
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK
MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Quasi-Newtonian Optimisation for Deep Neural Networks

av

Peter Brohan

2020 - No M8

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

Quasi-Newtonian Optimisation for Deep Neural Networks

Peter Brohan

Självständigt arbete i matematik 30 högskolepoäng, avancerad nivå

Handledare: Yishao Zhou

2020

Abstract

In his 2010 paper, ’Deep learning via hessian-free optimization’, Martens suggested techniques
for the application of Quasi-Newtonian optimisation methods as a Neural Network learning al-
gorithm. Here we examine the background of the paper, beginning with the structure and func-
tion of a neural network itself. We move on to consider a number of current popular alternative
learning algorithms, considering their variety of approaches in approximating the optimisation
problem in a tractable manner.

We then move on to look at Quasi-Newtonian methods in general, examining the Gauss-
Newton, Levenberg-Marquardt and Truncated Newtonian approximations, each of which allows
us make some approximation of the curvature of a given function, and to find approximate
optimal solutions more practically than using the full Newton’s Method.

We then consider the application of these methods to Neural Networks themselves, discuss
further adaptations and run some small experiments to allow us some comparison of the Quasi-
Newtonian approach to those methods in popular use today.

Contents

Abstract i

Abbreviations v

Acknowledgements vii

1 Introduction 1
1.1 A Brief Introduction to Deep Neural Networks 1
1.2 Fully Connected Feedforward Neural Networks 2
1.3 Convolutional Neural Networks . 3
1.4 Optimisation Methods . 7

2 Stochastic Gradient Descent 9
2.1 What is Stochastic Gradient Descent? . 9
2.2 Backpropogation for SGD . 10
2.3 Similar methods and adaptations . 13

3 Conjugate Gradient 19
3.1 The Conjugate Gradient method . 19

4 Newton’s Method 23
4.1 Newton’s Method for Optimisation . 23
4.2 Adaptations to Newton’s Method . 25
4.3 Convergence of Newtonian Methods . 33

5 Truncated Newton For Deep Learning 41
5.1 Advantages of Truncated Newton . 41

6 Experiments 45
6.1 Methodology . 45
6.2 Results . 47
6.3 Conclusion . 54
6.4 Future Developments . 55

A Additional data 57
A.1 Learning rates for each optimiser . 57
A.2 Extended graphs . 57

References lix

Abbreviations

d·e Ceiling Function

b·c Floor Function

� Hadamard Product (componentwise matrix multiplication)

CG Conjugate Gradient

CNN Convolutional Neural Network

FC Fully Connected layer of a Neural Network

GD Gradient Descent

SGD Stochastic Gradient Descent (although generally referring to Mini-Batch Gradient Descent)

Acknowledgements

I would like to acknowledge my supervisor, Yishao Zhou, for pointing me in the right direction
and providing reassurance when I worried I was wandering off-course and my referee, Sven
Raum, for his helpful comments and suggestions. Lastly I would like to thank the many people
who have listened to me complain during the process, and all those who at least pretended to be
interested while I talked endlessly about machine learning.

1. Introduction

1.1 A Brief Introduction to Deep Neural Networks

Deep neural networks, one of modern artificial intelligence research’s largest breakthroughs,
combine our mathematical understanding of function approximation and our biological under-
standing of the brain. They are the basis of breakthroughs in gameplay AI (for example Google’s
AlphaZero and AlphaStar), image recognition (Facebook’s DeepFace project), speech recogni-
tion and natural language processing (Amazon’s Alexa, Apple’s Siri), and signal processing to
name but a few examples. They have been shown to be flexible and powerful tools for a number
of tasks previously difficult for artificial intelligences and their power and simplicity of operation
has caused their widespread adoption throughout the space.

Neural networks are an increasing part of the landscape of machine learning. As with all
machine learning methods, they attempt to build an increasingly accurate mathematical model
of some function only through interactions with the inputs and, for supervised networks, the
ideal outputs of the function. The models themselves are loosely based on the human brain, a
series of interconnected nodes which each receive some input, minimally process it and then
pass on some output, the idea being that the composition of these small calculations will result
in some greater meaning.

Most simply, a neural network assumes that the target behaviour can be well modelled by
a Continuous Piecewise Linear function [1], i.e. that there is some large collection of linear
functions, each of which operates over only a small part of the domain, which returns results
sufficiently similar to the target behaviour. This is not all that poor an assumption. Take the
domain of 50x50px black and white images for example, and define the ’distance’ between two
images as the number of pixels which are different. If we are attempting to classify which images
contain cats, it is likely that if one particular picture contains a cat, the images ’close by’ will also
contain cats to a high degree of certainty. Similarly if a particular image does not contain a cat,
it is very unlikely that those around it will. Here there are likely to be generalisable classifiable
areas. Naively we might think to take a random sampling of the images and classify all areas
within a certain proximity of a classified image to be the same category (the k-nearest neighbours
algorithm) however this quickly proves to be impossible. There are simply too many images,
and the frequency of cats among them is far too small. Instead we hope that a neural network
will be able to extrapolate some feature information from a given dataset, and use this to produce
an appropriate model. More generally, neural networks attempt to give some sufficiently simple
approximation of a complex function, with a small enough error for practical purposes.

1

1.1.1 Types of Neural Network

There are a huge number of types of neural network (a large number are listed at the Asimov
Institute’s "Neural Network Zoo"1), and even among these there are innumerable subtle dif-
ferences between networks of the same category. Below I discuss two simpler networks, the
fully-connected feedforward network and the convolutional network. These share the character-
istic that each node passes information in the same direction, from the input towards the output,
that the output of each node is determined entirely by the outputs of nodes closer to the input,
and that given a single input, the output is uniquely defined. This makes the networks simpler
to study, but they by no means make up all networks. Networks can be stateful, include recur-
rences to feed back information to earlier nodes or include random factors in their outputs. Each
of these can have its own use in our attempt to model complex real-life functions.

We can also separate networks by their training into supervised networks, those which are
trained using a set of examples to match a certain form of input to a certain output (e.g. classi-
fication networks or function approximators), and unsupervised networks, those which attempt
to find some pattern in a data set without external input (e.g. component or cluster analysis).

1.2 Fully Connected Feedforward Neural Networks

1.2.1 Perceptrons

The simplest neural network is a single layer perceptron [2], which takes in a vector x ∈ Rn and
outputs a classifier y.

Input Output

Figure 1.1: A single layer perceptron

We can interpret this as a weighted sum of the input values with some added bias term b. In
vector notation we have that

y = xT w+b (1.1)

where w is an n×1 matrix of weights. By using some learning algorithm to update the weights
based on input data, a perceptron functions as a binary linear classifier, i.e. it is capable of
classifying data into two sets if those sets are separated by a linear function using the classifier

z =

{
0 y > a
1 otherwise

(1.2)

1https://www.asimovinstitute.org/neural-network-zoo/

2

for some hyperperameter a.1

1.2.2 Multi-Layered Neural Networks

If our data does not admit linear classification, or we would like to gain some other information,
we will need to add further complexity to the network. We can do this in two ways.

We can add further ’hidden’ layers to the network (named as they are not directly accessible
to a user of the network). This will hopefully allow us to better emphasise certain features of the
data, e.g

y = xTW0 +bT
0 (1.3)

z = yW1 +bT
1 (1.4)

where W0 and W1 are matrices of size n×m and m× l respectively and b0 and b1 vectors of
length m and l. However, being merely a product of vectors, this will also give only a linear
function, and thus by simple matrix multiplication, it would be possible to build a network with-
out this hidden layer which gained the same result. We must therefore also add an activation
function to each layer in order to gain a non-linear output. The choice of activation function is a
balance between adding sufficient (and appropriate) non-linearity in order that we gain sufficient
complexity to appropriately model our target function, and allowing for efficient calculation. In
general we choose a relatively simple, easily differentiable function, such as ReLU [3, p. 171],
ReLU(x) = max(0,x), or the sigmoid function S(x) = 1

1+e−x , which depend only on hyperpa-
rameters of the network, and none of the internal weights. We can thus modify (1.3) so that our
network consists of

y = a(0)(x
TW0 +b0) (1.5)

z = yW1 +b1 (1.6)

for some activation function a(0).
Here every node of the network is connected to every node in the preceding and following

layers, and every layer passes all of its information directly to the next layer, hence its name,
the fully connected feedforward network. We can augment the network with further layers and
nodes to increase the accuracy of the result, (although large increases to the number of nodes can
lead to overfitting, and increases to the number of layers leads to overly complex computation,
see [4]).

1.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) allow us to tune networks to consider translation in-
variant features of the input, i.e. important aspects of the data which may appear at any part

1This is a form of classification by dimensional reduction. We attempt to find a hyperplane xT +b−a = 0 which
divides the space into the required pair of subsets. Unlike in Princiapl Component Analysis however, in which we
identify the data’s principal eigenvector, here we attempt to find a separator which corresponds to some other arbitrary
property of the data.

3

Input
Hidden
Layer 1

Output

Figure 1.2: A fully connected feedforward network with one hidden layer

of the input, without the large number of neurons or layers that would be required in a fully
connected layer. The archetypal CNN is made up of a number of convolutional layers (which
can be further separated into padding layers, filter layers and pooling layers) together with some
fully connected layers (as described above). CNNs are often used for image analysis, and so
their components are frequently described as operating on a set of 2d ’layers’ (confusingly, a
different type of layer than those in the network)

1.3.1 Filters

To detect a particular feature in an input, we need only store the particular weights required for
detecting that feature, rather than the weights for an entire layer. We therefore try to train only a
relatively small number of neurons to detect some specific feature, and then ’step’ these across
the entire input in order to test for its existence at each location. This gives a single output for
each set of inputs to the filter.

Figure 1.3: Two consecutive applications of a filter to a simple one dimensional input with stride 1

We can consider these filters as a set of matrices (or vectors in one dimension) Fα which we
apply to the input data. Each filter acts only on a subset of the input data the same size as the
filter, and so if the filter F is a vector of length l we can calculate the single output of the filter
later generated by the subset of the input data x∗:

y∗ =
l

∑
j=1

(F� x∗) j (1.7)

where� is the Hadamard (componentwise) product. These subsets x∗ are generally chosen to be
consecutive contiguous subsets (e.g. y1 =∑(F�(x(1),x(2),x(3)), y2 =∑(F�(x(2),x(3),x(4))) . . .)

4

however neither of these are requirements. Consecutive subsets are often separated by some
’stride’ s, (e.g. x∗1 = (x(1),x(2),x(3)), x∗2 = (x(3),x(4),x(5))) and members of the subsets can be
separated by some constant (e.g. x∗ = (x(1),x(3),x(5))) (referred to as dilation).

Figure 1.4: Three consecutive applications of a 2d filter with stride 1 and dilation 2 (images from
[5])

In two dimensions the situation is similar as the sum of the Hadamard product of two ma-
trices is functionally equivalent to the dot product of two vectors containing the same values.
Following [6], we can define

vec(M) =




M:,1
...

M:,b


 ∈ Rab×1, where M ∈ Ra×b (1.8)

mat(v)a×b =




v1 v(b−1)a+1
... · · · ...

va vba


 ∈ Ra×b, where −→v ∈ Rab×1 (1.9)

We could thus consider a filter on a matrix M as being a filter on vec(M), with appropriate step
and dilation to keep the sub-matrices as desired.

For inputs with more than a single layer (say l layers), each filter consists of a tensor (a
multi-dimensional array of matrices) of λ matrices. We apply each filter to its corresponding
layer in the input and sum the results to give an output, i.e. for a filter F =

[
F1 . . .Fλ

]
and input

x∗ =
[
x∗1 . . .x∗λ

]

y∗ =
λ

∑
i=1

l

∑
j=1

(Fi� x∗i) j (1.10)

As with fully connected layers, after the convolution step the resulting matrix is generally
added to a bias matrix and a component-wise activation function is applied (for the reasons given
above).

1.3.2 Padding

Not all sizes of filter and stride lengths are appropriate for all inputs however. Take for example
a two-dimensional input of size (3 x 3). A filter of size (2 x 2) with step of 2 will cover only

5

the upper left corner of the input; the first step will move the filter out of the range of the input.
However, this may still be an appropriate filter and step size for the input at hand. To combat
this issue, we can add padding to the edges of the input, increasing its size with neutral values
so that the filter correctly steps across the domain.

A filter will only be able to completely cover an input (i.e. provide an output where every
element of the input affects some part of the output) if either trivially the filter is the same size
as the input (in which case this is merely a fully connected layer with a single output), or both
the height and width of the input are divisible by the stride length. However, by extending the
input, adding zeroes to the beginning and end of each column and row, we can create a larger
matrix of which at least the submatrix containing our original input will be covered by the filter.

We can use padding to control the size of the output. With an input of size n×m, using a
filter of size a× b and stride s, the output will be of size

⌊
n−(a−1)

s

⌋
×
⌊

m−(b−1)
s

⌋
. By adding

padding of size p we can increase this to
⌊

n+p−(a−1)
s

⌋
×
⌊

m+p−(b−1)
s

⌋
.

We can also address the issue that the output is biased against values close to the edges of
the input. With no padding, the first input contributes only to one output, whereas other values
can contribute to up to

⌈a
s

⌉
·
⌈b

s

⌉
outputs. By increasing the padding around the input, we can

increase the number of outputs taking some input from the edges. The smallest padding in
which each input contributes to the same number of outputs (padding of size max(a−1,b−1))
is sometimes called full convolution[3, p.p. 344].

For a matrix M of size m×n, the padding operation can be defined recursively as

Pad1,n,m(M) =




0 · · · 0
... M

...
0 · · · 0




Padt,n,m(M) = Pad1,n+t−1,m+t−1(Padt−1,n,m(M)) (1.11)

For simplicity we can also define the padding operation as a matrix multiplication. For a
matrix M of size m×n we can define:

Pad1,n,m(M) =




0 · · · 0
In

0 · · · 0


M




0 0
... Im

...
0 0




where In is the n× n identity matrix. We can thus recursively define the padding operation
as matrix multiplication in a similar manner to (1.11)

1.3.3 Pooling

In most cases, filters traverse the same inputs several times, and this is likely to cause redundancy
in the output. A feature present in one area is likely also to be registered as present in a largely
overlapping adjacent area. It is thus often practical to take a general overview of each small
section of the output, registering only the presence of the feature, rather than its exact location
(for further details see [3, §9.3]).

6

This is generally accomplished by either max or average pooling. Both function similarly
to a filter1, however max pooling returns only the maximal value of the input, while average
pooling returns the mean of the input values. Here we set the stride equal to the size of the pool
(usually 2×2), thus reducing the size of the output layers.




39 33 41 33
46 26 32 22
2 30 14 2
35 4 28 8


−→

[
46 41
35 28

]



39 33 41 33
46 26 32 22
2 30 14 2

35 4 28 8


−→

[
36 32

17.75 13

]

Figure 1.5: Max pooling and Average pooling of an input

A convolutional layer generally consists of a padding step (Pi), a filter step (Fi), an activation
function (ai) and a pooling step Φi. We can view it as the composition of functions

Convi(xi) = Φi(ai(Fi(Pi(xi)))) (1.12)

1.4 Optimisation Methods

1.4.1 The Optimisation Problem

As above, we can view any neural network as a composition of functions of the inputs f (x).
Once the network is trained, we can see this output as the prediction or categorisation of the
input (depending on the purpose of the network), however in order to train the network instead
we must consider two further aspects of the network, namely the loss function L(x,y) and the
weights W .

We can consider the eventual output of the network to be L(y, f (x,W)) (the loss given input
x, ideal output y and weights W). Our aim is, given a function f (a network), a loss function L,
domain X with cardinality |X|, and test set S⊂ X , find W ∗ such that 1

|X | ∑x,y∈X L(y, f (x,W ∗)) is
minimised, (i.e. find the ideal set of network weights).

Finding a true minimal point presents a difficult challenge, and we are likely to have to settle
for a solution in which the loss function is almost minimised. We must make a choice about
what our definition of ’almost’ minimised means. Here we opt to have that the average loss is
minimised, but we could instead require that the maximal loss is minimised for example. Such
choices often depend on the purpose of the network in question.

Outside the theoretical realm, we are also presented with a further difficulty. The data on
which the network will be trained and that on which it will operate are most often not the same.
We thus need to take into account that while there may exist a solution which performs equally
well for both the training and production data, it is likely that a solution found using only the
training data will perform worse on any other data. In fact a naïve solution (although not gener-
ally optimal in terms of space or results) is to memorise all of the solutions for the test set and

1indeed average pooling is an example of a simple filter with stride equal to its width and a single repeated
weight dependent only on the dimensions of the filter

7

randomly guess any other input. We therefore generally aim to find not a completely optimal
solution, but one that is almost optimal during training, but also generalises well.

1.4.2 Backpropogation

Backpropogation is the application of the chain rule to the neural network function, and can be
used to train supervised networks. For each piece of learning data provided to the network x, we
also have an ideal output ŷ. Ideally we would like to be able to find some change in weights δθ
that will decrease the loss function. However the neural network function is large and complex,
and so it is likely impractical to calculate the gradient of the whole function in one pass.

However, the chain rule tells us that if each of the functions composed to make the network
N is differentiable 1, we can instead merely differentiate each of these individual functions in
turn and use the result of the previous layer in the next calculation (for further details see §2.2).
We begin by differentiating the final layer, and continuing back through the function, hence
propagating backwards.

1.4.3 Genetic Evolution

It may be impractical or even impossible to make such calculations on a function however.
Possibly it is simply too large for the architecture at hand, or has some complexity that makes
it impossible to effectively analyse. Here we can still make some progress, although we must
sacrifice some efficiency and we are less able to provide concrete predictions of the convergence
rate of the algorithm.-

Instead we initialise a set of networks with random weights. After testing each of them
against some measure (often although not always some loss function) we select those which
have performed best and discard the remainder. We then add some random perturbation to the
weights of the remaining networks and test them against the most successful options from the
previous round. We continue until we have found a sufficiently effective network.

The randomness inherent in evolution means that it can be difficult to predict how long it
will take to come to a solution, and the method is extremely reliant on having a beneficial initial
condition (although this is also true for backpropogation). However, in situations involving
extremely complex functions, or those with particularly pathological objective functions, for
example those which are non-differentiable at a large number of points, or those for which we
are able only to see the output of the loss function, with no information on its inner workings,
this can remain a good or possibly the only option.

1The most common activation function, ReLU is not in fact differentiable, having a discontinuity at zero. This is
generally solved by setting the gradient at 0 to be 0, arguing that this provides a sufficient approximation to a correct
function gradient, although any subgradient could be used

8

2. Stochastic Gradient Descent

2.1 What is Stochastic Gradient Descent?

In solving the optimisation problem in §1.4.1, we do not have an insight into the problem over
the whole domain (i.e. we cannot say anything very general about the relationship between the
weights of the network and the outcome of the loss function). Instead we take the information
that we do have: the value of the loss function L(y, f (x,θ)) for a particular set of weights θ , and
the gradient at that point, and attempt to move across the domain of possible network weights
in such a way that the value of the loss function decreases. This approach from [7] generally
describes gradient descent:

Algorithm 1: Gradient Descent

t = learning rate;
while stopping criteria not met do

∆w =−∇loss(w);
w := w+ t∆w

end

However, here we are presented with a number of problems. Firstly t is a hyperparameter.
We want to ensure that t is small enough that the function is able to sufficiently converge, but
large enough that convergence occurs at a practical rate. This depends on the function at hand,
and also the nature of the convexities (a largely flat function with steep convexities will require
a different approach from one with large, shallow convexities). While we can take analytical
approaches to determining a value of t for each step of the algorithm (see [7, §9.2]), this is
generally not applied in machine learning and instead we generally opt to choose a conservative
learning rate. Choosing the ideal learning rate for a particular problem presents a challenge. A
frequent approach is merely to adopt some systematic method of testing rates on a short run or
smaller problem and choosing that with the best result. Some alternative methods to avoid this
difficulty are discussed in §2.3.

Considering that our loss function is large and complicated, it is extremely unlikely that the
local minimum point we are approaching is the global minimum. While it would be impractical
to require that we find this, ideally we would like to find a minimum that is close to global
minimum (for some definition of close). We thus take an approach which sometimes moves us
away from the nearest local maximum, in the hope that this moves us closer to some lower point.

Aside from the analytical problems, we are also presented with practical ones. It is likely
that it will be impractical to calculate −∇loss(x). The loss function is some function of the loss
functions of all the training data for the network, which can be tens of thousands or millions
of items of data (particularly for networks which take in streaming data from some sensor for

9

example). Instead we apply the algorithm to some subset of the data, making the assumption
that the distribution of data in the selection is similar to that in the entire population1 This will
allow us to make some progress towards a local minimum which we hope is shared between this
data and the set as a whole.

In Stochastic Gradient Descent we select a single training value x† at random and calculate
the gradient only for the loss function of that value, i.e. at each loop we select a new x† and
update W := W − t∇lossx†(W). Often rather than selecting the value entirely at random we
take some more representative approach: in smaller data sets the input set can be randomly
shuffled and then looped through, ensuring that each point is represented in the optimisation.
In larger or streamed data sets, random new data points can be sampled and used to update
the network weights. This method allows for faster calculation, however it also often results
in noisier convergence, as there is no guarantee that consecutively chosen data points will give
updates with similar directions.

Mini-Batch Gradient Descent provides some of the advantages of Stochastic Gradient De-
scent, while avoiding the difficulty in using the entire data set for each calculation (called Batch
Gradient Descent). Here we select only a small subset of the training values with which to cal-
culate the weight updates. This provides a number of advantages: the calculation is significantly
more tractable, and we are able to choose batch sizes which are appropriate to the available
memory. It is also likely that in a large data set, there are many pieces of similar data, and we
reduce the likelihood that we are using computation time to complete a large number of similar
loss calculations. Averaging the loss before optimising means that we are able to move more
smoothly, and that we are more likely to gain a result that optimises more of the domain data.
PyTorch and Keras both implement Mini-Batch Gradient Descent as their default SGD method.

2.2 Backpropogation for SGD

2.2.1 In Feedforward Networks

We can view a feedforward network as the composition of a set of functions al , the activation
function for each layer l, gl , the functions gl(x) :=Wlx+bl and L, the loss function, such that

Loss(x) = L(y,al(gl(al−1(gl−1(. . .a1(g1(x)) . . .))))) (2.1)

Notate the output of layer l as σl , i.e.

σl = al(gl(al−1(gl−1(. . .a1(g1(x)) . . .))))

1This assumption can cause particular problems for ordered data, e.g. testing sequential thermometer readings to
determine an anomaly. Here readings come in large blocks of very similar readings, however readings separated by
a long time can (but will not necessarily) differ by a great deal. Here we could cause the network to learn only about
one single aspect of the data (say, readings during the daytime), and slowly shift the network to then recognise only
night-time readings, and to mark daytime readings as errors, if the network is not provided with sufficiently random
samples from the entire population set. This is often solved by retaining some older samples as a stock and adding
samples from the stock into each mini batch when optimising.

10

and define σ0 = x. In practice we would operate on tensors, however without loss of in-
formation, we can flatten tensors to vectors and so defining the operation solely for vectors is
sufficient [3, §6.5.2].

We keep our input and ideal output x and y fixed, and instead redefine the loss function in
terms of W , the matrix of all network weights. It would be difficult and inefficient to calculate
this directly, however we can make use of the chain rule to calculate ∇Wl Loss for each layer l.

We can write

∇Wl Loss = ∇al Loss� dal

dgl

∂gl

∂Wl
(2.2)

On the assumption that we know L′y(x) (L′(y,x) in terms of x), we have simply that

∇al Loss = L′y(σl) =




∂L
∂σl(1)

...
∂L

∂σl(n)


=: δL

Having calculated σl passing forwards through the network, we can simply save the value
and use it here. We have that

dal

dgl
= a′l(gl(σl−1)) (2.3)

Again, as we must calculate gl(σl−1) in a forward pass through the network, we can re-use
the value here. Finally for this layer, from above:

∂gl

∂Wl
=

∂ (Wlσl−1 +bl)

∂Wl
= σT

l−1 (2.4)

We thus have that

∇Wl Loss = ∇al Loss�a′l(gl(σl−1)) ·σT
l−1

= δL�a′l(gl(σl−1)) ·σT
l−1 (2.5)

For simplicity we can define

δl := δL�a′l(gl(σl−1)) (2.6)

We can then extend the ideas in (2.5) to calculate the partials gradient for the remaining weights.
In general we can shorten (2.1) to say that

Loss(x) = Ly(al(gl(. . .ar(gr(σr−1)) . . .))), r < l−1 (2.7)

We can then follow (2.2) to see that

∇Wr Loss = ∇al Loss� dal

dgl

dgl

dal−1
� dal−1

dgl−1
. . .

dgr+1

dar
� dar

dgr

∂gr(σr−1)

∂Wr

as
dgl

dal−1
=

d(Wlal−1 +bl)

al−1
=W T

l

11

we can combine this with the definition in (2.3) and (2.4) to see that

∇Wr Loss = ∇al Loss�a′l(gl(σl−1)) ·W T
l �a′l−1(gl−1(σl−2))� . . . ·W T

r+1�a′r(r(σr−1)) ·σr−1

= δl ·W T
l �a′l−1(gl−1(σl−2))� . . . ·W T

r+1�a′r(r(σr−1)) ·σT
r−1

But we can see that clearly

∇Wr Loss = ∇Wr+1Loss · 1
σr
·W T

r+1�a′r(gr(σr−1)) ·σT
r−1

and so, rather than computing the gradient of all weights together, we can instead calculate the
partial derivative of the weights of each later in turn, and recursively calculate the next derivative
by defining for layer i

δi−1 = δiW T
i �a′i−1(gi−1(σi−2)) (2.8)

and thus

∇WiLoss = δiσT
i−1 (2.9)

Following the same procedure we can calculate the gradients for b in the same way, however
as

d(Wx+b)
db

= 1

we simply have that ∇biLoss = δi.1

We thus need only a single pass forwards and an single pass backwards through the network
to complete one loop of Algorithm 1.

2.2.2 In Convolutional Networks

We can apply the same approach to convolutional networks. Although the inner workings of
each layer are more complex than those in a simple feedforward network, if we are able to
define each layer as a composition of differentiable functions, then we can apply the same ideas
of backpropogation.

We would also like to compute ∇WiLoss(x) for each layer i. Define fi as the function making
up layer i. By (2.2.1), we need only calculate ∇Wl fl for each layer, and we can then use the chain
rule to calculate the required multiplier.

For each i, fi(x) is, as above a combination of up to four functions, Pi(x), a padding function
Fi(x), the function applying the filter, ai(x), an activation function, and Φi(x), a pooling function,
such that fl(x) = Φi(ai(Fi(Pi(x)))). We can thus write

∂ fi(x)
∂Wi

=
∂Φi(ai(Fi(Pi(x))))

∂ai(Fi(Pi(x))))
∂ai(Fi(Pi(x))))

∂Fi(Pi(x))
∂Fi(Pi(x))

∂Wi

1This is sometimes calculated together with the gradient for W by appending the biases to the weights matrix.
We can achieve the same result by appending 1s appropriately to the input and multiplying by the extended weight
matrix. This requires fewer loops but more memory and more setup. As ever, it’s a tradeoff as to which is appropriate
for a particular scenario.

12

We have that Φi(x) is Pooli · vec(x) for some 0,1 matrix Pooli.1 Thus

∂Φi(ai(Fi(Pi(x))))
∂ai(Fi(Pi(x))))

= Pooli

As above,
∂ai(Fi(Pi(x)))

∂Fi(Pi(x))
= a′i(Fi(Pi(x)))

Having calculated Fi(Pi(x)) on our forward pass of the network (and assuming we have
chosen A to be a scalar differentiable function), we can thus calculate this simply enough.

Finally
∂Fi(Pi(x))

∂Wi
=

∂Wi(vec(Pi(x)))+bi

∂Wi
= vec(Pi(x))

Thus

∂ fi(x)
∂Wi

= Pooli ·a′i(Fi(Pi(x))) · vec(Pi(x))

We can thus find a similar recursive formula to that in (2.9) with

δi = Pooli ·a′i(Fi(Pi(x)) i ∈ N+

δ0 =
∂Loss(σl)

∂σl

Thus
∂Loss(x)

∂Wl−i
=

(
i

∏
j=0

δ j

)
· vec(Pi(σ(l−i)−1))

2.3 Similar methods and adaptations

As well as just using SGD to improve the parameters in the network, there are other improve-
ments one can use (PyTorch offers momentum2 and Nestyov momentum). Adaptations of SGD
include AdaGrad and ADAM, which use the same general approach but with small changes to
improve convergence time or computational complexity.

2.3.1 Momentum

SGD throws away any previous information we might have found useful at the end of each
iteration. It may be the case that our randomly selected inputs provide downward trajectories
towards different local minima, (possibly indicating that neither is an appropriately general local
minima), or that several of them generate a similar direction. It is likely that in the former case

1As much of the input to Pooli is discarded, it is possible to speed up the gradient calculation by tracking which
values will later be discarded and skipping all further backpropogation steps involving them.

2sometimes also referred to as ”heavy ball”

13

we would want to take only cautious steps in these directions, while in the latter this would
strengthen our conviction and encourage us to travel further in the indicated direction. In order
to achieve this we can continue to move in the previously indicated direction during the next
iteration, i.e. rather than merely subtracting the calculated gradient −∇loss(w) as in Algorithm
1 in each step, instead we store a velocity vector v, which we update each iteration. As described
in [3, p.p.294]:

Algorithm 2: Stochastic Gradient Descent with Momentum

t = learning rate;
v = 0 initial momentum;
β = momentum parameter;
while stopping criteria not met do

Sample a minibatch of m examples from the training set {x(1), . . . ,x(m)} with
corresponding targets y(i) ;

Compute gradient estimate g← 1
m ∇W ∑i Loss(f (x(i);W),y(i)). ;

Compute velocity update v← βv− tg. ;
Apply update; W ←W + v

end

If we write gi as the gradient estimate for minibatch i and v0 as the initial velocity then we
can view the velocity at iteration i as the weighted sum of previous gradients

vi = t(gi−βgi−1−β 2gi−2 + . . .β i−1g1 +β iv0) (2.10)

We are thus able to retain some of the previously calculated information about the topology
of the space in our future decisions.

However, this introduces a new source of potential error, namely that while each individual
gradient update will direct the solution towards some form of local minima, this weighted sum
may not. To correct for this we can instead make use of Nesteyov Momentum, in which we
apply this weighted sum of previous terms and then calculate and apply the gradient descent
step.

Algorithm 3: Stochastic Gradient Descent with Nesteyov Momentum

t = learning rate;
v = 0 initial momentum;
β = momentum parameter;
while stopping criteria not met do

Sample a minibatch of m examples from the training set {x(1), . . . ,x(m)} with
corresponding targets y(i) ;

Compute lookahead weights W ∗←W +βv ;
Compute gradient estimate g← 1

m ∇W ∗ ∑i Loss(f (x(i);W ∗),y(i)). ;
Compute velocity update v← βv− tg. ;
Apply update; W ←W + v

end

These approaches serve to remove some of the zig-zagging effect characteristic of SGD

14

even on simple datasets, as in Figure 2.1. Both rely on some important assumptions, namely

Figure 2.1: Gradient descent vs gradient descent with 0.3 momentum, both with learning rate 0.2
optimising f (x,y) = x2 +5y2

that all data is equally trustworthy, that it is unlikely that a single data point will be re-sampled
sufficiently frequently to greatly affect the result, and the topology of the loss function is not
perverse in such a manner that this is likely to reinforce a false result, however these are safe
assumptions to make for many data sets, and often we can pre-process the data in some way to
make this a safe approach.

A particular difficulty however is the introduction of a new hyperparameter β . Without
previous knowledge of the domain, we are required to tune this hyperparameter in order to
achieve a sufficient improvement in the result (too high a weighting and the algorithm will be
insufficiently sensitive to new data, too low and we are unable to counteract the slow convergance
of standard SGD).

2.3.2 AdaGrad

We can instead adaptively use the previous gradients in order to control the direction of move-
ment. Specifically, we would like to move more in flatter directions on the domain, and take
more caution (and thus move more slowly) across steeper parts. We can take a simple measure
of this magnitude by calculating the componentwise square of the gradient g� g, and can en-
courage greater movement in those directions with smaller components by using

(
t√

g�g

)
i, j

as

the learning rate for weight wi, j.1

More generally, we would like for this effect to take into account more of our understanding
of the domain than just the current point, and to be strong early in the learning process while
decreasing over time as we (ideally) grow closer to a minimum. Both of these effects can be
achieved by summing all previous squared gradients and multiplying by the reciprocal of the

1One could view this as similar to the approximation of curvature used in Newton’s method in §3

15

square root of this sum t√
∑α gα�gα

. In order to avoid division by zero, we add a small constant ε
to the denominator.

Algorithm 4: AdaGrad

t = learning rate;
ε = division constant;
while stopping criteria not met do

Sample a minibatch of m examples from the training set {x(1), . . . ,x(m)} with
corresponding targets y(i) ;

Compute gradient estimate g← 1
m ∇W ∑i Loss(f (x(i);W),y(i)). ;

Update gradient sum r← r+g�g ;
Compute update v←− t

ε+
√

r �g. ;
Apply update; W ←W + v

end

AdaGrad allows us to move quickly over initially flat areas, however it is sensitive to the
initial conditions. The gradients calculated early in the iteration are given large weight in the
direction moved across the domain, and so rather than the more general search performed by
SGD, AdaGrad is significantly influenced by its initial point and, running on the assumption that
our large initial movements will move us towards a steeper downwards slope, the learning rate
rapidly decreases. If this assumption is incorrect convergence can be slow.

2.3.3 RMSProp

In order to combat these difficulties, we can instead weight the previous gradients in our sum as
in (2.10) to decay the effect of earlier positions. This both reduces the large effect of the initial
position and prevents the decrease in learning rate outside convex bowls1.

Algorithm 5: RMSProp

t = learning rate;
ε = division constant;
ρ= decay rate;
while stopping criteria not met do

Sample a minibatch of m examples from the training set {x(1), . . . ,x(m)} with
corresponding targets y(i) ;

Compute gradient estimate g← 1
m ∇W ∑i Loss(f (x(i);W),y(i)). ;

Update gradient sum r← ρr+(1−ρ)g�g ;
Compute update v←− t

ε+
√

r �g. ;
Apply update; W ←W + v

end

1If the desired minimum is not in a convex bowl however, as in the Rosenbrock function for example (see figure
5.1), the learning rate can remain unhelpfully large.

16

2.3.4 ADAM

ADAM attempts to solve the issue of a static learning rate by combining the previous approaches.
Rather than merely relying on a a single exponentially weighted average, the algorithm estimates
the first and second moments of the gradient (m and v), using weighted averages of the gradient
and its square at each iteration, corrects these against initialisation bias and computes the update
δW =− m̃

ε+ṽ .1 This bias-correction prevents the gradients from being too heavily influenced by
their zero-initialisation[8, §3]

Algorithm 6: ADAM[8]

t = learning rate;
ρ1,ρ2= decay rates;
ε = division constant;
m0← 0;
v0← 0;
t← 0;
while stopping criteria not met do

t← t +1 Sample a minibatch of m examples from the training set {x(1), . . . ,x(m)}
with corresponding targets y(i) ;

Compute gradient estimate g1← 1
m ∇W ∑i Loss(f (x(i);W),y(i)). ;

Update first moment estimate mt ← ρ1 ·mt−1 +(1−ρ1) ·gt ;
Update second moment estimate vt ← ρ2 · vt−1 +(1−ρ2) ·gt �gt ;
Correct first moment estimate for bias m̃t ← mt

1−ρ t
1
;

Correct second moment estimate for bias ṽt ← vt
1−ρ t

2
;

Compute update ∆W ←−t · m̃t
ε+
√

ṽt
. ;

Apply update; W ←W +∆W
end

2.3.5 Criticisms

There are some criticisms, specifically Wilson et al.[9] argue that while adaptive methods might
alleviate the need for parameter tuning, they instead converge to ’simpler’ solutions less likely
to generalise correctly to a test set. In their experiments they note that while adaptive measures
tend to train well initially, they tend to converge to a less optimal solution, whereas purely
momentum based methods converged to solutions which displayed improved outcomes on the
test set. While this remains a source of debate, adaptive methods remain popular and continue
to be offered and widely used in both PyTorch and Keras.

1[3] notes that this "use of momentum in combination with rescaling does not have a clear theoretical motivation".

17

18

3. Conjugate Gradient

3.1 The Conjugate Gradient method

Minimising a function in a large domain can (as we have seen) be an extremely complex prob-
lem. For this chapter we will assume that we have found suitable quadratic approximation of the
function we would like to minimise, f (x) = xT Ax− bT c+ c, with A a symmetric positive defi-
nite matrix1 and instead attempt to minimise this. The pricipal behind the Conjugate Gradient
method is that we are able to select some lower dimension sub-domain and attempt to minimise
the function our approximation over just this. We can then expand the subdomain by adding
some conjugate vector to the basis and attempt to further minimise the function by traversing
only along this vector. We can therefore move towards an estimate of a minimum without any
backtracking, which should allow for faster convergence.

This requires some background explanation. Ideally we would like to find a path to the
minimum point where the path between each guess is orthogonal to the one before. For example
to solve

f (x) = xT
[

1 0
0 1

]
x− xT

[
0
8

]
+16

we might begin with a guess at the point x0 = (0,0) and some direction to minimise along,

say d0 =

[
1
1

]
. If x∗ is the minimal point, we thus want to find some α such that

(x∗− (x0 +αd0))
T ·d0 = 0

i.e. such that once we have moved to the point x0 +αd0, any further travel towards x∗ is orthog-
onal to d0. But by rearranging, we see that

α =−(x∗− x0)
T d0

dT
0 d0

in other words if we are able to solve this, we must also be able to find the vector x∗− x0, and
there would be no need to complete any further iterations. As we do not have this information,
we must take another tack.

We can’t find vectors of the form x∗− xi, but we do have that if our function is of the form
f (x) = 1

2 xT Ax−bT x+ c and A is symmetric positive definite, we must have that f is minimised

1A matrix such that for all vectors v, vT Av > 0.

19

by the solution to g(x) = Ax− b.1[10, Appendix C1] i.e. we have that Ax∗ = b. We therefore
can find the residual, Ax∗−Axi = b−Axi for any point xi. We could instead use this to aid us in
finding the solution.

Rather than solving the problem in Rn, we can instead attempt to solve the problem in the
eigenspace SA ⊂ Rn, the A-invariant subspace2 with basis vectors being the eigenvectors of A.
We can easily define a linear map φ : Rn→ SA,x 7→ Ax. Rather than choosing directions which
are orthogonal in Rn, we can instead choose directions which have orthogonal images under φ .
We refer to these directions as conjugate. More generally, a pair of vectors u, v are A-conjugate
if uT Av = 0. As A is positive definite, this is equivalent to our previous definition.

After selecting a direction di, we would therefore like to find argmin
αi

f (xi +αidi).

Following the example from [10] we can expand to get

d
dαi

f (xi +αidi) = 0

(b−Axi+1)
T di = 0

(b−A(xi +αidi))
T di = 0

(b−Axi)
T di = αi(Adi)

T di

rT
i di = αidT

i A.i

αi =
rT

i di

dT
i Adi

We can also note that

ri+1 = b−Axi+1

= b−A(xi +αidi)

= ri−αiAdi

and so we need perform only the single matrix-vector multiplication Adi each round to calculate
both xi+1 and ri+1.

Thus, having chosen a direction, we can find find an appropriate step length such that any
further steps should be A-conjugate to di. However, the problem still remains that we must
choose an appropriate sequence of conjugate directions. Here we can turn to the theory of
Krylov Subspaces.

1We have that ∇ f (x) = (∂ f
x(1)

, . . . ∂ f
x(n)

) = 1
2 AT x+ 1

2 Ax− b. The gradient must thus be 0 when Ax = b as A is
symmetric. For any arbitrary vector p, and optimal point x∗ we have that

f (x∗+ p) = 1
2 (x
∗+ p)T A(x∗+ p)−bT (x∗+ p)+ c

= 1
2
(
(x∗)T Ax∗+ pT Ap)

)
+bT p−bT p−bT x∗+ c

= f (x∗)+ 1
2 pT Ap As A is positive definite, x∗ must be a minimum.

2A subspace such that ∀x ∈ SA, Ax∈ SA

20

3.1.1 Krylov subspaces

We know that the basis vectors of SA are the eigenvectors of A, however it is likely that A is
far too large and complex a matrix for us to be able to calculate these. Instead we would like
to create some subspace that approximates SA without all of its complexity, and without having
access to SA or A directly.

If the vector b is not an eigenvector of A, then, by definition Ab is an m-vector not co-linear
with b. We can thus build up an A-invariant subspace

Kn(b,A) = span{b,Ab,A2b, . . . ,An−1b}

the order n Krylov subspace of A and b. If b ∈ SA then Kn ⊆ SA, and if Atb is not an eigenvector
of A for too small a value t < n− 1 then Kn is a good approximation of SA. Importantly basis
elements of Kn are also basis elements of SA, and so if we can find an A-conjugate basis for Kn,
we can use these as directions in our optimisation.

We do this using a modification of the Gram-Schmidt process. We first note that given the
construction of α above, the residuals ri must be orthogonal to each other. The set {r0, . . .rn−1}
is also the basis of Kn. As r0 = b, this is trivially true for n = 0. By the construction of ri, we can
see that r1 ∈ span{r0,Ar0}=K2. By induction if ri−1 ∈Ki, we have that ri ∈Ki∪AKi =Ki+1.
As the residuals are mutually orthogonal, they must form an orthogonal basis to Ki+1. As a side
note, we can consider the nth iteration of CG the best solution in Kn, as we solve for the best
solution in each orthogonal basis vector in each step.

Given some direction di, and the next basis vector ri+1, we would like to find an A-conjugate
direction di+1, i.e. such that diAdi+1 = 0. Again, using Gram-Schmidt, we subtract some linear
combination of the previous directions in order to achieve the conjugacy

di+1 = ri+1−
i

∑
n=0

βi+1,ndn

di+1iT Ad j = ri+1Ad j +
i

∑
n=1

βi+1,ndnAd j

0 = ri+1Ad j +
i

∑
n=1

βi+1,ndnAd j

ri+1Ad j =−βi+1, jd jAd j

βi+1, j =−
ri+1Ad j

d jAd j
(3.1)

However, we can make use of the identity

rT
i+1r j+1 = rT

i+1r j−α jrT
i+1Ad j

to note that

rT
i+1Ad j =

1
α j

(
rT

i+1r j− rT
i+1r j+1

)

21

As all residues are mutually orthogonal, and we have that j < i+ 1, we can see that if i 6= j,
rT

i+1Ad j = 0, however if i = j,

rT
i+1Adi =

1
αi

rT
i+1ri+1

Substituting back into (3.1) we have that

βi+1,i =
1
αi

rT
i+1ri+1

dT
i Adi

αi =
rT

i di

dT
i Adi

As di = ri +βdi−1, and ri is orthogonal to all rk, k 6= i, we can rewrite αi as

αi =
rT

i ri

dT
i Adi

and thus we have that

βi−1,i =
rT

i+1ri+1

rT
i ri

and thus that the direction

di+1 = ri+1−
rT

i+1ri+1

rT
i ri

di

is A-conjugate to all i previous directions, and is thus an acceptable search direction.
If A is an n× n matrix, if we repeat the process n times, we will have optimised over n

orthogonal directions in the at most n-dimensional SA, and thus the process must converge. (In
general, if we require convergence only to a close approximation, this is likely to be significantly
faster).

In short, we can formalise the CG algorithm as:

Algorithm 7: The Conjugate Gradient Method

x0 = 0 ;
r0 = d0 = b;
for k = 1 to N do

αk−1 =
rT

k−1rk−1

dT
k−1Adk−1

;

xk = xk−1 +αk−1dk−1;
rk = rk−1−αk−1Adk−1;

βk =
rT

k rk

rT
k−1rk−1

;

dk = rk +βkdk−1;
end

22

4. Newton’s Method

Figure 4.1: Using three iterations of Newton’s Method to approximate the root of a function.

Newton’s Method for functions is an iterative root-finding algorithm making use of the first
derivative. Taking some function f (x), we can approximate this around the point x0 as the linear
function f ′(x0)(x−x0)+ f (x0). We can easily find the root of this approximation

x1 = x0−
f (x0)

f ′(x0)
(4.1)

On the assumption that the function f , is continuously differentiable and that our initial guess is
sufficiently close to a root, following this iteration provides us with a fast method to solve the
problem.

While this is not natively a method to solve optimisation problems (as the minimum is very
unlikely to be zero, and is extremely likely to occur at a position at which the function is ill-
suited to the algorithm), if our function is twice differentiable, we can instead attempt apply this
method to the gradient in an attempt to find a stationary point. However, the behaviour of the
iterations far from the roots can be complex, and so we add some further requirements in order
to ensure that the function will converge correctly.

4.1 Newton’s Method for Optimisation

4.1.1 Convex Functions

Our search for a good solution (see §1.4.1) assumes that a good local minimum lies at a sta-
tionary point (or an almost stationary point). We can thus attempt to find a root of the gradient

23

function, and iterate towards a point at which the gradient is zero 1 using the iteration

xn+1 = xn− (∇2 f (xn))
−1∇ f (xn). (4.2)

Here ∇2 is the Hessian matrix

∇2 f (x) =




∂ 2 f
∂x2

1

∂ 2 f
∂x1∂x2

· · · ∂ 2 f
∂x1∂xl

∂ 2 f
∂x2∂x1

∂ 2 f
∂x2

2
· · · ∂ 2 f

∂x2∂xl

...
...

. . .
...

∂ 2 f
∂xl∂x1

∂ 2 f
∂xl∂x2

· · · ∂ 2 f
∂x2

l




However, here we note that ∇2 f (x) must be an invertable matrix. We can also revisit our
concern from above that not all initial points will converge to a solution. We can solve both of
these problems together by limiting ourselves to strictly convex functions (we will return to the
idea of non-convex functions in §4.2.1-2). We define a function to be strictly convex on a set S
if for all x,y in S, for any t between 0 and 1 (inclusive), f (x+ t(x− y) < t · f (x)+ (1− t) f (y),
i.e. that a line drawn between f (x) and f (y) always lies above the function f . Here, all Newton
iterations must converge to a minimum (see §4.3), and the Hessian must be positive definite and
thus non-singular.

In order to use Newton’s method to find such a minimum we can thus use the algorithm

Algorithm 8: Newton’s Method[7, §9.5.2]

x = starting point;
ε = tolerance;
while do

Compute the Newton step and decrement ∆xnt ←−∇2 f (x)−1∇ f (x)
λ 2← ∇ f (x)T ∇2 f (x)−1∇ f (x) ;

Stopping criterion. quit if λ 2

2 ≤ ε ;
Line search. Choose step size t by line search ;
Update x← x+ t∆xnt

end

It is helpful to guard against moving too far in areas of low curvature. As we multiply by the
inverse curvature each step, if it is small we are likely to step a very long way. It is preferable
to prevent this for two reasons. Firstly, our underlying assumption that the behaviour of the
function close to the initial point is similar to that at the point will not be fulfilled if we move
far from it, and we will thus be even less successful with our predictions. Secondly, as discussed
above, we are likely to be operating on some convex approximation of the true function in order
to make use of the Newton Method, and our approximation is likely to be significantly less

1This is equivalent to taking the second order Taylor series around x0:
f (x)≈ f (x0)+∇ f (x0)

T (x−x0)+
1
2 (x−x0)

T ∇2 f (x)(x−x0) and finding the minimal point of this approxi-
mation at each iteration.

24

accurate further away from the initial point. Instead we perform some extra checks to determine
an appropriate step length1.

While this is a robust method and converges quadratically (see §4.3), in this form it is still
not appropriate to use as an optimisation method. Our assumption that the Hessian is positive
definite is certainly not necessarily the case, and in fact we may move towards a saddle point or
a local maximum if we do not add something to the algorithm.

The algorithm also requires that we calculate the inverse Hessian for each step. The Hessian
is an n×n matrix (where n is length of the input vector x), of second derivatives. Even the Hes-
sian matrix itself would require a great deal of both memory and computation time to compute.
As neural networks have thousands of parameters, this is not a practical computation, let alone
finding the inverse for each iteration. Instead we must make some modifications in order to be
practical.

4.2 Adaptations to Newton’s Method

If we are trying to minimise the least squares loss, we can make use of the simplicity and pre-
dictability of the function to make some better approximations in out methods.

For least squares loss, we say that for any point x we can calculate the residual

r(x) = f (x)− f (x̂) (4.3)

where f (x̂) is the optimal point (note that it is not necessarily the case that x̂ is the the domain
of x). As in [11, p.p. 246], for our loss function f we take:

f (x) =
1
2

n

∑
j=1

r2
j (x) (4.4)

i.e. the sum of squares of each component of the residual. Differentiating we get that

∇ f (x) =
n

∑
j=1

r j(x)∇r j(x) =




∇r1(x)T

∇r2(x)T

...
∇rn(x)T




T

r(x) = J(x)T r(x) (4.5)

∇2 f (x) =
n

∑
j=1

∇r j(x)∇r j(x)T +
n

∑
j=1

r j(x)∇2rn(x)

= J(x)T J(x)+
n

∑
j=1

r j(x)∇2r j(x) (4.6)

where

J(x) =
[

∂ f (x)
∂ f (x(1))

· · · ∂ f (x)
f (x(n))

]

1As we will use the Levenberg-Marquardt method from §4.2.2 to dampen the function, we omit a discussion of
line search methods, but a thorough overview can be found in [7, §9.2]

25

is the Jacobian of f (x(1), . . . ,x(n)). From §2.2 we can see that for the loss functions of feed-
forward and convolutional neural networks, the Jacobian is relatively simple to calculate and
indeed can be effectively and quickly calculated by automatic differentiation packages.

However, the term ∑n
j=1 r j(x)∇2r j(x) requires calculation of the Hessian, and, as discussed

in the previous section, calculating this in full is in general not a practical proposition.

4.2.1 Gauss-Newton

For any initial point xi, we can take the Taylor expansion

f (xi+1) = f (xi)+ Ji(xi+1− xi)+HOT

If we drop the higher order terms we can say that

f (xi+1)− f (x̂) = f (xi)− f (x̂)+ Ji(xi+1− xi)

By (4.3) we have that
r(xi+1) = Ji(xi+1− xi)+ r(xi)

We would thus like to find a direction d = xi+1−xi which minimises r(xi+1), in other words
to find the best-fit solution to

Jid =−r(xi) (4.7)

From (4.2), in the standard Newton Method, we were looking for a direction di such that

∇2 f (xi)di =−∇ f (xi) (4.8)

But, by left-multiplying (4.7) by JT
i and substituting (4.5) into (4.8) we can see that a solution

to (4.7) will give an estimate of the solution to (4.8) under the approximation ∇2 f (xi) ≈ JT
i Ji,

i.e.

∇2 f (x)≈ G(x) = ∇2 f (x)−
m

∑
j=1

r j(x)∇2r j(x) (4.9)

Methods making use of the approximation in (4.9) are generally known as Gauss Newton
methods. There are several advantages to this approach. Firstly we already possess good tools to
solve this form of problem for large matrices (namely the Conjugate Gradient method outlined
in §3.1). As JT

i J is certainly a symmetric positive semidefinite matrix, the domain on which we
run the CG algorithm will not have negative curvature and we can have confidence in its results.
Indeed, if ∇ f (xi) 6= 0 we have that [11, (10.25)]

dT
i ∇ f (xi) = dT

i JT
i r(xi) =−dT

i JT
i Jidi =−||Jidi||2 ≤ 0

in other words, if the Jacobian is of full rank, solving (4.7) will give us a descent direction if we
are not already at a local minimum. If Jidi = 0, and Ji is of full rank, we have that ∇ f (xi) = 0
and that this is thus an optimal point.

We can view this, as noted by [12], as a second order model of the objective function with
the negative curvature removed.

26

How good this convergence is depends on the solution at x∗, the optimal point inside the
domain of x. If r(x∗) = 0, i.e. f (x∗) = f (x̂) then Kelley [13, 2.4.2] notes that the Gauss
Newton method will converge quadratically. We can see a similar requirement that H(x∗) =
0 and JT J(x∗) = 0 to gain quadratic convergence from (4.19). The larger r(x∗), the larger
∑m

j=1 r j(x)∇2r j(x), and so the worse both our approximation and the convergence will be.
However, we would ideally like to be able to use the approximation even when the loss func-

tion is not least squares. Schraudolph [14] defines the ’Extended Gauss Newton Approximation’
in a similar way as above, noting that

f (W) =
1
|S| ∑

(x,y)∈S
L(y, f (x,W))

∇h(W) =
1
|S| ∑

(x,y)∈S
JT ∇zL(y,z)

H(W) =
1
|S| ∑

(x,y)∈S
JT HLJ+HOT

Where HL is the hessian of the loss function L at f (x,W) and |S| is the cardinality of the batch.
We thus have that Gauss-Newton is in fact a special case of the more general algorithm, where
HL = I. In general these hessians are not complex, and the extra work created by the generalisa-
tion is small. This is discussed at greater length by Martens and Sutskever in [15].

4.2.2 Levenberg-Marquardt

Rather than using our approximation to find a single descent direction and attempting to min-
imise the loss function in that direction, we can instead take a different tactic. Already, to find
a direction we have made an approximation and performed some analysis, however we could
take this one step further and assume that for some region around our initial guess xi, our ap-
proximation is reasonably close to the true loss function. If this is the case, then minimising the
approximation over the given region should give us some improvement, and this improvement
should bring us close to the optimal point of the region. Such methods are known as ”trust re-
gion” methods and they can offer improvements in situations in which standard Gauss Newton
does not give good results.

If we take this trust region to be a disc of radius ∆ around the initial point, from (4.7) we
would like to find the optimal solution to

min
d
||Jid + ri||2 : ||d||< ∆ (4.10)

for each iteration. Clearly if the direction found by the Gauss-Newton algorithm is inside the
region, this will be the solution to (4.10) otherwise the solution must be some point d such that
||d||= ∆.

We show this following the example from [11] relying on the lemma

Lemma 4.2.1. [11, Lemma 4.7] Define

m(d) = gT d +
1
2

dT Bd

27

where B is a symmetric matrix. Then

i) m attains a minimum if and only if B is positive semidefinite and g is in the range of B

If B is positive semidefinite, every d such that Bd =−g is a minimum of m.

ii) m has a unique minimiser if and only if B is positive definite.

Proof. i) ⇐: Take some d such that Bd =−g. Then for all vectors v ∈ Rn:

m(d + v) = gT (d + v)+
1
2
(d + v)T B(d + v)

= gT d +gT v+
1
2

dT Bd +
1
2

dT Bv+
1
2

vT Bd +
1
2

vT Bv

= gT d +
1
2

dT Bd +gT v+
1
2
(Bd)T v− 1

2
vtg+

1
2

vT bv

= gT d +
1
2

dT Bd +gT v− 1
2

gT v− 1
2

vtg+
1
2

vtBw

= m(d)+
1
2

vT Bv

But as B is positive semidefinite, we have that

m(d + v)≥ m(d) ∀v ∈ Rn

⇒: Take d a minimiser of m. Then we have that

∇m(d) = g+Bd = 0

We thus have that g is in the range of B. Taking the second derivative:

∇2m(d) = B

As d, is a minimum point of m, ∇2m(d) must be positive semidefinite. Thus. B is positive
semidefinite as required.

ii) ⇐: From i) we have that m(d + v) = m(d)+ 1
2 vT bv. If B is positive definite, and v 6= 0,

then 1
2 vT Bv > 0. Thus ∀v ∈ Rn,v 6= 0 we have that

m(d + v)> m(d)

and thus d is a unique minimiser.

⇒: Say d is a unique minimiser of B. By definition B is positive semidefinite. If B is not
positive definite then there exists some v ∈ Rn,v 6= 0 such that Bv = 0. However then we
have that m(d + v) = m(d), and thus the solution is not unique.

We can then apply this to our situation. We have a quadratic function
||Jid + ri||2 = ||ri||2 +2Jid +dtJT

i Jid which we would like to minimise with respect to the con-
straint ||d||< ∆

28

Theorem 4.2.2. [11, Theorem 4.1] d∗ is a global solution to the problem

min
d∈Rn

m(d) = f (x)+gT d +
1
2

dT Bd such that ||d|| ≤ ∆ (4.11)

if and only if d∗ is a feasible solution and there exists some real value λ ≥ 0 such that

i) (B+λ I)d∗ =−g

ii) λ (∆−||d∗||) = 0

iii) (B+λ I) is positive semidefinite

Proof. ⇐: Assume that there exists some λ such that i), ii) and iii) are satisfied. Then we can
argue, making use of Lemma 4.2.1, that d∗ is the global minimum of

gT d +
1
2

dT (B+λ I)d = gT d +
1
2

bT Bd +
λ
2

dT Id

= m(d)+
λ
2

dT d

As d∗ is a minimum we have that

m(d)+
λ
2

dT d ≥ m(d∗)+
λ
2

d∗T d

m(d)≥ m(d∗)+
λ
2
(d∗T d∗−dT d) (4.12)

By condition ii):

λ (∆2−||d||2) = 0 i.e. λ (∆2−d∗T d∗) = 0

Substituting this in we get that

m(d)≥ m(d∗)+
λ
2
(∆2−dT d)

However as d ∈ Rn, dT d is positive, and thus if dT d < ∆2, i.e. ||d||< ∆ (the condition from
(4.11)), we have that

m(d)≥ m(d∗)

Thus d∗ is a global minimiser of (4.11).
⇒: Assume d∗ is a global solution to (4.11). We can divide the possibilities up. Firstly, say

||d∗||< ∆. Then trivially, i), ii) and iii) hold for λ = 0.
Otherwise we have that ||d∗||= ∆. Then ∆−||d∗||= 0, and so either λ = 0 or ∆−||d∗||= 0,

fulfilling condition ii).
Here we can apply the KKT conditions (see [7, §5.5.3]) to say that there exists a Lagrangian

Dual function

L (d,λ) = m(d)+
λ
2
(dT d−λ 2)

29

with a stationary point at d∗. Differentiating, we have

∇dL (d,λ) = gT +Bd +λdT

As L(d,λ) is stationary at d∗, we have that

gT +(B+λ I)d∗ = 0

in other words that
(B−λ I)d∗ =−gT (4.13)

proving i). As d∗ is a global solution, we can make use of the inequality (4.12) again.
Expanding this we we get

gT d +
1
2

dBdT ≥ gT d∗+
1
2

d∗Bd∗T +
λ
2
(d∗T d∗−dT d)

Substituting in (4.13)

−((B+λ I)d∗)T d +
1
2

dBdT ≥−((B+λ I)d∗ =T d∗+
1
2

d∗Bd∗T +
λ
2
(d∗T d∗−dT d)

Rearranging we get that

1
2
(
d∗T Bd∗−d∗T Bd−dT Bd∗+dT Bd +λ (d∗T d−d∗T d−dT d∗+dT d)

)
≥ 0

Collecting terms we find
1
2
(d−d∗)T (B+λ I)(d−d∗)≥ 0

and thus B+λ I is positive semidefinite, condition iii).

We can take this to mean that we can solve (4.11) by finding some λ and d∗ such that 4.2.2
i),ii),iii) are all satisfied. This is clearly an impractical proposition, as we are unable to efficiently
solve the quadratic optimization problem for the whole domain, and reducing the domain does
not provide us with any further tools. However, we are able to use this formulation to find an
estimate of the optimal solution. We can see that an increase in λ corresponds to a decrease
in δ , i.e. the higher the damping paramater, the smaller the trust radius. By choosing some λ
sufficiently large such that B+λ I is positive semidefinite and solving 4.2.2 i) for d∗, we have
that there exists some ∆∗ = ||d∗|| such that d∗ is the global solution to (4.11) where ||d|| ≤ ∆∗.
The parameter λ is sometimes referred to as a ”damping parameter” as we can use it in this
manner to restrict the solution to a related trust-region ||d∗|| ≤ ∆∗.

Clearly it is not practical to use a single parameter λ for each iteration. The trust region (or
appropriate value of ∆) for the quadratic approximation at a point varies depending on the local
curvature, and so the related damping parameter λ∆ should also vary. As noted in [16], there
do exist methods to calculate such a parameter, however as they must be re-calculated for each
point of the iteration, instead it is more practical to utilise a simpler approach.

For each iteration, we calculate the ratio of the true improvement, (f (xx)− f (xk + dk)) and
the improvement predicted by the model (mk(0)−mk(dk))

30

ρk =
f (xk)− f (xk +dk)

mk(0)−mk(dk)
(4.14)

If this ratio is close to 1, we can consider the model to be relatively accurate in the sur-
rounding area, thus decreasing the damping parameter λk (and increasing the corresponding
trust radius ∆k).

Consequently, we use Algorithm 9.

Algorithm 9: Levenberg-Marquardt algorithm

x = starting point;
λ = damping parameter;
while not converged do

B = ∇2 f (x)+λ I;
g = ∇ f (x);
d = argmin

d
Bd +g;

ρ = f (x)− f (x+d)
mx(0)−mx(d)

;

if ρ < 1
4 then

λ = 3
2 λ

else
if ρ > 3

4 then
λ = 2

3 λ
end

end
x = x+d

end

4.2.3 Truncated Newton

Presented by Dembo and Steihaug in [17], the Truncated Newton method takes the approach
that while it may not be convenient to exactly solve (4.8) for each step, such accuracy is perhaps
not required. Instead we can use the CG method from Chapter 3 to solve (4.8) and iterate until
some required level of accuracy is attained (hence ’truncated’ as we do not complete the CG
iteration). We can then make some step (the length of which can be governed by any of a
number of conditions) in this direction and continue the Newton iteration.

They extend Algorithm 7 (which we recall attempts to find the solution to Ax = b) to Algo-
rithm 10.

We thus have two possibilities for returning a result. If the algorithm encounters a direction
of negative curvature, we have, from §3 that the CG algorithm is not appropriate. We thus exit,
returning either the latest approximation to the solution or, if this is the first step, the steepest
descent direction. Rather than merely exiting when the curvature is negative, in practice we must

31

Algorithm 10: Truncated Conjugate Gradient Method

x0 = 0 ;
r0 = d0 = b;
δ0 = rT

0 r0 ;
for k = 1 to N do

if dT
k−1Adk−1 ≤ ε(δk−1) then

exit: x =

{
d0 if k = 0
xk−1 otherwise

else
continue

end

αk−1 =
rT

k−1rk−1

dT
k−1Adk−1

;

xk = xk−1 +αk−1dk−1;
rk = rk−1−αk−1Adk−1;
if ||rk||
||b|| ≤ η then
exit: x = xk

else
continue

end

βk =
rT

k rk

rT
k−1rk−1

;

dk = rk +βkdk−1;
δk = rT

k rk +β 2
k δk

end

require the curvature to be ”sufficiently positive”[17], to avoid any potential rounding errors, and
so we also exit similarly if dT Ad

rT r = dT Ad
dT d ≤ ε for some small ε .1

Otherwise we calculate the relative residual ||rk||
||b|| and terminate if this is smaller than some

termination condition. This has the advantage of being scale invariant and computationally
simple to calculate using values already required for the operation of the algorithm.

Setting aside the choice of ε , which by necessity is a function of the floating point precision
limit of the machine, we must select an appropriate sequence of terminations conditions η such
that our outer Newtonian iteration correctly converges to a local minimizer in an appropriate
time.

Dembo and Steighaus suggest the sequence ηk = min{1
k , ||g(xk)||t} for some 0 < t ≤ 1,

which they show converges with order 1+ t [17, Theorem 2.3]. Nash [18] however notes that
this is therefore no longer scale invariant and Eisenstat and Walker [19] propose some scale
invariant options.

1It is possible that this misses some solutions which would be calculable with exact methods, however a) Such
methods are likely too slow for practical use and b) We have already sacrificed some accuracy in favour of calculating
a better approximate solution in more cases.

32

Martens[16] however notes that as CG optimises the quadratic

φ(x) =
1
2

xT Ax−bT x

and suggests that it is therefore inappropriate to condition the termination on (4.8). He instead
proposes a lookback condition, namely that the method be terminated at iteration k if

k < i and φ(xk)< 0 and
φ(xk)−φ(xk−i)

φ(xk)
< i · ε

where i is some varying lookback variable and ε is some small positive value.
We can thus solve Newton’s Method with Algorithm 11:

Algorithm 11: Truncated Newton Method

x = starting point ;
while True do

Use Algorithm 10 to solve Hndn =−∇ f (xn) ;
Quit if some stopping condition reached ;
Choose some step size t;
Update x← x+ tdn

end

4.3 Convergence of Newtonian Methods

4.3.1 The Traditional Method

Following [11], we assume that f , the function to be minimised, is twice differentiable, is con-
tinuous within some open neighbourhood of x∗ the optimal solution, that ∇ f (x∗) = 0 and also
that ∇2 f is positive semi-definite and Lipschitz continuous with Lipschitz constant M.1

From (4.2) we have that

xk+1− x∗ = xk− (∇2 f (xk))
−1∇ f (xk)− x∗

= (∇2 f (xk))
−1(∇2 f (xk)(xk− x∗)− (∇ f (xk)−∇ f (x∗)) (4.15)

By Rolle’s theorem, we have that

∇ f (x+ p) = ∇ f (x)+
∫ 1

0
∇2 f (x+ t p)T p dt (4.16)

and so substituting in p = xk− x∗ we get that

∇ f (xk)−∇ f (x∗) =
∫ 1

0
∇2 f (xk + t(xk− x∗))T (xk− x∗) dt

1i.e. that | f (y)− f (x)| ≤M|y− x| for all x and y in some open neighbourhood of x∗.

33

We can use this to find the norm of the second multiplicand of (4.15):

||∇2 f (xk)(xk− x∗)− (∇ f (xk)−∇ f (x∗))||=

=||∇2 f (xK)(xk− x∗)−
∫ 1

0
∇2 f (xk + t(xk− x∗))T (xk− x∗) dt||

=||
∫ 1

0
∇2 f (xk)(xk− x∗)−∇2 f (xk + t(xk− x∗))T (xk− x∗) dt||

=||
∫ 1

0
(∇2 f (xk)−∇2 f (xk + t(xk− x∗))T (xk− x∗) dt||

By the triangle inequality

≤
∫ 1

0
||∇2 f (xk)−∇2 f (xk + t(xk− x∗))|| ||xk− x∗|| dt

=||xk− x∗||
∫ 1

0
||∇2 f (xk)−∇2 f (xk + t(xk− x∗))|| dt

By the Lipschitz condition

≤||xk− x∗||
∫ 1

0
M||xk− t(xk− x∗)− xk|| dt

=||xk− x∗||
∫ 1

0
tM||xk− x∗|| dt

=
1
2

M||xk− x∗||2

We therefore have that

||xk−1− x∗|| ≤ 1
2

M||(∇2 f (xk))
−1|| ||xk− x∗||2

From our condition, we have that there is some radius r > 0 where

||(∇2 f (xk))
−1|| ≤ 2||(∇2 f (x∗))−1|| ∀xk such that ||xk− x∗|| ≤ r

Thus inside this region

||xk+1− x∗|| ≤M||(∇2 f (x∗))−1|| ||xk− x∗||2

Define M∗ = M||(∇2 f (x∗))−1|| (clearly a constant) and so

||xk+1− x∗||
||xk− x∗||2 ≤M∗ (4.17)

For all x0 such that the above conditions hold and ||x0− x∗||< 1
2M∗ , we have that

||x1− x∗||
||x0− x∗||2 ≥ 4M∗2||x1− x∗||

thus

4M∗2||x1− x∗|| ≤M∗

||x1− x∗|| ≤ 1
4M∗

34

Following this argument inductively, it is clear to see that within this neighbourhood the
Newton iterates, {xi} converge quadratically to x∗.

4.3.2 Gauss-Newton

We can use a similar approach to that in §4.3.1. We have that

xk+1− x∗ = (JT J)−1(xk)∇ f (xk)− x∗

= (JT J)−1(xk)((JT J)(xk) · (xk− x∗)+∇ f (x∗)−∇ f (xk)) (4.18)

Making use of (4.6) and (4.16) we can expand out ∇ f (xk)−∇ f (x∗) to get that

∇ f (xk)−∇ f (x∗) =

=
∫ 1

0
JT J(x∗+ t(xk− x∗)) · (xk− x∗)dt +

∫ 1

0

m

∑
j=1

r j(x∗+ t(xk− x∗))∇2r j(x∗+ t(xk− x∗)) · (xk− x∗)dt

For simplicity we define

H(x) =
m

∑
j=1

r j(x)∇2r j(x)

We can thus write the norm of the second multiplicand of (4.18) as

||(JT J)(xk) · (xk− x∗)− (∇ f (x∗)−∇ f (xk)))||=

= ||(JT J)(xk) · (xk− x∗)−
∫ 1

0
JT J(x∗+ t(xk− x∗)) · (xk− x∗)dt +

∫ 1

0
H(x∗+ t(xk− x∗))dt||

≤ ||xk− x∗|| · ||
∫ 1

0
(JT J(xk)− JT J(x∗− t)xk− x∗))dt +

∫ 1

0
H(x∗+ t(xk− x∗))dt||

Assuming JT J(x) is Lipschitz with co-efficient M, we have that

||xk− x∗|| · ||
∫ 1

0
JT J(xk)− JT J(x∗− t(xk− x∗))dt|| ≤ 1

2
M||x− x∗||2

We therefore have that

∇ f (xk)−∇ f (x∗)≤ 1
2

M||xk− x∗||2 + ||xk− x∗|| · ||
∫ 1

0
H(x∗+ t(xk− x∗))dt||

substituting back into (4.18) we get:

||xk− x∗|| ≤ 1
2

M(JT J(xk))
−1||xk− x∗||2 + ||(JT J(xk))

−1
∫ 1

0
H(x∗+ t(xk− x∗))dt||||xk− x∗||

Which is approximately equal to

||xk− x∗|| ≤M∗||xk− x∗||2 + ||(JT J(x∗))−1H(x∗)||||xk− x∗|| (4.19)

We can therefore see that if ||(JT J(x∗))−1H(x∗)|| is small (and our assumption in using
Gauss-Newton is generally that ||H(x∗)|| is small) we have superlinear and almost quadratic
convergence, and that if ||H(x∗)||= 0, we indeed have quadratic convergence.

35

4.3.3 Levenberg-Marquardt

If, for every iteration, each step taken is within the trust region, as stated in §4.2.2 each step will
merely be that taken by the Gauss-Newton algorithm. Thus, if the algorithm converges at all, it
must eventually converge with the superlinear convergance of the Gauss-Newton method. We
therefore argue that if Levenberg-Marquardt converges at all, there must be some n ∈ N such
that iterates xi, i≥ n converge superlinearly.

Analysis of L-M methods can be challenging, as they can vary greatly in their convergence
depending on the method used to solve (4.10). Rather than finding a general solution to all of
these, we find a simple solution, and use the bound given by this to argue that all better solutions
must have convergence at least as rapid.

To give this approximation, we simply find the optimal solution along the path of steepest
descent (as in Algorithm 1), which is inside the trust region i.e.

dest
k = argmin

dk

f (xk)+gT
k dk, ||dk|| ≤ ∆k

We can quickly solve this by travelling as far as possible in the direction −gk, giving

dest
k =− gk

||gk||
∆k

However, this would imply that the optimal point lies on the boundary of the trust region,
which may not be the case. We thus in fact wish to find the value of τ ∈ (0,1] such that dC

k :=
τ ·dest

k minimises (4.11). Assuming that Bk is positive definite1 we have that τ is the solution to
the positive quadratic optimisation problem

τ = argmin
ζ

m(−ζ
gk

||gk||
∆k) =−ζ

||gk||2
||gk||

∆k +
ζ 2

2
∆2

k
||gk||2

gT
k Bkgk

By quick differentiation we have that

||gk||∆k = τ
(

∆k

||gk||

)2

gT
k Bkgk

τ =
||gk||3

∆kgT
k Bkgk

However, we require that τ be in range, and so

τ = min
(||gk||3

∆kgT
k Bkgk

,1
)

i.e.

dC
k =−

[
min

(||gk||3
∆kgT

k Bkgk
,1
)]
· gk

||gk||
∆k

1We are able to assume this as we plan to use the positive definite hessian approximation from §4.2.1 in our
calculation. It is also possible to show this for all Hessian matrices, see [11, Chapter 4].

36

The point xk +dC
k , known as the Cauchy Point [11, §4.2] certainly represents a decreasing step

from xk, although other methods are likely to present significantly improved results (specifically
the CG method from §3, given that it begins with this direction as a first iterate). We can thus
use this result to bound the convergence.

Lemma 4.3.1. [11, Lemma 4.3] Given m as defined in (4.11), B a positive definite matrix, ∆> 0,
let x+dC be the Cauchy point, then

m(dC)−m(0)≤−1
2
||g||min

(
∆,
||g||
||B||

)
(4.20)

Proof. We prove this by taking two cases.
Case 1.

||g||3
∆gT Bg

≤ 1

Here we have that

dC =− ||g||
3

∆gT Bg
· g
||g||∆ =−||g||

2g
gT Bg

Substituting into (4.11), we have that

m(dC)−m(0) =−||g||
2||g||2

gT Bg
+

1
2

(||g||2
gT Bg

)2

gT Bg

=− ||g||
4

gT Bg
+

1
2
||g||4
gT Bg

=−1
2
||g||4
gT Bg

≤−1
2
||g||4
||g||2||B||

=−1
2
||g||2
||B||

Case 2.
||g||3

∆gT Bg
> 1 (4.21)

Thus
dC =− g

||g||∆

We thus have

m(dC)−m(0) =−gT g
||g||∆+

1
2

(
∆
||g||

)2

gT Bg

= ∆||g||+ 1
2

∆2

||g||2 gT Bg

37

By (4.21) and the positive-definiteness of B we have that

gT Bg <
||g||3

∆

and so

m(dC)−m(0)≤−∆||g||+ 1
2

∆2

||g||2
||g||3

∆

=−∆||g||+ 1
2

∆||g||

=−1
2
||g||∆

Thus, as ∆ and ||g||||B|| are both positive real values, we have that

m(dC)−m(0)≤−1
2
||g||min

(
∆,
||g||
||B||

)

as required.

We thus have a limit on the minimum possible decrease of the quadratic approximation m in
a round of Levenberg-Marquardt.

Following the examples of Nocedal[11] and Sorensen[20]:

Theorem 4.3.2. Given xk, the iterates of Algorithm 9, if gk is Lipschitz differentiable with con-
stant γ for any given k, ||Bk|| ≤ β , B positive definite, ∆,β ,γ ∈ R+, f bounded below on the set
S = {x| f (x)≤ f (x0)}, then

liminf
k→∞

||gk||= 0

Proof. Assume that the theorem is false, i.e that the exists some k ∈ N such that for all k ≥ K:

||gk|| ≥ ε

for some ε ∈ R+.
We will attempt to construct some ∆ such that we can be certain that if a step of Algorithm

9 causes the trust radius to decrease, we can be certain that the radius was already at least ∆, i.e.

∆k+1 < ∆k⇒ ∆k ≥ ∆

If this is the case, we must have that for all k where this is true:

∆k ≥min
(

∆K ,η
(

3
2

)
∆
)

(4.22)

where η(x) is the corresponding multiplier for the change in trust radius if the dampening pa-
rameter is multiplied by x1. If ∆k is greater than ∆, then it must be that ∆k+1 > ∆k. Thus the

1recall that if x > 1, η(x)< 1

38

smallest possible radius may only occur on iterations directly after the radius has been reduced.
The smallest radius from which we can reduce is ∆, and thus the smallest possible radius is
η(3

2)∆. However it is possible that we begin with some smaller radius, and so we include this
for such a case.

Then, say there exists some index K1 such that for all k ≥ K1 ρk <
1
4 . Then, by Algorithm

9, ∆k+1 < ∆k, for all k > K1, and so limk→∞ ∆k= 0. But this contradicts (4.22).
Thus, there must exist some infinite subsequence K ∈N+ such that ρk ≥ 1

4 for all k ∈K. By
the definition of ρ in (4.14) and Lemmma 4.3.1:

fk− fk+1 ≥
1
8

ε min
(

∆k,
ε
β

)

However, ε and β are constants, fk is a Cauchy sequence and f is bounded below. Thus

lim
k→∞

∆k = 0

which again contradicts (4.22). Thus if ∆ exists, by contradiction there must exist no such ε .
Thus

liminf
k→∞

||gk||= 0 (4.23)

Lemma 4.3.3. The requirements for ∆ in Theorem 4.3.2 are fulfilled by

∆ = min

(
1
4

ε
β
2 + γ

,R0

)

where R0 is the radius of the largest open set containing x0 on which g is Lipschitz differentiable.

Proof. By (4.14):

|ρk−1|=
∣∣∣∣

f (xk)− f (xk +dk)+mk(p)−mk(0)
mk(0)−mk(dk)

∣∣∣∣

=

∣∣∣∣
mk(dk)− f (xk +dk)

mk(0)−mk(dk)

∣∣∣∣

By (4.16), we have that:

mk(dk)− f (xk +dk) =
1
2

dT
k Bdk−dT

k

∫ 1

0
B(xk + tdk)

T dkdt

If ||Bk|| ≤ β and ∇ f has Lipschitz constant γ , we this have that

|mk(dk)− f (xk +dk)| ≤
1
2

β ||dk||2 + γ||dk||2

39

Using the result from Lemma 4.3.1, we thus have that

|ρk−1| ≤

(
β
2 + γ

)
||dk||2

1
2 ||gk||min

(
∆, ||gk||
||Bk||

)

≤ (β
2 + γ)∆2

k
1
2 ε min

(
∆k,

ε
β

)

By inspection ∆ < ε
β , thus, if ∆ < ∆, transitively, ∆ < ε

β . We thus have that

|ρk−1| ≤

(
β
2 + γ

)
∆2

k

1
2 ε∆k

=

(
β
2 + γ

)
∆k

1
2 ε

≤

(
β
2 + γ

)
∆

1
2 ε

≤ 1
4
·

2 ·
(

β
2 + γ

)

ε
· ε(

β
2 + γ

) =
1
2

Thus 1
2 ≤ ρk ≤ 3

2 , i.e. ρ > 1
4 . Therefore by Algorithm 9, λk+1≤ λk, i.e. ∆k+1≥∆k if ∆k <∆.

We therefore have that by (4.23), the gradient exhibits at least linear convergence. By the
previous arguments, we have that sequence will likely exhibit faster convergence than this, giv-
ing superlinear and possibly almost quadratic convergence.

4.3.4 Truncated Newton

In [21], Dembo et al. give a series of results for the convergence of general ’Inexact Newton
Methods’ (that is, any method which finds an approximation of the solution to Hd = −g each
iteration rather than solving exactly for d). Specifically they show that

Theorem 4.3.4. [17, Theorem 2.3] Let xk → x∗ where H(x∗) is positive definite, and assume
that H is Lipschitz continuous at x∗. Then

1. xk→ x∗ superlinearly if and only if ||rk||
||g(xk)|| → 0 as k→ ∞

2. xk→ x∗ with order (1+ t) if and only if

limsup
k→∞

||rk||
||g(xk)||1+t < ∞

The proof itself is rather long and technical, and so we omit it here, however we note a
corollary that for some sufficiently small positive real value ε and large integer i, if

ε ≤min
(||gk||

i
, ||gk||

)2

(4.24)

for all k > i, then the method will converge superlinearly.

40

5. Truncated Newton For Deep Learning

5.1 Advantages of Truncated Newton

In [16], Martens brings together the techniques in Chapter 4, and discusses applying them to
deep learning. He discusses the (then) current state of deep learning techniques, and notes that
while gradient descent methods are overwhelmingly the most popular choice as optimisation
function, it is well understood that they are not always effective. He argues that some objective
functions ”exhibit pathological curvature making them nearly impossible for curvature-blind
methods like gradient-descent to successfully navigate”. A well known example (often used
to test potential optimiser functions) is the Rosenbrock function (Figure 5.1), which shows a
significant improvement when optimising using Newton’s method over gradient descent.1

Figure 5.1: The Rosenbrock function f (x,y) = 100(y− x2)2 +(x− 1)2 exhibits pathological cur-
vature across the valley. While there exists a global minimum at (1,1), having entered the valley,
traversing around the shallow area proves difficult. We can see that Newton’s Method is able to
navigate by moving further in areas of low curvature, whereas Gradient Descent moves extremely
slowly through this valley.

This is not such an unreasonable example. As Martens notes, it is frequently the case that
in training, the inner layers of a deep network can be difficult to optimise. The outer layers
have a large effect on the resultant error function, and so if their gradient becomes relatively

1It should be noted that not all problems are improved by considering the curvature. For example, the Rastrigian
function f (x,y) = 30+ x2 + y2− 10(cos(2πx)− cos(2πy)) is difficult to optimise because it has a large number of
local minima, i.e. is highly non-convex. This is not solved merely by considering the curvature.

41

significantly larger or smaller than the gradients of the inner layers, in order to make appropriate
progress the learning rate must be changed, often in such a way as to invalidate the contribu-
tion of the inner layers to the eventual direction. Newton’s method avoids this issue by being
scaling invariant, and thus correctly considering the changes brought about by the inner layers,
irrespective of their gradients’ relative sizes.

5.1.1 Scaling Invariance

One of the particular advantages of the Newton Method over Gradient Descent is its scaling
invariance, i.e. the fact that if the function it is optimising is scaled up or down, the method will
still find an optimal solution using a scaled version of the same steps, and in the same time.

Theorem 5.1.1. Newton’s method is scaling invariant, i.e. for f a twice-differentiable function
Rn→R and A an invertable n×n matrix, if φ(y) = f (Ay), y0 = A−1x0, x0 ∈n, and xk and yk are
the kth iterates of Algorithm 8 for functions, f and φ respectively, then yk = Axk.

Proof. We will prove this by induction. By assumption the base case is already true, so we need
only show the induction step.

From Algorithm 8 we have that

yk+1 = yk−∇2φ(yk)
−1∇φ(yk) (5.1)

As φ(y) = f (Ay)

∇φ(y) = AT ∇ f (Ay)

and ∇2φ(y) = AT ∇2 f (Ay)A

Thus, substituting into (5.1) we have that

yk+1 = yk−
(
AT ∇2 f (Ayk)A

)−1
AT ∇ f (Ayk)

= yk−A−1(∇2 f (Ayk))
−1∇ f (Ayk)

thus Ayk+1 = Ayk− (∇2 f (Ayk))
−1∇ f (Ayk)

By the induction hypothesis

Ayk+1 = xk− (∇2 f (xk))
−1∇ f (xk)

i.e. Ayk+1 = xk+1

as required.

This is not the case for simple gradient descent. From Algorithm 1, we have that

xk+1 = x−∇ f (x)

Using the same notation as for Theorem 5.1.1 we have that

yk+1 = yk−AT ∇ f (Ay)

42

we thus have that the update direction at each stage is not similarly scaled (i.e. it’s scaled by
AT rather than A) and so there is no direct relationship between the directions for the scaled
functions.

From this we can infer that Newton’s method does not need to concern itself with finding
an ideal learning rate for a particular problem, a significant difficulty faced when using gradient
descent methods. Finding an appropriate learning rate can be a time consuming process, and
there is no guarantee that a learning rate which has performed well from a particular initial
point will give a good convergence from another. The work done by the later algorithms in
§2 is instead handled for us by the method itself, and less pre-conditioning of the data will be
required, as we do not have to consider the particular size of features in our domain.

5.1.2 The Hessian Free Method

As discussed above, Newton’s method itself is not appropriate for deep learning. The number of
parameters means that storing, let alone calculating the inverse of the Hessian matrix is imprac-
tical. If we wish to get the benefits, we must instead use some simpler-to-calculate alternative.
Truncated Newton (Algorithm 11) replaces the difficult act of calculating the exact inverse of
the Hessian with using the conjugate gradient method to calculate an appropriate approxima-
tion. This has the particular advantages that a) We need only calculate the product Hidk for a
given round i of the iteration rather than the significantly more memory-heavy inverse, and b)
CG generally converges to a good approximation quickly, and so the number of these calcula-
tions we require is also likely to be small. While we could calculate these products using the
finite differences method, we can instead solve this problem while gaining further computational
advantages by making use of some of the other methods from §3.

5.1.3 Adaptations

Martens notes that the standard Truncated Newton implementations are not sufficient to train
neural networks. Neural networks optimise over extremely high-dimensional and complex do-
mains, and so some further improvements need to be added.

Firstly, we encounter the difficulty that the CG method assumes a positive definite Hessian
matrix. It would be possible to use some other method if the Hessian was not positive definite,
but this would require testing the Hessian each time, and the possibility of the frequent use of
another, complex method. Instead we can take the Gauss-Newton approximation from §4.2.1,
G = JT HLJ ≈ H. As noted above, this is definitely positive definite, and has good convergence
close to a local optimum. (If we are not close to a local optimum Algorithm 11 will restart and
try for a better approximation).

Secondly, it is important to consider that Algorithm 11 takes a quadratic approximation to
the error function and attempts to optimise this. The function itself however is generally very
much not quadratic, and so it is quite possible that any step we take will take us well away from
the area in which this is an appropriate approximation. Although the Newton method’s long
steps in areas of low curvature is generally helpful, the sheer unpredictability of the function
means that we should not hold too great a hope in any estimation of the gradient at a particular
point. Rather we can use the Levenberg-Marquardt approach from §4.2.2 to impose a trust

43

region on the solution. In combination with the above we thus instead approximate the hessian
at each iteration with H ≈ Ĝ = JT HLJ +λ I. As discussed above, Martens suggests that we use
the simple update heuristic:

λi =





3
2 λi−1 if ρ < 1

4

λi−1 if 1
4 ≤ ρ ≤ 3

4
2
3 λi−1 if ρ > 3

4

in order to avoid overcomplicating the computation.
Even with these adaptations, it is unlikely that we will be able to perform effective opti-

misations using a whole testing set at once. Instead it is preferable to compute the steps using
batches. Here the recommendation is to use a single large batch to calculate the vectors Ĝd,
but to use the entire test set to calculate the loss function and gradient (the latter two only being
calculated once per iteration). The hope here is that the decreased number of iterations allows
us the freedom to compute more cycles, and so to make use of the whole dataset.

We can also attempt to take some inspiration from Algorithm 2. It seems likely that if a
descent direction was valid from our previous position, is it likely to still have some value after
an iteration (especially as each full CG iteration does not utilise all of the test set). We can thus
begin the next round of CG iterations with the previous descent direction. If we are correct in
our assumption, we will require fewer CG iterations to find an acceptable convergence.

We can thus expand Algorithm 11 to Algorithm 12, taking into account the Gauss-Newton
approximation and the Levenberg-Marquardt dampening. This gives the advantage of a scaling
invariant algorithm which is able to take into account the curvature information from the Newton
Method while not being restricted by the difficulty of computing the entire inverse hessian.

Algorithm 12: NewtonCG Method

x = starting point ;
λ = damping parameter;
while True do

Bn = JT
n Jn(x)+λ I;

Use Algorithm 10 to solve Bndn =−∇ f (xn) ;
ρ = f (x)− f (x+d)

f (x)−mx(x)
;

Update λ according to heuristic;
Quit if some stopping condition reached ;
Choose some step size t;
Update x← x+ tdn

end

44

6. Experiments

6.1 Methodology

We used Quan and Lin’s Python implementation of SimpleNN1 in order to compare the optimi-
sation methods. SimpleNN implements two convolutional neural networks, CNN4 and CNN7 in
TensorFlow, and provides an implementation of Martens’ Truncated Newton method for optimi-
sation, along with those pre-packaged in TensorFlow. The architectures of CNN4 and CNN7 are
shown in Tables 6.1 and 6.2.

Input

Layer 1 Convolutional
32×5×5 filters
ReLu Activation

Pool Max pool, 2×2 filters with step 2

Layer 2 Convolutional
64×3×3 filters
ReLu Activation

Pool Max pool, 2×2 filters with step 2

Layer 3 Convolutional
64×3×3filters
ReLu Activation

Pool Max pool, 2×2 filters with step 2
Layer 4 Fully Connected Mean Squared Error Loss

Table 6.1: Architecture of CNN4

SimpleNN largely implements the Hessian-Free method described in [16], (Algorithm 12),
however choosing to truncate the conjugate gradient iteration on the simpler heuristic of ||ri||< ε
or i > imax (i the iteration number) for some fixed ε . Here we can make use of the inequality
(4.24) to to argue that this is largely sufficient to guarantee convergence. For any choice of ε ,
this condition will eventually be violated, and this presents a trade-off between the accuracy of
the end result and the speed of each iteration, which we accept.

Following the example from [9], we initially ran short tests (25 epochs2) for each of the gra-
dient descent methods on a logarithmic grid of learning rates to gain an estimate of the optimal
rate for each data set. We initially tested rates close to the default rate for each set in TensorFlow,
testing

{0.025,0.05,0.1,0.25,0.5}×10n

1https://github.com/cjlin1/simpleNN
2After one epoch the network has seen each item of the test set at least once.

45

Input

Layer 1 Convolutional
32×5×5 filters
ReLu Activation

Layer 2 Convolutional
32×3×3 filters
ReLu Activation

Pool Max pool, 2×2 filters with step 2

Layer 3 Convolutional
64×3×3 filters
ReLu Activation

Layer 4 Convolutional
64×3×3 filters
ReLu Activation

Pool Max pool, 2×2 filters with step 2

Layer 5 Convolutional
64×3×3filters
ReLu Activation

Layer 6 Convolutional
128×3×3filters
ReLu Activation

Pool Max pool, 2×2 filters with step 2
Layer 7 Fully Connected Mean Squared Error Loss

Table 6.2: Architecture of CNN7

where n causes the default rate to be in range, and selecting the rate giving the smallest loss
after the test run. If the most successful learning rate was at the edge of the search space, we ran
further tests in that direction in order to ensure we had selected the correct rate. While this is
not a perfect selection process (in particular, methods easily affected by initial conditions may
give false reports if they are run on a poor seed), the testing of multiple rates helps to identify
a pattern and gives a good chance of success. The default rates along with the rates chosen can
be found in Appendix A.1. Both SGD with Momentum and Nesteyov methods were run with a
momentum parameter of 0.9.

Each gradient optimiser was then run for 250 epochs on each network on each data set in
order to allow each run to come close to a solution. If, on examining the results, it appeared
that any run had yet to either diverge or settle close to a critical point, we would have resumed
training the model. After each batch we logged the test accuracy, the accuracy on the training
set, and the time taken to process the batch.

The Quasi-Newtonian optimiser was run for 150 iterations, using a random selection of
1000 training items each iteration to run the CG method. Similarly to the gradient optimisers,
we logged the test accuracy, training accuracy and time taken for each iteration.

All implementations were run on an NVIDIA Geforce GTX 1060 with 6GB of RAM.

6.1.1 Data Sets

The data sets were chosen to show the capabilities of the optimisers, providing similar tasks,
but with varying degrees of complexity, without being so complex that it was impractical to
run repeated experiments. The MNIST dataset [22] is frequently used as a baseline to show the

46

functionality of Neural Networks. It consists of 70 000 centred, greyscale images of handwritten
digits, 60 000 training images and 10 000 test. Each test item is a 28× 28 pixel image, along
with the correct corresponding digit. The images themselves contain few features, only a single
layer, and no distracting information beyond the number themselves.

The CIFAR10 [23] data set consists of a collection of 60 000 32× 32 colour images, di-
vided between 10 categories. This data is much more complex than MNIST, as the categories
themselves are more abstract (e.g. dog, cat, ship), of varying distinctiveness (small images of
dogs can be very difficult to distinguish from small images of cats), and the variance within the
category can also vary greatly, (an image of a ship may be from above, directly from the front, or
at an oblique angle from the side for example, thwarting any attempt to define a category merely
by simple shape recognition for example). While it is still possible to gain good results on the
MNIST dataset by using PCA or nearest-neighbour analysis, the results for these techniques on
CIFAR10 tend to be poor.

6.2 Results

Each network was trained using each optimiser five times using a random initialisation each
time. We have graphed the mean results for each training method as a solid line, with a shaded
area representing plus or minus one standard deviation. For each data set and network, we
present the training and testing accuracy for the gradient descent methods, as well as the Quasi-
Newtonian method. As they use different methods of loading the data, their iterations are not
directly comparable, however from a practical standpoint it is useful to compare their speed of
convergence. Therefore we finally present all five runs of both the Quasi-Newtonian method
alongside the most successful gradient descent method, tracking their changes in accuracy on
the test data set against time.

6.2.1 MNIST

As noted above, MNIST is not a complex data set, we would expect that if both our network
and optimiser function correctly, that they will be able to correctly identify the images without
difficulty, and with a good general solution. Here we have truncated the results in figures 6.1,6.2
and 6.3. While we trained the networks for significantly longer than displayed, they converged
quickly, and the accuracy did not change significantly outside the graphed area. Figure 6.3
displays the same range of data as figures 6.1 and 6.2 (5 epochs of ADAM and 50 iterations of
NewtonCG).

CNN4

We can see that, as expected, all of the optimisers perform similarly well. They are each able to
consistently find a good solution which generalises well to the test set. The good generalisation
should be expected. While for all good data sets, the training data is similar to the test set, this is
particularly true for MNIST as each image has so few features. We can see that the NewtonCG
method also performs around as well as ADAM, finding as good a solution in a slightly faster
time.

47

CNN7

Here we see similar results to the previous test. The gradient descent algorithms take slightly
longer to attain maximal accuracy, likely due to the increased complexity, however the majority
of the graphs are the same. One run of the SGD optimiser failed to converge until Epoch 35 (the
full graph with convergence is shown in the appendix in Figure A.1), which explains the poor
convergence and large standard deviation in Figure 6.4. One run also failed to converge at all
and was excluded from the results. It is likely that this occurred because the learning parameter
is well tuned to some parts of the domain, but not to others (i.e. that different part of the domain
have different scaling). Thus for some initial states, convergence occurs quickly, however for
others SGD slowly travels around the domain until it arrives at a location which is correctly
scaled and concave. The adaptive methods on the other hand are able to mitigate this difficulty
somewhat.

The NewtonCG optimiser again performs well. It still optimises quickly and to a good and
generalisable result, however we can see from Figure 6.6, which also plots 5 Epochs of ADAM
and 50 iterations of NewtonCG, that it is significantly slower. While it still generally converges
faster, it takes three to four times as long as on CNN4 to complete the same number of iterations
(between 1199 and 1769 seconds compared to 150 - 430 seconds for CNN4), whereas ADAM in-
creases from taking 370-387 seconds to taking 714-730 seconds to complete 5 epochs. The large
range of times can be attributed to the number of CG iterations each run completed. Especially
when the network was close to being converged, the optimiser would be required to run a large
number of CG iterations to find a small decrease in loss. For networks for which we can be less
certain of the expected accuracy, this increase in time, and the potential variance could present
a difficulty. While this could be alleviated by decreasing the maximum possible number of CG
iterations, this would in turn significantly increase the number of Newton Iterations required for
convergence.

48

Figure 6.1: Results for training the CNN4 network using gradient descent methods

Figure 6.2: Results for training the CNN4 network using the NewtonCG method

Figure 6.3: Comparison of the most successful gradient decent method (ADAM) against the
NewtonCG method over time on CNN4

49

Figure 6.4: Results for training the CNN7 network using gradient descent methods

Figure 6.5: Results for training the CNN7 network using the NewtonCG method

Figure 6.6: Comparison of the most successful gradient decent method (ADAM) against the
NewtonCG method over time on CNN7

50

6.2.2 CIFAR10

CNN4

It is first important to note that each of the gradient descent training graphs shows fifty times
as many epochs as those for MNIST. As predicted, CIFAR10 is a more complex problem, and
requires significantly more training in order for the network to settle on successful weights.
We can see that for all training methods there is an initial period of fast convergence followed
by a long tail of slow convergence. Again, ADAM and RMSProp significantly outperform the
three other gradient descent methods, and all adaptive methods give more consistent results.
The results on the test set are significantly worse than those on the training set, although this
difference is not particularly marked for any particular optimiser. It is to be expected that, given
the variety of images present in each category, that any result will be less generalisable than
those for MNIST.

In Figure 6.9 we compare the time and accuracy of 15 epochs of RMSProp against 150
iterations of NewtonCG. We can see that the Newton method converges significantly faster as
well as significantly more consistently, not displaying the noise present in the RMSProp iterates.

CNN7

Here we start to see the benefits of using a larger network. Every algorithm trains more slowly
than it did on the smaller network, however it converges to a more accurate solution. The more
complex network is able to identify a greater number of features, and its greater level of abstrac-
tion allows for to find greater similarities between the more disparate images.

It is interesting to note however that the training accuracy continues to increase well past the
point at which the testing accuracy plateaus. This is certainly some overfitting on the training
dataset, however interestingly it has not brought on a corresponding decrease in accuracy on the
testing set.

We can also see on both this and the previous network that the non-adaptive methods, while
having a greater range of results, appear to converge more consistently.

Again, NewtonCG converges faster in real time, although each run takes a less consistent
length of time. ADAM eventually converges to a similar level of accuracy, however it takes over
an hour longer, and the accuracy is much less stable.

Interestingly, these results do not match those from Wilson et al. [9] (noted in §2.3.5), and
in fact show adaptive methods as having significantly better convergence and generalisability. It
is possible that this is due to the design of the network (they ran their experiment on a similarly
designed but deeper and wider network)1, and it is possible that there is some threshold of
network complexity or particular matching of network and data set which causes non-adaptive
methods to perform better than adaptive (they chose to use previously tested well performing
networks specific to each data set, rather than consider the functionality of generic networks).
This is a difficult consideration. See §6.4 for further discussion.

1see http://torch.ch/blog/2015/07/30/cifar.html

51

Figure 6.7: Results for training the CNN4 network using gradient descent methods

Figure 6.8: Results for training the CNN4 network using the NewtonCG method

Figure 6.9: Comparison of the most successful gradient decent method (RMSProp) against the
NewtonCG method over time on CNN4

52

Figure 6.10: Results for training the CNN7 network using gradient descent methods

Figure 6.11: Results for training the CNN7 network using the NewtonCG method

Figure 6.12: Comparison of the most successful gradient decent method (ADAM) against the
NewtonCG method over time on CNN7

53

6.3 Conclusion

The NewtonCG method represents a practical alternative to the standard Gradient Descent meth-
ods as an optimisation method for at least small-scale deep learning problems. It is able to take
advantage of estimates of local curvature to make improved guesses at both appropriate step
direction and length not available to even adaptive GD methods.

In particular, it is possible to gain good or even better results than for GD methods without
the parameter tuning they require. As with batch gradient descent, memory limitations still
require that we make some sacrifices in the quantity of training data we are able to include
in each iteration, and we thus still require a hyperparamater to control this. This is likely to
remain a requirement for any optimisation algorithm however, and will allow adaptation for an
online approach1. More generally the method provides us with scaling invariance, which will
allow us both this simplicity of setup, but also hints at the possibility to make use of learning
from previous similar data sets help future optimisation. This is something which is particularly
difficult for GD methods, due partly to their scaling invariance.

Our experiments show that, at least for small scale problems, the method is able to find an
effective solution at least as quickly as the most effective GD methods, and that such a solution
is likely to be both consistent and well generalisable. However, this can rely on each iteration
having a lot of information about the dataset. Convergence will decrease as the the proportion
of samples included in the CG iteration decreases.

A particular disadvantage is in the predictability of running time. Even among these small
examples, although most training times were similar, there were several large outliers, generally
caused by a large number of CG iterations being run. For use cases in which consistent training
time is an important factor, possibly those where computing time is particularly expensive, this
could present a large drawback.

NewtonCG is also not currently well implemented in standard machine learning libraries.
Currently PyTorch does not natively implement Conjugate Gradient at all, while in Tensorflow
it exists only as an experimental algorithm. The full algorithm is not available as a package for
either library, and an efficient implementation would likely require additional C and/or CUDA
packages in order to be efficient. It would be a significant undertaking to build an efficient
general purpose optimiser, and this makes it a difficult choice for non-technical users, or those
who do not wish to maintain their own optimiser code.

In general while being well understood as a general optimisation method, and while in-
creasingly being considered in the machine learning field, the NewtonCG method is not as well
understood as GD methods. It is likely that there are still further computational optimisations
to be found, and we still do not well understand what optimisations we may be missing by ex-
cluding information in our approximations. As Martens notes in [15], ”optimisation theory has
a long way to go before being able to predict the performance of a method like [NewtonCG]”.

1Online learning is any method in which rather than accessing the data as a whole, we access it in sequential
chunks

54

6.4 Future Developments

We would have liked to have tested NewtonCG on larger data sets and a larger variety of net-
work structures. We were limited by time, the networks take a long time to train and analyse,
and so it was not feasible to test large networks or data sets in any repeatable manner. Generally
other analyses have also focused on small convolutional networks, and in a field in which opti-
misation can be so unpredictable and contain so many confounding factors, it would be useful
to investigate a series of larger, more complex and varied problems in order to better asses the
optimiser.

Ideally we would have liked to have implemented a more general purpose optimiser for
pyTorch and/or TensorFlow. SimpleNN is limited in its capabilities (another reason why we
were unable to run tests on a wider range of data sets), and although we were able to modify it
to fit our needs, it is not as flexible as the built-in optimisers. However, this proved to be more
complex than we had anticipated. A general optimiser would allow for more flexible testing, as
well as for the optimier to be more accessible to the public. Some attempts have been made at
this in the past, e.g. [24], however they are generally not well maintained, or are still challenging
to implement.

As noted for in results for [9], it is difficult to consider a problem merely in a single dimen-
sion. It would be advantageous to consider a wider variety of types of problem, as well as a
wider variety of network designs and types. The science of constructing an appropriate network
to a particular problem is still not well understood, and the particular effect of changing any
specific network parameter, be it the depth, the activation functions or the optimisation function
is still not generally known. It is possible (even likely) that this is too difficult a problem, and
that we will find that it is not possible to give a good general overview of what is likely to be an
effective network for a particular purpose ahead of time, but further analysis would be helpful.

Currently we rely on a general understanding of ’similar’ data sets to decide on architecture
and learning methods for networks, however it would be beneficial to be able to better codify
this. A greater understanding of the metric spaces of large data sets may allow us to better
perform this analysis. This is again likely to be a trade-off between the possibility of performing
rigorous mathematical analysis and the time required to perform calculations however.

55

56

A. Additional data

A.1 Learning rates for each optimiser

Optimiser Default learning rate
MNIST CIFAR10

CNN4 CNN7 CNN4 CNN7

AdaGrad 0.001 0.01 0.005 0.025 0.01
ADAM 0.001 0.0025 0.0005 0.0025 0.001
Nesteyov 0.01 0.005 0.0025 0.005 0.005
RMSProp 0.001 0.0005 0.0005 0.001 0.0005
SGD 0.01 0.005 0.005 0.01 0.005

Table A.1: Default and selected learning rates for experiments in §6

A.2 Extended graphs

Figure A.1: Results for training the CNN7 network using gradient descent methods for 50 epochs

57

58

References

[1] G. STRANG. Linear Algebra and Learning from Data. Wellesley-Cambridge Press, 2019. 1

[2] MARVIN MINSKY AND SEYMOUR PAPERT. Perceptrons: An Introduction to Computational Geometry. MIT Press, Cam-
bridge, MA, USA, 1969. 2

[3] IAN GOODFELLOW, YOSHUA BENGIO, AND AARON COURVILLE. Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org. 3, 6, 11, 14, 17

[4] D STATHAKIS. How many hidden layers and nodes? International Journal of Remote Sensing, 30(8):2133–2147, 2009. 3

[5] VINCENT DUMOULIN AND FRANCESCO VISIN. A guide to convolution arithmetic for deep learning. ArXiv e-prints, mar
2016. 5

[6] CHIEN-CHIH WANG, KENT LOONG TAN, AND CHIH-JEN LIN. Newton Methods for Convolutional Neural Networks,
2018. 5

[7] STEPHEN P BOYD. Convex optimization. Cambridge University Press, Cambridge, 2004. 9, 24, 25, 29

[8] DIEDERIK P KINGMA AND JIMMY BA. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 17

[9] ASHIA C WILSON, REBECCA ROELOFS, MITCHELL STERN, NATI SREBRO, AND BENJAMIN RECHT. The marginal
value of adaptive gradient methods in machine learning. In Advances in Neural Information Processing Systems, pages
4148–4158, 2017. 17, 45, 51, 55

[10] JONATHAN RICHARD SHEWCHUK. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain.
August 1994. 20

[11] JORGE NOCEDAL AND STEPHEN WRIGHT. Numerical optimization. Springer Science & Business Media, 2006. 25, 26, 27,
29, 33, 36, 37, 38

[12] VYACHESLAV KUNGURTSEV AND TOMAS PEVNY. Algorithms for solving optimization problems arising from deep
neural net models: smooth problems, 2018. 26

[13] CARL T KELLEY. Iterative methods for optimization. SIAM, 1999. 27

[14] NICOL N SCHRAUDOLPH. Fast Curvature Matrix-Vector Products for Second-Order Gradient Descent. Neural Com-
putation, 14(7):1723–1738, 2002. 27

[15] JAMES MARTENS AND ILYA SUTSKEVER. Training Deep and Recurrent Networks with Hessian-Free Optimization. 27, 54

[16] JAMES MARTENS. Deep learning via hessian-free optimization. 2010. 30, 33, 41, 45

[17] RON DEMBO AND TROND STEIHAUG. Truncated-newton algorithms for large-scale unconstrained optimization. Math-
ematical Programming, 26(2):190–212, 1983. 31, 32, 40

[18] STEPHEN G NASH. A survey of truncated-Newton methods. Journal of Computational and Applied Mathematics, 124(1-
2):45–59, 2000. 32

[19] STANLEY C. EISENSTAT AND HOMER F. WALKER. Choosing the Forcing Terms in an Inexact Newton Method. SIAM
Journal on Scientific Computing, 17(1):16–32, 1996. 32

[20] D. C. SORENSEN. Newton’s Method with a Model Trust Region Modification. SIAM Journal on Numerical Analysis,
19(2):409–426, April 1982. 38

[21] RON S DEMBO, STANLEY C EISENSTAT, AND TROND STEIHAUG. Inexact Newton Methods. SIAM journal on numerical
analysis, 19(2):400–408, 1982. 40

[22] YANN LECUN AND CORINNA CORTES. MNIST handwritten digit database. 2010. 46

[23] ALEX KRIZHEVSKY. Learning multiple layers of features from tiny images. Technical report, 2009. 47

[24] SUDHIR B. KYLASA, FARBOD ROOSTA-KHORASANI, MICHAEL W. MAHONEY, AND ANANTH GRAMA. GPU Acceler-
ated Sub-Sampled Newton’s Method. CoRR, abs/1802.09113, 2018. 55

