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Abstract

Control theory can be used to solve a large variety of problems and has

played a vital role in generating accurate solutions to complex problems. This

thesis will explore the history and the mathematics behind control theory and

to better conceptualize the utilization of control theory two practical problems

are examined: the brachistochrone problem and Merton’s portfolio problem.

Furthermore, to display the benefits of using control theory, different meth-

ods of solving the brachistochrone problem are shown, which provides a more

intuitive understanding of the strengths of control theory.

Keywords: Hamilton-Jacobi-Bellman equation, HJB, Pontryagin’s maximum prin-

ciple, PMP, the brachistochrone problem, Merton’s portfolio problem, optimal con-

trol, control theory.
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1
Introduction
The aim of this thesis is to give the reader an introduction to control theory and its

applications. This is accomplished partly be describing and deriving the method-

ological components of control theory as the Hamilton-Jacobi-Bellman equation and

Pontryagin’s minimum (maximum) principle, and partly by applying these methods

on practical problems.

Control theory, can be applied in various disciplines and in this thesis the classic

and famous brachistochrone problem together with Merton’s portfolio problem, will

be examined closer and then also solved. The brachistochrone problem will be solved

using three different methods to show the benefits control theory can reap in contrast

to other methods.

6



2
Control Theory

2.1 Background

The word control, (/k@n"tôo

Ω

ë/), has a unique duality to it as controlling can mean

two things. Firstly, it may mean, checking that whatever is being observed behave

adequately. Secondly however, it can also mean, making sure that whatever is being

observed in fact behaves adequately and thus, in a way guaranteeing it. This is in

fact also what control theory is all about, making sure that a process reaches the

desired outcome while minimizing unwanted effects (Fernandez-Cara, 2003). In that

sense, control theory in its very essence can be dated back to the very antique as

Aristotle so eloquently described the phenomenon in “Politics”.

“. . . if every instrument could accomplish its own work, obeying or anticipating

the will of others . . . if the shuttle weaved and the pick touched the lyre without

a hand to guide them, chief workmen would not need servants, nor masters slaves.

(Aristotle, ca. 350 B.C.E./ 1905)”

Since then, the theories surrounding control theory have been developing rapidly

and new applications are found continuously. The endless possibilities where control

theory can play a crucial role includes regulation of machines, design of medical

and prosthetic devices, as well as a wide array of coordinated activities in the so-

cial sphere such as optimization of business operations, control of economic activity

by policies, and even control of political decisions by democratic processes. How-
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ever, before taking a closer look at how control theory can be used solving the

brachistrochrone problem and Merton’ portfolio problem, the basics of control theory

are considered.

2.2 Optimal Control Theory

Optimal control is commonly used today as a way of optimizing a large variety of

problems in different fields. One example concerning stochastic optimal control is its

utilization in finance. In finance, stochastic control theory can be used to optimize

an investors return on assets with regards to the investors preferences and assump-

tions. This sort of optimization was first introduced by Robert C. Merton who stated

and solved the famous “Merton’s Portfolio Problem” (Merton, 1971), which will be

discussed in coming sections. Since then, the method has been used by institutional

investors such as mutual funds, banks and pension funds and individual investors to

optimize their asset allocation.

There are two main approaches to this method: the traditional approach, and the

modern approach. The traditional approach uses dynamic programming, pioneered

by Bellman, to solve the stochastic problems utlizing the Hamilton-Jacobi-Bellman

equation (Bellman, 1957). There, the optimal feedback control can optimize the

Hamiltonian in the Hamilton-Jacobi-Bellman equation and thus, a solution can be

found. The Hamilton-Jacobi-Bellman equation will also be covered further in later

sections.

The modern approach on the other hand uses martingales or the duality approach.

By using the martingale representation of wealth, the more direct martingale ap-

proach can be used to solve the problem. This approach is however more complicated

for incomplete markets as it does not conclude a unique solution whereas the tra-

ditional method can be used for both complete and incomplete markets. As most
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economic market are considered as incomplete markets, the traditional method is

most likely to be favoured (Fahri and Werning, 2016).

Optimal control problems can take form in many ways and in many scientific fields.

In general, the components regarding these sorts of problems are (Kashif, 2016):

State Variable:

The state variable follows a Markovian structure and can only be affected by the

control variables. It provides the minimum required information in order to properly

describe the problem. For example, in finance, the state variable usually represents

the wealth, R(t), by a stochastic differential equation. However, it is possible to

consider more than one state variable and these cases often include interest rate,

inflation etc.

Control Processes:

The controls themselves are chosen by the optimizer to solve the optimization prob-

lem. Moreover, the control variables take certain values for each instance, t, and

those variables that satisfy the constraints put on them are called admissible con-

trols, which usually is represented by, Uad.

The Objective Functional:

The objective can either be to maximize or to minimize a trait over all admissible

controls. Examples of this could be maximizing the utility or minimizing the energy

of a system.

Furthermore, to get a better sense of what optimal control theory really is, a more

formal formulation could be beneficial:

Consider the following system,
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ẋ = f(x, u), x(0) = x0, u ∈ Uad, t ∈ [0, T ].

From here, to compare the different controls, u, and to evaluate which control in

fact is the optimal control, a cost function which acts as the objective functional is

introduced as

J (u) =
∫ t

0
L (x(t), u(t))dt. (2.2.1)

The objective is to minimize the functional, J , which here is denoted as the integral

of the lagrangian, L (the running cost), from 0 to t, by choosing the optimal, u.

The "best" control, u, will be considered the optimal control and the corresponding

curve, x(u), will be considered the optimal trajectory.
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3
The Brachistochrone Problem
The Brachistochrone problem has a long and interesting history. To begin with,

the word itself stems from two greek words: brachisto (/br@’kIs t@/) and chronos

(/’kr6n o

Ω/). Brachisto is Greek for shortest and, chronos is Greek for time. Thus,

the problem can be referred to as the shortest time problem. It is well-known that the

solution to the shortest path from point A to point B (see figure 1 ) is the hypotenuse

but what path that yield the shortest time is more complex.

Figure 1: The brachistochrone problem visualized with Galileo’s solution and the
optimal path (cycloid).

The official problem was first posed by Johann Bernoulli in 1696 in the renowned

Acta Eruditorium. Translated, it is officially formulated as:
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"Given in a vertical plane two points A and B, assign to the moving [body] M, the

path AMB, by means of which — descending by its own weight and beginning to

be moved [by gravity] from point A — it would arrive at the other point B in the

shortest time (Bernoulli, 1696)."

The problem, however, did not originate with Bernoulli’s formulation but can be

traced back to Galileo Galilei, who in 1638 tried to solve a problem with a simi-

lair formulation (Galilei, 1638). Although Galileo came close to finding the optimal

path, he did not fully succeed. He posed that the arc of a circle would yield the

fastest time, which is quite close (see figure 1 ).

In conjunction with Bernoulli’s formulation of the problem, he posed a challenge

to other inventive mathematician to solve the problem even though he already had

solved it himself. The mathematicians he challenged were given six months to solve

the problem but when the deadline was due, no answers to the problem had been

submitted. The prominent mathematician Gottfried Leibniz famously asked for an

extension of the deadline which was approved, setting the deadline approximately

one year into the future (Sagan, 2011). Around the same time Isaac Newton found

the challenge in a letter addressed to himself. Newton successfully solved the prob-

lem the same night as he received the challenge and then went on to submit his

solution anonymously. Johann Bernoulli then famously exclaimed that he recog-

nized the mysterious solver, "tanquam ex ungue leonem", which more or less means

"as the lion by his claw" as he was positive that Newton was behind the solution

just by looking at it (Sagan, 2011).

By the end of the second deadline, five correct solutions had been submitted by Isaac

Newton, Jakob Bernoulli (Johann Bernoulli’s brother), Gottfried Leibniz, Ehren-

fried Walther von Tschirnhaus and, Guillaume de l’Hôpital, respectively. Jakob
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Bernoulli’s solution to the problem became a steppingstone in developing calculus

of variation which was later on refined and expanded on by Leonhard Euler (Shafer,

2007).
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4
Merton’s Portfolio Problem
Merton’s portfolio problem is a well-known problem which was originally stated by

the prolific and Nobel Price-decorated economist and mathematician, Robert Cox

Merton (Merton, 1969). Merton is, among many things, famous for his pioneering

work on the Black-Scholes-Merton model used in continuous-time finance to price

options (Merton, 1973). This problem, however, does not concern options but in-

stead considers an investor who wants to maximize the utility of his or her wealth.

The way the investor can do this is by choosing the optimal proportion of risk-

free and risky assets with respect to the investors risk aversion. The risk aversion

can be observed using different models. This problem most often, and will in the

solution later, considers a constant relative risk aversion (CRRA). Moreover, the

problem itself is solved using optimal control and will in section 9 be solved using the

Hamilton-Jacobi-Bellman equation. This problem makes for a good example showing

how control theory or rather optimal control theory can be used. However, the

world of investing is more complex than just choosing between two assets rendering

the practical usage of the solution debatable, but Merton’s work on the problem

remains ground-breaking and leaves a staggering amount of development to be made

henceforth.
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5
Hamilton’s Principle and the Euler-

Lagrange Equation

5.1 Background

The principle of least action has become one of the most central ideas in many

scientific fields. It is not only used in grand theories such as quantum mechanics

and the theory of relativity, but it is also used in control theory to, for instance,

optimize the problems at hand. The first mathematician to define the principle was,

Pierre Louis Maupertius, who defined the action as (Svensson, 2015):

∫
vds, (5.1.1)

where v is the conjugate momenta of the generalized coordinates, s. The idea is

that the definition can find the “correct way” by minimizing the action. However,

Maupertius only sought to apply this method to light, not matter, and derived the

formulation by considering Fermat’s principle which states that light always follows

the path that takes the shortest time. At approximately the same time in history

Leonhard Euler instead formulized the action as:

∫
mvds, (5.1.2)

where, m, is the weight of the matter, v, the velocity and ds, an infinitesimal dis-

tance. Unlike Maupertius principle, Euler therefore took into account that the action
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can affect matter, thus rendering Euler’s definition suitable for application in me-

chanical systems. None of these are, however, used in a broader sense today. Instead

the more modern formulation by Hamilton is used where the integral instead con-

siders the Lagrangian, L , from some time, t1, to some time, t2. This formulation is

usually denoted by S and thus the action is formulized as:

S =
∫ t2

t1
L (q, q̇, t)dt, (5.1.3)

where q̇ = dq
dt
. Hamilton’s principle further states that the dynamics of a mechanical

system is specified by the condition that the action S has a stationary value, i.e.

δS = 0. (5.1.4)

Hence, saying that it satisfies the condition of least action is somewhat of a misnomer

as the action itself is not required to be minimum but rather take the form of a

stationary value. Therefore, it would be more accurate calling it the principle of

stationary action which is the name the principle often takes in modern literature.

5.2 The Euler-Lagrange Equation

Lemma 5.1 (Fundamental Lemma of Calculus of Variations). If a continuous func-

tion f on an open interval (a, b) satisfies the equality

∫ b

a
f(x)g(x)dx = 0 (5.2.1)

for all compactly supported smooth functions g on (a, b), then f is equal to 0 as well.

Theorem 5.2. For a curve q(t), in C2
[t1,t2], that minimizes the functional

J [q(t)] =
∫ t2

t1
L (q, q̇, t)dt (5.2.2)

the following differential equation must be satisfied:
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∂L

∂t
− d

dt

(
∂L

∂q̇

)
= 0 (5.2.3)

which is what is called the Euler-Lagrange equation.

Proof. Presume that q(t) is a curve which minimizes the functional, J , i.e. for any

other permissible curve, r(t), J [q(t)] ≤ J [r(t)]. The idea from here is to construct

a function of a real variable such as Ξ(ε), which has the following properties:

(i) Ξ(ε) is a differentiable function near, ε = 0.

(ii) Ξ(0) is a local minimum for Ξ.

After the construction of Ξ, (ii) will be shown to imply that the Euler-Lagrange

equation must be satisfied. To begin with, let ε be a small real number and consider

the construction of variation of q(t) as

qε(t) = q(t) + εξ(t), (5.2.4)

where ξ(t) ∈ C2
[t1,t2] and ξ(t1) = ξ(t2) = 0. Now, the function Ξ can be defined as

Ξ(ε) = J [qε(t)]. (5.2.5)

Since q(t) minimizes J [q(t)], it follows that Ξ(ε) is minimized by 0. Furthermore,

as Ξ(0) is a minimum for Ξ, Ξ′(0) = 0, must be true. Now, Ξ can be differentiated

by using Leibniz rule (i.e. d
dx

(∫ b
a f(x, t)dt

)
=
∫ b
a

∂
∂x
f(x, t)dt, where a and b are

constants) accordingly:

d

dε
(Ξ(ε)) = d

dε

∫ t2

t1
L (t, qε, q̇ε)dt

=
∫ t2

t1

∂

∂ε
L (t, qε, q̇ε)dt.

(5.2.6)

Then, by applying the chain rule to ∂
∂ε

L (t, qε, q̇ε)dt from (5.2.5) and denoting L (t, qε, q̇ε)

as Lε, the following is obtained:
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∂

∂ε
Lε(t, qε, q̇ε) = ∂Lε

∂t

dt

dε
+ ∂Lε

∂qε

dqε
dε

+ ∂Lε

∂q̇ε

dq̇ε
dε

= ∂Lε

∂qε

dqε
dε

+ ∂Lε

∂q̇ε

dq̇ε
dε

= ∂Lε

∂qε
ξ(t) + ∂Lε

∂q̇ε
ξ̇(t)

(5.2.7)

From here it is possible to rearrange (5.2.5) as

d

dε
Ξ(ε) =

∫ t2

t1

(
∂Lε

∂qε
ξ(t) + ∂Lε

∂q̇ε
ξ̇(t)

)
dt. (5.2.8)

Evaluating the equation at ε = 0 entail qε = q and Lε = L yields

d

dε
Ξ(ε)

∣∣∣∣
ε=0

=
∫ t2

t1

(
∂L

∂q
ξ(t) + ∂L

∂q̇
ξ̇(t)

)
dt = 0. (5.2.9)

Next, integrating the 2nd term of the integrand gives

∫ t2

t1

(
∂L

∂q
− d

dt

(
∂L

∂q̇

))
ξ(t)dt+

[
ξ(t)L

∂q̇

]t2

t1

= 0, (5.2.10)

which by applying the boundary condition, ξ(t1) = ξ(t2) = 0, yields

∫ t2

t1

(
∂L

∂q
− d

dt

(
∂L

∂q̇

))
ξ(t)dt = 0 (5.2.11)

From here, by applying lemma 5.1 (the fundamental lemma of calculus of variations),

the Euler-Lagrange equation is given

∂L

∂q
− d

dt

(
∂L

∂q̇

)
= 0, (5.2.12)

ending the proof (Fischer, 1999).
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5.3 Deriving the Euler-Lagrange Equation from

Hamilton’s Principle

Recall the formulization of Hamilton’s principle of least action. To avoid unnecessary

technicality, we assume that L and q are sufficiently smooth.

S =
∫ t2

t1
L (q, q̇, t)dt. (5.3.1)

Assume that the state the particle occupies is fixed at time t1 and t2. Then further

assume that q, and q̇ may vary in-between t1 and t2. In that case the particle can

follow different trajectories and thus generate different values for S. Denoting these

variations as δq, δq̇ and δS, it is possible to write:

δS =
∫ t2

t1
L (q + δq, q̇ + δq̇, t)dt−

∫ t2

t1
L (q, q̇, t)dt. (5.3.2)

According to Hamilton’s principle the motion of the particle is, δS = 0, to the 1st

order in variation considering, δq and δq̇. In other words, the motion of the particle

is not affected by small variations. Next, by using Taylor’s theorem it is possible to

write the 1st order approximation as:

L (q + δq, q̇ + δq̇, t) ≈ L (q, q̇, t) + ∂L

∂q
δq + ∂L

∂q̇
δq̇. (5.3.3)

Accordingly, it is possible to rewrite (5.3.2) as

δS =
∫ t2

t1

(
∂L

∂q
δq + ∂L

∂q̇
δq̇

)
. (5.3.4)

Thus, as q̇ = dq
dt

and, δq̇ = d(δq)
dt

, the 2nd term in the integral can be rewritten as

∫ t2

t1

∂L

∂q̇
δq̇ =

∫ t2

t1

∂L

∂q̇

d(δq)
dt

dt. (5.3.5)

By integrating by parts, the term can be rewritten as
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∂L

∂q̇
δq

∣∣∣∣∣

t2

t1

−
∫ t2

t1

d

dt

∂L

∂q̇
· δqdt. (5.3.6)

Furthermore, as the initial and final state are fixed, δq can be removed at both states

making it possible to rewrite (5.3.4) as

δS =
∫ t2

t1

(
∂L

∂q
− d

dt

(
∂L

∂q̇

))
δqdt = 0. (5.3.7)

As δq remains arbitrary the terms inside the brackets must be equal to each other

in order to satisfy the equality (lemma 5.1). Thus,

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0, (5.3.8)

must be true, which is the formulation commonly known as the Euler-Lagrange

equation.
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6
Pontryagin’s Minimum (Maximum)

Principle

6.1 Background

The maximum (minimum) principle was first discovered in the mid-1950’s at the

Steklov Mathematical Institute, Academy of Sciences of the USSR. The researcher

who was credited the discovery, or rather, the formulation, was Lev Semenovich

Pontryagin. Pontryagin and some of his younger students were recognized all over

the world for their impressive scientific achievement and the formulation would come

to be pivotal for the subject of optimal control (Gamkrelidze, 2019).

The principle is used in optimal control theory to find the optimal control for taking

a dynamical system from one state to another. Pontryagin’s maximum principle, in

its essence state that it is, with a maximum condition of the control Hamiltonian,

necessary for any optimal control, with the optimal state trajectory to solve the

Hamiltonian system. The principle was first used to maximize the terminal speed of

rockets and has since been used in a wide variety of domains (Fuller, 1963). Worth

noting is that the principle can be used for both maximization and minimization

which solely depends on whether the objective functional is positive or negative.
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6.2 Formulation

To begin with, to use the fundamental lemma of calculus of variation as δS = 0,

where dynamic situations are considered, J (the objective functional), has to be

rewritten. Impose, ρ1(t), ..., ρn(t). Then define

Ja(u) =Ψ(x(tf )) +
∫ tf

0
L (x(t), u(t))dt+

∫ tf

0
ρT (f − ẋ)dt

=Ψ(x(tf )) +
∫ tf

0
(L + ρTf)dt−

[
ρTx

]tf
0

+
∫ tf

0
(ρ̇Tx)dt.

(by partial integration)

(6.2.1)

From here, two situations will be considered, firstly when u is not constrained and,

secondly when u is constrained.

(i) u is not constrained:

Impose,

H(x, ρ, u) = L (x, u) + ρTf(x, u), (6.2.2)

where H is the associated hamiltonian, L the adjointed lagrangian, and ρ is a

time-varying vector. This permits the following:

22



Ja(u+ δu) = Ψ((x+ δx)(tf ))−
[
ρT (x+ δx)

]tf
0

+
∫ tf

0

(
H(x+ δx, ρ, u+ δu) + ρ̇T (x+ δx)

)
dt−Ψ(x(tf ))

+
[
ρTx

]tf
0
−
∫ tf

0

(
H(x, ρ, u) + ρ̇Tx

)
dt

= Ψ((x+ δx)(tf ))−Ψ(x(tf ))−
[
ρT δx

]tf
0

+
∫ tf

0
(H(x+ δx, ρ, u+ δu)−H(x, ρ, u))dt+

∫ tf

0
ρ̇T δxdt

≈ Ψx(x(tf ))δx− ρT (tf )∂x(tf ) + ρT (0)δx(0)

+
∫ tf

0
(Hxδx+Huδu+ ρ̇T δx)dt.

(6.2.3)

From here it is possible to choose, ρ̇T = −Hx and, ρT (tf ) = Qx(x(tf )), as long as

x(tf ) is free. Then,

δJa =
∫ tf

0
Huδudt. (6.2.4)

If, u∗, is optimal, then δJa = 0, which entail that, Hu = 0.

Theorem 6.1 (Pontryagin’s minimum principle). If (x, u), is an optimal solution,

considering a free final state, then ρ 6≡ 0, exists such that:

(i) ẋ = (f(x, u), x(t)) = x0 (where x(tf ) is free)

(ii) ρ̇T = −Hx = Lx(x, u) + ρTfx(x, u), ρ(tf ) = Q(x(tf ))

(iii) Hu = 0←→ Lu(x, u) + ρTfu(x, u) = 0.

(6.2.5)

If instead, the state final state is considered as fixed, then, (x, u) is an optimal

solution when, (ρ̇(t), ρ0 6≡ 0), with, ρ0 being a non-negative constant. This instead

results in:
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(i) ẋ = f(x, u), x(0) = x0, x(tf ) = x (fixed)

(ii) ρ̇T = −Hx

(iii) Hu = 0

(6.2.6)

where, H(x, ρ, u) = ρ0L (x, u) + ρTf(x, u).

Comment:

Note that ρ0 is needed to counteract inconsistency as, x(tf ) is unable to reach, x,

see example 6.2.

Example 6.2. (ill-conditioned problem)

With, ẋ(t) = u2, x(0) = 0 and x(1) = 0 consider

J =
∫ 1

0
u(t)dt. (6.2.7)

Here, it is easy to see that u = 0 is a solution but with, ρ0 = 1, Pontryagin’s

minimum principle will not work. However, λ0 = 0 is fine.

(ii) u is constrained:

What separates the constrained form and the non-constrained form is by and large

that it is no longer possible to assume, δS = 0, but instead, δS ≥ 0 has to be

assumed. This leads to a modification in the derivation as:

∫ tf

0
(H(x+ δx, ρ, u+ δu)−H(x, ρ, u)) dt

=
∫ tf

0
(H(x+ δx, ρ, u+ δu)−H(x, ρ, u+ δu)) dt

+
∫ tf

0
(H(x, ρ, u+ δu)−H(x, ρ, u)) dt

≈
∫ tf

0
Hxδxdt+

∫ tf

0
(H(x, ρ, u+ δu)−H(x, ρ, u)) dt.

(6.2.8)

Just as before,
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δJa =
∫ tf

0
(H(x, ρ, u+ δu)−H(x, ρ, u)) dt, (6.2.9)

which is non-negative. This now yield

H(x, ρ, u+ δu)−H(x, ρ, u) ≥ 0

(∀ δu, such that u+ δu ∈ Uad and ,∀ t ∈ [0, tf ]).
(6.2.10)

This frames Pontryagin’s minimum principle as:

If, (x, u), is an optimal solution for, u ∈ Uad, then, ρ(t) 6≡ 0, such that the conditions

for Pontryagin’s minimum principle can be written as

ẋ =f(x, u), (x(t0) = x0 fixed)

ρ̇T =−H, (ρT (tf ) = Qx(x(tf )))

H(x, ρ, u) ≥H(x, ρ, u), (∀ u ∈ Uad, 0 ≤ t ≤ tf )

(6.2.11)

or

ẋ =f(x, u), (x(t0) = x0, x(tf ) = x , fixed)

ρ̇T =−H

H(x, ρ, u) ≥(x, ρ, u), (∀ u ∈ Uad, 0 ≤ t ≤ tf ).

(6.2.12)

Comments:

(i) In this formulation, t0 = 0 is assumed but it is not necessary.

(ii) The Euler-Lagrange equation discussed earlier is a special case of Pontryagin’s

minimum principle which is given by assuming that, u = q̇. Then, the following is

given
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min
∫ t1

t0
L (q, q̇)dt (6.2.13)

with, q̇, and, (((q(t0), q(t1)) fixed). Then,

H(q, ρ, u) = L (q, u) + ρTu, (6.2.14)

gives

0 = Hu = Lu(q, u) + ρT (6.2.15)

and

ρ̇T = −Hq = −Lq(q, u) (6.2.16)

which in turn yield

− ρ̇T = d

dt
(Lu(q, u)) = L (q, u)←→ d

dt
(Lu(q, q̇)) + Lq(q, q̇) = 0, (6.2.17)

which indeed is the Euler-Lagrange equation.

(iii) The Hamiltonian is constant along the trajectories, ẋ = f(x, u).
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7
The Hamilton-Jacobi-Bellman

Equation

7.1 Background

The Hamilton-Jacobi-Bellman equation has a unique and complex history as many

prolific mathematicians’ individual work came to create one of the most important

equations in optimal control theory. The foundation for the equation was laid out

by the two famous mathematicians Pierre de Fermat and Christiaan Huygens, who

researched the properties of geometrical optics. Deriving from their research Hamil-

ton formed what is called “Hamiltonian Dynamics/Hamiltonian mechanics” which

is integral in the formulation of the Hamilton-Jacobi-Bellman equation.

Further additions to this theory came from Carl Gustav Jacob Jacobi who sharp-

ened the theory and made significant additions to it. The resulting theory, called the

Hamilton-Jacobi equation, is used in a multitude of ways. Examples of this includes

modern PDE theory and wave-particle duality (Bahram, 2020).

The third and last contribution to the theory was developed by the mathematician

Richard Bellman. Bellman pioneered the concept of dynamic programming which

is an optimization method that since has found applications in many fields such as

aerospace engineering and financial economics (Ross, 1995). The method itself is

built on simplifying complex problems by breaking the problem down recursively
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and thus, creating simpler sub-problems. This can for example be used to minimize

cost functions over continuous time intervals. However, it was never Bellman’s in-

tention to continue building the theory created by Hamilton and Jacobi. Bellman

did his research on his own and it was first later when the mathematician Rudolf

Kálmán realised the natural connection between the works of Bellman, Hamilton

and Jacobi and formed the equation that is called the Hamilton-Jacobi-Bellman

equation (Kálmán, 1963).

7.2 Formulation

The idea behind Bellman’s dynamic programming is to embed the optimal control

problem in a larger class of problems. The problem at hand is

minJ (u) =
∫ tf

0
L (x(t), u(t))dt+ Ψ(x(tf )) (7.2.1)

where, tf is the final state of a continuous time interval, Ψ is the endpoint cost, L

is the running cost, and

ẋ(t) = f(x(t), u(t)), x(t0) = x0, u ∈ Uad. (7.2.2)

From here, instead of solving (7.2.1) directly, let tf > 0 be fixed and consider




ẋ(s) = f(x(s), u(s)), 0 ≤ t ≤ s ≤ tf

x(t) = x, ∀x ∈ Rn
(7.2.3)

with

Jx,t(u(·)) =
∫ tf

t
L (x(s), u(s))ds+ Ψ(x(tf )). (7.2.4)

From here the definition of the Hamilton-Jacobi-Bellman equation can be formu-

lated.
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Definition 7.1. For all x ∈ Rn and 0 ≤ t ≤ tf , the value function,

V (x, t), is given by

V (x, t) = min
u(·)∈Uad

Jx,t(u(·)) (7.2.5)

for all trajectories given by (7.2.2) whereas

V (x, tf ) = Ψ(x, tf ). (7.2.6)

7.3 Derivation

(i) To begin with, consider

∀ x ∈ Rn, 0 ≤ t ≤ tf , ∆t > 0 (7.3.1)

where ∆t, is arbitrarily small. Then take an arbitrary control, α ∈ Uad, i.e. u(·) = α.

Apply, u(·) = α on t ≤ s ≤ t+∆t < tf . Then, with, ẋ(s) = f(x(s), α) and x(t) = x,

the cost for the time interval [t, t+ ∆t] can be represented by

∫ t+∆t

t
L (x(s), α)ds. (7.3.2)

Furthermore, the cost for, s ∈ [t+ ∆t, tf ], can be considered as

V (x(t+ ∆t), t+ ∆t), (7.3.3)

as per definition of the value function. With (7.3.2) and (7.3.3) the total cost can

now be described as

∫ t+∆t

t
L (x(s), α)ds+ V (x(t+ ∆t), t+ ∆t). (7.3.4)

which makes the least possible cost, starting from (x, t), V (x, t). Thus,
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V (x, t) ≤
∫ t+∆t

t
L (x(s), α)ds+ V (x(t+ ∆t), t+ ∆t). (7.3.5)

(ii) Now, to get the differential form of (7.3.5), the inequality is rearranged as

V (x(t+ ∆t), t+ ∆t)− V (x, t)
∆t + 1

∆t

∫ t+∆t

t
L (x(s), α)ds ≤ 0. (7.3.6)

By letting, ∆t→ 0, (7.3.6), can be written as

Vt(x, t) + Vx(x, t) · ẋ(t) + L (x(t), α) ≤ 0. (7.3.7)

It is clear that, x solves the ODE ẋ(s) = f(x(s), α) for (t ≤ s ≤ t + ∆t) with

x(t) = x. Applying this in (7.3.7) results in

Vt(x, t) + Vx(x, t) · f(x, α) + L (x(t), α) ≤ 0. (7.3.8)

Then, for all controls, α ∈ Uad:

min
α∈Uad

{Vt(x, t) + Vx(x, t) · f(x, α) + g(x, α)} ≤ 0. (7.3.9)

(iii) Now, to show that the inequality in fact is an equality, assume that, u∗(·) and

x∗(·) are optimal for (7.3.9). Then, by using the optimal control, u∗(·), the optimal

cost, for t ≤ s ≤ t+ ∆t, can be considered as

∫ t+∆t

t
L (x∗(s), u∗(s))ds (7.3.10)

where the rest of the cost is V (x∗(t+ ∆t), t+ ∆t), which make the total cost

∫ t+∆t

t
L (x∗(s), u∗(s))ds+ V (x∗(t+ ∆t), t+ ∆t) = V (x∗, t). (7.3.11)

(7.3.11) can then be rewritten as
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V (x∗(t+ ∆t), t+ ∆t)− V (x, t)
∆t + 1

∆t

∫ t+∆t

t
L (x∗(s), u∗(s))ds = 0. (7.3.12)

Now, yet again, let ∆t→ 0, where u∗(t) = α ∈ Uad, which leads to

Vt(x, t) + Vx(x, t) · ẋ∗(t) + L (x∗, α∗) = 0→

Vt(x∗, t) + Vx(x∗, t) · f(x∗, t) + L (x∗, α∗) = 0
(7.3.13)

for any, α∗ ∈ Uad. From the above derivation, the following necessary condition for

optimality is obtained.

Theorem 7.2. Assume that, V (x, t) is a C1-function of the variables, (x, t). Then,

V , solves the Hamilton-Jacobi-Bellman equation as

Vt(x, t) + min
α∈Uad

{Vx(x, t) · f(x, α) + L (x, α)} = 0 (7.3.14)

with the boundary condition

V (x, tf ) = Ψ(x(tf )), x ∈ Rn. (7.3.15)

Comment:

Let,

H(x, ρ) = min
α∈Uad

(x, ρ, α) (7.3.16)

with

H(x, ρ, α) = ρT · f(x, α) + L (x, α), (x, ρ ∈ Rn) (7.3.17)

as the Hamiltonian. Furthermore, it is possible to design the optimal cost by first

solving the Hamilton-Jacobi-Bellman equation (i.e. determining V ), and thereafter
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determining a feedback control, u∗(·).

To find the feedback control, define for all, x ∈ Rn, and, 0 ≤ t ≤ tf ,

u(x, t) = α ∈ Uad, (7.3.18)

such that the Hamilton-Jacobi-Bellman equation is minimized. In other word, u(x, t),

is chosen such that,

Vt(x, t) + Vx(x, t) · f(x, u(x, t)) + L (x, u(x, t)) = 0. (7.3.19)

Then, the ODE,




ẋ∗(s) = f(x∗(s), u(s), s), 0 ≤ t ≤ s ≤ tf

x(t) = x, ∀x ∈ Rn
(7.3.20)

which lastly, leads to the formulation of the feedback control

u∗(s) := u(x∗(s), s) (7.3.21)

Moreover, it is also natural to ponder whether the Hamilton-Jacobi-Bellman equation

is a sufficient condition for optimality. This is indeed the case and will be shown via

the so called verification theorem.

Theorem 7.3 (Verification Theorem). Recall (7.2.4) and consider its optimal form

as

Jx,t(u∗(·)) =
∫ tf

t
L (x∗(s), u∗(s))ds+ Ψ(x∗(tf ))). (7.3.22)

This enables the following rephrasing:
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Jx,t(u∗(·)) =
∫ tf

t
(−Vt(x∗(s), s)− Vx(x∗(s), s))ds+ Ψ(x∗(tf )))

=−
∫ tf

t

d

ds
V (x∗(s), s)ds+ Ψ(x∗(tf )))

=− V (x∗(tf ), tf ) + V (x∗(t), t) + Ψ(x∗(tf )))

=V (x∗(t), t) = min
u(·)∈Uad

Jx,t(u∗(·)),

(7.3.23)

which concludes the verification theorem.

7.4 The Hamilton-Jacobi-Bellman Equation

for Stochastic Optimal Control Problems

The Hamilton-Jacobi-Bellman equation must, moreover, in order to suit the stochas-

tic character of control problems, be altered. Now instead, consider Markov controls

u = u(t,Xt(ω)). (7.4.1)

The system equation, as an Itô process (Øksendal, 2013) becomes

dYt = b(Yt, u(Yt))dt+ σ(Y,t , u(Yt))dBt (7.4.2)

and for v ∈ U , and φ ∈ C2
0 , define

(L vφ)(y) = ∂φ

∂s
(y) +

n∑

i=1
bi(y, v) ∂φ

∂xi
+

n∑

i,j=1
ai,j(y, v) ∂2φ

∂xi∂xj
. (7.4.3)

Here, ai,j = 1
2(σσT )i,j, y = (s, x) and, x = x1, ..., xn. Then for each, u, Yt = Y u

t , is

an Itô diffusion with generator A given by

(Aφ)(y) = (L u(y)φ)(y), φ ∈ C2
0 . (7.4.4)

Theorem 7.4. For, v ∈ U , define f v(y) = f(y, v) and suppose that Φ ∈ C2(G) ∩
C(G), where G is a fixed domain in R× Rn. In that case

33



Ey
[
|Φ(Yα)|+

∫ α

0
|L yΦ(Yt)|dt

]
<∞ (7.4.5)

is satisfied for all bounded stopping times α ≤ τG, all y ∈ G and all v ∈ U . Further-
more, suppose that u∗, the optimal Markov control, exist and that ∂G is regular for

Y u∗
t . In that case the value function, Φ, satisfies

sup
v∈U
{f v(y) + L vΦ(y)} = 0,∀ y ∈ ∂G (7.4.6)

and

Φ(y) = g(y),∀y ∈ ∂G. (7.4.7)

Thus, the supremum in (7.4.6) is found if v = u∗(y), which means

f(y, u∗(y) + (L u∗(y)Φ)(y) = 0,∀ y ∈ G (7.4.8)

Proof. As u∗ = u∗(y), the following equality is given

Φ(y) = Ju
∗(y) = Ey

[∫ τG

0
f(Ys, u∗(Ys))ds+ g(YτG) · χ{τG<∞}

]
. (7.4.9)

If y ∈ ∂G then τG = 0 and (7.4.7) will follow. For the next part of the proof the

solution for the stochastic Dirichlet-Poisson problem is used (Øksendal, 2013).

Assuming that

w(x) = Ex[φ(XτD)] + Ex
[∫ τD

0
g(Xt)dt

]
(7.4.10)

holds and, φ ∈ C(∂D)(bounded) and g ∈ C(D) satisfy

Ex
[∫ τD

0
|g(Xs)|ds

]
<∞,∀ x ∈ D. (7.4.11)

If
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w(x) = Ex[φ(XτD)] + Ex
[∫ τD

0
g(Xs)ds

]
, x ∈ D (7.4.12)

then

Aw = −g, x ∈ D (7.4.13)

and

lim
t↑τD

w(Xt) = φ(XτD), ∀ x ∈ D. (7.4.14)

which in the case of this theorem proves

(L u∗(y)Φ)(y) = −f(y, u∗(y)),∀ y ∈ G (7.4.8). (7.4.15)

Lastly, is the proof of (7.4.7). Have y = (s, x) ∈ G, a Markov control u and α ≤ τG

being a bounded stopping time.

Since

Ju(y) = Ey
[∫ τG

0
fu(Yr)dr + g(YτG) · χ{τG<∞}

]
(7.4.16)

the strong Markovian property

Ex[θτη|F (m)
τ ] = EXτ [η], (7.4.17)

where θτ is the shift operator (θτ : H → H, H being the set of all real M∞-

measurable functions.), combined with

θαη · χ{α<∞} = g(XταH
)χ{ταH<∞}, (7.4.18)

where η = g(XτH )χ{τH<∞} (g being a bounded continuous function on Rn,

H ⊂ Rn and τH is the first exit time from H for an Itô diffusion, Xt) and

ταH = inf {t > α;Xt 6∈ H}, together with
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θτη =
∫ τD

τ
g(Xs)ds, (7.4.19)

gives:

Ey[Ju(Yα)] = Ey
[
EYα

[∫ τG

0
fu(Yr)dr + g(YτGχ{τG<∞}

]]

=Ey
[
Ey

[
θα

(∫ τG

0
fu(Yr)dr + g(YτGχ{τG<∞}

)
|Fα

]]

=Ey
[
Ey

[∫ τG

0
fu(Yr)dr + g(YτGχ{τG<∞}|Fα

]]

=Ey
[∫ τG

0
fu(Yr)dr + g(YτGχ{τG<∞} −

∫ α

0
fu(Yr)dr

]

=Ju(y)− Ey
[∫ α

0
fu(Yr)dr

]
.

(7.4.20)

Meaning that

Ju(y) = Ey
[∫ α

0
fu(Yr)dr

]
+ Ey[Ju(Yα)]. (7.4.21)

Furthermore, let W ⊂ G be of the form W = {(r, z) ∈ G; r < t1} where s < t1. Set

α = inf{t ≥ 0;Yt /∈ W}. The optimal control u∗(y) = u∗(r, z) and let

u(r, z) =




v if (r, z) ∈ W
u∗(r, z) if (r, z) ∈ G\W

(7.4.22)

Then

Φ(Yα) = Ju
∗(Yα) = Ju(Yα) (7.4.23)

and thus, by combing (7.4.13) and (7.4.15) the following is obtained

Φ(y) ≥ Ju(y) = Ey
[∫ α

0
fu(Yr)dr

]
+ Ey[Φ(Yα)]. (7.4.24)

As Φ ∈ C2(G), Dynkin’s formula,
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Ex[f(Xτ )] = f(x) + Ex
[∫ τ

0
Af(Xs)ds

]
(7.4.25)

provides the following expression

Ey[Φ(Yα)] = Φ(y) + Ey
[∫ α

0
(L vΦ)(Yr)dr

]
, (7.4.26)

which by substitution with (7.4.16) gives

Φ(y) ≥ Ey
[∫ α

0
f v(Yr)dr

]
+ Φ(y) + Ey

[∫ α

0
(L vΦ)(Yr)dr

]
(7.4.27)

⇒ Ey [
∫ α

0 (f v(Yr) + (L vΦ)(Yr))dr]
Ey[α] ≤ 0, ∀W (7.4.28)

Letting, t1↓s, and because f v(·) and L vΦ(·) are continuous at y, gives f v(y) +

(L vΦ(y)) ≤ 0. This, together with (7.4.8) provides (7.4.6) which completes the

proof (Øksendal, 2013).

Theorem 7.5 (Verification Theorem). Let φ be a function in C2(G) ∩ C(G), such

that, ∀ v ∈ U ,

f v(y) + (L vφ)(y) ≤ 0, y ∈ G (7.4.29)

with the boundary condition

lim
t→τG

φ(Yt) = g(YτG) · χ{τG<∞}, a.s. Qy (7.4.30)

and such that, {φ−(Yτ ); τ, stopping time, τ ≤ τG} is uniformly Qy-integrable for all

Markov controls u and all, y ∈ G.
Furthermore, if for each y ∈ G, we have found u0(y), such that

fu0(y)(y) + (L u0(y)φ)(y) = 0 (7.4.31)

and, {φ(Y u0
τ ); τ, stopping time, τ ≤ τG} is uniformly Qy-integrable for all, y ∈ G.
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Then, u0 = u0(y) is a Markov control such that

φ(y) = Ju0(y) (7.4.32)

and hence, if u0 is admissible, then u0 must be an optimal control and φ(y) = Φ(y).

7.5 The Difference Between the Hamilton-Jacobi-Bellman

Equation and Pontryagin’s Minimum Principle

As mentioned, both methods are used to solve optimal control problems but they

do so in different ways. The Hamilton-Jacobi-Bellman equation solves for the value

function by minimizing the cost associated with the problem. To find the optimal

control all possible trajectories are considered which exhausts all possible solutions.

Hence, the method itself creates both the sufficient and necessary condition for the

found control to be optimal.

On the other hand, Pontryagin’s minimum principle tests specific control candi-

dates, which then must be tested for optimality. Consequently, this method does

not necessarily find the optimal solution and might thus not be sufficient. In a

way, Pontryagin’s minimum principle is therefore much simpler as it solves an eas-

ier problem whereas the Hamilton-Jacobi-Bellman equation is more thorough and

comprehensive, even though it sometimes can be surfeited.
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8
Solving the Brachistochrone

Problem

8.1 Using Calculus - Bernoulli’s Solution

The solution that Johann Bernoulli posed was quite ingenious in itself as he success-

fully solved the problem indirectly using knowledge not directly tied to the problem

at hand (Bernoulli, 1696). Bernoulli used the laws of light, more precisely its’ ability

to find the quickest route, to show how light would act in a similar situation as that

of the of the Brachistochrone problem.

Consider a light particle traveling from point A, to point B, through two different

mediums with the corresponding velocities v1 and v2. Then the time, t, it takes for

the light to travel from point A to point B can, with the notations from Figure 1,

be described as

t =

√
a2 + x2

v1
+

√
b2 + (c− x)2

v2
, (8.1.1)

where, x (x ∈ [o, c]), is a variable and a, b, c, v1, v2 are fixed.
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Figure 2: A light particle traveling from point, A, to point, B, through two different
mediums with the corresponding velocities v1 and v2.

To minimize the function (8.1.1), the derivative dt
dx

is set to 0 which gives:

dt

dx
= d

dx




√
a2 + x2

v1
+

√
b2 + (c− x)2

v2




=
1
2(a2 + x2)− 1

2 (2x)
v1

−
1
2(b2 + (c− x)2)− 1

2(2)(c− x)
v2

= x

v1
√
a2 + x2

− c− x
v2
√
b2 + (c− x)2

= 0⇒

(8.1.2)

x

v1
√
a2 + x2

= c− x
v2
√
b2 + (c− x)2

. (8.1.3)

Furthermore, from Figure 1 it also is clear that

sin(θ1) = x√
a2 + x2

(8.1.4)
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and

sin(θ2) = c− x√
b2 + (c− x)2

. (8.1.5)

By substituting (8.1.4) and (8.1.5) into (8.1.6) the following is given

sin(θ1)
v1

= sin(θ2)
v2

. (8.1.6)

This, (8.1.6), is what is formally known as Snell’s law of refraction and displays how

light travels along the path requiring the least amount of time.

By letting light travel through denser and denser mediums the angle, θi, decreases.

See Figure 2 to see how light would behave if v1 ≥ v2 ≥ v3 ≥ v4.

Figure 3: A light particle traveling from point, A, to point, B, through four different
mediums with the corresponding velocities v1-v4.
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Applying Snell’s law to the situation displayed in Figure 2 yields

sin(θ1)
v1

= sin(θ2)
v2

= sin(θ3)
v3

= sin(θ4)
v4

(8.1.7)

The sections can be divided into smaller and smaller pieces up until the point where

the path would approach a smooth curve where the velocity, v, decreases continu-

ously. Then

sin(θ)
v

= C, (8.1.8)

where, C, is a constant.

Up until this point, the situation regarding light through different mediums has

been considered. However, the same methodology and rationale can be used to find

the optimal path for an object with respect to gravity, i.e. the case of the Brachis-

tochrone problem.

Assume that an object travels from point A to point B, and to simplify the problem

assume a friction-free environment. An object with regards to energy can either have

kinetic or potential energy. As the object starts in rest, the relationship between

the potential energy and the kinetic energy, together with the notation from Figure

3 can be written as

mgy = mv2

2 → gy = v2

2 , (8.1.9)

where m is the mass of the object, g is the gravitational constant, v, is the velocity,

and y is the horizontal distance between the object and its starting point, A. Ac-

cording to Figure 4, a relationship between α, β and y can be observed which also

mathematically can be interpreted as
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sin(α) = cos(β) = 1√
(1 + tan2(β))

= 1√
(1 + ( dy

dx
)2)
. (8.1.10)

Figure 4: The relationship between α, β and y with respect to the x-axis which
represent time.

Furthermore, from (8.1.9), v =
√

2gy, can be derived and substituting this, together

with (8.1.10) into (8.1.8) gives
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1
√

2gy
√

1 +
(
dy
dx

)2
= c⇒

√
2gy

√√√√1 +
(
dy

dx

)2

= 1
c
⇒

√
y

√√√√1 +
(
dy

dx

)2

= 1
c
√

2g ⇒

y


1 +

(
dy

dx

)2

 = 1

2gc2

(8.1.11)

Note that the last notation on the right hand side in (8.1.11) only consists of con-

stants, making it possible to state the equality as

y


1 +

(
dy

dx

)2

 = C, (8.1.12)

which is the differential equation that solves the brachistochrone problem.

This differential equation can be solved by rewriting the equation as:

y


1 +

(
dy

dx

)2

 = C

(
dy

dx

)2

= C − y
y

dy

dx
= (±)

(
C − y
y

) 1
2

→

dx =
(

y

C − y

) 1
2

dy

(8.1.13)

Then by letting

(
y

C − y

) 1
2

= tan(ψ) (8.1.14)

it is possible to continue the solution accordingly:
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y

C − y = tan2(ψ)⇒

y = C tan2(ψ)− y tan2(ψ)⇒

y(1 + tan2(ψ)) = C tan2(ψ)⇒

y = C

(
tan2(ψ)

1 + tan2(ψ)

)

= C sin2(ψ)

= C

(
1− cos(2ψ)

2

)

= C

2 (1− cos(2ψ)).

(8.1.15)

Taking the derivative, dy
dψ
, gives

dy = 2C sin(ψ) cos(ψ)dψ (8.1.16)

and by substituting (8.1.14) and (8.1.16) into (8.1.13) the following is given:

dx = 2C sin2(ψ)dψ. (8.1.17)

Then, integrating both sides gives:

∫
dx = x =

∫
2C sin2(ψ)dψ

= 2C
∫ 1− cos(2ψ)

2 dψ

= C
(∫

1dψ −
∫

cos(2ψ)dψ
)

= Cψ − C

2 sin(2ψ) + c1

= C(2ψ − sin(2ψ))
2 + c1.

(8.1.18)

As the initial state, when the object lays still at point A, has ψ = 0, the constant,

45



c1, must also 0. Thus

x = C(2ψ − sin(2ψ))
2 . (8.1.19)

Lastly, (7.1.15) and (7.1.19) can be rewritten in a more "clean" form by letting,

r = C
2 and φ = 2ψ, which leaves:

x = r(φ− sin(φ)) (8.1.20)

and

y = r(1− cos(φ)). (8.1.21)

Here, x and y, are the parametric equations of a cycloid, where, r, is the radius

of a circle, which "roles" down the x-axis. For some value, r, the curve passes

through the end-point, B, which then provides the optimal route for the object, the

brachistochrone curve (see Figure 4 ).

Figure 5: The relationship between a circle and a cycloid (The brachistochrone
curve).

46



8.2 Using Calculus of Variation

Bernoulli’s indirect solution to the brachistochrone problem is far from the only so-

lution and arguably also not the best solution, as will be discussed later on. Another

way is to use the previously discussed Euler-Lagrange equation, which is a central

aspect in calculus of variation. The Euler-Lagrange equation previously stated in

(4.2.8), can also be written as

d

dx

(
∂L

∂ẏ

)
= ∂L

∂y
. (8.2.1)

When using the calculus of variation approach, the velocity, previously denoted just

as v, will instead be considered as vectors in the x- and y-direction, displaying the

change in each direction. Here, it is necessary to postulate that it is sufficient to

examine graphs of functions as, x→ y(x). Furthermore, the mass of the object can

be chosen to be 1. Then, the kinetic energy can be described as

ẋ(t)2 + ẏ(t)2

2 (8.2.2)

and the potential energy can be described as

− gy(t). (8.2.3)

To further simplify the conditions, the case of when the total energy equals 0 can be

considered as well as a renotation of the gravitation force, leaving the gravitational-

effect being 0.5 of an arbitrary unit. Then, the relationship between the kinetic and

potential energy can be written as

dx2 + dy2 = y dt2, (8.2.4)

which further gives
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dt =
√
dx2 + dy2
√
y

=

√
1 +

(
dy
dx

)2

√
y

dx = L (x, y, ẏ)dx, (8.2.5)

where

L (x, y, u) =
√

1 + u2
√
y

. (8.2.6)

Thus, the Euler-Lagrange equation in this case state that the solution is found when

d

dx

(
dy
dx

)

√
y
(

(1 +
(
dy
dx

)2
) = −1

2

√√√√√1 +
(
dy
dx

)2

y3 (8.2.7)

as

∂L (x, y, ẏ)
∂y

= −1
2

√√√√√1 +
(
dy
dx

)2

y3 (8.2.8)

and

∂L (x, y, ẏ)
∂ẏ

= d

dx

(
dy
dx

)

√
y
(

(1 +
(
dy
dx

)2
) . (8.2.9)

From here (8.2.9) can be rewritten by taking the total derivative resulting in

d

dx

(
dy
dx

)

√
y
(

1 +
(
dy
dx

)2
) =

d2y
dx2√

y
(

1 +
(
dy
dx

)2
)

−1
2

(
dy
dx

)2

√
y3
(

1 +
(
dy
dx

)2
) −

(
dy
dx

)2 d2y
dx2

√
y
(

1 +
(
dy
dx

)2
)3
.

(8.2.10)

Now (8.2.7) can be written as
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d2y
dx2√

y
(

1 +
(
dy
dx

)2
) −

1
2

(
dy
dx

)2

√
y3
(

1 +
(
dy
dx

)2
)

−
(
dy
dx

)2 d2y
dx2

√
y
(

1 +
(
dy
dx

)2
)3

= −1
2

√√√√√1 +
(
dy
dx

)2

y3

(8.2.11)

and by multiplying the equation with
√
y
(

1 +
(
dy
dx

)2
)
, the following is given

− 1
2

1 +
(
dy
dx

)2

y
= d2y

dx2 −
1
2

(
dy
dx

)2

y
−
(
dy
dx

)2 d2y
dx2

1 +
(
dy
dx

)2 . (8.2.12)

This can further be simplified to

1 + 2y d
2y

dx2 +
(
dy

dx

)2

= 0 (8.2.13)

and by multiplying (8.2.13) with dy
dx

the following is given

dy

dx
+ 2y dy

dx

d2y

dx2 +
(
dy

dx

)3

= 0. (8.2.14)

The left hand side of (8.2.14) is in fact the derivative of the function

y + y

(
dy

dx

)2

+ C. (8.2.15)

which is the exact same equation as (8.1.12), which of thence the solution can pro-

ceed.

8.3 Using Optimal Control

To begin with, it is wise to formulate the brachistochrone problem such that the

motion of object takes place in the x and y plane with the dynamic behaviour given

by
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ẋ = u
√
y, ẏ = v

√
y. (8.3.1)

In this case the control is a 2-dimensional vector field taking values in the set

U =
{

(u, v) : u2 + v2 = 1
}
. (8.3.2)

Consider the Hamiltonian H,

H(x, y, u, v, p, q, p0, t) = (pu+ qv)√y − p0, (8.3.3)

where p, q and p0 denotes the momentum variables conjugate to x and y, and the ab-

normal multiplier (Sussmann, 2002). In that case, Pontryagin’s maximum principle

states that if a curve

t ∈ [0, T ]→ ξ(t) = (x(t), y(t))

is optimal then, there exists continuous functions for p and q, (p0 ≥ 0), where the

Hamiltonian maximization conditions

u(t) = p(t)
‖ −→p (t) ‖ and v(t) = q(t)

‖ −→p (t) ‖ (8.3.4)

as well as the adjoint system of differential equations:

ṗ(t) = 0, q̇ = −p(t)u(t) + q(t)v(t)
2
√
y(t)

= − ‖
−→p ‖

2
√
y(t)

(8.3.5)

are satisfied for all t, where u = ẋ, v = ẏ, −→p denotes the momentum vector and,

‖ −→p ‖ is its Euclidean norm (‖ −→p ‖ 6= 0).

Pontryagin’s minimum principle also states that H = 0, meaning that, ‖ −→p ‖ would
imply that, p0 = 0. If the constant p disappears, then ẋ ≡ 0, resulting in a vertical

line. Otherwise, ẋ remains non-zero, enabling a parameterization of x as a solution.

Furthermore,

50



dy

dx
= ẏ

ẋ
= v

u
= q

p
(8.3.6)

enables,

1 +
(
dy

dx

)2

= ‖
−→p ‖2

p2 (8.3.7)

and

d2y

dx2 = 1
p

dq

dx
= q̇

pẋ
. (8.3.8)

From here, (8.3.1) together with (8.3.4) gives

ẋ =
p
√
y

‖ −→p ‖ (8.3.9)

and, (8.3.5) together with (8.3.8) yield

d2y

dx2 = −‖
−→p ‖2

2yp2 . (8.3.10)

A trivial rearrangement of (8.3.10) then gives

2y d
2y

dx2 = −‖
−→p ‖2

p2 = −

1 +

(
dy

dx

)2

 (8.3.11)

which then lastly can be rewritten as

1 + 2y d
2y

dx2 +
(
dy

dx

)2

= 0 (8.3.12)

being the exact same formulation as (8.2.13), concluding this solution as the rest

can be followed from (8.2.13).

8.4 Comparing the Different Methods

Even though the three different methods by and large come to the same conclusion,

they do so with different assumptions and accuracy. One issue that is resolved, using
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calculus of variation and optimal control theory in contrast to Bernoulli’s solution, is

the existence of a spurious solution. This can be seen in (8.1.13) where the solution

should also be able to have a negative slope. However, this is not the case and as such

the negative case is not considered. Furthermore, dy
dx

should be continuous which will

not be the case if it can hold both positive and negative numbers. Consequently, this

method is somewhat flawed mathematically, as the negative root should in fact exist.

Instead, the method of using calculus of variation provides a solution that circum-

vent these issues as (8.2.13) is the same solution as (8.1.13) without the spurious

solution. Thus, the issue with the negative case and the non-continuity is solved.

However, using optimal control theory can provide an even better solution as with

optimal control theory, it is no longer necessary to postulate that the solution can be

represented by graphs such that, x→ y(x). Thus, the optimal control theory method

can be considered as superior as it provides the most accurate and non-postulated

solution.
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9
Solving Merton’s Portfolio

Problem Using Optimal Control

Consider an investor with the lifetime from time 0 to time T i.e. t ∈ [0, T ], with

the corresponding wealth Rt at each time, t, and a known initial wealth, R0. The

investor can, as stated previously, choose to invest in two different assets, a risky

asset, S, and a risk-free asset, Srf with the purpose to maximize its wealth’s, R,

utility until the time, T . The parameters, µ and σ will be used to denote the drift

and the volatility of the risky asset respectively, and the risk-free asset Srf will at

time t be denoted as S(rf, t). From here the dynamics of the price processes are

dS(rf, t) = rS(rf, t)dt (9.0.1)

and

dSt = St[µdt+ σdWt] (9.0.2)

where r is the continuously compounding interest rate of Srf and Wt is the one-

dimensional Brownian motion often called the Wiener-process named after Norbert

Wiener (Schilling, 2012). Furthermore, the proportion, α of the wealth R will be

invested in the risky asset which means that the proportion invested in the risk-free

asset can be denoted as, 1− α. Hence, the wealth process can be described as
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dRt = αtRt
dSt
St

+ (1− αt)Rt
dSrf,t
Srf,t

= Rt[(r + (µ− r)αt)dt+ σαtdWt].
(9.0.3)

The process α is admissible if

E

[∫ T

0
|αt|2dt

]
<∞, (9.0.4)

where all admissable portfolios are denoted as Uad. Moreover, let γ denote an arbi-

trary parameter where, γ ∈ [0, 1] and let the power utility function, U(x) be given

by

U(x) := xγ for x ≥ 0. (9.0.5)

Here, the parameter γ, is the relative risk premium coefficient. From this point, with

the information given above, it is possible to frame the problem more clearly. The

investor has the objective to maximize the utility of the terminal wealth. Thus, the

problem, or more rather, the value function, Φ(t), can be stated as

Φ(t, x) := sup
αt∈Uad

{Et,x [U(RT )]} . (9.0.6)

where the associated Hamilton-Jacobi-Bellman equation is

∂Φ
∂t

(t, x) + sup
αt∈Uad

{L vΦ(t, x)} =

∂Φ
∂t

(t, x) + sup
αt∈Uad

{
(r + (µ− r)αt)x

∂Φ
∂x

(t, x) + 1
2α

2σ2x2∂
2Φ
∂x2 (t, x)

}
= 0,

(9.0.7)

for, (t, x) ∈ [0, T ], and Φ(T, x) = U(x).

Moreover, one contender for the optimal control is obtained from the first-order con-

dition for the Hamilton-Jacobi-Bellman equation above (Pham, 2007) which yields:
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α̂(t, x) = u∗t = −µ− r
σ2

∂Φ
∂x

x∂
2Φ
∂x2

(t, x) = µ− r
σ2(1− γ) . (9.0.8)

Then, consider the power utility function (9.0.5) and suppose that the value function,

Φ(t, x), has the form

Φ(t, x) = ϕ(t)xγ (9.0.9)

for some deterministic function, ϕ. Now, substituting this into (9.0.7) leads to the

ordinary differential equation (ODE):

dϕ

dt
+ λϕ(t) = 0

ϕ(T ) = 1
(9.0.10)

where

λ = sup
αt∈Uad

{
(r + (µ− r)αt)γ −

1
2α

2σ2γ(1− γ)
}

= (µ− r)2

2σ2
γ

1− γ + rγ. (9.0.11)

The solution to this ODE is ϕ(t) = eλ(T−t) meaning that the value function, Φ(t, x) =

eλ(T−t)xγ, satisfies the Hamilton-Jacobi-Bellman equation (9.0.7). Moreover, by us-

ing the constant optimal control from (9.0.8), it is possible to conclude that the value

function to Merton’s portfolio (with CRRA utility) is given by

Φ(t, x) = eλ(T−t)xγ (9.0.12)

and the optimal control is given by

u∗t = µ− r
σ2(1− γ) . (9.0.13)
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10
Conclusion
Control theory is, as shown, a rather effective and accurate tool, which today after

many additions by a multitude of prolific mathematicians, can solve a multitude of

problems. Not only problems of deterministic nature but also stochastic problems

just like Merton’s portfolio problem. Optimal control theory is, however, quite a new

area of applied mathematics as it was first introduced in its current form in 1950.

There is much more research to be done, where new findings can be pivotal for the

society we live in. Control theory, after all, put humankind on the moon and may

very well solve many other important issues in the future.
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