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1 A brief history

In the late 1800’s mathematicians began the development of modern set theory
with the intentions that it would be a solid foundation for all other parts of
mathematics. While doing so they encountered inconsistencies and paradoxes
within their formulations. One example is Russell’s paradox which can be stated
as follows: Let A be the set of all sets that are not members of themselves. Is A
a member of itself? If A is a member of itself it would not fit the definition of
A and thus not be a member of itself, on the other hand if A is not a member
of itself then by definition it must be a member of itself.

These issues were solved by constructing an axiomatic theory, called Zermelo-
Fraenkel set theory (ZFC). An axiomatic theory consist of a number of state-
ments called axioms, which are regarded as true. A good axiomatic theory
should be self-consistent, the axioms must not contradict each other. Secondly
the theory should not contain any redundant information as an axiom, i.e: if
a statement can be proven from other axioms it does not need to be an axiom
itself. Thirdly the axioms should be strong enough to have interesting conse-
quences.

ZFC consist of nine axioms. One of them, called the axiom of choice, has a
special status among the other axioms. The axiom of choice says that given a
collection of nonempty sets, it is possible to choose one element from each set.
Even more concretely you could imagine jars with marbles in them, the axiom
of choice lets you pick one marble from each jar. This might feel like a very
obvious statement if we are considering finitely many jars. The power of the
axiom of choice is that it can be applied to collections of arbitrarily many sets
or jars.

The axiom of choice is regarded as the most controversial axiom of ZFC.
This is because it has some consequences that seem counter intuitive or hard
to accept. One example is that the axiom of choice implies that any set can be
well ordered, which we will also show later. In this work we will investigate the
axiom of choice and some of its consequences. We will not discuss any other
axioms from ZFC. Instead we will take for granted that ZFC enables us to use
the basic concepts needed from set theory.

2 Set theoretic background

Before we start talking about the axiom of choice and its equivalent statements
I would like to present some of the concepts and tools from set theory which
will be important for the later discussions.
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2.1 Basic notation

A set is uniquely determined by its elements or members. We use the notation
x ∈ A to denote that x is a member of the set A. Two sets, A and B, are
equal if they have the same elements. In symbols we say A = B if and only if
x ∈ A ⇐⇒ x ∈ B for all x. Curly brackets containing a list of elements can
be used to represent a set, for example {1, 2, 3} and {2, 4, 6, ...} where the dots
mean that the pattern extends infinitely. We will construct sets by inferring
some rule that determines its members. For example can we construct the
natural numbers from the integers in the following way: N = {x ∈ Z | x ≥ 0}.
To represent a set of sets we can use the notation {Ai}, where there is one set
Ai for every i in some index set I. The empty set is a set that has no members
and we denote it by ∅ or {}.

We adopt the following convention regarding notation for subsets: A ⊂ B
will be used when A is a proper subset of B which means that every element in
A is also an element of B and that A 6= B. In the case that equality may also
hold we use C ⊆ D which means that either C ⊂ D or C = D.

Definition: Let A be a set. The power set of A is the set of all subsets of
A. We write the power set of A as P(A).

Example: If A = {x, y, z} then
P(A) = {∅, x, y, z, {x, y}, {x, z}, {y, z}, {x, y, z}}. Note that ∅ ∈ P(A) and

A ∈ P(A), which is true in general for power sets. Another thing to note is that
P(A) has more elements than A, this is also true in general for sets.

The two most basic operations on sets are intersection and union. We write
the intersection of A and B as A∩B and it is equal to the set of all x such that
x ∈ A and x ∈ B. Or in symbols: A ∩B = {x | x ∈ A and x ∈ B}.

The union of two sets C and D is defined as the set of all x such that x ∈ C
or x ∈ D and is written C ∪ D. In symbols: C ∪ D = {x | x ∈ C or x ∈ D}.
The union uses inclusive or which means that if x is in both C and D it is also
an element of their union.

Example: For the real and natural numbers we have N ⊂ R and thus their
intersection and union is R ∩ N = N and R ∪ N = R respectively.

As a numerical example we have A = {x, y, z}, B = {a, b, x, y}. This gives
A ∩B = {x, y} and A ∪B = {a, b, x, y, z}.

Definition: Let U be a set and A ⊆ U . The complement of A (in U) is
written Ac and is defined by Ac = {x ∈ U | x /∈ A}.

Often the set U is implied by the context and does not need to stated ex-
plicitly.
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Definition: Let A and B be sets. The set difference is denoted by A \ B
and is defined by A \ B = {x ∈ A | x /∈ B}. The difference B \ A is defined
analogously.

2.2 Partially ordered sets

We are now going to start working with the symbols ≤ and ≥. Their meaning
is very intuitive in the real numbers but we will generalise this notion so that
we can compare elements of any set.

Definition: Let T be a set equipped with a relation ≤. We say that T is a
partially ordered set if the following properties hold for all a, b, c ∈ T :

1. a ≤ a.
2. If a ≤ b and b ≤ a, then a = b.
3. If a ≤ b and b ≤ c, then a ≤ c.

When talking about partially ordered sets we may write a < b when a ≤ b
and a 6= b.

Example: The set of real numbers with their natural ordering is a partially
ordered set.

The power set P(A) of any set A together with the inclusion relation ⊆ is
also a partially ordered set.

Definition: A partially ordered set T is called a chain if it has the property
that for every a and b in T either a ≤ b or b ≤ a holds.

A chain T may also be referred to as a totally ordered set.

Example: The set of real numbers satisfy the stronger definition of a chain.
The power set P(A) of a given set A with the inclusion relation ⊆ is not a chain
however. For subsets B, C of A neither B ⊆ C nor C ⊆ B need to be true. One
example is if B and C are disjoint, i.e. B ∩ C = ∅. Then the two sets have no
elements in common and clearly none of them could be a subset of the other.

Definitions: Let T be a partially ordered set and let U be a subset of T .
We say that an element x ∈ T is an upper bound of U if u ≤ x for all u ∈ U .
If in addition to this x also has the property that x ≤ v where v is any upper
bound of U , we call x the least upper bound of U .

We also define lower bound and greatest lower bound in a similar fashion.
Let y ∈ T , then y is a lower bound of U if u ≥ y for all u ∈ U . If y also fulfills
that y ≥ w for any lower bound w of U , then y is the greatest lower bound of
U .
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Least upper bound and greatest lower bound are also called supremum and
infimum respectively.

2.3 Functions

As I will formulate it in this paper the axiom of choice is a statement about
the existence of a certain function. With this in mind we will use set theory to
define the necessary concepts to work with functions.

Definition: An ordered pair (x, y) is defined by (x, y) = {{x}, {x, y}}.

In a set the order of the elements does not matter but with this definition we
have constructed an object that has an intrinsic order. Namely this definition
ensures that if (x, y) = (x′, y′) then we must have x = x′ and y = y′. This
notion of an ordered pair will enable us to define functions. First however we
will define the Cartesian product of two sets.

Definition: For two sets A and B their Cartesian product is denoted as
A×B and defined by A×B = {(a, b) | a ∈ A and b ∈ B}.

Definition: Let A and B be sets. The subset Gf ⊆ A × B is called a
function if the following is true: For all x ∈ A and all y, y′ ∈ B we have that
(x, y) ∈ Gf and (x, y′) ∈ Gf implies y = y′.

This definition ensures that every input x can get mapped to at most one
output y.

If Gf ⊆ A× B is a function and additionally for all x ∈ A there is a y ∈ B
such that (x, y) ∈ Gf we may use the (hopefully familiar) notation f : A → B
and f(x) = y.

Suppose that X is a subset of A, then f(X) is the set of all f(x) in B such
that x ∈ X. We call f(X) the image of X.

3 The axiom of choice and
equivalent statements

3.1 The axiom of choice, AC

We are now ready to state the axiom of choice:

The axiom of choice: Let X be any set. Then there exist a function
f : P(X) → X, defined on X, such that f(A) ∈ A for every non-empty subset
A of X.
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This type of function is called a choice function. For a finite set X a choice
function obviously exists, just complete the finite process of choosing one ele-
ment from every (nonempty) subset of X.

For an infinite set it is not obvious whether we should allow this, thus one
way to interpret the axiom of choice is that it enables you to complete an infinite
process of ”choosing”. We state an alternative version of the axiom that we call
AC?.

AC?: Let {Xi} be a collection of disjoint nonempty sets. There exist a
set Y such that every y ∈ Y is an element of exactly one of the sets Xi and
furthermore for every i there is a unique element y′ ∈ Y such that y′ ∈ Xi.

In other words this means that the set Y has exactly one element in common
with each Xi and contain no other elements. We now proceed to prove that AC
is equivalent to AC?.

Proof AC ⇐⇒ AC?: First we prove that AC =⇒ AC?. Let {Xi} be a
collection of disjoint nonempty sets where i are members of some index set I.
Now form Z =

⋃
i∈I Xi. From AC we have a choice function f on Z and we can

let Y =
⋃

i∈I f(Xi). Since the sets Xi are disjoint every f(Xi) is in exactly one
Xi and for every i there is a unique element f(Xi) ∈ Y such that f(Xi) ∈ Xi.

Next we prove AC? =⇒ AC. Let W be a set. To be able to apply AC?

we need to construct a collection of disjoint nonempty subsets. Let us consider
P(W ), this is however not a collection of disjoint sets.

Suppose that j ∈ P(W ) \ ∅. Let Vj be the set of ordered pairs (v, j) where
v ∈ j. There is a one-to-one correspondence between Vj and j, namely v 7→ (v, j)
and thus we can treat Vj as a copy of j.

Now we can form the set {Vj | j ∈ P(W ), j 6= ∅} which is a collection of
disjoint copies of all subsets of W . AC? now gives that there is a set T such
that every t ∈ T is in some Vj and exactly one element from Vj is in T for all
j ∈ P(W ) \ ∅. Hence for every nonempty subset j ⊆ W there exist exactly
one element (v, j) ∈ Vj that is also an element of T . Denote this specific v
by vj . By our definition of the ordered pairs (v, j) we have that vj ∈ j. We
define a function f : P(W ) \ ∅ → W such that f(j) = vj . Since vj ∈ j we get
that f(j) ∈ j and j is an arbitrary nonempty subset of W . Thus f is a choice
function. �

The axiom of choice has been proven to be independent of the other ZF
axioms [1], meaning that ZF is consistent with the axiom of choice and its
negation. We should also note that this is only a statement about the existence
of a choice function and it tells us nothing about what the function may look
like or how to find such a function.
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3.2 Zorn’s lemma, ZL

Next we wish to state Zorn’s lemma. For this we have to introduce a new
definition:

Definition: x is a maximal element of a partially ordered set L if x < y is
not true for any y ∈ L.

Since L is only required to be partially ordered the maximal element may
not be unique. Intuitively a maximal element x is what it sounds like, namely
there is no element that is ”greater” than x. For example the real numbers have
no maximal element and any closed interval has a maximal element.

Now we can state Zorn’s lemma which, as I have previously mentioned, is
equivalent to the axiom of choice.

Zorn’s lemma: If L is a partially ordered set and furthermore every chain
in L has an upper bound in L, then L contains a maximal element.

When we say every chain in L here we mean every subset of L that is a
chain.

To get somewhat of an intuitive understanding of this lemma take any ele-
ment l1 ∈ L. If this is the maximal element ZL is satisfied. If not, there exist
an element l2 ∈ L such that l1 < l2. If again l2 is not maximal we can continue
the process until we have the chain l1 < l2 < l3 < . . . . By the assumption of
ZL this chain has an upper bound lup in L and we can now repeat the process
starting with lup. And we can again repeat this process until we find a maximal
element of L.

Now we begin to see the connection to AC as ZL tells us that this process of
finding ”larger and larger” elements of L must come to an end, and thus there
is a maximal element.

Another similarity between AC and ZL is that ZL gives only a statement
about the existence of a maximal element with no clue about how to find it or
what it looks like.

3.3 The well ordering theorem, WO

Our third statement equivalent to AC is WO and as the name suggest we need
to define well-ordered sets before we can state the axiom.

Definition: A chain X is called well-ordered if every nonempty subset of
X has a smallest element.

By smallest element of a set X we mean an element a such that a ≤ x for
all x ∈ X.
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Note that for example the natural numbers are well ordered with their natu-
ral ordering while the real numbers are not. For example, an open interval does
not have a smallest element.

With this definition in mind we can state WO.

The well ordering theorem: Any set can be well ordered.

You might begin to notice a pattern, WO does not tell us how to find the
ordering in question. Only that for any set there exist an ordering such that
the set becomes well ordered.

Our example with the real numbers of course still holds. If we accept WO
however we know that the real numbers can be well ordered, but that ordering
is certainly very hard to find if not impossible.

We have now made three different statements about sets and our main goal
now is to prove that these are all, in fact, equivalent.

4 Proof of the equivalence of AC, ZL and WO

In order to prove the equivalence of these three statements we will first prove
AC ⇒ ZL, then ZL ⇒ WO and lastly WO ⇒ AC. Thus the argument comes
full circle and we have proved the desired equivalence.

4.1 AC =⇒ ZL

Before this first proof we start with two definitions that will come in handy.

Definition: Given a partially ordered set T , a subset I is called an ideal in
T if x ∈ I and y ≤ x implies that y ∈ I.

Definition: Again let T be a partially ordered set and t ∈ T . Define S(t) to
be the set of all x ∈ T such that x < t. S(t) is then called the segment defined
by t.

We will write ST (t) to specify that the segment is to be calculated in the set
T . We state a lemma before proving the main result of the section.

Lemma 1: An ideal I in a well ordered set A is either all of A or a segment
in A.

Proof lemma 1: Let I be an ideal in a well-ordered set A. Suppose that
I 6= A. Since A is well ordered Ic has a smallest element a. We can now prove
that I = S(a). If x < a then x ∈ I because a is the smallest element that is not
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in I and hence every x < a is in I. Conversely, x ∈ I implies that x < a. This
is because otherwise a ≤ x which implies a ∈ I since I is an ideal. �

Proof AC =⇒ ZL: we take the conditions of ZL to be true: let L be
a partially ordered set in which every chain has an upper bound. From this
we need to prove that L has a maximal element. We will make a proof by
contradiction so we begin by assuming the negated statemen, i.e. we assume
that L has no maximal element.

For any chain C we let C ′ be the set of upper bounds u of C such that u /∈ C.
We can show that C ′ 6= ∅. For any chain C in L take u to be an upper bound of
C. Our assumption was that L has no maximal element and thus there exists
v ∈ L such that u < v. Thus v is obviously also an upper bound of C and
v /∈ C.

Let f be a choice function on L (provided to us by AC) and define g(C) =
f(C ′). Hence g is defined on every chain in L and g(C) is an upper bound of C
which is not contained in C.

For the rest of the proof we fix an element xL ∈ L. Let B be a subset of L
with a well-ordering. We say that B is ”special” if xL is the smallest element
of B and for any other element y ∈ B we have y = g(SB(y)). We now make a
key claim: if B and D are special subsets of L, then either B is an ideal in D
or D is an ideal in B. We now proceed to prove this key claim.

Let E be the set of elements x defined by the following two properties:
x ∈ B ∩D and SB(x) = SD(x). For any x ∈ E by definition every y ∈ SE(x) is
also in E. I.e. xL ≤ y ≤ x implies y ∈ E and thus E is an ideal in B and D.

First suppose that E ⊂ B,D, which means that E is neither equal to B nor
D. Then, by lemma 1, E = SB(v) and E = SD(w) for some v ∈ B and w ∈ D
respectively. We remember that B and D are special and thus v = g(E) and
w = g(E) which gives v = w. By the definition of E we have v ∈ E but also
E = SB(v). By the definition of a segment v /∈ E, a contradiction. Thus we
can conclude that either E = B or E = D. Since E is an ideal in B and D we
have two cases: if E = B then B is an ideal in D and vice versa if E = D. That
concludes the proof of the key claim and we can carry on with the rest of the
proof.

Let G be the union of all special subsets of L. G is a subset of L and thus
it has a partial ordering that coincides with L. Our next goal is to prove that
G is special.

We start by proving that G is a chain. Let x, y ∈ G, the definition of G
gives that x ∈ B for some special set B. Analogously y ∈ D for some special set
D. The key claim we proved says that one of B and D is an ideal in the other.
Thus we have either B ⊆ D or D ⊆ B. Hence we know that either x and y are
both elements in B or both are elements in D. The sets B and D are special
and hence they are well-ordered. The well ordering ≤ gives us that either x ≤ y
or y ≤ x must hold. Thus G is a chain.
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Before proving that G is well ordered we prove an intermediate claim. Again
let x ∈ G and hence x ∈ B for some special set B. We will prove that for y ∈ G
such that y < x, y must be an element of B. In other words SG(x) = SB(x).
Since y is a member of G we have y ∈ D for some special set D. The key claim
now give that one of B and D is an ideal in the other. We treat the two cases
separately. If D is an ideal in B we have D ⊆ B and since y ∈ D we get that
y ∈ B. In the other case, where B is an ideal in D, we have x ∈ B and y < x.
The definition of an ideal now gives that y ∈ B.

We can now prove that G is well ordered. We need to prove that A has a
minimal element for any nonempty A ⊆ G. Let x be an element of A. If x
is a minimal element of A, we are done. Lets assume that x is not minimal
in A. The segment SA(x) contains all elements of A smaller than x, hence if
SA(x) has a minimal element y then it is also a minimal element of A. Thus it
is enough to prove that SA(x) has a minimal element. Since x ∈ A and hence
x ∈ G there is a special set B with x ∈ B. Now our intermediate claim tells us
that every element of SA(x) is also an element of B, i.e. SA(x) ⊆ B. Since B
is well ordered all of its subsets has a minimal element. This proves that G is
well ordered.

To finally prove that G is special we must show that xL is the smallest
element of G and that for any other y ∈ G, y = g(SG(y)). Since G is a union
of sets that all have the xL as a minimal element, xL must also be a minimal
element of G.

Now let x be an element of G, we have x ∈ B for some special set B. Since
B is special, x = g(SB(x)). The intermediate claim gives that SB(x) = SG(x)
and hence x = g(SG(x)).

Let us now consider the set G′ = G ∪ {g(G)}. Since g(G) is a strict upper
bound of G the set G′ is well ordered and additionally xL is the smallest element
of G′. All x in G that satisfied x = g(SG(x)) will satisfy x = g(SG′(x)) and we
just have to check that this holds for the element g(G). By the definition of G′

we have SG′(g(G)) = G and thus g(SG′(g(G))) = g(G). Thus G′ is a special set
which contradicts the assumption that G is the union of all special subsets. By
this contradiction we can conclude that L must have a maximal element. �

4.2 ZL =⇒ WO

We will need a special property of chains for the final proof and thus we start
by proving two lemmas before dealing with the main course.

Lemma 2: A chain is well ordered if and only if it does not contain an
infinite descending sequence.

Proof lemma 2: Any given chain C that is well ordered can not contain
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an infinite descending sequence as this would be a subset of C with no smallest
element.

On the other hand, if we assume that C is not well ordered, there exist a set
B ⊆ C with no smallest element. We can now construct an infinite descending
sequence. First pick any element b1 in B. Since b1 is not the smallest element
we can pick another b2 ∈ B such that b2 < b1. There is also b3 ∈ B such that
b3 < b2. Thus we have the infinite descending sequence b1 > b2 > b3 > . . . . �

Lemma 3: If C is a chain and every segment in C is well-ordered, then C
is well-ordered.

Proof Lemma 3: We will make a proof by contraposition. I.e. if C is not
well ordered, Lemma 2 states that C contains an infinite descending sequence
b1 > b2 > b3 > . . . . The segment S(b1) is thus not well-ordered. �

Proof ZL =⇒ WO: We start the proof by defining a certain set L that we
will make use of in the rest of the proof.

Definition: Let A be a set. Now let L be the set of all ordered pairs (S, ρ)
where S is a nonempty subset of A and ρ is a well-ordering on S.

For the rest of the proof when referring to A and L we mean the way they
are defined above. Note that L contains multiple copies of any subset of A, each
with a different well-ordering.

We will now proceed to prove WO by showing that A itself is a set such that
(A, δ) ⊂ L for some well ordering δ. We define a partial ordering ≤L on L such
that for (B, β), (C, γ) ∈ L we take (B, β) ≤L (C, γ) to be true if and only if B
is an ideal in C and γ coincides with β when restricted to B. In the rest of the
proof we will only write out the sets in the relation ≤L and just remember that
each of them have a well ordering.

We wish to apply ZL to the set L and hence need to prove that every chain
in L has an upper bound. Let {Bi} be a chain in L where i are elements of some
arbitrary index set I. We claim that an upper bound for {Bi} is B =

⋃
i∈I Bi.

To prove that B is an upper bound of the chain {Bi} we must show that Bi ≤L B
holds for all i ∈ I. To do this we must show that B has a well ordering and
then prove that every {Bi} is an ideal in B.

We begin by defining a partial order on B. For any x, y ∈ B we know that
x ∈ Bj and y ∈ Bk for some Bj , Bk ∈ {Bi}. Since {Bi} is a chain in L either
Bj ≤L Bk or Bk ≤L Bj must be true, let us say that Bj ≤L Bk. In this case
both x and y are elements of Bk and thus for x 6= y either x < y or y < x must
hold. Hence if we can prove that B is partially ordered we also automatically
know that it is a chain. The argument works analogously if Bk ≤L Bj . If you
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compare x and y in some other set Bl the same relation still holds. This is
because {Bi} is a chain with respect to the partial ordering defined on L and
thus all sets Bi must agree on either x < y or y < x. Note here that we do not
use ≤L when comparing x and y but rather the well orderings of the different
sets in {Bi}.

Now we can prove that B is partially ordered. x ≤ x holds because all Bi

are partially ordered. If x ≤ y and y ≤ x this would hold in one Bi ∈ {Bi}
and since Bi is partially ordered we get x = y. To prove that x ≤ y and y ≤ z
implies x ≤ z just take a Bi containing all three of them. Since Bi is partially
ordered we get the desired property. We have thus proved that B is partially
ordered and hence from our previous claim it is also a chain.

Let us now prove that B is well-ordered. By Lemma 3 it is enough to prove
that every segment in B is well ordered. Let x ∈ Bi. It is enough to prove that
SB(x) ⊆ Bi since Bi is well ordered. Thus we need to show that y ∈ Bi for any
y ∈ B such that y < x. Since y ∈ B we have y ∈ Bj for some Bj . If Bj ≤L Bi

we get y ∈ Bi. If Bi ≤L Bj we have from the definition of ≤L that Bi is an
ideal in Bj . Since we have x ∈ B and y < x we get y ∈ Bi. This proves that B
is well ordered.

This also proves that Bi is a segment in B for every i ∈ I.

We have now showed that every chain in L has an upper bound. Zorns’
lemma now gives us that L has a maximal element M . Since M is an element
of L it is also a well-ordered subset of A. We can now show that M = A via
a contradiction. So assume that M ⊂ A. Then there exist an element w ∈ A
such that w /∈M . we can construct another well-ordered set M ∪{w} by taking
the well-order relation on M and letting x ≤ w for all x ∈M . We also get that
M is an ideal in M ∪ {w}. This contradicts the fact that M is the maximal
element of A and thus we must have M = A. �

4.3 WO =⇒ AC

Proof: here we take WO to be true and we wish to prove AC. Let X be a
set, from WO we know that X can be well ordered. For an arbitrary subset
A ⊆ X we define a function f such that f(A) is the smallest element of A. The
function f is well defined because X is well ordered and hence every subset A
has a smallest element. Thus f is a choice function on X. �

5 Applications

Now we have went through a lot of work to prove that the axiom of choice is
equivalent to Zorn’s lemma and the well ordering theorem and we might ask
ourselves why we even need the axiom of choice to begin with. To give some
motivation for accepting the axiom of choice we will prove two theorems that
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require the axiom of choice. Or more accurately, we will use Zorn’s lemma to
prove two important theorems from linear algebra and ring theory. We will not
give a complete introduction to the two subjects but rather just give enough
background to prove the desired theorems. Lastly we will briefly discuss another
consequence of the axiom of choice called the Banach-Tarski paradox.

5.1 Existence of bases in vector spaces

We wish to prove that every vector space has a basis. We explicitly define the
concepts of linearly independent sets and bases.

Definition: Let V be a vector space over a field F. A finite set of vectors
vi in V is linearly independent if

∑
i∈I λivi = 0 implies that λi = 0 for all i.

Where λi are elements of F and i are members of some finite index set I.

Definition: Let V be a vector space over a field F. An infinite subset
W ⊆ V is said to be linearly independent if every finite subset of W is linearly
independent.

Definition: Let V be a vector space over the field F. A linearly independent
subset B of V is called a basis if every vector v in V can be expressed as a linear
combination of vectors in B.

Theorem 1: Every vector space has a basis.

Proof Theorem 1: Let V be a vector space over F and let A be the
collection of all linearly independent subsets of V . The set A is partially ordered
by inclusion. To use Zorn’s lemma we need to prove that every chain in A has an
upper bound in A. Let {Xi} be a chain in A where i are members of some finite
index set I. I.e. the sets Xi are linearly independent and for all Xj , Xk ∈ {Xi}
either Xj ⊆ Xk or Xk ⊆ Xj holds. We form the union X =

⋃
i∈I Xi. The

set X is an upper bound to {Xi}. Next we must show that X itself is linearly
independent. We form the equation

∑
j∈J λjxj = 0 which we call ?, where

j ∈ J for some finite index set J , λj ∈ F and xj ∈ X. We will now make a
proof by contradiction to show that ? only has the trivial solution. So suppose
there is a set {λj}j∈J ⊆ F of scalars that are not all zero and satisfies equation
?. Since J is finite and {Xi} is a chain there is an m ∈ I such that xj ∈ Xm for
all j ∈ J . Since Xm is a member of {Xi} it is linearly independent and hence
λj = 0 in equation ? for all j ∈ J .

Now that we have shown that X is linearly independent we can conclude
that every chain in A has an upper bound in A. Hence Zorn’s lemma gives that
there is a maximal element in A, call it B. By the definition of A we get that
B is the maximal linearly independent subset of V . We now wish to prove that
B is a basis for V , i.e. we must show that any vector v ∈ V can be written
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as a linear combination of vectors in B. We make a proof by contradiction so
suppose that v is not a linear combination of elements in B. Since B is linearly
independent we have that the equation

∑
k∈K λkbk = 0 holds true only when

all λk = 0. Here λk ∈ F, bk ∈ B and k are members of some finite index set
K. Next we look at the equation λvv +

∑
k∈K λkbk = 0, call it 4, where λv

is some element of F. Since v is not a linear combination of vectors in B we
have

∑
k∈K λkbk 6= v for all λk ∈ F and v 6= 0. Thus equation 4 has only the

trivial solution where all λ-factors are zero. Hence the set B ∪ {v} is linearly
independent. This violates the maximality of B, we have a contradiction. �

5.2 Maximal ideals in rings

In this section we will prove that under certain conditions a ring always has a
maximal ideal. We start by defining what we mean by an ideal in a ring.

Definition: Let (R,+, ·) be a ring. We say that I is an ideal in R if it
fulfills the following properties:

1. (I,+) is a subgroup of (R,+) with the addition operation inherited
from (R,+, ·).

2. For every x ∈ R and every a ∈ I, x · a or a · x is in I.

Note that this definition guarantees the existence of ideals, namely the set
consisting of only the zero-element is an ideal.

Definition: Let (R,+, ·) be a ring and let I be an ideal in R. If I ⊂ R we
say that I is a proper ideal in R.

Lemma 4: Let (R,+, ·) be a ring with a multiplicative unit element 1. An
ideal of R is proper if and only if it does not contain 1.

Proof Lemma 4: First we prove that a proper ideal must not contain 1.
Let (R,+, ·) be a ring and let I be a proper ideal in R. We make a proof by
contradiction, so assume that 1 ∈ I. By property 2 in the definition of an ideal
in a ring we have that for every x ∈ R, x · 1 = 1 ·x = x is an element of I. Thus
we have that x ∈ R implies x ∈ I which means that I is not a proper subset of
R. This violates the definition of a proper ideal. We have a contradiction.

Next we prove that an ideal that does not contain 1 is necessarily proper.
Let (R,+, ·) be a ring with a multiplicative unit 1. Let J be an ideal such that
1 /∈ J . Since R contain 1 but J does not, clearly they can not be equal and
hence J ⊂ R. �

For the main proof of the section we will use a theorem from group theory.
But since our main focus is to connect Zorn’s Lemma with ring theory we will
skip the detour into group theory to prove the theorem. Instead we will simply
state it without proof.
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Lemma 5: Let (R,+) be a group and let I be a non-empty subset of R.
Then (I,+) is a subgroup of (R,+) if and only if: for all x, y ∈ I we have
(x− y) ∈ I.

Theorem 2: Let (R,+, ·) be a ring with a multiplicative unit 1. There is
an ideal I such that I ⊂ J ⊂ R is not true for any proper ideal J . We call I a
maximal ideal in R.

Proof Theorem 2: Let X be the set of all proper ideals in R. As we noted
earlier X is non-empty and it is furthermore partially ordered by inclusion. We
wish to use Zorn’s lemma and hence need to show that every chain in X has
an upper bound. A chain in X is a totally ordered set of ideals {Ix}. We let
I =

⋃
x Ix where the union runs over all ideals in {Ix}. Next we must show that

I is a proper ideal and thus an upper bound of {Ix}. We go through the three
properties defining a proper ideal one by one.

1. Since every Ix is an ideal they are also by definition subgroups of (R,+).
Let s, t ∈ I. Then there must be two ideals Ia and Ib in {Ix} such that s ∈ Ia
and t ∈ Ib. Since {Ix} is a chain either Ia ⊆ Ib or Ib ⊆ Ia holds. We can suppose
that Ia ⊆ Ib without loss of generality. Thus s and t are elements of Ib. Since
Ib is a group we get that s − t ∈ Ib and hence s − t ∈ I. Lemma 5 now gives
that (I,+) is a subgroup of (R,+).

2. All sets Ix ∈ {Ix} are by definition ideals. Hence for every a ∈ I there is
an ideal Ia containing a. Since Ia is an ideal we get that for every r ∈ R either
a · r or r · a is in Ia. Since Ia is a subset of I either a · r or r · a is an element of
I.

3. Lemma 4 immediately gives that since I does not contain 1 it is a proper
ideal in R.

We have now shown that I itself is an ideal and hence is an upper bound for
the arbitrary chain {Ix} in X. Thus we can conclude that every chain in X has
an upper bound. Now Zorn’s lemma gives that X has a maximal element. But
X is the set of all proper ideals in R and thus R must have a maximal ideal. �

5.3 Non-measurable sets and the Banach-Tarski paradox

The field of measure theory deals with the problem of defining a size or gen-
eralized volume of sets. It is possible to define a measure, called the Lebesgue
measure, such that almost all subsets of Rn have a volume. However the axiom
of choice implies the existence of sets whose measure is undefined, these are
called non-measurable sets. We demonstrate this with an example, but since we
are not attempting a deep dive into measure theory we will keep the discussion
brief.
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A measure is a function µ that assigns a non-negative volume to the subsets
of a given set. One important property of measures µ for this discussion is
countable additivity. This means that for a collection of countably many disjoint
sets {Ei} we have:

µ

(⋃

i

Ei

)
=
∑

i

µ(Ei).

Intuitively this is obvious, the volume of an object should be the same if
we measure it directly or split it into pieces that we measure separately. Let
D be the unit circle in the plane. Suppose that we have a measure on D that
is invariant under rotation. Let G be the group of rotations of the circle by
angles that are rational multiples of π. Note that G is countable. The set D
is uncountable so by letting G act on D we get uncountably many orbits under
G. By the axiom of choice there exist a set H ⊂ D containing one element from
every orbit. Furthermore all translated copies, i.e. all the sets we can aquire
from letting G act on H, are disjoint. Since G is countable this partitions
the circle into a countable collection of shifted copies of H. From countable
additivity we get that if H has zero measure then all of its copies and hence the
circle D has zero measure. On the other hand if H has non-zero measure then
D has infinite measure.

The fact that some sets have no measure might seem counterintuitive in its
own right but it also has some interesting consequences. The most famous is
probably the Banach-Tarski paradox which states that it is possible to take a
solid sphere, cut it up into finitely many pieces, rotate and translate these pieces
and put them back together such that you end up with two identical copies of
the original sphere. Of course this is not a ”real” paradox, it just goes against
our intuition from the physical world. What actually happens is that the sphere
is split up into non-measurable pieces and hence countable additivity does not
hold true. In other words, the volume is not conserved during this process and
that is why another sphere could be created seemingly out of nowhere. [2]
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