
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

An Introduction to Cayley Hash Functions

av

Tove Gertonsson

2021 - No K14

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

An Introduction to Cayley Hash Functions

Tove Gertonsson

Självständigt arbete i matematik 15 högskolepoäng, grundnivå

Handledare: Rikard Bögvad

2021

1 Introduction

This paper will explore Cayley hash functions, which - as the name suggests -
are a type of hash function based on Cayley graphs. These hash functions are,
unlike for example the SHA family of hash functions, not block ciphers but each
bit is hashed individually, and the hash value itself corresponds to a walk on a
Cayley graph. We will in particular be looking at Zémor’s first proposal of such
a function from 1991, which uses matrices of SL(2,Fp) for hashing. Further we
will see how this first version was broken by Zémor and Tillich, whose lifting
attack is based on the rather simple Euclid’s algorithm. We will also have a
look at Bromberg’s suggestions on improvement of Zémor’s first proposal. To
begin with, however, we will briefly introduce the concept of hash functions in
general and cryptographic hash functions in particular, and in what way the
two differ in terms of security requirements. Further, as Cayley hash functions
actually rest on mathematical theory and structure, we shall proceed by getting
familiar with the group theory needed to understand the mechanics at work in
these hash functions. We will also add the graph-theoretic notions ”girth” and
”expander graph” to our vocabulary, in order to provide a little more thorough
understanding of the security components at hand when hashing with Cayley
graphs.

2 Hash Functions

2.1 Definition

Whenever we are storing plenty of data and wish to access a certain part of it,
time consumption is one of the greatest obstacles to tackle. While we would pre-
fer the fetching of data to run fast and smoothly, searching through an unsorted
(or even a sorted) array by looping through its indexes is a process that quickly
explodes in time complexity. One way around such a problem is to associate
each data with a key, which is transformed by some function into a more handy
size. The transformed key can then be used as an index or address in a table,
in which we store the data connected to that particular key. To fetch a certain
data, we only need to apply our function to the key corresponding to the data
(which gives us the index where the data is stored), and we can go directly to
the correct index. The complexity for accessing a value with known index is
only O(1) - in other words a constant amount of time.

The type of table described above is a hash table, and the function used to
produce the index by which we sort our data is a type of hash function. The
hash function in the above example would transform an input of arbitrary size
(number of bits), i.e. the key, into an output of fixed size, i.e. the index or
hash, and then store the keys and the values in the hash table. In fact, put in
more formal and general terms this is exactly what hash functions are; they are
functions that map data of arbitrary length to an output of fixed length. The

1

output data is usually referred to as hash code, digest hashes or hash values.
The function input is taken as a key, which is used to identify some specific
information or data, or it can consist of the data itself.1 Further, the function
is designed in such a way that two equal keys must return the same hash value.
There is, however, no guarantee that different keys will result in different hash
values, which means that collisions are, at least in theory, possible. There are
three main purposes for a hash function:

1. To convert arbitrary length keys into hash values of fixed length.

2. To produce uniformly distributed hash values over the key space. (For
each key, any hash value is equally likely.)

3. To produce a value whose length is shorter or equal in length to the input
keys.

A well-designed hash function should also satisfy the following properties:

4. It is fast and easy to compute, roughly linear time.

5. It minimizes the amount of collisions.

In order to provide a more intuitive understanding of how hash functions op-
erate, I will walk you through an everyday example of a hash function, the
International Standard Book Number.

Example 2.1 (The International Standard Book Number). The ISBN is in
fact a type of hash value, intended to be unique for each book and separate
edition, meaning that an e-book, hardcover and paperback edition of the same
book will have different hash values. That way, the ISBN works as a product
identifier and is used by for example publishers and libraries for ordering, listing
and stock control. The 13-digit ISBN is made up of the following structure2:

1. A pre-fix element; this far 987 or 979 is used.

2. The registration group element, identifying the particular language area,
individual country or territory. It is constituted of 1 to 5 digits.

3. The registrant element, identifying the particular publisher or imprint.

1Consider for example a set of passwords that are stored as their corresponding hash values;
we would rather have somebody getting hold of these than the actual passwords.

2Note that although the lengths of the different elements may vary, the total number of
digits is always 13.

2

Constituted of maximum 7 digits.

4. The publication element, which identifies the particular edition and format
of a specific title. Up to 6 digits long.

5. A checksum character or check digit. This is a final single digit that
validates the whole hash code.

We might look upon the entire ISBN as a hash value, but the last check digit
r actually also constitutes a hash value by itself. This last check digit ranges
from 0 to 9 and is chosen so that the sum of all 13 digits each multiplied by its
integer weight, alternating between 1 and 3, is a multiple of 10. Deciding the
value of the 13-th digit is done by calculating the following hash function.

Let

r = 10− (x1 + 3x2 + x3 + 3x4 + ...+ x11 + 3x12) (mod 10),

then we get the following 13-th hash digit

x13 =

{
r; if r < 10,

0; if r = 10.

Obviously, there is no need for this system to be secretive by hiding or making
it hard to obtain the above listed information about the book which produces
a certain last hash value. We will see that the need for secrecy is the main
difference between general hash functions and cryptographic hash functions.

3 Cryptographic Hash Functions

Like the general hash function, the cryptographic hash function is a one-way
function which maps data of arbitrary size into a bit array of fixed size. ”One-
way” translates to mathematical terms as ”practically infeasible to invert”. It
differs from the normal two-way encryption functions, as it does not preserve
entire plaintexts. Plaintext means in this context the input of a hash function,
i.e. a message or text that has not yet been encrypted. Further, there is no
ensurance of the function being theoretically invertible, i.e. injective, mean-
ing that it is in reality possible for a collision to occur, just like with normal
hash functions. As opposed to normal hash functions however, a cryptographic
hash function is required to fulfill a number of properties regarding security.

3

Cryptographic hash functions are used frequently in user authentication such
as for digital signatures and passwords, making them a predominant part of
encryption mathematics.

While the purposes of a general hash function are true also for cryptographic
hash functions, cryptographic hash functions have, as mentioned, a more rigid
set of requirements concerning security. Below we denote by {0, 1}k the set of
binary words of length k (i.e. constituted by 0′s and 1′s) and by {0, 1}∗ binary
words of arbitrary length. While the first requirement assures that inverting the
function is difficult, the last two requirements deal with the possible dilemmas
that may arise from the fact that hash functions are not injective. Since collisions
can occur, there is a need to prevent more or less trivial such from occurring.

Requirements for cryptographic hash functions Let n ∈ N and let H :
{0, 1}∗ −→ {0, 1}n. The hash function H is required to satisfy the following:

1. Preimage resistance Given output y, it is computationally infeasible3

to find input x such that H(x) = y.

2. Second preimage resistance Given input x, it is computationally in-
feasible to find y 6= x such that H(x) = H(y). This property is sometimes
referred to as weak collision resistance.

3. Collision resistance It is computationally infeasible to find inputs x 6=
y such that H(x) = H(y). This property is sometimes referred to as strong
collision resistance.

The need for pre-image resistance is quite easy to understand intuitively in the
sense that without pre-image resistance, an adversary could for example figure
out how to produce the unique digital signature of somebody else. They can
then use the signature to sign fake documents with, making the receiver of the
document believe it is from the real author of the signature.

The lack of injectivity might cause a scenario where two different inputs result
in the same hash value. Therefore, the second pre-image resistance and collision
resistance properties are needed to avoid more trivial non-injective functions.
The following example from [7] clearly illuminates what type of situations a lack
in these resistances can cause. Suppose we have an adversary who is able to find
two documents, D1 and D2, such that H(D1) = H(D2). Suppose D1 says ”Pay
the bearer 10 dollars” and D2 says ”Pay the bearer 100 dollars”. The adversary
can then give an unsuspecting person 10 dollars and ask her to sign D1. But,
as the unsuspecting person has actually signed the hash value H(D1), she has

3If a problem is computationally infeasible it means that it can not be solved with all
existing computing power in the world.

4

simultaneously signed H(D2). Our evil adversary can then go to the bank, show
the banker the document D2 together with its signed hash, and then get paid
100 dollars [7].

The logic behind referring to collision resistance as strong collision resistance
and to second preimage as weak collision resistance, can be understood with the
birthday paradox. Finding a collision with a specific birthday amongst n ran-
dom people is much less likely than finding any two colliding birthdays amongst
the n people. Hence, a function fulfilling the collision resistance property auto-
matically fulfills the second preimage resistance; if it is difficult to find any two
colliding birthdays, the task of finding a collision with a specific one is even
more daunting. (However, fulfilling the strong collision resistance requirement
does not imply that the preimage resistance is fulfilled.)

Adding to the requirements above, an ideal cryptographic hash function should
also have the following properties.

1. It should be quick to compute the hash value for any given message,
roughly linear time.

2. Any small change to a message should change the hash value so extensively
that the new hash value appears uncorrelated with the old hash value
(avalanche effect).

Our initial example with the last check digit of the ISBN number, is a good
example of a hash function that is not a cryptographic hash function as the
purpose of the last check digit is merely to verify the ISBN number. Producing
a collision is uncomplicated; given an ISBN, we can create a new ISBN with the
first 12 digits corresponding to the same congruence classes modulo 10 as our
initial ISBN. This way we will have created a collision and an ISBN that would
evaluate to ”true” - regardless of wether our book exists or not.

4 Free Monoids

Before exploring the main subject of this paper, we will introduce some algebraic
terms necessary for understanding the structures of Cayley hash functions; free
monoids, free groups and Cayley graphs. We will first look at the algebraic
structure of free monoids, which have the following definition.

Definition 4.1. A monoid is a set S together with a binary operation S×S −→ S
such that for a, b ∈ S (a, b) 7→ a · b, satisfying the following:

1. Associativity For all elements a, b and c in S, it holds that (a · b) · c =

5

a · (b · c).

2. Identity element There exists an element e in S such that a·e = e·a = a
for all elements a in S.

A free monoid on a set is defined as the monoid over elements consisting of
all possible finite sequences of zero or more elements from the set. The binary
operation of the free monoid is string concatenation, which means that strings
are joined end-to-end. The identity element is set to the empty string; adding an
empty string to any word will not change the original string. More formally, a
monoid is free if it is isomorphic to the free monoid on a set. As an example, we
may consider the free monoid on two generators, where we have that S = {a, b}
for some a, b is the generating set of the monoid. The elements of this monoid
consist of all possible words or combinations that can be formed using S as an
alphabet, resulting in words such as aaba or bba. If we let a = 1 and b = 0, we
have obtained the monoid on binary numbers consisting of words such as 0010,
101, 111 etc.

Consider now the free monoid, F , of the single generator 1, and concatenation
represented by a plus sign. This monoid consists of the sequences ”1”, ”1+1”,
”1+1+1” etc, with the empty word as the identity. We can then map each
of these sequences to their evaluation result and the empty sequence to 0 in
M = (N0,+), which results in the following homomorphism:

ϕ: F −→M.

We have that if s is mapped to the natural number m and t is mapped to the
natural number n, s + t 7→ m + n (i.e. the sum of the natural numbers m and
n). This is clearly a homomorphism, since taking the string s+ t ∈ F we get:

ϕ(s+ t) = m+ n = ϕ(s) + ϕ(t).

This map is injective, since for any specific sequence of ones there will be one
exact corresponding natural number. It is also clearly surjective, since any
number in N0 can be represented as a unique number of ones. Hence, M =
(N0,+) is a free monoid.

5 Free Groups

We are now ready to expand our group-theoretic knowledge to free groups. Let
S = {s1, . . . } be a set and S−1 = {s−1, . . . } a set that is disjoint to S, and

6

simultaneously in 1-to-1 correspondence with S. Further, let F̃S be the set of
all possible words that can be formed using S ∪ S−1 as an alphabet. Then F̃S
is a monoid under the binary operation concatenation, with the empty word as
identity. Now, let us consider the smallest equivalence relation on F̃S such that

xsis
−1
i y ∼ xy,

xs−1i siy ∼ xy

for all x, y, si ∈ S. This implies that if x = y equals the empty string we have
that

ss−1 ∼ e,

s−1s ∼ e.

We clearly have that x ∼ x′ and y ∼ y′ implies that xy ∼ x′y′, showing that the
choice of representatives does not matter. Further, the set of equivalence classes,
FS , forms a group since each element s±k ...s

±
i s
±
j has an inverse in s∓j s

∓
i ...s

∓
k ,

using the equivalence relation ∓ = −±. Each equivalence class contains one
reduced word x = s1s2 . . . sk, such that si+1 6= s−1i for all i < k. By definition,

we have that two reduced words sε11 s
ε2
2 . . . sεnn and rδ11 r

δ2
2 . . . rδmn , where εi ± 1

and δi = ±1 for all i, are equal if and only if n = m and δi = εi, 1 ≤ i < n.
From now on we will only consider the reduced word from each equivalence
class. When concatenating two of these words, we will continue to only consider
reduced words. This means substituting all occurrences of ss−1 or s−1s with
the empty string, until we have reached a reduced word on the above form. This
group of equivalence classes under concatenation, FS , is called the free group
on the set S. More generally, a group G is called free if it can be generated by
some subset S of G, and is isomorphic the the free group on this set, FS . The
notion of a group G being free and generated by S can be formalized by the
following universal property.

Theorem 5.1. Let G be a group with generating set S ⊂ G. Then G is free on
S if and only if the following holds: every map ϕ : S −→ H from S into some
group H can be extended to a unique homomorphism f : G −→ H, making the
below diagram commute:

7

S

G

H

i

ϕ

f

(where i : S −→ G is the inclusion of S into G).

One example of a free group is the non-abelian group on two generators un-
der concatenation, i.e. with generating set S = {a, b} and inverse set S−1 =
{a−1, b−1}. Since the group operation in FS is concatenation, the elements of the
group are all possible combinations from the generating set, such as aaab−1abb
etc. If we add a single relation to the this group, by:

ab = ba

we have created a free abelian group on the same generating set, and thereby we
are allowed to change the order of the elements in a word. This results in words
on the form akbk

′
where k, k′ ∈ Z, as in fact all elements commute in this group.

We can see this with only a few operations; multiplying ab = ba on the left with
a−1 results in b = a−1ba, and by multiplying on the right with a−1 once more we
obtain ba−1 = a−1b. In a similar manner, we can show commutativity between
any two elements, and we can draw the conclusion that all elements in the free
abelian group on two generators are on the above form. For example, the above
expression is by the rule of commutativity identified as aaab−1abb = a4b.

We will now have a look at an example of a free abelian group, Z × Z under
addition with generating set X = {(1, 0), (0, 1)}. We will show that this group
is free by using theorem 5.1, and finding an isomorphism between Z × Z and
the free abelian group on two generators, AS . Hence, let FS be the free (non-
abelian) group with generating set S = {a, b}. Let

i : S −→ FS

be the inclusion of S into FS . Consider the map:

8

ϕ : S −→ (Z× Z,+), s.t. a 7→ (1, 0) and b 7→ (0, 1).

From theorem 5.1, we can now extend the map ϕ to a unique homomorphism
from FS to Z× Z:

f : FS −→ (Z× Z,+), s.t. w 7→ (k − j, k′ − j′),

where k equals the number of a:s occurring in w, k′ the number of b:s, j the
number of a−1:s and j′ the number of b−1:s 4. Using the graph from theorem
5.1 to illustrate the above, we have now arrived at the following map:

S

FS

(Z× Z,+)

i

ϕ

f

Further, we have that f factors through the free abelian group on two generators,
AS . This means that there are maps θ and ψ such that

f = θ ◦ ψ
where θ : FS −→ AS and ψ : AS −→ (Z× Z).

As we saw previously, due to the commutativity of AS , elements in this group
are on the form akbk

′
. Hence, ψ maps an element akbk

′
to (k, k′). From this

fact we can easily see that ψ is surjective; given any (k, k′) ∈ (Z × Z), there is
an element akbk

′
that maps to it. It is also clearly injective, since if we have

that ψ(akbk
′
) = ψ(ajbj

′
) we must have (k, k′) = (j, j′), implying that k = j

and k′ = j′. Hence, (Z×Z,+) is isomorphic to AS and therefore a free abelian
group.

4We have that a 7→ (1, 0), a−1 7→ (−1, 0), b 7→ (0, 1) and b−1 7→ (0,−1). Since (Z× Z,+)
is abelian, the result follows.

9

6 Cayley Graphs

The type of hash function we will explore more thoroughly in this paper is
Zémor’s hash function, which is a type of Cayley hash function. We might
wonder where the name ”Cayley” in ”Cayley hash function” comes from. The
answer is that Cayley hash functions are based on a type of graph called Cay-
ley graphs (named after Arthur Cayley), which is a presentation of a monoid
according the following definition:

Definition 6.1. Let M be a monoid and S a generating set of M . The Cayley
graph Γ = Γ(M,S) is a directed, colored graph constructed as follows:

1. Each element g of M is assigned a vertex; the vertex set V (Γ) of Γ is
identified with M .

2. Each generator s of S is assigned a color cs.

3. For any g in M and s in S, the vertices corresponding to the elements g
and gs are joined by a directed edge of colour cs. Thus the edge set E(Γ)
consists of pairs of the form (g, gs), with s in S providing the color.

From the above definition, we can make the observation that each node of a
Cayley graph generated by a set of cardinality k will have an out-degree equal to
k. The Cayley graph of a group need not be unique, and we will see an example
of when two different generating sets for the same group produce completely
different looking graphs. We will now have a look at the Cayley graphs for a
few different monoids and groups.

Example 6.1 (Cayley graph of S3). Below you can find the Cayley graph of
the group S3, generated by the elements (123) and (12). A red line represents
a right action by (123), and a blue line represents a right action by (12).

10

(23)

(12) (13)

(e) (123)

(132)

Figure 1: The Cayley graph of S3 with generators (123) and (12).

A completely different looking graph of the same group, S3, is generated if
we instead choose generators (12) and (23). In the graph below, a blue line
represents a left action by the element (23), and a red line represents a left
action by the element (12). Since S consists of transpositions there will always
be an edge (g, sg) whenever there is an edge (sg, g), and therefore the arrow
heads have been omitted.

e (23)

(12) (123)

(132) (13)

Figure 2: The Cayley graph of S3 with generators (23) and (12).

11

As indicated previously, these graphs have entirely different properties as graphs
regarding for example the distribution of cycle lengths.

Example 6.2 (Cayley graph of (N × N,+)). We will now have a look at the
Cayley graph of the monoid (N× N,+) of infinite order, with generators (1, 0)
and (0, 1). In the graph below a blue line represents an action by (1, 0) and a
red line an action by (0, 1).

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

Figure 3: The Cayley graph of (N× N,+).

Example 6.3 (Cayley graph of the free group on two generators). Below you
can find an illustration of the free group generated by S = {a, b} and its inverse
set S−1 = {a−1, b−1}. The words created are the results of right actions on the
identity, for example walking two steps to the right in the graph results in the
word aa.

12

a a a a
b−1

b

b−1

b−1
a−1 a

b

baa−1

b−1

b−1

b−1
a−1 a

a−1a−1b

b−1
a a

b−1

b

b

b

baa−1

a a
b−1

ba−1a−1b

b−1

b−1

b−1

b−1

b−1
a−1 a

a−1a−1b

b−1
a a

b−1

b

a−1a−1a−1b

b−1

b

baa−1

b−1

b−1
a−1 a

a a a
b−1

b

b−1

b−1
a−1 a

b

baa−1

b

b

b

baa−1

a a
b−1

ba−1a−1b

b−1

a a a
b−1

b

b−1

b−1
a−1 a

b

baa−1

a−1a−1a−1b

b−1

b

baa−1

b−1

b−1
a−1 a

a−1a−1a−1a−1b

b−1

b

baa−1

b−1

b−1
a−1 a

b

b

baa−1

a a
b−1

ba−1a−1b

b−1

b−1

b−1

b−1
a−1 a

a−1a−1b

b−1
a a

b−1

b

Figure 4: The Cayley graph of the free group on two generators.
Image: https://tex.stackexchange.com/questions/222881/cayley-graph-of-free-
group-in-tikz.

The broadly differing properties of Cayley graphs will play a big role ahead, as
we start to look into Cayley hash functions.

7 Cayley Hash Functions

7.1 Definition of the Cayley Hash Function

We are now ready to shoulder one of the main events of this paper; getting ac-
quainted with Cayley hash functions. We have previously thought of plaintexts
as binary strings on 0, 1, but we shall now consider them as strings of symbols
from the alphabet {1, . . . , k} for k ≥ 2. Any previous statements on plaintexts
of binary strings is easily transferred back and forth to the situation we are now

13

considering. With this in mind, based on a Cayley graph built from a subset
S = {s1, . . . sk} of a monoid G, we can build a Cayley hash function in the
following way. Let σ : {1, . . . k} −→ S be an ordering and fix an initial element
g0 ∈ G. We then write the message to be hashed, m, as a string m1m2 . . .mN

s.t. mi ∈ {1, . . . , k}. Our hash value is then the end of the walk we have
created on our graph, with g0 as starting point; H(m) = g0σ(m1) . . . σ(mN).
For two messages to have the same hash code, they must have the same start-
and endpoints. We will assume g0 is set to the identity, as the choice of start-
ing point in fact does not affect the security of Cayley hash functions in the
case where G is a group (which is the case we will consider). Choosing the
identity as starting point provides an important property of Cayley hash func-
tions, which is their ability of being parallelized. In other words, they possess
a concatenation property, meaning that the hash value for a concatenated mes-
sage xy simply is H(xy) = H(x)H(y). This property makes it easier to handle
big messages, as we can break them into smaller pieces and hash each piece [1].
The resistances of normal hash functions can be translated into group theoretic
terms, in order to be fully compatible with Cayley hash functions.

Group-theoretic problems of Cayley hash functions Let G be a monoid
and S = {s1, . . . sk} ⊂ G a generating set. Further, let L ∈ N be small.

1. Factorization problem Given an element g ∈ G, to find an ”efficient”
algorithm that returns a word m1 . . .ml so that l < L, mi ∈ {1, . . . , k}

and

l∏

i=1

smi = g.

2. Representation problem To find an ”efficient” algorithm which returns

a word m1 · · ·ml with l < L,mi ∈ {1, . . . , k} and
l∏

i=1

smi
= 1.

3. Balance problem To find an efficient algorithm that returns two different
words m1 . . .ml and m′1 . . .m

′
l′ with l, l′ < L, mi,m

′
i ∈ {1, . . . , k} that

produce equal products in G, i.e.
l∏

i=1

smi
=

l′∏

i=1

sm′i .

The above criterias give us an intuitive understanding of why the identity ele-
ment is used as a starting point; given the group structure of G we indeed have

that g0

l∏

i=1

smi
= g0

l′∏

i=1

sm′i if and only if
l∏

i=1

smi
=

l′∏

i=1

sm′i .

The Cayley hash function is pre-image resistant if and only if the factorization
problem is hard, in other words it is equivalent to the problem of given an output

14

y finding x such that H(x) = y. This is in the case of Cayley hash functions the
same as finding a message m1 . . .ml such that σ(m1) . . . σ(ml) = g, i.e. finding
the pre-image of g.

Further, the function is second pre-image resistant if and only if the represen-
tation problem is hard. Suppose that we have a message m1 . . .mn and its

hashed value
n∏

i=1

smi
. If we manage to find a message m′1 · · ·m′j with j < L,

m′i ∈ {1, . . . , k} such that

j∏

k=1

sm′k = 1, we will be able to constitute a new mes-

sage by concatenating this message to the first, i.e. by constituting the message
m1 . . .mnm

′
1 . . .m

′
j . Because of the previously mentioned parallelism property

of Cayley hash functions, we have found a new message that maps to the same
hash value as the original message m1 . . .mn.

Finally, the function is collision resistant if and only if the balance problem is
hard. This is also quite straight forward if we note that H(m) = H(m′) occurs

exactly when we find messages m1 . . .ml and m′1 . . .m
′
l′ such that

l∏

i=1

smi
=

l′∏

i=1

sm′i . As an example of a collision we may consider the Cayley graph S3.

Starting at e, we may make our way to the element (12) either by the path
(e) −→ (123) −→ (13) −→ (12) or by the path (e) −→ (12), as seen in the picture
below.

(23)

(12) (13)

(e) (123)

(132)

7.2 Girth of the Cayley Graph

In order to make sure a Cayley hash function fulfills the security requirements,
some caution is needed when choosing the underlying Cayley graph. In this
section, we shall put the balance problem in relation to the actual graph used
for hashing. Translated into more graph theoretic terms, fulfilling the balance
problem can be understood in terms of the Cayley graph used for hashing having

15

a large girth.

Definition 7.1. The directed girth of a graph is the largest integer δ such
that given any two vertices v and w, any pair of distinct directed paths joining
the vertices will be such that one of those paths will have length δ or more. In
case no two paths lead to the same endpoint, the girth is set to infinity.

We will put this definition into the context of Cayley hash functions in a more
concrete way by considering the proposition below, which can originally be found
in [2]. In the following proposition by ”message” we mean a plaintext.

Proposition 7.2. Let δ be the directed girth of a Cayley graph Γ built from the
generating set S = {s1, . . . , sj} of a monoid M . Further, let H be a Cayley hash
function based on Γ. Given a message

m = m1 . . .mimi+1 . . .mi+kmi+k+1 . . .mt,

where m1, . . .mt ∈ {1, . . . , j}, if we replace k of these letters with h consecutive
letters so that we obtain the below message

m′ = m1 . . .mim
′
i+1 . . .m

′
i+hmi+k+1 . . .mt

where m′i, . . . ,m
′
i+h ∈ {1, . . . , j} and m′ maps to the same hash value as m by

H, then max(k, h) ≥ δ.

Let’s try to gain a little more intuitive understanding of Proposition 7.2 by
considering the above situation and supposing that we have the equality:

H(m) = H(m1 . . .mimi+1 . . .mi+kmi+k+1 . . .mt)

= H(m1 . . .mim
′
i+1 . . .m

′
i+hmi+k+1 . . .mt)

= H(m′).

This means that there are two paths to H(m); one path is obtained by hashing

m1 . . .mimi+1 . . .mi+kmi+k+1 . . .mt

and the other by hashing

16

m1 . . .mim
′
i+1 . . .m

′
i+hmi+k+1 . . .mt.

Using the parallelism property, this means that these two paths part ways after
H(mi), and reunite in H(mi+k). Since the girth of the graph is δ, we must
have that at least one of mi+1 . . .mi+k and m′i+1 . . .m

′
i+h has a length that is

at least δ, i.e. max(k, h) ≥ δ.

The reason Cayley graphs used for hashing should have large girths, is that the
hash functions used over these graphs do not produce any short relations. This
means that the probability that two paths lead to the same endpoint is small,
minimizing the number of collisions. Intuitively, this can be understood as given
a path, we are forced to make several ”correct mistakes” in order to reach the
same destination by a different path. An example of a graph that for this reason
is not suitable for hashing is any graph representing an abelian group; here any
unique (unordered) set of elements will simply produce identical hash values as
order is irrelevant! A similar example of a Cayley graph with small girth is the
graph of the abelian monoid N×N, in which we find several short-length cycles.
Here, for example, I have colored two paths leading from and to the same nodes
in green and pink.

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

Given the pink path we only need to make two ”correct mistakes” in order to
obtain a different path with the same end point. In other words, it is actually
fairly easy to find two messages x 6= y such that H(x) = H(y), and hence the

17

balance problem in fact seems to be rather easy to solve.

We will now revisit the Cayley graph of S3 with generators (123) and (12), which
has a larger girth than the previous graph. Given, for example, the green path
starting at e and going to (12), we have to make 3 ”correct mistakes” in order
to end up at the same end vertex, i.e. to obtain the identical hash value as our
initial value. However, this graph is also deficient in terms of forming a proper
base for hashing, since we only need to check a few possible combinations before
we reach a collision.

(23)

(12) (13)

(e) (123)

(132)

Collisions are in fact not possible at all in some cases; consider a graph with
infinite girth such as the free group on two generators, whose graph we saw
previously. Since a free monoid or group contains no relations, producing two
unique messages whose group products are equal becomes impossible. Judging
from this fact, the Cayley graph of a free monoid might seem like a perfectly
fit choice for a hash function. However, as hash functions must take on values
from a finite set, we can not simply use an infinite group for hashing. One idea
which we will explore further a head, however, is to use a free monoid whose
elements are reduced over a finite field Fp, for some large prime p.

7.3 Expanding Properties

Preferable in cryptographic hashing, is for the hashed values to appear random.
A perceived randomness can be achieved when the graph chosen for hashing is
an expander graph. In this section I will give a brief overview of the properties

18

of such graphs, and why they are interesting to us from a cryptographic view
point.

For the sake of intuition, let us imagine a graph to model a social network, where
each vertex is a person and each edge implies that two people gossip. If our graph
is an expander graph, rumours spread very quickly in this social network [5]. Put
in slightly more formal terms, expander graphs are finite graphs that possess two
properties that might appear contradictory, as they are simultaneously sparse
and well-connected. Further, every subset U of vertices of an expander graph
G is connected to ”many” vertices in U (where U = {v|v ∈ V (G) \ U}, where
V (G) is the vertex set of G). As a consequence, expander graphs have a low
diameter 5 and high chromatic number.6 Now, let G = (V,E) be an undirected
graph, with |V | = n. The set of edges between two sets of vertices, U,W ∈ V , is
denoted by E(U,W) = {(u,w)|(u,w) ∈ E, u ∈ U,w ∈ W}. The edge boundary
of U ⊂ V is defined as δU = E(U,U). From the edge boundary, we can define
the following:

Definition 7.3. The expansion constant of G is defined by

h(G) = min
0<|U |≤n

2
U⊂V

|δU |
|U | .

h(G) is strictly positive if and only if G is a connected graph. A small yet
positive value of h(G) implies that the graph has a ”bottleneck”; that there are
two sets of vertices in the graph that only have a few edges connecting them. A
high positive value on the other hand, indicates that any two sets in the graphs
have ”many” edges between them.

When talking about expander graphs, one usually considers families of graphs
rather than just one graph. A family of expander graphs can be constructed in
accordance to the following:

Definition 7.4. A family of expander graphs {Gi}i∈N is a sequence of d−regular
graphs {Gi}i∈N of size increasing with i, such that there exists ε > 0 such that
h(Gi) ≥ ε for all i.

What the above tells us in an intuitive sense, is that the graphs in consideration
are arbitrarily large but are all d−regular. Hence, they become more and more
sparse. Simultaneously, there exists some positive constant ε such that each

5The diameter of a graph is the largest distance between any two of its vertices
6The chromatic number of a graph is the minimum number of colors needed to produce a

proper coloring of the graph.

19

graph has an expander constant which is larger. We will now have a look at an
example from [6] of a family of expanders.

Example 7.1 (The random graph). Let Gn be a random d−regular graph
with n vertices. We can construct a random d-regular graph by connecting each
vertex to d randomly chosen vertices. Let U be a subset of vertices of Gn such

that |U | ≤ n
2 . A vertex of U will then be connected to ≈ d |U |n vertices in U (since

the probability that a vertex lies in U , and hence the proportion of vertices in

U , is |U |n). There are |U | vertices in U , and hence the number of edges between

U and U should be approximately |U | · d |U |n . We have:

|δU | ≈ |U | · d |U |
n

⇐⇒

|δU |
|U | ≈ d

|U |
n

=⇒

min
0<|U |≤n

2
U⊂V

|δU |
|U | ≈ min

0<|U |≤n
2

U⊂V

d
|U |
n
.

We have that d |U |n is minimal when |U | is minimal, which occurs when |U | is
maximal, i.e. when we have |U | = n

2 . This means that:

|U | = n− |U | = n− n

2
=
n

2

which gives us:

min
0<|U |≤n

2
U⊂V

|δU |
|U | ≈

dn2
n

20

=⇒

h(Gn) ≈ d

2
.

We see that h(Gn) does not depend on n, and hence a family of d−regular
random graphs is an expander family.

In order to put the notion of expander graphs in more close relation to Cayley
hash functions and Cayley graphs, worth mentioning is that we in [5] learn that
an infinite family of groups {Gn} can be made into a family of expanders if
there is some constant k and a generating set Sn where |Sn| = k for each Gn,
so that the family {ΓGn,Sn} is a family of expanders. Even more interesting
in regard to the subject of hashing with matrices which we will be covering in
the coming chapters, is that the special linear groups SL(d,Fpm) for any d ≥ 2,
m ≥ 1 and prime p can be made into a family of expanders as p→∞ according
to [5] (the proof is however too extensive to cover here).

8 Cayley Hash Functions Using Matrices

8.1 Zémor’s Hash Function

In this chapter, we will explore different versions of the Cayley hash function
using matrices. The idea behind this type of hash function is to use pairs of
generators A and B of some monoid M , such that the Cayley graph of M
generated by A and B is an expander [1]. To ensure that the requirements
for cryptographic hash functions are fulfilled, one must assure that the graph
generated by A and B has a large girth, in order to avoid short relations (as
seen in the previous chapter). In 1991 Zémor introduced the idea of hashing
with matrices by proposing a Cayley hash function in which A and B are 2× 2
matrices. Matrices A and B are chosen so that they generate a free monoid
over SL(2,Z), to hash the 0 and 1 bit respectively. The hashing of a bit string
is then matrix multiplication, so that for example the message 00010 in bits
would be hashed to the matrix product AAABA = A3BA. The entries of the
resulting matrix are reduced modulo some large prime p, and hence we obtain
a matrix of SL(2,Fp), where Fp is a field on p elements and p is a large prime
(with ”large” meaning about 150 bits). This way, one obtains a lower bound
on the length of collisions. Since multiplying two matrices only accounts for
4 additions, hashing an n-bit text requires the reasonably small amount of 4n
additions.

We will in particular be looking at Zémors first proposal of such matrices, A(1)

21

and B(1):

A(1) =

(
1 1
0 1

)
, B(1) =

(
1 0
1 1

)
.

A(1) and B(1) as generators of the group SL(2,Fp) have a Cayley graph that
is an expander graph [4]. Actually, these matrices generate the entire monoid
SL(2,Z+), and together with their inverses:

A(1)−1 =

(
1 −1
0 1

)
, B(1)−1 =

(
1 0
−1 1

)

they generate the group SL(2,Z). This group is not free, but since only positive
powers are needed for hashing, it would be sufficient to find a free monoid in
SL(2,Z+).

We will also familiarize ourselves with an improvement of Zémor’s first proposal,
in which Bromberg suggests matrices A(n) and B(n) for n ≥ 2:

A(n) =

(
1 n
0 1

)
, B(n) =

(
1 0
n 1

)
.

The above matrices as generators of a submonoid of SL(2,Fp) also has a Cayley
graph which forms an expander according to [4].

We must, however, make sure that A(1) and B(1), as well as A(n) and B(n) for
n ≥ 2, actually do generate a free monoid in SL(2,Z).

8.2 A(n) and B(n) Generate a Free Monoid

We claim that coinciding products in A(1) and B(1) implies equal words or
concatenations of A(1) and B(1). Our first stepping stone is to show the below
lemma.

Lemma 8.1. If two products of A(1) and B(1) are equal, i.e. if:

X1 . . . Xm = Y1 . . . Yn,

where Xi, Yi ∈ {A(1), B(1)}, then X1 = Y1.

22

Proof. We will assume the contrary, i.e. we will assume that X1 6= Y1, but that
X1 . . . Xm = Y1 . . . Yn. This means we have an equality in accordance to the
following:

(
1 1
0 1

)(
a b
c d

)
=

(
1 0
1 1

)(
a′ b′

c′ d′

)
.

Multiplying the matrices above gives the following equation:

(
a+ c b+ d
c d

)
=

(
a′ b′

a′ + c′ b′ + d′.

)
. (1)

This equality implies the following system of equations:

a+ c = a′ (2)

b+ d = b′ (3)

c = a′ + c′ (4)

d = b′ + d′. (5)

Subtracting (2) from (4) gives us:

c− (a+ c) = a′ + c′ − a′

⇐⇒
−a = c′.

Since no negative integer can occur in the matrix, this implies that −a = c′ = 0.
In a similar manner we get by subtracting (3) from (5):

d− (b+ d) = b′ + d′ − b′

⇐⇒
−b = d′

which has the only non-negative solution −b = d′ = 0. These equalities give us
for (1):

23

(
c d
c d

)
=

(
a′ b′

a′ b′

)
.

But these matrices can not appear as products of A(1) and B(1), as they clearly
have determinants equal to 0! The reason for this can be realised through
a property of multiplication of determinants from linear algebra, which says
that det(AB) = det(A) · det(B). Since all factors appearing in the products
have determinants equal to 1, the resulting matrix can not possibly have a
determinant equal to 0. This leads to the conclusion that X1 = Y1.

We proceed by showing that each unique word built of A(1) and B(1) is uniquely
connected to its matrix product, and hence that A(1) and B(1) generate a free
monoid.

Lemma 8.2. If two products of A(1) and B(1) are equal, i.e. if:

X1 . . . Xm = Y1 . . . Yn

where Xi, Yi ∈ {A(1), B(1)}, then m = n and Xi = Yi for all i.

Proof. We prove the lemma by induction on k = min(m,n). Our base case is
k = 0, which is the identity matrix. This means that we need to show that
there is no equality:

X1 · · ·Xj =

(
1 0
0 1

)

where Xi ∈ {A(1), B(1)} and j > 0. Now, let’s assume that the above equation
holds and let:

M = X1 · · ·Xj−1 =

(
x y
z t

)
.

Then, multiplying M by A(1) or B(1) on the right results in the following
products:

24

M1 =

(
x y
z t

)
A(1) =

(
x y
z t

)(
1 1
0 1

)
=

(
x x+ y
z z + t

)

M2 =

(
x y
z t

)
B(1) =

(
x y
z t

)(
1 0
1 1

)
=

(
x+ y y
z + t t

)

of which (at least) one must be the identity, according to our assumption. Since
M itself is a product of A(1):s and B(1):s, its entries are non-negative, and
hence M1 and M2 must also have non-negative entries. Proceeding, we assume
that M1 equals the identity which means that we must have that:

x+ y = 0

z = 0.

This means that x = −y, forcing the equality x = −y = 0 (since M1 has
non-negative entries). This results in the following matrix:

(
0 0
0 t

)

which clearly has determinant 0. This is however impossible, since (again) by
the rule of determinants det(AB) = det(A) · det(B), and M1 is a product of
A(1):s and B(1):s with determinant 1. Hence, M1 can not equal the identity.
Assuming that M2 equals the identity gives us:

z + t = 0

y = 0

which means that z = −t, with the only possibility that z = −t = 0. This
results in the following matrix:

(
x 0
0 0

)
.

Applying the exact same argument as for M1, we realize that obtaining this
matrix as a product of A(1):s and B(1):s is impossible. Hence, M2 can not
equal the identity.

25

We now suppose the lemma to be true for all k ≤ k0, and try to prove it for
k = k0 + 1. Hence, suppose we have the following equality:

X1 . . . Xm = Y1 . . . Yn.

By lemma 8.1, we know that X1 = Y1, and since A(1) and B(1) are invertible
we obtain:

X2 . . . Xm = Y2 . . . Yn.

The above products have lengths m− 1 and n− 1, and we have that min(m−
1, n − 1) = k0. By the induction hypothesis we have that our lemma holds for
k0, and hence m = n and Xi = Yi for all i.

Corollary 8.2.1. Every specific concatenation of the matrices A(1) and B(1)
results in a unique product under matrix multiplication. This implies that the
matrices A(1) and B(1) generate a free monoid.

Lemma 8.3. We have that:

(
1 m
0 1

)
=

(
1 1
0 1

)m
= A(1)m

and also that:

(
1 0
m 1

)
=

(
1 0
1 1

)m
= B(1)m.

Proof. We proceed by induction on m. For the base case m = 0 we have that:

(
1 1
0 1

)0

=

(
1 0
0 1

)

26

and

(
1 0
1 1

)0

=

(
1 0
0 1

)
.

We assume the lemma holds for m,n ≤ k, and try to prove it holds for k + 1.
Indeed, for the (k + 1)-th step we get:

(
1 1
0 1

)k+1

=

(
1 1
0 1

)(
1 k
0 1

)
=

(
1 k + 1
0 1

)

and

(
1 0
1 1

)k+1

=

(
1 0
1 1

)(
1 0
k 1

)
=

(
1 0

k + 1 1

)

which shows that the lemma holds.

Corollary 8.3.1. The monoid generated by A(m) and B(n), for arbitrary
n,m ∈ Z+ is free.

Proof. Since we have that A(m) = A(1)m and B(n) = B(1)n, any product of
A(m) and B(n) can be rewritten as a product of A(1) and B(1). This means that
this case is analogous to the previous one, i.e. that each unique concatenation
of A(m) and B(n) is connected to a unique product. Hence, A(m) and B(n)
generate a free monoid.

We have shown that A(m) and B(n) for m,n ∈ N generate a free monoid. In
particular, this means that these elements are suitable generators for Cayley
hash functions.

27

9 The Lifting Attack

9.1 An Attack Using Euclid’s Algorithm

The hash function introduced by Zémor with generators A(1) and B(1) was
broken by Tillich and Zémor in 1993, as they were able to produce the most
efficient documented attack against the Zémor hash function yet, known as the
lifting attack. The fact that A(1) and B(1) generate the entire SL(2,Z+) made
it possible to attack the hash function by lifting the representation problem to
a monoid in which it is easier to solve. By using the simple Euclid’s algorithm,
the hash value could then simply be factorized into a product of A(1) and B(1).
In this chapter we will get acquainted with the main ideas of this attack, and
also look at an example.

The goal of the lifting attack is to produce a collision with a given message,
which is done by finding a matrix U in SL(2,Z+) that reduces modulo p to
the identity (see section 7.1). Given a hash value M which factors into two
products P and Q such that M = PQ, an adversary can create a new message
by concatenating P , U and Q into PUQ, which will collide with the original
message M [2]. Before we look at the attack itself, let us briefly pause to make
a group theoretic observation. We are looking for some matrix U which reduces
modulo p to the identity. We also have that the balance problem consists of
finding two strings or messages, such that they have coinciding products in
SL(2,Fp), in other words so that we have:

s1s2 . . . sn = s′1s
′
2 . . . s

′
j (6)

where s1, s2, . . . , sn, s
′
1, s
′
2, . . . , s

′
j ∈ S. Because of the group structure of SL(2,Fp),

this implies the following relation:

s1s2 . . . sns
′
j
−1 . . . s′2

−1s′1
1 = 1. (7)

Finding a factorization of (7) corresponds to breaking the representation prob-
lem, and hence we see that the group structure of SL(2,Fp) provides an equality
between the representation problem and the balance problem (see section 7.1)
[3]. We might wonder if we can simply use the trivial factorization for (7), since
we have that s|G| = 1 for any element s of a group G. But if we choose a group
of very large cardinality, say |G| = 2500, trivial factorization becomes impossible
since no message is as long as 2500 bits [3].

In order to break the representation problem, an adversary looks for a matrix
on the following form:

28

U =

(
1 + k1p k2p
k3p 1 + k4p

)

in SL(2,Z+), which clearly reduces modulo p to the identity. Important to note
here is the +-subscript and the fact that ki for i = 1, . . . , 4 must be positive.
In other words, U must have non-negative entries which follows from the fact
that a product of A(1) and B(1) can not have negative entries. Proceeding,
since U is a matrix of SL(2,Z+), its determinant has to be 1. This gives us the
following equation:

(1 + k1p)(1 + k4p)− k2k3p2 = 1,

which can be simplified:

(k1 + k4)p+ (k1k4 − k2k3)p2 = 0

⇐⇒
(k1 + k4) + (k1k4 − k2k3)p = 0.

The adversary then looks for a solution for (k1, k2, k3, k4) such that k1+k4 = cp,
where c is some small integer. She then chooses a random prime p′ of the same
order as p, and let k3 = p′. Substituting for k1 + k4 and k4 into the equation
above we receive:

cp+ (k1(cp− k1)− k2p′)p = 0

⇐⇒
c+ k1(cp− k1)− k2p′ = 0

⇐⇒
c+ k1(cp− k1) = k2p

′

⇐⇒
c+ k1cp− k21 = k2p

′.

This equals to solving:

k21 − cpk1 − c = 0 (mod p′).

29

By the usual formula for solving quadratic equations, this means that the dis-
criminant c2p2 + 4c must be a quadratic residue7 modulo p′. After a small
number of random tries, the adversary should be able to find c, p′ such that:





k1 =
cp+
√
c2p2+4c

2 (computation done mod p′),

k2 =
c+cpk1−k21

p′ (computation done over the integers),

k3 = p′,

k4 = cp− k1

where
√
x denotes a positive representation of a square root of x modulo p′, if

x is a quadratic residue modulo p′.

Once k1, k2, k3 and k4 are found, the remaining problem is to factor the ob-
tained matrix U , in other words the factorization problem is still left to solve.
This problem is significantly simplified by the possibility of using the Euclidean
algorithm for factoring, of which we will give a general sketch and an example
(for details see [2]). Let

U =

(
α β
γ ρ

)

be the obtained matrix which reduces to the identity modulo p. We will consider
the case where α > β, and we will perform Euclid’s algorithm on α, β. In our
initial step of the algorithm, we get:

α = βq1 + r1

β = r1q2 + r2.

The above can be expressed in matrix form the following way:

(
α β

)
=
(
r1 r2

)(1 q2
0 1

)(
1 0
q1 1

)
.

We then proceed by repeating the algorithm on (r1, r2). To generalize the
procedure, the i-th step of the Euclidean algorithm is ri−2 = qi−1ri−1 + ri, and
can be expressed in matrix form as:

7An integer q is called a quadratic residue modulo n if it is congruent to a square modulo
n, i.e. if there is an integer x such that x2 ≡ q (mod n).

30

(
ri−2 ri−1

)
=
(
ri ri+1

)(1 qi
0 1

)(
1 0

qi−1 1

)
.

We apply the Euclidean algorithm on (ri, ri+1) until we reach the standard base
vector, (ri, ri+1) = (1, 0). If the number of steps in Euclid’s algorithm n is even,
the above gives us the following factorization of U :

U = U ′
(

1 qn
0 1

)(
1 qn−1
0 1

)
. . .

(
1 0
q1 1

)

where the first row of U ′ is (1, 0) and the second row is (a, 1), where a is a
positive integer. We can then find U ′ by calculating:

U ′ = U

(
1 0
q1 1

)−1
. . .

(
1 qn
0 1

)−1
.

In order to obtain a factorization into factors A(1) and B(1), we use the result
of corollary 8.2.2 which tells us that:

(
1 q
0 1

)
=

(
1 1
0 1

)q

and

(
1 0
q 1

)
=

(
1 0
1 1

)q
.

Putting it all together, if the number of steps in the algorithm is even, we will
have found a factorization on the form:

(
α β
γ ρ

)
= A(1)qnB(1)qn−1 . . . A(1)q2B(1)q1

where q1, q2, . . . , qn are the quotients in Euclid’s algorithm.

31

Example 9.1 (The lifting attack). We will go through every step of a slightly al-
tered example originally found in [2], illustrating how Euclid’s algorithm should
be used. Let p = 5, and we choose c = 1. We now need to find p′ such that
c2p2+4c is a quadratic residue modulo p′, in other words 1·25+4·1 = 29 must be
a quadratic residue modulo p′. Taking p′ = 7 we have that 29 ≡ 1 ≡ 62 mod 7.
This gives us the following equation:

k21 − 5k1 − 1 = 0 mod 7,

with solution:

k1 =
5 +
√

29

2
= 3,

which gives us the full solution





k1 = 5+
√
52+4
2 = 3 (computation done mod 7),

k2 = 1+5·3−32
7 = 1 (computation done over the integers),

k3 = p′ = 7,

k4 = 5− 3 = 2.

Having solved the above, we obtain the following matrix:

U =

(
1 + k1p k2p
k3p 1 + k4p

)
=

(
16 5
35 11

)
.

Left to do for a forger now is to factorize the above with the help of Euclid’s
algorithm, which is performed on (16, 5):

16 = 5 · 3 + 1

5 = 1 · 5 + 0.

The above can be rewritten in matrix form as:

(
16 5

)
=
(
1 0

)(1 5
0 1

)(
1 0
3 1

)
.

32

We hence have, for the factorization of U :

U = U ′
(

1 5
0 1

)(
1 0
3 1

)

⇐⇒

U ′ = U

(
1 0
−3 1

)(
1 −5
0 1

)
=

(
1 0
2 1

)
.

Putting this all together, we obtain:

(
16 5
35 11

)
=

(
1 0
2 1

)(
1 5
0 1

)(
1 0
3 1

)
.

Using corollary 8.2.2, we obtain a full factorization of U as a product of A(1)
and B(1):

(
16 5
35 11

)
= B(1)2A(1)5B(1)3 ≡

(
1 0
0 1

)
mod 5.

9.2 Avoiding the Attack

As Zémor’s first proposal of matrices A(1) and B(1) were proven to be insuffi-
cient in fulfilling the security requirements, Bromberg suggests matrices on the
form:

A(n) =

(
1 n
0 1

)
, B(n) =

(
1 0
n 1

)

where n ≥ 2. The reason for this is that while the lifting attack against the
hash function with generators A(1) and B(1) becomes possible since A(1) and
B(1) generate the whole monoid SL(2,Z+), this is, however, not the case for all
generators A(n) and B(n). In the following section I shall sketch an intuitive
explanation of why the hash function on these generators stand secure against
lifting attacks (as far as is known).

33

Bromberg proposes choosing generators A(n) and B(n) with the property that
the probability that a random matrix in SL(2,Z+) can be decomposed into a
product of A(n) and B(n), is small. In other words, we wish to find A(n) and
B(n) such that they generate a sufficiently sparse submonoid of SL(2,Z+). The
sets

{A(2) =

(
1 2
0 1

)
, B(2) =

(
1 0
2 1

)
} and {A(3) =

(
1 3
0 1

)
, B(3) =

(
1 0
3 1

)
}

fulfill this criteria [4]. Looking more closely at A(2) and B(2), the subgroup of
SL(2,Z) generated by A(2) and B(2) and their inverses consists of all matrices
on the form

(
1 + 4m1 2m2

2m3 1 +m4

)
,

where every mi is an arbitrary integer [4]. Bromberg states however, that a
generic matrix of the above form does not belong to the monoid generated by
the A(2) and B(2). This can be explained the following way; A(2) and B(2)
generate (together with their inverses) a free group, whereupon each unique
concatenation of the elements is linked to a unique product. Hence, the number
of elements generated by A(2) and B(2) together with their inverses of length
m ≥ 2 is 4·3m−1 (there are four choices for the first letter, and then 3 choices for
each following letter since an element can not be followed by its inverse), while
the number if elements represented by positive words of length m ≥ 2 is much
smaller; only 2m (there are two choices for each letter). Hence, the number of
matrices on the above form that are elements of the monoid, i.e. the words
on positive letters, is negligible [4]. Hence, we realize that the situation is very
different from the one with A(1) and B(1), where any matrix of SL(2,Z+) can
be factorized into a product of A(1) and B(1).

The lifting attack can, however, still produce collisions in the group generated
by A(2) and B(2), but it becomes futile to use on hash functions based on A(2)
and B(2) since then only positive powers of A(2) and B(2) are used. According
to Bromberg, a result for the group generated by A(3) and B(3) corresponding
to that of A(2) and B(2) has not yet been reached. Therefore, there is no
efficient algorithm capable of creating relations between words neither in the
group on A(3) and B(3) nor their monoid [4].

10 A Word on the Girth of Cayley Graphs

As articulated in their requirements, of paramount importance is the property
of collision resistance of Cayley hash functions. Since A(n) and B(n) generate a

34

free monoid in SL(2,Z+) which then are reduced modulo p to obtain elements of
SL(2,Fp), there is a lower bound for when collisions can occur. More explicitly,
at least one entry in at least one of the products must be at least p for collisions
to be possible. For the sake of security, one would prefer that collisions are
possible only for long words - that way one would have the advantage of plenty
of choices for a message before a collision can take place. One way of ensuring
collision resistance is to examine how many letters messages must contain before
a collision can occur, in other words how large p should be on the basis of how
fast the elements of the matrices grow. In fact, this speed depends on the
structure of the message. According to Bromberg, entries in a matrix product
of length k grow faster when the product is alternating in positive powers of
A(n) and B(n), i.e. when the product is on the form A(n)B(n)A(n) The
precise statement is given in the following proposition found in [4]:

Proposition 10.1. Let wm(a, b) be an arbitrary positive word of even length
m, and let Wm = wm(A(n), B(n)) with m ≥ 2. Let Cm = (A(n) · B(n))

m
2 , i.e.

the alternating product of A(n) and B(n) of length m. Then there is a row in
Cm such that:

a) its sum is at least as large as any row sum of Wm,

b) its largest entry is at least as large as the largest entry of Wm.

(Note that Bromberg arrives at a slightly different result in [4], where she claims
that the row sum of any row of Cm is at least as large as any row of Wm. This
has been altered here, since it is in fact not true for m = 2.)

Before giving a proof of the proposition, I will give a brief intuitive explanation.
First of all, multiplying any matrix X by A(n) on the right equals to adding
the first column of X multiplied by n to the second. Further, multiplying X
by B(n) on the right equals to adding the second column in X multiplied by
n to the first. Hence, when building words of A(n) and B(n), the elements
change independently row-wise; if we would multiply solely by A(n) on the
right for example, only the elements of the second column would be increasing
as multiples of the first column would be added to it. Hence no addition between
the rows occur. With this rather intuitive approach in mind, we are now ready
to give a proper proof.

Proof. We shall proceed by induction on the length of words, m = 2k, to show
that an alternating sequence of A(n) and B(n) with n ≥ 2, results in the largest
row sum and element. Our base case is m = 2, resulting in the following cases:

35

B(n)B(n) =

(
1 0
n 1

)(
1 0
n 1

)
=

(
1 0

2n 1

)

A(n)A(n) =

(
1 n
0 1

)(
1 n
0 1

)
=

(
1 2n
0 1

)

A(n)B(n) =

(
1 n
0 1

)(
1 0
n 1

)
=

(
n2 + 1 n
n 1

)

B(n)A(n) =

(
1 0
n 1

)(
1 n
0 1

)
=

(
1 n
n n2 + 1

)
.

Upon comparing the elements in the resulting products above, we find that n2+1
is the largest element, and that n2 + n+ 1 is the largest row sum, appearing in
both A(n)B(n) and B(n)A(n). Hence, our base case holds.8

We now assume our proposition to be true for sequences of m = 2k ≥ 2 alternat-
ing matrices, and we want to show it is true for sequences of m+ 2 alternating
matrices. To begin with, we will look at how multiplication with A(n) and B(n)
affects each row in a matrix. We may consider multiplication with A(n) and
B(n) as corresponding to the following transformations:

1. transformation R which takes the row vector (x, y) to (x, y + nx), which
corresponds to multiplication on the right with A(n),

2. transformation L which takes row vector (x, y) to (x+ ny, y), which cor-
responds to multiplication on the right with B(n).

These two transformations give rise to two different recurrence relations, with
R resulting in the following relation:

Xm = Xm−1

Ym = Ym−1 + n ·Xm−1

and L the following:

8Note that we have chosen to look at the alternating sequence on the form A(n)B(n)
The theorem also holds for the sequence B(n)A(n) . . . and the proof is analogous, with the
only difference that the largest row sum and element will be found in the lower row.

36

Xm = Xm−1 + n · Ym−1
Ym = Ym−1.

Let (Xm, Ym) be the row vector with the largest element and sum in the matrix
arising fromm alternating transformations on the formRL. From the recurrence
relations we can easily see that this means that Xm > Ym

9. We are now
interested to find what next transformation gives the largest element and sum
for our row vector. The (m + 1)-th transformation must result in one of the
following products:

(
Xm+1 Ym+1

)
=
(
Xm Ym

)
L =

(
Xm Ym

)(1 0
n 1

)
=
(
Xm + n · Ym Ym

)

(
Xm+1 Ym+1

)
=
(
Xm Ym

)
R =

(
Xm Ym

)(1 n
0 1

)
=
(
Xm n ·Xm + Ym

)
.

Since Xm > Ym, we have that Ym + n ·Xm is the largest element of the above,
and Ym + (n+ 1) ·Xm is the largest row sum by the same argument.

From the recurrence relations we can see that the case where Ym > Xm is
completely analogous to the above, with the only difference that applying L
gives rise to the largest element and row sum. Since:

Ym+1 = Ym + n ·Xm > Xm = Xm+1,

we have that when applying L to (Xm+1, Ym+1) we receive Xm+1 + n · Ym+1 as
the largest element and Xm+1 + (n + 1) · Ym+1 as the largest row sum by the
exact same argument as above. Hence, if we want our row to grow as fast as
possible, the most advantageous choices for transformations m + 1 and m + 2
are R and L respectively. (Corresponding to multiplication with A(n)B(n).)

Finally, we need to make sure that no other row can somehow result in a larger
maximum element or larger sum than (Xm, Ym) when applying the (m+ 1)-th
or (m+2)-th transformation to it. Hence, let’s suppose we have some other row
(X ′m, Y

′
m) that is as large as possible while still having a smaller sum and smaller

largest element than (X,Y). If we can show that this row still remains smaller
than (X,Y), the same will definitely hold for rows with smaller elements. From
our induction hypothesis, we know that X ′m < Xm and X ′m + Y ′m < Xm + Ym,

9If we would have that Ym > Xm despite our last transformation being L, we would
have the impossible situation (given that Xm, Ym ≥ 0 and n ≥ 2): Ym−1 = Ym > Xm =
Xm−1 + n · Ym−1.

37

but we will let Y ′m > Ym in order to make (X ′m, Y
′
m) as large as possible. We

have the following possible transformations for (X ′m, Y
′
m):

(
X ′m+1 Y ′m+1

)
=
(
X ′m Y ′m

)
L =

(
X ′m Y ′m

)(1 0
n 1

)
=
(
X ′m + n · Y ′m Y ′m

)

(8)

(
X ′m+1 Y ′m+1

)
=
(
X ′m Y ′m

)
R =

(
X ′m Y ′m

)(1 n
0 1

)
=
(
X ′m n ·X ′m + Y ′m

)
.

(9)

When comparing (Xm+1, Ym+1) with (8) we have:

X ′m + n · Y ′m = X ′m + Y ′m + (n− 1) · Y ′m < Xm + Ym + (n− 1) ·Xm = Ym + n ·Xm

since by assumption Xm > X ′m and Xm + Ym > X ′m + Y ′m. Hence, the largest
element can still be found in (Xm+1, Ym+1). By the same argument, we have
that:

X ′m + Y ′m + n · Y ′m < Xm + Ym + n ·Xm,

showing that the largest row sum is also found in (Xm+1, Ym+1).

Upon comparing (9) with (Xm+1, Ym+1) we find:

n ·X ′m + Y ′m = (n− 1) ·X ′m +X ′m + Y ′m < Xm + Ym + (n− 1) ·Xm

since by assumption Xm > X ′m and Xm + Ym > X ′m + Y ′m. Again, by the same
argument we find for the row sums that:

n ·X ′m +X ′m + Y ′m < n ·Xm +Xm + Ym.

The argument is analogous when Y > X, with the difference that we need to
check the row (X ′′, Y ′′) where Y > Y ′′, X + Y > X ′′ + Y ′′ and X ′′ > X. This

38

actually applies to our (m + 2)-th transformation, since Xm+1 > Ym+1. From
this observation, we can conclude that no other row vector can overtake the
alternating sequence in the (m+ 2)- th transformation.

In the product A(n)B(n) we have a row with the property that it has both the
largest row sum and element, namely the row (n2+1, n). By the induction above,
we have in fact shown that this row will grow the fastest and remain the largest
row of the matrix when applying an alternating sequence of transformations to
it. Any other row (X ′, Y ′), appearing either in the same matrix as our fastest
growing row or in some other matrix resulting from some product of A(n) and
B(n), will hence remain smaller. This completes the proof.

We will now calculate the minimum length of products on A(2) and B(2) for
which an entry larger than p can occur. Since the matrix entries of the alter-
nating product Cm grow faster than the elements of any other matrix product,
Cm will be the first word containing an element larger than p. This also means
that it is the shortest word capable of producing a collision with another word.
Hence, we only need to consider powers of C(2) = A(2)B(2) in our below propo-
sition, where we investigate how long words must be before one element in the
matrix product may exceed p. The proposition is based on an example in [4]
but presented in a more elaborate version here.

Proposition 10.2. Let C(2) = A(2)B(2) =

(
5 2
2 1

)
, and denote the n-th power

of C(2) by (C(2))n =

(
an bn
cn dn

)
. We claim that as long as n < log3+

√
8p, all

elements in (C(2))n are smaller than p.

Proof. We claim that for the (n+ 1)-th power of C(2) we get:

(
an bn
cn dn

)(
5 2
2 1

)
=

(
5an + 2bn 2an + bn
2an + bn an

)

which yields the following recurrence relations:

an = 5an−1 + 2bn−1
bn = cn = 2an−1 + bn−1
dn = an−1.

39

We prove the above recurrence relation by induction on n. We examine the base
case n = 1:

(C(2))1 =

(
1 0
0 1

)(
5 2
2 1

)
=

(
5 2
2 1

)

which holds. We now suppose our hypothesis holds for all powers n0 ≤ n of
C(2), and prove that it holds for the (n+ 1)-th power:

(C(2))n+1 =

(
5an−1 + 2bn−1 2an−1 + bn−1
2an−1 + bn−1 an−1

)(
5 2
2 1

)

=

(
5(5an−1 + 2bn−1) + 2(2an−1 + bn−1) 2(5an−1 + 2bn−1) + 1(2an−1 + bn−1)

5(2an−1 + bn−1) + 2(an−1) 2(2an−1 + bn−1) + an−1

)

=

(
5an + 2bn 2an + bn
2an + bn an

)
,

showing that our claim holds.

We now continue to solve the recurrence relations. Subtracting 2bn from an, we
receive:

an − 2bn = 5an−1 + 2bn−1 − 2(2an−1 + bn−1) = an−1

⇐⇒
2bn = an − an−1

and hence we get for bn−1:

2bn−1 = an−1 − an−2.

Plugging in the obtained values in the recurrence relations we get:

an = 6an−1 − an−2

40

bn = 6bn−1 − bn−2.

We get the following characteristic equation for an:

crn − 6crn−1 + crn−2 = 0,

which is reduced to

r2 − 6r + 1 = 0

with solutions r = 3 ±
√

8. We are looking for a solution on the form an =
C1(3 +

√
8)n + C2(3 −

√
8)n. We use initial values from (C(2))0 (the identity

matrix) and (C(2))1:

1 = a0 = C1 + C2

5 = a1 = C1(3 +
√

8) + C2(3−
√

8).

Solving for C1 and C2 we receive C1 = 1
2 + 1√

8
and C2 = 1

2 − 1√
8
. This gives

the general solution

an = (
1

2
+

1√
8

)(3 +
√

8)n + (
1

2
− 1√

8
)(3−

√
8)n.

Similarly we get for b0 and b1:

0 = b0 = D1 +D2

2 = b1 = D1(3 +
√

8) +D2(3−
√

8)

with solutions D1 = 1√
8

and D2 = − 1√
8
, which gives us the general solution

bn =
1√
8

(3 +
√

8)n − 1√
8

(3 +
√

8)n.

From this we see that an is the fastest growing element when taking powers of
C(2). This entry is smaller than p as long as n < log3+

√
8p.

41

As we have already stated, for a collision to occur at least one entry in at
least one of the matrix products must be at least p. This means, using the
proposition above, that as long as n < log3+

√
8p, we know that C(2)n fails to

produce collisions with other words. We have that (C(2))n has length 2n (since
C(2) = A(2)B(2)), and hence no two positive words of length less than or equal
to m can be equal as long as m < 2log3+

√
8p = log√

3+
√
8
p. The fact that words

up to this length are definitely safe from collisions, simultaneously gives us a
lower bound for the girth of the graph, leading us to the below corollary from
[4].

Corollary 10.2.1. There are no collisions of hash values, i.e. no collisions of
words u, v on the form u(A(2), B(2)) = v(A(2), B(2)), as long as u and v are of
length less than log√

3+
√
8
p. In particular we have that the girth of the Cayley

graph of the monoid generated by A(2) and B(2) is at least log√
3+
√
8
p.

The results from the above calculations can be used for finding a suitable order
of p. For example if p is of the order 2256, there will be no collisions of positive

words u and v of length less than 203. As this is accounts for
202∑

k=0

2k = 2203 − 1

different hash values, upon comparing with for example SHA-1 which produces
a 160-bit hash value (and thereby according the the pigeon hole principle has
2160 different possible hash values), we realize that this is a satisfying result.

11 Conclusion

We have introduced the concept of hash functions in general and in particular
Zémor’s Cayley hash function which uses matrices A(1) and B(1). Further,
we have seen how this first hash function became subject to the lifting attack,
which lifts the representation problem to SL(2,Z+) before using the rather
simple Euclid’s algorithm for factoring. This attack did, however, prove to be
futile in breaking the hash functions introduced by Bromberg. Although capable
of producing attacks towards the group generated by A(2) and B(2), the lifting
attack fails to find relations between words in the monoid generated by the same
elements, and therefore the hash function remains safe. We also calculated a
lower bound on the length of collisions for the hash function corresponding to
A(2) and B(2), where we found that if p is of the order 2256, no collisions of
positive words of length less than 203 will occur. Finally, according to Bromberg,
at this time there are no known attacks to the hash function corresponding to
A(2) and B(2) nor to the one corresponding to A(3) and B(3), and hence the
security of these hash functions is - to the best of our knowledge - intact [4].

42

References

[1] L. Bromberg, Cryptographic hash functions and some applications to in-
formation security in Combinatorial and additive number theory II, 2017,
85-97.

[2] J.-P. Tillich and G. Zémor, Group-theoretic hash functions in Algebraic Cod-
ing, 1993, 90-110.

[3] J.-P. Tillich and G. Zémor, Hashing with SL2 in CRYPTO 1994, 1994, 40-49.

[4] L.Bromberg, V. Shrilrain and A. Vdovina, Navigating in the Cayley graph
of SL2(Fp), Semigroup Forum, 2017.

[5] C. Petit, On graph-based cryptographic hash functions, Université Catholique
de Louvain, 2009.

[6] B. Sosnovski, Cayley Graphs of Semigroups and Applications to Hashing,
City University of New York (CUNY), 2016.

[7] J. Hoffstein, J. Pipher, J. H. Silverman, An Introduction to Mathematical
Cryptography, Springer, 2014.

43

