctly: given a change in the energy of an arbitrary dy-
namical system, what are the necessary and sufficient conditions for said
energy to enter the theoretical model as heat and work respectively? No
rigorous treatment of this problem exists at the present moment, and prac-
titioners are largely forced to rely on heuristics. The following paragraph
from a standard textbook on the subject by C.J. Adkins is representative of
how the problem is handled [13]:

”We have thus defined heat as a form of energy entirely equivalent in its
effect on the total energy of a system to energy communicated by the perfor-
mance of some kind of work. The distinction between heat and work is not
always clear-cut in the sense that it is not always easy to decide whether a
particular energy contribution should be classed as heat or work... Probably,
the most convenient distinction is made in terms of whether the energy en-
ters the system by a macroscopically ordered action or by one where order
exists on the microscopic scale only. In the former case, the energy would be
communicated by work and in the latter by heat. Thus, when a piston moves
in a cylinder, the movement is macroscopic in the sense that the velocity of
the piston is superimposed on all its molecules, and the piston does work on
the gas. On the other hand, if the piston is hot, the (thermal) motions of its
molecules are not correlated, energy is communicated to the gas by processes
which are ordered on the microscopic scale only and we say that heat flows.
That it should be impossible always to make a sharp distinction between heat
and work is not surprising, for it is precisely the function of the first law to
state that they are, in certain ways, equivalent.”

The entire structure of classical thermodynamics is built upon the distinc-
tion between heat and work, and consists of an analysis of their relation,
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and in particular, the possible extent of their interconversion. Even the con-
cept of thermodynamic entropy rests upon it. In classical considerations,
the ambiguity regarding their precise definitions have not constituted a sig-
nificant problem for practitioners, as it is often intuitively clear whether a
certain energy contribution enters the theoretical model as heat or work.
But the success of classical thermodynamics makes physicists eager to ap-
ply it to the quantum realm as well, especially in recent times as technology
has matured to the point of allowing isolation and precision control of even
individual atoms and molecules. But in the quantum realm our intuitions
largely break down, necessitating a formal framework to mathematically de-
termine all relevant quantities without recourse to heuristics. But so far
the attempts to transfer thermodynamic science from the classical to the
quantum realm has been made without sufficient clarification of what is re-
ally meant by heat and work to begin with, resulting in endless confusion
and controversy. It is the contention of many researchers that the nature
of the heat-work decomposition has to be clarified before quantum thermo-
dynamics can mature to greatness, and it is considered to be among the
major outstanding theoretical problems in the field. It is the goal of this
work to contribute to the solution by presenting an explicit proposal using
quantum control theory for how heat can be distinguished from work. For
an overview of the various attempts made so far to clarify these notions in
the quantum context, I refer the reader to [12]. I claim that the heat-work
decomposition implicitly invokes an observability decomposition of all the
dynamical degrees of freedom of the system, that this is precisely what all
the heuristics classically employed conveys if interpreted carefully, and show
how it can be computed for an arbitrary quantum system subjected to ob-
servation and control. More specifically, heat corresponds to energy flow
into unobservable degrees of freedom, while work corresponds to energy flow
into the observable ones.

A point made by Adkins in the above paragraph that I wish to stress
is the following: the key feature characterizing the performance of work is
that the energy is transferred by macroscopic action. The notion of ”macro-
scopic” is itself somewhat fuzzy, but for all practical purposes, when deal-
ing with classical systems, the notion is clear enough to be fruitfully used.
However, problems arise when we wish to replicate the above heuristic for
quantum systems small enough for the distinction between ”macroscopic”
and ”microscopic” to be entirely irrelevant. I claim that this problem can be
remedied by the simple substitution of ”macroscopic action” for ”observable
action”. This substitution preserves the original meaning of ”work” in the
classical context as energy transferred by motion that we can see (macro-
scopic motion), while also making the notions of heat and work applicable
to the smallest concievable systems where all degrees of freedom are mi-
croscopic, but some of them might be observable and others not, provided
we’re measuring observables where the measurement result provides incom-
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plete information about the state of the system. 1

We will end this introduction with a concrete everyday example to illus-
trate an otherwise abstract proposition. Imagine a ball lying in front of you
on the table. Consider changing its energy in three different ways i) you lift
the ball up into the air, thereby increasing its gravitational potential energy
ii) you apply a torque to it with your fingers, thereby increasing its rota-
tional energy iii) you throw the ball out of your window, thereby increasing
its linear kinetic energy. All of these three transformations are called ”work”
by physicists. Now consider a different kind of transformation: you rub your
fingers against the ball, without perturbing its position, or its rotational and
linear velocities. This transformation is called ”adding heat” by physicists.
Why the difference in terminology? What is the phenomenological differ-
ence between the first three energy transformations on the one hand, and
the fourth? The answer provided in this thesis is this: the first three kinds
result in changes readily perceptible to us, while in the last case, it looks as
if the energy simply disappears. Given our human eyes as sensors, position,
rotational and linear velocities, are all observable degrees of freedom, while
the internal motions which result from rubbing the ball with our fingers are
unobservable.

1.1 Summary

• Chapter two will familiarize the reader with the basic notions of con-
trollability and observability for quantum systems, and some theorems
needed for this thesis are presented.

• In chapter three, a few formal results regarding observability spaces
are obtained, the most imporant being a novel proposition that links
the basis elements of the observability space to a quantum Fisher in-
formation matrix.

• Chapter four is the main bulk of this thesis ; it contains a proposition
linking unobservability to thermal equilibrium, as well as an explicit
theory of heat and work for quantum systems based on the observabil-
ity decomposition.

• The fifth chapter takes the discussion away from the abstract and
applies the theory developed in the previous one to the concrete case
of the one-dimensional quantum Ising model. It also illustrates how the
time-evolution operator, under certain cases, can be decomposed into

1Such a set of measured observables are termed ”informationally incomplete”. This
distinction between observable and unobservable degrees of freedom will be made explicit
in section (2.2)
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a product of commuting operators, one of which acts on the observable
state-component, and the other on the unobservable one.

• Chapter six concludes this thesis with a summary of arguments why a
cybernetic theory of heat and work should be taken seriously, as well
as provides avenues for further research.

I wish to clarify what is original in this thesis and what is lifted from previous
research. All of chapter two consists of a summary of previous research
relevant to this work, so here the reader won’t find anything original. In
chapter three, Propositions 2 and 3 are original, while Theorem 1 is an
application of a standard result in Lie theory to a particular case of interest.
In chapter four, Proposition 4 belongs to Domenico d’Alessandro, while
Corollary 1 is common knowedge among quantum thermodynamicists. They
are included to stress their significance in connecting thermal equilibrium
states to lack of observability. The rest of the thesis is completely original.

The main contribution is a theory of quantum thermodynamics for closed
systems under semi-classical external driving. The sceptical reader who
rejects the definitions presented as properly characterising heat and work
flows is allowed to regard this thesis are merely a study of energy flow into,
out of, and between observable and unobservable subspaces of quantum
systems, under various conditions. But these characterizations of heat and
work is already how many thermodynamicists intuitively view them, and
that while the mathematical formalization is new, there’s nothing original
with regards to their conceptual content.
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Chapter 2

Dynamics, Control and Observation

Interacting with nature teaches
us to live in relation with the
other, not in domination over
the other: You don’t control the
birds flying overhead, or the
moon rising, or the bear walking
where it would like to walk. In
my appraisal, one of the
overarching problems of the
world today is that we see
ourselves living in domination
over rather than in relation with
other people and with the
natural world.

Peter Kahn

Ignoring Peter Kahn for a while, and perhaps contributing to his angst,
we will now provide the reader with a short overview of some of the most
important theoretical tools developed so far for controlling nature at the
quantum scale. The subject of quantum control is still in its infancy, partly
due to the fact that until recently, precision control of quantum systems has
been impossible due to technological limitations. As techniques have been
developed for isolating quantum systems and tayloring high-frequency laser
pulses with a great degree of precision, interest in quantum control has been
on the rise as a consequence. In this chapter, we will present two key results
obtained which provide us with necessary and sufficient conditions for when
a quantum system is controllable and observable. But first, we will give a
short overview of the dynamical set-up.

The mathematical objects employed for describing the most general
kinds of quantum states are bounded and positive trace-class operators
ρ̂ : H → H on a complex Hilbert space H. In general these operators
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represent probabalistic ensembles of pure quantum states 1, so-called mixed
states, and for the case of rank one operators, a single determinate pure
state. These objects are called density operators, and are denoted ρ̂. Their
eigenvalues are interpreted as the probabilities that the system is found in
a given pure state at a given time, and this interpretation requires that the
constraint Tr{ρ̂} = 1 holds for all time. Observables are represented by
Hermitian and bounded trace-class operators Ŝ : H → H, with their (real-
valued) eigenvalues representing the possible measurement outcomes. The
expectation value for a given observable at time t is given by the equation
〈Ŝ(t)〉 = Tr{Ŝρ̂(t)}. Of all possible observables of a quantum system, a par-
ticular one known as the Hamiltonian, or energy operator, determines the
time-evolution of the quantum state through the Liouville-Von-Neumann
equation

d

dt
ρ̂(t) = −i[Ĥ, ρ̂(t)]. (2.1)

In this thesis, we are interested in the case where the Hamiltonian is de-
pendent on a set of complex-valued functions u : R≥0 → C, written U and
refered to as the set of admissable controls. Meaning we have Ĥ = Ĥ(u),
where the function u ∈ U can be freely chosen by the control-engineer. The
solution to Eq. (2.1) is given by

ρ̂(t) = Û †u(t)ρ̂(0)Ûu(t),

where the time-evolution operator Ûu(t) (indexed by the control u) satisfies
the operator Schrödinger equation

d

dt
Ûu(t) = −iĤ(u)Ûu(t), Ûu(0) = În×n, (2.2)

and is always a unitary operator, meaning Û †u(t) = Û−1
u (t).

Let Ŝ =
∑n

i=1 siŜi be the spectral decomposition of the observable Ŝ.

When performing a measurement of Ŝ, the state will (up to normalization)
collapse to the post-measurement state

ρ̂′ = Ŝiρ̂Ŝi,

with probability pi = Tr{Ŝiρ̂}. In everything that follows, the output of the
dynamical system will be the expectation value y(t) = 〈Ŝ(t)〉 of an arbitrary
Hermitian operator. We now have everything we need to state the definition
of a quantum control system.

1A pure state is a vector |ψ〉 residing in a separable and bounded complex Hilbert space
that satisfies the Schrödinger equation i ∂

∂t
|ψ〉 = Ĥ |ψ〉, where Ĥ is the Hamiltonian.
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Definition 1. (Quantum Control System) A quantum control system
is a quadruple Σ = (H, Ĥ(·),U , Ŝ), where H is a Hilbert space, Ĥ(·) is a
Hamiltonian operator, U is a set of admissable controls on whose elements
the Hamiltonian depends, and Ŝ is a Hermitian operator ; such that a density
matrix on H satisfies Eq. (2.1).

Having presented a brief description of the dynamical problem, we now
turn to the two central notions of control theory: controllability and observ-
ability. Everything in sections 2.1, and 2.2, except for Theorem 2, can be
found in [15] to which the reader is referred to for further details.

2.1 Controllability

There are various notions of controllability considered in the quantum con-
trol litterature, two prominent examples being operator controllability and
pure state controllability. If a system is operator controllable, then, by suit-
able choices of controls u ∈ U , any unitary transformation can be imple-
mented on the system. If a system is pure state controllable then any pure
state can be mapped to any other, by suitable control choices. Here we focus
on the first, which is also the stronger of the two conditions. The operator
controllability problem consists of determining the subset R ⊆ U(n) of all
n×n unitary matrices that can be obtained by selection of control functions
u ∈ U . Namely that of determining the reachable set

R ,
{
Û ∈ U(n) | Û = Ûu(t) for some t ∈ R≥0, u ∈ U ,

where Ûu(t) satisfies Eq. (2.2)
}
.

We will now state the definition of operator controllability.

Definition 2. (Operator Controllability) If for a dynamical system Σ
satisfying Eq (2.1), the corresponding reachable set R is equal to the set
U(n) of n × n unitary matrices, or equal to the subgroup SU(n) of U(n),
then Σ is said to be operator controllable.

Remark. The reason why R = SU(n) suffices for operator controllability
even though dim SU(n) = dim U(n)−1, is that control over the global phase
of the system is irrelevant as it leaves no observable consequences.

If Ûu(t) is the solution to Eq (2.2) with initial condition equal to În×n,
then the solution with initial condition equal to Â is equal to Ûu(t)Â. This
fact means that the set R is closed under concatenation of controls, and is
therefore a semi-group. Moreover, as it turns out, it’s a Lie group. Assuming
U to be equal to the set of piece-wise constant complex valued functions,
as is standard procedure in quantum control theory, it can be shown that R
can be obtained from an object known as the dynamical Lie algebra. This
will now be stated without proof as a theorem 2

2The proof can be found in Appendix D in [15].
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Theorem 1. (A Controllability Condition) Consider a quantum system
with a bilinear Hamiltonian Ĥ = Ĥ0 +

∑m
j=1 uj(t)Ĥi, where uj ∈ U and

U is the set of piece-wise constant complex valued functions uj : R≥0 → C.
Let L be the Lie algebra generated by i{Ĥ0, Ĥ1, ..., Ĥm}, namely

L ,
∞⊕

j=0

ad j

i{Ĥ0,Ĥ1,...,Ĥm}
i{Ĥ0, Ĥ1, ..., Ĥm}.

Then the reachable set R is given by the exponential of the dynamical Lie
algebra. In equational form

R = eL.

Furthermore, if L = su(n) or L = u(n), then the system is operator control-
lable.

Remark. Pure state controllability is a weaker condition, and here it suffices
that L is either conjugate to sp(n2 ) in su(n), or equal to L = span{iÎn×n}⊕L̃,

where L̃ is conjugate to sp(n2 ) in su(n).

2.1.1 Operator Controllability of a Subspace

We will end this section with a result obtained by G. Kato et al. [16]
concerning controllability when the application of controls is restricted to
one part of a bipartite system. The scenario considered is a bipartite system
with Hilbert space HE ⊗HΣ, where the interaction between the two parts is
given by the Hamiltonian ĤI . It is assumed that any unitary transformation
can be implemented on HΣ, so that the full dynamical Lie algebra L is the
one generated by iĤ0 and ÎE⊗su(dim(HΣ)). They defined the connected Lie
algebra Lc as the smallest ideal of L containing ÎE ⊗ su(dim(HΣ)), and the
disconnected Lie algebra Ld as the set of all elements of L which commutes
with Lc. Formally

Lc , span{[· · ·[[g, g1], g2, · · ·, gn] | n ∈ N, gi ∈ L, g ∈ ÎE ⊗ su(dimHΣ)},
Ld , {g ∈ u(dimHE · dimHΣ) | [g, g′] = 0 ∀g′ ∈ Lc}.

In their paper they obtained several significant results regarding the struc-
ture of the total Hilbert space and these two dynamical Lie algebras. We
will now state the one of interest to the subject of this work.

Theorem 2. (Control Under Limited Access) Assume that dimHΣ ≥
3. Then the Hilbert space of the environment can be written as a direct sum
of product Hilbert spaces of the form

H = HΣ ⊗
(⊕

j

HBj ⊗HRj

)
, (2.3)
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and in accordance with this decomposition, the connected and disconnected
Lie algebras are given by

Lc =
⊕

j

Lc,j =
⊕

j

{ÎBj} ⊗ su(dim HRj · dim HΣ), (2.4)

Ld =
⊕

j

Ld,j =
⊕

j

u(dim HBj )⊗ {ÎRj ⊗ ÎΣ}. (2.5)

The interaction Hamiltonian can be written ĤI = ĥc + ĥd, where Ĥc ∈ Lc
and Ĥd ∈ Ld.

The relevance of the above theorem to this thesis is that its the first ex-
ample (to the knowledge of the author) of a controllability decomposition for
quantum systems. Here the interaction Hamiltonian is decomposed into a
part which is controllable (hc), and a part which is not (hd) ; and the Hilbert
space of the environment is decomposed into a sum of products HBj ⊗HRj ,
where each HRj is controllable and each HBj is not.

In chapter four we will seek to explicate the notions of heat and work, and
by implication other thermodynamic notions as well, using an observability
decomposition which can be defined for any quantum system without any
restrictions on the availability of controls. For a full picture of the interrela-
tion between thermodynamics and control theory the significance of control-
lability per se with regards to heat and work should explored as well. But
as a controllability decomposition does not exist for general Von-Neumann
Liouville systems as of yet, this thesis will primarily be centered around ob-
servability rather than controllability as the key factor differentiating heat
and work.

2.2 Observability

Observability is the notion that the internal state of a system, in our case
the quantum state vector or the density matrix, can be determined from
measurements of its input-output relations. Since values of observables are
measured with a probability distribution that depends on the state of the
system, sequential measurements on an ensemble of identically prepared
systems should give us information about their internal states. Such a pro-
cedure is known as quantum state tomography. But under what conditions
can the full state be determined from such sequential measurements? Cer-
tainly, projective measurements of an arbitrary observable will not do. In
this section we will present a theorem courtesy of Domenico D’Alessandro
which allows us, given a measured observable and a dynamical Lie algebra,
to partition all states of a quantum control system into equivalence classes of
indistinguishable states, as well as find a way to determine though suitable
measurements and application of controls which equivalence class any given
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initial state belongs to.
Consider a quantum control system Σ in the density matrix formalism,

with a dynamical evolution determined by the Liouville equation

dρ̂

dt
= [−Ĥ(u(t)), ρ̂], ρ̂(0) = ρ̂0, y(t) = Tr{Ŝρ̂},

and denote the solution to the above equation as ρ̂(t, u, ρ̂0). We now state
the definition of indistinguishability, as well as of observability.

Definition 3. (Indistinguishability and Observability) A pair of states
(ρ̂0, ρ̂

′
0) are said to be indistinguishable, denoted by ρ̂0 ∼ ρ̂′0 if for any control

u ∈ U we have

Tr{Ŝρ̂(t, u, ρ̂0)} = Tr{Ŝρ̂(t, u, ρ̂′0)}, ∀t ∈ T .

The system Σ is said to be observable if

ρ̂0 ∼ ρ̂′0 ⇐⇒ ρ̂0 = ρ̂′0.

We can also use the relation ρ̂(t) = Û(t)ρ̂(0)Û †(t) together with the cyclic
property of the trace-operation to rewrite the indistinguishability condition
as

Tr{Û †ŜÛ ρ̂0} = Tr{Û †ŜÛ ρ̂′0}, ∀Û ∈ eL.

Verifying that”∼” is an equivalence relation is straightforward. Reflexiv-
ity follows from the uniqueness of the solutions to the Liouville equation.
Symmetry and transitivity follows follows from the symmetry and transitiv-
ity of the equality relation ”=”. The indistinguishability relation therefore
partitions the set of density operators on H into equivalence classes of in-
distinguishable states. Moreover, such classes form invariant sets under the
Liouville dynamics.

In what follows we will instead of Ŝ consider the traceless matrix Ŝ′ =
Ŝ− Tr{Ŝ}

n În×x. This has the effect of shifting the output by a constant value

Tr {Ŝ}, which will have no effect on the considerations that follows. We
can now present the main result on the observability of finite-dimensional
quantum systems. This theorem is due to Domenico d’Alessandro, and can
be found in [15]. The proof will be presented in full, since this thesis, with
regards to its mathematics, is largely a set of corollaries to this highly un-
derappreciated theorem.

Theorem 3. (Observability Decomposition) Given a quantum control
system Σ, Σ is observable if and only if

V ,
∞⊕

j=0

adjLspan{iŜ′} = su(n).
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The object V is called the observability space. If we decompose the den-
sity operator as ρ̂ = ρ̂o + ρ̂u, where ρ̂o ∈ iV and ρ̂u ∈ iV⊥, where V⊥ is
the orthogonal complement of V in u(n), we obtain the following dynamical
decomposition

d

dt
ρ̂o = −i[Ĥ(u), ρ̂o], (2.6)

d

dt
ρ̂u = −i[Ĥ(u), ρ̂u]. (2.7)

The output depends only on ρ̂o and is given by

y(t) =
1

n
Tr{Ŝ}+ Tr{Ŝρ̂o}.

Moreover, initial states ρ̂′1 and ρ̂′2 are indistinguishable if and only if ρ̂′1−ρ̂′2 ∈
iV⊥.

Proof : We begin by decomposing the density matrix as ρ̂ = ρ̂o + ρ̂u,
where ρ̂o ∈ iV and ρ̂u ∈ iV⊥. We then obtain a decomposition of the
Liouville equation as

d

dt
ρ̂o +

d

dt
ρ̂u = [−iĤ(u), ρ̂o] + [−iĤ(u), ρ̂u].

The observability space is constructed by taking repeated commutators with
elements in L, so any element initially in iV will stay there when commuting
with −iĤ(u). The same holds for the orthogonal complement, so we have

[−iĤ(u), iV] ⊆ iV, [−iĤ(u), iV⊥] ⊆ iV⊥.

This implies that we can decompose the dynamics of ρ̂ as in Eq. (2.3-4).
The decomposition of the ouput y(t) follows from the fact that ρ̂o is tracelss,
while ρ̂u has trace one. To see this, we note that ρ̂u ∈ iV⊥ and Ŝ′ ∈ iV,
which implies that

Tr{Ŝ′ρ̂u} = Tr
{

(Ŝ − Tr{Ŝ}
n

Î)ρ̂u
}

= 0⇒ Tr{Ŝρ̂u} =
Tr{Ŝ}
n

.

Now consider two initial states ρ̂′1 and ρ̂′2, and decompose the corresponding
solutions to Eq. (2.2) into observable and unobservable parts according to

ρ̂(t, u, ρ̂′1) = ρ̂o(t, u, ρ̂
′
1) + ρ̂u(t, u, ρ̂′1),

ρ̂(t, u, ρ̂′2) = ρ̂o(t, u, ρ̂
′
2) + ρ̂u(t, u, ρ̂′2).

If the output as a function of time corresponding to the two initial states
are y1(t) and y2(t), we see that their difference is given by

y1(t)− y2(t) = Tr
{
Ŝ(ρ̂0(t, u, ρ̂′1)− ρ̂0(t, u, ρ̂′2))

}
.
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The above equation implies that the outputs are identical, and hence ρ̂′1 ∼ ρ̂′2
if ρ̂′1 − ρ̂′2 ∈ iV⊥. To prove the implication in the other direction, assume
that ρ̂′1 ∼ ρ̂′2. We then have

Tr
{
Û †Ŝ′Û(ρ̂′1 − ρ̂′2)

}
= 0.

Assume that Û = eR̂
†
1t1 for R̂1 ∈ L, and t1 ∈ R. Then

∂

∂t
Tr
{
eR̂1t1Ŝ′eR̂

†
1t1(ρ̂′1 − ρ̂′2)

}∣∣∣∣
t1=0

=

Tr
{

(R̂1Ŝ
′ + Ŝ′R̂†1)(ρ̂′1 − ρ̂′2)

}
= 0.

Since the elements of L are skew-Hermitian the above equation can be
rewritten as adR̂1

(ρ̂′1 − ρ̂′2) = 0. By induction one can prove that for any

Û = eR̂
†
1t1eR̂

†
2t2 ...eR̂

†
ktk with R̂1, ..., R̂k ∈ L and t1, ..., tk ∈ R we have

∂k

∂t1...∂tk
Tr
{
eR̂1t1 ...eR̂ktk Ŝ′eR̂

†
1t1 ...eR̂

†
ktk(ρ̂′1 − ρ̂′2)

}∣∣∣∣
t1=...=tk=0

=

Tr
{

adR̂1
...adR̂k

Ŝ′(ρ̂′1 − ρ̂′2)
}

= 0.

This shows that for any R̂ ∈ V we have Tr {R̂(ρ̂′1 − ρ̂′2)} = 0, which in turn
implies that ρ̂′1 − ρ̂′2 ∈ iV⊥. If we assume that V = su(n) then ρ̂′1 − ρ̂′2 ∈
span {Î}, which implies that the system is observable since both ρ̂′1 and ρ̂′2
have trace one. �

Remark. (Operator Controllability Implies Observability) Since the
Lie algebra su(n) is simple, and V is an ideal of su(n), it follows that any
operator controllable system is observable for any Ŝ not proportional to the
identity matrix.

Remark. (Observability and Informational Completeness) If V =
su(n), then the set of all possible time-evolved observables

{Û †uŜÛu|u ∈ U},

is said to be informationally complete, meaning sequential measurements
of Ŝ on an ensemble of identically prepared systems, with application of suit-
able controls, can yield enough information to allow for full state determi-
nation. If V 6= su(n), then the above set is said to be informationally incom-
plete. If the argument presented in this thesis is correct, thermodynamics,
at least as classically concieved, has no meaning when V = su(n); it is es-
sentially a phenomenological theory of energy balance accounting when there
are unobservables degrees of freedom, and a part of the energy is allowed to
dissapear from observable dynamics, resulting in ”energy degradation”, or
”waste”. The energy which seemingly disappears is called ”heat”.
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Assume that we have chosen a control u(t) ∈ U with input values
in [0, T ], for some T ∈ R+, such that the solution Ûu of the operator
Schrödinger equation satisfies

span t∈[0,T ]{Û †u(t)Ŝ′Ûu(t)} = iV.

The output for this trajectory is given by

y(t) = Tr {Û †uŜ′Ûu(ρ̂0 −
1

n
În×n)}+ Tr {Ŝ}.

We can now define an operator Wu : H n×n
0 → H n×n

0 on traceless n × n
Hermitian matrices as

Wu(ρ̂0) ,
∫ T

0
Û †u(t)Ŝ′Ûu(t)Tr

{
Û †u(t)Ŝ′Ûu(t)ρ̂0

}
dt.

We now state the essential facts about this operator, which is called the
observability gramian.

Proposition 1. (Observability Gramian) The range of Wu is equal to
iV, and the kernel is equal to iV⊥.

Proof : I begin by proving that the kernel of Wu lies in the orthogonal
complement iV⊥ of the observability space. Assume thatWu(ρ̂0) = 0. Since
the trace-operation is linear we can bring it under the integral sign and
obtain

Tr
{
ρ̂0Wu(ρ̂0)

}
=

∫ T

0
Tr
{
ρ̂0Û

†
uŜ
′ÛuTr (Û †uŜ

′Ûuρ̂0)
}
dt.

The inner trace is simply a scalar, and since the trace-operation is cyclic we
can bring ρ̂0 to the right and obtain

Tr
{
ρ̂0Wu(ρ̂0)

}
=

∫ T

0

(
Tr
{
Û †uŜ

′Ûuρ̂0

})2
dt = 0,

which implies that Tr{Û †uŜ′Ûuρ̂0} = 0 almost everywhere, which implies

that ρ̂0 ∈ iV⊥. Conversely, assume that ρ̂0 ∈ iV⊥. Then Û †uŜ′Ûuρ̂0 = 0 and
it follows immediately that Wu(ρ̂0) = 0.

By assumption the span of Û †uŜ′Ûu as t ranges over [0, T ] is equal to iV,
so the integrand in Wu lies in iV as well. Since iV is a vector space it is
closed under addition, and therefore also under integration, so Wu(ρ̂0) lies
in iV as well. �

Remark. (State Determination) Noting that

∫ T

0
Û †uŜ

′Ûu(y − Tr{Ŝ})dt =

∫ T

0
Û †uŜ

′ÛuTr
{
Û †uŜ

′Ûu(ρ̂0 −
1

n
Î)
}
dt,

20



we can use the observability gramian to obtain an equation for the initial
state ρ̂0 modulo elements in iV⊥

ρ̂0 =
1

n
În×n +W−1

u

(∫ T

0
Û †uŜ

′Ûu(y − Tr{Ŝ})
)
.

To conclude this section, we emphasize that the two key objects of analy-
sis are the dynamical Lie algebra L, characterizing all state transformations
that can be implemented on the system, and the observability space V,
which decomposes the state into observable and unobservable components.
A cybernetic theory of heat and work for quantum systems would have to
explicate what the structure of these two objects imply regarding the heat-
work decomposition, and by implication other thermodynamic quantities.
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Chapter 3

Some Results on Observability Spaces

Analysis of the structure of the observability space V and its relation to the
dynamical Lie algebra L, under various conditions imposed on the measured
observable Ŝ, and for different algebras L, has to date not been performed.
As the pair (L,V) codifies important information regarding the controlla-
bility and observability of the system under consideration, analysis of their
structure and interrelation under various measurement-and-control scenar-
ios is bound to produce results of practical importance. And if the central
proposition of this thesis is correct, namely that thermodynamics is inti-
mately tied with notions of control and observation, it might also yield
results of thermodynamic significance.

In this section, we will merely scratch the surface of the issue by pre-
senting a simple factorization result for time-translation operators under
the condition that Ŝ ∈ L, as well as computing V for the limited access sce-
nario described in Section 2.2.1. But we begin this section by illustrating an
application of the observability space to the practical problem of state iden-
tification, and the commonly used metric of Fisher information to quantify
the minimum estimation errors of quantum measurements.

3.1 Observability and Fisher Information

In the theory of quantum state estimation, among the foundational results is
the Quantum Cramer-Rao inequality, named after its classical counterpart,
which states that for an r-parameter estimation problem the covariance
matrix of the estimate θ̃ (for the case of an unbiased estimator) satisfies the
inequality

Cov(θ̃) ≥ F−1,

where F is a symmetric r × r matrix called the Fisher information. Simply
put, the diagonal entries of the Fisher information provides a lower bound
for the variance in the estimates of each θi, while the off-diagonal elements
bounds the correlations between them from below. The Fisher information
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is not unique, but can be defined in a variety of ways, and here we will focus
on a particular kind of Fisher information defined using so-called symmetric
logarithmic derivative operators. Consider a density matrix ρ̂(θ) dependent
on r parameters (θ1, ..., θr). One begins by defining the SLD operators L̂k,
for k = 1, ..., r, by the equations

∂

∂θk
ρ̂(θ) =

1

2
[L̂θk , ρ̂]+.

The matrix elements of the Fisher information are then defined by the equa-
tion

Fk,j ,
1

2
Tr{ρ̂[L̂θk , L̂θj ]+}.

I will now prove a proposition showing that when ρ̂ is a pure state, the
components of F can be written as inner products of basis operators of V.

Proposition 2. (Fisher Information as a Gramian) If the quantum
state ρ̂ is pure, then the Fisher information can be expressed in terms of the
basis matrices {V̂k}dimVk=1 of the observability space as

Fk,j =
1

2
Tr{[V̂k, V̂j ]+} = 〈V̂k, V̂j〉.

Proof : Assume that dim(V) = r and let ρ be written in the form

ρ̂(θ) = ρ̂u +
r∑

j=1

θj V̂j ,

where we have introduced the notation V̂j for the basis elements of iV, and
θj , Tr{V̂j ρ̂}. The r-parameter estimation problem is now formulated as
a problem of finding the projections of ρ̂ along every basis operator of iV.
Taking the partial derivative of ρ̂ with respect to one of the parameters we
obtain

∂

∂θj
ρ̂(θ) = V̂j =

1

2
[L̂θj , ρ̂]+ =

1

2
(L̂θj ρ̂+ ρ̂L̂θj ).

Since the basis operators V̂j are traceless, we see that the expectation values
of the SLD operators vanish, i.e.

〈L̂θj 〉 = Tr{L̂θj ρ̂} = Tr{V̂j} = 0.

By employing the cyclic property of the trace, a straightforward calculation
shows that

Tr{[V̂k, V̂j ]+} = Tr{2L̂θk ρ̂L̂θj ρ̂+ ρ̂2L̂θk L̂θj + ρ̂2L̂θj L̂θk}.
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If the quantum state is pure, then the density matrix is a projection with
ρ̂2 = ρ̂, and

Tr{2L̂θk ρ̂L̂θj ρ̂} = 2〈L̂θk〉〈L̂θj 〉 = 0.

To see why the first equation in the above holds, write it out using the
bra-ket notation as

Tr{2L̂θk ρ̂L̂θj ρ̂} = Tr{2L̂θk |ψ〉 〈ψ| L̂θj |ψ〉 〈ψ|}.

Note that

〈ψ| L̂θj |ψ〉 = 〈L̂θj 〉

is a scalar, and can therefore be pulled out of the trace. The identity now
follows.

Writing out the Fisher information explicitly

Fk,j =
1

2
Tr{ρ̂L̂θk L̂θj + ρ̂L̂θj L̂θk},

we now see that under the assumption of purity,

Fk,j =
1

2
Tr{[V̂k, V̂j ]+}.

By the cyclic property of the trace, and the hermiticity of the matrices {V̂k},
this is equal to 〈V̂k, V̂j〉. �

We see that the Fisher information for pure states takes the form of a
”gramian” formed from the basis operators of V

Fθk,θj =




〈V̂1, V̂1〉 〈V̂1, V̂2〉 . . . 〈V̂1, V̂r〉
〈V̂2, V̂1〉 〈V̂2, V̂2〉 . . . 〈V̂2, V̂r〉

...
...

. . .
...

〈V̂r, V̂1〉 〈V̂r, V̂2〉 . . . 〈V̂r, V̂r〉


 .

An exactly analogous argument as in the above proof shows that in the case
of single-parameter estimation of a pure quantum state we have Fθ = ||V̂ ||2.
We will now leave the subject of state estimation, but the Fisher information
will occur later in this thesis when we consider heat and work flows for pure
states.

3.2 Factorization of Time-Translation Operators

Within the context of thermodynamics, typical observables under measure-
ment are ones associated with the energy. For this reason it is of particular
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interest to study the implications on the structure of (L,V) in the case
where iŜ ∈ L. This means that we are either measuring the energy of the
system under isolation, an interaction energy between system and control
field, a commutator of drift or control Hamiltonians, or any combination of
the aforementioned. We begin with the following theorem, which states that
any Û ∈ eL can be factorized into two commuting parts, one of which leaves
the output y(t) = Tr{Ŝρ̂} invariant. 1

Theorem 4. (Factorization of Time-Translation Operators) Suppose

we are measuring iŜ ∈ L, and that V 6= L. Then eV and eL∩V
⊥

are both
normal subgroups of eL, and any element Û ∈ eL has a unique decomposition
of the form Û = ÛoÛu, where Ûo ∈ eV and Ûu ∈ eL∩V⊥

, such that [Ûo, Ûu] =
0. Moreover, we have the following isomorphisms

eL/eL∩V
⊥ ' eV , eL/eV ' eL∩V⊥

.

Proof : Since iŜ ∈ L, and L is closed under commutatation, it holds
that V ⊆ L. Assuming the inclusion to be strict, the commutation relation
[L,V] ⊆ V implies that V is a non-trivial ideal of L. Furthermore, an ideal of
a Lie algebra is a subalgebra closed under the Lie bracket, and is therefore
itself a Lie algebra. By a standard result, since V is an ideal of L, the
associated Lie group eV is a normal subgroup of eL (this fact is proven in
for example [.]). The quotient group eL/eV , consisting of all left (or right)
cosets egeV = {egev|v ∈ V}, where g ∈ L, is a Lie group of dimension

dim(eL/eV) = dim(eL)− dim(eV).

The orthogonal complement of V in L with respect to the Killing form

〈g, g′〉K , Tr ( adg adg′),

namely the set

V⊥L,K , {g ∈ L | 〈g, g′〉K = 0 ∀g′ ∈ L},

is also an ideal. To see this, we employ the associativity of the Killing form.
If vu ∈ V⊥L,K , then 〈vu, v〉K = 0 for all v ∈ V. Since V is an ideal, for any
g ∈ L we have [g, v] ∈ V. We now obtain

〈[vu, g], v〉K = 〈vu, [g, v]〉K = 0 =⇒ [L,V⊥L,K ] ⊆ V⊥L,K .

Assuming the Killing form is proportional to the Hilbert-Schmidt inner prod-
uct 2, every element of V⊥L,K is also an element of V⊥, and we therefore have

1This is a standard result in the theory of Lie algebras merely specialized to this
particular case, but as I couldn’t find a proof I decided to include an attempt (partly) of
my own.

2This is very often the case, and perhaps (?) always the case for subalgebras of su(n),
which is what we’re dealing with here.
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V⊥L,K = L ∩ V⊥. We can now conclude, as before, that the Lie group eL∩V
⊥

is a normal subgroup of eL, and the quotient eL/eL∩V
⊥

is a Lie group. Now
decompose L into a direct sum as

L = V ⊕ (L ∩ V⊥).

The above implies that any element Û ∈ eL can be decomposed uniquely as
Û = ÛoÛu, where Ûo ∈ eV and Ûu ∈ eL∩V⊥

. A proof of this can be found in
[15].

To see that [V,L∩V⊥] = 0, we first note that V ∩V⊥ = ∅. Now, since V
is an ideal of L and L ∩ V⊥ ⊂ L, we have [V,L ∩ V⊥] ⊆ V. Similarly since
L ∩ V⊥ is an ideal of L and V ⊂ L, we have [V,L ∩ V⊥] ⊆ L ∩ V⊥. As the
intersection between the two sets are empty, the commutator must vanish.
We now have everything we need to prove the isomorphisms. Consider the
function φ : eL → eV defined φ , π ◦ f where

f : eL → eV × eL∩V⊥
; Û 7→ (Ûo, Ûu),

π : eV × eL∩V⊥ → eV ; (Ûo, Ûu) 7→ Ûo.

Employing factorization Û = ÛoÛu and the commutation relation [V,L ∩
V⊥] = 0 we obtain

f(Û1Û2) = f(Û1,oÛ1,uÛ2,oÛ2,u) = f(Û1,oÛ2,oÛ1,uÛ2,u) = (Û1,oÛ2,o, Û1,uÛ2,u).

Applying the projection π to the above yields

φ(Û1Û2) = Û1,oÛ2,o = φ(Û1)φ(Û2),

from which we can conclude that φ is a homomorphism. Moreover, since
V ⊂ L, it is also surjective, and it is easy to see that ker φ = eL∩V

⊥
. The

first isomorphism theorem for groups now implies that

eL/eL∩V
⊥ ' eV .

An exactly analogous argument shows that

eL/eV ' eL∩V⊥
,

and this completes the proof. �
Remark. The commutator relation [V,L∩ V⊥] = 0 gives an interpretation
of elements in L ∩ V⊥ as those elements of L generating time-translations
Û that leave the output invariant. To see this, note that for any matrices A
and B we have

[A, eB] =
∞∑

i=1

[A,Bi]

i!
,

from which it follows that if g ∈ L ∩ V⊥ then [eg, Ŝ] = 0, and consequently
for Û = eg we have Û †ŜÛ = Û †Û Ŝ = Ŝ.
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3.3 Access Restricted to an Operator Controllable
Subspace

We will now compute the observability space for the bipartite scenario con-
sidered in section (2.2.1), using the results of G. Kato et al. as a springboard.

Proposition 3. (Observability Under Limited Access) Assuming the
scenario described in section (2.2.1), if Ŝ = ÎE ⊗ ŜΣ is a non-trivial local
observable on Σ, then V = Lc.

Proof : We decompose the identity operator on the environment ac-
cording to the Hilbert space decomposition Eq. (2.3) as

ÎE =
⊕

j

ÎBj ⊗ ÎRj .

We first consider the contribution to V by the disconnected Lie algebra.
Let ĝ ∈ Ld. Taking the commutator with Ŝ we obtain, with the notation
ĝBj ∈ u(dim HBj ) for an arbitrary element acting on the subspace HBj ,

[
ĝ, Ŝ

]
=
[
ĝ, ÎE ⊗ ŜΣ

]
=

[⊕

j

ĝBj ⊗ ÎRj ⊗ ÎΣ,

(⊕

j

ÎBj ⊗ ÎRj

)
⊗ ŜΣ

]
=

⊕

j

[
ĝBj ⊗ ÎRj ⊗ ÎΣ, ÎBj ⊗ ÎRj ⊗ ŜΣ

]
.

In transitioning to the second line we used the fact that tensor products dis-
tribute over direct sums, and applied the definition of Lie brackets for direct
sums of Lie algebras. Since we are dealing exclusively with matrix subalge-
bras of su(n), we can apply the formula obtained in [24] for commutators of
tensor products of matrices, in which case the above becomes

⊕

j

1

2

([
ĝBj , ÎBj

]
⊗
{
ÎRj ⊗ ÎΣ, ÎRj ⊗ ŜΣ

}
+
{
ĝBj , ÎBj

}
⊗
[
ÎRj ⊗ ÎΣ, ÎRj ⊗ ŜΣ

])
.

Noting that the commutator of an arbitrary matrix with the identity van-
ishes, we see that [ĝ, Ŝ] = 0. We conclude that the observation space is
generated solely by taking commutators with elements from Lc, i.e.

V =
∞⊕

i=1

adiLspan
{
iÎE ⊗ ŜΣ

}
=
∞⊕

i=1

adiLcspan
{
iÎE ⊗ ŜΣ

}
.

If instead ĝ ∈ Lc, with ĝRj ,Σ ∈ su(dim HRj⊗HΣ) being an arbitrary element
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acting on the subspace HRj ⊗HΣ, an analogous calculation yields the result

[ĝ, Ŝ] =
⊕

j

[
ÎBj ⊗ ĝRj ,Σ, ÎBj ⊗ ÎRj ⊗ ŜΣ

]
=

⊕

j

1

2

([
ÎBj , ÎBj

]
⊗
{
ĝRj ,Σ, ÎRj ⊗ ŜΣ

}
+
{
ÎBj , ÎBj

}
⊗
[
ĝRj ,Σ, ÎRj ⊗ ŜΣ

])
=

⊕

j

ÎBj ⊗
[
ĝRj ,Σ, ÎRj ⊗ ŜΣ

]
,

which implies that [Lc, Ŝ] ⊆ Lc. Since Ŝ is an element of ÎE ⊗ su(dimHΣ),
it is also an element of Lc which contains the former. We conclude that V is
an ideal of Lc. To proceed from here, note that Lc is a direct sum of simple
ideals Lc,j , and is therefore semi-simple. Since Ŝ ∩ Lc,j 6= ∅ for every j, the
only possible ideal is the maximal ideal, namely Lc itself. �.
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Chapter 4

Quantum Thermodynamics

Every mathematician knows it is
impossible to understand an
elementary course in
thermodynamics.

V.I. Arnold

Thermodynamics holds the peculiar position in the pantheon of physical
theories of simultaneously being among the most fruitful with regards to
its practical applications, while also having the most obscure and incompre-
hensible foundational concepts. I believe this confusion to be partly due to
many physicists interpreting thermodynamics as purely a physical theory.
Namely, that it speaks of what happens in nature itself, without reference
to anything parochial and human. The author contends that it is equally a
theory of engineering, and is deeply intervowen with cybernetic notions. It
is perhaps even tied to economic notions, as work is sometimes referred to as
energy which is useful, or even more explicitly, as energy of economic value.
That this is the case should not be surprising to the historian of science,
as its early practitioners were principally interested in maximizing the per-
formance of heat engines for industrial purposes. Control theory contains
the tools to make these concepts explicit, and if we follow this path then
hopefully mathematicians might someday understand an introductory text
in thermodynamics.

This chapter will begin with a section illustrating a link between observ-
ability and thermal equilibrium. It will then move on to the main part of
this thesis in which a cybernetic theory of heat and work is developed.

4.1 Microcanonical Thermal Equilibrium

Some physical systems, when left to themselves, will eventually reach a sta-
tionary state at which no further changes are instrumentally perceptible,
which can be characterized as a state of maximum entropy. Such a state is
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called thermal equilibrium. Experimentally observed properties of equilib-
rium states include time-translational invariance, robustness against small
perturbations, as well as being for all practical purposes characterized by a
number of parameters very small compared to the dimensionality of the com-
plete classical or quantum model. Equilibrium states that exchange neither
heat nor particles with their surroundings are called microcanonical. It is a
well known fact that at microcanonical equilibrium, the observable output is
given by the trace of the corresponding Hermitian operator, normalized by
the dimensionality of the state space. This is taken as a necessary condition
for a system to be at microcanonical equilibrium.

In this section I will present an immediate corollary of the observability
decomposition which proves that an observable output satisfies the micro-
canonical condition if and only if the state lies in the orthogonal comple-
ment of the observation space corresponding to the measured observable.
The proof used here is contained in the proofs of Theorem 3, and in the
derivation of properties of the observability gramian.

Proposition 4. (The Equilibrium State is Unobservable) Consider a
quantum control system Σ = (H, Ĥ(·),U , Ŝ). Then ρ̂ ∈ iV⊥ is a necessary
and sufficient condition for a microcanonical distribution of Ŝ. Furthermore,
the microcanonical distribution is stable under any control action u ∈ U .

Proof : To prove sufficiency, assume that ρ̂ ∈ iV⊥, in which case
Wu(ρ̂) = 0. This implies that Tr {ρ̂Wu(ρ̂)} = 0. Noting that the trace
operation is linear, we can bring it under the integral sign and obtain

Tr {ρ̂Wu(ρ̂)} = Tr

{∫ T

0
ρ̂0Û

†
uŜ
′ÛuTr {Û †uŜ′Ûuρ̂0}dt

}
=

∫ T

0
Tr {Û †uŜ′Ûuρ̂0}2dt = 0.

For the above equation to hold, the integrand must vanish almost every-
where. This yields

Tr {Û †uŜ′Ûuρ̂0} = Tr {Û †u(Ŝ − Tr{Ŝ}
n

În×n)Ûuρ̂0} =

Tr {Û †uŜUuρ̂0} −
Tr{Ŝ}
n

= 0 =⇒ y(t) = Tr{Ŝρ̂(t)} =
Tr{Ŝ}
n

= 〈Ŝ〉mic,

for almost all t ∈ [0, T ]. We can conclude that a microcanonical distribution
for Ŝ will be present if ρ̂ ∈ iV⊥. To prove necessity, we simply note that the
trace within the integrand of Wu(ρ̂) will vanish whenever y(t) = 〈Ŝ〉mic.

Since iV is defined as the smallest subspace of su(n) containing {iŜ′}
which is invariant under all commutators with elements in the dynamical
Lie algebra L, it is clearly invariant. From the invariance of iV it follows
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that for any element F ∈ iV⊥ and A ∈ iV we have

Tr{[−iĤ(u),F ]A} = Tr{[−iĤ(u),A]F} = 0,

so [−iĤ(u), iV⊥] ⊆ iV⊥ for any control action u ∈ U . �

The above proposition proves that unobservability of the state is necessary
for a system to be at microcanonical equilibrium. It follows directly from
the work of D’Alessandro, but is included here to stress that it suggests
a strong connection between observability and thermal equilibrium, which
should be explored in greater detail. Note that the condition that ρ̂ ∈ iV⊥,
for an observability space V constructed from an observable Ŝ, says nothing
of how other observables would behave for the same quantum state, merely
that this particular observable is ”thermalized”. A paper arguing that one
should consider a notion of thermalization pertaining to particular observ-
ables rather than the state itself can be found in [17]. A main point of their
argument is that thermalization of the actual state is not a notion that can
be probed experimentally, but thermalization of particular observables can.

Remark. (Quantum Thermalization) The traditional measure of ther-
malization is the Von-Neumann entropy S = −Tr{ρ̂ log ρ̂}, which as its form
indicates, is a function of only the state itself, and not any specific observ-
able. A property of the Von-Neumann entropy is that it is invariant under
unitary transformations. An implication of this, if this entropy is taken
as a proper measure of thermalization, is that a closed system can never
thermalize. But experiments have shown that closed systems can indeed
thermalize. This is known as the quantum thermalization problem; closed
quantum systems should not be able to thermalize, but in reality they do.
So perhaps one should look for alternative measures of thermalization, and
arguments have been put forward that the Von-Neumann entropy does not
correspond to entropy as thermodynamicists speak of it [18]. Proposition
4 suggests that one might use methods of quantum control to tackle this
problem.

Another corollary of the observability decomposition, is that the only
universally unobservable state is the maximally mixed state, or equivalently,
the (canonical) 1 thermal equilibrium state at infinite temperature. That is,
this is the only state which is unobservable regardless of measured observable
and availability of controls.

Corollary 1. (Only Î is Universally Unobservable) Assume that the
quantum control system Σ is operator controllable and observable. Then

1An equilibrium state is termed canonical if it is allowed to exchange heat with an
environment at a specified temperature.
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the only element of iV⊥ is given by

ρ̂u =
1

n
Î =

1

n
limβ→0e

−βĤ .�

Proof : The proof that the canonical equilibrium state at infinite tem-
perature is proportional to the identity matrix can be found in many refere-

ces, and it goes as follows. One writes the equilibrium density matrix e−βĤ

in the basis of energy eigenstates |E1〉 , ..., |En〉, by using the completeness
relation

∑n
k=1 |Ek〉 〈Ek| = Î, and taking the limit as β → 0 to obtain

limβ→0e
−βĤ = limβ→0

n∑

j=1

n∑

k=1

|Ek〉 〈Ek| e−βĤ |Ej〉 〈Ej | =

limβ→0

n∑

k=1

e−βEk |Ek〉 〈Ek| = limβ→0 diag
(
e−βE1 , e−βE2 , ..., e−βEn

)
= Î .

The main point of this section is that thermal equilibrium states can be
characterized as states of ”non-observability”, in some sense of the term.
For microcanonical equilibrium we explicitly have ρ̂ ∈ iV⊥.

4.2 Heat and Work

Before proceeding to provide the central definitions of this thesis, we will
consider the most common way of defining heat and work for quantum sys-
tems found in research papers on quantum thermodynamics. Traditionally,
one simply takes the time-derivative of the total energy to obtain

d

dt
〈Ĥ〉ρ̂ =

〈
dĤ

dt
, ρ̂

〉
+

〈
Ĥ,

dρ̂

dt

〉
,

and identifies the first term with work, and the second with heat. This
definition arises time and time again in research papers, but when it does, the
author often includes a caveat that these identifications are unsatisfactory
and even leads to unphysical results, but due to the lack of alternatives it
is taken as a tentative solution to the problem. The identification is usually
motivated by claiming that the Hamiltonian is under our direct control,
and therefore changes resulting from it constitutes some form of work, while
the state is generally uncontrollable and therefore energy changes relating
to changes in state can be called heat. It is worth noting that even here
control-theoretic notions are used to justify the distinction. For a more
detailed discussion of this way of defining heat and work, and its problems,
the reader is referred to [19]. One point I wish to stress is that internal heat
and work flows are impossible to define in this way, since for a closed system
both terms must be identically zero, and therefore this definition cannot be
employed when analyzing thermalization of closed systems.
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4.2.1 Operational Definitions of Heat and Work

Mti Mtf

ρ̂(ti) ρ̂(tf )

Ŝ

Ûu

Ŝ

Figure 4.1: Operational determination of heat and work, schema.

Before presenting a formal definition of heat and work we will first pro-
vide an operational definition, which illustrates the experimental determina-
tion of these quantities, given a quantum control system Σ. By Theorem 3
the total energy can be decomposed as follows 〈Ĥ〉ρ̂ = O[ρ̂o] + U [ρ̂u], where

we have defined 〈Ĥ〉ρ̂o , O[ρ̂o] and 〈Ĥ〉ρ̂u , U [ρ̂u]. This decomposition
implies that any observation performed on Σ can at best determine a part
of the total energy, namely O. Consider the three-step process, shown in
Figure 4.1 :

• 1 : Perform a projective measurement of Ŝ to determine the component
ρ̂o(ti) of the density matrix along iV. This gives us an initial observable
energy Oti = O[ρ̂o(ti)].

• 2 : Apply a semi-classical control u[ti,tf ] ∈ U resulting in a known
change ∆E[u[ti,tf ]] in the energy of Σ.

• 3 : Repeat step 1 to obtain a final observable energy Otf = O[ρ̂o(tf )].

The energy spent by applying the control is in general not equal to the dif-
ference between the observable energies at ti and tf , as an arbitrary control
will couple to unobservable degrees of freedom. We define heat to be equal
to this deficit, and work to be the change in observable energies, i.e.

Q , ∆E[u[ti,tf ]] +Oti −Otf ,
W , Otf −Oti .

The claim is that the operational definition of ”heat” is that quantity of
energy that we know a priori must have been transfered to the system, even
though we cannot see it, in order for energy conservation to hold. These
quantities can be determined experimentally provided that two conditions
are satisfied; firstly the functional dependence of O on ρ̂o must be known,
since O is not measured directly but computed from ρ̂o which in turn is
constructed from a direct measurement of Ŝ; second, we must be able to keep
track of the energy ∆E that we spend for Q to be determinable from the
energy balance equation. If satisfied, the above procedure provides a way to
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determine a plausible candidate for Q under semi-classical external driving,
without having to invoke an environment to be traced out. Note that there
are two ways in which the energy change constituting Q can be supplied: it
can arise due to a change in the Hamiltonian, meaning from energy that we
supply, or from an interconversion of O to U occuring uncontrollably inside
the system. The distinction between internal and external heat flow will be
made explicit shortly.

4.2.2 Formal Definitions of Heat and Work

The following definitions form the foundation stones on which the rest of the
theory is built. They will not only distinguish between heat and work, but
also between internal and external heat and work flows. The internal flows
preserve the total energy of the system, are driven by internal state changes,
and are therefore present also in the absence of external controls. The
external heat and work flows, on the other hand, are driven by changes in the
Hamiltonian, and are - in general - energy non-conserving interactions with
the control apparatus. Before providing the central definitions of this thesis,
we will introduce some notation. Given bases {V̂i}dimV

i=1 and {V̂ ⊥i }dimV⊥
i=1 for

V and V⊥ respectively, we introduce the components of the Hamiltonian
along the two spaces

ĤV ,
dimV∑

j=1

〈Ĥ, V̂j〉
V̂j

||V̂j ||
, ĤV ⊥ ,

dimV⊥∑

j=1

〈Ĥ, V̂ ⊥j 〉
V̂ ⊥j
||V̂ ⊥j ||

.

Definition 4. (Heat and Work) Consider a quantum control system Σ
of finite dimension n, with a dynamical Lie algebra L and an observability
space V. An arbitrary control u ∈ U will induce a time-varying total energy
〈Ĥ(t)〉. Decompose the density matrix as ρ̂(t) = ρ̂o(t) + ρ̂u(t), where ρ̂o(t) ∈
iV and ρ̂u(t) ∈ iV⊥. We then define the work and heat flows as

dW

dt
, d

dt
O =

〈
dĤV (t)

dt
, ρ̂o(t)

〉
+

〈
ĤV (t),

dρ̂o(t)

dt

〉
,

dQ

dt
, d

dt
U =

〈
dĤV ⊥(t)

dt
, ρ̂u(t)

〉
+

〈
ĤV ⊥(t),

dρ̂u(t)

dt

〉
.

We further make the distinction between internal and external work and heat
flows depending on whether the energy flow occurs through a change in the
state or the Hamiltonian. Formally the individual terms are given by the
inexact derivatives

d̄WI

d̄t
,
〈
ĤV (t),

dρ̂o(t)

dt

〉
,

d̄WE

d̄t
,
〈
dĤV (t)

dt
, ρ̂o(t)

〉
,

d̄QI
d̄t
,
〈
ĤV ⊥(t),

dρ̂u(t)

dt

〉
,

d̄QE
d̄t
,
〈
dĤV ⊥(t)

dt
, ρ̂u(t)

〉
.
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What follows is a proposition giving a set of sufficient algebraic condi-
tions for when O, and hence also U , is a constant of motion in the absence
of controls. The proof is elementary, but the result is potentially significant
as it provides a new tool for thinking about thermalization of closed sys-
tems ; a system can in a meaningful sense be said to ”thermalize” if over
time energy is transferred from O to U , until the measured output is nearly
microcanonical. 2

Proposition 5. (Conditions for the Time-Invariance of U and O)
Each of the following is a sufficient conditions for the observable energy to
be a constant of motion in the absence of controls

[ĤV , ĤV ⊥ ] = 0, [ĤV , ĤV ⊥ ] ∈ V⊥, [ĤV , ĤV ⊥ ] ∈ V,
ĤV ∈ L, ĤV ⊥ ∈ L.

Proof : In the absence of controls, only the internal work flow will be
(possibly) non-zero, and it is given by

d̄WI

d̄t
=

〈
ĤV ,

dρ̂o(t)

dt

〉
= −i

〈
ĤV , [Ĥ, ρ̂o]

〉
= −i

〈
[ĤV , Ĥ], ρ̂o

〉
=

−i
〈
[ĤV , ĤV ⊥ ], ρ̂o

〉
.

In the last line we decomposed the total Hamiltonian as Ĥ = ĤV +ĤV ⊥ and
noted that [ĤV , ĤV ] = 0. We can now make a few observations. Clearly
the above vanishes if [ĤV , ĤV ⊥ ] = 0. The internal work flow is also equal
to zero provided that [ĤV , ĤV ⊥ ] ∈ V⊥, and this condition is guaranteed to
be satisfied if ĤV ∈ L since [L,V⊥] ⊆ V⊥. The remaining conditions for the
constancy of O is obtained by noting that energy conservation gives us the
equation

d̄WI

d̄t
= −d̄QI

d̄t
= i
〈
[ĤV ⊥ , ĤV ], ρ̂u

〉
,

and then going through a similar argument as before. �

While sufficient, neither of these conditions are necessary. If O is a con-
stant of motion, that implies that either [ĤV , ĤV ⊥ ] = 0 or [ĤV , ĤV ⊥ ] ⊥ ρ̂o.
But for [ĤV , ĤV ⊥ ] ∈ V⊥ to hold it is required that [ĤV , ĤV ⊥ ] ⊥ ρ̂′o for every
ρ̂′o ∈ iV. Nevertheless, if one is interested in engineering a control system
without thermalization the above condition will suffice.

2The reason why ”nearly” was included in the last sentence is because if Tr{Ŝρ̂o} 6= 0
at some point in time, it will never be identically zero, due to the inclusions [L,V⊥] ⊆ V⊥

and [L,V] ⊆ V. However, there is nothing, generally speaking, which prevents Tr{Ŝρ̂o}
from decreasing in its value over time. If it does, and finally fluctuates around some small
value, then that value can be taken to be the scale of ”thermal fluctuations”; this can
be interpreted as meaning that information about the initial state never fully disappears
as the system thermalizes, but remains encoded in the fluctuations of Tr{Ŝρ̂o} near the
microcanonical value.
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4.2.3 Energetics of Quantum Measurements

In this section, we will consider if and when the unobservable energy U
changes under selective and non-selective measurements respectively. The
observable Ŝ has a spectral decomposition into projectors Ŝj onto the eigenspaces
corresponding to the eigenvalues sj , constrained to satisfy a completeness
relation

Ŝ =
m∑

j=1

sjŜj ,
m∑

j=1

Ŝj = Î .

We can pick any k ∈ {1, ...,m} and decompose the projector sum as

m∑

j=1

Ŝj =
m∑

j=1,j 6=k
Ŝj +

(
Î −

m∑

j=1,j 6=k
Ŝj

)
= Ŝ¬k +

(
Î − Ŝ¬k

)
,

where we have introduced the symbol Ŝ¬k for the sum excluding the k-th
term. Assuming a selective measurement yielding the result sk, the post-
measurement state is given by

M(ρ̂) = (Î − Ŝ¬k)ρ̂(Î − Ŝ¬k) = ρ̂− [Ŝ¬k, ρ̂] + Ŝ¬kρ̂Ŝ¬k.

We now apply the observability decomposition ρ̂ = ρ̂o+ ρ̂u. Since Ŝ¬k ∈ iV,
we have Ŝ¬kρ̂uŜ¬k = 〈Ŝ¬k, ρ̂u〉Ŝ¬k = 0. The two separate components are
therefore modified by the measurement according to

M(ρ̂o) = ρ̂o − [Ŝ¬k, ρ̂o] + Ŝ¬kρ̂oŜ¬k, M(ρ̂u) = ρ̂u − [Ŝ¬k, ρ̂u].

The changes in observable and unobservable energies therefore satisfy

∆O =
〈
ĤV , Ŝ

¬kρ̂oŜ¬k − [Ŝ¬k, ρ̂o]
〉
,

∆U = −
〈
ĤV ⊥ , [Ŝ¬k, ρ̂o]

〉
= −

〈
[Ŝ¬k, ĤV ⊥ ], ρ̂u

〉
.

The second line implies that ∆U = 0 if [Ŝ¬k, ĤV ⊥ ] = 0 or [Ŝ¬k, ĤV ⊥ ] ∈ V. If
ĤV ⊥ ∈ L, this is sufficient for the second condition to hold, since [L,V] ⊆ V.

Now consider the case where the measurement is non-selective; meaning
the measurement is performed, but the result is discarded. In this case
the post-measurement state is a statistical ensemble of all possible results,
obtained from the selective case by summing over all ks. We then have for
the unobservable component, up to normalization, that

M(ρ̂u) =

m∑

k=1

(
ρ̂u − [Ŝ¬k, ρ̂u]

)
= mρ̂u −

[ m∑

k=1

Ŝ¬k, ρ̂u

]
=

mρ̂u − (m− 1)[Î , ρ̂u] = mρ̂u.

After normalization this equals ρ̂u, so the unobservable component, and
hence its energy, is unaffected. We will now summarize the results of this
section in a proposition.
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Proposition 6. (Invariance of the Unobservable Energy Under Mea-
surements) For any quantum control system Σ, the unobservable energy U
is invariant under non-selective measurements, and invariant under selective
measurements provided that ĤV ⊥ ∈ L.

4.2.4 Maximum Extractable Heat

Any inner product can be used to define (abstract or concrete) angles, and
the Hilbert-Schmidt inner product is no exception. The following angle can
be taken as quantifying the extent to which the systems energy is unobserv-
able (or ”degraded”)

τ(t) , arccos

{ U
||ĤV ⊥ ||||ρ̂u||

}
,

and we can always write U = ||ĤV ⊥ ||||ρ̂u|| cos τ . Of all terms in this equa-
tion, the Hamiltonian norm ||ĤV ⊥ || is the only one under our direct control.
The state norm ||ρ̂u|| is a constant regardless of applied controls (see re-
mark), and the angle τ depends partly on ĤV ⊥ , which is under our control,
and partly on ρ̂u, which is not.

Remark. The norm ||ρ̂u|| always remains constant over time, as a conse-
quence of the time-evolution being unitary. This can be seen be employing
the cyclic property of the trace

||ρ̂u(t)|| =
√

Tr{ρ̂u(t)ρ̂u(t)} =

√
Tr{Ûtρ̂u(0)Û †t Ûtρ̂u(0)Û †t } =

√
Tr{Ûtρ̂u(0)ρ̂u(0)Û †t } =

√
Tr{ρ̂u(0)ρ̂u(0)}.

Therefore, in what follows, keep in mind that d
dt ||ρ̂u|| = 0.

Now consider the quantity

S , ||ρ̂u|| cos τ =
U

||ĤV ⊥ ||
. (4.1)

The reason why this quantity is denoted S is that it seems to play a similar
role in this theory as that of entropy in classical thermodynamics. In what
follows we will refer to it as the entropy, and at the end of the chapter,
present a summary of the arguments for why this is justified. Among other
things, it is closely related to the maximum heat extractable at a given time.
This statement is made explicit in the following proposition.

Proposition 7. (Maximum Extractable Heat) Consider two quantum
systems Σ1 and Σ2, subject to the same control system, with equal unobserv-
able energies U1 = U2 but with S1 < S2. Then the maximum heat extractable
from Σ1 is higher than that from Σ2, provided there exists a lowest attainable
norm ||Ĥ0

V ⊥ || for both systems.
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Proof : The equality U1 = U2 implies that

||ρ̂1
u|| cos τ1

||ρ̂2
u|| cos τ2

=
||Ĥ2

V ⊥ ||
||Ĥ1

V ⊥ ||
,

and furthermore, the inequality S1 < S2 implies that ||Ĥ1
V ⊥ || > ||Ĥ2

V ⊥ ||.
The maximum extractable heat is in both cases obtained by controlling the
Hamiltonian norm down to its lowest attainable value ||Ĥ0

V ⊥ ||. The heats
extracted are determined by

Q1
max = ||ρ̂1

u|| cos τ1
(
||Ĥ0

V ⊥ || − ||Ĥ1
V ⊥ ||

)
,

Q2
max = ||ρ̂2

u|| cos τ2
(
||Ĥ0

V ⊥ || − ||Ĥ2
V ⊥ ||

)
.

Their ratio is

Q1
max

Q2
max

=
||ρ̂1

u|| cos τ1
(
||Ĥ0

V ⊥ || − ||Ĥ1
V ⊥ ||

)

||ρ̂2
u|| cos τ2

(
||Ĥ0

V ⊥ || − ||Ĥ2
V ⊥ ||

) =

||Ĥ2
V ⊥ ||

||Ĥ1
V ⊥ ||

||Ĥ0
V ⊥ || − ||Ĥ1

V ⊥ ||
||Ĥ0

V ⊥ || − ||Ĥ2
V ⊥ ||

.

If there is no lowest attainable bound to the norm of the Hamiltonian, this
ratio is equal to unity, but as long as ||Ĥ0

V ⊥ || 6= 0 it will always be > 1, and
so Q1

max > Q2
max. �

We’ll now present a proposition showing how the quantity S depends on
the degree of overlap between the basis elements of V⊥.

Proposition 8. (The Entropy and the Basis Elements of V) Assume
that the basis elements of V⊥ are normalized. If they’re ”maximally mixed”
in the sense that 〈V̂ ⊥k , V̂ ⊥j 〉 ≈ 1 ∀kj, then S ≈ ||ρ̂u||. If instead they satisfy

〈V̂ ⊥k , V̂ ⊥j 〉 = δkj, then

S =
1

||ĤV ⊥ ||

dimV⊥∑

k=1

〈ĤV ⊥ , V̂ ⊥k 〉〈ρ̂u, V̂ ⊥k 〉.

Proof : We begin by expanding both ĤV ⊥ and ρ̂u in the basis of V⊥,

U =

dimV⊥∑

k=1

dimV⊥∑

j=1

〈ĤV ⊥ , V̂ ⊥k 〉〈ρ̂u, V̂ ⊥j 〉
〈V̂ ⊥k , V̂ ⊥j 〉
||V̂ ⊥k ||||V̂ ⊥j ||

.

This is also equal to U = ||ρ̂u||||ĤV ⊥ || cos τ . By the triangle-inequality for
norms we have

||ĤV ⊥ || ≤
dimV⊥∑

k=1

〈ĤV ⊥ , V̂ ⊥k 〉, ||ρ̂u|| ≤
dimV⊥∑

j=1

〈ρ̂u, V̂ ⊥j 〉. (4.2)
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This gives a lower bound for the cosine

cos τ ≥

∑dimV⊥
k=1

∑dimV⊥
j=1 〈ĤV ⊥ , V̂ ⊥k 〉〈ρ̂u, V̂ ⊥j 〉

〈V̂ ⊥
k ,V̂ ⊥

j 〉
||V̂ ⊥

k ||||V̂ ⊥
j ||∑dimV⊥

p=1

∑dimV⊥
l=1 〈ĤV ⊥ , V̂ ⊥p 〉〈ρ̂u, V̂ ⊥l 〉

.

Assuming the basis elements are normalized, we obtain cos τ ' 1 for the
case where 〈V̂ ⊥k , V̂ ⊥j 〉 ≈ 1. In the ortho-normal case the inequalities (4.1)
are saturated and we have

S =
1

||ĤV ⊥ ||

dimV⊥∑

k=1

〈ĤV ⊥ , V̂ ⊥k 〉〈ρ̂u, V̂ ⊥k 〉.

�

From the previous proposition it is evident that the quantity S is larger
when there is much overlap between the basis elements of V⊥ as opposed
to when they are orthogonal. In the Heisenberg picture the time-evolution
of the system resides solely in the basis elements, so this proposition can
be taken as suggesting a link between increasing values of S and mixing
between the basis elements. It also follows from Eq (...) that if the basis is
ortho-normal and cos τ = 1 then

∑
i 6=j θjhi = 0.

4.2.5 Availability of Work

The concept of entropy was intially introduced to quantify the extent of
energy degradation, in the sense that the energy available for performing
work satisfies the equation A = E − TS, where T is the temperature (with
[T ] = K) and S the entropy (with [S] = J/K), and their product the de-
graded part of the total energy. We make the identifications A = O and
TS = U . But how can we write U as a product of two terms to be identified
with temperature and entropy respectively? We have the following clue from
classical thermodynamics: if the energy of the system remains constant, but
the entropy increases due to some internal irreversible process, then the loss
of available work satisfies −dA = TdS. In our case we have for an isolated
system

−dO = ||ĤV ⊥ ||d(||ρ̂u|| cos τ).

The term within the differential is the quantity S defined in the previous
section. This suggests that in the framework presented in this thesis, the
norm ||ĤV ⊥ || plays the role of a temperature function, an identification
that has some intuitive appeal, as this would imply that temperature is
the magnitude of the component of the energy operator along the unob-
servable degrees of freedom. If this identification is correct would have to
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be determined by showing that it in fact equals T for a variety of known
paradigmatic cases. Whether this is so is outside of the scope of this thesis,
but it stands as an intriguing possibility. However, it also accords with the
definition S = U

||Ĥ
V ⊥ ||

, as in classical thermodynamics, a given amount of

thermal energy has a lower entropy if it exists at a higher temperature as
compared to the same amount at a lower temperature.

4.2.6 Integrating Factors for the Heat Flows

Another way of ascertaining possible candidates for the temperature and
entropy functions comes from the search for integrating factors for the (in-
exact) external heat flow. In classical thermodynamics, the existence of the
entropy is equivalent to the integrability of the external heat flow, namely
the existence of an integrating factor T−1 for d̄QE , such that dS = T−1d̄QE
is the exact differential of a state function S. The integrating factor is iden-
tified with the inverse temperature, and the resulting state function with
the entropy. The above equality holds only in the absence of internal heat
production, and in general dS ≥ T−1d̄QE . This is known as Clausius’ the-
orem. In this section we’ll show that an analogous statement can be made
using Definition 4 for the heat flows. It is worth noting that the integrating
factor for d̄QE is not unique in classical thermodynamics, so there exists a
variety of definitions for temperature and entropy. For a discussion of these
issues, see [20].

We begin by defining additional generalized angles using the Hilbert-
Schmidt inner-product, similarly to how we defined τ . Besides τ we also
define the angles

φ(t) , arccos

{ 〈 ˙̂
HV ⊥ , ρ̂u

〉

|| ˙̂
HV ⊥ ||||ρ̂u||

}
, ψ(t) , arccos

{ 〈 ˙̂
HV ⊥ , ĤV ⊥

〉

|| ˙̂
HV ⊥ ||||ĤV ⊥ ||

}
.

With these definitions in place, we can formulate the analogue of Clausius’
theorem for our theory of heat and work.

Theorem 5. (Analogue of Clausius’ Theorem) The time-derivative of
S is related to the internal and external heat flows by the equation

Ṡ =
1

||ĤV ⊥ ||
d̄QI
d̄t

+

(
1

||ĤV ⊥ ||
− 1

2

cos τ cosψ

cosφ

)
d̄QE
d̄t

.

Proof : Consider the external heat flow

d̄QE
d̄t

= || ˙̂
HV ⊥ ||||ρ̂u|| cosφ.

We now make use of the identity

d

dt
||ĤV ⊥ || = 1

2

〈 ˙̂
HV ⊥ , ĤV ⊥

〉
=

1

2
|| ˙̂
HV ⊥ ||||ĤV ⊥ || cosψ (4.3)
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d
dt ρ̂u

d
dtĤV ⊥

ĤV ⊥

ρ̂u

κ

τ
φ

ψ

Figure 4.2: Diagram showing how the various Hilbert-Schmidt angles are
defined.

to eliminate the factor || ˙̂
HV ⊥ || from the external heat flow and obtain

d̄QE
d̄t

= 2
||ρ̂u||
||ĤV ⊥ ||

cosφ

cosψ

d

dt
||ĤV ⊥ ||,

or equivalently

d

dt
log||ĤV ⊥ || = 1

2

1

||ρ̂u||
cosψ

cosφ

d̄QE
d̄t

.

We now see that the external heat flow has an integrating factor making it
the total derivative of log||ĤV ⊥ ||. However, we are looking for an entropy
candidate that also depends on the internal heat flow. The time-derivative
of S is given by

Ṡ =
1

||ĤV ⊥ ||2

(
U̇ ||ĤV ⊥ || − U d

dt
||ĤV ⊥ ||

)
=

U̇
||ĤV ⊥ ||

− S d
dt

log||ĤV ⊥ || =

1

||ĤV ⊥ ||

(
d̄QE
d̄t

+
d̄QI
d̄t

)
− 1

2

cos τ cosψ

cosφ

d̄QE
d̄t

,

Gathering terms we arrive at the final result. �

We see that ||ĤV ⊥ ||−1 is an integrating factor for the internal heat flow
(in the absence of external flows), and approximately an integrating factor
for the external heat flow as well (in the absence of internal flows) when
either the fractional change ||ĤV ⊥ ||−1 d

dt ||ĤV ⊥ || (the ”isothermal” case), or
S, is small.

4.2.7 A Simple Heat Engine

A perennial problem of thermodynamics is the analysis of machines convert-
ing thermal into mechanical energy, and vice versa, and of the efficiency of
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U
↑
O

P2P3

W3

Q3

P1

W1

Q1

Figure 4.3: Diagram of the process P3 ◦ P2 ◦ P1, from right to left. The box
represents the quantum system at hand.

such interconversions. In this section we will design a simple engine that
converts heat into work, and derive an equation for its efficiency. We take
a machine state to be any tuple that specifies uniquely the observable and
unobservable energies, which we can represent in the form

U = ||ĤV ⊥ ||||ρ̂u|| cos τ,

O = ||ĤV ||||ρ̂o|| cos o.

Here we define a machine state to be a quadruple (||ĤV ⊥ ||, ||ĤV ||, S, õ),
where S is defined as in Eq (4.1) and õ , ||ρ̂o|| cos o. The total heat and
work transfers for any process is given by the integrals of the differential
flows

∫ tf

ti

d

dt

{
||ĤV ⊥(t)||S(t)

}
dt+

∫ tf

ti

d

dt

{
||ĤV (t)||õ(t)

}
dt = ∆E,

where ∆E is the total energy exchange with the control apparatus during
the process. Now consider a three-step process P = P3 ◦ P2 ◦ P1 consisting
of the mappings

P1 : (||Ĥ i
V ⊥ ||, ||Ĥ i

V ||, Si, õi) 7−→ (||Ĥf
V ⊥ ||, ||Ĥf

V ||, Si, õi),
P2 : (||Ĥf

V ⊥ ||, ||Ĥf
V ||, Si, õi) 7−→ (||Ĥf

V ⊥ ||, ||Ĥf
V ||, Sf , õf ),

P3 : (||Ĥf
V ⊥ ||, ||Ĥf

V ||, Sf , õf ) 7−→ (||Ĥ i
V ⊥ ||, ||Ĥ i

V ||, Sf , õf ).

Steps one and three represent energy exchanges with the control appara-
tus, while step two involves a transfer of energy between U and O while
preserving the total. What this process accomplishes is a transformation of
external heat flow into external work flow, at the cost of internal heat pro-
duction during P2. We start with the map Ĥ i 7→ Ĥf , then allow the system
to thermalize, and end the process by applying the inverse map Ĥf 7→ Ĥ i.

We assume that ||Ĥf
V ⊥ || ≤ ||Ĥ i

V ⊥ || and ||Ĥf
V || ≤ ||Ĥ i

V ||, so that in the
initial step heat and work are extracted from the system, and inserted in
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the final step. The heat and work transfers during the three processes are

Q1 = Si
(
||Ĥf

V ⊥ || − ||Ĥ i
V ⊥ ||

)
, W1 = õi

(
||Ĥf

V || − ||Ĥ i
V ||
)
,

Q2 = ||Ĥf
V ⊥ ||

(
Sf − Si

)
, W2 = ||Ĥf

V ||
(
õf − õi

)
,

Q3 = −Sf (||Ĥf
V ⊥ || − ||Ĥ i

V ⊥ ||
)
, W3 = −õf

(
||Ĥf

V || − ||Ĥ i
V ||
)
.

They satisfy the energy balance equations

∆E1 = W1 +Q1, Q2 = −W2, ∆E3 = W3 +Q3.

The thermal efficiency is defined as the ratio of the net work extracted, in
this case |W3| − |W1| 3, to the net heat supplied, here |Q3| − |Q1|. Using
the above heat, work, and energy balance equations, and some elementary
algebraic manipulations, we arrive at the efficiency

η′ =
|W3| − |W1|
|Q3| − |Q1|

=
1− ||Ĥ

i
V ||

||Ĥf
V ||

1− ||Ĥ
i
V ⊥ ||

||Ĥf

V ⊥ ||

.

This quantity depends on the two term ∆E1 and ∆E3. Here we are inter-
ested in the efficiency of full conversion relative to the internal heat pro-
duction Q2, so we’ll set ∆E1 = −∆E3. That is, there is no net energy
supplied or gained, only interconversion between W and Q. The energy bal-
ance equations for steps 1 and 3 then imply that η′ = 1. For the efficiency
we are interested in, namely the work obtained relative to the internal heat
production Q2, we have

η =
|W3| − |W1|
|Q2|

=
||Ĥf

V || − ||Ĥ i
V ||

||Ĥf
V ⊥ ||

õf − õi
Sf − Si .

We now exploit the energy balance equation for P2 to obtain

õf − õi
Sf − Si =

||Ĥf
V ⊥ ||

||Ĥf
V ||

,

which implies that η = 1− ||Ĥ
i
V ||

||Ĥf
V ||

. Now note that η′ = 1 to arrive at the final

result

η = 1−
||Ĥ i

V ⊥ ||
||Ĥf

V ⊥ ||
.

3The absolute-value functions come from sign conventions. In the above, energy is
counted as positive if it enters the system, and negative if it leaves it. But when calculating
the efficiency, we count work that we put in as negative, and work that we recieve as
positive.
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In conclusion, external heat flows can be converted into external work flows,
provided we have a repository of low S that pays the price in terms of
internal heat production. The efficiency of that conversion increases as we
decrease the ratio of Hamiltonian norms that the repository is subject to
during the process. However, we have not proven that the above process
optimizes the heat-work conversion; there could possibly be another process
that achives a higher efficiency.

This result is strongly reminiscent of the Carnot efficiency η = 1 − Tc
Th

,
which states that the efficiency is made better provided we work between
larger temperature differences.

4.2.8 Work Flows for Pure States

A feature of work flows for pure states is the explicit appearance of the
Fisher information. Consider the expansion of the components ĤV and ρ̂o
in V in the basis {V̂k}dimV

k=1

ĤV =
dimV∑

k=1

hkV̂k, ρ̂o =
dimV∑

j=1

θj V̂j ,

where hk , 〈Ĥ, V̂k〉 and θj , 〈ρ̂, V̂j〉. Using the bilinearity and conjugate
symmetry of the inner-product we can write the observable energy in the
form

O = 〈ĤV , ρ̂o〉 =

〈 dimV∑

k=1

hkV̂k,

dimV∑

j=1

θj V̂j

〉
=

dimV∑

k=1

dimV∑

j=1

h∗kθj〈V̂k, V̂j〉.

For pure quantum states the inner products satisfy 〈V̂k, V̂j〉 = Fkj . Introduc-
ing the matrix Θkj , h∗kθj , we can write O = 〈Θ, F 〉. Noting that the norm
of its time-derivative is ||Θ̇|| = ∑

ij |hk|2|θ̇j |2 we obtain an upper bound for
the rate of change of S for a closed pure system

|Ṡ| ≤
∑

kj

|hk|2|θ̇j |2
||F ||
||ĤV ⊥ ||

.

The Fisher information has previously been shown to bound the entropy
change for a variety of systems [21] [22], so this can be taken to be another
suggestion that S is indeed related to the thermodynamic entropy.

Considering the observable energy as a function of the θ-parameters O =
O(θ1, θ2, ..., θdimV) we have the partial derivatives

∂O
∂θk

=
dimV∑

j=1

hjFkj .

The Fisher information is closely related to thermal response functions [23],
so its appearance here is not suprising.
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4.2.9 Structural Constraints on Heat and Work Flows

We will now investigate how the heat-work decomposition, and energy flows
in observable and unobservable subspaces, are constrained by algebraic prop-
erties of the dynamical and observation algebras. To give us enough math-
ematical structure to work with we’ll assume the thermodynamically per-
tinent case where the measured observable is an element of the dynamical
Lie algebra, in which case the observation algebra is an ideal. We begin by
considering the case where L is simple.

Simple Lie Algebras

Since V ⊆ L is an invariant subalgebra, the simplicity of L gives us only
two possibilities : either V = L or V = 0. In the latter case, since ρ̂o = 0,
all energy changes appear as heat transfers : d

dt〈Ĥ〉ρ̂ = Q̇. In the first

case, we note that ĤV ⊥ = 0, and so d
dt〈Ĥ〉ρ̂ = Ẇ . To obtain a non-trivial

decomposition, we need to move on to more complicated dynamical algebras
than simple ones. We will now consider semi-simple Lie algebras.

Semi-simple Lie Algebras

Let L be a semi-simple Lie algebra with a decomposition into simple ideals
L = l1⊕ ...⊕ lk′ where [lk, lj ] = 0 for k 6= j. Any ideal, in this particular case
V, is a direct sum of some of the simple ideals in the above decomposition.
So we will re-label the above ideals and write

L = v1 ⊕ ...⊕ vm ⊕ l1 ⊕ ...⊕ lm′ = V ⊕ l,

where V , v1 ⊕ ...⊕ vm and l , l1 ⊕ ...⊕ lm′ . Using this decomposition we
can factorize any given time-evolution operator Ût ∈ eL as Ût = V̂tL̂t, where
V̂t ∈ eV and L̂t ∈ el. A given time-evolved state is then given by

ρ̂(t) = V̂tL̂tρ̂oL̂
†
t V̂
†
t + V̂tL̂tρ̂uL̂

†
t V̂
†
t .

The evolution operators V̂t and L̂t can in turn be factorized into products
of operators from the normal subgroups of eV and el corresponding to each
ideal in the direct sums of V and l respectively. The first term can be
simplified using the fact that [V̂t, L̂t] = [ρ̂o, L̂t] = 0. The second term can
not be simplified in the same way at this point, since [ρ̂u, V̂t] 6= 0 in general.
If we decompose the Hamiltonian as Ĥ = ĤV + ĤL, where ĤV ∈ V and
ĤL ∈ L, we can write the energy at time t as

〈Ĥ(t)〉ρ̂ =
〈
ĤV , V̂tρ̂oV̂

†
t

〉
+
〈
ĤL, V̂tL̂tρ̂uL̂

†
t V̂
†
t

〉
.

The cyclic property of the trace, together with the vanishing commutator
[ĤL, V̂t] = 0 means that the operator V̂t can be eliminated from the second
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term. We obtain the energy equation

〈Ĥ(t)〉ρ̂ =
〈
ĤV , V̂tρ̂oV̂

†
t

〉
+
〈
ĤL, L̂tρ̂uL̂

†
t

〉
.

We can reveal further structure by factorizing the evolution operators, and
decomposing ρ̂o into a sum of elements from the ideals:

V̂tρ̂oV̂
†
t = V̂t,1V̂t,2 . . . V̂t,m

(
ρ̂o,1 + ρ̂o,2 + · · ·+ ρ̂o,m

)
V̂ †t,m . . . V̂

†
t,2V̂

†
t,1 =

m∑

k=1

V̂t,kρ̂o,kV̂
†
t,k.

The last line follows from the commutators [V̂t,k, V̂t,j ] = 0,∀ij and [V̂t,k, ρ̂o,j ] =

0 for k 6= j. We now decompose ĤV as well

O =
m∑

k=1

m∑

j=1

〈
ĤV,j , V̂t,kρ̂o,kV̂

†
t,k

〉
.

One final simplification can be made. When k 6= j the evolution operator
V̂t,k can be commuted past ĤV,j to its left, after which we can use the cyclic

property of the trace to bring it to the right of V̂ †t,k, eliminating them both
by unitarity. We now obtain the final form of the observable energy

O =
m∑

k,j=1 k 6=j

〈
ĤV,j , ρ̂o,k

〉
+

m∑

p=1

〈
ĤV,p, V̂t,pρ̂o,pV̂

†
t,p

〉
.

This reveals an interesting feature: the cross terms are constant as the
state undergoes time-evolution, and can only be changed by modifying the
Hamiltonian. The same procedure can be performed for the unobservable
energy with a couple of differences. As before, we cannot commute anything
past ρ̂u, and the simplifications only occur inside the inner product by the
cyclic property of the trace ; also the state ρ̂u itself does not admit any
decompositions in general. We then get

U =

m′∑

k=1

〈
ĤL,k, L̂t,kρ̂uL̂

†
t,k

〉
.

This concludes our analysis of the semi-simple case, and we will now move
on to solvable Lie algebras.

Solvable Lie Algebras

Let L be solvable, in which case V ⊆ L is a solvable ideal. As will be seen, the
main feature here is that as far as the energy is concerned, the observability
space can be taken to be one-dimensional. The dynamical Lie algebra has the
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decomposition L = V ⊕ (V⊥)L, where (V⊥)L is an arbitrary complement in
L which furthermore satisfies the isomorphism (V⊥)L ' L/V. Anticipating
application of Cartan’s solvability criterion, we write the observability space
in the form

V = span{iŜ′} ⊕
(
[L,L] ∩ V

)
,

and write the observable state-component as ρ̂o(t) = f(t)Ŝ′ + σ̂o(t), where
σ̂o(t) ∈ [L,L] ∩ V and f : R≥0 → C. As before, we decompose the Hamilto-
nian operator as Ĥ = ĤV + ĤL where ĤV ∈ V and ĤL ∈ (V⊥)L. A given
time-evolution operator decomposes as Ût = V̂tL̂t, where V̂ ∈ eV and L̂t is
a product of elements of e(V⊥)L . If, moreover, (V⊥)L is a subalgebra of L
then L̂t ∈ e(V⊥)L . The energy at time t is given by

〈Ĥ〉ρ̂ = 〈ĤV , ρ̂o〉+ 〈ĤL, ρ̂u〉.

Since ĤV ∈ L, and σ̂(t) ∈ [L,L], the Cartan solvability criterion implies
that 〈ĤV , σ̂o〉 = 0. This gives us the observable energy

O = f(t)〈ĤV , Ŝ
′〉.

We note that ĤV , being an element of V, will be proportional to Ŝ′. If we
are considering a pure quantum state, we can use Proposition 2 and write
the observable energy as

O = f̃(t)F,

where the proportionality constant of ĤV has been absorbed into f̃ , and
F ∈ R is the Fisher information. We now state this result as a proposition.

Proposition 9. (Observable Energy is Proportional to the Fisher
Information) If for a given quantum control system Σ we have Ŝ ∈ L, and
if the state is pure and L is solvable, then O ∝ F .

Further structure can be ascertained by using the Lie-Kochin triangular-
ization theorem, which states that the entire image π(eL) is simultaneously
upper triangularizable when L is solvable. This implies that with respect to
a suitable basis, every operator Ut ∈ eL is upper-triangular. Since they are
also unitary, they in fact have to be diagonal in this basis.

4.2.10 Temperature and Entropy

We will now summarize the arguments for identifying ||ĤV ⊥ || as the tem-
perature, and S as the entropy. These arguments, of course, hinges upon
the identifications of the heat and work flows being acceptable.
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• ||ĤV ⊥ || is an integrating factor for the internal heat flow (individually),
and an approximate integrating factor for the external one, making
the heat flows the total derivative of S. That is, they appear to be
related to each other and the heat flows in a way similar to the classical
variables in Clausius’ theorem.

• In classical thermodynamics the temperature is often defined as

(
∂S

∂E

)

V

=
1

T
,

where the partial derivative is taken with respect to energy, as the
volume is held constant. If instead of holding the volume constant, we
choose to hold O constant, or some observable parameter on which O
solely depends, then

(
∂S

∂E

)

O
=

1

||ĤV ⊥ ||
.

• The function cos τ provides an intuitive formalization of the informal
notion of ”energy degradation”, as it quantifies the extent to which
the systems energy resides in the unobservable subspace. The energy
U is taken to be ”degraded”, since lack of knowledge about ρ̂u makes it
difficult, although theoretically possible using a lucky guess, to design
an appropriate control function to extract the energy residing therein.
It is also bounded, and if dimV⊥ >> dimV, and there is sufficient in-
teraction between the observable and unobservable degrees of freedom,
it can be expected to increase on average.

• Aside from being related to state underdetermination, S is propor-
tional to something with units of energy, making it a candidate for
a truly thermodynamic entropy (with units of J/K), and not just an
information-theoretic one (with units of bits). The conceptualization
of temperature as the magnitude of the component of the energy op-
erator along the unobservable subspace also has some intuitive appeal.
This would mean that temperature is a quantity which sets the scale
for the unobservable energy, but is not identical to it. Explicitly, we
have U = TS.

• For pure states, the rate of change of S is bounded from above by
something proportional to the Fisher information.
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Chapter 5

Applications

We will now illustrate the concepts developed in the previous chapter by
deploying them for an analysis of the Ising model, as well as showing how
Theorem 4 can be used to factorize the time-translation operator and sim-
plify the resulting equations by applying it to the limited access scenario
described in section (2.2.1). We begin with the Ising model. This particular
model is chosen partly for its computational tractability, but also since it is
commonly used to illustrate thermodynamic concepts and every physicist is
familiar with it.

5.1 A Concrete Example : The Ising Model

We will now see how the heat-work decomposition is performed in practice,
and show explicitly how it depends on the availability of control resources.
First, we consider two spin-1/2 particles with Ising interaction, with a con-
stant magnetic field along the z-axis, and arbitrary fields applied along the
x and y axes as controls. As a further control, we’re able to tune the in-
teraction strength γ between the two spins. We then have the operator
Schrödinger equation

d

dt
Û = −i

{
γ(t)σ̂z ⊗ σ̂z +

∑

l=x,y

σ̂l ⊗ Îul(t) +
∑

l=x,y

Î ⊗ σ̂lul(t)
}
Û ,

where the Pauli matrices are defined as follows

σ̂x ,
1√
2

(
0 1
1 0

)
, σ̂y ,

1√
2

(
0 −i
i 0

)
, σ̂z ,

1√
2

(
1 0
0 −1

)
,

and Î is the 2× 2 identity matrix. We assume that the control fields couple
identically to both spins, implying that any transformation actuated on one
acts the same on the other. We now proceed to compute the dynamical Lie

49



algebra. We start off with the following basis elements

B̂1 , iσ̂z ⊗ σ̂z,
B̂2,3,4 , iÎ ⊗ σ̂x,y,z + iσ̂x,y,z ⊗ Î .

The commutators of depth one gives us two additional basis elements

B̂5 , adB̂1
(B̂2) = −iσ̂z ⊗ σ̂y − iσ̂y ⊗ σ̂z,

B̂6 , adB̂1
(B̂3) = iσ̂z ⊗ σ̂x + iσ̂x ⊗ σ̂z.

The depth-two commutators are

B̂7 , adB̂2
(B̂6) = iσ̂x ⊗ σ̂y + iσ̂y ⊗ σ̂x,

B̂8 , adB̂2
(B̂5) = 2iσ̂z ⊗ σ̂z − 2iσ̂y ⊗ σ̂y.

The only depth-three commutator that generates a new basis element is

B̂9 , adB̂1
(B̂8) = −2iσ̂x ⊗ σ̂x.

No other commutators generate new linearly independent elements. We
conclude that the dynamical Lie algebra is given by

iL = span{σ̂x,y,z ⊗ σ̂x,y,z, σ̂x,y,z ⊗ Î + Î ⊗ σ̂x,y,x, σ̂z ⊗ σ̂y + σ̂y ⊗ σ̂z
σ̂z ⊗ σ̂x + σ̂x ⊗ σ̂z, σ̂x ⊗ σ̂y + σ̂y ⊗ σ̂x},

and dim(L) = 9. The lack of operator controllability comes from the fact
that the fields couple identically to both spins, which results in a dynamical
Lie group generated by the magnetic fields given by

{X̂ ⊗ X̂ : X̂ ∈ SU(2)}.

If the coupling constants were different for the two spins the magnetic fields
would instead be able to effect any transformation from the set

{X̂1 ⊗ X̂2 : X̂1, X̂2 ∈ SU(2)},

and the full dynamical Lie algebra would be given by su(4). The measured
observable is the total magnetization along the z-axis, i.e. Ŝ = Î⊗σ̂z+σ̂z⊗Î.
The observation space

V =

∞⊕

j=0

adjLspan{iÎ ⊗ σ̂z + iσ̂z ⊗ Î},

is the ideal of L generated by the element Ŝ ∈ L. As it turns out, V = L, and
so 〈Ĥ〉ρ̂ = O with U = 0. With these control resources all energy residing
in the system is observable ”high grade” energy with the ”entropic” part of
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the energy vanishing. We will now see how the situation changes when we
reduce the control resources at our disposal.

Now consider the same scenario, but with our control options restricted
to modulating the interaction strength between the two spins, and to ap-
plying a magnetic field along the x-axis to one of the spins only. We then
have the Schrödinger equation

d

dt
Û = −i

{
γ(t)σ̂z ⊗ σ̂z + Î ⊗ σ̂xu(t)

}
Û .

The dynamical Lie algebra is given by

L = span
{
iσ̂z ⊗ σ̂z, iÎ ⊗ σ̂x, iσ̂z ⊗ σ̂y

}
,

and dim(L) = 3. We measure the same observable as before. All Lie brackets
of iŜ taken with a single generator of L are listed below

adiσ̂z⊗σ̂z(iŜ) = 0, adiÎ⊗σ̂x(iŜ) = iÎ ⊗ σ̂y,
ad2

iÎ⊗σ̂x(iŜ) = −iÎ ⊗ σ̂z, ad3
iÎ⊗σ̂x(iŜ) = −adiÎ⊗σ̂x(iŜ),

adiσ̂z⊗σ̂y(iŜ) = −iσ̂z ⊗ σ̂x, ad2
iσ̂z⊗σ̂y(iŜ) = ad2

iÎ⊗σ̂x(iŜ).

The Lie brackets with mixed generators all vanish. We conclude that the
observation space is given by

iV = span{σ̂z ⊗ Î , Î ⊗ σ̂x, Î ⊗ σ̂z, σ̂z ⊗ σ̂x},

and dim(V) = 4. Its orthogonal complement (in su(4)) is

iV⊥ = span{σ̂x,y,z ⊗ σ̂x,y,z, σ̂x,y ⊗ Î , Î ⊗ σ̂y, σ̂x,y ⊗ σ̂y,x, σ̂y,z ⊗ σ̂z,y, σ̂x ⊗ σ̂z},

and dim(V⊥) = 11. We now obtain a non-trivial decomposition of the energy
into observable and unobservable parts

O = u(t)Tr
{
Î ⊗ σ̂xρ̂o

}
,

U = γ(t)Tr
{
σ̂z ⊗ σ̂zρ̂u

}
.

The magnetic moment along the x-axis for the spin on which we apply the
control field is the repository of observable energy. The unobservable energy
resides in the Ising interaction between the two spins. The external work
and heat flows resulting from a change in the Hamiltonian are

d̄WE

d̄t
= u̇(t)Tr

{
Î ⊗ σ̂xρ̂o

}
,

d̄QE
d̄t

= γ̇(t)Tr
{
σ̂z ⊗ σ̂zρ̂u

}
.
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To compute the internal work flow we first expand ρ̂o in the basis of V. With
the basis elements labeled as follows

V̂1 , Î ⊗ σ̂z, V̂2 , Î ⊗ σ̂x, V̂3 , σ̂z ⊗ Î , V̂4 , σ̂z ⊗ σ̂x,

the observable state-component can be written as

ρ̂o =
4∑

j=1

〈ρ̂(t = 0), V̂j〉V̂j .

The time derivative of ρ̂o is given by the Liouville-Von-Neumann equation

d

dt
ρ̂o = −i[Ĥ, ρ̂o] = −i

4∑

j=1

〈ρ̂(t = 0), V̂j〉[Ĥ, V̂j ].

Computing the commutators inside the sum yields

[Ĥ, V̂1] = −iu(t)Î ⊗ σ̂y ∈ iV⊥, [Ĥ, V̂2] = iγ(t)σ̂z ⊗ σ̂y ∈ iV⊥,
[Ĥ, V̂3] = 0, [Ĥ, V̂4] = iγ(t)Î ⊗ σ̂y ∈ iV⊥.

As all three non-zero commutators are Hilbert-Schmidt orthogonal to ĤV ,
we can conclude that

d̄WI

d̄t
= 〈ĤV ,

d

dt
ρ̂o〉 = 0,

and consequently the internal heat flow must satisfy d̄QI = 0 as well, by con-
servation of energy. Evidently the observable and unobservable energies are
constants of motion in this setting in the absence of explicit time-dependence
in the Hamiltonian; thus we can state that when isolated the system will
not thermalize.

The component of the Hamiltonian along the normalized bases of iV⊥,
its time-derivative, and its norm are 1

ĤV ⊥ =
γ(t)

4
σ̂z ⊗ σ̂z, ˙̂

HV ⊥ =
γ̇(t)

4
σ̂z ⊗ σ̂z, ||ĤV ⊥ || = γ(t).

We see that the temperature is given by the interaction strength γ; an
intuitive result, since the interaction energy is unobservable. Eq. (4.1) then
gives us cosψ = 2/γ(t), which yields the entropy change

Ṡ = Tr
{
σ̂z ⊗ σ̂zρ̂u

}(
1− cos τ

cosφ

)
d

dt
log γ(t).

1We see that ĤV ⊥ ∈ L, a fact that could also be used to conclude that d̄WI
d̄t

= 0, by
Proposition 5.
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Further unpacking of this equation would require knowledge of the exact
value of ρ̂u.

The basis elements of the observation space are Hilbert-Schmidt orthog-
onal and satisfy V̂iV̂j = δij Î ⊗ Î and therefore 〈V̂i, V̂j〉 = 4δij . Assuming the
state is pure, Proposition 2 tells us that the Fisher information is given by
F = 4Î4×4, and thus the response of the observable energy to changes in
(observable) parameter variations is

∂O
∂θi

=
4∑

j=1

hjFij =
4∑

j=1

4hjδij = 4hi = 16u(t)δi2,

where the last equality follows from the fact that h2 = 4u(t) is the only
non-zero component of the Hamiltonian along the basis elements of iV.

Finally, we can note that since ĤV ⊥ ∈ L both selective and non-selective
measurements of Ŝ leave U invariant, by the results of section (4.2.3).

5.2 Heat and Work Flows in Bipartite Systems

We will now consider heat and work flows in the bipartite scenario described
in section (2.2.1). As the output y we pick any local observable Ŝ = ÎE ⊗
ŜΣ on Σ. Decomposing the interaction Hamiltonian into connected and
disconnected components we can write the total Hamiltonian as

Ĥ = ÎE ⊗ ĤΣ + ĤE ⊗ ÎΣ + ĥd + ĥc.

Since ÎE ⊗ ŜΣ is a local observable on Σ, the results of Proposition 3 applies,
and we have

V = Lc, L ∩ Ld ⊆ V⊥.

By Theorem 4 the time-evolution operator Û can be decomposed as Û =
ÛcÛd, where Ûc ∈ eLc and Ûd ∈ eLd , where [Ûc, Ûc] = 0. Consider the time-
evolved density matrix under the observability decomposition ρ̂ = ρ̂o + ρ̂u ∈
iV ⊕ iV⊥

ρ̂(t) = Û(t)ρ̂Û †(t) = Ûc(t)Ûd(t)(ρ̂o + ρ̂u)Û †d(t)Û †c (t).

The participating elements in the above equation satisfy the following set
membership relations

ρ̂o ∈ iV, ρ̂u ∈ iV⊥, Ûc ∈ eV , Ûd ∈ eV
⊥∩Ld .

Since [Lc,Ld] = 0, we have the following vanishing commutators

[ρ̂o, Ûd] = [ρ̂u, Ûc] = 0.
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This allows a decomposition of the time-evolved density matrix into two
terms, one observable and governed by the connected Lie algebra, and the
other unobservable and governed by the disconnected Lie algebra. Explicitly

ρ̂(t) = Ûc(t)ρ̂oÛ
†
c (t) + Ûd(t)ρ̂uÛ

†
d(t).

The energy of Σ is the sum of its local energy ÎE ⊗ ĤΣ and the interaction
energy ĥc + ĥd ; we call this the local energy. Consider the time-evolution
of its expectation value

〈Ĥloc(t)〉 = Tr
{
Ûc(t)ρ̂oÛ

†
c (t)(ÎE ⊗ ĤΣ + ĥc + ĥd)

}
+

Tr
{
Ûd(t)ρ̂oÛ

†
d(t)(ÎE ⊗ ĤΣ + ĥc + ĥd)

}
.

We have the following implications

[L,V] ⊆ V =⇒ Ûc(t)ρ̂oÛ
†
c (t) ∈ iV,

[L,V⊥] ⊆ V⊥ =⇒ Ûd(t)ρ̂uÛ
†
d(t) ∈ iV⊥.

As ÎE ⊗ ĤΣ + ĥc ∈ V and ĥd ∈ V⊥ ∩ Ld, we have

Tr
{
Ûc(t)ρ̂oÛ

†
c (t)ĥd

}
= Tr

{
Ûd(t)ρ̂oÛ

†
d(t)(ÎE ⊗ ĤΣ + ĥc)

}
= 0.

The expectation value of Ĥloc now assumes the form

〈Ĥloc(t)〉 = Tr
{
Ûc(t)ρ̂oÛ

†
c (t)(ÎE ⊗ ĤΣ + ĥc)

}
+ Tr

{
Ûd(t)ρ̂uÛ

†
d(t)ĥd

}
=

〈Ĥloc(t)〉ρ̂o + 〈Ĥloc(t)〉ρ̂u .

Here we have a decomposition of the total energy into one part which is
both observable and controllable, and one part which is both unobservable
and uncontrollable. In the absence of controls the work and heat flows are

dWI

dt
, d

dt
〈Ĥloc(t)〉ρ̂o = Tr

{( d
dt
ρ̂o(t)

)
(ÎE ⊗ ĤΣ + ĥc)

}
,

and

dQI
dt
, d

dt
〈Ĥloc(t)〉ρ̂u = Tr

{( d
dt
ρ̂u(t)

)
ĥd

}
.

The density matrices are governed by the Liouville-Von-Neumann equations

d

dt
ρ̂o = −i

[
ÎE ⊗ ĤΣ + ĥc, ρ̂o

]
,

d

dt
ρ̂u = −i

[
ĥd, ρ̂u

]
.

If we apply external controls to Σ, the heat flow remains unchanged as the
term ĥd cannot be modified in this set-up. The work flow, however, acquires
an additional term

dW

dt
= Tr

{( d
dt
ρ̂o(t)

)
(ÎE ⊗ ĤΣ(u))

}
+ Tr

{
ρ̂o(t)

(
ÎE ⊗

d

dt
ĤΣ(u) +

d

dt
ĥc
)}
.
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We can also consider the case where an external and uncontrollable per-
turbation Ĥp affects the combined system HE ⊗ HΣ. In the general case
energy will be deposited into every subspace of the system. In the absence
of controls on Σ the work and heat flows are

dW

dt
= Tr

{( d
dt
ρ̂o(t)

)
(ÎE ⊗ ĤΣ + ĥc)

}
+ Tr

{
ρ̂o(t)

[
Ĥp, ÎE ⊗ ĤΣ + ĥc

]}
,

dQ

dt
= Tr

{( d
dt
ρ̂u(t)

)
ĥd

}
+ Tr

{
ρ̂u(t)

[
Ĥp, ĥd

]}
.

The dynamics on the subspaces V and V⊥ are governed by the equations

d

dt
ρ̂o = −i

[
ÎE ⊗ ĤΣ + ĥc + Ĥp, ρ̂o

]
,

d

dt
ρ̂u = −i

[
ĥd + Ĥp, ρ̂u

]
.

Remark. It is worth investigating whether the observation space and its or-
thogonal complement are invariant under external uncontrollable (and Her-
mitian) perturbations Ĥp, i.e whether

[
Ĥp,V

]
⊆ V,

[
Ĥp,V⊥

]
⊆ V⊥.

If in general they were not, characterizing what perturbations cause tran-
sitions between the two subspaces would be of importance for analyzes
of quantum thermalization, as it would illustrate effective thermalization
brought about by unitary dynamics.

55



Chapter 6

Conclusions

We will now summarize the main arguments for why a cybernetic theory of
heat and work should be considered.

• When identifying energy contributions as either heat or work in both
the research litterature, and in standard textbooks on the subject, ref-
erences are invariably made to the cybernetic notions of controllability
and observability. Two common claims are that work is energy effected
through parameters that are under our direct control, and that work
is energy that corresponds to changes in parameters we can directly
observe.

• Entropy is commonly understood with reference to state underdeter-
mination, and that a higher entropy corresponds to a case where the
observables we have access to gives less information about the inter-
nal state of the system. This is clearly connected to the cybernetic
concept of observability.

• The fundamental laws of physics are time-reversible, while thermody-
namic laws are irreversible. This is known as Loschmidt’s paradox.
One resolution of the paradox is that nature is fundamentally time-
reversible, but that irreversibility is a practical reality due to control
limitations. When Boltzmann heard of Loschmidt’s objection to his
theory, that theoretically the time-evolution could be reversed by re-
versing the sign of the Hamiltonian, he answered : ”Then try it!”. The
response would seem to imply that he suspects that irreversibility is a
control-theoretic issue rather than a fundamental one.

• The standard resolution to the paradox of Maxwell’s demon is that
gathering information about every constituent particle of the system,
storing it, and erasing it at the end of the process, would generate
more entropy than the amount reduced by the demons control actua-
tion. But theoretically, the demon could just guess the correct control
function without gathering information at all. This again would seem
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to suggest that the second law, in some sense, is a statement about
practical possibilities rather than fundamental limitations.

• As shown in Proposition 4, unobservability of the state is a necessary
and sufficient condition for the measured observable to be given by
a microcanonical distribution. This establishes a clear link between
thermal equilibrium and unobservability. Considering thermalization
within this framework also sidesteps the quantum thermalization prob-
lem, and allows one to compute meaningful ”heat” and ”work” quan-
tities for closed systems under external driving.

This thesis has provided an attempt, for the first time (to the knowledge
of the author), to explicate the notions of heat and work using an observ-
ability decomposition. Heuristic remarks to the same effect has been made
countless times in the research litterature, but no explicit attempt has been
made at formalization, perhaps due to lack of contact between the quantum
thermodynamics and quantum control communities.

Exploring this avenue further for general Liouville Von-Neumann sys-
tems is difficult due to the poverty of control and observability results ob-
tained thus far (Theorems 1 & 2 & 3 are the primary results available). Fur-
ther implications of this theory can probably be found with the few results
available, for example by analyzing their implications for a wider variety of
algebras (L,V) and trying to ascertain what structures lead to thermaliza-
tion. Further work should also consist in applying the theory to more model
systems other than the Ising model considered in Section (5.1), again, at-
temping to find what algebraic structures (L,V) lead to thermalization (the
Ising model considered here doesn’t thermalize). A more restricted project
would be to explore the theory further within the context of linear dynam-
ical quantum systems, where a wealth of control and observability results
already exist [25], including a full Kalman decomposition [26]. A problem of
particular interest would be to relate the maximum work extractable from a
system (with and without feedback) to its controllability and observability
properties, and to an entropy-like function similar to the one defined in Eq.
(4.1).

As a final remark, I hope that this thesis has shed some light on the mean-
ing of thermodynamic concepts, or at least offered some food for thought.
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