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Abstract

This essay sets out to give an account on Johannes Kepler’s planetary model. It starts by looking
at the Platonic solids, which play a major role in Kepler’s theory, and leads us back to the Greek
mathematicians and philosophers, especially Euclid and his mathematical text the Elements. We
look at the proof from the Elements of why there are only five Platonic solids and compare that
proof to a more modern proof by Euler during the eighteenth century. We then move on to look
at the time Kepler lived in to finally conclude how he constructed his planetary model.
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1 Introduction

Why waste words? Geometry, which before the origin of things was coeternal with the divine mind
and is God himself (for what could there be in God which would not be God himself?), supplied
God with patterns for the creation of the world, and passed over Man along with the image of God;
and was not in fact taken in through the eyes.

Johannes Kepler in Harmonice Mundi 1619.

This essay sets out to give an account on Johannes Kepler’s planetary model presented inMysterium
Cosmographicum in 1596 and then in a second edition in 1621. It starts by looking at the Platonic
solids, which play a major role in Kepler’s theory, and leads us back to the Greek mathematicians
and philosophers. We delve into some of the philosophy of Plato and the reason the Platonic solids
has been named after him. We then look more closely how the solids are formed which introduces
Euclid and his mathematical text the Elements. We look at the proof from the Elements of why
there are only five Platonic solids and compare that proof to a more modern proof by Euler during
the eighteens century. We then move on to look at the time Kepler lived in to finally conclude how
he constructed his planetary model.

As we move through Kepler’s model, we start with what sparked his initial idea and then how he
divides the Platonic solids in two classes by stating three of them being primaries and two secon-
daries due to their mathematical compositions. This divide leads us to how the solids are placed
between the planet’s orbs and Kepler’s reasoning for why the order made sense. He also justifies
the placement of the solids by comparing the ratio between the inscribed and the circumscribed
sphere of the Platonic solid to Copernicus observed data of the planet’s orbs and therefore we look
at the calculations of the ratios of the cube, icosahedron and tetrahedron’s spheres. We then look
at the duality between the cube and octahedron as well as the icosahedron and the dodecahedron
to also get the ratios of the octahedron and dodecahedron.

Finally, we conclude this essay by stating that although Kepler’s planetary model was wrong it
did allow for him to make other scientific discoveries that we use till this day as well as laying the
foundation for Isaac Newton’s work on the laws of motion.
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2 Background

The Platonic solids have been known for thousands of years. When exactly they were discovered
is unknown, but stones carved in a similar manner to the regular polyhedral have been found in
Scotland dating back to the late Neolithic or early Bronze Age, between 3200 and 1500 BC.

Figure 1: Carved stones found in Scotland believed to be from 2000 BC

What they were used for, or if they were simply the very beginning of abstract mathematical
thinking, we do not know [14] but as figures we can assume they have fascinated mankind for
a long time. The first known written account of them can be traced back to the Pythagoreans
around the sixth century BC and we believe they were the first to study the regular solids [12].
The first proof of why there are only five regular solids can be found in the Elements written by
Euclid around 300 BC [12]. And though Euclid is the one known and often the one credited for
the mathematics in the Elements it is believed that he was more of a collector of the thoughts
of others. Many historians contend that most of the mathematics in Book XIII of the Elements,
where we find the regular solids, are due to Theaetetus. Theaetetus was a Greek mathematician
and lived around 400 BC. His friend and teacher, the influential philosopher Plato (c. 427-347
BC) wrote about him in two of his dialogues. Plato also wrote about the regular solids in his work
Timaeus, a philosophical account of how God created the Universe and were he connects the five
figures to the elements and the whole creation, which is why they are known as the Platonic solids.
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3 The Platonic solids

To understand the Platonic solids we start by looking at the components that form the Platonic
solids faces, the polygons.

3.1 Polygons

A polygon, from its Greek meaning ’many’, ’much’ and ’corner’, ’angle’ [14], is a two-dimensional
polytope that has straight line edges and vertices. We need to have at least three vertices connected
by edges to form a closed figure to get a polygon but there is no upper limit in how many vertices a
polygon may have. We can therefore create an infinite number of polygons by connecting vertices
by edges.

Figure 2: Polygons ordered in different classifications.

As shown in Figure 2 the polygons can be classified in a number of different ways but the one class
we are going to have a closer look at is the class of convex regular polygons. Below follows some
definitions

Definition 3.1. A polygon is called equilateral if all its edges are the same length.

Definition 3.2. A polygon is called equiangular if all its interior angles are equal.

Definition 3.3. A polygon is regular if it is both equilateral and equiangular.

In other words, a convex polygon is called regular if all its sides have the same length, and all its
angles are congruent [14]. From this follows that all interior angles are less than 180°.

3.2 Polyhedra

Now, as we have our building blocks, we can move to three dimensions and our Platonic solids.
Using the regular polygons, we have the faces to form a polyhedron. A polyhedron is the three-
dimensional equivalent to the polygon and is made up of edges, vertices and the already mentioned
faces, see Figure 3 depicting one of the regular polyhedron; the cube with the edges, vertices and
faces clearly marked. If all the faces are regular polygons and the regular polygons are all the
same, we get a regular polyhedron. To clarify, for a polyhedron to be regular it needs to satisfy
the following conditions [12]:
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Figure 3: The cube

1. The polyhedron is convex.

2. Every face of the polyhedron is a regular polygon.

3. All faces are congruent (identical).

4. Every vertex is surrounded by the same number of faces.

The figures that meet these conditions are what is known as the Platonic solids. They are five in
number, in comparison to the infinite number of polygons [12], and first proved to be only five in
Euclid’s the Elements, which we will return to in Chapter 4.

The five Platonic solids are:

• the regular tetrahedron,

• the regular cube,

• the regular octahedron,

• the regular icosahedron,

• the regular dodecahedron.

They are often referred to, and will be throughout this essay, as only the tetrahedron, cube,
octahedron, icosahedron and dodecahedron i.e. without ’regular’ preceding them.

Figure 4: Tetrahedron, Octahedron, Icosahedron, Cube and Dodecahedron

The tetrahedron, the octahedron and the icosahedron are all three formed by the equilateral trian-
gle, four for the tetrahedron, eight assembles to the octahedron, and twenty form the icosahedron.
The cube is formed from six squares and the dodecahedron is made from twelve pentagons. Table
3.2 shows the different number of vertices, edges and faces of each solid.
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Polyhedron Vertices Edges Faces

Tetrahedron 4 6 4
Cube 8 12 6

Octahedron 6 12 8
Icosahedron 12 30 20

Dodecahedron 20 30 12

Table 3.2

3.3 The history behind the name

So how is it that the regular polyhedrons are referred to as the Platonic solids? The name is derived
from the Greek philosopher Plato who, in his work Timaeus [11] from around 360 BC, discusses
the solids. In the text, the character Timaeus tells the story of the creation, explaining how God
desired that all things should be good, so far as this was possible [13]. He made the world in the
shape of a sphere, the most perfect shape possible and continues to describe the smallest parts there
is in geometrical terms. “The building blocks of matter are the regular polyhedra, which themselves
are formed from regular polygons, which in turn are ultimately pieced together from two types of
tiny triangles.” [13]. He then goes into a detailed account of the tiny triangles and how they are the
‘most beautiful’ triangles, but we shall not linger on those triangles but instead jump straight to
the solid figures; the tetrahedron, the octahedron, the icosahedron, the cube and the dodecahedron.

What then follows in Plato’s Timaeus is that the Creator makes the elements out of these five
solids, who in turn construct the world. Fire was made from the tetrahedron, air from the octa-
hedron, water from the icosahedron and earth was made from the cube. As there are only four
elements, he uses the fifth solid, the dodecahedron, for the heavens. Stephenson [13] writes in
The Music of the Heavens: Kepler’s Harmonic Harmony (1994) how this description of the world
resonated through the Western world and became firmly established, clear examples can be found
within the arts amongst other places. Figure 5 shows the regular polyhedron as printed in Kepler’s
Harmonice Mundi (1619) with the images inside the solids illustrating the elements [10].

Figure 5: The Platonic solid with their corresponding element.

Though Kepler was familiar with Plato’s view of the solids in connection to the elements he never
explored it further, as Field puts it ”Kepler’s main concern was, in any case, always with astronomy
and it appears that he never concerned himself directly with the properties of the elements” [3].
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4 Only five Platonic solids

In this section we will, as promised, come back to the regular polyhedra and show why there are
only five of them. The fascination for the Platonic solids has been huge throughout history with
many different proofs constructed as for why there are only five. But let us start by looking at
what Kepler worked with and often referred to in his own work, the proof in Euclid’s Elements.

4.1 Euclid’s proof

First a definition from Euclid, he defines a solid angle as follows.

Definition 4.1. A solid angle is the inclination (constituted) by more than two lines joining one
another (at the same point), and not being in the same surface, to all of the lines. Otherwise,
a solid angle is that contained by more than two plane angles, not being in the same plane, and
constructed at one point [4].

Field summarises it more clearly as ’a solid angle is an angle formed by three or more planes
intersecting at a common point (the vertex)’ [3]. Both of these definitions are a bit simplified in
the view of modern mathematics so we will have a closer look at the definition of a solid angle we
know of today.

A solid angle is the analogy of a plane angle’s one dimensional angle but in three dimensions.
Instead of finding the angle in a circle we find it in the sphere. In the same way a plane angle of
the full circle gives us 2π radians a solid angle of the full sphere is 4π steradians as a solid angle is
measured in steradians, sr. We have that the mid-point of the sphere being the vertex where the
lines of a closed curve on the surface of the sphere meet, as shown in Figure 6. The area, a, that

Figure 6: A solid angle projected on the unit sphere.

the curve encompassed divided with the square radius, r of the sphere gives us the solid angle. Let
a solid angle be ω, then

ω =
a

r2
.

To connect this to our solids, let us look at the cube.

Place a cube in a sphere, as shown in Figure 7, with the mid-point of the cube being the same as the
mid-point of the sphere. Then the solid angle with the mid-point of the cube and sphere being the
vertex is limited by the cubes sides projected onto the sphere. Since the cube is symmetrical and
has six sides one side is subtended by one-sixth of the whole sphere giving us full sphere

6 = 4π
6 = 2π

3
steradians.
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Figure 7: The solid angle of one side of the cube.

Though the example above makes for a very clear image it is not quite the solid angle of the cube
we are interested in. The solid angle we want to look at is the one where one of the cube’s vertices
is the mid-point of the sphere. This makes the diagonal, from said vertex to the opposite vertex,
the radius of the sphere. The area on the sphere that we are interested in is thus the area that
is limited by the three faces of the cube. This area can be calculated with a complicated formula
but let us look at an informal, more intuitive argument. Place a cube, c with seven more cubes of
same size to form a bigger cube, C, see Figure 8. Let the same vertex of the above cube be the

Figure 8: Solid angle from the vertex of a cube.

mid-point, O of cube C having placed the other seven cubes accordingly, making one vertex from
each of the eight cubes meet in O. Let the sphere, S circumscribe cube C, and thus having the
same mid-point as cube C. The planes corresponding to the faces of the eight smaller cubes then
clearly divides the sphere in eight area segments making it easy to see that the solid angle of the
vertex in one of the smaller cubes being one-eights of the full sphere, i.e. 4π

8 = π
2 steradian.

Let us now come back to the proof of why there is only five regular polyhedra. Both Euclid and
Kepler structured their works starting with more simpler propositions and proofs to then build
up to more complicated ones often having the latter referring back to the former. So for us to
understand the proof of the five solids that Euclid gives, and later on Kepler gives an account
of, we need to first look at two earlier proposition. Proposition 20 and 21 from Book 11 in the
Elements [4] both taken from Richard Fitzpatrick’s 2007 translation of said book. Let us start
with Proposition 20.
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Figure 9: A solid angle

Proposition 4.1. If a solid angle is contained by three plane angles, then the sum of any two is
greater than the remaining one.

Proof. Let the solid angle at A be contained by the three plane angles BAC, CAD and DAB, see
Figure 9. I say that the sum of any two of the angles BAC, CAD and DAB is greater than the
remaining one.
If the angles BAC, CAD and DAB are equal to one another, then it is clear that the sum of any
two is greater than the remaining one. But, if not, let BAC be greater. In the plane through BA
and AC, construct the angle BAE equal to the angle DAB at the point A on the straight line
AB. Make AE equal to AD, draw BEC across through the point E cutting the straight lines AB
and AC at the points B and C, and join DB and DC.
Now, since DA equals AE, and AB is common, therefore two side are equal to two sides. And the
angle DAB equals the angle BAE, therefore the base DB equals the base BE. And, since, from
the triangle inequality, the sum of the sides BD and DC is greater than BC, and of these DB was
proved equal to BE, therefore the remainder DC is greater than the remainder EC.
Now, since DA equals AE, and AC is common, and the base DC is greater than the base EC,
therefore the angle DAC is greater than the angle EAC. But the angle BAE equals the angle
DAB, therefore the sum of the angles DAB and DAC is greater than the angle BAC.
Similarly we can prove that the sum of any two of the remaining angles is greater than the remaining
one.
Therefore, if a solid angle is contained by three plane angles, then the sum of any two is greater
than the remaining one.

This proposition is used in the following proposition, Proposition 21 from Book 11 [4]. We have

Proposition 4.2. Any solid angle is contained by plane angles whose sum is less than four right
angles [4].

Figure 10: A solid angle
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Proof. Let the solid angle A be contained by the plane angles BAC, CAD, and DAB, see Figure
10. I say that the sum of the angles BAC, CAD, and DAB is less than four right-angles.
For let the random points B, C, and D have been taken on each of the straight-lines AB, AC, and
AD respectively. And let BC, CD, and DB have been joined. And since the solid angle at B is
contained by the three plane angles CBA, ABD, and CBD, the sum of any two is greater than
the remaining one, as seen in Proposition 4.1. Thus, the sum of CBA and ABD is greater than
CBD. So, for the same reasons, the sum of the angles BCA and ACD is also greater than BCD,
and the sum of CDA and ADB is greater than CDB. Thus, the sum of the six angles CBA,
ABD, BCA, ACD, CDA, and ADB is greater than the sum of the three angles CBD, BCD,
and CDB. But, the sum of the three angles CBD, BDC, and BCD is equal to two right-angles.
Thus, the sum of the six angles CBA, ABD, BCA, ACD, CDA, and ADB is greater than two
right-angles. And since the sum of the three angles of each of the triangles ABC, ACD, and ADB
is equal to two right-angles, the sum of the nine angles CBA, ACB, BAC, ACD, CDA, CAD,
ADB, DBA, and BAD of the three triangles is equal to six right-angles, of which the sum of the
six angles ABC, BCA, ACD, CDA, ADB, and DBA is greater than two right-angles. Thus, the
sum of the remaining three angles BAC, CAD, and DAB, containing the solid angle, is less than
four right-angles.
Thus, any solid angle is contained by plane angles whose sum is less than four right-angles. Which
is the very thing it was required to show.

Note: This proposition is only proved for the case of a solid angle contained by three plane
angles. However, the generalisation to a solid angle contained by more than three plane angles is
straightforward.

Now, finally, the proof of why there is only five Platonic solids. From Richard Fitzpatrick’s trans-
lation of the Elements [4] we have:

Theorem 4.3. So, I say that, beside the five aforementioned figures, no other (solid) figure can
be constructed (which is) contained by equilateral and equiangular (planes), equal to one another.

What follows is the proof which have been slightly rewritten here for the purpose of this essay with
added figures for clarity.

Proof. From definition 4.1, a solid angle cannot be constructed from two triangles, or indeed from
two planes of any sort. The solid angle of the tetrahedron is constructed from three equiangular
triangles, that of the octahedron from four equiangular triangles and that of the icosahedron from
five equiangular triangles. A solid angle cannot be made from six equilateral and equiangular
triangles set up together at one point. For, since the angles of the equilateral triangle are each
two-thirds of a right-angle, the sum of the six plane angles containing the solid angle, will be four
right angles. That very thing is impossible. For every solid angle is contained by plane angles
whose sum is less than four right angles from Proposition 4.2 and shown in Figure 11.

Figure 11: The solid angle of the tetrahedron, octahedron and icosahedron.
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For the same reason, a solid angle cannot be constructed from more than six plane angles equal to
two-thirds of a right angle either.
The solid angle of the cube is contained by three squares.
A solid angle contained by four, or more, squares is impossible. For, again, the sum of the plane
angles containing the solid angle will be four right-angles or greater. See Figure 12.

Figure 12: The solid angle of the cube.

The solid angle of a dodecahedron is contained by three equilateral and equiangular pentagons i.e.
regular pentagons.
A solid angle contained by four, or more, regular pentagons is impossible. For, the angle of a
regular pentagon being one and one-fifth of right-angle, four such angles will therefore be greater
in sum than four right-angles. The very thing is impossible. See Figure 13. And, on account of

Figure 13: The solid angle of the dodecahedron.

the same absurdity, a solid angle cannot be constructed from any other regular polygonal figure
either. Thus, beside the five solid figures, no other solid figure can be constructed by equilateral
and equiangular planes.

4.2 Euler’s proof

The above proof by Euclid has been criticised throughout history for not being rigorous enough
[2] so to really convince ourselves that they indeed are only five regular polygons we are going to
look at the proof Euler found in the eighteenth century. Leonhard Euler (1707-1783) studied the
polyhedron and arrived at what is today know as Euler’s polyhedron formula which states that for
any polyhedron, with V vertices, E edges and F faces, they satisfy the relationship [12]

V − E + F = 2.

Using this formula he proved that, indeed there is five and only five regular polyhedral. This proof
has also been criticised mainly due to Euler’s unstated assumption that all polyhedra are convex
which his definition of polyhedra is not [12]. But for the purpose of this essay let us assume they
are indeed convex and let us look at the proof [12].
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Theorem 4.4. There are at most five regular polyhedra.

Proof. Assume that the polyhedron has V vertices, E edges and F faces. Euler’s formula states
that

V − E + F = 2. (1)

Because the polyhedron is regular, each face is a regular polygon with the same number of edges.
Define n and m as

n = the number of edges on each face,
m = the number of edges meeting at each vertex.

The number of edges, n, must be at least three as we have seen from definition 4.1 of a solid angle.
By definition the same number of edges meet at each vertex, and hence the same number of faces
also meet at each vertex. This number, m must therefore also be at least three.

Counting all edges on each face gives us F · n, but because each edge is shared by two faces
every edge is counted twice. This gives us the following relationship

E =
F · n
2

.

Similarly, each face has n vertices, but when counting all the vertices on every face the vertices are
counted m times too many as there are m faces meeting at each vertex. So,

V =
F · n
m

.

Substituting E and V in Euler’s formula, (1), gives us

Fn

m
− Fn

2
+ F = 2

and solving for F gives us

F
( n
m
− n

2
+ 1
)
= 2

F

(
2n− nm+ 2m

2m

)
= 2

F =
4m

2n− nm+ 2m
.

We know that both F and 4m are positive. So for the last equation to be true, it must be the case
that

2n−mn+ 2m > 0

As stated above, both n and m are greater than three which give us the three inequalities

2n−mn+ 2m > 0 (2)
n ≥ 3 (3)
m ≥ 3. (4)

By rewriting the first inequality, (2), we get

2n−mn+ 2m > 0 ⇐⇒
2n+ 2m > mn ⇐⇒

2n > mn− 2m ⇐⇒
2n > m(n− 2) ⇐⇒

2n

n− 2
> m.
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Now adding the third inequality, (4), we have

2n

n− 2
> m ≥ 3

which gives us

2n > 3n− 6

6 > n.

Because of symmetry in 2(n+m) > mn we also get thatm < 6. We now have the three inequalities

2n−mn+ 2m > 0

3 ≤ n < 6

3 ≤ m < 6.

With only the following solutions to the system

(n,m) = (3, 3), (3, 4), (3, 5), (4, 3), (5, 3)

corresponding to the tetrahedron, octahedron, icosahedron, cube and dodecahedron respectively.

What Euler does here is, rather than to use geometry and the measures of lengths and angles that
Euclid used to draw conclusions about the global nature of the polyhedron from local information,
he does the proof purely combinatorial. The relation between the number of vertices, edges and
faces is enough to find that there are only five Platonic solids. But let us get back to Kepler who
predated Euler by about two centuries and therefore did not have access to this proof but regarded
the Euclidean mathematics highly and most likely thought it an adequate proof as he included a
summary of it in the Mysterium Cosmographicum together with a reference to Euclid [3].
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5 The time Kepler lived in

With the decline of the Greek civilisation and the entry of the Middle Ages very few received any
formal education in Europe. Only minimal teaching of geometry and arithmetic remained and
were mostly taught in monastic schools and Universities from c. 1000 AD.

It was not until the fifteenth century with the European Renaissance that the study of mathe-
matics re-emerged, and the teaching of the Greek mathematicians became the norm again. This
could be seen in artwork from that time, as artist such as Piero della Francesca and Leonardo da
Vinci, amongst others, masterful demonstration of perspective paining, often having the polyhedra
featuring in their artwork. Figure 14 shows Paolo Uccello’s, another prominent painter during the

Figure 14: Floor of St Mark’s Basilica.

Renaissance, use of polyhedral geometry in his marble mosaic on the floor of St Mark’s Basilica in
Venice.

By the time Johannes Kepler was born, in 1571, in a small town in what today is Germany,
scientific teaching had again become of big interest in Europe. In 1577, a young Kepler at only
six saw the Great Comet of 1577, which was the start of his fascination of astronomy. But at the
time, Europe was deeply religious, having gone through the reformation only recently, dividing the
God believers in two, the Catholics and the Lutherans. Kepler had a strong religious faith and
confessed to the Lutheran faith [13]. When Kepler, in 1589, enrolled at University, he was set on
becoming a theologian but was soon led to the works of Nicolaus Copernicus and astronomy by
his mathematical teacher Michael Maestlin (1550-1630) and he left his aspiration of becoming a
Lutheran minister behind.

The view of the Universe had for over 1400 years been based on Claudius Ptolemy’s (c. 100-
170 AD) model stating that the Earth was at the centre and all other heavenly bodies circled
around. Not until the beginning of the sixteenth century was this notion questioned when Coper-
nicus published, in 1543, the year of his death, On the Revolutions of the Heavenly Spheres where
he put the Sun in the centre with the planets circling around. Though his theory was mostly
rejected by intellectuals of his time and it was not until Kepler, and his polyhedral model half a
century later, that the notion of the Sun as the centre of the Universe was established.
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6 The construction of Kepler’s planetary model

Kepler’s first published work was called Introduction to the cosmographic treatises, containing the
cosmographic mystery concerning the remarkable proportion of the heavenly spheres, and concerning
the genuine and proper causes of the number, magnitude, and periodic motions of the spheres,
demonstrated by means of the five regular geometric solids or Mysterium Cosmographicum [13] as
it is generally known of today, and was his first attempt to establish the Copernican system, i.e.
moving from a geocentric world view to a heliocentric one. His main concern was trying to answer
two questions; ‘why are there six planets?’ and ‘why are the five gaps between them the particular
sizes that we can now see them to be?’ and even though he was using Copernicus heliocentric
view, it is shown in the latter question, the fact that he was focusing on the gaps, rather than
the sizes of the orbits, that he was still thinking, partly, in terms of the nested system of spheres
shown in the geocentric view [3]. However, it is clear that he placed the, then known, six planets
around the Sun in the order of; Mercury, Venus, Earth, Mars, Jupiter and Saturn.

6.1 Great Conjunction

Kepler stated in the preface of the Mysterium Cosmographicum that the polyhedral theory came
to him when teaching a class, 19 July 1595 [3], on the subject of Great Conjunctions, Field puts
it: “It seems that Kepler, like many another, found that having to teach a subject made him learn
a great deal about it.” A Great Conjunction is when the planets Jupiter and Saturn appear closest
together in the sky, and Jupiter “overtakes” Saturn in their orbits. As Jupiter moves, on average,
30° per year and Saturn only 18°, this happens approximately every twenty years. What Kepler
could see when using these observations and drawing them in the zodiac, see Figure 15, was

Figure 15: Great conjunctions

that three consecutive Great Conjunctions very nearly made an equilateral triangle, but not quite,
hence making the pattern shown in Figure 16 when more than three conjunctions were drawn.
What appeared in the figure when it was filled with consecutive conjunctions was that two circles,
a bigger one circumscribing the equilateral triangles and a smaller one very clearly distinguished to
be inscribed in the equilateral triangles, emerged with the radius of the smaller circle being nearly
half that of the outer circle. Kepler knew this because the perpendicular distance from the centre
to the side of an equilateral triangle is half the distance from the centre to a vertex [13]. This
Kepler connected to the distance between Jupiter and Saturn as he knew the radius of Jupiter’s
path is about half of Saturn’s path. He then went on to compare the radius of the other planets
with the hopes of connecting them to other polygons, but his hopes were quickly dashed as he could
not find polygons that fit with the ratios and maybe even more importantly, it did not explain
why there are six planets, with five gaps when there is an infinite number of polygons. This is
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Figure 16: Great conjunctions

when he turned to the three-dimensional figures of the regular polyhedron. “what were polygons,
plane figures, doing among the spheres of the heavens? He should use the polyhedra, solid figures,
instead.” [13]. As the regular polyhedra was well known at the time and also to Kepler, proved as
only five in numbers by Euclid in the Elements, Kepler could trust that his initial idea was strong,
as Field writes in Kepler’s Geometrical cosmology : “His theory was thus established on a secure,
Euclidean, mathematical base.”[3].

6.2 Dividing the Platonic solid in two classes

So how did he construct his planetary model with the Platonic solids? He now had exactly what
he needed, five geometrical figures; the regular tetrahedron, cube, octahedron, dodecahedron,
and icosahedron that, although composed of planes, resembled the sphere, the “most perfect of
shapes.” [13]. All their faces were equidistant from the centre (and hence were tangent to a single
inscribed sphere). All their vertices were equidistant from the centre (and defined a sphere that
circumscribed the figure). The ratio between the radii of these two spheres was thus well defined,
and characteristic, for each of the figures. A sphere’s perfection could not be constructed from
planes, but it was most nearly approached in these five figures.

What Kepler then did when creating his model was to divide the Platonic solids into two classes,
the primary and the secondary. The cube, tetrahedron and dodectahedron being primary and the
icosahedron and octahedron being secondary solids. Kepler lists seven reasons for this divide in
Chapter III of Mysterium Cosmographicum [9], they are

1. The primaries differ from each other in shape of face; the secondaries both have triangular
faces.

2. Every one of the primaries has its particular type of face: the cube has the square, the
pyramid the triangle, the dodecahedron the pentagon; the secondaries borrow the triangular
face from the pyramid.
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It could be argued here that number one and two could be made into one point as they both refer
to the configuration of the faces and number two is more of a development of number one.

3. All the primaries have a simple vertex, that is, one which is included between three faces;
the secondaries combine four or five faces in one solid angle.

This reason refers back to the solid angles in Chapter 4. It is also an illustration of Kepler’s
opinion that ’the simplest form is the most beautiful’ and his belief that God made the Universe
as beautiful as possible [3]. See Figure 17 for a visual image of reason number three.

Figure 17: The angles of the primary and secondary solids

4. The primaries owe their origin and properties to no one; the secondaries have got several
things from the primaries by borrowing, and are so to speak generated by them.

Kepler shows how to derive the octahedron from the cube and the icosahedron from the dodecahe-
dron in a diagram, see Figure 18. In the figure we also have the tetrahedron who is derived from
itself. This is what is today referred to as ’dual polyhedron’ and although Kepler did know that
it is a mutual relationship [3], i.e. the cube could just as well be derived from the octahedron and
the icosahedron from the dodecahedron he still chose to use it as a way of distinguishing between
the primary and the secondary solids as that suited his theory better.

Figure 18: Primary and secondary solids

5. The primaries cannot move harmoniously except on a diameter drawn through the centres
of a single or of opposite faces; but the secondaries on a diameter drawn through opposite
vertices.

6. It is characteristic of the primaries to stand upright, of the secondaries to balance on a vertex.
For if you roll the latter onto their base, or stand the former on a vertex, in either case the
onlooker will avert his eyes at the awkwardness of the spectacle.

Both reason five and six refer to what we today would call rotational symmetry. The primary
solids have a higher order of rotational symmetry about an axis through the centre of a face, while
the secondary figures have a higher order of rotational symmetry about an axis through an angle.
The tetrahedron answers to both since every vertex is opposite a face.
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7. Add finally that the primaries are three, the perfect number, the secondaries two, an imperfect
number; and that the former have all types of vertex, the cube a right angle, the tetrahedron
acute, and the dodecahedron obtuse, but the latter both employ a single type of angle, the
obtuse. In fact, in the case of the octahedron all three types of angle occur: the obtuse at
the junction of the faces; a right angle between two edges running from opposite vertices;
whereas the actual solid angle is acute.

A lot of Kepler’s reasoning in Mysterium Cosmographicum about the order and division of the
solids can be traced to his religious faith from statements such as ”For I think that from the love of
God for Man a great many of the causes of the features in the universe can be deduced” in Chapter
IV [9] showing that the theory Kepler was ’finding’ was in fact the intentions of God when creating
the Universe.

6.3 Placement of the Platonic solids

Having decided on the divide of the solids next came the job of placing them between the planets.
Kepler started by asserting that nothing made more sense than that the Earth, ”the pinnacle and
pattern of the whole universe,” [9] would be the heavenly body to differentiate between the primary
and the secondary and hence placing the primary solids, in the three gaps outside of the Earth
and the secondary solids in the two gaps inside. He then placed the cube in between the orbits of
Saturn and Jupiter, due to it being the most perfect of the solids. This interval was closest to the
fixed stars, most dignified part of the world aside from the Earth, so it made sense to place the
primary cube in that interval. The next solid to follow was the tetrahedron, who ”almost dared to
contend with the cube for the chief place” [9].

On the other side of Earth was then the two last orbits, the one between Earth and Venus and the
one between Venus and Mercury. One could imagine that what would follow was the octahedron
as Kepler considered it to be in higher regard stating ”that the octahedron takes precedence over
the icosahedron” [9] due to the octahedron having been derived from the cube compared to the
icosahedron that was only derived from the dodecahedron. Similarities within the two pairs can
be seen in Table 3.2 in the number of faces and vertices of the solids further establishing that the
octahedron taking after the cube in being the superior of its class. But Kepler argued that the two
classes of the five solids differed and so their heads face outwards towards different directions in the
universe and hence placing the icosahedron closest to the Earth and the octahedron, as the head
of its class, between Venus and Mercury made the most sense. Figure 19 shows Kepler’s model
of the spheres representing the orbits and the polyhedra between them as pictured in Mysterium
Cosmographicum.
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Figure 19: Kepler’s planetary model
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6.4 The ratio between the inscribed and the circumscribe sphere of the
Platonic solids

But Kepler did not just base his theory on purely theoretical hypothesise, he also showed that the
above order was indeed the way to place the Platonic solids between the planets orbs by comparing
the ratios of the inscribed to the circumscribed sphere to Copernicus observational data of the orbs.

In a similar way to what we have already seen with the polygon above, Kepler wanted to compare
the ratios between the inscribed sphere and the circumscribed sphere in each of the solids to the
ratios of the six planets orbits. So let us look at the calculations comparing the two spheres starting
with the cube.

The following calculation of the radii of the inscribed as well as the circumscribed spheres of
the cube is found in Field’s book Kepler’s Geometrical Cosmology.

Proof. Let ABCDEFGH be a cube, with centre O, as shown in Figure 20. Let the centre of the
face ABCD be P and let the side of the cube be 2a.

Figure 20: Cube

Since O is the common centre of the circumscribe sphere and the inscribed sphere the radii of
the spheres are clearly OC and OP respectively. Since P and O are the mid-points of CA and
CE respectively, it is clear that the triangles CPO and CAE are similar their corresponding sides
being in the ration 1 : 2.
Therefore

PO =
1

2
AE

= a.

In 4ABC, see Figure 21 (the cube seen from above), by Pythagoras’ Theorem we have

CA2 = AB2 + CB2

= (2a)2 + (2a)2

= 8a2.

In 4ACE, see Figure 22, ∠EAC, is a right angle, since AE, being a side of the cube, is perpen-
dicular to the face ABCD and therefore to the line AC. Therefore, by Pythagoras’ Theorem,

EC2 = AE2 + CA2

= 4a2 + 8a2

= 12a2

EC = 2
√
3a.
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Figure 21: The cube seen from above

Figure 22: The triangle found inside the cube

As O is the mid-point of EC we therefore have

OC =
1

2
EC

=
√
3a.

Therefore the ratio of the radius of the inscribed sphere to the radius of the circumscribe sphere
is 1 :

√
3.

Below follows an account of how to calculate the radii of the spheres for the icosahedron. But
compared to Fields proof this is based on analytical geometry which Kepler would not have at his
disposal as it was not invented until 1637 by René Descartes (1596-1650) and Pierre de Fermat
(1601-1665) [7].

We start by showing how to create an icosahedron in the three-dimensional space.

Definition 6.1. Let φ be the golden ratio, φ =
√
5+1
2 , i.e. the positive solution to the equation

φ2 = 1 + φ.

Theorem 6.1. An icosahedron is obtained from the vertices in the 12 points (0,±1,±φ), (±φ, 0,±1)
and (±1,±φ, 0), that create 20 equilateral triangels with side 2.
Therefore, it is a Platonic solid.

Proof. We have that the distance between two points p = (a, b, c) and q = (d, e, f) in a three-
dimensional space is obtained by

|p− q| = |(a− d, b− e, c− f)| =
√

(a− d)2 + (b− e)2 + (c− f)2. (5)

Place the points with the corresponding vertices as follows, see Figure 23.
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Figure 23: Icosahedron

α1 = (0,−1, φ) γ1 = (−1,−φ, 0) δ1 = (−φ, 0,−1)
α2 = (0, 1, φ) γ2 = (1,−φ, 0) δ2 = (φ, 0,−1)
β1 = (−φ, 0, 1) γ3 = (−1, φ, 0) ε1 = (0,−1,−φ)
β2 = (φ, 0, 1) γ4 = (1, φ, 0) ε2 = (0, 1,−φ).

The length of each edge is calculated using (5). We have

|β1 − δ1| = |(−φ− (−φ), 0− 0, 1− (−1))| =
√
0 + 0 + 22 =

√
4 = 2,

|δ1 − γ3| = |(−φ− (−1), 0− φ,−1− 0)| =
√

(1− φ)2 + (−φ)2 + (−1)2

=
√

1− 2φ+ φ2 + φ2 + 1 =
√

2 + 2(φ2 − φ) =
φ2−φ=1

√
2 + 2 = 2

and

|γ3 − β1| = |(−1− (−φ), φ− 0, 0− 1)| =
√

(φ− 1)2 + φ2 + 1

=
√
φ2 − 2φ+ 1 + φ2 + 1 =

√
2(φ2 − φ) + 2 =

φ2−φ=1

√
2 + 2 = 2

which are the three sides of the triangle 4β1δ1γ3, in Figure 23. We can see that all three sides have
the same length which was required to build one face of the icosahedron. This can be shown for
all edges and the calculations for them can be found in the Appendix. We have that the distance
from a point, p = (a, b, c) in the three-dimensional space to origo is obtained from

|(a, b, c)| =
√
a2 + b2 + c2. (6)

Therefore, all vertices have the distance

√
φ2 + 12 =

√
φ+ 2 =

√√
5 + 1

2
+ 2 (7)

to origo and we have a Platonic solid, the icosahedron.

Now till the inscribed and circumscribed spheres of the icosahedron.

The circumscribed sphere passes through all vertices of the icosahedron and shares the same mid-
point. Therefore the radius of the circumscribe sphere is the same as the distance from one vertex
to the centre of the solid. As calculated above in (7), we have that the radius of the circumscribe

sphere of the icosahedron is
√√

5+1
2 + 2.
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The inscribed sphere is tangent to the mid-point Ti of the equilateral triangle that is the face of
the icosahedron. Therefore we get that

OTi =
1

3
((φ, 0, 1), (0, 1, φ), (1, φ, 0))

=
1

3
(φ+ 0 + 1, 0 + 1 + φ, 1 + φ+ 0)

=
φ+ 1

3
(1, 1, 1)

and

|OTi| =
φ+ 1√

3
=

√
5+1
2 + 1√

3
,

where |OTi| is the radius of the inscribed sphere.

We therefore have the ratio of the inscribed sphere to the circumscribed sphere being

√
5+1
2 + 1√

3
:

√√
5 + 1

2
+ 2 (8)

which can be simplified to 1 :
√

15− 6
√
5.

Let us now do the same for the tetrahedron.

Theorem 6.2. A tetrahedron is obtained from the vertices in the four points α = (1, 0,− 1√
2
),

β = (−1, 0,− 1√
2
), γ = (0, 1, 1√

2
) and δ = (0,−1, 1√

2
), that create four equilateral triangles with the

side 2.

Proof. Place the four points with the corresponding vertices as seen in Figure 24. The length of

Figure 24: Tetrahedron
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each edge is calculated using (5) in the same way as for the icosahedron. We have that

|α− β| = |(1− (−1), 0− 0,− 1√
2
− (− 1√

2
)) =

√
22 = 2

|α− γ| = |(1− 0, 0− 1,− 1√
2
− 1√

2
)| =

√
12 + (−1)2 + (− 2√

2
)2 =

√
2 +

4

2
=
√
4 = 2

|α− δ| = |(1− 0, 0− (−1),− 1√
2
− 1√

2
)| =

√
12 + 12 + (− 2√

2
)2 = 2

|β − γ| = |(−1− 0, 0− 1,− 1√
2
− 1√

2
)| =

√
(−1)2 + (−1)2 + (− 2√

2
)2 = 2

|β − δ| = | − 1− 0, 0− (−1),− 1√
2
− 1√

2
)| =

√
(−1)2 + 12 + (− 2√

2
)2 = 2

|γ − δ| = |0− 0, 1− (−1), 1√
2
− 1√

2
)| =

√
22 = 2.

We can see that all edges forming the tetrahedron are of length 2. From (6), in the same way as
with the icosahedron we have that the distance from each vertex to origo, or the mid-point is

√
(±1)2 + (± 1√

2
)2 =

√
1 +

1

2
=

√
3

2
. (9)

And thus we have a Platonic solid, the tetrahedron.

The circumscribe sphere of the tetrahedron passes through all vertices, in the same manner as all
the other Platonic solids, and therefore the radius of said sphere is

√
3
2 from (9).

The inscribed sphere is tangent to the mid-point Tt of the equilateral triangle that is the face
of the tetrahedron. Therefore we get that

OTt =
1

3
((1, 0,− 1√

2
), (−1, 0,− 1√

2
), (0, 1,

1√
2
))

=
1

3
(1 + (−1) + 0, 0 + 0 + 1,− 1√

2
+ (− 1√

2
) +

1√
2
)

=
1

3
(0, 1,− 1√

2
)

and

|OTt| =
√
(
1

3
)2 + (− 1

3
√
2
)2

=

√
1

9
+

1

18

=

√
3

3
√
2
,

where |OTt| is the radius of the inscribed sphere.

We therefore have the ratio of the inscribed sphere to the circumscribed sphere being
√
3

3
√
2
:

√
3√
2

which can be simplified to 1 : 3.
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The same method can be used to attain the ratios of the octahedron and the dodecahedron but
let us come back to the argument of duality that Kepler uses as a reason for dividing the solids
into primaries and secondaries. To explain this we start with a definition.

Definition 6.2. The dual of a body K in the three-dimensional space is

K∗ = {(x, y, z) : ((x, y, z, ) · (x′, y′, z′) ≤ 1}

for all (x′, y′, z′) ∈ K.

From Jean Gallier’S Notes on Convex Sets, Polytopes, Polyhedra, Combinatorial Topology, Voronoi
Diagrams and Delaunay Triangulations [5] we know that the dual K∗ of a convex polyhedron K
that contains O in its interior is a convex polyhedron and K∗∗ = K. We also have that if
K ⊂ L then L∗ ⊂ K∗. And lastly, if K(R) is a ball centred at the origin with the radius R then
K(R)∗ = K( 1

R ).

Now to the regular polyhedrons.

Let C be a regular polyhedron placed symmetrically around O and assume that the circumscribed
sphere has radius R and the inscribed sphere has radius 1. Then

K(1) ⊂ C ⊂ K(R)

⇔

K(
1

R
) ⊂ C∗ ⊂ K(1).

So from this equivalence we conclude that if K(R) is the minimal ball containing C, i.e. the cir-
cumscribed sphere has radius R, then K( 1

R ) is the maximal ball contained in C∗, i.e. the inscribed
sphere has radius 1

R . Similarly, if the inscribed sphere of C has radius 1, then the circumscribed
sphere of C∗ has radius 1.

Furthermore, one can show (by a more technical argument, using rotational symmetry of the
polyhedra) that C∗ is the polyhedron that has vertices that are the midpoints of the faces of C.

Finally, since we now have the circumscribe and the inscribed sphere of the dual polyhedron as
well as the original polyhedron, we have equality between the quotients

1

( 1
R )

=
R

1
.

What we can take from the duality is that the two solids in the pair of duals, or marriage as Kepler
refers it to in Harmonic Mundi [10], have the same ratio between the circumscribe sphere and
the inscribe sphere. So, as we already know the ratio for the cubes sphere to be 1 :

√
3 we can

conclude that that is also the ratio for the octahedrons spheres. And similarly, we know the ratio
for the spheres of the icosahedrons to be 1 :

√
15− 6

√
5 and therefore that is also the ratio for the

dodecahedrons spheres.

Let us now come back to Table 3.2 from Chapter 3 showing the vertices, faces and edges of
each Platonic solid. Here shown again in Table 6.4.

Polyhedron Vertices Faces Edges

Tetrahedron 4 4 6
Cube 8 6 12

Octahedron 6 8 12
Icosahedron 12 20 30

Dodecahedron 20 12 30

Table 6.4
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Looking at the pairs we can see that the number of vertices of one in the pair corresponds to the
number of faces of the other. For example, with the cube and the octahedron; the cube has eight
vertices, the same amount as the octahedron has faces and the six faces of the cube corresponds
to the octahedrons six vertices. Same can be observed with the icosahedron and dodecahedron
confirming that we get one solid in the pair by placing vertices at the mid-points of the other solid
and connecting them.

Figure 25: Dual Platonic solids

Figure 25 shows the dual relationships, the cube is dual to the octahedron, the dodecahedron is
dual to the icosahedron and the tetrahedron is its own dual.

6.5 Calculated ratios vs observed data

Kepler used Copernicus measurements of the different orbs of the planets when comparing them
to the ratios of the inscribed sphere to the circumscribed sphere. Figure 26 shows a table of how
Kepler presented his results, here translated by Field [3]. To be able to compare the numbers,

Figure 26: Table comparing the ratios of the Platonic solids to Copernicus’ observed data.

Kepler presented his results from the Platonic solids rounding them off to three significant figures,
i.e. the ratio of the tetrahedron, 1 : 3 being 333 : 1000, the ratio of both the cube and the octahe-
dron, 1 :

√
3 being 577 : 1000 and the ratio of the dodecahedron and icosahedron, 1 :

√
15− 6

√
5

being 795 : 1000. Field has compiled another table, seen in Figure 27 that more clearly show the
relationships between the solids and the different planets orbs.
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Figure 27: Relationship between the solids and the different planets orbs.

The symbols in the figures being

Y = Saturn ♁ = Earth
X = Jupiter ♀ = Venus

♂ = Mars ' = Mercury
’th’ = theoretical ’obs’ = observational.

As we can see in the table the calculated polyhedra ratios does not align exactly with the observed
values from Copernicus. Kepler was aware of this but still thought his theory was strong enough as
theoretical and observed figures may differ. Kepler’s comment on it was ”Notice that corresponding
numbers are close to each other, and indeed in the cases of Mars and Venus, the same. Indeed in
the cases of the Earth and Mercury they are not very different: only in the case of Jupiter is there
an undue discrepancy, which however at such a great distance should surprise nobody.” showing
that he did not think the discrepancies were too big to dismiss his theory.

6.6 Then what

Kepler did try though, using Tycho Brahe, (1546-1601), a danish astronomer’s significant observa-
tional data, to get a more accurate calculation of the radii of the orbs. This still did not turn out
to yield any closer accuracy, so he then tried to modify his theory to accommodate the variations.
He introduced in Harmonice Mundi (1619), a modification of his theory that involved musical
harmonies.

The model Kepler presented in Mysterium Cosmographicum in 1596 was his very first piece of
work, and though he did later on come to criticise many parts of it he never abandoned the main
theory; to use the Platonic solids as proportions amongst the planetary spheres and as the answer
to the question ’why are there six planets?’. When he published the second edition of said book
in 1621, he added notes on almost all parts of why or how he had changed his view, but the solids
remained as the main reason as why God had created the universe in that way. As we know today,
not least from the discovery of Uranus and Neptune, his planetary model does not hold, but it did
allow him to find other theories that do hold till this day. For example, his three laws of planetary
motion that are today known as Kepler’s laws [7], has a direct path to the fundamental work of
Isaac Newton (1643-1727) on the laws of motion.

Kepler’s strong belief in God, and reasoning such as ”Geometry is unique and eternal, a reflection
of the mind of God. That men are able to participate in it is one of the reasons why man is an
image of God.” from a letter sent by Kepler to Herwart von Hohenburg in 1599, have made many
questioning if Kepler could indeed be thought of as a scientist [7]. That he most definitely can, as
even though he might have come from what we would today view as a questionable scientific foun-
dation he was responsible for the most important astronomical discoveries of his time regardless of
the purpose for his quest of knowledge.
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7 Appendix

Below follow the calculations of the lengths of all the edges of the icosahedron from Chapter 6.4.
Figure 28 show the same icosahedron as in Figure 23 with the coordinates appointed to the vertices.

Figure 28: Icosahedron

α1 = (0,−1, φ) γ1 = (−1,−φ, 0) δ1 = (−φ, 0,−1)
α2 = (0, 1, φ) γ2 = (1,−φ, 0) δ2 = (φ, 0,−1)
β1 = (−φ, 0, 1) γ3 = (−1, φ, 0) ε1 = (0,−1,−φ)
β2 = (φ, 0, 1) γ4 = (1, φ, 0) ε2 = (0, 1,−φ).

|ε1 − δ1| = |(0− (−φ),−1− 0,−φ− (−1))| =
√
φ2 + (−1)2 + (−φ+ 1)2

=
√
φ2 + 1 + φ2 − 2φ+ 1 =

√
2(φ2 − φ) + 2 =

φ2−φ=1

√
2 + 2 = 2,

|ε1 − γ1| = |(0− (−1),−1− (−φ),−φ− 0)| =
√

12 + (−1 + φ)2 + (−φ)2

=
√

1 + 1− 2φ+ φ2 + φ2 =
√

2(φ2 − φ) + 2 =
φ2−φ=1

√
2 + 2 = 2,

|ε1 − γ2| = |(0− 1,−1− (−φ),−φ− 0)| =
√
(−1)2 + (−1 + φ)2 + (−φ)2

=
√

1 + 1− 2φ+ φ2 + φ2 =
√

2(φ2 − φ) + 2 =
φ2−φ=1

√
2 + 2 = 2,

|ε1 − δ2| = |(0− φ,−1− 0,−φ− (−1))| =
√
(−φ)2 + (−1)2 + (−φ+ 1)2

=
√
φ2 + 1 + φ2 − 2φ+ 1 =

√
2(φ2 − φ) + 2 =

φ2−φ=1

√
2 + 2 = 2,

|ε1 − ε2| = |(0− 0,−1− 1,−φ− (−φ))| =
√
0 + (−2)2 + 0 =

√
4 = 2,

|δ1 − γ1| = |(−φ− (−1), 0− (−φ),−1− 0, )| =
√

(−φ+ 1)2 + φ2 + (−1)2

=
√
φ2 − 2φ+ 1 + φ2 + 1 =

√
2(φ2 − φ) + 2 =

φ2−φ=1

√
2 + 2 = 2,

|γ1 − γ2| = |(−1− 1,−φ− (−φ), 0− 0)| =
√
(−2)2 + 0 + 0 =

√
4 = 2,

|γ2 − δ2| = |(1− φ,−φ− 0, 0− (−1)| =
√
(1− φ)2 + (−φ)2 + 12

=
√

1− 2φ+ φ2 + φ2 + 1 =
√

2(φ2 − φ) + 2 =
φ2−φ=1

√
2 + 2 = 2,
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|δ2 − ε2| = |(φ− 0, 0− 1,−1− (−φ)| =
√
φ2 + (−1)2 + (−1 + φ)2

=
√
φ2 + 1 + 1− 2φ+ φ2 =

√
2(φ2 − φ) + 2 =

φ2−φ=1

√
2 + 2 = 2,

|ε2 − δ1| = |(0− (−φ), 1− 0,−φ− (−1))| =
√
φ2 + 12 + (−φ+ 1)2

=
√
φ2 + 1 + φ2 − 2φ+ 1 =

√
2(φ2 − φ) + 2 =

φ2−φ=1

√
2 + 2 = 2,

|γ1 − β1| = |(−1− (−φ),−φ− 0, 0− 1)| =
√
(−1 + φ)2 + (−φ)2 + (−1)2

=
√

1− 2φ+ φ2 + φ2 + 1 =
√

2(φ2 − φ) + 2 =
φ2−φ=1

√
2 + 2 = 2,

|γ1 − α1| = |(−1− 0, (−φ)− (−1), 0− φ)| =
√
(−1)2 + (−φ+ 1)2 + (−φ)2

=
√

1 + 1− 2φ+ φ2 + φ2 =
√

2(φ2 − φ) + 2 =
φ2−φ=1

√
2 + 2 = 2,

|γ2 − α1| = |(1− 0, (−φ)− (−1), 0− φ)| =
√
12 + (−φ+ 1)2 + (−φ)2

=
√

1 + 1− 2φ+ φ2 + φ2 =
√

2(φ2 − φ) + 2 =
φ2−φ=1

√
2 + 2 = 2,

|γ2 − β2| = |(1− φ, (−φ)− 0, 0− 1)| =
√

(1− φ)2 + (−φ)2 + (−1)2

=
√

1− 2φ+ φ2 + φ2 + 1 =
√

2(φ2 − φ) + 2 =
φ2−φ=1

√
2 + 2 = 2,

|δ2 − β2| = |(φ− φ, 0− 0,−1− 1)| =
√
0 + 0 + (−2)2 =

√
4 = 2,

|δ2 − γ4| = |(φ− 1, 0− φ,−1− 0, )| =
√

(φ− 1)2 + (−φ)2 + (−1)2

=
√
φ2 − 2φ+ 1 + φ2 + 1 =

√
2(φ2 − φ) + 2 =

φ2−φ=1

√
2 + 2 = 2,

|ε2 − γ4| = |(0− 1, 1− φ,−φ− 0)| =
√

(−1)2 + (1− φ)2 + (−φ)2

=
√

1 + 1− 2φ+ φ2 + φ2 =
√

2(φ2 − φ) + 2 =
φ2−φ=1

√
2 + 2 = 2,

|ε2 − γ3| = |(0− (−1), 1− φ,−φ− 0)| =
√

12 + (1− φ)2 + (−φ)2

=
√

1 + 1− 2φ+ φ2 + φ2 =
√

2(φ2 − φ) + 2 =
φ2−φ=1

√
2 + 2 = 2,

|β1 − δ1| = |(−φ− (−φ), 0− 0, 1− (−1))| =
√
0 + 0 + 22 =

√
4 = 2,

|δ1 − γ3| = |(−φ− (−1), 0− φ,−1− 0)| =
√
(1− φ)2 + (−φ)2 + (−1)2

=
√

1− 2φ+ φ2 + φ2 + 1 =
√

2 + 2(φ2 − φ) =
φ2−φ=1

√
2 + 2 = 2

|γ3 − β1| = |(−1− (−φ), φ− 0, 0− 1)| =
√

(φ− 1)2 + φ2 + 1

=
√
φ2 − 2φ+ 1 + φ2 + 1 =

√
2(φ2 − φ) + 2 =

φ2−φ=1

√
2 + 2 = 2

|β1 − α1| = |(−φ− 0, 0− (−1), 1− φ)| =
√

(−φ)2 + 12 + (1− φ)2

=
√
φ2 + 1 + 1− 2φ+ φ2 =

√
2(φ2 − φ) + 2 =

φ2−φ=1

√
2 + 2 = 2,

|α1 − β2| = |(0− φ,−1− 0, φ− 1)| =
√
(−φ)2 + (−1)2 + (φ− 1)2

=
√
φ2 + 1 + 1− 2φ+ φ2 =

√
2(φ2 − φ) + 2 =

φ2−φ=1

√
2 + 2 = 2,

|β2 − γ4| = |(φ− 1, 0− φ, 1− 0, )| =
√
(φ− 1)2 + (−φ)2 + 12

=
√
φ2 − 2φ+ 1 + φ2 + 1 =

√
2(φ2 − φ) + 2 =

φ2−φ=1

√
2 + 2 = 2,

|γ4 − γ3| = |(−1− 1, φ− φ, 0− 0)| =
√
(−2)2 + 0 + 0 =

√
4 = 2,
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|α2 − β1| = |(0− (−φ), 1− 0, φ− 1)| =
√
φ2 + 12 + (φ− 1)2

=
√
φ2 + 1 + φ2 − 2φ+ 1 =

√
2(φ2 − φ) + 2 =

φ2−φ=1

√
2 + 2 = 2,

|α2 − α1| = |(0− 0, 1− (−1), φ− φ)| =
√

0 + 22 + 0 =
√
4 = 2,

|α2 − β2| = |(0− φ, 1− 0, φ− 1)| =
√

(−φ)2 + 12 + (φ− 1)2

=
√
φ2 + 1 + φ2 − 2φ+ 1 =

√
2(φ2 − φ) + 2 =

φ2−φ=1

√
2 + 2 = 2,

|α2 − γ4| = |(0− 1, 1− φ, φ− 0)| =
√

(−1)2 + (1− φ)2 + φ2

=
√

1 + 1− 2φ+ φ2 + φ2 =
√

2(φ2 − φ) + 2 =
φ2−φ=1

√
2 + 2 = 2,

|α2 − γ3| = |(0− (−1), 1− φ, φ− 0)| =
√

12 + (1− φ)2 + φ2

=
√

1 + 1− 2φ+ φ2 + φ2 =
√

2(φ2 − φ) + 2 =
φ2−φ=1

√
2 + 2 = 2.
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8 List of figures

Figure 1 is collected from http://www.georgehart.com/virtual-polyhedra/neolithic.html
and accessed 2021-04-25.

Figure 2 is made by Salix alba at English Wikipedia, CC BY-SA 3.0, collected from https:
//commons.wikimedia.org/w/index.php?curid=20677030 and accessed 2021-04-08.

Figure 3 is by Study.com, collected from https://study.com/academy/lesson/counting-faces-edges-vertices-of-polyhedrons.
html and accessed on 2021-04-08

Figure 4 is collected from Richeson, D. S. (2012), page 47 [12]. I have removed the top half
of the image.

Figure 5 is collected from Kepler, J. (1981), page 111 [9]. I have removed parts of the image
to only leave the Platonic solid with the elements drawn in them.

Figure 6 is collected from Arecchi, A. V., Koshel, R. J. and Messadi, T. (2007), page 2 [1].

Figure 7 is collected from https://mathworld.wolfram.com/SolidAngle.html and accessed
on 2021-04-23.

Figure 8, Figure 9, Figure 10, Figure 11, Figure 12 and Figure 13 are drawn by me
in the online tool GeoGebra.

Figure 14 by Paolo Uccello, collected from http://www.georgehart.com/virtual-polyhedra/
uccello.html and accessed on 2021-04-26.

Figure 15 by Johannes Kepler in De Stella Nova (1606), page 25 [8]. Collected from https:
//commons.wikimedia.org/wiki/File:Keplers_trigon.jpg and accessed 2021-04-29.

Figure 16 by Johannes Kepler in Mysterium Cosmographicum (1596), page 12 [6]. Collected from
the e-book version of Stephenson, B. book, page 77 [13].

Figure 17 is drawn by me in the online tool GeoGebra.

Figure 18 by Johannes Kepler, collected from Kepler, J. (1997) [9].

Figure 19 by Johannes Kepler in Mysterium Cosmographicum (1596), between page 26 and 27 [6].

Figure 20, Figure 21 and Figure 22 are drawn by me in the online tool GeoGebra, mod-
elled on the same images in Field, J. V. book Kepler’s geometrical cosmology, page 195 and 196.

Figure 23 and Figure 24 are drawn by me in the online tool Geogebra.

Figure 25 is collected from https://slideplayer.com/slide/8141520/ and accessed 2021-05-12

Figure 26 and Figure 27 are collected from Field, J. V. (1988), page 65 and 66 respectively.

Figure 28 is the same image as Figure 23.
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