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Abstract

In this master thesis we use the language of FI-modules to prove

Church's theorem regarding cohomological stability of con�guration spaces

with coe�cients in a Noetherian ring.
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1 Introduction

The goal of this thesis is to introduce FI-modules and highlight their connec-
tion to the notion of representation stability, which is a phenomenon concerning
sequences of representations of symmetric groups. This is done in Chapter 2,
where we prove some basic properties of FI-modules as well as some not so basic
ones, such as the very handy Noetherian property these objects have. Then in
Chapter 3 we will use this connection to prove Church's theorem regarding the
cohomological stability of con�guration spaces after we have recalled some facts
about spectral sequences and homological algebra in general. We assume the
reader is familiar with algebraic topology, homological algebra and representa-
tion theory. Some basic familiarity with abelian categories and Noetherian rings
are also assumed.

We start by reviewing the notion of homological stability. Suppose we are
given a sequence of topological spaces {Xi} (or in some cases of groups) equipped
with maps φi : Xi → Xi+1. The idea of homological stability is to see if for all
m ≥ 0 and for some coe�cient ring R, the induced maps

(φi)∗ : Hm(Xi;R)→ Hm(Xi+1;R)

become isomorphisms for large enough i = i(m). If that is the case we say that
the sequence is homologically stable (over R). Consider the following example
by Arnol'd:

Given a topological space X we can for any positive integer n de�ne the
ordered con�guration space of n points (or simply the ordered n:th con�guration
space) in X,

Cn(X) := {(x1, ..., xn) ∈ Xn | xi 6= xj if i 6= j}.
This space carries an action of the symmetric group Sn which acts by permuting
the coordinates, and the quotient space Bn(X) := Cn(X)/Sn is called the un-
ordered con�guration space of n points in X. The natural map Cn(X)→ Bn(X)
is in fact a covering space projection.

If we let X be the complex plane C we have many inclusions Cn(C) ↪→
Cn+1(C), for example the map (z1, ..., zn) 7→ (z1, ..., zn, sup<(zi) + 1), where
<(z) denotes the real part of z, and similarly for the unordered counterparts.
Arnol'd showed in [1] that the spaces Bn(C) are homologically stable over Z,
i.e. for all m ≥ 0 the maps

Hm(Bn(C);Z)→ Hm(Bn+1(C);Z)

all eventually become isomorphisms. They also showed that for n ≥ 3

Hi(Bn(C);Q) ∼=
{
Q if i = 0, 1

0 otherwise,

so homological stability holds in this case as well. However for the ordered
con�guration spaces we have

H1(Cn(C);Q) ∼= Qn(n−1)/2
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so stability fails in this case. There are many more cases where homological sta-
bility is known to hold, including sequences of mapping class groups of surfaces.

We can do the same thing for cohomology: given a sequence of spaces {Xi}
and maps ψi : Xi+1 → Xi we can ask if for all m ≥ 0 the maps

ψ∗i : Hm(Xi;R)→ Hm(Xi+1;R)

become isomorphisms for large enough i = i(m).
We have maps Cn+1(X) → Cn(X) for all n de�ned by forgetting the last

point, and these maps induce homomorphisms

Hi(Cn(X))→ Hi(Cn+1(X))

between the cohomology groups of the respective spaces. By dualizing the result
for homology of Cn(C) by Arnol'd in [1] we see that

dimQH
1(Cn(C);Q) =

n(n− 1)

2

and since the dimension grows with n the mapsH1(Cn(C);Q)→ H1(Cn+1(C);Q)
never become isomorphisms. However, the action of Sn on Cn(X) induces an
action on H∗(Cn(X)), so for a �eld k the sequence {H∗(Cn(X); k)} is a se-
quence of Sn-representations. In general, if a group G acts on a space X we get
for every g ∈ G a map φg : X → X, and this gives an action g · v = φ∗g−1(v)

where v ∈ H∗(Cn(X)). The reason for the g−1 is to take into account the
contravariance of H∗(−).

In [3] the authors introduced the notion of representation stability which is
something that applies to consistent sequences of Sn-representations.

De�nition 1.1. Let {Vn} be a sequence of Sn-representations together with
linear Sn-equivariant maps ϕn : Vn → Vn+1. In other words the maps ϕn are
such that for all σ ∈ Sn the following diagram

Vn Vn+1

Vn Vn+1

ϕn

σ σ

ϕn

commutes, where the σ acts on Vn+1 by viewing Sn as a subgroup of Sn+1 under
the standard inclusion. We call a sequence such as this a consistent sequence.

The representations Vn and Vn+1 are representations of di�erent groups, so
we cannot ask the maps ϕn to become isomorphisms as representations for large
enough n. However, after decomposing into irreducibles we can ask if the powers
of these become independent of n. It is known (see for example [2]) that the
irreducible Sn-representations is in a 1 to 1 correspondence with partitions of
n. A partition of n is a sequence of positive nonzero integers λ = (λ1, ..., λk)
with λi ≥ λi+1 for i = 1, ..., k− 1 such that λ1 + ...+λk = n. We write λ ` n to
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signify that the sequence λ is a partition of n. If λ ` n, then for any m ≥ n+λ1

we can de�ne a partition λ(m) ` m by

λ(m) := (m− n, λ1, ..., λk).

Let Vλ be the irreducible Sn-representation corresponding to λ. Then we de�ne
for any m ≥ n+ λ1 the Sm-representation

V (λ)m := Vλ(m).

Every irreducible representation of Sm is of this form for some unique λ. For
example the trivial representation in Vn is V (0)n in this notation. Given a
representation Vn of Sn, write cλ(Vn) for the multiplicity of V (λ)n in Vn.

De�nition 1.2. We say that a consistent sequence of �nite-dimensional Sn-
representations {Vn} is uniformly representation stable with stable range n ≥ N
if for all n ≥ N the following conditions hold:

1. The maps ϕn : Vn → Vn+1 are injective.

2. The representation Vn+1 is spanned by the image ϕn(Vn) as an Sn+1-
module.

3. For each partition λ, the multiplicity 0 ≤ cλ(Vn) < ∞ of the irreducible
representation V (λ)n in Vn is independent of n for all n ≥ N .

The second condition is essentially surjectivity of the maps, and the third con-
dition is called uniform multiplicity stability.

In [6] the authors study consistent sequences of Sn-representations by using
the language of FI-modules. An FI-module over a ring R is a functor from the
category FI, whose objects are Finite sets and whose morphisms are Injections,
to the category of R-modules. Such a functor gives rise to a family of R-modules
linked together by a family of homomorphisms, and since the endomorphisms
of a �nite set N in FI can be viewed as the symmetric group S|N |, each R-
modules comes with an action of this group. Inside FI we have the sets of the
form [n] := {1, 2, ..., n}, so each FI-module gives rise to a consistent sequence
in the sense of the de�nition above whenever R is a �eld. The purpose of
using FI-modules to study consistent sequences is that representation stability
corresponds to a �nite generation property which is much easier to conceptualize
and work with.

We say that an FI-module V is generated by a the set S ⊂ ∐n≥0 V ([n])
if V is the smallest FI-module containing S, and it is �nitely generated if S
is �nite. For example, let v ∈ V ([n]) for some n > 0. Then the smallest FI-
module containing v is the FI-module 〈v〉 taking a �nite set N to 〈v〉(N) =
span{f∗(v) | f : [n] ↪→ N}.

The connection between representation stability of consistent sequences and
�nite generation of FI-modules lies in the following theorem (Theorem 1.13 in
[6]):
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Theorem 1.1. Let V be an FI-module over a �eld k of characteristic 0. Then
V is �nitely generated if and only if the consistent sequence {V ([n])} of Sn-
representations is representation stable.

In the proof of this theorem we also obtain the result that for a �nitely gen-
erated FI-module V , the consistent sequence {Vn} is monotone as a byproduct.
The notion of monotonicity was one of the key features of [3].

De�nition 1.3. We say that a consistent sequence {Vn, φn} of Sn-representations
is monotone for n ≥ N if for any n ≥ N and for every subspace W ⊂ Vn iso-
morphic to V (λ)⊕ln , the Sn+1-span of φn(W ) contains V (λ)⊕ln+1 as a subrepre-
sentation.

Similarly to FI-modules we can de�ne other FI-objects as functors from FI
to some category. Consider for example the FI-group GL•(R) taking [n] to
GLn(R), the group of automorphisms of Rn. Injections f : [n] ↪→ [m] induces
maps f∗ : GLn(R)→ GLm(R) de�ned by taking a matrix M = (Mij) to

(f∗M)ij =

{
Mab if i = f(a), j = f(b)

δij if {i, j} * f([n])

where δij is the Kronecker delta. Similarly we have co-FI-objects de�ned as
functors from FIop. For example, for a �xed topological space X the co-FI-
space

Conf•(X) : FIop → Top

where ConfS(X) = Emb(S,X) is the space of embeddings S ↪→ X. An injection
f : S ↪→ T induces a map ConfT (X) → ConfS(X) de�ned by precomposition
with f . For S = [n] we recover our original con�guration space Cn(X). In [5]
the authors proved the following theorem, which is the focus of this thesis:

Theorem 1.2. (Church's Theorem) Let R be a Noetherian ring and let M
be a connected orientable manifold of dimension ≥ 2 with homotopy type of a
�nite CW complex. For any m ≥ 0, the FI-module Hm(Conf (M);R) is �nitely
generated.

This relies heavily on a Noetherian property of FI-modules over Noetherian
rings which had previously only been proved for �elds containing Q, namely that
any sub-FI-module of a �nitely generated FI-module over a Noetherian ring is
itself �nitely generated. It also relies on the paper [8] which describes the E2-
page of the Leray spectral sequence associated to the inclusion Cn(X) ↪→Mn.

We here present these proofs along with some further details and explana-
tions. In Section 3 we show that we have an isomorphism Hm(Bn(M);Q) ∼=
Hm(Cn(M);Q)Sn induced by the covering space projection, where the right side
denotes the Sn-invariant vectors in H

m(Cn(M);Q). We use this combined with
Theorem 1.2 to show cohomological stability for the unordered con�guration
spaces.

The two main sources have been [5] and [6]. We have worked out a lot of the
minor results ourselves and we have also added some additional comments and
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discussions. The major ones, such as Theorem 1.2, are from [5] but are here
expanded on a bit more with some details worked out.

2 FI-Modules

2.1 De�nitions and properties

Throughout this thesis, unless otherwise speci�ed let R be a �xed commutative
ring. Let FI denote the category whose objects are �nite sets (including the
empty set) and whose morphisms are the injections.

De�nition 2.1 (FI-module). An FI-module is a functor V : FI→ R-Mod.

For a �nite set S we denote V (S) by VS , and for injections f : S ↪→ T we
usually just write f∗ : VS → VT for the induced map V (f).

Note that every �nite set is isomorphic to a set of the form [n] := {1, 2, ..., n}
for some n ≥ 0, where we set [0] := ∅, and the inclusion of the full subcategory
of FI whose objects are sets of this form induces an equivalence of categories.
We usually write Vn for V ([n]), as opposed to V[n]. For some purposes it might
be more convenient to only look at FI-modules from this subcategory, but some-
times it is not. For example when we take the disjoint union of sets [n]t [m] we
need to choose an isomorphism [n] t [m] ∼= [n + m], but in the case of general
�nite sets this is not necessary.

The key point here is the fact that End([n]) is the symmetric group on
n elements Sn, and hence the R-module Vn comes with an Sn-action. Even
though we have many injections [m] ↪→ [n] for m ≤ n, they are all generated
by the natural inclusions ιn,n+1 : [n] ↪→ [n + 1] together with the action of the
symmetric group, so to explicitly de�ne a particular FI-module V it is enough
to say where it sends the sets [n], how it acts on ιn,n+1 and how the group action
works. We try to illustrate this structure in the following diagram:

∅ [1] [2] [3] [4] · · ·

V0 V1 V2 V3 V4 · · ·

S1 S2 S3 S4

S1 S2 S3 S4

V

Since for any σ ∈ Sn we have σ ◦ ιn,n+1 = ιn,n+1 ◦ σ, where we view the sigma
on the left hand side as an element of Sn ⊂ Sn+1, we can think of FI-modules as
consistent sequences of Sn-representations. This means that we have R-modules
Vn and homomorphisms fn : Vn → Vn+1

· · · → Vn
fn→ Vn+1

fn+1→ Vn+2 → · · ·
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such that for all m,n with n > m and all σ ∈ Sm the following diagram
commutes

Vm Vn

Vm Vn.

σ

f

σ

f

Here are some examples to get a better idea:

1. A trivial example is Vn = R the trivial representation and every injection
to the identity.

2. Any sequence of Sn-representations {Vn} where every injection f : [n] ↪→
[m] with n < m gets taken to the zero map.

3. Vn = Rn, the canonical permutation representation and maps natural
inclusions.

4. Vn = R[x1, ..., xn], the polynomial ring with maps natural inclusions.

5. Vn = Hm(Cn(X);R) where X is a �xed topological space andm a positive
integer. The maps are induced from the maps Cn+1(X) → Cn(X) that
forgets the last point. The precise structure will become clear in Chapter
3.

Given an FI-module V we can construct new FI-modules by post composition
with any functor R-Mod → R-Mod, for example ⊗, ⊕, ∧k, Symk and so on.
We can also de�ne the truncated FI-module τNV

τNVn =

{
Vn if n ≥ N
0 if n < N

where the maps are the same if the domain and codomain are the same as in V .
Not every consistent sequence comes from an FI-module. We have the fol-

lowing condition:

Proposition 2.1. Let {Vn} be a consistent sequence of Sn representations with
maps φn : Vn → Vn+1. For m < n, let ιm,n : [m] ↪→ [n] be the natural
inclusion and let Sn−m ⊂ Sn = End([n]) be the subgroup permuting the last
n − m elements, leaving the rest �xed. Then {Vn} comes from an FI-module
with φn = (ιn,n+1)∗ if and only if for all m < n,

σv = v for all σ ∈ Sn−m and v ∈ im(ιm,n)∗. (?)

Proof. Consider the following diagram in FI

[m] [n]

[m] [n]

ιm,n

σ τ

ιm,n
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which always commutes if τ = σ ∈ Sm ⊂ Sn or if σ = id and τ ∈ Sn−m only
permutes the last n−m letters. Hence if V is an FI-module, the corresponding
diagram in R-Mod should commute as well. The morphisms in FI are generated
by the natural inclusions ιm,m+1 : [m] ↪→ [m + 1] and the invertible injections
σ : [n] → [n], as in if f : [m] ↪→ [n] is any injection we can write it as the
composition f = σ ◦ ιn−1,n ◦ ιn−2,n−1 ◦ ... ◦ ιm,m+1 for some σ ∈ End([n]).
Consider then the FI-module V de�ned by

[n] 7→ Vn

ιn,n+1 7→ φn

End([n]) 3 σ 7→ σ

as in the statement of the proposition. Then by assumption (ιm,n)∗ = (ιn−1,n ◦
... ◦ ιm,m+1)∗ = φn−1 ◦ ... ◦ φm so we can see that this de�nition indeed is
functorial.

Suppose now that (?) holds. Then the diagram in R-Mod

Vm Vn

Vm Vn

φ

σ τ

φ

corresponding to the square in FI at the beginning of the proof commutes and
{Vn} comes from V .

Conversely, if there is some τ ∈ Sn−m permuting the last n −m letters for
which (?) does not hold, then commutativity fails, so {Vn} cannot come from
an FI-module.

With this condition in place we can see that the following consistent se-
quences does not come from FI-modules:

1. Assume R is a �eld whose characteristic is not equal to 2, and let Vn = R
be the alternating representation with maps the natural inclusion. Let
σ ∈ S2 ⊂ Sn+2 be the non-identity, where S2 is the subgroup leaving the
�rst n letters �xed, and let v ∈ Vn = R. Then (ιn,n+2)∗(v) = v and
σv = −v 6= v unless v = 0.

2. Vn = R[Sn], the group ring where Sn acts by left multiplication and maps
natural inclusions. For example if we look at 1 = eid, then for σ ∈ Sn−m ⊂
Sn not equal to the identity where Sn−m is the subgroup �xing the �rst
m letters, we have σeid = eσ 6= eid, where eσ is the basis element of R[Sn]
corresponding to σ. However, the if Sn acts by conjugation we will get an
FI-module.

The FI-modules together with natural transformations form a category them-
selves.
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De�nition 2.2 (Category of FI-modules). The category of FI-modules, denoted
FI-Mod, is the category whose objects are FI-modules and whose morphisms are
natural transformation. In particular, a morphism F : V → W of FI-modules
V and W consists of, for every �nite set S in FI, an R-module homomorphisms
FS : VS → WS called the component of F at S, such that for every injection
f : S ↪→ T the following diagram

VS WS

VT WT

f∗

FS

f∗

FT

commutes.

This category is abelian, with notions like kernel, cokernel, sub-FI-modules
and so on, being de�ned pointwise. This is true in general for functor categories
from small categories to abelian categories (see [7]). For example, for a natural
transformation F : V →W between FI-modules, ker(F ) is de�ned to be the FI-
module which assigns for every �nite set S, the R-module ker(F )S := ker(FS :
VS → WS), and for every injection f : S ↪→ T the morphism f∗|ker(FS) :
ker(FS) → ker(FT ). Note that f∗|ker(FS) has image in ker(VT ) since F is a
natural transformation.

Another example is that F : V →W is surjective (or injective) if and only if
the maps FS : VS →WS are surjective (or injective) for every �nite set S. Since
every �nite set is isomorphic to [n] for some n ≥ 0 it is enough to verify that
it holds for Fn : Vn → Wn for every n ≥ 0. This is in general much easier, so
this also serves as an example for when the equivalence of categories mentioned
above comes in hand.

The category of FI-modules is closed under any (covariant) functorial con-
struction on R-modules, such as direct sums and tensor products, by applying
the functors pointwise. For example if V,W are FI-modules then V ⊕W is the
FI-module de�ned by

(V ⊕W )S := VS ⊕WS ,

and V ⊗W is de�ned by

(V ⊗W )S := VS ⊗WS .

We now de�ne the notion of �nite generation of FI-modules.

De�nition 2.3 (Finite generation). We say that an FI-module V is generated
by a set S ⊂∐n≥0 Vn if V is the smallest sub-FI-module containing S. We say
V is �nitely generated if it is generated by a �nite set. If V is generated by a
set S ⊂∐k≥n≥0 Vn we say V is generated in degree k.

It is clear that �nite generation implies generation in some degree, but the
reverse is not always true. For example when Vn is not �nitely generated.

To get a better grasp of �nite generation, it sometimes help to understand
it in terms of "free" objects.
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De�nition 2.4 (Free FI-module). For all d ≥ 0, let M(d) be the FI-module
de�ned by M(d) := R · [FI([d],−)], i.e. for each �nite set S, M(d)S is the free
R-module on the set of injections [d] ↪→ S. We say that an FI-module is free if
it is isomorphic to a direct sum of FI-modules of this form,

⊕
i∈IM(di).

It is straight forward to see that M(d) is generated by idd ∈M(d)d:
By the Yoneda lemma, for any FI-module V we have [M(d), V ] ∼= Vd, where

the left side denotes the morphisms in the category of FI-modules. For v ∈
Vd, let F

v : M(d) → V denote the corresponding homomorphism, i.e F v has
components

F vS : M(d)S → VS , F vS (f) = V (f)(v).

We can see that imF v is the FI-module

(imF v)S = im(F vS : M(d)S → VS) = span{f∗(v) | f : [d] ↪→ S}.
This is the smallest sub-FI-module W ⊂ V for which v ∈ Wd. In particular let
V = M(d). Then we have [M(d),M(d)] ∼= M(d)d and imF idd is the FI-module

(imF idd)S = span{f∗(idd) | f : [d] ↪→ S} = span{f | f : [d] ↪→ S} = M(d)S ,

so M(d) is �nitely generated by the element idd ∈M(d)d.
Conversely, given F : M(d) → V , let vF ∈ Vd denote the image of idd ∈

M(d)d under F . For any injection f : [d] ↪→ S we have the following commuta-
tive diagram:

M(d)d Vd idd vF

M(d)S VS f FS(f) = f∗(vF )

Fd

f f∗

FS

so F is determined by where it sends idd.
The FI-modules M(d) are projective objects in the category FI-Mod. In-

deed, since it is an abelian category, M(d) being projective is equivalent to the
condition that Hom(M(d),−) is an exact functor. Let

0→ U
F→ V

G→W → 0

be a short exact sequence of FI-modules. Then by assumption

0→ Ud
Fd−→ Vd

Gd−→Wd → 0

is exact. Since Hom(M(d), X) ∼= Xd for any FI-module X, by applying the
functor Hom(M(d),−) to the sequence gives us the sequence

0→ Ud
Hom(M(d),F )−→ Vd

Hom(M(d),G)−→ Wd → 0,

and by the above discussion the induced maps are exactly Fd and Gd. For these
reasons M(d) are sometimes referred to as the d:th principle projective in the
literature.

The following characterization of �nite generation usually makes things eas-
ier to work with:
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Proposition 2.2. Let V be and FI-module. Then V is �nitely generated if and
only if there exists a surjection

k⊕

i=1

M(di) � V

for some di ≥ 0. It is generated in degree ≤ d if and only if there exists a
surjection ⊕

i∈I
M(di) � V

with all di ≤ d.
Note that this implies that any quotient of a �nitely generated FI module is

also �nitely generated, by considering the composition
⊕
M(d) � V � V/W .

It also implies that the direct sum of two �nitely generated FI-modules is �nitely
generated.

Proof. Suppose �rst that V is �nitely generated by S = {v1, ..., vn}. By the
Yoneda lemma this gives rise to a map

F :=
⊕

F vi :
⊕

i∈I
M(di)→ V,

and im(F ) is the smallest FI-module containing S. Hence im(F ) = V and so F
is surjective. The argument for when V is generated in degree ≤ d is similar.

For the converse, suppose there is a surjection

F : M :=
n⊕

i=1

M(di) � V.

By the Yoneda lemma M(di) is �nitely generated by id[di], so M is �nitely
generated as well. Let ei := Fdi(iddi) ∈ Vdi . Then since F is surjective V is
the smallest FI-module containing {e1, ..., en}, so V is �nitely generated. If we
instead have a surjection

F : M :=
⊕

i∈I
M(di) � V

where all di ≤ d for some d ≥ 0, then the same argument gives us that V is
the smallest FI-module containing a set {ei | i ∈ I} where all ei ≤ d, so V is
generated in degree ≤ d in this case.

We can use this characterization to prove the following quick proposition,
which we will need to use later.

Proposition 2.3. Let V,W be �nitely generated FI-modules. Then V ⊗W is
�nitely generated as well. If V is generated in degree ≤ d1 and W is generated
in degree ≤ d2, then V ⊗W is generated in degree ≤ d1 + d2.
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Proof. Assume �rst that V and W is generated in degree ≤ d1 and ≤ d2 respec-
tively.

By Proposition 2.2 we have two surjections

F :M1 =
⊕

i∈I
M(di) � V

G :M2 =
⊕

j∈J
M(dj) �W

where di ≤ d1 and dj ≤ d2 for all i ∈ I and j ∈ J . The map F ⊗G : M1⊗M2 →
V ⊗W de�ned by

(F ⊗G)S : (M1 ⊗M2)S → VS ⊗WS

is then also surjective since (F ⊗G)S is surjective for every �nite set S. Hence it
is enough to show that M1⊗M2 is generated in degree ≤ d1 +d2. Furthermore,
since for every �nite set S we have,

⊕

i

M(di)S ⊗
⊕

j

M(dj)S ∼=
⊕

i,j

(M(di)S ⊗M(dj)S),

it follows that the FI-modulesM1⊗M2 and
⊕

i,j(M(di)⊗M(dj)) are isomorphic,
so to prove the proposition it is enough to show that U := M(di) ⊗M(dj) is
generated in degree ≤ di + dj .

For each �nite set S the R-module US is �nitely generated and a basis
consists of pairs of injections f ⊗g where f : [di] ↪→ S and g : [dj ] ↪→ S. For any
such basis element, consider the set T := im f ∪ im g. Then f ⊗ g is contained
in the image of UT under the the action of the morphisms in FI-Mod, and since
|T | ≤ di + dj we have that U is generated in degree ≤ d1 + d2. Since each US
is �nitely generated we also get that V ⊗W is �nitely generated if both V and
W are.

Another proposition we will make use of is the following:

Proposition 2.4. Let

0→ U
F→ V

G→W → 0

be a short exact sequence of FI-modules. Then if U and W are �nitely generated
then so is V .

Proof. We have the following diagram:

0
⊕
M(di)

⊕
M(di)⊕

⊕
M(dj) M(dj) 0

0 U V W 0

σ τ
φ

F G

14



for some di, dj , where φ exists since M(d) is projective, G ◦ φ = τ and where
both rows are exact. We can then de�ned a map

ψ :
⊕

M(di)⊕
⊕

M(dj)→ V

by ψn(ξ, ζ) = in(ξ)+φn(ζ) for every n ≥ 0, where i = F ◦σ and ξ ∈⊕M(di)n,
ζ ∈ ⊕M(dj)n. This is indeed a map of FI-modules since for every n,m ≥ 0
the following diagram

⊕
M(di)n ⊕

⊕
M(dj)n

⊕
M(di)m ⊕

⊕
M(dj)m

Vn Vm

f∗

ψn ψm

f∗

commutes, where f : [n] ↪→ [m] is an injection. We can see this since f∗(ψn(ξ, ζ)) =
f∗(in(ξ) + φn(ζ)) = f∗(in(ξ)) + f∗(φn(ζ)) since f∗ is an R-module homomor-
phism, and ψm(f∗(ξ, ζ)) = ψm(f∗(ξ), f∗(ζ)) = im(f∗(ξ)) + φm(f∗(ζ)). Commu-
tativity now follows since both i and φ are natural transformations as well, so
f∗(in(ξ) = im(f∗(ξ)) and f∗(φn(ζ)) = φm(f∗(ζ)). To see that ψ is surjective we
can go back to the �rst diagram and apply the Snake lemma, which holds in
any abelian category and which gives us an exact sequence

0 = coker(σ)→ coker(ψ)→ coker(τ) = 0

since σ, τ are surjective, and hence ψ is as well. The proposition follows by
Proposition 2.2.

We can now start to take steps towards the proof of the Noetherian property
by de�ning two functors we will make use of and prove some properties they
have. The �rst one being the functor H0(−).

De�nition 2.5. Let H0(−) : FI-Mod → FI-Mod be the functor de�ned by
taking an FI-module V to the FI-module H0(V ) which is de�ned by

H0(V )S = VS/〈im(f∗ : VT → VS) | f : T ↪→ S, |T | < |S|〉.
To see how H0 acts on morphisms, let F : V →W be a natural transformation
between two FI-modules V,W and let x ∈ im(f∗) for some injection f : T ↪→ S
with |T | < |S|. Since the following diagram commutes by naturality of F

VT VS

WT WS

f∗

FT FS

f∗

we get that FS(x) = f∗(FT (x′)) for some x′ ∈ VT , so FS(x) is in the image of
f∗ : WT →WS , and hence FS descends to a map of the quotients

H0(F )S : H0(V )S → H0(W )S ,

and so we get an induced morphism H0(F ) : H0(V )→ H0(W ).

15



In other words we can say that H0(V ) is the largest quotient of V such
that for all f : T ↪→ S with |T | < |S|, the induced map f∗ : H0(V )T →
H0(V )S is the zero map. Therefore we can think of H0 as a functor H0(−) :
FI-Mod→ FB-Mod, where FB is the category of �nite sets and bijections. Any
FB-module can be viewed as an FI-module where the maps induced from the
injections which are not also surjective, are the zero maps. This gives us an
inclusion of categories i : FB-Mod ↪→ FI-Mod, and in fact H0 is left adjoint
to i. Let V be an FI-module and let B be an FB-module. Then we have for
any F ∈ FI-Mod(V, i(B)) and any injection f : T ↪→ S for �nite sets T, S with
|T | < |S| the following commutative diagram

VT i(B)T

VS i(B)S

FT

f∗ 0

FS

so the composition FS ◦ f∗ is the zero map. Hence FS is the same as a map
H0(V )S → BS and we can see that we indeed get a natural bijection

FB-Mod(H0(V ), B) ∼= FI-Mod(V, i(B)).

We will see later on in Chapter 3, Theorem 3.2 that this implies that H0(−) is
right exact.

We can compute H0(M(d)). Since M(d) is generated by idd ∈ M(d)d we
get that M(d)S = 0 if |S| < d, and we also get that if |S| > d every element of
M(d)S is in span{f∗(idd) | f : [d] ↪→ S}. Therefore we have that

H0(M(d))S =





0 if |S| < d

0 if |S| > d

M(d)d if |S| = d.

Proposition 2.5. Let V,W be FI-modules.

1. If H0(V ) = 0, then V = 0.

2. A homomorphism F : V → W is surjective if and only if H0(F ) :
H0(V )→ H0(W ) is surjective.

Proof. For the �rst claim, suppose for a contradiction that V 6= 0. Let N :=
inf{n ∈ N | Vn 6= 0}. Then for every injection f : T ↪→ [N ] with |T | < N we
get the induced map f∗ : VT = 0→ VN , so the quotient de�ning H0(V )N is the
quotient by the zero module. Hence H0(V )N = VN 6= 0.

For the second claim, if we suppose F : V →W is surjective, since H0(−) is
right exact H0(F ) is surjective as well. For the converse, right exactness implies
that 0 = coker(H0(F )) = H0(coker(F )). Applying the �rst claim we conclude
that coker(F ) = 0, and hence F is surjective as well.

Proposition 2.6. Let V be an FI-module.
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1. In each of the following rows, the conditions (a), (b) and (c) are equivalent:

(a) V is �nitely generated (b) H0(V ) is �nitely generated (c)
∞⊕

n=0

H0(V )n is f.g.

(a) V is gen. in deg. ≤ d (b) H0(V ) is gen. in deg. ≤ d (c) H0(V )n = 0 for all n > d

(a) V is gen. in �nite deg. (b) H0(V ) is gen. in �nite deg. (c) H0(V )n = 0 for n >> 0.

Note that the condition in (c) is a statement about R-modules as opposed
to FI-modules, as in (a) and (b).

2. Assume that Vn is a �nitely generated R-module for all n ≥ 0. Then V is
�nitely generated if and only if V is generated in �nite degree.

Proof. 1. Note that each condition in the third row is just stating that the
corresponding condition in the second row is true for some d ∈ N, so the
equivalence of the third row follows from the equivalence of the second.

(a)⇒ (b) : If V is �nitely generated or generated in degree ≤ d, H0(V ) is as well since
it is a quotient of V .

(b)⇒ (c) : Let M :=
⊕

i∈IM(di). By Proposition 2.2 we have a surjection F :
M � H0(V ), and this map factors through H0(M). We now observe that
H0(M) = H0(

⊕
M(di)) =

⊕
H0(M(di)) since H0(−) is right exact, and

we computed H0(M(di)) earlier so we can see that for any �nite set S,

H0(M(di))S =

{
M(di)S if |S| = di

0 otherwise.

If H0(V ) is �nitely generated, we may assume the index set I is �nite,

so
⊕∞

n=1H0(M)n is a free R-module of rank
∑k
i=1 di! for some k, and in

particular the module is �nitely generated, so (b)⇒ (c) in the �rst row.

If H0(V ) is generated in degree ≤ d we can assume di ≤ d for all i ∈ I.
In this case H0(M)n = 0 for all n > d, so the same is true for H0(V )n.
Hence (b)⇒ (c) in the second row as well.

(c)⇒ (a) : Assume
⊕∞

n=0H0(V )n is �nitely generated and let {vi}i∈I ⊂
∐
nH0(V )n,

where I is �nite, be a generating set. We want to de�ne a surjection
π : M =

⊕
M(di) � V .

Pick di ∈ N such that vi ∈ H0(V )di . We de�ne π : M � V by sending
id[di] ∈ M(di)di to any element of Vdi lifting vi. So the map H0(π) :
H0(M) → H0(V ) sends id[di] ∈ H0(M(di))di to vi ∈ H0(V )di , and since
H0(V )d is generated by the elements vi for which di = d we get that
H0(π)d : H0(M)d → H0(V )d is surjective for every d, hence H0(π) is
surjective, and by Lemma 2.5, π is surjective as well. Since I is �nite, the
surjection π : M � V shows that V is �nitely generated as well, and so
(c)⇒ (a) in the �rst row.
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If we assume H0(V )n = 0 for n > d we can assume that di ≤ d for all i ∈ I
(I not necessarily �nite), so the surjection π gives us that V is generated
in degree ≤ d. Hence (c)⇒ (a) in the second row as well.

2. Firstly, if V is �nitely generated it is also generated in �nite degree.

For the converse, by the equivalence of the third row in (1) we get that
H0(V )n = 0 for n large enough, and hence

∞⊕

n=0

H0(V )n =

k⊕

n=0

H0(V )n

for some k <∞. Since Vn is a �nitely generated R-module for each n ≥ 0
the same is true for H0(V )n since it is a quotient of Vn. This implies that
the sum

⊕∞
n=0H0(V )n is a �nite sum of �nitely generated R-modules and

hence it is �nitely generated so the equivalence of the �rst row gives us
that V is a �nitely generated FI-module.

The second functor we need is called shift functor. Let t : Sets× Sets→ Sets
be the disjoint union functor on sets. Since f t g : S tS′ → T tT ′ is injective if
f : S ↪→ T and g : S′ ↪→ T ′ are both injective, this functor restricts to a functor
t : FI× FI→ FI.

De�nition 2.6. For a ≥ 0, let [−a] denote the set {−1, ...,−a}, and let Ξa be
the functor

Ξa : FI→ FI, Ξa(S) := S t [−a].

If f : S ↪→ T is an injection, Ξa(f) is the map f t id[−a] : S t [−a] ↪→ T t [−a].
Let i−a : [−a] ↪→ [−(a+ 1)] denote the natural inclusion.
Given an FI-module V and an integer a ≥ 1, let S+a : FI-Mod → FI-Mod

be the functor de�ned by precomposition by Ξa. That is,

S+a : FI-Mod→ FI-Mod, S+a(V ) := V ◦ Ξa : FI
Ξa→ FI

V→ R-Mod.

The functor S+a is called a positive shift functor.

Since kernels and cokernels are computed pointwise, this is an exact functor.
For example if

0→ U
F→ V

G→W → 0

is an exact sequence of FI-modules we have for every �nite set T , ker(G)S =
ker(GS : VS →WS) = im(FS : US → VS) = (imF )S , and in particular the same
thing holds for St [−a], and hence the same thing holds for S+a(F )S = FSt[−a]

and S+a(G)S = GSt[−a].
Given an FI-module V we could ask ourselves what the di�erence between

the Sn+a-representation Vn+a and the Sn-representation S+a(V )n is. Given
σ ∈ End([n]) we have S+a(σ) = (σt id[a])∗ : V[n]t[−a]

∼= Vn+a → Vn+a. In other
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words Sn acts as on Vn+a under the image of the natural inclusion Sn ↪→ Sn+a,
and we have an isomorphism of representations

S+a(V )n ∼= Res
Sn+a

Sn
Vn+a.

The point of the shift functor is to apply this restriction in such a way that
result still forms an FI-module. Note that the choice of set for [−a] is irrelevant,
any set of cardinality a would do.

De�nition 2.7. Let T be a �nite set. The natural inclusion of T into Ξa(T ) =
T t [−a] induces a natural transformation idFI =⇒ Ξa, so for any FI-module
V this gives us a homomorphism of FI-modules Xa : V → S+a(V ). Explicitly,
for every �nite set T , Xa has components induced from the natural inclusion
T ↪→ T t [−a]:

Xa : VT → VTt[−a] = S+a(V )T .

We also have that the natural inclusion idti−a : T t [−a] ↪→ T t [−(a + 1)]
induces a homomorphism

Ya : S+a(V )→ S+(a+1)(V ),

satisfying Xa+1 = Ya ◦Xa : V → S+(a+1)(V ).

If V,W are FI-modules, we write V ∼ W if S+a(V ) ∼= S+a(W ) for some
a ≥ 0. This notation is mostly used as V ∼ 0, which means that Vn = 0 for
su�ciently large n.

2.2 The Noetherian property

We can now prove the following theorem, which will be essential for the proof
of Theorem 1.2:

Theorem 2.7. Every sub-FI-module of a �nitely generated FI-module over a
Noetherian ring R is �nitely generated.

We say that �nitely generated FI-modules over Noetherian rings are Noethe-
rian. Some of properties of Noetherian rings carry over to corresponding versions
for Noetherian FI-modules. Consider the following proposition.

Proposition 2.8. Let

0→ U
F→ V

G→W → 0

be a short exact sequence of FI-modules. Then V is Noetherian if and only if U
and W are Noetherian.

Proof. Suppose �rst that V is Noetherian and let U ′ ⊂ U and W ′ ⊂ W be
sub-FI-modules. By Proposition 2.2 we have two surjections

φ : M1 :=
n⊕

i=1

M(di) � F (U ′) ⊂ V

ψ : M2 :=

m⊕

j=1

M(dj) � G−1(W ′) ⊂ V.
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Since F is injective we can de�ne a map F−1 : F (U ′)→ U ′ and composing with
φ gives us a surjection M1 � U ′ so U ′ is �nitely generated. Similarly we can
compose ψ and G to get a surjection M2 �W ′.

Conversely, suppose U and W are Noetherian and let V ′ ⊂ V be a sub-FI-
module. We then have the following exact sequences

0 U V W 0

0 F−1(V ′) V ′ G(V ′) 0

F G

and applying Proposition 2.4 to the sequence below gives us the desired result.

Corollary 2.9. If V and W are Noetherian FI-modules if and only if the direct
sum V ⊕W is Noetherian.

Proof. This follows from the previous proposition by applying it to the short
exact sequence

0→ V → V ⊕W →W → 0.

We shall break down the proof of 2.7 into several steps. First we investigate
how the positive shift functors behave when applied to the FI-modules M(d).

Proposition 2.10. For any a, d ≥ 0, there is a natural decomposition

S+a(M(d)) = M(d)⊕Qa,

where Qa is a free FI-module �nitely generated in degree ≤ d− 1.

Proof. Let S be a �nite set. The maps FI([d], S) form basis for M(d)S , so the
maps FI([d], S t [−a]) form basis for S+a(M(d))S . Let f : [d] ↪→ S t [−a]
be an injection and consider the subset T = f−1([−a]) ⊂ [d] as well as the
restriction f |T : T ↪→ [−a]. Given another injection g : S ↪→ S′, the map
g∗ : S+a(M(d))S → S+a(M(d))S′ is induced by the composition

g∗f = (g t id[−a]) ◦ f.

Note that g∗f−1([−a]) = f−1([−a]) = T and g∗f |T = f |T , so neither the subset
T nor f |T are changed by g∗, and arranging the basis of S+a(M(d))S according
to these two factors gives us a decomposition of S+a(M(d)) as a direct sum of
FI-modules.

Fix a subset T ⊂ [d] and an injection h : T ↪→ [−a]. Let MT,h ⊂ S+a(M(d))
denote the sub-FI-module spanned by the injections f satisfying f−1([−a]) = T
and f |T = h. These injections are distinguished by the restrictions f |[d]\T , and
we have g∗f |[d]\T = g◦f |[d]\T . For any �nite set S, the summand of S+a(M(d))S
corresponding to T and h can be viewed as being generated by the pairs (f, g)
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where f is an injection from MT,h
S and g is an injection g : T ↪→ [−a]. We thus

get a composition

S+a(M(d))S =
⊕

T⊂[d]

MT,h
S ⊗R R[FI(T, [−a])].

We can now choose a bijection [d]\T ∼= [d−|T |], which gives us an isomorphism
MT,h ∼= M(d− |T |), and thus we get a decomposition

S+a(M(d)) =
⊕

T⊂[d]

M(d− |T |)⊗R R[FI(T, [−a])].

Moreover this decomposition is natural up to choice of bijection [d]\T ∼= [d−|T |].
Isolating the summand with T = ∅, which is isomorphic to M(d), we get the
desired result.

Corollary 2.11. If V is generated in degree ≤ d, then S+a(V ) is generated
in degree ≤ d. Conversely, if S+a(V ) is generated in degree ≤ d, then V is
generated in degree ≤ d+ a.

Proof. For the �rst claim, we have a surjection
⊕

i∈IM(di) � V where di ≤ d
for all i ∈ I. Since S+a(V ) is exact we get a surjection S+a(

⊕
M(di)) =⊕

M(di) ⊕ Qia � S+a(V ). Since Qia is generated in degree ≤ d − 1 we have
a surjection for every i ∈ I,

⊕
j∈Ji M(dj) � Qia where dj ≤ d − 1 for all j.

Combining these we get a surjection

⊕

i∈I∪(
⋃

i∈I Ji)

M(d′i) �
⊕

M(di)⊕Qia � S+a(V ),

with every d′i ≤ d, and the claim follows.
For the converse we use Proposition 2.6 which says that S+a(V ) is generated

in degree ≤ d if and only if H0(S+a(V ))n = 0 whenever n > d. Recall now that
for every �nite set S, the R-module H0(S+a(V ))S is de�ned to be the quotient
of S+a(V )S = VSt[−a] by

〈im(f t id[−a])∗ : VTt[−a] → VSt[−a] | f : T ↪→ S, |T | < |S|〉,

and H0(V )St[−a] is de�ned to be the quotient of VSt[−a] by

〈im g∗ : VT ′ → VSt[−a] | g : T ′ ↪→ S t [−a], |T ′| < |S|+ a〉.

Since the former is contained in the latter, we get that H0(V )St[−a] is a quo-
tient of H0(S+a(V ))S , and in particular we have a surjection H0(S+a(V ))S �
H0(V )St[−a] for every �nite set S. By assumption, this surjection gives us that
H0(V )n+a = 0 whenever n > d. Using Proposition 2.6 once again we then get
that V is generated in degree ≤ d+ a.
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De�nition 2.8. Let πa : S+a(M(d)) �M(d) be the projection determined by

S+a(M(d)) = M(d)⊕Qa �M(d)

in Proposition 2.10. More concretely, a basis for S+a(M(d))S consists of injec-
tions [d] ↪→ S t [−a], and the projection simply sends any injection with image
not contained in S to 0.

If we look at M(d)n for some n ≥ d, we can split up the injections [d] ↪→ [n]
according to their image. Each d-element subset of [n] gives us a summand of
M(d)n isomorphic to M(d)d, yielding a decomposition of R-modules

M(d)n ∼= M(d)
⊕(n

d)
d .

In degree d, the projection πa gives us a map S+(n−d)(M(d))d ∼= M(d)n →
M(d)d. This is the same as the projection onto a single factor in the decompo-
sition above, so we can see that it is related to the projection πa.

We can now prove the Noetherian property of FI-modules.

Proof of Theorem 2.7. [5]. We are going to prove by induction on d ∈ N that
if V is an FI-module, �nitely generated in degree ≤ d, then any sub-FI-module
W ⊂ V is �nitely generated. For such an FI-module we have a surjection

F :
k⊕

i=1

M(di) � V

with all di ≤ d. If the Noetherian property holds for
⊕k

i=1M(di), it also holds
for V by considering F−1(W ), where W ⊂ V . Hence it is enough to prove the

theorem for V =
⊕k

i=1M(di). Since the Noetherian property is also preserved
under direct sums, it is enough to prove it for V = M(di), and by induction it
su�ces to prove it for V = M(d).

(Reduction to W a.) Fix a submodule W of M(d). For each n ∈ N,
M(d)n is a �nitely generated R-module. Since R is Noetherian, the submodule
Wn is also �nitely generated. Using Lemma 2.6 part 2 we get that it is enough
to prove that W is generated in �nite degree. By Corollary 2.11 it su�ces to
prove S+a(W ) is �nitely generated for some a ≥ 0. Using the decomposition in
Proposition 2.10 we get a short exact sequence

0→ Qa → S+a(M(d))
πa→M(d)→ 0

for any a ≥ 0. Since S+a(−) is exact we can think of S+a(W ) as a sub-FI-module
of S+a(M(d)). This induces a short exact sequence

0 Qa ∩ S+a(W ) S+a(W ) πa(S+a(W )) 0

0 Qa S+a(M(d)) M(d) 0
πa
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in the top row. Let us denote πa(S+a(W )) as W a.
We know that Qa is �nitely generated in degree ≤ d − 1 by Proposition

2.10, so applying the induction hypothesis gives us that Qa ∩S+a(W ) is �nitely
generated for any a ≥ 0. Thus, to prove that S+a(W ) is �nitely generated,
it su�ces to prove that W a is �nitely generated. We will do this by showing
that there exists some N ≥ 0 such that WN is �nitely generated in degree ≤ d.
The �rst step is to show that a certain sub-FI-module W∞ ⊂ M(d) is �nitely
generated in degree d.

(Showing W∞ is generated by W∞d .) The map Ya : S+a(M(d)) →
S+(a+1)(M(d)) from De�nition 2.7 satis�es πa+1 ◦ Ya = πa, and we also have
that Ya(S+a(W )) ⊂ S+(a+1)(W ). From this it follows that W a ⊂ W a+1. Let
W∞ denote the sub-FI-module

⋃
aW

a ⊂M(d).
An element

x =
∑

f :[d]↪→T
rff ∈M(d)

lies in W a if and only if there is an element

w =
∑

g:[d]↪→Tt[−a]

r′gg ∈WTt[−a] ⊂M(d)Tt[−a]

such that r′g = rg whenever im g ⊂ T . The element x ∈ M(d)T lies in W∞ if
the above is true for some a ≥ 0.

For each a ≥ 0, let Ua be the smallest sub-FI-modules of W a containing
W a
d . We will show that for any a ≥ 0 and any n ≤ a+ d we have

W a+d−n
n ⊂ Uan ⊂M(d)n.

Given x ∈ W a+d−n, let x =
∑
f :[d]↪→[n] rff as above, and for each S ⊂ [n]

with |S| = d, let xS denote

xS :=
∑

im f=S

rff ∈M(d)S .

We have that x =
∑
S iS(xS) where iS : S ↪→ [n] is the natural inclusion.

Since x ∈W a+d−n there exists some w ∈W[n]t[−(a+d−n)] such that writing

w =
∑

g:[d]↪→[n]t[−(a+d−n)]

r′gg

as above, we have r′g = rg for all g with im g ⊂ [n]. But then it is also true that
r′g = rg for all g with im g = S with S as above, so choosing a bijection

([n] \ S) t [−(a+ d− n)] ∼= [−a],

we can think of w as an element of WSt[−a], so xS ∈W a
S .

Since |S| = d we have that UaS = W a
S . Since x =

∑
S iS(xS) we can conclude

that x ∈ Ua, and because this holds for all x ∈W a+d−n
n we can see thatW a+d−n

n
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is contained in Ua as was the claim above. Passing to the limit as a→∞ and
setting U∞ :=

⋃
a U

a we see that W∞n is contained in U∞ for all n ∈ N, but
since U∞ is contained in W∞ by de�nition this gives us that U∞ = W∞. In
other words, W∞ is generated by W∞d as claimed.

(Finding N such that WN is generated in degree ≤ d.) Since W∞d ⊂
M(d)d ∼= R[Sd], it is �nitely generated as an R-module, so W∞ is �nitely
generated in degree ≤ d. Consider the following chain of submodules of M(d)d:

Wd = W 0
d ⊂W 1

d ⊂ ... ⊂W∞d =
⋃

a

W a
d .

Since M(d)d is a �nitely generated R-module and R is Noetherian, there has to
be some N such that WN

d = W∞d . Since W∞ is generated by W∞d it follows
that W∞ = WN , and thus WN is �nitely generated in degree ≤ d as claimed,
and the theorem follows.

We will end this section by proving that for a �nitely generated FI-module
V , the dimension of Vn is eventually given by a polynomial in n.

De�nition 2.9. Let V be an FI-module. The torsion submodule of V , denoted
T (V ), consists of those v ∈ VS for which f∗(v) = 0 for some injection f : S ↪→ T .
We say that V is torsion free if T (V ) = 0.

Let V be an FI-module and let v ∈ Vn be such that f∗(v) = 0 for some
injection f : [n] ↪→ [m]. Let ιn : [n] ↪→ [n]t [−(m− n)] ∼= [m] be the natural in-
clusion and recall that f = σ◦ιn for some σ ∈ Sm. Hence 0 = f∗(v) = σ(ιn)∗(v)
which give us that (ιn)∗(v) = 0, i.e. v ∈ ker(Xm−n : Vn → S+(m−n)(V )n) where
Xa : V → S+a(V ) is the FI-module homomorphism with components induced
from ιS we de�ned earlier. Conversely, if v ∈ ker(Xa : VS → S+a(V )S) for some
a ≥ 0, then clearly v is in T (V ), and hence we can write

T (V ) :=
⋃

a≥0

ker(Xa : V → S+a(V )).

Lemma 2.12. If V is a �nitely generated FI-module over a Noetherian ring,
then T (V ) ∼ 0, i.e. T (V )n = 0 for all n su�ciently large.

Proof. By the Noetherian property 2.7, the sub-FI-module T (V ) is �nitely gen-
erated. Let v1, ..., vk, with vi ∈ Vni be the generators, so for every �nite set
S, T (V )S is spanned by

⋃
i{f∗(vi) | f : [di] ↪→ S}. For every i = 1, ..., k, by

de�nition there exists some ai such that vi ∈ ker(Xai : V → S+ai(V )). Set
Mi := di + ai. Then for any f : [ni] ↪→ S with |S| ≥ Mi we have f∗(vi) = 0.
Now let M := max{Mi}. Then f∗(vi) = 0 for any i and for any f : [ni] ↪→ S
with |S| ≥ M . Since these elements generate T (V )S we see that T (V )S = 0
whenever |S| ≥M , and hence T (V ) ∼ 0.

Theorem 2.13. Let k be a �eld, and let V be an FI-module over k, �nitely
generated in degree ≤ d. Then there exists an integer-valued polynomial p(x) ∈
Q[x] with deg p(x) ≤ d such that for all su�ciently large n,

dimk Vn = p(n).

24



Proof. ([5], p.18). Firstly, by Lemma 2.12, the torsion free quotient V ′ :=
V/T (V ) satis�es dimk V

′
n = dimk Vn for n su�ciently large, and since V ′ is

a quotient of V it is also generated in degree ≤ d. Therefore we may assume V
is torsion free. By de�nition,

⋃

a≥0

ker(Xa : V → S+a(V )) = 0,

so for all a ≥ 0 the map Xa is injective. Let DV := coker(X1 : V → S+a(V )).
We will proceed by induction on d. We take d = −1 as our base case, where

we say V is generated in degree ≤ −1 if V = 0, and that a polynomial has
degree −1 if it vanishes.

We show that DV is �nitely generated in degree ≤ d− 1. If V = M(n) for
some n ≤ d, then by Proposition 2.10 DV = Q1 is �nitely generated in degree
≤ n − 1. The positive shift functors S+a preserve direct sums. If we have two
FI-modules V,W we have S+a(V ⊕ W )n = (V ⊕ W )n+a = Vn+a ⊕ Wn+a =
S+a(V )n ⊕ S+a(W )n. Since V is �nitely generated in degree ≤ d we have a
surjection

M :=
k⊕

i=1

M(di) � V

where di ≤ d. Then by Proposition 2.10 we have

S+1(M) =
k⊕

i=1

S+1(M(di)) =
k⊕

i=1

M(di)⊕Q1,i,

so DM =
⊕k

i=1Q1,i where Q1,i is �nitely generated in degree ≤ di − 1, and
therefore DM is �nitely generated in degree ≤ d−1. Since S+a is exact we have
a surjection S+1(M) � S+1(V ), so this induces a surjection on the quotients
DM � DV , and hence DV is �nitely generated in degree ≤ d− 1.

By induction we can conclude that dimkDVn is eventually a polynomial of
degree at most d− 1. Since we are working over a �eld k we have

p(n) = dimkDVn = dimk coker(X+1)n = dimk S+1(V )n − dimk Vn.

If we write φ(n) := dimk Vn we then get

p(n) = φ(n+ 1)− φ(n),

so since p(n) is eventually a polynomial of degree at most d−1, φ(n+1)−φ(n) is
also eventually a polynomial of degree at most d−1, and hence φ(n) is eventually
a polynomial of degree at most d.

2.3 Graded FI-modules

From this point, when we say graded FI-module we really mean FI-graded mod-
ule, i.e. a functor from FI to the category of N-graded R-modules. If V is such a
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module, for each i ≥ 0 let V iS denote the the piece of VS in grading i. Restricting
V to V i yields the FI-module V i, and V can be seen as the collection of these,
i.e. V = {V i}i∈N.
De�nition 2.10. Let V be a graded FI-module. We say that V is of �nite type
if each FI-module V i is a �nitely generated FI-module.

The tensor product of two graded R-modules M,N is de�ned as

(M ⊗N)i =
⊕

a+b=i

Ma ⊗N b.

For graded FI-modules, the tensor product is de�ned by applying this de�nition
pointwise.

Proposition 2.14. Let V,W be graded FI-modules. If V and W is of �nite
type, then so is V ⊗W .

Proof. For each a, b ≥ 0, V a ⊗W b is �nitely generated by Proposition 2.3. For
each i ≥ 0, (V ⊗W )i is a direct sum of �nitely many such summands, and hence
is �nitely generated.

Let M be an R-module and S a set. Let M⊗S =
⊗

s∈SM . If F : M → N is

a homomorphism and f : S → T is a bijection, then we let F⊗f : M⊗S → N⊗T

be the map that takes the factor labeled by s ∈ S to the one labeled by f(s) ∈ T
via the map F .

De�nition 2.11. Given an FI-module V equipped with an injection M(0) ↪→
V , de�ne V ⊗• to be the FI-module (V ⊗•)S = (VS)⊗S . If f : S ↪→ T is an
injection it acts by

f∗ : (VS)⊗S
(f∗)

⊗f

−→ (VT )⊗f(S) ↪→ (VT )⊗T ,

where the last map composes the isomorphism (VT )⊗f(S) ∼= (VT )⊗f(S)⊗R⊗T\f(S)

with the inclusions R ∼= M(0)T ↪→ VT .

Remark. To explain the role of the map M(0)→ V in the de�nition above, we
need to mention symmetric monoidal categories.

A monoidal category is a category C equipped with the following data:

1. A bifunctor ⊗ : C × C → C, usually called tensor product.

2. An identity object 1.

3. Three natural isomorphisms α, β, γ with components αA,B,C : A ⊗ (B ⊗
C) ∼= (A⊗B)⊗C, βA : A⊗1 ∼= A, γA : 1⊗A ∼= A, such that the following
diagrams

A⊗ (B ⊗ (C ⊗D)) (A⊗B)⊗ (C ⊗D) ((A⊗B)⊗ C)⊗D

A⊗ ((B ⊗ C)⊗D) (A⊗ (B ⊗ C))⊗D

αA,B,C⊗D

idA⊗αB,C,D

αA⊗B,C,D

αA,B⊗C,D

αA,B,C⊗idD
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A⊗ (1⊗B) (A⊗ 1)⊗B

A⊗B

αA,1,B

idA⊗γB
βA⊗idB

commute for all A,B,C,D.

Such category is symmetric monoidal if it in addition is equipped by a natural
isomorphism σA,B : A⊗B ∼= B⊗A for all A,B, making the following diagrams

(A⊗B)⊗ C (B ⊗A)⊗ C

A⊗ (B ⊗ C) B ⊗ (A⊗ C)

(B ⊗ C)⊗A B ⊗ (C ⊗A)

αA,B,C

σA,B⊗idC

αB,A,C

σA,B⊗C idB⊗σA,C

αB,C,A

A⊗ 1 1⊗A B ⊗A

A A⊗B A⊗B

σA,1

βA γA
σB,A

idA⊗B

σA,B

commute for all A,B,C.
The category of FI-modules together with the tensor product makes form a

symmetric monoidal category where M(0) plays the role of the unit 1. If X is
an object in any such category C where there is a morphism f : 1→ X, we can
de�ne an FI-object which sends a �nite set S to X⊗S and the natural inclusions
ιn,n+1 to

X⊗n ⊗ f : X⊗n ∼= X⊗n ⊗ 1
idX⊗n⊗f−→ X⊗n ⊗X ∼= X⊗n+1,

and the morphisms in End([n]) to the corresponding action in C.
If we then have a morphism M(0)→ V of FI-modules we can de�ne an FI-

object in the category of FI-modules, i.e. an FI-FI-module, which sends a �nite
set S to V ⊗S which is the FI-module which sends a �nite set T to (VT )⊗S. We
can view this as functor FI × FI → R-Mod, i.e. a bi-FI-module, which sends
(S, T ) to (VT )⊗S, and by precomposing with the diagonal functor FI→ FI× FI
sending S to (S, S) we obtain the FI-module V ⊗• de�ned above.

If V is a graded FI-module, the individual pieces (VS)⊗S are graded R-
modules. We then considerM(0) to be concentrated in degree 0, and we require
the map M(0) ↪→ V to preserve grading. Then the grading is also preserved by
the map f∗ : (VS)⊗S → (VT )⊗T , so in this case V ⊗• is a graded FI-module.

Proposition 2.15. Let V be a graded FI-module with V 0 ∼= M(0). If V is of
�nite type, then so is the FI-module V ⊗•.

27



Proof ([6], p.34). Let M be a graded FI-module which is free in each degree.
This means that there exists an index set L such that for each l ∈ L there
exists numbers ml, il ∈ N such that we have M i ∼=

⊕
il=i

M(ml). Every graded
FI-module comes with a surjection M � V from such an M . If V is of �nite
type we can assume M is as well, i.e. the set {l ∈ L | il = j} is �nite for any
given j. Since we have assumed V 0 ∼= M(0) we can assume there is a unique
l0 ∈ L with il0 = 0, and it satis�es ml0 = 0. Since a surjection M � V induces
a surjection M⊗• � V ⊗•, we only need to prove that M⊗• is of �nite type.

A basis for M⊗•S
∼= (MS)⊗S is given by a choice of indices η : S → L, and

for each s ∈ S an injection gs : [mη(s)] ↪→ S. For such a basis element, the
multiset η(S) can be written uniquely for some j ≤ |S| as {l1, ..., lj}∪{l0, ..., l0}
with l1, ..., lj ∈ L \ {l0}. Any map f∗ : M⊗•S →M⊗•T induced from an injection
f : S ↪→ T is going to be basis preserving, and every basis element is going to
be taken to a basis element determining the same multiset l := {l1, ..., lj}, so
M⊗• splits as a direct sum

M⊗• =
⊕

l

M⊗•l

indexed by such multisets. We can now show that every such summand is
�nitely generated.

We �x some l. For any �nite set T , a basis for (M⊗•l )T is determined by

{(η : T → L, gt : [mη(t)] ↪→ T ) | η(T ) = {l1, ..., lj} ∪ {l0, ..., l0}}.

If j +ml1 + ...+mlj < |T |, then there must be some t ∈ T with η(t) = l0, such
that t /∈ im(gt′) for all t

′ ∈ T . Let S = T \ {t}, so im(gs) ⊂ S for all s ∈ S- The
map f∗ induced by the inclusion f : S ↪→ T is going to send the basis element
(η|S , gs) of (M⊗•l )S to the basis element (η, gt) of (M⊗•l )T , so the FI-module

(M⊗•l )T is generated in degree ≤ j + ml1 + ... + mlj . It follows that M⊗•l is
�nitely generated, since the basis is �nite for each �nite set T .

Each summandM⊗•l only contributes to (M⊗•)i in grading i = il1 + ...+ ilj .

Since {l ∈ L | li = j} is �nite for each j, if we �x i ∈ N, there are only �nitely
many l with i = il1 + ...+ ilj . Hence for each i ∈ N the FI-module (M⊗•)i is a
�nite direct sum of �nitely generated FI-modulesM⊗•l , so the graded FI-module

M⊗• is of �nite type.

3 Church's Theorem

Before we can prove Theorem 1.2 we need to take a small detour and talk about
a spectral sequences, and in particular one called the Leray spectral sequence.

De�nition 3.1. A cohomology spectral sequence, or sometimes just spectral
sequence,starting at Ea in an abelian category A consists of the following:

1. A family of objects {Epqr } of A de�ned for all integers p, q, where r ≥ a.
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2. Maps dpqr : Ep,qr → Ep+r,q−r+1
r that are di�erentials in the sense that

d2 = 0 when the composition is de�ned.

3. Isomorphisms
Epqr+1

∼= ker(dpqr )/ im(dp−r,q+r−1
r ).

The total degree of the term Epqr is p + q. We say a spectral sequence is
bounded if for each n there are only �nitely many nonzero terms of total degree
n in E∗∗a . If this is the case, then for each p, q there is an r0 such that E

pq
r = Epqr+1

for all r ≥ r0, since eventually the target of each di�erential will be 0. We write
Epq∞ for the stable value of Epqr .

A bounded spectral sequence converges to H∗ if there is a family of objects
Hn of A, each having a �nite �ltration

0 = F tHn ⊂ ... ⊂ F p+1Hn ⊂ F pHn ⊂ ... ⊂ F sHn = Hn,

such that Epq∞ ∼= F pHp+q/F p+1Hp+q.
If a spectral sequence is �rst quadrant (Epqa = 0 unless p ≥ 0 and q ≥ 0) and

converges to H∗, then each Hn has a �ltration of length n+ 1

0 = Fn+1Hn ⊂ FnHn ⊂ ... ⊂ F 1Hn ⊂ F 0Hn = Hn.

A spectral sequence starting at a converging to H∗ is usually written as

Epqa =⇒ Hp+q.

A spectral sequence is said to collapse at Er (r ≥ 2) if there is exactly one
nonzero row or column in the lattice {Epqr }. If a collapsing spectral sequence
converges to H∗ it is easy to read of what the objects Hn look like. It will be
the unique nonzero Epqr with p+ q = n.

3.1 Leray spectral sequence

Proposition 3.1. A sequence

A
f→ B

g→ C

in an abelian category A is exact if for every object M in A the sequence

Hom(M,A)
f∗→ Hom(M,B)

g∗→ Hom(M,C)

is exact.

Proof. First, letM = A. Then we get that g◦f = g∗◦f∗(IdA) = 0. Now if we let
M = ker(g) we get that the inclusion ι : ker(g) ↪→ B satis�es g∗(ι) = g ◦ ι = 0,
so there exists some ϕ ∈ Hom(M,A) with ι = f∗(ϕ) = f ◦ϕ. This gives us that
ker(g) = im(ι) ⊂ im(f), and hence ker(g) = im(f).
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Theorem 3.2. Let F : A → B and G : B → A be a pair of additive ad-
joint functors between abelian categories A and B, i.e. there exists a natural
isomorphism

φ : HomB(F (A), B)→ HomA(A,G(B)),

for all A,B. Then F is right exact and G is left exact.

Proof. We will prove this by �rst proving every right adjoint G is left exact, and
from this we get that F op : Aop → Bop, which is right adjoint, is left exact, and
so F is right exact.

Suppose now that
0→ B′ → B → B′′ → 0

is exact in B. By naturality of φ there is a commutative diagram for every
object A of A

0 HomB(F (A), B′) HomB(F (A), B) HomB(F (A), B′′)

0 HomA(A,G(B′)) HomA(A,G(B)) HomA(A,G(B′′)).

∼= ∼= ∼=

The top row is exact since Hom(F (A),−) is a left exact functor, so the bottom
row is also exact. By Proposition 3.1 the following sequence must be exact:

0→ G(B′)→ G(B)→ G(B′′),

which shows G is left exact.

De�nition 3.2. Let X be a topological space and let A be an abelian category.
A presheaf F on X with values in A is a contravariant functor from the poset
U of open sets of X to A, such that F(∅) = {0}.

A sheaf on X with values in A is a presheaf F such that the following axiom
holds:

Let {Ui} be an open cover of an open set U ⊂ X. If {fi ∈ F(Ui)} are such
that each fi and fj agree on F(Ui ∩ Uj), then there is a unique f ∈ F(U) that
maps to every fi under F(U)→ F(Ui).

The collections of presheaves PreshA(X) and of sheaves ShA(X)(with values
in A), together with natural transformations both form abelian categories.

De�nition 3.3. Let X be a topological space and let ShAb(X) be the category
on X with values in abelian groups. Let F ∈ ShAb(X) be a sheaf. A stalk of F
at x ∈ X is de�ned to be the abelian group

Fx := lim
−→
{F(U) | x ∈ U}.

There is a way to get a sheaf from a presheaf called shea��cation.
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Proposition 3.3. Given a presheaf F there is a sheaf S(F) and a morphism
θ : F → S(F) with the property that for any sheaf G and any morphism ϕ : F →
G there is a unique morphism ψ : S(F)→ G such that ϕ = ψ ◦ θ. Furthermore
the pair (S(F), θ) is unique up to unique isomorphism. The sheaf S(F) is called
the sheaf associated to the presheaf F or the shea��cation of F .

Proof. See [9].

The shea��cation functor S : Presh(X) → Sh(X) is left adjoint to the
inclusion ι : Sh(X)→ Presh(X), so by Theorem 3.2 S is right exact.

Theorem 3.4. Let F : A → B and G : B → C be additive functors between
abelian categories such that for any injective object I of A, F (I) is a G-acyclic
object of B, i.e. RiG(F (I)) = 0 for all i > 0, where RiG is the right derived
functors of G. If B has enough injectives, then there is a �rst-quadrant spectral
sequence for each object A of A:

Epq2 = (RpG ◦RqF )(A) =⇒ Rp+q(G ◦ F )(A).

This is what is called the Grothendieck spectral sequence.

Proof. See section 5.8 in [7].

Let X,Y be topological spaces and let A = ShAb(X), B = ShAb(Y ) be the
category of sheaves of abelian groups on X and Y respectively. Let C = Ab be
the category of abelian groups. For any continuous function f : X → Y we have
a direct image functor

f∗ : ShAb(X)→ ShAb(Y )

de�ned by f∗(F)(U) = F(f−1(U)). The functor f∗ is right adjoint to the
inverse image sheaf f−1 : Sh(Y )→ Sh(X) de�ned to be the shea��cation of the
presheaf

U 7→ lim
−→
{G(V ) | f(U) ⊂ V },

where U is open in X, V is open in Y and G is a sheaf on Y (exercise 2.6.2). By
Theorem 3.2, f∗ is left exact. The following lemma shows that a functor that is
right adjoint to an exact functor preserves injective objects:

Lemma 3.5. Suppose R : B → A is an additive functor that is right adjoin to
an exact functor L : A → B. If I is an injective object in B, then R(I) is an
injective object in A.

Proof. We can prove this by showing HomA(−, R(I)) is exact. Let f : A→ A′

be an injection in A. Since R,L are adjoint the following diagram

HomB(L(A′), I) HomA(L(A), I)

HomA(A′, R(I)) HomA(A,R(I))

Lf∗

∼= ∼=
f∗
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commutes. Since L is exact, Lf : L(A) → L(A′) is injective, and since I is an
injective object, for every ϕ : L(A)→ I there exists a ψ such that the following
diagram

L(A) L(A′)

I

ϕ

Lf

ψ

commutes, and so the map Lf∗ is surjective. So we get that f∗ is surjective as
well, and hence R(I) is an injective object.

We also have the global section functor ΓX : ShAb(X)→ Ab de�ned by

ΓX(F) = F(X)

and similarly for ΓY . The right derived functors of the global section functor
de�nes a cohomology theory called sheaf cohomology. We usually write

Ri(ΓX)(F) := Hi(X;F).

Since ΓY ◦ f∗(F) = ΓY (F(f−1(−))) = F(f−1(Y )) = F(X) = ΓX and since
ΓY and f∗ satis�es the conditions for the Grothendieck spectral sequence and
since ShAb(X) and ShAb(Y ) has enough injectives, we get the following spectral
sequence:

Epq2 = Hp(Y,Rqf∗F) =⇒ Hp+q(X,F).

This special case is usually called the Leray spectral sequence.

3.2 Transfer homomorphism

The purpose of this section is to show that there is a relation between the spaces
E and X whenever π : E → X is a �nite sheeted covering space de�ned by an
action of a group G on E. In particular we show that there is an isomorphism
between the cohomology of X and the G-invariant elements of the cohomology
group of E whenever the coe�cients are in a �eld containing Q.

De�nition 3.4. Let G be a group and let A be an abelian group together
with a left G-action. We call such A a G-module. The collection of G-modules
together with G-equivariant maps form a category G-Mod.

For a G-module A, let AG denote the subgroup of A

AG = {a ∈ A | ga = a for all g ∈ G}.

We call this subgroup the invariant subgroup. We also have the coinvariants of
A:

AG = A/〈{(ga− a) | g ∈ G, a ∈ A}〉
the quotient of A by the submodule generated by the elements (ga− a) ∈ A.
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Remark. The subgroup AG is the maximal trivial submodule of A. If B is
another trivial submodule such that AG ⊂ B, then for b ∈ B and g ∈ G we
have gb = b, so by construction b ∈ AG and hence AG = B. The assignment
A 7→ AG gives us a functor

−G : G-Mod→ Ab

and this functor is in fact right adjoint to the functor

T : Ab→ G-Mod

which takes an abelian group and considers it as a trivial G-module. To see this,
consider a map f ∈ HomG-Mod(TX, Y ). We have the following commutative
diagram

TX Y

TX Y

G

f

G

f

and since G acts trivially on TX we have that for all g ∈ G and x ∈ TX,
gf(x) = f(gx) = f(x), so this is exactly the same as a group homomorphism
ϕ from X to a G-invariant subgroup of Y and by maximality of Y G the map ϕ
extends to a homomorphism X → Y G. Hence we have a bijection

HomG-Mod(TX, Y ) ∼= HomAb(X,Y G),

natural in X and Y . By Lemma 3.2 −G is left exact.
Similarly, AG = A/Γ is the largest trivial quotient of A. If A/Γ̃ is another

such quotient, then for all g ∈ G and ā ∈ A/Γ̃ we have gā = ā so 0 = gā− ā ∈ Γ̃
and hence Γ ⊂ Γ̃ which gives us A/Γ̃ ⊂ AG. From this we can conclude that

HomAb(XG, Y ) ∼= HomG-Mod(X,TY ),

since a map f ∈ HomG-Mod(X,TY ) is the same as a group homomorphism
X → Y such that f(gx) = f(x), i.e. 0 = f(gx)− f(x) = f(gx− x) which is the
same as a group homomorphism XG → Y and by universality of XG we have a
natural bijection. From this we get that −G is right exact.

We call the right derived functors R∗(−G)(A) the group cohomology of G
with coe�cients in A, written H∗(G;A). Similarly, the left derived functors of
−G are called the group homology of G.

Let p : E → X be an n-sheeted covering space for some n <∞. This induces
a map of on singular chains p′ : Ci(E) → Ci(X) for all i ≥ 0. We also have
homomorphism q : Ci(X)→ Ci(E) for every i ≥ 0 de�ned by taking a singular
simplex σ : ∆i → X to the sum of the n distinct lifts σ̃ : ∆i → E. The map q
is clearly a chain map, so it induces a homomorphisms

q∗ : H∗(E;G)→ H∗(X;G)
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for any group G, called transfer homomorphisms.
Consider the composition p′ ◦ q : Ci(X)→ Ci(X). We have

p′ ◦ q(σ) = p′
( n∑

i=1

σ̃
)

=

n∑

i=1

p′(σ̃) = n · σ.

Hence the induced map (p ◦ q)∗ = q∗ ◦ p∗ is multiplication by n. If we now
look at the kernel of p∗ we see that p∗(x) = 0 implies q∗ ◦ p∗(x) = nx = 0, so
ker(p∗ : H∗(X;G)→ H∗(E;G)) consists of torsion elements whose order divide
n. We now prove the following proposition:

Proposition 3.6. Let p : E → X be an n-sheeted covering space projection
de�ned by an action of G on E. If k is a �eld whose characteristic is 0 or
a prime of order not dividing n, then the map p∗ : H∗(X; k) → H∗(E; k) is
injective and the image is H∗(E; k)G, the subgroup consisting of classes α such
that g∗α = α for all g ∈ G.

Proof. We described the kernel of p∗ above, and by the assumptions on k the
only such element is 0, and hence p∗ is injective.

For the second statement, note that the composition q ◦ p′ sends a singular
simplex σ̃ : ∆i → E to

σ̃
p′7→ σ

q7→
∑

g∈G
gσ̃,

the sum of all its images under the action of G. Hence the induced map p∗ ◦ q∗
is de�ned by

p∗ ◦ q∗(α) =
∑

g∈G
g∗α.

If α ∈ H∗(E; k) is �xed under the G action, then p∗ ◦ q∗(α) = nα, so since k
has characteristic 0 or a prime not dividing n we have

α = p∗ ◦ q∗(α/n)

in this particular case, and thus α ∈ im(p∗).
For the converse, note that since p ◦ g(x) = p(x) for all x ∈ E and g ∈ G,

and hence the induced map is g∗ ◦ p∗ = p∗, so im(p∗) ⊂ H∗(E; k)G. Thus
im(p∗) = H∗(E; k)G.

In particular, for the covering space projection of the con�guration spaces
of some topological space X, Cn(X) → Bn(X) de�ned by the action of the
symmetric group Sn gives us an isomorphism H∗(Cn(X); k)Sn ∼= H∗(Bn(X); k)
whenever k is as in the above proposition. We will mainly care about the case
when k = Q or some �eld containing Q.
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3.3 Noetherian approach

Similarly to FI-modules, we have the notion of an FI-space which is a functor
FI → Top. We can do the same thing with other categories too, for example
FI-groups. When we talk about co-FI objects we mean a contravariant functor
from FI to some category. For example a co-FI-space is a functor FIop → Top.

De�nition 3.5. Let M• be the co-FI-space de�ned by MS = Maps(S,M), the
space of continuous functions ϕ : S → M . For an injection f : T → S we get a
map f∗ : MS →MT de�ned by precomposition ϕ ◦ f .

De�nition 3.6. Let Conf (M) be the co-FI-space de�ned by ConfS(M) =
Inj(S,M), the space of injections ϕ : S →M .

There is a natural inclusion of co-FI-spaces i : Conf (M) ↪→ M•. Another
FI-object we will make use of is a co-FI-chain complex.

De�nition 3.7. Let C∗ be a chain complex equipped with a surjection s :
C∗ � R∗ where

Ri =

{
R if i = 0

0 otherwise.

We de�ne the co-FI-chain complex C⊗•∗ by (C⊗•∗ )[n] = C⊗n∗ . For an injection
f : [n] ↪→ [m], the induced map f∗ : C⊗m∗ → C⊗n∗ projects each factor lying in
[m] \ f([n]) onto R∗ and acts on the rest by permuting them according to f−1.
Sometimes a sign is also introduced depending on grading.

For example in degree 2, if n = 2 and m = 3 and f : [2] ↪→ [3] is de�ned by
f(1) = 3, f(2) = 1 we have the following case:

C⊗3
2 =C2 ⊗ C0 ⊗ C0

⊕C0 ⊗ C2 ⊗ C0

⊕C0 ⊗ C0 ⊗ C2

⊕C1 ⊗ C1 ⊗ C0

⊕C0 ⊗ C1 ⊗ C1

⊕C1 ⊗ C0 ⊗ C1

C⊗2
2 =C2 ⊗ C0

⊕C0 ⊗ C2

⊕C1 ⊗ C1.

Since [3] \ f([2]) = {2}, the middle row of C⊗3
2 �rst gets mapped to R∗, i.e. to
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0 unless the entry is C0 in which case it gets mapped to R:

C⊗3
2 →

⊕

a+b+c=2

Ca ⊗ s(Cb)⊗ Cc =C2 ⊗R⊗ C0

⊕C0 ⊗ 0⊗ C0

⊕C0 ⊗R⊗ C2

⊕C1 ⊗ 0⊗ C0

⊕C0 ⊗ 0⊗ C1

⊕C1 ⊗R⊗ C1
∼= C⊗2

2 .

Each factor then gets permuted according to 3 7→ 1, 1 7→ 2.

The main di�erence in proving Theorem 1.2 when R is a �eld as opposed to
a general Noetherian ring lies in the following lemma:

Lemma 3.7. Let M be a connected topological space with the homotopy type of
a CW complex with �nitely many cells in each dimension. Then for all m ≥ 0,
the FI-module Hm(M•;R) is generated in �nite degree.

When R is a �eld we get that H∗(MS ;R) ∼= H∗(M ;R)⊗S by the Künneth
theorem (see for example [11]), so we can guess that H∗(M•;R) ∼= H∗(M ;R)⊗•

as FI-modules. The problem is that the Künneth isomorphism depends on an
ordering of the set S, so in the setting of FI-modules, when these factors get
permuted a sign might get introduced depending on the grading. However, if we
view H∗(M ;R) as a constant graded FI-module V , the assumption that M is
connected gives us that H0(M ;R) = R so we have an isomorphism V 0 ∼= M(0),
and since we assume M has the homotopy type of a CW complex with �nitely
many cells in each dimension, V is of �nite type. Now we can apply Proposition
2.15 and get our result. For general Noetherian rings things are a bit more
complicated.

Proof of Lemma 3.7 ([5], p.29). Since M is connected, and since M is homo-
topy equivalent to a CW complex, we may assume that this CW complex has
exactly one 0-cell. We let C∗ denote the cellular chain complex over R corre-
sponding to the CW complex. In degree n this is the free R-module generated by
the n-cells of the CW complex. In particular, this chain complex consists of pro-
jective �nitely generated R-modules and will be bounded below with C0 = R.

Since C∗ is quasi isomorphic to C∗(M) (see for example Chapter 4 in [10]) we
have that C⊗•∗ is quasi isomorphic to C∗(M)⊗•. This is because both complexes
consists of free R-modules and the tensor product of free R-modules is free, so
in each degree we have a direct sum of copies of R and induced map of the quasi
isomorphism is again a quasi isomorphism under these conditions.

By the Eilenberg-Zilber theorem (see for example [7] Chapter 5.8) we have
a quasi isomorphism C∗(M)⊗• ' C∗(M•), so C⊗•∗ ' C∗(M•). Thus to compute
H∗(M•;R) we can compute the cohomology of the chain complex Hom((C∗)⊗•, R).
This complex consists of projective �nitely generated R-modules, and it can now
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be viewed as an FI-chain complex since both functors (C∗)⊗• and Hom(−, R)
are contra variant. We denote the component in degreem by Hom((C∗)⊗•, R)m,
so for all n we have

Hom((C∗)
⊗n, R)m :=

⊕

m1+...+mn=m

Hom(Cm1
⊗ ...⊗Cmn

, R).

When n > m, each such component must have mi = 0 for at least one i,
and hence it lies in the image of f∗ for some f : [n − 1] ↪→ [n]. Therefore
Hom((C∗)⊗•, R)m is �nitely generated in degree m, and since Hm(M•) is a
subquotient of this FI-module it is also �nitely generated by Theorem 2.7.

Now we use this to prove Theorem 1.2.

Proof of Theorem 1.2 ([5] p.29). The inclusion of co-FI-spaces i : Conf (M) ↪→
M• results in a Leray spectral sequence of FI-modules

Ep,q2 = Hp(M•;Rqi∗(R)) =⇒ Hp+q(Conf (M);R).

We start by showing that the Ep,q2 is �nitely generated for all p, q ≥ 0. In [8,
Theorem 1], Totaro describes the E2 page of this spectral sequence. In partic-
ular, he shows that E∗,∗2 is generated by two subalgebras: E∗,02 = H∗(M•;R),
which is �nitely generated by Lemma 3.7, and E0,∗

2 . He also shows that E0,∗
2 is

generated by E0,d−1
2 which is generated in degree 2.

Since this spectral sequence is �rst quadrant, for any given p, q ≥ 0 there
are only �nitely many terms on each axis which can multiply to Ep,q2 . Each
entry on the E2 page is thus a �nite direct sum of �nite tensor products of
�nitely generated FI-modules, and such a tensor product is �nitely generated
by Proposition 2.3. It follows that Ep,q2 is �nitely generated.

Since Ep,q∞ is a subquotient of Ep,q2 , it is also �nitely generated for each
p, q ≥ 0 by Theorem 2.7. For every m ≥ 0, the FI-module Hm(Conf (M);R)
has a �nite length �ltration

0 = Fm+1Hm ⊂ FmHm ⊂ ... ⊂ F 1Hm ⊂ F 0Hm = Hm(Conf (M);R)

with Epq∞ ∼= F pHp+q/F p+1Hp+q. In particular we have

Em,0∞ ∼= FmHm/Fm+1Hm = FmHm

E0,m
∞ ∼= F 0Hm/F 1Hm = Hm/F 1Hm.

To show that Hm(Conf (M);R) is �nitely generated, consider �rst the short
exact sequence

0 FmHm Fm−1Hm Fm−1Hm/FmHm 0.

Em,0∞ Em−1,1
∞
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Since Epq∞ is �nitely generated for each p, q ≥ 0, the term Fm−1Hm in the middle
is also �nitely generated by Proposition 2.4. Inductively, for every 0 ≤ j < m
we get a short exact sequence

0 Fm−jHm Fm−(j+1)Hm E
m−(j+1)
∞ 0

where both terms on either side of the middle term is �nitely generated. For j =
m − 1 the middle term is F 0Hm = Hm(Conf (M);R), so applying Proposition
2.4 give us the desired result.

By applying Theorem 2.13 we get the following corollary:

Corollary 3.8. Let k be a �eld, and letM be a connected orientable manifold of
dimension ≥ 2 with the homotopy type of a CW complex. Then for any m ≥ 0
there exists a polynomial p(x) ∈ Q[x] (depending on M,m and k) such that for
n su�ciently large

dimkH
m(Confn(M); k) = p(n).

We also have the following corollary about the cohomology of the unordered
con�guration spaces Bn(M):

Corollary 3.9. LetM be a connected orientable manifold of dimension ≥ 2 with
the homotopy type of a CW complex. Then the sequence {Hm(Bn(M);Q)} is
homologically stable.

Proof. The sequence {Hm(Cn(M);Q)} is representation stable and in particular
the multiplicity of the trivial representation in Hm(Cn(M);Q) eventually sta-
bilizes. Since the trivial representation is Hm(Cn(M);Q)Sn ∼= Hm(Bn(M);Q),
the dimension of Hm(Bn(M);Q) eventually stabilizes and hence the sequence
{Hm(Bn(M);Q)} is homologically stable.
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