
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK
MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Computing Cohomology with Cubical Agda

av

Axel Ljungström

2020 - No M6

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

Computing Cohomology with Cubical Agda

Axel Ljungström

Självständigt arbete i matematik 30 högskolepoäng, avancerad nivå

Handledare: Guillaume Brunerie, Anders Mortberg

2020

Abstract

Cubical Agda is a proof assistant for Cubical Type Theory (CuTT), a recent
flavour of Homotopy Type Theory (HoTT), which gives a constructive inter-
pretation of univalence. The goal of this thesis is to characterise, formally in
Cubical Agda, the zeroth, first and second cohomology groups with integer
coefficients of the torus and of the wedge sum of a sphere and two circles. We
first introduce type theory, HoTT, CuTT and Cubical Agda. We then work
our way up to cohomology, defined in terms of Eilenberg-MacLane spaces, and
the Mayer-Vietoris sequence. Finally, we characterise some of the cohomology
groups of the unit type, n-spheres, 0-connected types and wedge sums. Using
these results, we characterise the cohomology groups in question.

Acknowledgements

I would like to thank my supervisors Guillaume Brunerie and Anders Mörtberg
for all of their support and for the countless hours they have put into this project.
I would also like to thank Alexander Berglund for his insightful comments on
the first draft of this thesis.

1

Contents
1 Introduction 3

2 Preliminaries 4
2.1 Type Theory . 4
2.2 Homotopy Type Theory . 8
2.3 Cubical Type Theory . 15

3 Cubical Agda 16
3.1 The Interval Type . 16
3.2 Transport . 18
3.3 Paths . 19
3.4 Interlude: Cubes and Fillers . 20
3.5 Partial Elements . 21
3.6 Homogeneous Composition . 22
3.7 Glue . 27
3.8 Higher inductive types . 27

4 Cohomology in Homotopy Type Theory 28
4.1 Preliminaries . 28

4.1.1 Foundations . 28
4.1.2 Spheres and Pushouts . 33
4.1.3 Homotopies and Loop Spaces 35
4.1.4 n-Types and Truncations 36
4.1.5 Connected Functions and Types 41
4.1.6 Freudenthal Suspension Theorem 45
4.1.7 The Hopf Fibration . 51
4.1.8 Loop Spaces over S1 . 51
4.1.9 Groups . 54

4.2 Cohomology with Coefficients in Z – Definition and Group Structure 57
4.3 The Mayer-Vietoris Sequence . 60
4.4 Characterisations of Cohomology Groups 65

4.4.1 The Unit Type . 65
4.4.2 Spheres . 66
4.4.3 Wedges of Spheres . 70
4.4.4 The Torus . 71

5 Implementation in Cubical Agda 76
5.1 Formalisation . 76
5.2 Computations . 78

6 Future work 79

2

1 Introduction
Homotopy Type Theory (HoTT) is a constructive foundation of mathematics
combining Per Martin-Löf’s intensional type theory and homotopy theory. HoTT
can be characterised by the following four ideas:

1. A typeA corresponds to a topological space Â (up to homotopy equivalence).
Every term a of type A, denoted a : A, corresponds to a point â ∈ Â.

2. Equalities correspond to paths; that is, given a type A and terms a, b : A,
the identity type a ≡ b is interpreted as the space of paths between a and
b.

3. An equivalence (bijection) between two types is a homotopy equivalence
between their corresponding spaces.

4. If two types are equivalent, then there is a witness of their equality.
In other words, isomorphic structures are the same. This is known as
(Voevodsky’s) univalence principle [14].

Cubical Type Theory (CuTT) is slight variation of HoTT where paths (equalities)
are defined as functions from a primitive unit interval rather than inductively.
The main advantage of CuTT is that it gives a constructive interpretation of
univalence. This gives rise to the possibility of actually using formalised proofs in
CuTT to make explicit calculations which would get stuck on every application
of univalence in standard HoTT.

In this thesis, we define cohomology with coefficients in Z in CuTT and
characterise the first three cohomology groups for the torus, T2, and the wedge
of two circles and a sphere, S2 ∨ S1 ∨ S1. These spaces are interesting because
they admit isomorphic cohomology groups but different cup products. The idea
is that if we can define these things in a proof assistant, then we can actually
make explicit computations with addition (in the cohomology groups) and cup
products. In this thesis, we carry out the first step in this project by defining
cohomology groups and characterising the first three cohomology groups of T2

and S2 ∨ S1 ∨ S1 formally in Cubical Agda, the cubical extension of the proof
assistant Agda.

Section 2 contains a brief introduction to type theory, HoTT and CuTT.
This section is aimed towards general mathematicians rather than logicians and
computer scientists. Jargon from mathematical logic and category theory is
avoided to an extent as great as possible.

Section 3 contains a brief introduction to Cubical Agda. This section also
explains some of the fundamentals of CuTT. It also introduces some elementary
lemmas which will be used later on.

Section 4 section contains the mathematics leading up to and including the
definition of the group structure on cohomology groups and the characterisations
of Hn(T2) and Hn(S2 ∨ S1 ∨ S1) for n = 0, 1, 2. All proofs have been verified
formally in the cubical library [3], either by myself or other contributors.

Section 5 contains some comments on the main part of the project, i.e. the
formalisation in Cubical Agda.

3

2 Preliminaries
In this section we introduce type theory, HoTT and CuTT. The mathematics
in this thesis is written in informal (homotopy) type theory, in the same way
as classical mathematics is written in the language of informal set theory.
This introduction is brief and by no means exhaustive. For a more detailed
exposition, the reader is strongly encouraged to read the first two chapters of
the Homotopy Type Theory Book [14].

2.1 Type Theory
Type theory is a formal language tracing back to the foundational crisis in
the early 20th century. Originally outlined by Russell in [13] as a solution
to Russell’s paradox, it was first seriously developed and studied by Curry.
Together with Howard, Curry found a correspondence between propositions
in intuitionistic logic (roughly speaking, classical logic without the law of the
excluded middle) and types, often referred to as the Curry-Howard Correspondence
or the Propositions-as-types interpretation of type theory [10]. The essence of
this correspondence is the following; for every proposition P in intuitionistic
logic, there is a corresponding type P ′ such that constructing a term of P ′ is
the same thing as giving a proof of P . This gives a two-fold interpretation of
type theory. On the one hand, types fill the same function as sets do in classical
mathematics. For instance, we have the type N of natural numbers, the type Z
of integers, and so on. On the other hand, types correspond to mathematical
propositions. For the most commonly occurring types, we have the following
correspondences.

Type Theory Logic Set Theory
a : A A holds (with a as proof/witness) a ∈ A

B : A→ Type Predicate B(a) Family of sets Ba
A→ B If A, then B {f | f : A→ B}

(a : A)→ B(a) For all a, B(a) holds Πa∈ABa∑
a:AB(a) There exists an a such that B(a) holds ta∈ABa
≡A = (equality) {(a, a) | a ∈ A}

The last three rows in the rightmost column are mainly included for completeness
and can safely be ignored. We also introduce the empty type ⊥ and the unit type
>. Following notation similar to that of first-order logic, we negate a statement
(type) A by constructing a function from A into ⊥ – that is, by constructing
a term of the type A → ⊥. We give some examples of familiar mathematical
statements and notation translated into type theory.

4

Mathematical statement Translation
f : N→ N f : N→ N
For all natural numbers n,m, if (n,m : N)→ n ≡ −m→ n+m ≡ 0
m = −n, then n+m = 0
If n is a natural number and n 6= 0, (n : N)→ (n ≡ 0→ ⊥)
then there is a natural number →∑

m:Nm+ 1 ≡ n
m s.t. m+ 1 ≡ n

Figure 1: Translations

My hope here is that the reader notes the similarity between the above
and the usual renderings of mathematical statements into first-order logic. So
far, the above translations just look like regular first-order logic with “n ∈
N” replaced by “n : N”, “∀ (a ∈ A) (. . .)” replaced by “(a : A) → . . . ” and
“∃ (a ∈ A) (. . .)” replaced by “

∑
a:A . . . ”. Although this is fairly close to the

truth, there are some subtle differences. A particularly interesting difference
is type theory’s treatment of proofs as regular mathematical objects. For a
concrete example, compare the first and second cells in the second column in
Figure 1. In the first cell we write f : N → N to say that f is a term of the
type N → N – that is, f is a function from N to N. We turn to the second
cell. The type here seems vastly different from the type N → N. Indeed, this
type represents a mathematical statement, whereas the type N→ N represents
a certain class of functions. However, a proof of this statement constitutes in
constructing an element p : (n,m : N) → n ≡ −m → n + m ≡ 0. This now
looks much more similar to the statement in the first cell; hence, we should be
able to consider p as a function, just as we did with f . There is an obvious
way of doing this: p is a function that takes as input two natural numbers n
and m together with a proof that n ≡ −m and returns as output a proof that
n + m ≡ 0. In other words, p is a function in the same sense as f . On the
other hand, f is a proof (roughly speaking, a proof the statement “if there is a
natural number, then there is a natural number”) in the same way as p is. The
conclusion is that type theory does not allow for a clear-cut distinction between
mathematical objects and proofs about mathematical objects. In fact, these two
notions coincide completely. In one sense, every construction in type theory is
a proof. Thus, we are not always (only) interested in what is proved, but rather
how something is proved. For this reason, we say that intensional type theory
is proof relevant. We will see how this comes into play in Section 2.2.

We now know that types can essentially be treated either as sets or as
propositions, and we have a rough idea of how to translate statements from
standard mathematics into type theory. We also know that we can form new
types (such as

∑
a:AB(a) and a ≡ b) from simpler types and their terms.

However, we have not said anything about (1) how to introduce new elementary
types and (2) how to actually construct elements of a given type. Most types
in type theory are inductively defined. What this means is that we introduce a
type by inductively defining its terms. For instance, we introduce the natural

5

numbers inductively by

0 : N
suc : N→ N

That is, “0 is natural number and for every natural number n, there is a successor
of n, i.e. suc(n)”. Hence, there are only two ways of constructing an element
a : N; either we give 0 or we give suc(n) for some other natural number n. The
inductive types also come equipped with induction principles. For instance, if
we want to prove a statement (n : N)→ B(n), it is enough to construct a term
b0 : B(0) and, given a term bn : B(n), a term bn+1 : B(n+ 1).

Other inductively defined types of particular importance are the unit type
>, the empty type ⊥ and the identity type a ≡ b. Set theoretically, the unit
type > corresponds to the class of singleton sets. Logically, it corresponds to
verum. The unit type is defined by a single constructor:

∗ : >

The empty type, ⊥, corresponds set-theoretically to the empty set and logically
to falsum. It has no constructors. The identity type relative to a type A and
a term a : A, as treated in Per Martin-Löf type theory, is inductively defined
as a function A → Type with a sole constructor: refla : a ≡ a. We often omit
the subscript from refla when a is clear from context. Here refla corresponds to
the trivial equality between a and itself. As the definition is inductive, it makes
sense to assume the following induction principle. Suppose we have a dependent
type B : (a, b : A) → a ≡ b → Type and we want to prove that B(a, b, p) holds
for all a, b : A and p : a ≡ b. Then it is enough to prove B(a, a, refla). In other
words, it is enough to replace b by a and assume that the identity between a and
b is trivial. It is important to point out that the induction principle cannot be
used to directly prove B(a, a, q) for some q : a ≡ a. In Section 2.2, we will get
some topological intuition for why this is the case. Instead, in order to apply
the induction principle we have to prove the stronger statement that B(a, b, p)
holds for all b : A and q : a ≡ b. We will use path induction to refer to this
induction principle. This name will make more sense after seeing the topological
interpretation of type theory in Section 2.2.

In addition to “≡”, we will use the following symbols for other kinds of
equality

(:≡) We write a :≡ b in order to define a new term a as b.

(:=) We write a := b when a and b are definitionally/judgementally equal. That
is, when a and b reduce to the exact same term (i.e., they are syntactically
identical). This happens for instance when we have previously defined
a :≡ b, but can also occur in other cases.

(=) The regular equality symbol will only be used informally for meta-
mathematical reasoning. For instance, we may sometimes talk about “the
case n = 0” in an inductive argument.

6

For examples of path induction in action, consider the proofs of the following
propositions.

Proposition 2.1 (Transitivity of identity/composition of equalities). Let A be
a type with terms x, y, z : A. For all terms p : x ≡ y and q : y ≡ z, there is a
term p · q : x ≡ z.

Proof. We are given identities p : x ≡ y and q : y ≡ z. By path induction
(twice), we may replace y and z by x and assume that p and q are just reflx.
We are now to construct a term reflx · reflx : x ≡ x. We simply define

reflx · reflx :≡ reflx

and we are done.

Proposition 2.2 (refl is a right-unit). Let A be a type with terms x, y : A and
let p : x ≡ y. Then p ≡ p · refly.

Proof. By path induction, we may replace y by x and assume that p is just reflx.
We are now to show that

reflx ≡ reflx · reflx

But this is precisely how we defined composition of identities. Thus, the statement
holds (by reflreflx).

Proposition 2.3 (Function application preserves identities). Let A and B be
types with a function f : A→ B. Let x, y : A. There is a function

congf : x ≡ y → f(x) ≡ f(y)

Proof. Let x, y : A and p : x ≡ y. We need to construct congf (p) : f(x) ≡ f(y).
By path induction, it suffices to construct the term when p is reflx. We then let

congf (reflx) :≡ reflf(x)

and we are done.

Proposition 2.4 (Transportation along equalities). Let A and B be types.
Then there is a function

transport : A ≡ B → A→ B

Proof. Let p : A ≡ B. By path induction, we may assume that p is reflA. We
may now define the function as

transport(reflA, a) :≡ a

We also have the following equivalent definition of transport.

7

Proposition 2.5. Let A be a type and let B : A → Type be a dependent type.
Let x, y : A. We then have a function

transportB : x ≡ y → B(x)→ B(y)

Proof. Given an identity p : x ≡ y, we also get an identity p′ : B(x) ≡ B(y).
We may thus define

transportB(p,_) :≡ transport(p′,_)

An important note is that all types are terms of higher types. For instance,
the type N is of type Type0, where Type0 is the type (also know as the universe)
of elementary types. In its turn, Type0 is of type Type1. In general, we have
Typen : Typen+1. Consequently, many theorems we prove about terms of (often
elementary) types hold for the types themselves. For instance, by letting A be
Type0 in the statement of Proposition 2.1, we see that the theorem also holds for
identities between types. For the remainder of this thesis, we omit the subscript
and simple write Type.

We have now answered (1). We have yet to answer (2). That is, we have yet
to answer how to actually prove statements in type theory (i.e. how to construct
terms of types). It is clear how to construct a term of an inductively defined
type A; either we give a term a : A such that a is one of the constructors from
the inductive definition of A (e.g. suc 0 for N), or we give a term f(b) : A where
B is a type, f : B → A is a previously defined function and b : B. We have seen
examples of both ways in the proofs of the previous propositions. Constructing
a term of type Σa:AB(a) consists in giving a term (a, b) such that a : A and
b : B(a). Finally, constructing a term of type (a : A)→ B(a) consists in giving
a term of type B(a), given some a : A. Note that A→ B is just the special case
of this type when B does not depend on A. We will often use λ-notation in order
to construct terms of function types. This is merely a way of writing functions
in a compact way. For instance, a function f : (x : A) → B(x) will often be
written as λx . f(x). Here, λx . f(x) simply means “given some (a : A), replace
every occurrence of x in f(x) by a”. For instance, the function f(x) = x2 can
be written as λx . x2. Thus, λ-notation is simply a way of introducing functions
without giving them an explicit name (e.g. “f ”, or similar).

2.2 Homotopy Type Theory
While the interpretation of types as sets is useful for intuition, it is perhaps not
completely precise. In standard mathematics, sets are essentially structureless.
This is not the case for types in intensional type theory. In particular, given
a type A and terms a, b : A, we may look at the identity type a ≡ b. From
the perspective of classical mathematics, this type should be either empty or
contain precisely one element – either two objects are equal, or they are not.
However, since intensional type theory is proof relevant, there can be several

8

distinct terms of this type. Proposition 2.1 tells us that there is also a binary
operation _·_ : a ≡ b→ b ≡ c→ a ≡ c for all a, b, c : A. Furthermore, we will
see that this operation satisfies the groupoid laws. This allows us to interpret
· as composition of paths in a topological space. Under this interpretation,
we interpret A not as a type, but as a topological space and a ≡ b as the space of
paths from a to b. In particular, a ≡ a can be interpreted as the loop space over
a. Hence we may still think of types as sets, but now also with the structure of
topological spaces. This now gives a new interpretation of types.

Type Theory Topology
a : A A point a in the topological space A
A→ B Function space

B : A→ Type Fibration B(x) over A
(a : A)→ B(a) Space of sections∑

a:AB(a) Total space
a ≡ b Space of paths from a to b (in some space A)

We will continue to work under this topological interpretation of type theory;
in particular, we will often use “points” to refer to terms, “fibrations” to refer to
dependent types, “paths” to refer to identities and “path composition” to refer
to composition of identities (transitivity).

HoTT also allows for higher inductive types (HITs). The idea is that we
may define a type not only by describing the type’s constructors, but also by
describing how to identify its terms. That is, we define a HIT A by inductively
giving its constructors ci : A and then giving paths pa,j for some of its constructors
a : A. For instance, S1 is a HIT defined by

• A base point base : S1

• A path loop : base ≡ base

Note how this corresponds precisely to the interpretation from classical algebraic
topology of S1 as a cell complex e0 ∪ e1. Here, the 0-dimensional cell e0

corresponds to base and the 1-dimensional cell (line segment) e1 corresponds to
the path loop. In general, any finite CW complex can be described by a HIT [14].
These constructions make HoTT suitable for doing mathematics synthetically.
That is, roughly speaking, mathematics in which algebraic structure is the
defining feature of mathematical objects, rather than which points they are
composed of1. There are two major advantages of the synthetic approach to
mathematics. First, it often makes mathematical intuition precise. For instance,
claims such as “a continuous function from the circle into a space A consists of a
point a ∈ A and a loop over a” hold by definition in HoTT, due to the synthetic
definition the circle. Indeed, the induction principle for S1 says that in order to

1For an early example of synthetic mathematics, see e.g. Euclid’s foundations of
geometry [8].

9

construct an element f : (x : S1)→ B(x), it is enough to construct an element
f(base) : B(base) and an element f(loop) : f(base) ≡ f(base).

The second advantage is that CW complexes defined as HITs are defined by
a finite number of constructors, rather than by an infinite number of points.
For instance, when we talk about points on the circle, we can really only talk
about the base point or the loop. Intuitively, there are other points than base on
the circle, but these are inaccessible to us. Thus HITs are finite objects, which
makes them suitable for computer implementations.

The final and perhaps most important part of HoTT is Voevodsky’s univalence
principle. As is common in constructive systems, it is not possible to talk about
discontinuous functions in a meaningful way. HoTT follows this tradition in
that it interprets every function f : A → B as a continuous function between
spaces. Thus, if a function f : A → B has an inverse f−1 : B → A, then also
f−1 is continuous. Hence, invertible maps correspond precisely to homotopy
equivalences. Since homotopy equivalent spaces are “the same” in some structural
sense, it makes sense to equate them, from our synthetic point of view. This
is precisely what the univalence principle does. There are several (provably
equivalent) ways to express homotopy equivalence, denoted A ' B. We define
equivalences in terms of contractibility of fibres.

Definition 2.6 (Contractibility). A type A is said to be contractible if we have
a term of the following type

isContr(A) :≡
∑

a0:A

((a : A)→ a ≡ a0)

If we have a pair (a0, p) : isContr(A), then we refer to a0 as the centre of
contraction.

Definition 2.7 (Equivalence). We say that two types A and B are equivalent,
denoted A ' B, if there is a map f : A → B such that the fibres of f are
contractible. Formally, we define this by

A ' B :≡
∑

f :A→B
isEquiv(f)

where

isEquiv(f) :≡ ((b : B)→ isContr(fibf (b)))

and

fibf (b) :≡
∑

a:A

(f(a) ≡ b)

We also say that two types A and B are quasi-equivalent if there are maps
f : A → B, and g : B → A such that these maps cancel out. Formally, a
quasi-equivalence between A and B is a term of the following type

∑

f :A→B
isQuasiEquiv(f)

10

where

isQuasiEquiv(f) :≡
∑

g:B→A
((a : A)→ g(f(a)) ≡ a)× ((b : B)→ f(g(b)) ≡ b)

Quasi-equivalences can be proved to induce equivalences [14]. We will therefore
use these definitions interchangeably and without comment. We will also, with
some abuse of notation, sometimes write f : A ' B when only referring to the
function f : A→ B in isolation of the proof that it is an equivalence.

Proposition 2.8. Let A and B be types with p : A ≡ B and let

idToEquiv(p) :≡ transport(p,_)

The map idToEquiv(p) : A→ B is an equivalence.

Proof. The map’s inverse is given by transport(p−1,_). The fact that these
maps cancel out follows immediately by path induction on p.

We can now state the univalence principle.

Axiom 2.9 (Univalence). Let A and B be types. Then there is a function

ua : A ' B → A ≡ B

Furthermore, ua is an equivalence with idToEquiv as its inverse.

We give some intuition for why idToEquiv is assumed to be the inverse of
ua. Suppose we have an equivalence f : A ' B. Applying univalence, we get
a path ua(f) : A ≡ B. We consider the function transport(ua(f),_) : A → B.
This function now transports a point a : A to a point b over the path ua(f).
This corresponds to the notion of a dependent path from a to b. If A and B are
not definitionally the same type, we cannot claim that a ≡ b, since this is not
well-typed. We now have the next best thing – we can can claim that a and
b are equal with respect to our path ua(f). Intuitively, this path should take
elements a : A to f(a) : B, since the path is defined in terms of f . In this sense,
transport should also undo the application of ua and simply give f back. This
is precisely what is captured by assuming that idToEquiv is the inverse of ua.

Univalence motivates our perhaps slightly unfamiliar choice of definition of
equivalences. The notion of a quasi-equivalence appears closer to what we mean
by a homotopy equivalence in classical mathematics. Indeed, this is often the
definition we have in mind when actually doing mathematics in HoTT. It turns
out, however, that isQuasiEquiv is not suitable for the definition of equivalences.
The problem comes from proof-relevance. Suppose we were to use isQuasiEquiv
in our definition of equivalences and suppose we have a map f : A → B with
p, q : isQuasiEquiv(f). In this case, we get two elements (f, p), (f, q) : A ' B.
Inverses are unique, so both p and q will point to two functions g and g′ such
that g ≡ g′. However, p and q could point to completely different proofs of,
for instance, the facts that g(f(a)) ≡ a and g′(f(a)) ≡ a for every a : A. In

11

order for p and q to be equal, we would have to be able to transport the first
proof to the second over the path g ≡ g′. This is not possible in general [14].
In particular then, the equivalence (A ' B) ' (A ≡ B) means that (f, p)
and (f, q) could correspond to two different paths A ≡ B. The intuition is,
however, that f uniquely determines a path A ≡ B and hence the role of p
and q becomes unclear. Our definition of equivalences in terms of isEquiv(f)
avoids this problem. Indeed, we can prove that for any p, q : isEquiv(f), we have
that p ≡ q. In this sense, our definition of equivalences is actually closer to the
definition of (homotopy) equivalences in classical mathematics – it is logically
equivalent to the definition in terms of quasi-equivalences in the sense that we
have

isEquiv(f)→ isQuasiEquiv(f)

isQuasiEquiv(f)→ isEquiv(f)

but it is, like the classical definition, proof-irrelevant. Indeed, we can easily
define a bijection between (A ' B) and

∑
f :A→B ‖isQuasiEquiv(f)‖−1, where

‖_‖−1 is an operation on types which essentially turns them into proof-irrelevant
logical propositions (see Definition 4.12). This makes them correspond closer to
propositions in classical mathematics.

The problem with translating the definition of equivalences in HoTT directly
into classical mathematics is that, classically, contractibility of fibres does not
ensure that the point of contraction in each fibre varies continuously. Conse-
quently, we do not necessarily have that our inverse function is continuous. The
key point here is that the statement “for every b : B, we have a point a : A”,
which is the first component of contractibility of fibres, is realised by a function
B → A and, like any function in HoTT, is interpreted to be continuous.

Univalence often comes into play when applying the encode-decode method,
which is a common proof method for characterising path spaces in HoTT.
The simplest version of the encode-decode proof can be outlined as follows,
following [14].

Proposition 2.10. Let (A, a) be a pointed type (i.e. suppose there is some fixed
a : A) and consider a fibration code : A → Type. Suppose that for every x : A,
we have a function

decodex : code(x)→ a ≡ x

with some c : code(a) such that

decodea(c) ≡ refl

and for all y : code(a), we have

transportcode(decodea(y), c) ≡ y.

Then (a ≡ a) ' code(a).

12

Proof. For each x : A, we define encodex : (a ≡ x)→ code(x) by

encodex(p) :≡ transportcode(p, c)

We show that encodea and decodea cancel out. One direction is given by
assumption. We now show that

decodex(encodex(p)) ≡ p

for every x : A and p : a ≡ x. By path induction, it suffices to show that

decodea(encodea(refl)) ≡ refl

By assumption, decodea(c) ≡ refl, so it suffices to show that

encodea(refl) ≡ c

But in this case, we have

encodea(refl) := transportcode(refl, c) := c

Hence, the maps cancel out and we get that code(a) ' (a ≡ a).

The idea is that since loop spaces are hard to characterise as they do not
allow us to use path induction, we want to prove something more general (in
general, by means of constructing a fibration), which does allow us to use path
induction. This method also works for other constructions relying on loop spaces
(e.g. truncations of loop spaces, and similar constructions).

In general, the hardest part of designing an encode-decode proof is how to
define the fibration code. If we want to construct it for a HIT A, we need to
construct code(ai) for the base points ai : A, by sending them to appropriate
types. We then need to, for every higher constructor p : x ≡ y, construct a path
code(x) ≡ code(y), i.e. a path between types. In general, it is not merely the
existence of such a path that is interesting, but also how the path is designed.
Designing such a path is precisely what the univalence principle allows us to
do. In order to see how this works in practice, we revisit an old classic [14]. We
sketch the proof.

Theorem 2.11. (base ≡S1 base) ' Z

Proof. We apply the encode-decode method. The first step is to define our
fibration code : S1 → Type. Since we are trying to prove that (base ≡S1 base) '
Z, we have to let code(base) :≡ Z. We now need to decide where to send loop.
Formally speaking, we need to define p : Z ≡ Z and let

congcode(loop) :≡ p

Some readers may know the proof from traditional algebraic topology. The idea
there is to consider the helix projecting down on S1, such that one step up in the

13

helix corresponds to one loop from the base point to itself. We want to mimic
this idea and interpret our fibration code as the helix. We begin by defining a
function f : Z→ Z by

f(x) ≡ x+ 1

It is easy to prove that f is an equivalence Z ' Z. Thus, by univalence, we get
the path ua(f) : Z ≡ Z with the property that transportation along this path is
just f . We thus let

congcode(loop) :≡ ua(f)

By this, we have captured the fundamental idea of the traditional proof – looping
once is the same thing as going up one step in the helix (i.e. adding 1 to
the current position). We define encodex(p) for every p : base ≡ x. By path
induction, it suffices to define it when x := base and p is refl. We let

encodebase(refl) ≡ 0

We define decodex(y) : base ≡ x for every x : S1 and y : code(x). We induct on
x. For the base point we let

decodebase : Z→ base ≡ base
decodebase :≡ λn . loopn

where loop− is inductively defined by

loop0 :≡ refl

loopsuc(n) :≡ loopn · loop
loop−suc(n) :≡ loop−n · loop−1

For cong(decode_)(loop), we need to construct a dependent path between the
base constructor and itself along loop. That is, we need to show that

transport(x:S1)→code(x)→base≡x(loop, λ n . loopn) ≡ λn . loopn

We have

transport(x:S1)→code(x)→base≡x(loop, λ n . loopn)

≡ transport(x:S1)→base≡x(loop) ◦ (λn . loopn) ◦ transport(x:S1)→code(x)(loop−1)

≡ (λ p . p · loop) ◦ (λn . loopn) ◦ (λn . (n− 1))

≡ λn . loopn−1 · loop
≡ λn . loopn

We do not verify these identities here. The first equality is an easy lemma
about the behaviour of transport for fibrations with → as its main connective.

14

The first part of the second equality is also an easy lemma on the behaviour of
transport for transports into path spaces. The second part of the second equality
comes from our definition of code using univalence. The last equality follows by
definition. We have thus defined our decode function. We now prove that these
maps cancel out. Let (x : S1). We show that

encodex(decodex(n)) ≡ n
for every n : Z. We can show that Z is a set, i.e. has trivial path spaces. We will
see later (see Lemma 4.39) that it therefore suffices to assume that x is base.
Proving that

encodebase(decodebase(n)) ≡ n
is now easy by induction on n. We do not show the path algebra here (for the
details, see the full proof in [14]). The key component is that transportation
along ua(f) is the same as application of f .

We finally prove that

decodex(encodex(p)) ≡ (p)

for every p : base ≡ x. This is where the essential step of the encode-decode
method comes into play. By path induction, it suffices to show that

decodebase(encodebase(refl)) ≡ refl

This now holds definitionally, since encodebase(refl) := 0 and decodebase(0) :=
loop0 := refl.

2.3 Cubical Type Theory
CuTT is a slight alteration of HoTT which replaces the inductive definition
of the identity type with a definition in terms of an interval type I, thereby
mimicking the definition of paths that we are used to from classical homotopy
theory. The unit interval has two constructors corresponding to the end points
of the unit interval, i0, i1 : I. We say that two points x, y : A are equal if there
is a function p : I → A such that p(i0) := x and p(i1) := y. In other words, we
are to provide a term p such that p(i0) reduces to x and p(i1) reduces to y. How
to work in CuTT will be explained in more detail in Section 3. In that section,
we use the notation of Cubical Agda. The reader who is only interested in the
basics of CuTT and not in Cubical Agda, should read the section as follows.

Notation Read as
∀{`} Ignore
Type ` Type
{a : A} (a : A)

funx1 x2, . . . , xn fun(x1, . . . , xn)
fun {x = y} fun(y)
λx→ a(x) λx . a(x)

15

Furthermore, subsections 3.5 and 3.7 can safely be ignored.
The main motivation behind CuTT is that it gives a constructive interpretation

of the univalence principle. A problem with standard HoTT is that univalence
is something that is merely assumed as an axiom. One of the fundamental ideas
of constructive mathematics is that every proof corresponds to an algorithm.
In particular, we just saw an example of how to prove that (base ≡ base) ' Z.
This gives us a map f : Z → (base ≡ base) and an inverse f−1 : base ≡
base → Z. Since the f and f−1 were defined constructively, we should be able
to use these functions for explicit calculations. For instance, it is provable that
f−1(f(1) · f(1)) ≡ 2. Due to the functions constructive definitions, this fact
should be trivial (i.e. we should not have to prove anything). If we formalise
the constructions in a proof assistant, f−1(f(1)·f(1)) should simply reduce to 2.
This is not the case in standard HoTT. This is because we have merely assumed
univalence and not proved it. Hence it gives us no computational information.
This means that if we define our function in terms of ua, then the function does
not reduce. In CuTT, things are set up in a way that both allows us to prove
univalence and such that the computation rules for ua are automatic. This
will be discussed in more detail in the following section. For a more in depth
description of CuTT, see e.g. [12].

3 Cubical Agda
The cubical mode of Agda allows us to utilise methods from CuTT. Most
importantly, the Cubical mode comes with support for HITs and a primitive Glue
type which makes possible for a constructive interpretation of univalence. The
purpose of this section is to provide the general Agda user with a walkthrough
of the fundamentals of Agda’s cubical mode while simultaneously introducing
the basics of CuTT. We do this following the official documentation of Agda
2.6.1. [1], expanding on the more technical sections.

3.1 The Interval Type
In HoTT, we interpret an equality of two terms x and y of type A as a path
between two points x′ and y′ in a topological space A′. Classically, we would
define this path as a continuous function p : [0, 1] → A′ such that p(0) = x′

and p(1) = y′. In order to give this a (cubical) type theoretic interpretation,
we introduce a primitive interval type I. With it comes two terms i0, i1 : I,
corresponding respectively to the end points 0 and 1 of [0, 1]. Hence, to to
construct a path x ≡ y, we need to construct a function u : I→ A such that
u i0 := x and u i1 := y. For instance, we can define the constant path refl as
follows.

refl : ∀ {`} {A : Type `} {x : A} → x ≡ x
refl {x = x} = λ i → x

16

By using curly brackets in the type of refl above, we tell Agda that these
arguments are to be inferred implicitly. That is, if we have some type A of
universe level ` and an element x : A, then we do not need to write refl ` A x in
order to prove x ≡ x. We only need to write refl, and Agda will (most often)
figure out what x, A and ` should be from the context. In the second row, when
defining refl, we do not need to write out `, A and x explicitly to give the
definition. In this case, however, we want to mention the element x : A. Thus
we write {x = x} to tell Agda that we momentarily want to refer to the implicit
x explicitly as x.

Note that this differs significantly from the definition of the identity type
in standard HoTT, where the identity type is inductively defined with refl’s
being its sole constructor. Hence, path induction is not automatic in Cubical
Agda.

Already at this stage, before introducing any more machinery, we can prove
function extensionality in only one line.

funExt : ∀ {` `’} {A : Set `} {B : A → Set `’}
{f g : (x : A) → B x} → ((x : A) → f x ≡ g x) →
f ≡ g

funExt p i x = p x i

This is an exceptionally short proof compared to the one from standard HoTT,
where function extensionality is a relatively advanced theorem following from
univalence.

The interval type also comes equipped with operations ~ : I → I,
∧ : I → I → I and ∨ : I → I → I. Here ~ can be thought of as inverting
interval, thereby sending i0 to i1 and vice versa. For the sake of intuition
we temporarily assume a total ordering on I with i0 < i1. The operation
i ∧ j then picks out the smallest term out of i and j whereas i ∨ j picks out
the largest term. Importantly, when at least one of the arguments of these
operations is either i0 or i1, these terms will reduce. For instance, we have

~i0 := i1

i0 ∧ j := i0

i1 ∧ j := j

i0 ∨ j := j

i1 ∨ j := i1

For a more comprehensive list of the Boolean laws, see [1].
We give two examples. The simplest application of ~ is path reversal; given

a path p : x ≡ y, we wish to construct a path y ≡ x. We have, by definition of p,
that p i0 := x and p i1 = y. Hence we just need to give the term q :≡ λi→ p(~i).
We have

q i0 := p (~ i0) := p i1 := y

17

and
q i1 := p(~ i1) := p i0 := x.

Hence q : y ≡ x. In Agda, we write this as follows.

sym : ∀ {`} {A : Type `} {x y : A} → x ≡ y → y ≡ x
sym p i = p (~ i)

Moreover, we can construct a path between x and any point on our path
p : x ≡ y.

pathPointsEq : ∀ {`} {A : Type `} {x y : A} (p : x ≡ y) (i : I) → x ≡ p i
pathPointsEq p i j = p (i ∧ j)

The above theorem appears to clash with function extensionality. Indeed, if
we are given another path q : x ≡ y, the above theorem implies (assuming path
composition, which we will prove later) that for every point i : I, we have that
p i ≡ q i. Since p and q both are functions from I into A, function extensionality
appears to imply that p ≡ q. In other words, we seem to have a proof of axiom
K (uniqueness of paths), which is well-known to be inconsistent with univalence.
The key point here is that paths are not merely functions, but functions with
constraints. Thus trying to give a similar proof for function extensionality for
paths will not work, since the terms will not reduce. Also, note that we may not
apply our current version of function extensionality in this case, because I does
not belong to Type ` for any universe level `. Rather, it belongs to a separate
universe Setω, which thus prohibits us from letting the domain type A (in the
above proof of function extensionality) be I.

3.2 Transport
Suppose we are given a path p : A ≡ B between types and a term a : A. Since A

and B are equal, the construction of a should naturally give rise to a term b : B, in
accordance to our path p. In standard HoTT, we prove this by constructing the
transport function using path induction. Due to the non-inductive definition
of paths in Cubical Agda however, we have to introduce transport differently.
We introduce a primitive generalised transport.

transp : ∀ {`} (A : (i : I) → Type `) (i : I) (a : A i0) → A i1

This looks just like the transport function we are used to from standard HoTT,
apart from the mysterious additional i : I. One can think of it as a way of
guaranteeing that the usual transport laws which we are used to from standard
HoTT hold. In particular, it is a way of ensuring that transport refl ≡ λ x→ x,
hence circumventing the problem that transport cannot be defined by path
induction. Indeed, the primitive transp is set up so that transp A i1 a := a.
The condition for this to be well-typed is of course that A is constant when
i := i1. Now, when i := i0, this condition is vacuously satisfied, and hence we
can define transport as follows.

18

transport : ∀ {`} {A B : Type `} → A ≡ B → A → B
transport p a = transp (λ i → p i) i0 a

As promised, we get that transport refl is equal to the identity function.

transportRefl : ∀ {`} {A : Type `} (x : A) → transport refl x ≡ x
transportRefl {A = A} x i = transp (λ i → A) i x

An important consequence of this lemma is the J-rule, i.e. path induction.

J : ∀ {` `’} {A : Type `} {x y : A} (P : ∀ y → x ≡ y → Type `’)
(d : P x refl) (p : x ≡ y) → P y p

J P d p = transport (λ i → P (p i) (λ j → p (i ∧ j))) d

The J-rule differs from its traditional version in that a term defined by J A f
does not reduce to f when applied to refl. As with transport, this is a
consequence of the fact that J itself is not defined by path induction. Nevertheless,
we can show that they are equal up to a path.

JRefl : ∀{` `’} {A : Set `} {x y : A} (P : ∀ y → x ≡ y → Type `’)
(d : P x refl) → J P d refl ≡ d

JRefl P d = transportRefl d

3.3 Paths
As usual, we think of transport as constructing dependent paths. In Cubical
Agda, however, dependent paths are also described explicitly by the following
primitive.

PathP : ∀ {`} (A : I → Type `) → A i0 → A i1 → Type `

A hidden constraint is that in order to construct a dependent path p : PathP A x y,
this path must satisfy p i0 := x and p i1 := y.

Until now, we have not actually defined the identity type ≡. We define it as
the special case of PathP when the type path is constant.

≡ : ∀ {`} {A : Type `} → A → A → Type `
≡ {A = A} x y = PathP (λ i → A) x y

Sometimes it is useful to specify the type when proving an equality. Therefore,
we also introduce an equivalent definition of ≡, with the second argument made
explicit.

Path : ∀ {`} (A : Type `) → A → A → Type `
Path A x y = PathP (λ i → A) x y

The intuitive correspondence between transport and the construction of dependent
paths can be made explicit. In particular, we can show that if a point a is
transported to b along a path P, then this induces a dependent path. For this,
however, we shall need some more machinery, and so we postpone it for now.

19

3.4 Interlude: Cubes and Fillers
In order to introduce the remaining primitives in a pedagogical way, we should
first make some remarks on cubes and their relation to I. Recall that we
can interpret a path p : x ≡ y as a function f1 : I→ A such that f1 i0 := x

and f1 i1 := y. If we are given another path q : x ≡ y, then a path p ≡ q

corresponds to a function f2 : I→ I→ A such that f2 i0 := p and f2 i1 := q.
By currying/schönfinkelisation, f2 can thus be seen as a function from a square
into A, with restrictions on the values which f2 assumes on the boundaries.
Generalising this, an n-dimensional path p over A corresponds to a function fn
from an n-dimensional cube into A with appropriate constraints on the function’s
behaviour on the boundary the cube. For better intuition, we represent p by an
n-dimensional cube, with its boundaries labelled by the values assumed by fn.

For an example of how these notions will come into play, assume that we
have p : x ≡ y, q : y ≡ z, r : x ≡ w, s : w ≡ z. We can represent these paths by
an unfilled square.

x

p j

y q i z

s j

wr i
•

• •

•

Figure 2: An unfilled square of paths

Suppose further that we wish to prove some statement relating the four paths,
for instance the fact that there is a dependent path over λ j→ (p j ≡ s j) from
r to q. This is the same as defining a function from I× I into A which reduces to
the given terms on the boundary of the square. From a classical point of view,
we are given a function f∂ : ∂([0, 1]× [0, 1])→ A which we need to continuously
extend to function f : [0, 1]×[0, 1]→ A, hence, in a way, filling the above square.
The topological intuition is then that by the contractibility of [0, 1] × [0, 1], a
filler allows us match up the boundaries. This intuition carries over into CuTT;
we are to construct a term P : I→ I→ A – often referred to as a filler – such
that P i0 j := p j, P i i0 := r i, and so on.

20

x

p j

y q i z

s j

wr i
•

• •

•

P

Figure 3: A filled square of paths

Sections 3.5 and 3.6 concern the construction of these cubes and their fillers.

3.5 Partial Elements
The type of representations in Section 3.4 lie at the heart of CuTT. In order to
actually be able to construct them, however, we need a way of constructing them
in an effective way. Suppose we are given an n-cube with some faces missing –
that is, a partial n-cube. Intuitively, we should be able to add the missing sides
to form a full n-cube. In other words, we should be able to generate n-cubes
from partial cubes. Cubical Agda allows us to do precisely this. First, however,
we must describe the partial n-cubes, referred to here as partial elements.

Cubical Agda comes with a primitive predicate IsOne on I. For i : I, the
idea is that IsOne i corresponds to the constraint i = i1. This is necessary in
order to be able to talk about constraints on i, since we cannot use our usual
identity type to talk about identities of terms of I. We also need to introduce
a primitive reflexivity proof 1=1 : IsOne i1. Following the notation in [1], we
use Greek letters when referring to terms of I that are to be though of as in the
domain of IsOne.

We can now introduce introduce partial elements Partialφ A as a special
case of the type IsOneφ→ A. For completeness, we also include a dependent
version PartialP.

Partial : ∀{`} (i : I) (A : Type `) → Setω

PartialP : ∀ {`}(φ : I) → Partial φ (Type `) → Setω

To better understand this, we should give an example of how partial elements
are introduced. We use the same example as in [1], since it is by far the easiest
non-trivial one. We define a partial boolean by means of a pattern matching
lambda (see [2]).

PartialBool : (i : I) → Partial (i ∨ ~ i) Bool
PartialBool i = λ { (i = i0) → true

; (i = i1) → false }

21

We can think of this as a boolean that is able to change its values at the
boundary points i0 and i1. This may look like a path true ≡ false, but
naturally this would be absurd and is not the right way to interpret it. The
intuition is that nothing really happens unless i := i0 or i := i1. We can see
this as constructing an unfilled line (i.e. an unfilled 1-cube or, alternatively, an
unfilled degenerate n-cube).

•
true

•
false

In order to do anything interesting with these constructions, we need to
establish a connection between our general types and partial elements. For this
we use cubical subtypes, another primitive of Cubical Agda. We introduce them
as follows.

_[_7→_] : ∀ {`} (A : Type `) (φ : I) (u : Partial φ A) → Setω
A [φ 7→ u] = Sub A φ u

The idea here is to, in a way, generalise the notion of a type – given a term
u : A, a term v : A [φ→ u] by definition has the property that it reduces to u

when IsOneφ is satisfied. The term u can itself be interpreted in such a way.
Indeed, we trivially have that u := u whenever IsOneφ is satisfied. For this
reason, we introduce the following primitive in order to turn u into a term of
type A [φ→ u].

inS : ∀ {`} {A : Type `} {φ : I} (u : A) → A [φ 7→ (λ _ → u)]

All that this does is to add the information that u reduces when IsOneφ holds.
Hence, we should be able to transform the term back to u. We add such an
operation too.

outS : ∀ {`} {A : Type `} {φ : I} {u : Partial φ A} → A [φ 7→ u] → A

The operations inS and outS satisfy the expected definitional equalities. For
instance, we have outS (inS a) := a.

3.6 Homogeneous Composition
Recall, our goal is to be able to construct cubes and their fillings out of partial
cubes. In the previous section, we made sense of partial cubes by introducing
partial elements to the machinery. We can now finish the job by introducing
homogeneous composition, a generalisation of path composition. This allows us
to compose cubes. It is given by the following primitive.

hcomp : ∀ {`} {A : Type `} {φ : I} (u : (i : I) → Partial φ A) (a : A) → A

Partial elements specify only the sides of cubes but leave the bottom and lid
open. The idea behind hcomp is that if we call it on a partial element and a path

22

making up the bottom of the corresponding partial cube, then it will compute
the lid. More formally: given a partial element u, hcomp {φ = φ} u is a function
only accepting arguments u0 such that u i0 and u0 agree on φ. Practically,
hcomp is far less difficult to work with than what this formal explanation makes
it sound like. Consider the following example.

Example 3.1 (Binary path composition). We are finally ready to prove path
composition. Let p : x ≡ y, q : y ≡ z. The goal is to construct a path p · q : x ≡ z.
Consider the following partial cube.

x

x

x z

q j

yp i
•

• •

•

All we need to do to complete the square is to apply hcomp.

· : ∀ {`} {A : Type `} {x y z : A} → x ≡ y → y ≡ z → x ≡ z
· {x = x} p q i = hcomp (λ j → λ { (i = i0) → x

; (i = i1) → q j })
(p i)

Note that this is not the only way of doing it. By constructing the partial
element differently, we could define path composition by

� : ∀ {`} {A : Type `} {x y z : A} → x ≡ y → y ≡ z → x ≡ z
� {z = z} p q i = hcomp (λ j → λ { (i = i0) → p (~ j)

; (i = i1) → z })
(q i)

These two definitions are however provably equal up to a path.

We are left to define fillers of cubes. For this, we do not need a new primitive
– a filling operation can be defined in terms of hcomp.

hfill : ∀ {`} {A : Type `} {φ : I}
(u : ∀ i → Partial φ A)
(u0 : A [φ 7→ u i0])
(i : I) → A

hfill {φ = φ} u u0 i = hcomp (λ j → λ { (φ = i1) → u (i ∧ j) 1=1
; (i = i0) → outS u0 })

(outS u0)

We note that the above term reduces to u0 when i := i0 and to hcomp u u0

when i := i1, thus constructing a filler of the corresponding cube.

23

Example 3.2. With hfill, we can prove that for any path p : x ≡ y, we have
that p · refl ≡ p. In other words, by definition of path composition, we wish to
fill the following cube.

x

x

y hcomp u (p i) y

y

yp i
•

• •

•

Here u is the partial element from the definition of path composition, i.e. s.t.
hcomp u (p i) is p · refl. This is precisely the type of situation that hfill is
defined to handle.

rUnit : ∀ {`} {A : Type `} {x y : A} (p : x ≡ y) → p · refl ≡ p
rUnit {x = x} {y = y} p j i = hfill (λ _ → λ { (i = i0) → x

; (i = i1) → y })
(inS (p i))
(~ j)

Note that the application of inS that will usually be needed in proofs using
hfill merely is there for technical reasons. It can thus often be ignored – it is
its argument that carries the interesting information.

Example 3.3. So far, we have only seen examples of squares. Unfortunately,
HoTT is rarely kind enough to allow us to stay in only two dimensions. Let us
consider an example that forces us up one dimension. Given a path p : x ≡ y,
we wish to prove that p · sym p ≡ refl. We know that p · sym p corresponds to
the top of the following square

x

x

x hcomp u (p i) x

p (~j)

yp i
•

• •

•

24

where

u j :≡ λ { (i = i0)→ x

; (i = i1)→ p (~j) }

However, filling the above cube will not give us the result we want – a filler would
only construct a term of type PathP (λ j→ x ≡ p (~j)) p (p · sym p). Rather, we
want a filler of the following square.

x

x

x x x

x

xhcomp u (p i)
•

• •

•

The idea is now to build a skeleton of a cube from our two squares. The following
cube does the job. Those sides without labels are to be interpreted as refl.

•
x

•
x

•
y

•x

p (~ j)

•
x

•x

•
x

•x

p i

hcomp u (p i)

p (~k)

If we can find a filler of this cube, we are done – restricting this filler to
the case when k := i1, we have the lid of the cube, and hence a path from
hcomp u (p i) to its opposite side refl i along the sides, both being refl j. In
other words, we get a path p · sym p ≡ refl. The backside and the left-hand
side of the cube are trivial. The front of the cube is just the filler of path
composition. Thus, we only need to describe the bottom and the right-hand

25

side of the cube. For the bottom, we need to give a term btm : A that respects
the following constraints:

i = i0 ` x
i = i1 ` p (~ j)

j = i0 ` p i
j = i1 ` x

We let btm :≡ p (i ∧ ~ j). Similarly, letting rSide :≡ p (~ k ∧ ~j) will do the
trick for the right-hand side. Thus, we can give the filler of the cube.

rCancelFiller : ∀ {`} {A : Type `} {x y : A} (p : x ≡ y) →
I → I → I → A

rCancelFiller {x = x} {y = y} p i j k =
hfill (λ k → λ { (i = i0) → x

; (i = i1) → p (~ k ∧ ~ j)
; (j = i0) → hfill (λ r → λ{ (i = i0) → x

; (i = i1) → p (~ r) })
(inS (p i))
k

; (j = i1) → x })
(inS (p (i ∧ ~ j)))
j

In fact, we do not need to specify the case j = i0 in this case. Now, by restricting
ourselves to its lid, we are done.

rCancel : ∀ {`} {A : Type `} {x y : A} (p : x ≡ y) → p · sym p ≡ refl
rCancel p i j = rCancelFiller p j i i1

The careful reader might have noted that this proof is somewhat roundabout.
Indeed, it is possible to construct the lid immediately using a simple application
of hcomp.

rCancel’ : ∀ {`} {A : Type `} {x y : A} (p : x ≡ y) → p · sym p ≡ refl
rCancel’ {x = x} p j i = hcomp (λ k → λ { (i = i0) → x ;

(i = i1) → p (~ k ∧ ~ j) ;
(j = i1) → x})

(p (i ∧ ~ j))

This applies to many theorems in the cubical library. There is however value in
proving it using fillers. Seeing rCancel as a special case of a more general filler,
we also gain information about its relation to the other sides of the cube. Such
information can be crucial for path algebraic proofs involving rCancel.

26

3.7 Glue
Cubical Agda includes a primitive type Glue with which we can give a constructive
interpretation of the univalence axiom.

Glue : ∀ {` `’} (A : Type `) {φ : I}
→ (Te : Partial φ (Σ[T ∈ Type `’] T ' A))
→ Type `’

We use a partial element in the definition of the Glue type to generalise to higher
dimensional cubes. However, for our purposes here, it is enough to look at the
simple case which gives univalence. Suppose we have two equivalences e1 : A ' B

and e2 : C ' B. The intuition is now that we can use e1 to glue A to one side
of B, and e2 to glue C to the other side. Since Glue will construct an element
of type Type_, and both A and C are of this type, our goal is to construct an
expression on the form p : λ i→ Glue X u where p i0 := A and p i1 := C. Since
we are to glue things onto B, we let X :≡ B. Now, to define the partial expression
u we simply need to respects the following constraints:

i = i0 ` (A , B ' A)

i = i1 ` (C , B ' C)

We are given these facts by assumption and so we are done. Typing it into
Agda, we get

uaGen : ∀ {`} {A B C : Type `} → A ' B → C ' B → A ≡ C
uaGen {A = A} {B = B} {C = C} e1 e2 i =

Glue B λ { (i = i0) → A , e1

; (i = i1) → C , e2 }

As a special case when C :≡ B and e2 is the identity function, we get univalence:

ua : ∀ {`} {A B : Type `} → A ' B → A ≡ B
ua {A = A} {B = B} e i = uaGen e ((λ x → x) , idEquiv)
where
idEquiv : isEquiv (λ x → x)
equiv-proof (idEquiv) y = (y , refl) , λ z i → z .snd (~ i)

, λ j → z .snd (~ i ∨ j)

3.8 Higher inductive types
Finally, Cubical Agda supports HITs. For instance, we can define the circle S1

as follows.

data S1 : Type0 where
base : S1

loop : base ≡ base

If we wish to define a term of type (x : S1)→ A x, we can pattern match on x.

27

Example 3.4. For a very simple example, we define the following function by
induction.

loop-sq : S1 → S1

loop-sq base = base
loop-sq (loop i) = (loop · loop) i

For i : I, we have loop i : S1, so the last row is well-typed. However, when
specifying which term to send loop i to, we have constraints on which element in
S1 we can choose. Since loop is a path from base to itself, we have to make sure
that loop-sq sends loop i to an element u0 s.t. u0 i0 := u0 i1 := loop-sq base.
This is satisfied by (loop · loop) i.

4 Cohomology in Homotopy Type Theory
This section contains the mathematical part of the project. The goal is to define
cohomology with coefficients in Z and compute the first three cohomology groups
of S2 ∨ S1 ∨ S1 and T2. We will do this in the style of informal type theory,
following the style in [14] and, to some extent, in [5].

4.1 Preliminaries
In this subsection, we present the preliminary theory required for cohomology.
Most of it comes from [14] or [6]. Exceptions are the proof of Theorem 4.10,
which is a slight alteration of the proof in [5], Theorem 4.35, which is a simplification
on the proof in [14] due to Evan Cavallo (see Cubical.Homotopy.Freudenthal in [4])
and Sections 4.1.8 and 4.1.9.

4.1.1 Foundations

We dedicate this subsection to the most elementary facts in CuTT.

Proposition 4.1. Let A be a type with x, y : A and p : x ≡ y. We have the
following paths.

(i)
(
p−1
)−1 ≡ p

(ii) rCancel(p) : p · p−1 ≡ refl

(iii) lCancel(p) : p−1 · p ≡ refl

(iv) rUnit(p) : p · refl ≡ p

(v) lUnit(p) : refl · p ≡ p

Proof.

(i) holds definitionally.

28

(ii) proved in Example 3.3.

(iii) follows from (i) and (ii).

(iv) proved in Example 3.2.

(v) proved using a construction analogous to that in the proof of (iii).

Proposition 4.2 (Associativity of path composition). Let A be a type with
x, y, z, w : A. For any paths p : x ≡ y, q : y ≡ z, r : z ≡ w, we have
(p · q) · r ≡ p · (q · r).

Proof. The path we wish to construct corresponds to the lid of the following
cube.

•
x

•
x

•
z

•w

q(~ j)

•
x

•x

•
y

•w

(p · q)(i)

((p · q) · r)(i)

(p · (q · r))(i)

(q · r)(k)

p(i)
r(k)

It suffices to specify fillers of the bottom and side squares. The front and back
are given by the filler of path composition. The left-hand side is trivial. Thus
it suffices to give fillers for the bottom and the right-hand side of the cube.

In order to construct the bottom filler, we construct the following cube.

29

•
x

•
x

•
y

•z

q(~ j)

•
x

•x

•
y

•y

p(i)

(p · q)(i)

p(i)

p(i)
q(k)

We are interested in the lid. Again, we are done if we can give fillers for the
bottom and the sides of this cube. The bottom, the back and the left-hand side
are trivial. The front is just the filler of path composition. Hence it remains
to give a filler for the right-hand side. The term q(~j ∧ k) is easily verified to
satisfy the boundary conditions.

In order to construct the right-hand side filler for the original cube, we note
that it corresponds to the lid of the following cube.

•
z

•
z

•
y

•y

r(j)

q(j)

(q · r)(j)

•
z

•w

•
z

•w

r(k)

q(~i)

q(~i)

r(k)

We are done if we can construct the lid of this box. Again, it is enough to
specify the bottom and the sides. The back and front are trivial and we obtain

30

the right-hand side by the filler of path composition. For the bottom, the term
q(~i ∨ j) satisfies the constraints. For the left-hand side we give r(j ∧ k).

Thus, we have constructed all sides and the bottom of the original cube and
by this we have also constructed its lid. This completes the proof.

From now on, we simply write p · q · r instead of p · (q · r). Note that
there are different proofs of associativity of path composition, neither of which
definitionally equal. One example is the proof in the cubical library. There is
also a more direct proof relying more on Lemma 4.1. Using path induction, one
can also easily construct several other examples.

Proposition 4.3. Let A and B be types with x, y, z, w : A and suppose there
are functions f : A→ B and g : A→ A→ B. Then there are functions

congf : x ≡ y → f(x) ≡ f(x)

cong2
g : x ≡ y → z ≡ w → g(x, z) ≡ g(y, w)

Furthermore, for any p : x ≡ y, q : y ≡ z and r : z ≡ w, these functions satisfy
the following functoriality principles.

congf (p · q) ≡ congf (p) · congf (q) (1)

cong2
g(p, r) ≡ congg(_,z)(p) · congg(y,_)(r) (2)

Proof. We have already seen how congf is constructed in Section 3. cong2 is
only a generalised version of cong. Let p : x ≡ y, r : z ≡ w and i : I. We define
cong2

g by

(cong2
g(p, r))(i) :≡ g(p(i), r(i))

We now prove (1). The statement corresponds to the lid of the following cube.

•f(x)

•f(x)

•f(y)

•f(z)

•f(x)

•f(x)

•f(y)

•f(z)

f(p(i))

f(p(i))

f((p·q)(i))

(congf (p)·congf (q))(i)

f(q(k))

f(q(k))

31

The fillers of the left-hand side, right-hand side and bottom are all trivial. The
back is just the filler of path composition. The front is just f applied to the
filler of path composition.

The second identity, (2), is proved in a similar manner.

We can use cong to define the inverse of function extensionality, as defined
in Section 3.

Proposition 4.4. For all g, f : A→ B and paths p : A ≡ B and a : A, there is
a path

funExt−1(p, a) : f(a) ≡ g(a)

Furthermore, funExt−1 and funExt cancel out.

Proof. The function is simply defined by

funExt−1(p, a) :≡ congλh . h(a)(p)

The fact that funExt−1 and funExt cancel out holds definitionally.

For completeness, we include the following proposition. All it says is that a
two-argument function (f(a))(b) can be rewritten as a single-argument function
f(a, b). The careful reader will have noted that this has been used implicitly
until now. We will continue to use it implicitly.

Proposition 4.5 (Currying). For all types A and fibrations A → Type and
C : (a : A)→ B(a)→ Type, we have an equivalence

curry :

(
p :
∑

a:A

B(a)→ C(fst(p), snd(p))

)
' ((a : A)→ (b : B(a))→ C(x, y))

As mentioned in Section 3, we also have a transport function in CuTT. Given
a path P : A ≡ B between two types A and B and an element a : A, we use the
notation

transportP (a) : B

We sometimes refer to transport as subst in the case where P is a fibration
combined with a homogeneous path. That is, if we have a fibration
B : A → Type, two elements a1, a2 : A, a path p : a1 ≡ a2 and an element
b1 : B(a1), we write

substP (p, b1) : B(a2)

instead of

transportλ i .B(p(i))(b1)

to emphasise that we are doing a substitution.

32

4.1.2 Spheres and Pushouts

In Section 3.8, we gave an example of how one can construct the circle in CuTT.
Similarly, we can define the 2-sphere as a HIT with the following constructors.

• base : S2

• surf : reflbase ≡ reflbase

We could continue like this, adding higher path constructors for each step. For
the general n-sphere, we could define it by the following constructors

• base : Sn

• loop : Ωn(Sn, base)

where
ΩnSn :≡

(
reflrefl...reflbase

≡ reflrefl...reflbase

)

This idea is simple, but it is not clear how to interpret it formally. The key
problem is the fact that the type Ωn(Sn, base) does not reduce definitionally
unless n is fixed. For this reason, we will introduce the general n-sphere in
terms of suspensions.

Definition 4.6 (Suspensions). Given a type A, the suspension of A, ΣA, is a
HIT defined by

• north : ΣA

• south : ΣA

• merid : A→ north ≡ south

Recall from classical topology that the suspension of the n-sphere is homotopy
equivalent to the (n + 1)-sphere. Using this idea, we can define n-spheres as
follows.

Definition 4.7 (Sn). For any n ≥ −1, Sn is defined inductively by

• S−1 :≡ ⊥

• Sn+1 :≡ ΣSn

It is relatively straightforward to check that this definition is equivalent to,
for instance, the base/loop-definitions of S1 and S2.

We can also define a sphere using pushouts. These correspond to homotopy
pushouts in classical mathematics.

Definition 4.8 (Pushouts). For any three types A, B and C together with
functions f : A→ B and g : A→ C, we define the pushout of f and g, denoted
B tAf,g C, as a HIT with the following constructors.

33

• For every b : B, an element inl(b) : B tAf,g C

• For every c : C, an element inr(c) : B tAf,g C
• For every a : A, a path push(a) : inl(f(a)) ≡ inr(g(a))

We omit f and g and simply write B tA C when the functions are clear from
context.

This definition agrees with the usual category theoretic definition of pushouts
with commutativity given by push.

B B tA C

A C

f

g

inr

inl

One nice property of pushouts is that they give suspension as a special
case. Given a type A, we can express its suspension by the pushout of the map
λx . ∗ : A→ > with itself.

> > tA >

A >

λx . ∗

λx . ∗

inr

inl

In particular, we get that Sn+1 ' > tSn > for every n ≥ 0.
We can also use pushouts to define the wedge sum of two types. Recall

from topology that the wedge sum of two pointed spaces A and B is the space
obtained by glueing A and B together in their base points. We can express this
by the following pushout diagram.

A A t> B

> B

λx . a

λ x . b

inr

inl

Formally, we define the wedge sum as follows.

Definition 4.9 (Wedge sums). Let (A, a) and (B, b) be two pointed types. The
wedge sum of A and B, denoted by A∨B, is defined as the pushout At> B of
the maps λx . a : > → A and λx . b : > → B.

34

4.1.3 Homotopies and Loop Spaces

Given a type A and two terms x, y : A, recall that the type x ≡ y corresponds
to the path space over x and y. We may also look at the path space over two
paths in x ≡ y, paths between two paths in this type, and so on. In this sense,
we capture the notion of homotopy in HoTT.

Of particular interest is often the (n-dimensional) loop space over a point
x : A, denoted Ωn(A, x). We define it inductively as follows.

Ω0(A, x) :≡ A
Ω1(A, x) :≡ (x ≡ x)

Ωn+1(A, x) :≡ (refl ≡Ωn(A,x) refl)

We simply write Ω(A, x) for Ω1(A, x). We often omit the base-point x when it
is clear from context and simply write ΩA or ΩnA. Most questions about path
types, apart from those about inhabitance, can be reduced to questions about
loop spaces. Indeed, as soon as we know that a path type x ≡ y is inhabited,
we may, by path induction, assume that x := y.

A particularly important fact about loop spaces is that any higher dimensional
loop space is commutative with respect to path composition. The proof is
inspired by the proof by Bentzen in [5]. The difference between this proof and
Bentzen’s is that his proof uses path induction to first prove a more general
statement, whereas this proof constructs the path more directly.

Theorem 4.10 (Eckmann-Hilton). For any pointed type (A, a), n ≥ 2 and
paths p, q : ΩnA, we have that

p · q ≡ q · p
Proof. We start off by showing that

cong(_·refl)(p) · cong(refl·_)(q) ≡ cong(refl·_)(q) · cong(_·refl)(p)

We construct the path explicitly. Let i : I. Consider the term pi defined by

pi :≡ ((λ j . p(j ∧ ~i) · q(j ∧ i)) · (λ j . p(~i ∨ j) · q(i ∨ j)))
We have

pi0 := ((λ j . p(j) · q(i0)) · (λ j . p(i1) · q(j)))
:= ((λ j . p(j) · refl) · (λ j . refl · q(j)))
:= cong(_·refl)(p) · cong(refl·_)(q)

and similarly for pi1. Note that the composition q(i) · p(j) and p(j) · q(i) is
well-typed for all i, j : I, since q(i), p(j) : refl ≡ refl.

It is easy to prove that cong(_·refla) ≡ cong(refla·_), which follows from the
fact that rUnit (refla) := lUnit (refla) (given appropriate definitions of rUnit and
lUnit). Using functoriality of cong, we get

cong(refla·_)(p · q) ≡ cong(refla·_)(q · p) (3)

35

The map refla·_ is an equivalence by lUnit, and hence we get from Theorem 2.11.1
in [14] that cong(refla·_) is an equivalence. Thus we also get that p · q ≡ q ·p.

For a shorter proof of Theorem 4.10, see Cubical.Homotopy.Loopspace in [4].
This proof does not rely on cong preserving equivalences, and instead transforms
(3) into a path of the right type by an application of comp, i.e. the operation
for heterogeneous composition of cubes.

4.1.4 n-Types and Truncations

Given a natural number n, we say that a type A is an n-type if for every x : A
and m > n we have that Ωm(A, x) is contractible. We say that A is a (−1)-type
if it has contractible identity types and that A is a (−2)-type if it is contractible.
We also give the following equivalent definition.

Definition 4.11 (n-types). A type A is said to be a

1. (−2)-type if A is contractible

2. (−1)-type if for every x, y : A, we have a path x ≡ y.

3. (n+ 2)-type if for every x, y : A, we have that x ≡ y is an (n+ 1)-type.

We refer to (−1)-types as propositions and to 0-types as sets.

As in classical topology, path spaces often have a very rich structure. In
HoTT, however, we often cannot consider a type in isolation from its path
spaces. In order to be able to disregard the higher homotopy structures of a
type, we introduce truncations. Given a type A, its n-truncation ‖A‖n is just
like A, but with all paths spaces over A of dimension greater than n trivial. For
instance, ‖A‖0 is just like A but with all path-spaces trivial.

We also define ‖A‖−2 and ‖A‖−1. The (−2)-truncation ‖A‖−2 simply turns
A into a contractible (i.e. trivial) type, whereas the (−1)-truncation ‖A‖−1

turnsA into a type with all elements identical. As expected, these two constructions
are equal if A is pointed.

For any fixed n ≥ −2, the definitions of truncations are simple. For instance,
we can define the (−1)- and 0-truncations, referred to respectively as propositional
truncations and set truncations, as follows.

Definition 4.12 (Propositional truncation). For any type A, its propositional
truncation ‖A‖−1 is defined as a HIT with the following constructors.

• For any x : A, we have a term |x |−1

• For any two terms x, y : ‖A‖−1, we have a term squash(x, y) : x ≡ y

Definition 4.13 (Set truncation). For any type A, its set truncation ‖A‖0 is
defined as a HIT with the following constructors.

• For any x : A, we have a term |x |0

36

• For any two terms x, y : ‖A‖0 and two paths p, q : x ≡ y, we have a term
squash(p, q) : p ≡ q

These definitions are easy to mimic for any fixed n. However, the number of
arguments in the second constructor increases as n increases. For this reason,
we cannot give a general definition of n-truncations using a squash constructor.
Instead of using squash, we introduce the constructors hub and spoke, in the
style of [14].

Definition 4.14 (n-truncation). For any type A and n ≥ −1, the n-truncation
‖A‖n is defined as a HIT with the following constructors.

• For each x : A, we have a term |x |n: ‖A‖n
• For each f : Sn+1 → ‖A‖n, we have a term hubf : ‖A‖n
• For each f : Sn+1 → ‖A‖n and each x : Sn+1 we have a path

spokef (x) : f(x) ≡ hubf .

In order to understand what the hub and spoke constructors do, we need the
following theorem. First, we define the notion of pointed maps.

Definition 4.15 (Pointed maps). Given two pointed types (A, a) and (B, b),
the type of pointed maps from A to B is defined by

((A, a)→∗ (B, b)) :≡
∑

f :A→B
f(a) ≡ b

Theorem 4.16. For any pointed types (A, a) and (B, b), we have that

(ΣA→∗ B) ' (A→∗ Ω(B, b))

where ΣA is pointed by north and Ω(B, b) is pointed by refl.

Proof. Omitted. See Lemma 6.5.4. in [14].

Corollary 4.17. For any pointed type (A, a) and n ≥ −1 we have that

Ωn+1(A, a) ' (Sn+1 →∗ (A, a))

Proof. We induct on n. For n = −1, we need to show that

A ' (Σ⊥ →∗ (A, a)) (4)

We define f : A→ (Σ⊥ →∗ (A, a)) by

f(x) = (kx, refl)

where kx : Σ⊥ → A defined by kx(north) = a and kx(south) = x. For the inverse
of f , we define g : (Σ⊥ →∗ (A, a)) → A by g(h, p) = h(south). For any x : A,
we have that g(f(x)) := x. Thus, it remains to show that f(g(h, p)) = (h, p).

37

Let i : I. We need to construct a dependent pair (hi, pi) : (Σ⊥ →∗ (A, a)) such
that (hi0, pi0) := f(g(h, p)) and (hi1, pi1) := (h, p). First, we note that the first
projection of f(g(h, p)) is the map F sending north to a and south to h(south).
Let hi :≡ λx . P (x, i), where P : (x : Σ⊥)→ (F (x) ≡ h(x)) is defined by

P (north) :≡ p−1

P (south) :≡ refl

We now need to construct pi : hi(north) ≡ a. Letting pi :≡ λj . p(~i ∨ j) does
the trick.

For n = 0, we need to prove

Ω(A, a) ' (S1 →∗ (A, a))

Using Theorem 4.16 and (4), we have that

(S1 →∗ (A, a)) ' (Σ⊥ →∗ Ω(A, a))

' Ω(A, a)

For the inductive step, we have

Ωn+2(A, a) ' Ωn+1(Ω(A, a))

' (Sn+1 →∗ Ω(A, a)) (inductive hypothesis)

' (ΣSn+1 →∗ (A, a)) (Theorem 4.16)

:= (Sn+2 →∗ (A, a))

By Corollary 4.17, in order for a pointed type (A, a) to be and n-type, it is
enough to show that (Sn+1 →∗ (A, a)) is contractible. By introducing hub and
spoke we guarantee precisely this. Naturally, this indirect definition is not as
easy to work with as the direct definitions using squash. In practice, however, we
almost always use truncations in contexts where their recursion and induction
principles are applicable, in which case both definitions behave the same.

We proceed with some abuse of notation and assume that the definition
also applies in the case when n = −2. In reality, we need to add two higher
constructors to Definition 4.14 just in order to take care of this special case.
For the sake of simplicity, we do not do this here. For a formal definition, see
Cubical.HITs.Truncation.Base in [4]. For the remainder of this thesis, we also
take elements in ‖A‖−2 to be on the form |a |−2. The following theorem holds
trivially for n = −2 (and so do most theorems for this special case).

Theorem 4.18 (Truncation Elimination). Let A be a type, n ≥ −2 and
B : ‖A‖n → n−type. Suppose B(| a |n) holds for every a : A. Then B(x)
holds for every x : ‖A‖n.
Proof. We induct on x. We are given the case x :=| a |n for some a : A. The
other cases are immediate from Corollary 4.17.

38

In essence, the principle says that in order to prove a statement of type B(x)
for every x : ‖A‖n for some type A (or, equivalently, define a dependent function
(x : ‖A‖n)→ B(x)), it is enough to do so for elements |a |n: ‖A‖n. Using this,
we can easily prove the following simple but important facts.

Proposition 4.19. For all n ≥ −2 and n-types A, we have that ‖A‖n ' A

Proof. We define f : ‖A‖n → A by truncation elimination, using that A is an
n-type:

f(|a |n) = a

The inverse map is just | − |n: A → ‖A‖n. We have | f(| a |n) |n:=| a |n and
f(|a |n) := a. Hence, by another application of truncation elimination, we have
established the equivalence.

Proposition 4.20. Let n ≥ −2 and let m ≥ n. Given a type A, we have that

‖A‖n ' ‖‖A‖m‖n .

Proof. The equivalence is given by f : ‖A‖n → ‖‖A‖m‖n defined by

f(|a |n) =||a |m|n

We define the quasi inverse g by

g(|x |n) = g′(x)

where g′ : ‖A‖m → ‖A‖n
g′(|a |m) =|a |n

using that ‖A‖n also is an m-type. These maps immediately cancel out by
further truncation elimination.

Suppose we want to use truncation elimination to prove a statement on the
form (x : ‖A‖n) → · · · → B(x) where B : ‖A‖n → n-type. The following
proposition tells us that this is allowed, no matter what intermediary types this
statement contains.

Proposition 4.21. Let A be a type and let B : A → n-type. Then ((a : A) →
B(a)) is an n-type.

Proof. We induct on n. For n = −2, we have that B(a) is contractible for every
a : A. Denote the centre of contraction by ca. We define f : ((a : A) → B(a))
by

f(a) = ca

Hence ((a : A) → B(a)) is pointed. Now let g : ((a : A) → B(a)). We want
to show that f ≡ g. By function extensionality, it is enough to show that

39

f(a) ≡ g(a) given an arbitrary a : A. This follows, since B(a) is contractible.
The case when n = −1 is follows by the same argument.

Suppose the statement holds for n ≥ −1. We wish to show that it holds for
n + 1. Let f, g : ((a : A) → B(a)). We wish to show that f ≡ g is an n-type.
By function extensionality, we have that

f ≡ g ' ((a : A)→ f(a) ≡ g(a))

By the inductive hypothesis, we thus only need that f(a) ≡ g(a) is an n-type
for every a : A. But this follows from the fact that B(a) is an (n+ 1)-type.

For now, there is no easy way of dealing with paths in truncations of types.
Suppose for instance that we have a path |x |n≡|y |n for two points x, y : A and
we want to say something about the path space x ≡ y. In general, there is no
map of type |x |n≡|y |n→ x ≡ y. The following theorem, however, gives us the
next best thing.

Theorem 4.22. Let x y : A and n ≥ −2. Then

‖x ≡ y‖n ' (|x |n+1≡|y |n+1)

Proof. The proof uses the encode-decode method and uses the fact that n-type
is an (n+ 1)-type (see Theorem 7.3.11 in [14]). We begin by defining a fibration
P : ‖A‖n+1 → ‖A‖n+1 → n-type. Using that n-type is an (n+ 1)-type, we may
define it by truncation elimination.

P (|x |n+1, |y |n+1) :≡ ‖x ≡ y‖n
We now define decode : (z, w : ‖A‖n+1) → P (z, w) → z ≡ w by truncation
elimination.

decode(|x |n+1, |y |n+1, |p |n) :≡ cong|−|n+1
(p)

In order to define the encode function, we first define a function

f : (z : ‖A‖n+1)→ P (z, z)

Again, truncation elimination is permissible since P (z, w) is an n-type, and
hence an (n+ 1)-type for every z, w : ‖A‖n+1. We define f by

f(|x |n+1) :≡| reflx |n

We can now define encode : (a, b : ‖A‖n+1)→ a ≡ b→ P (a, b) by

encode(a, b, p) :≡ transport(λ i . P (a,p(i)))(f(a))

Let a, b : ‖A‖n+1. The fact that decode(a, b,−) ◦ encode(a, b,−) ≡ λx . x is
immediate by function extensionality and truncation elimination.

40

We finally show

encode(|a |n+1, |b |n+1, decode(|a |n+1, |b |n+1, |p |n)) ≡|p |n

for all a, b : A and p : a ≡ b. The truncation elimination is justified here, since
paths over n-types are (n− 1)-types, i.e. also (n+ 1)-types. By path induction,
we may assume that b := a and p := refl. Thus, we get

encode(|a |n+1, |a |n+1, decode(|a |n+1, |a |n+1, | refl |n)) ≡ transportrefl(| refl |n)

≡| refl |n

and we are done. We have shown that

P (a, b) ' (a ≡ b)

for every a, b : ‖A‖n+1. In particular, for every x, y : A, we have

‖x ≡ y‖n ' (|x |n+1≡|y |n+1)

which is what we wanted to prove.

A particularly important consequence of this is the fact that path spaces
over truncations of types admit an elimination rule.

Corollary 4.23. Let x, y : A and let B be an n-type for some n ≥ −2. Suppose
that we have a function f : x ≡ y → B. Then we also have a function

g :|x |n+1≡|y |n+1→ B

Proof. Let p : | x |n+1≡| y |n+1. We are to construct an element of B. By
Proposition 4.30, we have an element p′ : ‖x ≡ y‖n. Since B is an n-type, we
may assume that p :=|q |n for some q : x ≡ y. Hence we get f(q) : B.

4.1.5 Connected Functions and Types

Using the machinery of truncations, we are now able to give the type theoretical
analogue of connectedness. Following [6], we define it as follows.

Definition 4.24. Let n ≥ −2. A map f : A → B is said to be n-connected if
‖fibf (b)‖n is contractible for every b : B. Furthermore, a type A is said to be
n-connected if ‖A‖n is contractible.

These definitions of connectedness agree with the traditional definitions of n-
connected spaces and n+1-connected functions in traditional algebraic topology
(see e.g. [7]). We first state an obvious but important fact about connected
types.

Proposition 4.25. If A is an n-connected type, then A is m-connected for
every m ≤ n.

41

Proof. Immediate by Theorem 4.20.

Connected maps yield a useful induction principle. In essence, this allows
us to specify maps from pointed types by only constructing them for the base
points (modulo some connectedness conditions). We give the induction principle
in its full form as follows.

Theorem 4.26. Let A and B be types with f : A → B. Given any fibration
P : B → Type over B, we write

gP : ((b : B)→ P (b))→ ((a : A)→ P (f(a)))

gP :≡ λh . h ◦ f (5)

Let n ≥ −2. TFAE:

(i) f is n-connected

(ii) gP is an equivalence for every P : B → n−type

(iii) gP has a section for every P : B → n−type

Proof. We begin with the implication (i) =⇒ (ii). Suppose that f : A → B is
n-connected and let P : B → n−type. We are to show that gP is an equivalence.
We begin by establishing an equivalence

((b : B)→ P (b)) ' ((a : A)→ P (f(a))) (6)

Simultaneously, we trace a given h : (b : B)→ P (b) being mapped through this
equivalence, in order to show that the equivalence in (6) agrees with gP . First,
we note that we have the following equivalences.

((b : B)→ P (b)) ' ((b : B)→ ‖fibf (b)‖n → P (b))

' ((b : B)→ fibf (b)→ P (b))

The first equivalence is trivial since ‖fibf (b)‖n is contractible. The second
equivalence comes from truncation elimination, using that P (b) is an n-type
for every b : B. These compositions send h : ((b : B) → P (b)) to λx y . h(x).
We continue by currying fibf (b) and get an equivalence

(b : B)(a : A)(p : f(a) ≡ b)→ P (b)

This trivially sends λx y . h(x) to λx y p . h(x). Due to the argument of type
(f(a) ≡ b), this type is trivially equivalent to the type

(a : A)→ P (f(a))

This sends λx y . h(x) to λ a . h(f(a)) :≡ gP (h), and we are done.
The implication (ii) =⇒ (iii) is trivial. Hence it remains to show that

(iii) =⇒ (i). Our goal is to show that for every b : B, we have that P (b) :≡
‖fibf (b)‖n is contractible. Since P (b) is an n-truncation, it is an n-type. Thus

42

we get from (iii) that gP has a section h, and so we immediately get an element
c : (b : B) → ‖fibf (b)‖n by setting c :≡ h(λx . | x, reflf(x) |n). Since h is a
section, we have

|a, reflf(a) |n= c(f(a))

We choose this as our centre of contraction. We now want to show that for
every b : B and w : ‖fibf (b)‖n, we have w ≡ c(b). By truncation elimination,
we may assume that w is on the form | a, p |n. Hence it suffices to show that
for every a : A and p : f(a) ≡ b, we have | a, p |n≡ c(b). By path induction
we may assume that b := f(a) and p := reflf(a). Hence it suffices to show
that |a, reflf(a) |n≡ c(f(a)), which we already know is true. This concludes the
proof.

This theorem becomes especially powerful in combination with the following
lemma.

Lemma 4.27. For every pointed type (A, a0), we have that A is (n + 1)-
connected iff the map λx . a0 : > → A is n-connected.

In order to prove Lemma 4.27, we first need some preliminary lemmas. The
following lemma is an immediate consequence of Theorem 4.26.

Lemma 4.28. A type A is n-connected iff the map

λ b a . b : B → (A→ B) (7)

is an equivalence for every n-type B.

We also need the following simple lemma.

Lemma 4.29. Let A be an (n + 1)-connected type. Then for any x, y : A, we
have that x ≡ y is n-connected.

Proof. We want to show that ‖x ≡ y‖n is contractible. From Theorem 4.22
we have that ‖x ≡ y‖n ' (| x |n+1≡ | y |n+1). By assumption, ‖A‖n+1 is
contractible. Hence there is a centre of contraction p :| x |n+1≡ | y |n+1.
Furthermore, any contractible type is also a set, and hence for each
q :|x |n+1≡ | y |n+1, we have that p ≡ q. Thus |x |n+1≡ | y |n+1 is contractible.
Hence x ≡ y is n-connected.

We are now ready to prove Lemma 4.27.

Proof of Lemma 4.27. We begin with the left-to-right direction. Suppose that
A is (n + 1)-connected. We want to show that fibλx . a0(a) is n-connected for
every a : A, i.e. that

∑
x:>(a0 ≡ a) is n-connected. Now, of course, we have∑

x:>(a0 ≡ a) ' (a0 ≡ a). But this is n-connected by Lemma 4.29. Hence
λx . a0 is n-connected.

For the other direction, we assume that λx .a0 is n connected. Let B be
an (n + 1)-type. By Lemma 4.28, it suffices to show that the map f defined
as in (7) is an equivalence. Consider the map g : (A → B) → B given by

43

λh . h(a0). We have that g(f(b)) := b for every b : B. So it remains to show
that f(g(h)) ≡ h for every h : A → B. We prove something slightly stronger;
namely that for any h : (A → B) and a : A, we have that h(a) ≡ h(a0). Note
that h(a) ≡ h(a0) is an n-type for every a : A, since B is an (n + 1)-type.
Using this fact, and the fact that λx .a0 is n connected, we get, by setting
P :≡ ((a : A) → a . h(a) ≡ h(a0)) in the statement of Lemma 4.26, that there
is an equivalence ((a : A) → h(a) ≡ h(a0)) ' ((b : >) → h(a0) ≡ h(a0)). Since
((b : >) → h(a0) ≡ h(a0)) is trivially pointed, also ((a : A) → h(a) ≡ h(a0)) is
pointed. Thus, for every h : A→ B and a : A we have that h(a) ≡ h(a0). This
finishes the proof.

Proposition 4.30. If f : A → B is n-connected, then the induced map
‖f‖n : ‖A‖n → ‖B‖n is an equivalence.

Proof. We begin by constructing an inverse map g : ‖B‖n → ‖A‖n. Let con be
the proof that f is n-connected, i.e.

con : (b : B)→
∑

x:‖fibf (b)‖
n

(
(y : ‖fibf (b)‖n)→ y ≡ x

)

We define g by truncation elimination:

g(|b |n) :≡ ‖fst‖n (fst(con (b)))

We first show that ‖f‖n (g (|b |n)) ≡| b |n for every b : B. We have
g(| b |n) ≡ ‖fst‖n (fst(con(b))). By truncation elimination, we may assume
that fst(con(b)) ≡| a, p |n where a : A and p : f(a) ≡ b. Hence we have
‖f‖n (‖fst‖n (|a, p |n)) ≡|f(a) |n. Now, we get

cong|−|n(p) : |f(a) |n≡|b |n

and we are done.
We finally show that g (‖f‖n (|a |n)) ≡| a |n for every a : A. We have

‖f‖n (|a |n) ≡|f(a) |n. Hence, we are to show that

‖fst‖n (fst (con(|f(a) |n))) ≡|a |n

But ‖fibf (f(a))‖n is n-connected, and so fst (con(| a |n)) ≡| a, refl |n. Finally,
we have ‖fst‖n (| a, refl |n) ≡| a |n. Thus, we are done. Hence, ‖f‖n is an
equivalence.

Theorem 4.31. For every n ≥ −1, the Sn+1 is n-connected.

The theorem is an easy corollary of the following lemma.

Lemma 4.32. Given two maps f : C → A and g : C → B where f is n-
connected, the map inr : B → A tC B is n-connected.

44

Proof. Let D :≡ A tC B and P : D → n−type. By Theorem 4.26 it suffices to
show that the associated map gP has a section. In this case, this means that
given a map h : (b : B) → P (inr(b)), we have map k : (d : D) → P (d) such
that k ◦ inr ≡ h. We begin by constructing k. We first define the fibration
Q : A→ n-type by

Q(a) :≡ P (inl(a))

We now get a function F : (c : C)→ Q(f(c)) defined by

F (c) :≡ transportλ i . P ((push(c))(~i))(h(g(c)))

In order to define k for a point on the form inl(a) for some a : A, we need to
construct an element of type P (inl(a)). That is, we need to construct some
u : (a : A) → Q(a). First, note that since f is n-connected, we have by
Theorem 4.26 that the associated map

gQ : (a : A→ Q(a))→ ((a : C)→ Q(f(c))) (8)

is an equivalence. Hence, since we have F : (c : C) → Q(f(c)), this also gives
us an element u : (a : A)→ Q(a). To be specific, we pick u :≡ fst(fibgQ(F)).

We are now ready to define k. First, we let

k(inl(a)) :≡ u(a)

k(inr(b)) :≡ h(b)

We now need to define k((push(c))(i)) where c : C. That is, we need to construct
a dependent path from u(f(c)) to h(g(c)) over λ i . P ((push(c)) (i)). Since u is in
the fibre of gQ, we have that u(f(c)) ≡ F (c). Thus, it suffices to construct the
dependent path from F (c) to h(g(c)). We get this path by transporting F (c)
along λ i .P ((push(c)) (i)), since

transportλ i .P ((push(c)) (i))(F (c))

:= transportλ i .P ((push(c)) (i))
(
transportλ i .P ((push(c)) (~i))(h(g(c))

)

≡ h(g(c))

Now, with k defined, all we need to do is to verify that we have k ◦ inr ≡ h for
every s : (b : B) → P (inr(b)). But this holds definitionally, and thus we are
done.

4.1.6 Freudenthal Suspension Theorem

In order to define a group structure on cohomology types, we shall need an
equivalence

‖Sn‖n '
∥∥ΩSn+1

∥∥
n

(9)

45

This can either be proved directly as in [11] or by means of the Freudenthal
Suspension Theorem. Here, we choose the latter approach. The following proofs
are based on simplified versions of the proofs in [14] due to Evan Cavallo. His
proofs can be found in Cubical.Homotopy.WedgeConnectivity and
Cubical.Homotopy.Freudenthal in [4].

Lemma 4.33. Let n,m ≥ −2 and let N = (n + 2) + (m + 2). Let P : B →
(N − 2)−type and suppose f : A → B is m-connected. Then the for every
h : (a : A)→ P (f(a)) we have that the fibre of gP from (5) over h is an n-type.

Proof. We induct on n. For the base case, suppose n = −2. We are to show that
fibgP (h) is a (−2)-type, i.e. contractible, for every h : (a : A) → P (f(a)). In
other words, we are to show that gP is an equivalence. Since P (b) is an m-type,
Theorem 4.26 tells us that it suffices to show that f is m-connected, which is
precisely what we have assumed.

For the inductive step, we assume that the theorem holds for n and show it
for n+ 1. Let h : (a : A)→ P (f(a)) and (`1, p1), (`2, p2) : fibgP (h). We are done
if we can show that (`1, p1) ≡ (`2, p2) is an n-type. It follows by an easy lemma
that

((`1, p1) ≡ (`2, p2)) ' fibcongf (p1 · p−1
2)

Let P ′ :≡ λ b . `1(b) ≡ `2(b). We also have a trivial equivalence

fibcongf (p1 · p−1
2) ' fibgP (funExt−1(p1 · p−1

2))

so it suffices to show that fibgP (funExt−1(p1 · p−1
2)) is an n-type. Note that for

every b : B, we have that `1(b) ≡ `2(b) is an (N − 3)-type, since P (b) is an
(N − 2)-type. Hence we can apply the inductive hypothesis, thus getting that
fibgP (funExt−1(p1 · p−1

2)) is an n-type. This concludes the proof.

Lemma 4.34 (Wedge Connectivity Lemma). Let (A, a0) and (B, b0) be two
pointed types, suppose that they are n- andm-connected for n,m ≥ −1 respectively
and let P : A→ B → (n+m)−type. Suppose there are two maps

f : (a : A)→ P (a, b0)

g : (b : B)→ P (a0, b)

with a path p : f(a0) ≡ g(b0). Then there exists a map

F : (a : A)(b : B)→ P (a, b)

satisfying

F (a, b0) ≡ f(a)

F (a0, b) ≡ g(b)

for every a : A and b : B.

46

Proof. First, we define a fibration Q : A→ Type by

Q(a) :≡
∑

h:(b:B)→P (a,b)

(h(b0) ≡ f(a))

The first step is showing that Q is an (n− 1)-type. We trivially have that

Q(a) ' Q′(a) :≡
∑

h:(b:B)→P (a,b)

(h ◦ (λ (x : >) . b0) ≡ λx . f(a))

Since B is m-connected, we may apply Lemma 4.27 to conclude that the trivial
map b→0 :≡ λx . b0 : > → B is (m − 1)-connected. The type Q′(a) is just the
fibre of gP (a,_) over λx . f(a). Applying Lemma 4.33 we thus get that it is an
(n− 1)-type.

The second step is showing that the fibre of

gQ :≡ λh . λ (x : >) . h(a0) : ((a : A)→ Q(a))→ >→ Q(a0)

over λ (x : >) . (g , p−1) is contractible. Since Q is an (n− 1)-type and the map
λ (x : >) . a0 is (n− 1) connected, we have that gQ is an equivalence and hence
has contractible fibres.

Let P be the proof that fibgQ(λ (x : >) . (g , p−1)) is contractible. Note
that fst(fst(P)) : (a : A) → Q(a). Note further that given a : A, we have
(fst((fst(fst(P)))(a))) : (b : B) → P (a, b). We can now use this in order to
construct our function F : (a : A)(b : B)→ P (a, b). We define it by

F (a, b) :≡ (fst((fst(fst(P)))(a)))(b)

It is far from beautiful, but it gets the job done.
We now show that for every a : A, we have F (a, b0) ≡ f(a). We have that

(fst(fst(P)))(a) : Q(a)

Hence

snd((fst(fst(P)))(a)) : F (a, b0) ≡ f(a)

Finally, we show that for every b : B, we have a path F (a0, b) ≡ g(b). Note
that

snd(fst(P)) : fst(fst(P)) ◦ (λx . a0) ≡ λ (x : >) . (g , p−1)

Applying both sides to ∗ : > gives a path

fst(fst(P))(a0) ≡ (g , p−1)

Applying fst on both sides gives

fst(fst(fst(P))(a0)) ≡ g
i.e.

F (a0,_) ≡ g
Hence, we get F (a0, b) ≡ g(b).

47

Theorem 4.35 (Freudenthal Suspension Theorem). Let (A, a0) be a pointed
type which is n-connected for some n ≥ 0. Then the map σ : A → Ω(ΣA)
defined by

σ(x) :≡ merid (x) · (merid (a0))−1

is 2n-connected.

Proof. We utilise the encode-decode method and prove something more general.
We first construct a family of types Code : ΣA → north ≡ y → Type. For the
base points, we let

Code(north, p) :≡ ‖fibσ(p)‖2n
Code(south, p) :≡ ‖fibmerid(p)‖2n

For Code((merid (x0))(i), pi), with pi : north ≡ (merid (x0))(i) we need to construct
a dependent path from ‖fibσ(pi0)‖2n to ‖fibmerid (pi1)‖2n Unfortunately, not just
any path will do. In particular, we want this equivalence to depend on x0.
First, we note that there is an obvious dependent path from fibmerid (pi1) to
fibλx .merid (x)·(merid (x0))−1(pi0), since get have a dependent path Q from
λx .merid (x) · (merid (x0))−1 to merid over the filler for path composition. For
the remaining part, we fix p : north ≡ north and construct an equivalence

‖fibσ(p)‖2n '
∥∥fibλx .merid (x)·(merid (x0))−1(p)

∥∥
2n

(10)

We begin by constructing the map. By truncation elimination, it is enough to
give a map of type

fibσ(p)→
∥∥fibλx .merid (x)·(merid (x0))−1(p)

∥∥
2n

or, by currying, a map

F : (a : A)→ (σ(a) ≡ p)→
∥∥fibλx .merid (x)·(merid (x0))−1(p)

∥∥
2n

We proceed by an application of Lemma 4.34. Let

P :≡ λ a . λ b .
(
(σ(b) ≡ p)→

∥∥fibλx .merid (x)·(merid (a))−1(p)
∥∥

2n

)
: A→ A→ Type

This is a 2n-type. We construct two functions f : (a : A) → P (a, a0) and
g : (a : A)→ P (a0, a). We define f by

(f(a))(r) :≡|a, cr |2n (11)

where

cr : merid (a) · (merid (a))−1 ≡ p
is given by the composite path

merid (a) · (merid (a))−1 ≡ refl (by rCancel) (12)

≡ merid (a0) · (merid (a0))−1 (by rCancel) (13)
≡ p (by r) (14)

48

We construct g by

(g(a))(r) :≡|a, r |2n (15)

Finally, it is easy to see that f(a0) ≡ g(a0). Putting all of these facts together,
we apply Lemma 4.34 to get a map F : (a : A)(b : A)→ P (a, b) with homotopies

left : (a : A)→ F (a, a0) ≡ f(a)

right : (a : A)→ F (a0, a) ≡ g(a)

Going back to (10), we can finally define our equivalence Gx0,p by undoing
the currying. We define it by

Gx0,p(|z |2n) :≡ (uncurry(F (x0)))(z)

We have to verify that Gx0,p is an equivalence. We do this by showing that
its fibres are contractible. The property of being contractible is a proposition,
i.e. a (−1)-type. Hence it is also an (n − 1)-type, since n ≥ 0. The map
λx . a0 : > → A is (n−1)-connected by Lemma 4.27. Define R : A→ (n−1)-type
by

R(a) :≡ (t :
∥∥fibλ y .merid (y)·(merid (a))−1(p)

∥∥
2n

)→ isContr(fibGa,p
(t))

Theorem 4.26 now gives us an equivalence

((a : A)→ R(a)) ' ((x : >)→ R(a0))

In particular we get a map of type ((a : >) → R(a0)) → ((a : A) → R(a)).
Hence, we get a map of type (R(a0) → (a : A) → R(a)). So we are done if we
can construct an element of R(a0), i.e. a function

φ : (t :
∥∥fibλ y .merid (y)·(merid (a0))−1(p)

∥∥
2n

)→ isContr(fibGa0,p
(t))

Again, isContr is a proposition and hence also a 2n-type. Thus, we only need
to define φ(| t |2n) for some t : fibλ y .merid (y)·(merid (a0))−1(p). We deduce from
Theorem 4.26 that it is enough to show that Ga0,p is an equivalence. Applying
right, it is easy to see that Ga0,p is just the identity function and hence an
equivalence. So Ga0,p and hence also Gx0,p is an equivalence.

We now construct a function encode : (y : ΣA) → (p : north ≡ y) →
Code(y, p). By path induction, we only need to define encode(north, refl). We
let

encode(north, refl) :≡|a0, rCancel(merid (a0)) |2n

We are done if we can show that Code(north, p) is contractible for every p :
north ≡ north. Since Code(north,_) ' Code(south,_), it is enough to show that
Code(south, p) is contractible for p : north ≡ south. We choose encode(south, p)
as the centre of contraction.

49

We first show that encode(south,merid (a)) ≡|a, refl |2n for every a : A. Since
we defined encode by path induction, this is interpreted as a transport which
can be verified to be equal to

transportλ i .‖fibQ(i)(λ j .merid (a)(i∧j))‖
2n(Ga,refl(|a0, rCancel(merid (a0)) |2n))

By left, we get a path

Ga,refl(|a0, rCancel (merid (a0)) |2n) ≡|a, crCancel(merid (a0)) |2n

where c_ is the path from (12). Furthermore, it follows by simple path algebra
that

crCancel(merid (a0)) ≡ rCancel(merid (a))

Hence, it remains to show that

transportλ i . ‖fibQ(i)(λ j .merid (a)(i∧j))‖2n(|a, rCancel(merid (a)) |2n)

≡ |a, refl |2n

This dependent path is easily constructed using the filler for rCancel (see Section 3.3).
Finally, we prove the contractibility criterion. That is, given |z |2n: Code(south, p),

we show that encode(south, p) ≡| z |2n. Currying z, this is the same as proving
that for all a : A and q : merid (a) ≡ p, we have

encode(south, p) ≡|a, q |2n

By path induction on q, we may assume that p := merid (a). Hence it suffices
to show that

encode(south,merid (a)) ≡|a, refl |2n

which is is precisely what we showed above. So ‖fibmerid(p)‖2n is contractible
for every p : north ≡ south and hence ‖fibσ(p)‖2n is contractible for every
p : north ≡ north. Thus σ is 2n-connected.

For our purposes, the most important consequence of this is the following
corollary.

Corollary 4.36 (Freudenthal Equivalence). Let n ≥ 0 and let (A, a0) be a
pointed and n-connected type. We then have that

‖A‖2n ' ‖Ω(ΣA)‖2n
Proof. Follows immediately by Theorem 4.35 and Proposition 4.30.

50

4.1.7 The Hopf Fibration

For the constructions of the equivalence (9), the Freudenthal Suspension Theorem
will only work when n ≥ 2. For n = 1, we will rely on the Hopf Fibration. For
the proof of this theorem/construction, see either [14] or the formalised proof
in the cubical library (see Cubical.HITs.Hopf in [4]).

Theorem 4.37. There is a fibration Hopf : S2 → Type such that

Hopf(north) ' S1

∑

x:S2
Hopf(x) ' S3

Note that, since merid (northS1) : north ≡S2 south, we also have

Hopf(south) ' S1

We also need the following lemma. Both identities follow immediately by
construction.

Lemma 4.38. For every x : S1, we have

substHopf((merid(x)), north) ≡ x (16)

substHopf((merid(north))−1, x) ≡ x (17)

4.1.8 Loop Spaces over S1

The final component we need for the cohomology group structure is the fact
that ΩS1 ' Z, which we saw how to prove in Theorem 2.11. The proof of this
gives us the following two maps

winding : Z→ Ω(S1)

winding−1 : ΩS1 → Z

where winding is defined by

winding(k) :≡ loopk

and where winding−1 has the property that

winding−1(loopk) ≡ k

Theorem 2.11 is incredibly useful for characterising paths over S1 and has several
useful corollaries. However, we have one problem. Theorem 2.11 only concerns
paths of type base ≡ base; often we want to say things about paths of type x ≡ x
for any x : S1. Fortunately, there is an easy fix. We first need the following
lemma which strengthens the induction principle for S1 when mapping into
propositions.

51

Lemma 4.39. Let P : S1 → Type and suppose that P (base) is an proposition.
If we have a term of type P (base), then we also have terms of type P (x) for
each x : S1.

Proof. Let p : P (base). We define f : (x : S1) → P (x) by induction on x.
For x := base, we just give p. For x := loop(i) we need to construct a term
qi : P (loop(i)) such that qi0 := p and qi1 := p. We begin by constructing a term
ri : P (loop(i)). We define it by

ri :≡ transportλ j . P (loop(i∧j))(p)

Now, since P (base) is a proposition, we have two paths ri0 ≡ p and ri1 ≡ p.
Composing these paths with λ i . ri, we get a path q : λ i . P (loop(i)) such that
q(i1) := q(i0) := p. Thus, we are done.

Using this, we get all the corollaries from Theorem 2.11 in their general form,
which finally gives us a general version of the theorem.

Corollary 4.40. S1 is a 1-type.

Proof. By path induction, it suffices to show that Ω(S1, x) is a set for every
x : S1. We know from Theorem 7.1.10 in [14] that the type isSet(A) is a
proposition for any type A. Hence by Lemma 4.39, it suffices to show the claim
when x := base. Now we note that, by Theorem 2.11, Ω(S1, base) ' Z. Thus,
it is enough to show that Z is a set. But this is a well-known result following
from the fact that Z has decidable equality (see e.g. Theorems 7.2.5 and 7.2.6
in [14]).

Corollary 4.41. For any x : S1 and p, q : Ω(S1, x), we have that

p · q ≡ q · p

Proof. By Corollary 4.40, we have that p · q ≡ q · p is a proposition. Hence,
by Lemma 4.39 it suffices to show the statement when x := base and p, q :
Ω(S1, base). The following equality follows easily from the construction of
winding−1.

winding−1(p · q) ≡ winding−1(p) + winding−1(p)

Since Z is commutative we get

winding−1(p) + winding−1(p) ≡ winding−1(q) + winding−1(p)

For any n,m : Z, we have

winding(n+m) ≡ loopn+m

≡ loopn · loopm

≡ winding(n) · winding(m)

52

Hence

winding(winding−1(q) + winding−1(p))

≡ winding(winding−1(q)) · winding(winding−1(p))

= q · p

And so we have

p · q ≡ winding(winding−1(p · q)) ≡ q · p

Using this, we can easily generalise Theorem 2.11.

Theorem 4.42. For any x : S1, we have Ω(S1, x) ' Z.

Proof. By Theorem 2.11, it is enough to show that

Ω(S1, x) ' Ω(S1, base)

for every x : S1. We begin by constructing fx : Ω(S1, x) → Ω(S1, base). We
define it by induction on x. We let fbase(p) :≡ p. For floop(i)(p), we need to
construct an element ri : loop(i) ≡ loop(i) satisfying

ri0 := p

ri1 := p

We define qi : loop(i) ≡ loop(i) by

qi :≡ [λ j . loop(j ∧ i)] · p ·
[
λ j . loop((~j) ∧ i)

]

When i := i0, we just get

qi0 := refl · p · refl ≡ p

When i := i1 we get

qi1 := loop · p · loop−1

≡ loop · loop−1 · p (by Corollary 4.41)
≡ p

And so, by composing the above, we get our term ri. Hence, we may define
f(loop(i), p) ≡ ri.

The inverse function gx : Ω(S1, base) → Ω(S1, x) is defined in a similar
manner. In particular, we let gbase(p) :≡ p.

Fix x : S1. We now show that the maps cancel out. The proof is identical in
both directions, so we only do one here. Let p : Ω(S1, x). We need to show that
gx(fx(p)) ≡ p. By Corollary 4.40, we have that gx(fx(p)) ≡ p is a proposition.
Hence we may assume that x := base. But now gx(fx(p)) := p, since fbase and
gbase are both just the identity function on Ω(S1, base).

53

4.1.9 Groups

We need to introduce some elementary group theory. In order to define a group
structure on a type G, we require that G is a set. This means that most
elemntary definitions and lemmas concerning groups from standard mathematics
carry over into HoTT. We define a group as a tuple

(G, isSet(G), 0G,−G,+G, isGroup(G, 0G,−G,+G))

where

• G is the underlying type

• isSet(G) is a proof that G is a set

• 0G : G is the unit element

• −G : G→ G denotes the inversion operation

• +G : G→ G→ G denotes addition

• isGroup(G, 0G,−G,+G) is a proof that +G, −G and 0G satisfy the usual
group laws (i.e. associativity, unit laws, etc.)

We use e.g. +G rather than ·G since all groups considered in this thesis are
abelian. This is however not assumed in any of the proofs in this subsection.
We often abuse notation and use G to refer to the underlying type of a group G.
We also often omit the subscripts from the unit element as well as the inversion
and addition operations.

Furthermore, a morphism from a group G into a group H is a pair

(φ, isMorph(φ))

where

• φ : G→ H

• isMorph(φ) : (g1, g2 : G)→ φ(g1 + g2) ≡ φ(g1) + φ(g2)

We say that two groups G and H are isomorphic, denoted G ∼= H, if there is an
equivalence f : G ' H such that f is a morphism. So far, groups theory does
not differ much from how it is done in standard mathematics. For instance,
the following propositions are proved in the same way as we are used to from
standard mathematics.

Proposition 4.43. Let φ : G→ H be a morphism of groups. We have:

(i) −0 ≡ 0

(ii) φ(0) ≡ 0

(iii) φ(−g) ≡ −φ(g), for all g : G

54

(iv) If φ has an inverse function ψ : H → G, then also ψ is a morphism.

We define predicates isInKer and isInIm, respectively expressing that an
element of a group is in the kernel or in the image of some morphism. Let
φ : G → H be a morphism of groups and let g : G and h : H. We define the
predicates as follows

isInKerφ(g) :≡ (φ(g) ≡ 0)

isInImφ(h) :≡

∥∥∥∥∥∥
∑

g:G

(φ(g) ≡ h)

∥∥∥∥∥∥
−1

Note that we need to truncate in order to distinguish the proposition “h is in
the image of φ” from the fibre over h. We do not need to truncate when defining
isInKer, since this type already is a proposition (since groups are sets). Using
this, we can express what it means for φ to be injective or surjective. We define
the corresponding predicates by

isInjective(φ) :≡ ((g : G)→ isInKerφ(g)→ g ≡ 0)

isSurjective(φ) :≡ ((h : H)→ isInImφ(h))

We get the following lemma.

Lemma 4.44. Let G and H be groups and suppose there is a surjective and
injective morphism φ : G→ H. Then G ∼= H.

Proof. Since φ is assumed to be a morphism, it is enough to show that it induces
an equivalence G ' H. We construct its inverse. We do this by simultaneously
proving that the inverse function is right inverse. Let
F : (h : H) → ∑

g:G(φ(g) ≡ h). Let h : H. In order to define F (h), we
will want to apply our term inimh : isInImφ(h) to extract an element g : G and a
proof p : φ(g) ≡ h. However, in order to use this, we need to apply truncation
elimination. Thus we need to prove that

∑
g:G(φ(g) ≡ h) is a proposition. Let

(g1, p1), (g2, p2) :
∑
g:G(φ(g) ≡ h). In order to prove that (g1, p1) ≡ (g2, p2), it

suffices to show that g1 ≡ g2, since φ(g) ≡ h is a proposition for any g : G. We
have

φ(g1 − g2) ≡ φ(g1)− φ(g2)

≡ h− h
≡ 0

Thus (g1 − g2) is in the kernel of φ. Since φ is assumed to be injective, we have
g1 ≡ g2, and we are done. We may now define F (h). By truncation elimination,
we may assume that inimh :=| g, p |−1 for some g : G and p : φ(g) ≡ h. Hence
we may just let

F (h) :≡ (g, p)

55

We may thus define our inverse map φ−1 : H → G by

φ−1(h) :≡ fst(F (h))

The fact that φ(φ−1(h)) ≡ h is now given by snd(F (h)). We finally prove that
φ−1(φ(g)) ≡ g for every g : G. That is, we want to show that

fst(F (φ(g))) ≡ g

However, F is defined by truncation truncation, and hence does not reduce since
inimφ(g) is not on the form |_ |−1. However, isInimφ(φ(g)) is a proposition, and
thus we may swap inimφ(g) for |g, reflφ(g) |−1, in which case fst(F (φ(g))) reduces
to g.

The above lemma will later be used in order to construct group isomorphisms.
We will also use arguments from exact sequences. In general, an exact sequence
is a collection of groups G1, G2, . . . and morphisms φi : Gi → Gi+1 such that
Im(φi) = Ker(φi+1) for all i = 1, 2, In this setting, this equality means that
Im(φi) ⊆ Ker(φi+1) and Ker(φi+1) ⊆ Im(φi). These types are defined by

Im(φi) ⊆ Ker(φi+1) :≡ ((g : Gi+1)→ isInImφi
(g)→ isInKerφi+1

(g))

Ker(φi+1) ⊆ Im(φi) :≡ ((g : Gi+1)→ isInKerφi+1
(g)→ isInImφi

(g))

We get the following useful way of construct isomorphisms from exact sequence.
Let 0 denote the trivial group, i.e. > with the trivial group structure.

Lemma 4.45. Suppose the following sequence of groups is exact.

0
ψ

G
φ

H
ξ

0

Then φ induces an isomorphism G ∼= H.

Proof. Since φ is assumed to be a morphism, it suffices, by Lemma 4.44, to
show that φ is injective and surjective. We prove that it is injective. Let g : G
and suppose that g is in the kernel of φ. Since the above sequence is exact, we
have an element u : isInImψ(g). We are trying to prove a proposition, so we
may assume that u is on the form | u0 |−1 where u0 :

∑
t:0(ψ(t) ≡ g). Since 0

contains only 0 and we have ψ(0) ≡ 0 (since ψ is a morphism), we have that
ψ(fst(u0)) ≡ 0. Thus, we get

g ≡ ψ(fst(u0)) ≡ 0

which is what we wanted to show. The fact that φ is surjective follows from a
similar argument.

56

4.2 Cohomology with Coefficients in Z – Definition and
Group Structure

We are now ready to define cohomology. We recall from traditional algebraic
topology (see e.g. [9]) that an Eilenberg-MacLane space A is a pointed topological
space such that πn(A) is non-trivial for a unique n ≥ 1. In this case, we
may simply write K(G,n) for A, where G is some abelian group such that
πn(X) ∼= G. For every CW complex X, we have that its nth cohomology group
with coefficients in G is isomorphic to the set of homotopy classes of functions
X → K(G,n), i.e.

Hn(X) ∼= 〈X → K(G,n)〉 (18)

For every CW complex X, let Ĥn(X) = 〈X → K(G,n)〉. Given some
f : X → Y , precomposition with f gives us a canonical map f∗ : Ĥn(Y) →
Ĥn(X). By this, we may see Ĥn as a contravariant functor from the category
of CW complexes to the category of abelian groups, as we usually do with Hn.
Importantly, we have that (18) is a natural isomorphism between Hn and Ĥn.

In HoTT, we have no good way of defining cohomology in the usual way
by means of chain complexes. However, it turns out that the definition of
cohomology in terms of the right hand side of the above isomorphism is well-
behaved. In order to get cohomology with coefficients in Z, we thus need to
define a family of types Kn, n = 1, 2, 3, . . . , such that Kn is (n − 1)-connected
and ΩnKn ' Z. We know that ΩS1 ' Z and hence, since S1 is a 1-type, that
Ωn
∥∥S1
∥∥

1
' Z. Furthermore, we will soon see that for every n ≥ 1, we have

that ‖Sn‖n ' Ω
∥∥Sn+1

∥∥
n+1

. Thus, we have by induction that Ωn ‖Sn‖n ' Z.
Furthermore, we have that Sn+1 and hence

∥∥Sn+1
∥∥
n+1

is n-connected. Hence,
these types are Eilenberg-MacLane spaces. We may therefore define our family
of types by

Kn :≡
∥∥Sn+1

∥∥
n

for n ≥ 1. We also define

K0 :≡ Z

Note that we will often consider Kn as a pointed type, pointed by 0 when n = 0
and | north |n when n > 0. We now copy the definition of cohomology from
above. Note that we also have to apply set truncation in order to turn the space
into a group.

Definition 4.46 (Cohomology with coefficients in Z). Given a type A, its nth
cohomology group Hn(A) is given by the type ‖A→ Kn‖0.

In order to give Hn(A) a group structure, we need a way to define the sum
of two elements a, b : Hn(A). First, we need to define addition in Kn. That is,
we need an appropriate operation +k : Kn → Kn → Kn. For this, we first need
the following lemma. For every n ≥ 1, let ϕSn : Sn → ΩSn+1 be defined by

ϕSn(x) :≡ merid(x) · (merid(north))−1

57

Lemma 4.47. For all n ≥ 0, we have an equivalence σn : Kn ' ΩKn+1 where

σ0(k) = cong|−|1(loopk)

σn+1(|x |n+1) = cong|−|n+2
(ϕSn+1(x))

Proof. We proceed by induction on n. When n = 0, the statement follows by
Theorem 2.11.

For n ≥ 1, we have that

σn ≡ f ◦ ‖ϕSn‖n

where f :
∥∥ΩSn+1

∥∥
n
' Ω

∥∥Sn+1
∥∥
n+1

is the equivalence from Theorem 4.22.
Hence we only need to show that ‖ϕSn‖n is an equivalence.

For n = 1, we define d : ΩS2 → S1 using Theorem 4.37 by

d(p) :≡ substHopf(p, northS1)

We consider the composition d ◦ ϕS1 .

substHopf(ϕS1(x), northS1) ≡ substHopf(merid (x) ·merid (north)−1, northS1)

≡ substHopf(merid (north)−1

(substHopf(merid (x), north)))

≡ substHopf(merid (x), north) by (17)
≡ x by (16)

Thus, d ◦ ϕS1 is just the identity. Consequently, so is the composition of the
induced functions ‖d‖1 ◦ ‖ϕS1‖1. Thus, in order to show that ‖ϕS1‖1 is an
equivalence, it suffices to show that ‖d‖1 is an equivalence. By Proposition 4.30,
it is enough to show that d is 1-connected, i.e. that ‖fibd(x)‖1 is contractible
for every x : S1. We have that isContr(‖fibd(x)‖1) is a proposition, and so by
Lemma 4.39 it is enough to show the statement for x := north. By construction
of the Hopf fibration, we have that fibd(north) ≡ ΩS3. By Lemma 4.31 and
Lemma 4.29, this is 1-connected, and hence

∥∥ΩS3
∥∥

1
is contractible, which is

what we wanted to show.
When n ≥ 2, the map ϕSn is just the map from the Freudenthal Suspension

Theorem. This map is 2n-connected, and hence, by Proposition 4.25, n-connected.
Thus, ‖ϕSn‖n is n-connected by Proposition 4.30.

Using Lemma 4.47, we now see thatKn inherits path composition in ΩKn+1.
We use this fact to define addition in Kn. We define it for any a, b : Kn by

a+k b :≡ σ−1
n (σn(a) · σn(b))

When n = 0, it is easy to see that a +k b ≡ a + b, where a + b denotes regular
addition in the integers.

58

We define the unit and subtraction in Kn in the obvious ways.

0k :≡ pt(Kn)

−k x :≡ σ−1
k ((σk(x))−1)

We can now give Kn its algebraic structure.

Proposition 4.48. Let x, y, z : Kn. Then we have paths

lUnitk(x) : 0k +k x ≡ x (19)
rUnitk(x) : x+k 0k ≡ x (20)
rCancelk(x) : x+k (−k x) ≡ 0k (21)
lCancelk(x) : (−k x) +k x ≡ 0k (22)
assock(x, y, z) : (x+k y) +k z ≡ x+k (y +k z) (23)
-distr(x, y) : −k (x+k y) ≡ (−k x) +k (−k y) (24)
commk(x, y) : x+k y ≡ y +k x (25)

Proof. The proofs of (19) – (24) all follow the same idea. In essence, the
statements can all be translated into the corresponding statements about path
composition. For instance, (21) can be proved as follows:

x+k (−k x) := σ−1
k (σk(x) · σk(σ−1

k ((σk(x))−1)))

≡ σ−1
k (σk(x) · (σk(x))−1)

≡ σ−1
k (refl)

≡ σ−1
k (σk(pt(Kn)))

≡ pt(Kn)

:= 0k

The fact that σk(pt(Kn)) ≡ refl is immediate by construction.
We prove (25). Since Kn ' ΩKn+1, we are done if we can show that ΩKn+1

is commutative w.r.t. path composition. We have that

ΩKn+1 ' Ω(ΩKn+2) := Ω2Kn+2

and hence we are done by Theorem 4.10.

We are now ready to give the group structure of cohomology groups. We
first define addition, subtraction and the unit. By truncation elimination, we
only need to define them for |f |0, |g |0: Hn(A) for some type A.

|f |0 +h |g |0 :≡ |λx . f(x) +k g(x) |0
−k |f |0 :≡ |λx . −k f(x) |0

0h :≡ |λx . 0k |0

The group structure follows from Proposition 4.48.

59

Proposition 4.49. Let A be a type with x, y, z : Hn(A) for some n ≥ 0. Then
we have paths

lUnith(x) : 0k +h x ≡ x
rUnith(x) : x+h 0h ≡ x
rCancelh(x) : x+h (−h x) ≡ 0h

lCancelh(x) : (−h x) +h x ≡ 0h

assoch(x, y, z) : (x+h y) +h z ≡ x+h (y +h z)

−distrh(x, y) : −h (x+h y) ≡ (−h x) +h (−h y)

commh(x, y) : x+h y ≡ y +h x

We often omit the subscripts k and h and write x+ y, and −x rather than
e.g. x+h y and −hx.
Proposition 4.50 (Commutativity of ΩKn). For every n ≥ 0, x : Kn and
p, q : Ω(Kn, x), we have that p · q ≡ q · p.
Proof. For n = 0, the statement follows immediately from the fact that Z is a
set. We sketch the argument for n ≥ 1. We use the fact ΩKn ' Kn+1. When
x := north, the statement follows immediately from Theorem 4.10. We reduce
to this case for an arbitrary x. We define a map f : x ≡ x→ 0k ≡ 0k by

f(p) :≡ rCancel−1
k (x) · cong_−x(p) · rCancelk(x)

This map is easily verified to be an equivalence, using that the map λ y . y − x
is an equivalence. Thus it has an inverse f−1. Furthermore, we have f(p · q) ≡
f(p) · f(q), which follows from the fact that

cong_−x(p · q) ≡ cong_−x(p) · cong_−x(q)

We can now prove the statement. We have

p · q ≡ f−1(f(p · q))
≡ f−1(f(p) · f(q))

≡ f−1(f(q) · f(p)) (commutativity of Ω(Kn, 0k))

≡ f−1(f(q · p))
≡ q · p

4.3 The Mayer-Vietoris Sequence
The Mayer-Vietoris sequence is a long exact sequence of cohomology groups
which is incredibly useful for characterising cohomology groups (see e.g. [9]). In
particular, for n ≥ 1, it will give us isomorphisms

Hn(A ∨B) ∼= Hn(A)×Hn(B)

Hn(Sn) ∼= Z

60

We follow the construction in [6] closely. The goal is to construct the following
long exact sequence given types A,B and C, functions f : C → A and g : C → B
and D :≡ A tCf,g B.

H0(D)
i0

H0(A)×H0(B)
∆0

H0(C)

d0

H1(D)
i1

H1(A)×H1(B)
∆1

H1(C)

d1

H2(D) . . .

Figure 4: The Mayer-Vietrois Sequence

where in, ∆n and dn are families of morphisms will soon be defined.
We now give the definitions of in, ∆n and dn. First, we note that any

function h : X → Y , we can an induced function h∗ : Hn(Y)→ Hn(X) by

h∗(|α |0) ≡|α ◦ h |0
Using this, we can easily define in : Hn(D)→ Hn(A)×Hn(B) and
∆n : Hn(A)×Hn(B)→ Hn(C). We define the functions by

in(α) :≡ (inl∗(α), inr∗(α))

∆n(α, β) :≡ f∗(α)− g∗(β)

We now define dn : Hn(C)→ Hn+1(D) by

dn(|α |0) ≡|d′(α) |0
where d′n : (C → Kn)→ D → Kn+1 is defined by

d′n(α, inl(a)) :≡ 0

d′n(α, inr(b)) :≡ 0

d′n(α, (push(c))(i)) :≡ (σn(α(c)))(i)

Proposition 4.51. The maps in, ∆n and dn are morphisms for all n ≥ 0.

Proof. For in, the proposition is trivial (modulo induction on n and truncation
elimination). For ∆n, the proposition is proved easily by some elementary
algebra inKn. For dn, we need to do some more work. By truncation elimination,
we are done if we can prove that

dn(|f |0 + |g |0) ≡ dn(|f |0) + dn(|g |0)

61

i.e.

|d′(λx . (f(x) + g(x))) |0≡|λx . (d′(f))(x) + (d′(g))(x) |0

In particular, we are done if we can show that

d′((λx . (f(x) + g(x))), δ) ≡ d′(f, δ) + d′(g, δ)

for every δ : D. We induct on δ. For the base cases, we only need to prove
that 0 ≡ 0 + 0. In both cases, we give the path lUnit−1

k (0) : 0 ≡ 0 + 0. When
δ = (push(c))(i), we need to fill the following square.

0

(lUnitk(0))(~j)

0+0 (σn(f(c)))(i)+(σn(g(c)))(i) 0+0

(lUnitk(0))(~j)

0(σn(f(c)+g(c)))(i)
•

• •

•

The top path could be rephrased as

cong2
+(σn(f(c)), σn(g(c)))

By functoriality of cong2, this is the same as

P :≡ cong(_+0)(σn(f(c))) · cong(0+_)(σn(g(c)))

For the bottom path, we have that σn(f(c) + g(c)) ≡ σn(f(c)) · σn(g(c)).
Hence it is enough to fill the following square.

0

(lUnitk(0))(~j)

0+0 P (i) 0+0

(lUnitk(0))(~j)

0(σn(f(c))·σn(g(c)))(i)
•

• •

•

We see it as the lid of the following cube.

62

•0

•0

•0

•0

(lUnit
k (0))(~ j)

(lUnit
k (0))(~ j)

(lUnit
k (0))(~ j)

(lUnit
k (0))(~ j)

•0+0

•0+0

•0+0

•0+0

(σn(f(c)))(i)

(σn(f(c)))(i)+0

(σn(f(c))·σn(g(c)))(i)

P (i)

0+(σn(g(c)))(k)

(σn(g(c)))(k)

The left-hand side is trivial. The front and the back are filled by the filler
of path composition. The right-hand side is is just

(lUnitk((σn(g(c))))(k))(~j)

We now need to fill the bottom. This should be filled just like the right-
hand side, but the problem is that we would need lUnitk(0) to be swapped
for rUnitk(0). However, we can prove that

lUnitk(0) ≡ rUnitk(0)

This follows easily from the fact that addition in Kn is commutative. Thus we
may swap lUnitk(0) for rUnitk(0), and hence the bottom may be filled in the
same way as the right-hand side.

We finally prove that the sequence in fact is exact.

Theorem 4.52. The Mayer-Vietoris sequence (Figure 4) is exact. That is, for
every n ≥ 0, the maps in, ∆n and dn satisfy the following

Im(in) ⊆ Ker(∆n) (26)
Ker(∆) ⊆ Im(in) (27)
Im(∆n) ⊆ Ker(dn) (28)
Ker(dn) ⊆ Im(∆n) (29)
Im(dn) ⊆ Ker(in+1) (30)

Ker(in+1) ⊆ Im(dn) (31)

63

Proof. For the proofs of (26) to (30), we refer to the proofs in [6] since these
do not leave much room for a cubical approach. We prove (31). Suppose
| F |0 is in the kernel of in+1 for F : D → Kn+1. We are done if we can
construct an element | X, id |−1:

∥∥∥
∑
δ:Hn(D)(dn(δ) =|F |0)

∥∥∥
−1

. We have that

in+1(|F |0) := (| inl∗(F)) |0, | inr∗(F) |0) ≡ (0, 0) by assumption. Hence we have

| inl(F) |0≡| inr(F) |0≡ 0 :=|λx . 0k |0
Since we are proving a proposition, Corollary 4.23 gives us paths

pl : inl∗(F) ≡ λx . 0k
pr : inr∗(F) ≡ λx . 0k

We define X :≡|λ c . σ−1
n (P (c)) |0, where P is defined by the following square:

F (inl(f(c)))

(pl(j))(f(c))

0 (P (c))(i) 0

(pr(j))(g(c))

F (inr(g(c)))F ((push(c))(i))
•

• •

•

Let G :≡ λ c . σ−1
n (P (c)) We need to show that dn(|G |0) ≡|F |0. We have

that dn(|G |0) :=|d′n(G) |0. Thus it is enough to show that

(d′n(G))(δ) ≡ F (δ)

for every δ : D. We induct on δ. For δ = inl(x) and δ = inr(x), we give the
paths

congλh . h(x)(p
−1
l) : 0 ≡ F (inl(x))

congλh . h(x)(p
−1
r) : 0 ≡ F (inr(x))

For δ = (push(c))(i), we need to fill the following square:

0

(pl(~j))(f(c))

F (inl(f(c))) F ((push(c))(i)) F (inr(g(c)))

(pr(~j))(g(c))

0(σn(σ−1
n (P (c))))(i)

•

• •

•

64

We swap the bottom for (P (c))(i), since σn(σ−1
n)(P (c)) ≡ P (c). This gives us

back the square used in the definition of P , flipped vertically. Hence we simply
use the filler of the square defining P , and we are done.

4.4 Characterisations of Cohomology Groups
We are now ready to characterise some concrete cohomology groups. Our goal is
to be able to characterise Hn(T2) and Hn(S1 ∨ S1 ∨ S2) for n = 0, 1, 2. In order
to do this, we first need to know some things about the cohomology groups of
> and Sn. Before we start, we prove the following lemma.

Lemma 4.53. For every 0-connected and pointed type (A, a0), we have that
H0(A) ∼= Z.

Proof. We first need to show that H0(A) ' Z as types. We define f : H0(A)→
Z and g : Z→ H0(A) by

f(|h |0) :≡ h(a0)

g(b) :≡|λx . b |0
Note that truncation elimination is permissible in the definition of f , since Z is
a set. We have that f(g(b)) := b for every b : Z. So we are left to show that

g(f(|h |0))︸ ︷︷ ︸
|λx . h(a0)|0

≡|h |0

for every h : A→ Z. We are done if we can show the following slightly stronger
statement.

(λx . h(a0)) ≡ h
Let a : A. We wish to construct a path h(a0) ≡ h(a). Naturally, this would
follow if we could construct a path a ≡ a0. By Corollary 4.23, it is enough to
show that | a |0≡| a0 |0. This is immediate, since A is 0-connected, i.e. ‖A‖0 is
contractible. Thus, we have shown that H0(A) ' Z.

We now need to show that either f or g is a morphism. The fact that g is
a morphism follows immediately from the fact that addition in +k agrees with
regular integer addition. Hence, we have shown that H0(A) ∼= Z.

4.4.1 The Unit Type

Unsurprisingly, characterising the cohomology groups of > is straightforward.
We first note that > is pointed and n-connected for any n ≥ −2 since it is
contractible. In particular, it is 0-connected. Using Lemma 4.53, we thus get
that H0(>) ∼= Z. In general, we get the following behaviour for Hn(>).

Proposition 4.54.

Hn(>) ∼=
{
Z n = 0

0 n ≥ 1

65

Proof. It remains to show that Hn(>) ∼= 0 for n ≥ 1. It suffices to show that
Hn(>) is contractible. We have

Hn(>) := ‖> → ‖Sn‖n‖0
' ‖‖Sn‖n‖0
' ‖Sn‖0 (Theorem 4.20)

Since Sn is (n− 1)-connected and n ≥ 1, we have that Sn is 0-connected. Hence
we ‖Sn‖0 is contractible, and we are done.

4.4.2 Spheres

In this section, we will often use the definition of Sn+1 as the pushout >tSn >.
We start off with the 0th cohomology groups of Sn.

Proposition 4.55.

H0(Sn) ∼=
{
Z× Z n = 0

Z n ≥ 1

Proof. For n ≥ 1, this follows immediately from Lemma 4.53. We are left to
show that that H0(S0) ∼= Z× Z. We represent the maps S0 → Z by fa,b, where
a, b : Z and fa,b is the map sending north to a and south to b. Clearly, this gives
us an equivalence (S0 → Z) ' Z× Z. By truncating, we get

H0(S0) ' ‖Z× Z‖0 ' Z× Z

The fact that this equivalence is a morphism is immediate from the fact that
+k agrees with integer addition.

We now turn to H1(S1). This becomes somewhat trickier to compute than
usual, since we do not have the reduced version of the Mayer-Vietoris sequence at
our disposal. Nevertheless, the sequence can still be used by carefully tracing the
maps. We can also characterise H1(S1) directly without using Mayer-Vietoris.
We give both proofs below.

Proposition 4.56. H1(S1) ∼= Z

Proof by Mayer-Vietoris. FromMayer-Vietoris, we get the following exact sequence

Z× Z
∆′0

H0(S0)
d0

H1(S1)
i′1

0× 0

Where ∆′0 and i′1 are just ∆0 and i1 factored through the isomorphisms between
the corresponding cohomology groups and the groups above. For a : Z, define
Fa, Ga : S0 → Z as follows

Fa(x) :≡ a
Ga(north) :≡ a
Ga(south) :≡ 0

66

Define d : H0(S0)→ H1(S1) by

d(|f |0) :≡ d0(|Gf(north) |0)

We first study the image of ∆′0. Let a, b : Z. It is easy to see that ∆′0(a, b) ≡
|Fa+b |0. Since Ker(d0) is precisely Im(∆′0), we have that the Ker(d0) consists of
the elements |Fa |0 for every a : Z. Hence, d(|f |0) ≡ 0 iff f(north) ≡ 0. We now
look at the composite map φ : Z→ H1(S1)

φ(a) :≡ d(|Ga |0)

:= d0(|Ga |0)

By the above argument, the kernel of φ is trivial. Thus, we only need to show
that φ is surjective. Let x : H0(S1). By the surjectivity of d0, we may assume
there is some f : S0 → Z such that d0(|f |0) ≡ x. We have

x ≡ d0(|f |0) + d0(|Ff(south) |0)
︸ ︷︷ ︸

0

≡ d0(|f |0 + |Ff(south) |0)

≡ d0(|Gf(north) |)
:= φ(f(north))

So φ is surjective. Furthermore it is clearly a morphism, since d0 is a morphism.
Thus, we have shown that H1(S1) ∼= Z.

As promised, we also give a direct proof. This uses the winding numbers. In
order to do this, we interpret S1 under the loop/base-definition. We first need
the following technical lemma:

Lemma 4.57. For any s : S1, let Bs : Ω(S1, s)→ Ω(S1, base). Let A be a type
pointed by a : A and suppose we have maps

f, g : S1 →∗ ΩA

F : ΩA→ S1

Let x, y : S1. Then

BF (f(base)·g(base))(cong2
λxλ y . F (f(x)·g(x))(loop, loop)

≡BF (f(base))(congF◦f (loop)) ·BF (g(base))(congF◦g(loop))

Proof. We first outline the proof and explain the steps afterwards.

BF (f(base)·g(base))(cong2
λxλ y . F (f(x)·g(x))(loop, loop)

≡BF (f(base)·g(base))(congλx . F (f(x)·g(base))(loop) · congλx . F (f(base)·g(x))(loop))

≡ (BF (f(base)·g(base))(congλx . F (f(x)·g(base))(loop)))

· (BF (f(base)·g(base))(congλx . F (f(base)·g(x))(loop)))

≡BF (f(base))(congF◦f (loop)) ·BF (g(base))(congF◦g(loop))

67

The first equality comes from functionality of cong2. The last equality is just
deletion of f(base) and g(base), using the fact that f and g are pointed maps.
The second equality comes from the fact that Bs preserves path composition.
We prove this. Let x : S1 and p, q : x ≡ x. We want to show that Bx(p · q) ≡
Bx(p) ·Bx(q). We know that S1 is a 1-type, and hence we are trying to prove a
proposition. Thus, we may assume x := base. But then the statement follows
trivially, since Bbase is just the identity function.

We get the following technical lemma as a corollary.

Lemma 4.58. Let f, g : S1 → S1. Then

Bf(base)+g(base)(congλx . f(x)+g(x))(loop) (32)

≡Bf(base)(congf (loop)) ·Bg(base)(congg(loop)) (33)

where + denotes +k, modulo the fact that K1 ' S1.

Proof. First, let x, y : S1 such that f(base) ≡ x and g(base) ≡ y – we can prove
the existence of such elements by letting x := f(base) and y := g(base). We
want to prove (33), which is a 2-dimensional path over S1. Since S1 is a 1-type,
(33) is a proposition. Thus, we may assume that x := y := base. Thus we also
have f(base) ≡ g(base) ≡ base. With some abuse of notation, we note that

σ1 ◦ f : S1 → ΩK2

σ1 ◦ g : S1 → ΩK2

σ−1
1 : ΩK2 → S1

and that

(σ1 ◦ f)(base) ≡ σ1(base) ≡ refl
(σ1 ◦ g)(base) ≡ σ1(base) ≡ refl

Hence, we may apply Lemma 4.57. We get

Bf(base)+g(base)(congλx . f(x)+g(x))(loop)

:=Bf(base)+g(base)

(
cong2

λxλ y . f(x)+g(y)(loop, loop)
)

:=Bf(base)+g(base)

(
cong2

λxλ y . σ−1
1 (σ1(f(x))+σ1(g(y)))

(loop, loop)
)

≡Bσ−1
1 (σ1(f(base))))

(
congσ−1

1 ◦σ1◦f (loop)
)

·Bσ−1
1 (σ1(g(base))))

(
congσ−1

1 ◦σ1◦g(loop)
) (Lemma 4.57)

≡Bf(base)(congf (loop)) ·Bg(base)(congg(loop))

68

Direct proof of Proposition 4.56. For this proof we use the loop/base definition
of S1. We have that H1(S1) '

∥∥(S1 → S1)
∥∥

0
, since Z is a set. We begin by

proving that

(S1 → S1) ' S1 × Z (34)

We define F : (S1 → S1)→ S1 × Z by

F (f) :≡ (f(base),winding(Bf(base)(congf (loop))))

We define its inverse G : S1 × Z→ (S1 → S1) by

(G(x, a))(base) :≡ x
(G(x, a))(loop(i)) :≡ (B−1

x (winding−1(a)))(i)

The fact that these maps cancel out follows from the fact that Bx and winding
are equivalences. This proves (34). We now get

H1(S1) :=
∥∥S1 → S1

∥∥
0
'
∥∥S1 × Z

∥∥
0

'
∥∥S1
∥∥

0
× ‖Z‖0

' Z

The last equivalence follows from the facts that S1 is 0-connected and that Z is
a set. The induced equivalence F ′ : H1(S1)→ Z is the map

F ′(|f |0) :≡ winding(Bf(base)(congf (loop))

We show that this map is a morphism. Let f, g : S1 → S1. We need to show
that, with some abuse of notation

F ′(|f |0 + |g |0) ≡ F ′(|f |0) + F ′(|g |0)

We have that

F ′(|f |0 + |g |0) := F ′(|λx (f(x) + g(x)) |0)

:= winding(Bf(base)+g(base)(congλx . (f(x)+g(x))(loop)))

:= winding(Bf(base)+g(base)(congσ−1
1 ◦(λx . (σ1(f(x))·σ1(g(x))))(loop)))

Since winding is a morphism, we are done if we can show that

Bf(base)+g(base)(congσ−1
1 ◦(λx . (σ1(f(x))·σ1(g(x))))(loop))

≡ Bf(base)(congf (loop)) ·Bg(base)(congg(loop))

But this is precisely what we proved in Lemma 4.58. Thus, F ′ is morphism and
we have that H1(S1) ∼= Z.

The higher cohomology groups now follow easily by induction, using the
Mayer-Vietoris sequence.

69

Proposition 4.59. Hn(Sn) ∼= Z for every n ≥ 1.

Proof. We induct on n. We know that H1(S1) ∼= Z. Suppose Hn(Sn) ∼= Z.
We prove that Hn+1(Sn+1) ∼= Z. Using that Hm(>) ∼= 0 for every m ≥ 1, the
Mayer-Vietoris sequence gives us an exact sequence

0 Hn(Sn) Hn+1(Sn+1) 0

Hence, Hn+1(Sn+1) ∼= Hn ∼= Z and we are done.

We also have that Hn(Sm) ∼= 0 whenever m 6= n. and n,m ≥ 1 This follows
easily from the Mayer-Vietoris sequence. Only some special cases are formalised
in Agda, since inequalities in theorem statements are somewhat clumsy to work
with. We do not prove this fact here. The case when n = 1 follows easily
by tracing the maps in the Mayer-Vietoris sequence, and the case when n ≥ 1
follows easily by induction.

4.4.3 Wedges of Spheres

Our goal in this section is to compute the first three cohomology groups of the
wedge of one sphere and two circles. Fortunately, this is easy given the previous
section. For the 0th cohomology group, we need to following lemma.

Lemma 4.60. If (A, a0) and (B, b0) are two pointed and 0-connected types,
then A ∨B is pointed and 0-connected.

Proof. The wedge of A and B is trivially pointed by inl(a0). We choose | inl(a0) |0
as the centre of contraction. Let | x |0: ‖A ∨B‖0. We want to show that
| inl(a0) |0≡| x |0. This is a proposition, and so we only need to show it when
x := inl(a) and when x := inr(b) for some a : A and b : B. First, assume that
x := inl(a). Since A is connected, we have that |a |0≡|a0 |0. By Corollary 4.23,
we may assume that a ≡ a0. Thus, we also get | inl(a) |0≡| inl(a0) |0. Now,
assume that x := inr(b). We have that push(∗) : inl(a0) ≡ inr(b0), and hence we
only need to show that inr(b0) ≡ inr(b). Again, this follows from the fact that
B is 0-connected.

For the higher cohomology groups, we only need the following fact.

Proposition 4.61. Let A and B be two pointed types. Then Hn(A ∨ B) ∼=
Hn(A)×Hn(B) for all n ≥ 1.

Proof. We proceed by induction on n. For the inductive step, the statement
follows immediately from the Mayer-Vietoris sequence. Thus it is enough to
prove it for n = 1. Mayer-Vietoris gives us an exact sequence

H0(>)
d0

H1(A ∨B)
i1

H1(A)×H1(B)
∆1

H1(>)

70

Since H1(>) is trivial, i1 is surjective. Thus, we only need to show that it
is injective. We show this by showing that d0 : H0(>) → H1(A ∨ B) is the
constant 0-map (hence proving that i1 has a trivial kernel). Let x : H0(>).
We are trying to prove a proposition, and consequently we may assume that
x :=| f |0 for some f : > → Z. The function f is uniquely determined by the
value f(∗). Clearly, it is in the image of ∆0, since

∆0(|λx . f(∗) |0, |λx . 0 |0) ≡|f |0
Since Im(∆0) ⊆ Ker(d0), we get that d0(f) ≡ 0. This concludes the proof.

Using this and our characterisation of the spheres, we get the full characterisation
of the cohomology groups of S2 ∨ S1 ∨ S1.

Proposition 4.62.

Hn(S2 ∨ S1 ∨ S1) ∼=

Z n = 0, 2

Z× Z n = 1

0 n ≥ 3

Proof. When n = 0, we have that both S2 and S1 are connected and pointed
types. Thus, by Lemma 4.60, S2 ∨ S1 ∨ S1 is connected and pointed. Hence the
statement follows from Lemma 4.53.

When n ≥ 1 we only need Proposition 4.61. For n = 1, we get

H1(S2 ∨ S1 ∨ S1) ∼= H1(S2)×H1(S1)×H1(S1)
∼= 0× Z× Z
∼= Z× Z

For n = 2, we get

H2(S2 ∨ S1 ∨ S1) ∼= H2(S2)×H2(S1)×H2(S1)
∼= Z× 0× 0
∼= Z

Finally, for n ≥ 3, we get

Hn(S2 ∨ S1 ∨ S1) ∼= Hn(S2)×Hn(S1)×Hn(S1)
∼= 0× 0× 0
∼= 0

4.4.4 The Torus

Finally, we look at the first three cohomology groups of the tours, and check
that they agree with those of S2∨S1∨S1. We define the torus as T2 :≡ S1×S1.
The 0th cohomology group is easy to find.

71

Proposition 4.63. H0(T2) ∼= Z

Proof. By Lemma 4.60, we are done if we can show that T2 is connected. But
this is immediate, since

∥∥S1
∥∥

0
is contractible and

∥∥T2
∥∥

0
:=
∥∥S1 × S1

∥∥
0

'
∥∥S1
∥∥

0
×
∥∥S1
∥∥

0

The remaining two groups are somewhat harder to work with. In particular,
Mayer-Vietoris is not of much help. For H1(T2), however, we have already done
most of the work in the direct proof of Proposition 4.56.

Proposition 4.64. H1(T2) ∼= Z× Z

Proof. We use K1 and S1 interchangeably, since they are identical. We first
note the following:

H1(T2) :=
∥∥S1 × S1 → K1

∥∥
0

'
∥∥S1 → (S1 → S1)

∥∥
0

'
∥∥S1 → (S1 × Z)

∥∥
0

by (34)

'
∥∥S1 → S1

∥∥
0
×
∥∥S1 → Z

∥∥
0

' H1(S1)×H0(S1)

' Z× Z

The fact that this equivalence is a morphism follows by the same argument as
in the second proof of Proposition 4.56.

Now, there is only H2(T2) left. We use a similar proof here and first
characterise the function space (S1 → K2). The idea is that a map from
S1 → K2 consists of a point x : K2 and a loop ` : x ≡ x. A loop in K2

may be interpreted under the equivalence ΩK2 ' K1. Hence, the function
space should be equivalent to the product K1 ×K2. We prove this.

Lemma 4.65. (S1 → K2) ' K1 ×K2.

Proof. We begin by defining a map F : (S1 → K2) → K1 × K2. Let
f : (S1 → K2). For the point in K2, we simply choose f(north). For the
point in K1, we use σ−1

1 and construct a loop in ΩK2. Recall that a loop
in Sn under the definition using meridians corresponds to the path loop′ :≡
merid (south) · (merid (north))−1. The immediate candidate for our element of
ΩK2 would then be congf (loop′). However, this is not well-typed, since we do
not have f(north) :=|north |2. In order to make sure that our loop is well-typed,
we need to use our algebraic structure on K2. We define F by

snd(F (f)) :≡ f(north)

fst(F (f)) :≡ σ−1
1 (Pf)

72

where Pf is the composite path

|north |2 ≡ f(north)− f(north)

≡ f(south)− f(south)

≡|north |2
given by

rCancelk(f(north))−1

· cong2
λxλ y . (f(x)−f(y))(merid(south),merid(north))

· rCancelk(f(south))

We now define a map G : K1 ×K2 → (S1 → K2) by

(G(a, b))(north) :≡ b+ 0

(G(a, b))(south) :≡ b+ 0

(G(a, b))((merid(north))(i)) :≡ b+ 0

(G(a, b))((merid(south))(i)) :≡ b+ (σ1(a))(i)

Note that we have to map elements to b + 0 rather than just b, if the want to
the last step of the definition above to be well-typed; in general, we do not have
a + 0 := a. This unfortunate fact makes the proof that F and G cancel out
somewhat more complicated. We begin by showing that F (G(a, b)) ≡ (a, b).
We have

fst(F (G(a, b))) := σ−1
1 [rCancelk(b+ 0)−1

· cong2
λxλ y . ((G(a,b))(x)−(G(a,b))(y))(merid(south),merid(north))

· rCancelk(b+ 0)]

By definition of G(a, b) for merid(north) and merid(south), this is just

σ−1
1 [rCancelk(b+ 0)−1

· congλx . ((b+x)−(b+0))(σ1(a))

· rCancelk(b+ 0)]

By functoriality of cong2, the composite path inside of the parenthesis is equal
to

rCancel−1
k (b+ 0)

· congλx . ((G(a,b))(x)−(b+0))(merid(south))

· congλx . ((b+0)−(G(a,b))(x))(merid(north))

· rCancelk(b+ 0)

We are done if we can show that this is equal to σ1(a), since σ1 and σ−1
1 are

mutually inverse. Given a path p : 0k ≡ 0k, a function f : K2 → K2 such that

73

f ≡ λx . x and a path q : f(0k) ≡ 0k, the following fact follows by some simple
path algebra using the commutativity of ΩKn.

q−1 · congf (p) · q ≡ p

We let p :≡ σ1(b), f :≡ λx . ((a + x) − (a + 0)) and q := rCancelk(b + 0) in the
above equality. Clearly, f is equal to the identity function. Thus, we get

rCancelk(b+ 0)−1 · congλx . ((b+x)−(b+0))(σ1(b)) · rCancelk(b+ 0) ≡ σ1(b)

which is precisely what we needed. Thus fst(F (G(a, b))) ≡ a. We also have
snd(F (G(a, b))) := b+ 0 ≡ b. Hence F (G(a, b)) ≡ (a, b).

The other direction requires some more work. Let f : S1 → K2. We want to
show that G(F (f)) ≡ f . By function extensionality, we only need to show that
(G(F (f)))(x) ≡ f(x) for every x : S1. For the base cases, we have

(G(F (f)))(north) ≡ (G(F (f)))(south) ≡ f(north) + 0

For these cases we give the following paths.

rUnitk(f(north)) : (G(F (f)))(north) ≡ f(north)

P :≡ rUnitk(f(north)) · congf (merid(north)) : (G(F (f)))(south) ≡ f(south)

For the merid (north) case, we need the lid of the following cube

•f(north)+0

•f(north)+0

•f(north)+0

•f(north)+0

(rUnit
k (f(north)))(j)

(rUnit
k (f(north)))(j)

(rUnit
k (f(north)))(j)

P
(j)

•f(north)

•f(north)

•f(north)

•f(south)f((merid (north))(i))

f((merid (north))(k))

The front, bottom and left-hand side are trivial. The right-hand side is given
by the filler for path composition. The backside is given by
f((merid(north))(i ∧ k)). This establishes the merid(north) case.

For the merid(south) case, we need to fill the following square.

74

f(north)+0

(rUnitk(f(north)))(j)

f(north) f((merid(south))(i)) f(south)

P (j)

f(north)+0(G(F (f)))((merid(south))(i))
•

• •

•

It follows from the commutativity of ΩKn and functoriality of cong that

congG(F (f))(merid(south)) ≡ congλx . (f(x)+0)(merid (south))

· congλx . (f(x)+0)(merid (north))−1
(35)

Let Q denote the path on the right-hand side in (35). We also have P ≡ P ′,
where

P ′(j) :≡ congλx . (f(x)+0)(merid (south)) · rUnitk(f(south))

We may now replace the bottom of the square by Q and the right-hand side
of the square by P ′. We consider the new square as the lid of the following cube.

•f(north)+0

•f(north)+0

•f(south)+0

•f(north)+0

(rUnit
k (f(north)))(j)

(rUnit
k (f(north)))(j)

(rUnit
k (f(south)))(j)

P ′
(j)

•f(north)

•f(north)

•f(south)

•f(south)

f((merid(south))(i))+0

f((merid(south))(i))

Q(i)

f((merid(south))(i))

f((merid(north))(~k))+0

75

This is easy to fill. The backside and the left-hand side are trivial. The front is
just the filler of path composition. The right hand side is essentially the dual
of path composition, and is filled similarly. The bottom is filled by

(rUnitk(f((merid (south)(i)))))(j)

This finishes the proof.

Using this, we now easily find H2(T2).

Proposition 4.66. H2(T2) ∼= Z

Proof. We have the following equivalences

H2(T2) :=
∥∥S1 × S1 → K2

∥∥
0

'
∥∥S1 → (S1 → K2)

∥∥
0

'
∥∥S1 → K1 ×K2

∥∥
0

(Lemma 4.65)

'
∥∥S1 → K1

∥∥
0
×
∥∥S1 → K2

∥∥
0

:= H1(S1)×H2(S1)

:= Z×>
:= Z

The fact that this equivalence is a morphism follows from the fact that the map
G : K1 ×K2 → (S1 → K2) from the proof of Lemma 4.65 preserves addition in
the natural sense, which is an easy lemma.

5 Implementation in Cubical Agda

5.1 Formalisation
The main part of this thesis is the formalisation of the mathematics in Section 4.
The formalisation consists of three pull requests (chronologically: 1, 2, 3) making
up ~4400 lines of code in total. This is excluding a 2600 line pull request
containing the Freudenthal Suspension Theorem and some preliminary lemmas
from Section 4.1.5 (available here). The formalisation took approximately 41/2
months to complete. I started off with no experience in Cubical Agda and some
very elementary familiarity with standard Agda. Consequently, the most time
consuming part of the project was learning Cubical Agda and getting used to
cubical reasoning.

The following paragraphs outline the main parts of the formalisation.

Preliminary lemmas The cubical library is relatively young. Consequently,
much of the theory from [14] and [6] needed for the cohomology group structure
had to be formalised. This especially concerned theory about truncations and
connected functions/types. Most proofs here follow [14] closely and appear to

76

leave little room for cubical improvement. The formalisations concerning theory
about truncations include e.g. Theorem 4.22 and Proposition 4.20. Connected
functions and types were not yet defined in the library and consequently all
of Section 4.1.5 had to be formalised. Evan Cavallo worked independently on
some of these theorems and consequently the current version of the module on
connected functions and types contain proofs from the both of us.

Another notable preliminary lemma was the Eckmann-Hilton argument.
My original proof followed the HoTT book closely and consisted of 35 lines,
excluding theorem statements. After Bentzen referred me to his cubical proof
in [5], I completely reworked the proof accordingly. The resulting proof consists
of only 4 lines, excluding theorem statements, and uses only one application of
comp. This is a clear illustration of how the composition operations in CuTT can
be used to significantly simplify lengthy path algebraic arguments in standard
HoTT. In this case, they also removed the need for a path induction, thus
shortening Bentzen’s already very short proof further.

Freudenthal Suspension Theorem Formalising the Freudenthal Suspension
Theorem was the first big step of this project. My proof follows [14] closely
and, disregarding preliminary lemmas, consists of approximately 1600 lines of
code (although it could most likely be abbreviated significantly by renaming
complicated terms). Shortly after I finished my proof, Cavallo published an
independent proof consisting of only ~100 lines of code, excluding preliminary
lemmas. The difference in length comes from the fact that my proof heavily
relies on path induction whereas Cavallo’s proof utilises both the Glue and hcomp
machineries of Cubical Agda. The difference in length is astonishing and prove a
strong case for the cubical approach to HoTT. In addition, his proof is a slight
modification of the proof in [14], which simplifies much of the path algebra
involved in the proof. Computationally, Cavallo’s proof also performs better.
His proof terminates in ~15 seconds when compiled ignoring abstracts and ~3
seconds with some abstracts turned on. My proof appears not to terminate
without abstracts. Interestingly, this seems to be unrelated to the length of
the proof. Termination fails already when trying to transport an element over
the Code-fibration. This is avoided in Cavallo’s proof by using the Glue-type to
define Code, thus avoiding unnecessary applications of univalence.

Group structure on cohomology The first step was to formalise the equivalence
Kn ' ΩKn+1. Mathematically, this was straightforward. However, because the
proofs of ΩS1 ' Z and of the Hopf fibration used the base/loop-definition of S1,
whereas the definition of S1 using suspensions is used for cohomology groups, a
large portion of the work went into translating between the these two definitions.

Unfortunately, +k and +h would perform very poorly (and in some cases
not terminate at all) unless most of the proof of Kn ' ΩKn+1 was put as
abstract. The inverse map from ΩKn+1 to Kn needed to be hidden for n ≥ 1.
For n = 1, it would perform poorly but terminate. For n > 1, it would not
even terminate. This most likely comes from the fact that it is induced by the

77

Freudenthal Suspension Theorem and several other relatively complex theorems
on connected maps.

Mayer-Vietoris Sequence The formalisation of the Mayer-Vioteris sequence
follows Brunerie’s proof in [6] closely. Naturally, since Brunerie’s proof is written
in the style of informal type theory there were some technicalities that needed
to be verified. One example is the fact that the right-unit law for addition in
Kn agrees with the left-unit law for 0k, which was needed in order to prove that
the map dn is a morphism.

Cohomology groups For the characterisation of the various cohomology
groups, the first thing I had to do was to disable η-equality for the various records
involved in the definition of groups. With η enabled, many proofs would fail
to terminate even in very simple cases. Also, defining cohomology groups and
direct products of groups using copatterns sped up type checking significantly.

There were some issues concerning the function in from the Mayer-Vietoris
sequence. Often when proving something about in(x) for some x in the domain
of in, I would have to first apply truncation elimination on x in order to make it
take the form |y |0, even in cases when this should not be needed. It is likely that
this is caused by a performance issue in Cubical Agda. This trick also sped up
type checking in some cases where it was not actually needed for termination.

5.2 Computations
Unfortunately, the formalised characterisations of Hn(T2) and Hn(S2∨S1∨S1)
suffer from some performance issues. The main culprits are most likely the
Mayer-Vietoris Sequence, the Hopf Fibration and the Freudenthal Suspension
Theorem. For every n = 0, 1, 2, the following functions have been defined in
Agda by means of the group characterisations of Hn(T2) and Hn(S2 ∨ S1 ∨ S1).

fromT
n : Hn(T2)→ Gn

from∨n : Hn(S2 ∨ S1 ∨ S1)→ Gn

toTn : Gn → Hn(T2)

to∨n : Gn → Hn(S2 ∨ S1 ∨ S1)

where

Gn :≡
{
Z n = 0, 2

Z× Z n = 1

The idea is that fromn(ton(a)) should reduce to a when normalising in Agda.
Unsurprisingly, this works well for the 0th cohomology groups. For instance,
both fromT

0 (toT0 (100000)) and from∨0 (to∨0 (100000)) reduce to 1000000 in less than
a second. On the other hand, from2(to2(a)) fails in both cases and does so even

78

for a = 0. This is most likely since the maps rely on +k in both cases. In
the case n = 1, the isomorphisms H1(T2) ∼= Z × Z and H1(S2 ∨ S1 ∨ S1) ∼=
Z×Z are both proved relatively directly. We get some reductions in reasonable
time, most likely due to this fact. We have that from∨1 (to∨1 (x, y)) reduces to
(x, y) in reasonable time for small values of x and y. For H1(T2), we get that
from∨1 (to∨1 (x, y)) reduces to (x, y) only when x = 0. The reduction is again
inefficient for larger values of y. When x 6= 0, reduction appears to fail. Again,
this most likely boils down to the fact that the map is defined in terms of +h.

For addition +h, we get termination issues in all cases but for H0. That
is, fromn(ton(a) +h ton(b)) fails to reduce when n ≥ 1 both for Hn(T2) and
Hn(S2 ∨ S1 ∨ S1).

6 Future work
The next step is to define the cup product in Cubical Agda. This project
was started but put on hold. Some of the proofs involved are, despite being
intuitively easy, hard to do formally. When this is done, we need to try to
improve the definition of +h in order to be able to compare it to the cup product.
There are two main steps in doing this.

1. Many proofs in the cubical library concerning S1 or S2 use the base/loop
and base/surf definitions instead of the definition by suspensions. Currently,
many lines of code are dedicated to translating between these definitions.
It would be a good idea to settle for one of them. This should not have
a very big impact on the overall computation times, but could hopefully
help somewhat.

2. As a second step, one could attempt to define the equivalence
Kn ' ΩKn+1 in terms of the equivalence

∥∥ΩSn+1
∥∥
n
' ‖Sn‖n as proved

in [11]. This could potentially improve the performance of +k, and conse-
quently of +h, since this proof does not rely on any theory about connected
maps or on the Freudenthal Suspension Theorem. Nevertheless, similar
theorems are required for the cup product, at least if it is to be defined
along the lines of [6].

References
[1] Agda 2.6.1 Documentation : Cubical. https://agda.readthedocs.io/

en/v2.6.1/language/cubical.html. Accessed: 2020-04-03.

[2] Agda 2.6.1 Documentation : Lambda Abstraction. https://agda.readthedocs.
io/en/v2.6.1/language/lambda-abstraction.html. Accessed: 2020-
04-03.

[3] Several Authors. The Cubical Library. https : / / github . com / agda /
cubical. 2020.

79

[4] Several Authors. The Cubical Library (frozen branch as of 05-08-2020).
https://github.com/aljungstrom/cubical/tree/MA-Thesis. 2020.

[5] Bruno Bentzen. “Naive cubical type theory”. In: ArXiv abs/1911.05844
(2019).

[6] Guillaume Brunerie. “On the homotopy groups of spheres in homotopy
type theory”. In: ArXiv abs/1606.05916 (2016).

[7] Tammo tom Dieck. Algebraic topology. Zürich: European Mathematical
Society, 2008. isbn: 978-3-03719-048-7.

[8] Euklides and Isaac Barrow. Euclide’s elements the whole fifteen books
compendiously demonstrated. London: Printed by R. Daniel for William
Nealand, 1660.

[9] Allen Hatcher.Algebraic topology. Cambridge: Cambridge University Press.
isbn: 9780521795401.

[10] W. A. Howard. “The Formulæ-as-Types Notion of Construction”. In: The
Curry-Howard Isomorphism. Ed. by Philippe De Groote. Academia, 1995.

[11] Daniel R. Licata and Guillaume Brunerie. “πn(Sn) in Homotopy Type
Theory”. In: Certified Programs and Proofs. Ed. by Georges Gonthier and
Michael Norrish. Cham: Springer International Publishing, 2013, pp. 1–
16. isbn: 978-3-319-03545-1.

[12] Anders Mörtberg and Loïc Pujet. “Cubical Synthetic Homotopy Theory”.
In: Proceedings of the 9th ACM SIGPLAN International Conference on
Certified Programs and Proofs. CPP 2020. New Orleans, LA, USA: Association
for Computing Machinery, 2020, pp. 158–171. isbn: 9781450370974. doi:
10.1145/3372885.3373825. url: https://doi.org/10.1145/3372885.
3373825.

[13] Bertrand Russell. The principles of mathematics. 2. ed. London: Allen &
Unwin.

[14] The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. Institute for Advanced Study: https://
homotopytypetheory.org/book, 2013.

80

