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Abstract

The goal of this paper is to uncover the complexity of Kőnig’s Lemma and find
a deeper understanding of how axioms and theorems are connected. In order to
get an insight on the logic behind this lemma, different versions of the lemma are
introduced, the relative strengths of them are compared and some applications
are discovered. The role of mathematical logic is presented together with the
rise of axiomatic systems such as Peano Axioms and two different set theories,
namely “Zermelo-Fraenkel set theory” (ZF) and “Zermelo-Fraenkel set theory
with Axiom of Choice” (ZFC). A comparison between the two set theories ZF
and ZFC is given with a particular focus on one of the most discussed axioms in
mathematics, namely the “Axiom of Choice”. Some weaker versions of this ax-
iom are then introduced and compared, in particular “Weak Axiom of choice for
countable families of finite sets”. Mathematical statements equivalent to Weak
Kőnig’s Lemma as well as Kőnig’s Lemma are found and the axioms necessary
to prove these equivalence relations are investigated. Finally, the axiomatic sys-
tems for which weak Kőnig’s Lemma and Kőnig’s Lemma exist are defined.

Keywords: Kőnig’s Lemma, weak Kőnig’s Lemma, trees, sequences, sequen-
tial compactness, planar graphs, graph coloring, axiomatic systems, Axiom of
Choice, weak Axiom of choice for countable families of finite sets, reverse math-
ematics.
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Introduction

Imagine yourself underneath an infinitely big oak tree. Standing at it’s roots,
you can only see how the branches get thinner and thinner, but you can’t see
its end. This is the closest you’ve ever been with infinity.

What if you could reach it and find the answer to the questions that have
made mathematicians and philosophers scratch their heads for centuries?

Fearless, you decide to defy infinity, and you start climbing up the tree. You
reach the first branch and, while dangling your feet in the air, you’re reminded
of a theorem about infinite trees.

Theorem 1 (Kőnig’s Lemma). Let T be an infinite (k-ary) tree. Then T
contains an infinite path p.

From this, you realize you have to choose wisely what way to climb up if
you want to encounter infinity. You have to choose the right path, the infinite
path. But how?

The core of this paper is Kőnig’s Lemma, which helps us solve this puzzle.
Through formal mathematical analysis, we are going to uncover the com-

plexity of Kőnig’s Lemma, which at first glance seems simple.
In order to get an insight on the logic behind this lemma, we are going

to examine diverse versions of the lemma, namely Weak Kőnig’s Lemma and
Kőnig’s Lemma. We will compare the relative strengths and discover some
applications.

We will then learn about logic within mathematics, the rise of axiomatic
systems (such as Peano Axioms and the Zermelo-Fraenkel set theories with
and without the axiom of choice) and more about which axiomatic systems are
necessary to prove Kőnig’s lemma and its applications. We are going to slice
down the proofs until we find the axioms that they built upon. In particular, we
are going to put focus on the theorems relation with one of the most discussed
axioms in mathematics: the Axiom of Choice.

At the end of this paper, we will conclude by finding that some theorems
which have been introduced as implications of Kőnig’s Lemma are in fact equiva-
lent to the lemma. We will define for which axiomatic systems these equivalences
hold.

This paper aims not only to give a deep understanding of Kőnig’s Lemma,
but also to be a good guideline for examining any mathematical theorem.
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Structure

In Chapter 1 we are going to give a general introduction to binary rooted trees
which we will define as a set of sequences. We will also present some funda-
mental definitions about these mathematical structures in order to understand
Kőnig’s Lemma.

In Chapter 2 we are going to prove two versions of Weak Kőnig’s Lemma.
The first one will treat infinite binary rooted trees and the second one will treat
infinite k-ary rooted trees. We then prove that the sequential compactness of
[0, 1] can be deduced from Weak Kőnig’s Lemma.

At the end of the chapter we will introduce some graph theory and theory
about graph coloring. We will see that an interesting property of infinite k-
colourable planar graphs is nothing more than a consequence of Kőnig’s Lemma.

In Chapter 3 we will introduce the foundations of logic, what axiomatic
systems are, in particular Peano Axioms and two versions of Zermelo-Fraenkel
set theory, namely ZF and ZFC. We will also examine the relationship of these
different axiomatic systems. In order to do this, we will introduce the Axiom
of Choice which is one of the most discussed axioms in mathematics, and some
weaker forms of AC. At the end of this chapter we will prove the statement “the
countable union of finite sets is countable” is equivalent to a weak version of the
axiom of choice.

In Chapter 4 we will introduce reverse mathematics. Starting with a the-
orem, we will go backwards in order to discover which axiomatic systems are
needed. We are also going to prove an equivalence between several statements
and Kőnig’s Lemma in the context of variate axiomatic systems. Also, we will
summarize the results of the paper.
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1 Theory of trees

In order to get a deep understanding of Kőnig’s Lemma, we have to start by go-
ing through some fundamental definitions of trees. Generally, a tree is a math-
ematical structure that can be viewed as either a graph or a data structure.
These mathematical structures are used in a lot of fields, such as: mathemat-
ics, data science, philosophy, operations research, chemistry, transport systems,
logistics and more.

A universal idea of a what a rooted tree is, is given by Richard Kate in the
book “Mathematics of logic”.

“A tree is a diagram (often called a graph) with a special point or node called
the root, and lines or edges leaving this node downwards to other nodes. These
again may have edges leading to further nodes. The thing that makes this a tree
(rather than a more general kind of graph) is that the edges all go downwards
from the root, and that means the tree cannot have any loops or cycles.”[1, page
1].

In this paper we want to compare different formulations of Kőnig’s Lemma.
In order to do this, we are going to give different definitions of trees. In particu-
lar, we are first going to look at a formalism of rooted trees given by numerical
sequences. A consequence of this type of formalism is that the rooted trees can
be coded and are therefore countable. Later on, in Section 2.3, we are going to
look at a formalism of trees (without roots) and graphs which can not be coded
as the ones mentioned above.

Since we first are going to define rooted trees as collections of sequences, we
have to define what a sequence is.

Definition 1 (Sequence). A sequence is a function whose domain is either the
set N of natural numbers or a subset of it in the form {x ∈ N : x < n}, for
some n ∈ N. The length of a sequence is the number of elements in the domain
of the function.

Remark. The set of natural numbers, N, will be defined as N = {0, 1, 2, 3...}
in this thesis.

To write a sequence, we list its digits in order, for example 013019, which
length is 6.

For the following definitions and examples of this chapter, we are only going
to use binary sequences. Therefore every sequence will only be composed by at
most two different digits (0 or 1).

Definition 2. If s is a sequence of length l ∈ N and n ∈ N is at most l, then
s � n denotes the initial part of s of length n.

For example, if s = 011011 then s � 3 = 011.

Definition 3. If s is a sequence of length l and x is 0 or 1, then sx is the
sequence of length l + 1 whose last element is x and all other elements agree
with those of s.

For example, if s = 01011 then s0 = 010110 and s1 = 010111.
With this basic background about sequences, we can now give a definition

of rooted trees.
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Definition 4 (Rooted tree). A rooted tree is a non-empty set of finite numer-
ical (i.e with values in N) sequences T such that for any s ∈ T of length n and
for any l < n then s � l ∈ T .

To better comprehend this definition, let’s look at the rooted tree in Figure 1.

Figure 1: Example of a finite binary rooted tree.

As we can see, each node corresponds to a unique sequence and, in particular,
the root corresponds to the empty sequence ∅.

The sequences illustrated at each node tells us something about the position
of each node, in particular about the path from the root to the node (see Defi-
nition 6). We could think about each digit in the sequence as a representation
of a choice. Imagine standing at the root and walking down the tree. Each time
you choose to go right, you add a 0, and each time you choose left, you add a 1.

Example. Given the tree illustrated below, try to find the node identified by the
sequence s = 0110.
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We have to trace the path described by the digits of the sequence. We start
at the root. Since first digit of s is 0, we choose the left edge and arrive at node
t. The second digit of s is 1, so now we choose the right edge and arrive at node
g. The node we are now at corresponds to the sequence 01. We continue in this
way until we discover that a is the node we were looking for.

Definition 5 (Subtree). A subtree of a tree T is a subset S of T that is a tree
in its own right.

In Figure 2 we can see some examples of subtrees of the rooted tree in Figure
1.

It’s important to keep in mind that every tree has the empty set ∅ as an
element. The next definitions will tell us more about a particular type of subsets
of a tree.

Definition 6 (Path with a root). A path with a root, p, in a rooted tree T is
a subtree of T such that for any sequence s, t ∈ p with lengths n, k respectively
n ≤ k, we have s = t � n.

Therefore the length of a path from the root to a node n is the same thing
as the length of the sequence n.

A first introduction to Kőnig’s Lemma will be given by introducing a weaker
form of the lemma, namely Weak Kőnig’s Lemma, which concerns rooted trees
such that every node is connected to at most two lower nodes. These rooted
trees are called binary trees.

Definition 7 (Binary tree). A binary rooted tree is a rooted tree T where all
the sequences in it are functions from some {n ∈ N : n < k} to {0, 1}.

In other words, every sequence of a binary rooted tree will at most be com-
posed by two different digits: 0 or 1. We can also think of a binary rooted tree
as a tree which, from every node, has at most 2 edges.

As mentioned above, Kőnig’s Lemma treats infinite trees.

Definition 8 (Infinite tree). A tree is infinite if it contains infinitely many
sequences.
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By the concepts of graphs which we will see in Section 2.3, the sequences will
become vertices and edges will be given by two sequences s ∼ r if |l(s)−l(r)| = 1
and {

s � l(r) = r, or

r � l(s) = s.

In this framework, we could define an infinite tree as:

• a tree with infinitely many nodes,

• a tree with infinitely many edges.

With these definitions in mind, we can take a close look at Weak Kőnig’s
Lemma and some of its applications. Note that later in this paper (Section 2.3),
new definitions such as graphs and trees will substitute the definition of rooted
tree in order to give a new formulation of Kőnig’s Lemma.
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2 (Weak) Kőnig’s Lemma and applications

In this chapter we will introduce two versions of Weak Kőnig’s Lemma. The
first version treats rooted binary trees, the second version treats rooted k-ary
trees. The proofs of both versions are very similar, but we will point out the
main differences.

There are many mathematical constructions that can be thought of as finding
paths on infinite binary trees [2, page 10]. In Section 2.2 and 2.3 we are going
to see some of these constructions when introducing two applications of Kőnig’s
Lemma. We will also introduce some basic concepts of graph theory since
Section 2.3 is an application within this field.

There is more than one way to prove Kőnig’s Lemma. This is not an unusual
quality for mathematical theorems. The existence of two or more proofs for a
theorem could be an opportunity to gain more information about the theorem
itself, such as its value within different fields of mathematics. On the other
hand, it could also be an invitation to shift our focus to the methods used in
the proof and analyze how these different methods might be connected, and
maybe even find some common properties.

In the proof below, we are going to deal with infinity. Mathematical induc-
tion is a universal method used to reduce infinite problems to finite problems.

Remark. The induction technique consists of three steps:

1. Base case. Show that the mathematical statement (induction hypothesis)
holds for a first value.

2. Induction step. Assume that the mathematical statement holds for an arbi-
trary value n and then show that it also holds for the value n+ 1.

3. Conclusion. Since the induction hypothesis holds for both the base case and
the inductive step, then it holds for any value.

However, it is good to know that induction is not a universally functional
mechanism, but an axiom (actually, it is a whole family of axioms) in Peano
Arithmetics (more about this in Chapter 3).

Theorem 2 (Weak Kőnig’s Lemma for binary trees). Let T be an infinite binary
tree. Then T contains an infinite rooted path p.

Proof. Assume that T is an infinite binary tree, as the one represented in Figure
2.
Take the sequence s of length n,where n ∈ N, and let Ts be the subtree of T
below s, such that

Ts = {r ∈ T : r � n = s} ∪ {s � k : k < n}.

Graphically we can represent Ts as the union of the two subtrees given in Figure
2.
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Figure 2: The union of the blue and the orange subtrees gives us Ts.

To check that Ts is a tree, it is sufficient to note that that for any s ∈ Ts of
length n, and for any l < n then s � l ∈ T .

To prove Kőnig’s Lemma, we have to find a sequence s(n) such that:

1. s(n) has length n,

2. s(n) = s(n+ 1) � n

3. the tree Ts(n) below s(n) is infinite

The set {s(n) : n ∈ N} will be our infinite path when the proof is completed.
Since we’re proving this lemma with induction technique, we will start by

choosing the third property above as our induction hypothesis.
Suppose we’ve chosen a sequence s = s(n) of length n and that Ts is infinite.

Since the tree is binary, we can then define Ts as:

Ts = {r ∈ T : r � (n+ 1) = s0} ∪ {r ∈ T : r � (n+ 1) = s1} ∪ {s � k : k ≤ n}.

Since Ts(n) is infinite, at least one of the sets above has to be infinite. Let’s
have a graphical look at this infinite tree and each set.
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Figure 3: Define Ts as the union of the blue, green and red subtree.

The last set is obviously finite, so at least one of the first two subsets has to
be infinite.
Now we have two cases.

1. If the first set {r ∈ T : r � (n + 1) = s0} is infinite, then we can set
s(n+ 1) = s0 and in this case

Ts(n+1) = {r ∈ T : r � (n+ 1) = s0} ∪ {s0} ∪ {s � k : k ≤ n},

which is infinite.

2. If the first set isn’t infinite, then the second set {r ∈ T : r � (n+ 1) = s1}
has to be infinite. In this case we set s(n + 1) = s1, and just as above,
Ts(n+1) would as well be infinite.

Either way, we have defined a sequence s(n + 1) and proved the induction
hypothesis for n+ 1, so we have proved Kőnig’s Lemma.

Note that since we have coded binary trees as sequences, then they are
countable. In Chapter 4 (Theorem 10), we will see a version of Kőnig’s Lemma
for which there is no assumption of countability.

2.1 Presentation of Weak Kőnig’s Lemma (for infinite sub-
trees of a k-rooted tree)

The above described Lemma is a weak variant of Kőnig’s Lemma. We will now
prove a more common variant, which we still call Weak Kőnig’s Lemma, but for
infinite k-ary rooted trees. Actually, this version is equivalent to Theorem 2,
since it is possible to code k -ary rooted trees to binary trees. (The equivalence
between Theorem 2 and Theorem 3 will not be proven in this paper.)

For k -ary rooted trees, we will now not have only two choices at each node (as
we had with binary rooted trees), but, we will have up to (at most) k choices,
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with k ∈ Z+. In other words, we are going to extend the lemma to a more
general case, i.e rooted k-ary trees.

Definition 9 (k-ary tree). A rooted k-ary tree is a tree whose elements are
sequence with values in {0, ..., k − 1}.

The following proof is very similar to the proof of Kőnig’s Lemma for binary
rooted trees, so we will only give a sketch of the idea of the proof for rooted
k−ary trees.

Theorem 3 (Weak Kőnig’s Lemma for rooted k-ary trees). Let T be an infinite
rooted k-ary tree. Then T contains an infinite path p.

Proof. Take an infinite rooted k-ary tree T. Let Ts be the subtree of T as defined
with root in s. Define the subtree Ts as

Ts = {s � t : t ≤ n)} ∪ {r ∈ T : r � (n+ 1) = si}

for n ∈ Z+, t ∈ {0, ..., n} and i ∈ {0, 1, ..., k − 1}. As before, we want to find a
sequence s(n) of elements of T such that:

1. s(n) has length n,

2. s(n) = s(n+ 1) � n,

3. the tree Ts(n) below s(n) is infinite.

The third statement is our induction hypothesis. When the proof is completed,
the set {s(n) : n ∈ N} will be our infinite path.

The the last set can be interpreted as the set of every subtree Ts(n+1) of Ts
with root in a node si. Since there are at most k such nodes and since we know
by hypothesis that Ts is infinite, then at least one of the subtrees Ts(n+1) has
to be infinite.

Therefore there has to be a subtree Ts(n+1) with root in the node si. Define
the infinite subtree as Ts(n+1) = {s � t : t ≤ n}∪{r ∈ T : r � (n+1) = si}∪{si}.
In this way we have proved the induction hypothesis for (n + 1) and defined
s(n+ 1).

Just as with the case of rooted binary trees, rooted k−ary trees are also
countable since they are coded as sequences. In Chapter 4 we are going to
introduce the stronger version of this lemma, namely Kőnig’s Lemma for which
we will formalize the lemma with graphs, and no longer sequences. Before we
introduce graph theory, we are going to see an application for Weak Kőnig’s
Lemma within metric spaces.

2.2 Sequential compactness of [0, 1]

A first example of application of (Weak) Kőnig’s Lemma is the proof of sequen-
tial compactness for a set X = [0, 1].

We are going to introduce this with some definitions that will help us through
the proof.

Definition 10 (Metric space). A metric space is an ordered pair (X,d) where
X is a set of points and d is a metric on X i.e, d : X × X → R such that for
any points x,y,z the following holds:

13



1. d(x,y)=0 ⇐⇒ x=y, for arbitrary x, y ∈ X

2. d(x,y)=d(y,x), for x, y ∈ X

3. d(x,z) ≤ d(x,y) + d(y,z), for x, y, z ∈ X

In other words, a metric is simply a function that defines the distance be-
tween each pair of elements in a set.

Remark. A sequence (xn)n∈N in a metric space is a function N→ X.

Remark. A subsequence of a given sequence (xn)n∈N is any other sequence
(yn)n∈N that is of the form (yn)n∈N = (xnk

)k∈N where (nk)k∈N is an increasing
sequence of natural numbers.

Definition 11. A sequence (xn)n∈N in a metric space (X, d) is said to converge
to a point p ∈ X, if for every ε > 0 there exists an M ∈ N such that d(xn, p) < ε
for all n ≥M.

Note that the point p is the limit of (xn)n∈N.

Definition 12. (Sequential compactness) A metric space (X,d) is sequentially
compact if for each sequence (xk)k∈N in X there is a subsequence (xkn

)k∈N that
is convergent.

In order to better understand the concepts of convergent sequence and con-
vergent subsequence, we are going to look at an the following example.

Example. Fix X = [0, 1] with standard metric. Take the sequence defined as:

xk =

{
1
k , if k is odd

1, else.

We see that the sequence xk then has two subsequences with different limits. In
fact, the subsequence (x2k+1)k converges to 0 and that the subsequence (x2k)k
converges to 1. The sequence xk does not converge.

In other words, if a subsequence of a sequence converges, then the sequence
does not have to converge itself. But if a sequence converges to q, then every
subsequence of the sequence also converges to q.

We will prove that Weak Kőnig’s Lemma implies that the metric space X =
[0, 1] is sequentially compact. In the proof we will construct an infinite tree
dividing the interval [0, 1]. Since this construction is a bit complicated, we are
going to give an example of it before we head on into the proof.

Example. In the proof of Theorem 4 we are going to construct a binary tree
whose nodes at depth k are identified with the intervals Ik = [ r−1

2k
, r
2k

] for r ∈
{0, ..., 2k}. Take the following example given in Figure 4.
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Figure 4: This figure illustrates an example of the construction used in the proof
of Theorem 4.

In this figure we only have finite number of elements an but the method is
the same as for infinitely many elements an.

The first step of the construction is to divide the interval, beginning with
[0, 1] in half and inspect the new intervals. At stage k of the construction we
throw away any interval that does not contain any element an such that n ≥ k.

We will now apply this construction on the interval shown in Figure 1 with
the elements a0, a1, ..., a6 in it.

First, put n0 = 0 and note that in the interval [0, 1] there are elements an,
n > 0. Then take k = 1 and divide the interval [0, 1] in two. Note that there
are elements an such that n ≥ 1 in both [0, 12 ] and [ 12 , 1]. Now take k = 2, and
divide [0, 12 ] and [ 12 , 1] in two. Since there is no element an such that n ≥ 2 in
the interval [0, 14 ] and [ 12 ,

3
4 ], we throw away these intervals. In the next step,

for k = 3, notice that the interval [ 78 , 1] will be thrown away, and so on.
This construction could also be illustrated by the binary tree given in Figure

5.

Figure 5: This figure illustrates an example of the construction used in the proof
of Theorem 4.

Every time a new interval (which isn’t thrown away due to the element an
it contains) is constructed, a new node is added to the tree.
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Imagine that for any stage k of the construction there will always be at least
one interval containing an element an such that n < k. If so, the three will have
an infinite path.

Another easier example could be given by the sequence defined as ak = 1 for
all k in N. If we apply the same construction as above, we will get a tree with
an infinite path such that every node has valency 2.

With this example in mind, we will prove the following theorem by con-
structing an infinite tree and finding a path.

Theorem 4. Every sequence (an) of elements of X = [0, 1] has a subsequence
converging to some element in X.

Proof. Fix (an) in [0, 1]. We will construct a binary rooted tree to find an
infinite path.

A graphical example of this construction was given in the example above.
We now want to apply Kőnig’s Lemma so we have to construct a binary

tree. This is, a tree which nodes at depth k are identified with the intervals
Ik = [ r−1

2k
, r
2k

] for r ∈ {0, ..., 2k} which have infinitely many elements an. The
root of this tree will then be identified as [0, 1]. In particular this tree is by
construction infinite, since there are infinitely many elements an (i.e, infinitely
many nodes). Kőnig’s Lemma tells us that there is an infinite path through this
tree.

So there are closed intervals

I0 = [0, 1] ⊇ I1 ⊇ I2... ⊇ Ik ⊇ Ik+1 ⊇ ...

such that:

1. |Ik| → 0, and

2. for all k ∈ N there is some n ∈ N such that an ∈ Ik.

From statement 2 and the fact that the (Ik)k are descending, we can conclude
that for all k ∈ N, the set {n ∈ N : an ∈ Ik} is infinite. Let us now recursively
construct an increasingly function k → nk such that ank

∈ Ik for all k ∈ N.
Put n0 = 0 then an0 = a0 ∈ [0, 1] = I0. If n0, ..., nk have been defined,

consider the set

S = {n ∈ N : an ∈ Ik+1} \ {n ∈ N : ∃0 ≤ i ≤ k : ni = n}.

Let nk+1 = min(S). Then nk+1 > ni for all 0 ≤ i ≤ n and ank+1
∈ Ik+1.

So we have defined ank+1
. After constructing (ank

)k∈N, we have to show that
it converges in [0, 1]. To this end, observe that for all i ≥ k we have ani ∈ Ik.
Since the length of Ik is 2−k, then for i, j ≥ k we have d(ani

, anj
) ≤ 1

2k
, where

d(ani
, anj

) is the distance from ani
to anj

.
Recall that a sequence of real numbers x1, x2, x3, ... in a metric space (X, d)

is called a Cauchy sequence if for every positive real number ε, there is an integer
N such that |xm − xn| < ε for all natural numbers m,n > N .

Therefore (ank
)k∈N is a Cauchy sequence. Since [0, 1] is a complete metric

space, this shows that (ank
)k converges.
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We have shown that Weak Kőnig’s Lemma implies sequential compactness
of the interval [0, 1]. We observe that the proof does not use any induction,
although the definition of the tree we used might appear inductive. In fact, it
can be alternatively described directly as a set of binary sequences

T = {s| ∀N > l(s) ∃n > N : an ∈ [cs, cs + 2−l(s)],

where cs =
∑l(s)

i=1 si2
−i denotes the starting point intervall corresponding to

s, as illustrated in Figure 5. In the last chapter of this paper we are going to
show the implication the other way around, also avoiding induction in our proof,
hence we’ll see that sequential compactness of [0, 1] and Weak Kőnig’s Lemma
are equivalent, and hint at the possibility to express this equivalence in a weaker
axiom system than ZF set theory, which will be introduced in Chapter 3.

2.3 k-colourable infinite graphs

Kőnig’s Lemma does also have applications in the theory of graphs, in particular
graph coloring. Following there will be an introduction of some basic concepts
within graph theory. Even though Kőnig himself wrote the first textbook on
the field of grah theory, most of the following definitions have been taken from
a book written by Distel R [3].

Definition 13. A graph is a pair (V,E) such that E ⊆ V × V and E is sym-
metric and irreflexive.

Remark. Given a graph G, we refer to the vertices of G as V = V (G) and the
edges of G as E = E(G)

Remark. Every rooted k-ary tree defines a graph in the sense of Definition 12.

In other words, a graph consists of two data, namely vertices and edges. An
example of a graph is given in Figure 5. From this figure we see that an edge
is an unordered pair of vertices and that it is not important how the edges are
drawn.

Figure 6: Example of a graph. The vertices of this graph are given by V =
{1, 2, 3, 4}, and the edges are given by E = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}}.

To be precise, Definition 13 is commonly known as the definition of an undi-
rected graph. The symmetrical property (v, w) ∈ G ⇐⇒ (w, v) ∈ G is what
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distinguishes directed and undirected graphs. In this thesis we are only inter-
ested in undirected (and unweighted) graphs, therefore our definition of graph
given above.

Definition 14 (Adjacent vertices). Two vertices connected by an edge are called
adjacent.

In Figure 5, for example, the vertices 1 and 2 are adjacent.

We will now introduce some definitions concerning graph coloring.
Historically, graph coloring was introduced by the mathematician Francis

Guthrie who noticed that with four colors it was possible to color the map of
the counties of England such that no region with common borders shared colors.
Graph coloring is still commonly applied in practical areas.

A graph coloring problem is to assign colors to certain elements of a graph
(usually vertices or edges) subjects to restrictions. The most common graph
coloring problem is vertex coloring.

Definition 15 (Vertex coloring). A vertex coloring of a graph G=(V,E) is a
map c : V → S such that c(v) 6= c(w) whenever v and w are adjacent. The
elements of the set S are called the available colors.

Figure 7 illustrates examples of valid colorings of graphs.
If we look at graph G1, it is composed of four vertices and no edges, hence

the graph can be colored with only one color. If we connect two of the vertices,
we get graph G2. For G2 we have to have at least 2 colors since the two adjacent
vertices has to have different colorings.

The figure does also illustrate three different colorings of the graph G, all of
them valid, and there are only three different ways of coloring it.

Figure 7: Examples of graph coloring.

In particular, the coloring of G1, G2, G3 gives us the chromatic number of
these graphs.

Definition 16 (Chromatic number). The chromatic number X(G) of a graph
G is the minimal k such that there is a coloring V (G)→ {1, ..., k}.

A graph G with X(G) = k is called k − chromatic; if X(G) ≤ k then it’s
called k − colourable.
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The chromatic number of G1 is X(G1) = 1, hence the smallest numbers
of colors needed to color the graph is one. Also, we have that X(G2) = 2,
X(G3) = 4. From graph G we see that X(G) = 2 G is 4-colourable.

In the next theorem we will mention countable graphs. A countable set is
a set that has the same cardinality (number of elements) as some subset of the
set of the natural numbers.

With these definitions in mind, we can now prove a theorem which is implied
by Kőnig’s Lemma.

Theorem 5. Let G be a countable graph such that every finite subgraph of G
is k-colourable. Then G is k-colourable.

Proof. Assume G is a countable graph, then we are able to enumerate it’s ver-
tices as v0, v1, v2, v3, etc. Let Gn be a subgraph of G induced by the vertices
v0 through vn (for example G3 = v0, v1, v2, v3). Each vertices vn corresponds
to a subset Gn, therefore there are countably many Gn. Since Gn ⊂ Gn+1 by

construction, it follows that
∞⋃

n=0
Gn = G.

For each Gn there is a set Cn of k − colorings of Gn.
Take a coloring of Gn+1 and remove the vertex vn+1, we now have a coloring

of Gn that is an element of Cn
1. Therefore, for every coloring cn+1 ∈ Cn+1 of

Gn+1, there is some induced coloring cind ∈ Cn such that cind ≺ cn+1
2.

The next step is to construct a tree and use Kőnig’s Lemma. Given the enu-
meration v0, v1, v2, ... of the graphs vertices, and the subgraphsGn = {v0, v1, ..., vn},
we construct a k-ary tree. Observe that every coloring of Gn can be encoded as
a sequence of elements in {1, ..., k} of length n. Indeed, at the i-th position we
write down the color of vi. Encoded in this way, consider all k-colorings of all
Gn at the same time.

The resulting set of sequences is a k-ary tree. This tree is actually infinite
since, by assumption, every Gn admits at least some k-coloring. Hence there
is an infinite path. This path defines a k-coloring of G by assigning to vi the
colori in {1, ..., k} that is written at the i-th position of the path. Therefore, we
can state that there exists a k-coloring for G.

(The idea for this proof was taken from a post published in Stack Exchage
[4].) This theorem is very powerful in graph theory, but is important to note
that this theorem only holds for countable graphs. In Chapter 4 we are going
to see a theorem which also holds for non-countable graphs. The theorem in
Chapter 4 will therefore be more applicable, but it relies on more axioms. More
about this in the following chapter.

1Note that removing vertices does not invalidate a coloring.
2If we have a coloring cn+1 : Gn → {1, ..., k} and a coloring cn : Gn → {1, ..., k} with

Gn ⊆ Gn+1, then cn ≺ cn+1.
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3 Foundations of set theory

In order to find the foundations of set theory, we are going introduce logic and
it’s role within mathematics.

Logic is the study of forms of reasoning. The aim of logicians is to define
a well-structured system of reasoning that, if applied on true 3 assumptions,
guarantees correct conclusions.

Logic has its deepest roots in philosophy since ancient times and was initially
used as a method for studies of argument, meaning and existence. Tradition-
ally, logic was built upon only three laws which were theorised by the great
philosopher Aristotle: the law of identity, the law of non-contradiction and the
law of the excluded middle. The law of identity states that ’whatever is, is’
and can be formalized as ∀p(p = p). The law of non-contradiction states that
’nothing can both be and not be’, and is formalized as ∀p¬(p ∧ ¬p). At last,
the law of excluded middle states that ’everything must either be or not be’, i.e
∀p(p ∨ ¬p). These laws are also at the foundation of mathematics. (The laws
given above are expressed in the formal language of mathematical logic, but we
will not introduce this topic in this paper.)

During the late 19th century, the study of the foundations of mathematics
became of great interest. Logic became a useful tool to study the formal systems
of mathematical models and the deductive processes of formal proof systems.
This was the time when mathematicians and philosophers began to analyze
the underlying pillars of mathematics, aiming to give mathematics a logical
foundation.

Today logic is an interdisciplinary area that covers philosophy, mathematics,
linguistics, computer science, artificial intelligence, sociology and more. In the
context of mathematics, logic is broadly used in different fields, such as set
theory, model theory, recursion theory and proof theory.

In the next chapters we are going to represent Zermelo Fraenkels set theory
and Peanos axioms, which are some of the most notorious cases of mathematics
explained with logic.We are also going use logic principles to seek which axioms
seem to underlie Kőnig’s Lemma and if all of them are necessary.

While writing this paper I found it very interesting to learn more about how
aspects of logic interact with theorems. In fact, depending on how we formulate
a theorem, the number of axioms that underlies the theorem might variate. For
example, depending on the formulation of a theorem, the proof used to proof the
theorem might vary and, as a consequence, we might recall to different axioms
in the different proofs. A theorem is nothing more than a logical consequence
of axioms. The proof of a theorem is a logical argument which establishes
its truth through the inference of rules of a deductive system. Finding exactly
which axioms are necessary for the proof of a theorem is not an easy game. Also,
in some proofs we might implicitly use some axioms without even noticing that
we are applying them. Learning about which axioms theorems are built on is
crucial both to understand the theorem itself and to understand it’s consistency.
If we find out that a theorem (or even a axiomatic system) is based on axioms
from which contradictions rise, the theorem won’t seem as convincing anymore.

3Note that the truth value of a sentence is not defined in the field of logic. Logic is the
study about what follows from what, i.e what conclusion follows from some premises. Whether
the premises are true or false, is to be considered in other disciplines.
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This is not different from when we deduce something from false premises. In
Section 3.2 we are going to discuss a paradox arised from the Axiom of Choice.

3.1 Short summary of ZF and Peano Axioms

One attempt of formalizing all mathematical reasoning, using logic, was given
was given by Ernst Zermelo and Abraham Fraenkel. They constructed the ZF-
set theory, one of the most well known axiomatic systems of mathematics, trying
to describe all mathematics in terms of sets and operation of sets.

Set theory had been developed before Zermelo and Fraenkel, by the german
mathematician Georg Cantor in the mid-late 19th century. His theory is a
’naive’ theory of sets, since it is defined informally, with no use of formal logic
nor any rigorous axiomatic structure. After the discovery of some paradoxes in
the ’naive’ set theory, such as Russell’s paradox, Zermelo and Fraenkel decided
to re-construct set theory with a more systematical approach. The ZF-set theory
was initially composed by eight axioms (extensionality, regularity, specification,
pairing, union, infinity, replacement, power set), each of them expressed in first-
order logic, but we will not define them in this paper. Later on, the axiom of
choice was added to ZF, creating an extension of ZF, namely ZFC (see next
chapter). We can today reduce most known maths to those nine axioms, even
though some of the ZF-axioms can not be considered pure logic. For example,
the axiom of Infinity and the axiom of Chioce.

Also, as an effect of the results from Gödel’s incompleteness theorems, the
dream of finding a complete 4 and consistent 5 set of axioms for all mathemat-
ics vanished. Gödel showed that a formal deductive system can’t show it’s own
consistency. As a consequence, it is not possible to show that a formal deductive
system is consistent, but it is possible to show that it isn’t consistent by find-
ing a contradiction in the system. This discovery includes all formal deductive
systems which can express Peano Axioms. We are going to see that ZFC is one
of them. Since ZFC is identified with ordinary mathematics, the consistency of
ZFC can not be demonstrated in ordinary mathematics. However, even though
we can not prove the consistency of ZF and therfore if it really is the ferm foun-
dation of mathematics, it is still today the most common axiomatic structure
for set theories. And until now, ZF has been immune to paradoxes.

In the next chapter we will see that some of the theorems mentioned in this
paper are based upon Zermelo-Fraenkel set theory and some are based on a
weaker axiomatic system.

Another attempt of formalization of a part of mathematics, was given by
the italian mathematician Giuseppe Peano. Peano created a system of axioms
which describes the essence of natural numbers without evoking any numerical
concepts. During his time, the language of mathematical logic was only just
starting to develop. In order to formalize arithmetic, Peano created new logical
notations to present his axioms, such as the symbol for set membership ∈ and
the symbol of implication ⊂.

The Peano Axioms (PA) are five and the can be derived from the ZF axioms.
In this paper, we are going to show how we can create a model of PA in ZF.

4A theory is called complete with respect to a particular propertyif every formula having
the property can be derived using the theory.

5A theory is consistent if it does not entail any contradiction.
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A model of second-order Peano arithmetic is a set N with a function S
defined on N such that:

(PA1) There is a distinguished element 0 ∈ N . In particular N is a non-empty
set.

(PA2) S(n) ∈ N for all n ∈ N .

(PA3) For all n ∈ N and m ∈ N , then n = m if and only if S(n) = S(m).
That is, S is an injection.

(PA4) There is no n ∈ N such that S(n) = 0.

(PA5) If X is a set such that 0 ∈ X and if n ∈ N ∩X implies S(n) ∈ N ∩X,
then N ⊆ X.

A model of second order Peano arithmetic is defined as the triple (N, 0, S)
for which the axioms above holds. Note that there is no mention about what
actually a N, 0, S is, indeed these axioms do only describe the behaviour of
the set of natural numbers and the function S (which behaves like the succes-
sor function). Even though the second-order Peano arithmetic is what Peano
originally wrote, there is a similar model which is better-known today, namely
Peano arithmetic. The difference between these two Peano models lies in the
fifth axiom. In fact, for second-order Peano arithmetic PA5 states that induc-
tion holds for all subsets of the model, while in Peano arithmetic the fifth axiom
states that induction holds for sets defined by a formula of first order logic.
For this reason, Peano arithmetic is also known as first-order Peano arithmetic.
The reason why we gave a description of the second-order Peano arithmetic is
because its models admit a more concise self-contained definition. Yet, every
model of the second-order version is also a model of the firs-order version.

Now we are going to show how we can derive the model of second-order
Peano arithmetics from ZF. This is the so called Zermelo’s Construction.

Theorem 6. A model for Peano arithmetics exists, if Zermelo-Fraenkel set
theory holds.

Sketch of proof. This model is given by the triple (N, 0, S). This is, a set
N such that N = {∅, {∅}, {{∅}}, ...}, a distinguished element 0 = ∅ ∈ N and a
function S : N → N on sets such that S(A) = {A}.

If we apply S on the empty set, we then have S(∅) = {∅}. Note that if we
apply the successor operation S again, we get S({∅}) = {{∅}}, and so on. We
could think of the set N as the aggregate of all these nested sets. The set N
together with the function S and element 0 = ∅ satisfies Peano axioms. It is
possible to show that this models holds for the Peano axioms, but we will not
prove it in this paper.

To understand that this model gives us a construction of the natural numbers,
we can visualize the sets in the following way.
We indeed define
0 = ∅ ∈ N,
1 = {∅} ∈ N,
2 = {{∅}} ∈ N,
3 = {{{∅}}} ∈ N,
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...,
and so on.

The underlying idea of this proof is that natural numbers can be synthesized
from sets.

We have now shown that we can construct the natural numbers in the ZF set
theory, which is a great first step towards the goal of describing mathematics in
terms of sets and operation of sets. In the next chapter we will look deeper into
some axioms of ZFC and some complications arised from the Axiom of Choice.

3.2 Different flavours of the Axiom of Choice and related
statements

Among the most discussed axioms of mathematics, the Axiom of Choice (AC) is
the dominant one after Euclid’s Axiom of Parallels [5]. Even though the axiom
appears self-evident, paradoxes has arised from it, such as the Banach–Tarski
paradox. In short, this paradox states that given a sphere S3 it is possible to cut
it into a finite number of pieces and then re-assest them into two spheres identical
to S3. As a consequence, not every set is measurable. In some frameworks, for
example physics, it can be interesting to be able to measure every set, but in
this case the Axiom of Choice can not be used. In general, not being able to
measure all sets, is not a problem and therefore the Axiom of Choice very used.

Because of the nature of the Axiom of Choice, the Zermelo-Fraenkel set the-
ory has been divided in two camps. There is the Zermelo–Fraenkel set theory
without the axiom of choice (ZF) and the Zermelo–Fraenkel set theory with the
axiom of choice (ZFC). Even though ZF one gets rid of the complications arising
from the paradox, ZFC has become the standard form of axiomatization of set
theory and a lot of mathematical ideas have developed from it.

In order to gain a deep understanding of AC, let’s first define what a choice
function is. Intuitively, a choice could for example be: what movie to see,
what bicycle to buy, what mountain to climb. However, within mathematics
the axiom of choice needs rigorous definition which would make this idea less
intuitive. To explain this mathematical idea we will define a function and then
a choice function.

Definition 17. A function from X to Y is a subset A ⊆ X × Y such that:

• ∀x ∈ X ∃y ∈ Y : (x, y) ∈ A
• ∀x ∈ Y ∀y, y′ ∈ Y : (x, y), (x, y′) ∈ A ⇐⇒ y = y′

We write f : X → Y for a function A ⊆ X × Y from X to Y and f(x) = y
if (x, y) ∈ A.

There are different ways of presenting the axiom of choice. We will begin by
explaining it with choice functions.

The axiom of choice states that for each family of pairwise disjoint non-
empty sets, there is a choice function 6 defined on that set (or a ’choice set’).

6A choice function is a function that operates on a collection X of non-empty sets and
assigns to each set S some element f(S) of S.
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A choice function matches our intuition behind choice. A daily-life interpre-
tation of a choice function could be choosing what to wear. Look at Figure 8
for this example.

Figure 8: Example of a choice function.

Assume that T is a set of t-shirts, P is set of pants, and S a set of socks. Let
A be the collection of the sets P, T, S. Then there is a function f : A → ⋃

A,
where

⋃
A is the set of all elements of the sets in A. We could then say that

choosing what to wear is the same as taking each of those sets and using a
function f to send it to one of its elements.

A formal definition of choice function is given below.

Definition 18. Given a family (Ai)i∈I of non-empty sets, a choice function for
(Ai)i∈I is a function f : I→ ⋃

i∈IAi such that f(i) ∈ Ai.

We are now going to introduce two formal definition of the Axiom of choice.

Definition 19 (Axiom of choice - AC). The axiom of choice requires that for
every family of non-empty sets there is a choice function.

This first definition is presented in order to be compared with Definition 22
and will be used for Theorem 7.

Definition 20 (Axiom of choice - AC). Given a collection Y = {Ai : i ∈ I},
such that Ai are pairwise disjoint non-empty sets, and a set X such that Ai ∈ X,
there exists a function f : X → Y such that f(Ai) ∈ Ai.

In set theory it’s more common to describe the axiom of choice with sets.
For example, Schindler [6] defines AC as following:

∀x(∀y(y ∈ x→ y 6= ∅) ∧ ∀y∀y′(y ∈ x ∧ y′ ∈ x ∧ y 6= y′ → y ∩ y′ = ∅)

→ ∃z∀y(y ∈ x→ ∃u∀u′(u′ = u↔ u′ ∈ z ∩ y))).

If we take a close look at these two definitions of AC, we can se how they
relate. Note that for Definition 18 we use the definition of function, but for the
definition given from Schindler, we don’t use the definition of function. The
pairwise disjoint non-empty sets Ai (from the first definition) correspond to
variable y defined in Schindler’s formalization. Also, X (from the first definition)
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corresponds to x. Schindler’s interpretation states that for every family (namely
x) of non-empty and pairwise disjoint sets (namely y), there is a “choice set”.
We will now take a look at a well-known variant of the Axiom of Choice which
is sufficient to develop a lot of areas in mathematics, even though it is not as
powerful as the Axiom of Choice. In order to understand the next axiom, we
will list some definitions.

Definition 21. A binary relation over a set X and Y is a subset over the
cartesian product X × Y . This set has the ordered pairs (x,y) as elements such
that x ∈ X and y ∈ Y .

A special case of Axiom of Choice is the Axiom of Dependent Choice (DC).
This axiom is a weak variant of the Axiom of Choice and we will see how we
can prove DC from AC.

Definition 22 (Axiom of dependent choice - DC). Let R be a binary relation
on a set X 6= ∅, then there is a sequence (xn), n ∈ N, such that (xn, xn+1) ∈ R
for all n ∈ N.

To better understand this, let’s look at the graph below.

Take the set X of all finite sequences, then (xn, xn+1) ∈ R if xn+1 is the
continuation of x with one step only.

We will now show how AC and DC are related by proving DC from AC.

Theorem 7. The axiom of choice implies the axiom of dependent choice.

Proof. Take an entire binary relation R on X × X. Let P (X × X) be the set
of all subsets of X × X, namely the power set of X × X. We now define the
non-empty sets Ax as

Ax = {(x, y) ∈ X ×X : (x, y) ∈ R} = R ∩ ({x} ×X).

Then Ax ∈ P (X × X). From the axiom of choice we know that there is a
choice function f : X → X × X such that f(x) ∈ Ax, hence f(x) = (x, yx)
for an element yx ∈ X such that (x, yx) ∈ R. Choose some x0 ∈ X and define
inductively xn+1 as the unique element satisfying f(xn) = (xn, xn+1). Then
the sequence (xn)n∈N satisfies (xn, xn+1) ∈ R for all n ∈ N, by construction of
f .
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3.2.1 Weak Axiom of Choice for finite sets

In the paragraph above we introduced the Axiom of Choice and the Axiom of
Dependent Choice, which we saw is a weaker form of AC.

In this section we will introduce Weak Axiom of Choice for finite sets, which
in turn is weaker than Axiom of Dependent Choice, and describe some con-
sequences that comes with it. We will first recall the notion of a countable
set.

Definition 23. A countable set is a set with the same cardinality as some subset
of the set of natural numbers.

A countable set can either be a finite set or an infinite countable set. A set
S is countable if there is an injective function from the set S to the set N of
natural numbers. If we can show that such function is bijective, then S is called
a countably infinite set.

Definition 24 (Weak axiom of choice for finite sets). Every countable family
of non-empty finite sets must have a choice function.

If we compare Definition 20 with Definition 24, we can note some similarity.
Next, we are going to show the equivalence between the weak axiom of

countable choice for finite sets and the statement that says that ’a countable
union of finite sets is countable’. We begin with proving that a countable union
of finite sets is countable if we assume the Weak Axiom of Choice for finite sets.

Theorem 8. A countable union of finite sets is countable if we assume that
countable families of finite sets have choice functions.

Proof. Let (Ri)i∈I be a countable family of finite subsets of a set M . We have
to prove that

⋃
i∈IRi ⊆M is countable. In order to do this we shall produce a

surjective function from N to
⋃

i∈I Si. By countability of I there is an injective
function f : I ↪→ N. We define

Sn =

{
Ri, if n = f(i), i ∈ I
∅, otherwise.

Then
⋃

n∈N Sn =
⋃

i∈IRi. Also, since we know that all (Ri)i are finite, then all
(Sn)n are finite.

For all n ∈ N, denote the cardinality of Sn as kn = |Sn| ∈ N. Since Sn

is finite, then there is some function from Sn to {0, ..., k − 1} with k uniquely
determined as above.

For n ∈ N define An = {γ : Sn → {0, ..., k − 1}|γ bijection .} By the choice
of kn, we know An 6= ∅ for all n ∈ N. Actually, An is finite (of cardinality kn!)
since {0, ..., k − 1} is finite. Take the (finite) permutation group

Sym(kn) = {γ : {0, ..., k − 1} → {0, ..., k − 1}|γ bijection }.

There is a bijection
Ω : Sym(kn)→ An

given by γ 7→ γ ◦ γ0 for a fixed chosen element γ0 ∈ An and for γ ∈ Sym(kn).
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An inverse to this map is given by the assignment

Σ : γ 7−→ γ ◦ γ−10 .

Indeed, we see that

Ω(Σ(γ)) = (γ ◦ γ−10 ) ◦ γ0 = γ ◦ (γ−10 ◦ γ0) = γ = id(γ)

for all γ ∈ An. Also,

Σ(Ω(γ)) = (γ ◦ γ0) ◦ γ−10 = γ ◦ (γ0 ◦ γ−10 = γ = id(γ))

for all γ ∈ Sym(kn).
Let g be a choice function for (An)n∈N, which exists by the theorems as-

sumption. Then
g(n) : Sn → {0, ..., kn − 1},

is a bijection for all n ∈ N. A diagonal argument shows that

T =
⋃

n∈N
{n} × {0, ..., kn − 1} ⊆ N× N ↪→ N

is countable, since T is a subset of the countable set N× N.
Let ψ : N → T be a surjective function. We now construct a surjection

ν : T → ⋃
n∈N Sn. Then ν ◦ ψ : N → ⋃

n∈N Sn is also surjective, proving that⋃
n∈N Sn is countable.

Set ν(n, i) = [g(n)−1](i) for n ∈ N and i ∈ {0, ..., kn − 1}. So we get that

g(n)−1 : {0, ..., kn − 1} → Sn,

which is the map ν : T → ⋃
n∈N Sn we were looking for.

Now we will prove the implication the other way around, i.e the countable
union condition for finite sets implies the axiom of countable choice.

Theorem 9. Countable union condition for finite sets implies the axiom of
countable choice for finite sets.

Proof. Assume that we have a set A and let all Si for i ∈ N be a subset of
A. Define (Si)i∈N as a countable family of finite non-empty sets, then

⋃
Si is

countable.
We want to show that there is a function g : N→ ⋃

Si, such that g(i) ∈ Si

for all i ∈ N. If we can reduce the situation to A = N, then we can take the
choice function as the function g(i) = minSi ⊆ N.

Since the countable union of the finite set (Si)i is countable, then there is
an injection

ι :
⋃
Si ↪→ N.

Therfore we can define the choice function as

g(i) = ι−1(min(ιSi))) ∈
⋃

i∈N
Si.

Note that ι(Si) ⊆ N and that min(ι(Si)) ∈ ι(Si) ⊆ ι(
⋃

i∈N Si). In other words,
we found that ι−1(min(ι(Si))) is well defined and it’s also an element of Si.
Therfore g is a choice function for (Si)i∈N.
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We have now proven the equivalence. Note that we have proven this equiv-
alence in the ZF axiomatic system, and not in ZFC. We can therefore sum up
this result in the following corollary.

Corollary 1. In ZF the following statements are equivalent:

1. Every countable family of finite sets has a choice function.

2. The union of countable many finite sets is countable.

In the next chapter we will see a new interpretation of Kőnig’s Lemma,
which is stronger then the previous interpretations. We will also see that within
the Zermelo-Fraenkel axiomatic system, the strong version of Kőnig’s Lemma
is equivalent to the two statements given in Corollary 1.
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4 Reverse mathematics: equivalent descriptions
of Kőnig’s Lemma

In this chapter we will be going backwards, from theorems to axioms. Reverse
mathematics is a program used in the aera of mathematical logic to find out
which axioms are necessary to prove certain theorems.

Recall that in Chapter 2 we formalized trees with sequences, which made it
possible to codify the trees and, therefore, made the trees countable. Thanks to
this property, we have been able to prove Weak Kőnig’s Lemma without using
any version of the axiom of choice. We proved Weak Kőnig’s Lemma in the
Zermelo-Fraenkel axiomatic system. It is possible, but more complicated, to
prove Weak Kőnig’s Lemma in an axiomatic system which is weaker than ZF.

In this chapter we are going to introduce the stronger version of the lemma.
Instead of sequences, we will formalize trees with the use of abstract sets. As
a consequence of this formalization, the trees will no longer have the property
of countability. By loosing this property, a stronger axiomatic system will be
necessary for proving Kőnig’s Lemma.

We will now introduce some definitions within graph theory.

Definition 25. A graph G is infinite if |V |+ |E| =∞.

Definition 26. The valency of a graph G is given by

val(v) = |{w ∈ V (G)|(v, w) ∈ E(G)}|.

Definition 27. A graph G is locally finite if val(v) <∞ for all v ∈ V (G).

To clarify, the valency of a vertex of a graph is the number of edges incident
to the vertex.

Observation. If G is an infinite, locally finite, graph, then |V (G)| =∞.

Definition 28. A path in G is a sequence of vertices v0, v1, ... such that vi ∼
vi+1 for all i. If the sequence is finite, sat v0, ..., vn we call this a finite path
from v0 to vn. Otherwise it is called an infinite path.

Definition 29. A graph G is connected if for all v, w ∈ V (G) there is a path
from v to w.

A path such that the first vertex and the last vertex are the same, for example
v0, ..., v0 is a called a cyclic path.

Definition 30. A graph is acyclic if it has no graph cycles.

With these definitions in mind we are going to prove the following theorem.

Theorem 10 (Kőnig’s lemma). If we assume that every countable family of
finite sets has a choice function, then the following statement holds.

For every infinite, locally finite and connected graph, there exists an infinite
path v0, v1, v2, ... such that vi ∼ vi+1.

Proof. Take an infinite, locally finite and connected graph G. Assume that the
graph G is acyclic 7. Even though this assumption is not necessary, it makes

7A connected acyclic graph is also known as a tree.
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the proof a bit smoother. If the graph was cyclic, we could have picked a cycle
and loop through it infinitely many times.

If we take a fix node g0 ∈ G, we get a tree rooted in g0. Now define Tn as
the set of the nodes of G such that the unique path from g0 to the elements of
Tn has exactly n nodes.

First we are going to show that for each n, Tn is finite. The set T0 is
finite, since T0 = {g0} by definition. Also, if we assume that Tn is finite, then
the elements of Tn+1 are all neighbours to the elements of Tn. But since G is
locally finite, then Tn+1 is finite, as it is a subset of a finite union of finite sets.
It follows that for each n, Tn is finite.

Now, we want to prove that for each n,Tn contains at least one node
which is not ultimately terminal. Define a vertex g ∈ G as ultimately
terminal if there is some lg ∈ N such that all paths going from g0 through g are
at most of length lg. We note that if all the elements of Tn were terminal, we
could write lg as the maximal length of a path from g0 going through g, then
l = max{lg|g ∈ Tn}. This would implicate that G =

⋃
k≤l Tk, i.e G would be

finite. But since G is infinite by assumption, then for each n,Tn contains at
least one node which is not terminal.

Next step is to prove that if the node g ∈ Tn is not terminal, then
there is some neighbour g′ to g, such that g′ ∈ Tn+1 such that g′ is not
terminal. If g is connected only to terminal nodes in Tn+1, let l = max{lg′ |g′ ∈
Tn+1and g’ is neighbour of g}. Then every path that goes from g0 through g
must be at most of length l, and therefore g is terminal too. So, if the node
g ∈ Tn is not terminal, then there is some neighbour g′ to g, such that g′ ∈ Tn+1

such that g′ is not terminal.
Define T ′n to be the subset of those nodes which are not ultimately terminal,

as in Figure 9.

Figure 9: This is an example of representation of the set Tn and its subset T ′n
for a infinite, locally finite and connected graph.

Since Tn is finite and non-empty, then T ′n is finite. Say that T ′n has kn
elements. Then the set Sn of bijective functions from {0, ..., kn−1} to T ′n is
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finite and non-empty 8. We now want to find a way to enumerate T ′n in a way
that allows us to always choose the “least element” of it’s subsets. In order to
do this, let F be a choice function for (Sn)n∈N. Let T ′ =

⋃
n∈N T

′
n. Define a

function t : T ′n → {0, ..., kn − 1} on the graph as the following function:

t(g) =

{
F (n+ 1)(i), g ∈ T ′n, i = min{j < kn+1|F (n+ 1)(j)is a neighbour ofg}
g, g ∈ G \ T ′

In other words, the function t(g) picks the next node in an infinite path that
goes through g, if there is such a node. If there is not, then the function “stops”.

We are now going to use the recursion theorem which guarantees that recur-
sively defined functions exist. If we start at a vertex g0 and apply the function
t recursively, we will produce the sequence

g0, t(g0), t◦2(g0), t◦3(g0), ...

We now want to show that this sequence is a path, and in order to do this, it
suffices to observe that t◦n+1(g0) = t(t◦n(g0)) is adjacent to t◦n(g0), for n ∈ N
by construction of t.

We therefore have found an infinite path in the graph G.

(The idea for this proof was inspired from a post published in Stack Exchage
[4].)

With this proof we have shown that the Axiom of Choice is significantly
stronger than what is necessary to prove Kőnig’s Lemma. We have defined
this lemma in ZF set theory and, therefore, ZFC set theory is not necessary.
Although it is possible to prove the lemma with the axiom of choice, and there-
fore using the ZFC axiomatic system. Despite this, ZF alone is not enough for
Kőnig’s Lemma, in fact we have also used a weaker version of the chioce axiom,
namely the weak axiom of choice for finite sets (Definition 24).

In the next section we are going to see a familiar theorem which is equivalent
to Weak Kőnig’s Lemma.

4.1 Sequential compactness of [0, 1] and Weak Kőnig’s Lemma

In chapter 2 we proved that Weak Kőnig’s Lemma implied sequential compact-
ness of [0, 1], in this section we will prove the implication the other way around.

Theorem 11. Sequential compactness of [0, 1] implies Weak Kőnig’s Lemma
for binary trees.

Proof. Assume that [0, 1] is compact and let T be an infinite binary tree. We
want to show that T has an infinite path.

Let σ :
⋃

k∈N{0, 1}k → [0, 1] be the map 9 identified by

σ(r) =

k∑

n=0

3

4n+1
r(n)

8Note that this is a reference to Section 3, Theorem 7
9Note that {0, 1}k is the set of k -tuples comprised of ’0’ digits and ’1’ digits. For example,

if k = 2, then {0, 1}2 = {(0, 0), (0, 1), (1, 0), (1, 1)}.
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for r ∈ {0, 1}k.
Note that

0 ≤
k∑

n=0

3

4n+1
r(n) ≤ 3

4

∞∑

n=0

1

4n
=

3

4

1

1− 1
4

= 1,

since r(n) either has the value 0 or 1. So σ is well defined.
By sequential compactness, the countable set σ(T ) ⊆ [0, 1] contains a con-

vergent sequence, say (σ(rk))k∈N with rk ∈ T .
Write x = limσ(rk). We will show that for every N ∈ N there is K ∈ N such

that for all k ≥ K the initial parts satisfy rk � N = rK � N . This will prove the
existence of an infinite path in T , since the length of (rk)k must go to infinity.
(There are only finitely many paths of a given length in T ).

Fix N ∈ N and let k ∈ N be chosen such that |σ(rk)− x| < 1
2 − 1

4n+1 for all
k ≥ K. Observe that for all k ≥ K, we have

|σ(rn � N)− σ(rk)| =
l(rk)∑

n=N+1

3

4n+1
rk(n) ≤ 3

4N+2

∞∑

n=0

1

4k

=
3

4N+2

4

3
=

1

4N+1
,

where l(rk) denotes the length of the sequence rk.
We find that

|σ(rk � N)− σ(rK � N)|
≤ |σ(rk � N)− σ(rk)|+ |σ(rk)− x|+ |x− σ(rK)|+ |σ(rk)− σ(rK � N)|

<
1

4N+1
+

1

2

1

4N+1
+

1

2

1

4N+1
+

1

4N+1
=

3

4N+1
.

Since at most every third interval of the form [ n
4N+1 ,

n+1
4N+1 ] contains one of the

number σ(rk � N), σ(rK � N), this shows their equality.

Inspection of proof shows that no induction has been used. In other words,
we have found that we can prove the equivalence of Weak Kőnig’s Lemma and
sequential compactness of [0, 1] in an axiomatic system which is less than the
ZF axiomatic system. In Chapter 2 we have shown that we can prove Weak
Kőnig’s Lemma in ZF alone, but it is possible to prove it in an axiomatic system
which is even weaker than ZF, but this won’t be proven in this paper.

4.2 Weak axiom of choice for countable families of finite
sets and Kőnig’s Lemma

In this section we are going encapsulate some results from Chapter 3 and Chap-
ter 4 into a new corollary, which will tell us more about the relation between
Kőnig’s Lemma and the Weak Axiom of Choice for countable families of finite
sets.

We are going to expand Corollary 1 by proving that the implication in The-
orem 10 is truly an equivalence.
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Recall Theorem 10, which states that the weak axiom of choice for countable
families of finite sets implies that every locally finite, infinite graph has an
infinite path. We will now prove we implication the other way around.

Theorem 12. Assume that every locally finite, infinite graph has an infinite
path. Then every countable family of finite sets has a choice function.

Proof. Let (Sn)n≥1 be a countable family of finite, non-empty sets.
Define V (T ) =

⋃
n≥0 S0 × S1 × ... × Sn and declare two vertices (s1, ..., sn)

and (t1, ..., tm) adjacent in T if |n−m| = 1 and
{

(s1, ..., sn−1) = (t1, ..., tm), if n− 1 = m

(t1, ..., tm−1) = (s1, ..., sn), if m− 1 = n.

In this way we construct a tree as in Figure 6.

Figure 10: This is a graphical illustration of the tree construction. Note that we
want to construct the tree in an non-trivial way. If we had loops in the tree, then
the existence of an infinite path would be trivial, therefore the tree is loop-free.

We want to find a function f : N→ ⋃
n∈N Sn such that f(n) ∈ Sn.

Since Sn 6= ∅ for all n ≥ 1, the graph T is infinite. Note that T is connected
since its node (s1, ..., sn) is connected to the empty sequence by

∅ ∼ (s1) ∼ (s1, s2) ∼ ... ∼ (s1, ..., sn−1) ∼ (s1, ..., sn).

Also, T is locally finite, since there are precisely |Sn+1|+ 1 many neighbours of
(s1, ..., sn).

So there is an infinite path (v0, v1, v2, ...) in T .
We may assume that v0 = ∅. We define f(n) ∈ Sn by the formula

vn = (vn−1, f(n)) = (f(1), f(2), ..., f(n))

for n ≥ 1.
This is well defined, since vn ∈ S1 × ...× Sn.

33



Remark. Note that the vertices of the tree constructed in the proof of Theorem
12 are not numerical sequences, as used in Definition 4 of Section 1. This is a
crucial difference.

We have then shown that the following statements are equivalent:

1. Every locally finite, infinite graph has an infinite path.

2. Every countable family of finite non-empty sets has a choice function.

Now recall that we have already seen the second statement in Corollary 1.
We can now summarize the result in the following corollary.

Corollary 2. In ZF the following statements are equivalent.

1. Every countable family of non-empty finite sets has a choice function.

2. Every infinite, locally finite and connected graph has an infinite path.

3. The union of countable many finite sets is countable.

Note that for this corollary to be valid, the axiomatic system ZF is necessary,
and therefore ZFC is not necessary. In fact, the Axiom of Choice is not necessary
to prove these equivalences.

We have then proved that Kőnig’s Lemma is truly equivalent to the Weak
Axiom of Choice for finite sets.
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Results

We have now uncovered the complexity hidden behind the different versions of
Kőnig’s Lemma and unlike our oak tree, we have come to an end.

In the first part of this paper we have proven Weak Kőnig’s Lemma for binary
trees and Weak Kőnig’s Lemma for k -ary trees in ZF. We have also proved that
Weak Kőnig’s Lemma and the sequential compactness of [0, 1] are equivalent.
This equivalence is implied by an axiomatic system which is weaker than ZF,
since it has been proved without induction nor Axiom of Choice.

In the second part of this paper we have learnt about the Axiom of Choice
and seen that it is not necessary to prove the stronger version of Kőnig’s Lemma
either. In fact, ZF together with a weak version of the Axiom of Choice, namely
the Weak Axiom of Choice for countable families of finite sets, implies Kőnig’s
Lemma. Also, we have seen that this version of Kőnig’s Lemma is equivalent to
axiom of choice for countable families of finite sets. At last, we have shown that
Kőnig’s Lemma is also equivalent to the theorem which states that the countable
union of finite sets is countable. Both these equivalences with Kőnig’s Lemma
have been proved in ZF.
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