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Abstract

The purpose of this thesis is to study convergence and divergence phe-
nomena for Fourier series. In particular, we seek sufficient criteria for
functions to guarantee that their Fourier series converge. We present sev-
eral positive results as we discover conditions that ensure different types
of convergence. On the other hand, we construct a continuous function
whose Fourier series diverges at one point, establishing that continuity in
a function does not in fact guarantee the convergence of its Fourier series.
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1 OVERVIEW 4

1 Overview

The purpose of this thesis is to study the convergence behavior of Fourier series.
We seek to find sufficient criteria for functions to guarantee the convergence of
their Fourier series. We assume that the reader is familiar with basic principles
of analysis and concepts such as convergence, completeness and compactness.

Firstly, we introduce some basic definitions and examples and study some
fundamental results concerning the properties of Fourier series. We then move
on to seeking explicit criteria which ensure the convergence of Fourier series. We
study several different types of convergence, and we will find that the necessary
conditions on a given function f differ considerably depending on whether we
require mean-square, pointwise or uniform convergence of its Fourier series.

Lastly, we will illuminate the intricate nature of this topic by constructing
a continuous function whose Fourier series diverges at one point. We will see
that the question of convergence is a very delicate one, and gain some insight
into why it has occupied mathematicians for so long.

2 Introduction

In this particular section, we will define the notions of Fourier coefficients and
Fourier series, and study some simple examples. We will then move on to
investigating the uniqueness of Fourier series, and ask ourselves what can be
said about two functions if they have the same Fourier coefficients. Moreover,
we will study certain families of functions, kernels, which turn out to be very
useful in the context of Fourier series.

Finally, we will take a look at what can be said about the convergence of
Fourier series when we apply a different summation method than the one we
are used to, so called Cesàro summability. We will see that in this case, we
can prove a rather strong result; namely that if a function f is continuous, its
Fourier series will be uniformly Cesàro summable to f .

2.1 Basic definitions and examples

Definition 2.1. Let f : [a, b]→ C be a Riemann integrable function. We define
the nth Fourier coefficient of f by

f̂(n) =
1

b− a

∫ b

a

f(x)e−2πinx/(b−a) dx,

for n ∈ Z. The Fourier series associated with the function f is defined as

∞∑

n=−∞
f̂(n)e2πinx/(b−a),

with partial sums SN (f)(x) =
∑N
n=−N f̂(n)e2πinx/(b−a).
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We use the following notation

f(x) ∼
∞∑

n=−∞
f̂(n)e2πinx/(b−a)

for a function f and its corresponding Fourier series. Note that we have not yet
said anything about the convergence of Fourier series - this issue will be studied
in detail in the next section.

Remark 2.1. For two functions f and g, the Fourier coefficients of their sum

are ̂(f + g)(n) = f̂(n) + ĝ(n), and for α ∈ C, we have (̂αf)(n) = αf̂(n). This
follows immediately from the definition.

Let us calculate the Fourier series for some simple functions.

Example 2.1. Let f(x) = ex for x ∈ [0, 1]. The Fourier coefficients of this
function are given by

f̂(n) =

∫ 1

0

exe−2πinx dx

=

∫ 1

0

ex(1−2πin) dx

=

[
ex(1−2πin)

1− 2πin

]1

0

=
e1e−2πin − 1

1− 2πin
.

Recall Euler’s identity, eiπ = −1. With this in mind, we finally arrive at

f̂(n) =
e− 1

1− 2πin
.

The Fourier series of f is given by

f(x) ∼
∞∑

n=−∞

e− 1

1− 2πin
e2πinx.

Example 2.2. Let f(x) = x, for x ∈ [−π, π]. For n = 0,

f̂(0) =
1

2π

∫ π

−π
f(x)e0 dx

=
1

2π

∫ π

−π
x dx

= 0.
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For n 6= 0, we use integration by parts;

f̂(n) =
1

2π

∫ π

−π
xe−inx dx

=
1

2π

([
− x

in
e−inx

]π

−π
+

1

in

∫ π

−π
e−inx dx

)

=
1

2π

[
e−inx

(
− x

in
+

1

n2

)]π

−π
.

Using Euler’s identity, we get

1

2π

[
e−inx

(
− x

in
+

1

n2

)]π

−π

=
1

2π
(−1)n

(
− π

in
+

1

n2
−
(
π

in
+

1

n2

))

=
(−1)n

2π
· (−2π)

in

=
(−1)n+1

in
.

Hence

f(x) ∼
∑

n 6=0

(−1)n+1

in
einx.

Recall Euler’s formulas;

cos(nx) =
einx + e−inx

2
,

sin(nx) =
einx − e−inx

2i
.

Since (−1)n = (−1)−n, we can combine the nth and (−n)th terms to

(−1)n+1

(
einx

in
+
e−inx

−in

)
= 2 sin(nx) · (−1)n+1

n
.

We conclude that

f(x) ∼ 2
∞∑

n=1

(−1)n+1

n
sin(nx).
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When f is 2π-periodic, the Fourier coefficients are reduced to

f̂(n) =
1

2π

∫ 2π

0

f(x)e−inx dx

=
1

2π

∫ π

−π
f(x)e−inx dx .

From here on, our primary focus will lie with Riemann integrable, 2π-periodic
functions.

Example 2.3. Let f be an (Riemann) integrable, 2π-periodic function with

Fourier coefficients cn = f̂(n) and Fourier series
∑∞
n=−∞ cne

inx. Recall that
Euler’s formulas can be expressed as

einx = cos(nx) + i sin(nx),

e−inx = cos(nx)− i sin(nx).

Thus,

cn =
1

2π

∫ 2π

0

f(x) cos(nx) dx− i

2π

∫ 2π

0

f(x) sin(nx) dx,

and with the following notation

an =
1

π

∫ 2π

0

f(x) cos(nx) dx,

bn =
1

π

∫ 2π

0

f(x) sin(nx) dx,

the partial sums SN (f)(x) can be expressed as

SN (f)(x) =
N∑

n=−N

an − ibn
2

einx

=
a0
2

+
−1∑

n=−N

an − ibn
2

(cos(nx) + i sin(nx))

+
N∑

n=1

an − ibn
2

(cos(nx) + i sin(nx)).

Note that a−n = an and b−n = −bn. For this reason, we can rewrite the sums
above as

a0
2

+
N∑

n=1

an + ibn
2

(cos(nx)− i sin(nx))

+

N∑

n=1

an − ibn
2

(cos(nx) + i sin(nx)).
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Expansion of the summands finally yields this alternate way of expressing the
partial sums:

SN (f)(x) =
a0
2

+
N∑

n=1

(an cos(nx) + bn sin(nx)).

2.2 Uniqueness

Under the assumption that the Fourier series of a function f actually converges
to f , the function would be uniquely determined by its Fourier coefficients. In
that case, two functions f and g would be equal if all their Fourier coefficients
were identical. By defining h = f − g, we can rephrase this as the following: if
ĥ(n) = 0 for all n ∈ Z, then h is the zero function. Unfortunately, this does not
hold generally, but we have the following theorem.

Theorem 2.1. Let f be a Riemann integrable, 2π-periodic function with f̂(n) =
0 for all n ∈ Z. Then f(x0) = 0 whenever f is continuous at x0.

Before we prove this result, we must give one definition:

Definition 2.2. A function of the form

P (x) = a0 +
N∑

n=1

an cos(nx) + i
N∑

n=1

bn sin(nx)

=

N∑

n=−N
cne

inx,

where an, bn ∈ C, x ∈ R and N ≥ 0 is an integer, is called a trigonometric
polynomial of degree N.

The proof below closely follows the one given in section 2 in chapter 2 of [5].

Proof. (Of Theorem 2.1.) We begin with the case where f is real-valued. With-
out loss of generality, suppose x0 = 0 and f(0) > 0. (Otherwise, study f(x−x0)
or −f(x) respectively.)

The plan is to construct a family of trigonometric polynomials {pk} which
“peak” at 0 and satisfy

∫ π

−π
f(x)pk(x) dx→∞

for k → ∞. However, the Fourier coefficients of f are all equal to zero (by
assumption), which implies that these integrals should equal zero too. In this
way, we will arrive at a contradiction.
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The continuity of f enables us to choose a δ ∈ (0, π2 ] such that f(x) > f(0)
2

whenever |x| < δ. Define
p(x) = ε+ cos(x)

and
pk(x) = (p(x))k,

with ε > 0 chosen such that |p(x)| < 1 − ε
2 whenever δ ≤ |x| ≤ π. Moreover,

choose an η such that 0 < η < δ, and p(x) ≥ 1 + ε
2 whenever |x| < η.

Since f is Riemann integrable, it is bounded, and we can find some B ∈ R
such that |f(x)| ≤ B always holds. We can now estimate

∣∣∣∣∣

∫

δ≤|x|≤π
f(x)pk(x) dx

∣∣∣∣∣ ≤
∫

δ≤|x|≤π
|f(x)pk(x)| dx

≤
∫

δ≤|x|≤π
B
(

1− ε

2

)k
dx

≤ 2πB
(

1− ε

2

)k
.

We conclude that
∫
δ≤|x|≤π f(x)pk(x) dx→ 0 as k →∞.

Moreover,

∫

η≤|x|<δ
f(x)pk(x) dx ≥ 0,

since f(x) > f(0)
2 > 0 and p(x) ≥ 0 on this interval.

Lastly,

∫

|x|<η
f(x)pk(x) dx ≥ 2π

f(0)

2

(
1 +

ε

2

)k
,

which tends to infinity as k →∞.
We conclude that

∫ π

−π
f(x)pk(x) dx

=

∫

δ≤|x|≤π
f(x)pk(x) dx+

∫

η≤|x|<δ
f(x)pk(x) dx

+

∫

|x|<η
f(x)pk(x) dx −→∞

as k → ∞, giving us the desired contradiction and proving the theorem for
real-valued functions f .
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When f is complex-valued, it can be written as f(x) = u(x) + iv(x) for
real-valued functions u, v where

u(x) =
f(x) + f(x)

2
,

v(x) =
f(x)− f(x)

2i
.

By assumption, f̂(n) = 0 for all n ∈ Z. It is easily checked that the nth

Fourier coefficient of f(x) is given by f̂(−n), which must then be zero as well.
Therefore,

û(n) =
1

4π

∫ π

−π
(f(x) + f(x))e−inx dx =

1

4π
(f̂(n) + f̂(−n)) = 0,

v̂(n) =
1

4iπ

∫ π

−π
(f(x)− f(x))e−inx dx =

1

4iπ
(f̂(n)− f̂(−n)) = 0.

By the argument for real-valued functions, both u and v must be zero at
points of continuity, and so f must be too.

Remark 2.2. It is worth pointing out that the issue of uniqueness is rather
more complex than implied here. The theory of Fourier analysis can be extended
to cover Lebesgue integrable functions, in which case two functions may differ
and be discontinuous at some points (to be exact, on sets of so called measure
zero) but still have identical Fourier coefficients. In this context, we work with
equivalence classes of functions that are equal almost everywhere, meaning that
they are equal for all x /∈ E where E is some set of measure zero.

2.3 Kernels and convolutions

We will now define a family of functions which will be central in the context of
Fourier series.

Definition 2.3. Define the trigonometric polynomial

DN (x) =
N∑

n=−N
einx, x ∈ [−π, π].

This is called the N th Dirichlet kernel.

Remark 2.3. There is a closed form formula for DN (x). For x 6= 0, we use the
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formula for geometric sums and obtain

DN (x) =

−1∑

n=−N
einx +

N∑

n=0

einx

=
(eix)−N − 1

1− eix +
1− (eix)N+1

1− eix

=
(eix)−N − (eix)N+1

1− eix

=
(eix)−N−

1
2 − (eix)N+ 1

2

(eix)−
1
2 − (eix)

1
2

=
sin((N + 1

2 )x)

sin(x2 )
.

For x = 0, we have DN (0) =
∑N
n=−N 1 = 2N + 1, which coincides with the

limit of
sin(x(N+ 1

2 ))

sin( x2 )
as x→ 0.

Figure 1: The Dirichlet kernel for N = 10 and N = 30.

To see the relevance of the Dirichlet kernel in Fourier analysis, we must first
introduce another concept.

Definition 2.4. Let f and g be two Riemann integrable, 2π-periodic functions
on R. We define their convolution f ∗ g by

(f ∗ g)(x) =
1

2π

∫ π

−π
f(y)g(x− y) dy .

The connection between the Fourier series of a Riemann integrable, 2π-



2 INTRODUCTION 12

periodic function f and the Dirichlet kernel is given by the following relation;

SN (f)(x) =
N∑

n=−N
f̂(n)einx

=
N∑

n=−N

(
1

2π

∫ π

−π
f(y)e−iny dy

)
einx

=
1

2π

∫ π

−π
f(y)

(
N∑

n=−N
ein(x−y)

)
dy

= (f ∗DN )(x).

Thus we can gain insight in to the behavior of SN (f) by studying f ∗DN . First,
let us establish some basic properties to better understand convolutions.

Proposition 2.2. Let f, g and h be Riemann integrable, 2π-periodic functions.
Then

(i) f ∗ (g + h) = (f ∗ g) + (f ∗ h).

(ii) (cf) ∗ g = c(f ∗ g) = f ∗ (cg), c ∈ C.

(iii) f ∗ g = g ∗ h.

(iv) (f ∗ g) ∗ h = f ∗ (g ∗ h).

(v) f ∗ g is continuous.

(vi) (f̂ ∗ g)(n) = f̂(n)ĝ(n).

The proof is quite straight-forward when we assume f and g are continuous;
extending it to the case where the functions are merely integrable requires a bit
more work. We omit the details here, and refer the curious reader to section 3
in chapter 2 of [5].

Let us now introduce another concept relating to kernels:

Definition 2.5. We call {Kn(x)}∞n=1 a family of good kernels if

(a) For all n ≥ 1,

1

2π

∫ π

−π
Kn(x) dx = 1.

(b) There exists a constant M > 0 such that

∫ π

−π
|Kn(x)| dx ≤M

for all n ≥ 1.
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(c) For every δ ∈ (0, π],

∫

δ≤|x|≤π
|Kn(x)| dx→ 0 as n→∞.

Good kernels happen to be very useful in the context of convolutions, as is
shown by the following result.

Theorem 2.3. Let {Kn(x)}∞n=1 be a family of good kernels, and f a Riemann
integrable, 2π-periodic function. Then

lim
n→∞

(f ∗Kn)(x) = f(x)

whenever f is continuous at x. If f is continuous everywhere, the limit is
uniform.

In other words, by calculating the convolution of a given a function and a
good kernel and then taking the limit of the resulting integral, we can get our
function back. The proof we give of this theorem can be found in section 4 in
chapter 2 of [5].

Proof. The function f being continuous at x means that given any ε > 0, we
can choose a δ > 0 such that

|f(x− y)− f(x)| < ε

whenever |y| < δ. By property (a) of good kernels,

(f ∗Kn)(x)− f(x) =
1

2π

∫ π

−π
Kn(y)f(x− y) dy−f(x)

=
1

2π

∫ π

−π
Kn(y)(f(x− y)− f(x)) dy .

Note that since f is Riemann integrable, it is bounded by some B > 0 for
all x. We estimate the absolute value of (f ∗Kn)(x)− f(x);

|(f ∗Kn)(x)− f(x)| =
∣∣∣∣

1

2π

∫ π

−π
Kn(y)(f(x− y)− f(x)) dy

∣∣∣∣

≤ 1

2π

∫

|y|<δ
|Kn(y)||(f(x− y)− f(x))| dy

+
1

2π

∫

δ≤|y|≤π
|Kn(y)||(f(x− y)− f(x))| dy

≤ ε

2π

∫ π

−π
|Kn(y)| dy+

2B

2π

∫

δ≤|y|≤π
|Kn(y)| dy

≤ εM

2π
+

2B

2π

∫

δ≤|y|≤π
|Kn(y)| dy,
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where we have used property (b) of good kernels in the last step. For all n large
enough,

2B

2π

∫

δ≤|y|≤π
|Kn(y)| dy < ε,

by property (c). Hence we conclude that

|(f ∗Kn)(x)− f(x)| ≤ Cε

for some constant C > 0 and all large n. Since ε is arbitrarily small, this proves
that

lim
n→∞

(f ∗Kn)(x) = f(x)

whenever f is continuous at x.
Now suppose f is continuous everywhere. Then f is continuous on any closed

bounded interval, and thus uniformly continuous on any closed bounded interval
(since these are compact sets in R). In particular, f is uniformly continuous on
any closed bounded interval of length 2π. Since f is 2π-periodic, this implies that
f is uniformly continuous on all of R; then δ > 0 can be chosen independently
of x. In this case, f ∗Kn converges to f uniformly.

The question begs to be raised; is DN (x) a good kernel? If so, we could use
the relation SN (f)(x) = (f ∗DN )(x) and happily declare that the Fourier series
of a function f converges to f at all points of continuity.

Sadly, this is not the case. (We will actually construct a continuous function
whose Fourier series diverges at a point in a later section.)

Proposition 2.4. The Dirichlet kernel satisfies

1

2π

∫ π

−π
|DN (x)| dx ≥ 4

π2
ln(2(N + 1)).

To prove this, we follow the technique used in chapter 18 of [4].

Proof. We apply the closed form formula,

∫ π

−π
|DN (x)| dx =

∫ π

−π

∣∣∣∣
sin(x(N + 1

2 ))

sin(x2 )

∣∣∣∣ dx

= 2

∫ π

0

∣∣∣∣
sin(x(N + 1

2 ))

sin(x2 )

∣∣∣∣ dx

≥ 4

∫ π

0

∣∣∣∣
sin(x(N + 1

2 ))

x

∣∣∣∣ dx,
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where the second equality follows from the fact that the integrand is an even
function. In the last step, we have used that

∣∣x
2

∣∣ ≥
∣∣sin

(
x
2

)∣∣ in the interval [0, π].
Moreover, by dividing up the integral over sub-intervals of [0, π], we obtain

∫ π

−π
|DN (x)| dx ≥ 4

∫ π

0

∣∣∣∣
sin((N + 1

2 )x)

x

∣∣∣∣ dx

= 4
2N∑

k=0

∫ (k+1)π/(2N+1)

kπ/(2N+1)

| sin((N + 1
2 )x)|

x
dx

≥ 4
2N∑

k=0

∫ (k+1)π/(2N+1)

kπ/(2N+1)

| sin((N + 1
2 )x)|

(k + 1)π/(2N + 1)
dx

= 4

2N∑

k=0

2N + 1

(k + 1)π

∫ (k+1)π/(2N+1)

kπ/(2N+1)

∣∣∣∣sin
((
N +

1

2

)
x
)∣∣∣∣ dx . (1)

Note that, for all k = 0, . . . , 2N ,

∫ (k+1)π/(2N+1)

kπ/(2N+1)

∣∣∣∣sin
((
N +

1

2

)
x
)∣∣∣∣ dx =

∫ π/(2N+1)

0

sin
((
N +

1

2

)
x
)
dx

=
1

N + 1
2

(
− cos

(π
2

)
+ cos(0)

)

=
1

N + 1
2

=
2

2N + 1
.

Hence (1) yields

∫ π

−π
|DN (x)| dx ≥ 8

π

2N∑

k=0

1

k + 1
.

Recall that

2(N−1)∑

k=0

1

k + 1
≥

2N∑

k=1

∫ k+1

k

1

x
dx =

∫ 2(N+1)

1

1

x
dx = ln(2(N + 1)),

and so

∫ π

−π
|DN (x)| dx ≥ 8

π

2N∑

k=0

1

k + 1
≥ 8

π
ln(2(N + 1)).

We conclude that

1

2π

∫ π

−π
|DN (x)| dx ≥ 4

π2
ln(2(N + 1)).
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It is clear from the proposition above that the Dirichlet kernel violates prop-
erty (b) of good kernels.

Remark 2.4. Note, however, that DN (x) does satisfy property (a) of good
kernels:

1

2π

∫ π

−π
DN (x) dx =

1

2π

∫ π

−π

(
n∑

n=−N
einx

)
dx

=
1

2π

n∑

n=−N

(∫ π

−π
einx dx

)

=
1

2π

∫ π

−π
e0 dx

= 1.

2.4 A new way to sum

Although the Dirichlet kernel did not behave as well as we had hoped, we can
still use convolutions to establish some interesting facts about Fourier series.
While convergence of Fourier series in the usual sense is a tricky topic, it turns
out that we can prove some related results using other kinds of summation. Let
us define one such type:

Definition 2.6. Given a series
∑∞
k=0 ck, ck ∈ C, and partial sums Sn =∑n

k=0 ck, we call

σN =
S0 + · · ·+ SN−1

N

its N th Cesàro sum. We say the series is Cesàro summable to σ if

lim
N→∞

σN = σ.

Example 2.4. The series
∑∞
k=0(−1)k does not converge; note that its partial

sums follow the pattern

Sn =

{
1, for even n,

0, for odd n.

Then

σN =
S0 + · · ·+ SN−1

N
=
dN+1

2 e
N

,

where dN+1
2 e represents the unique integer such that dN+1

2 e−1 < N+1
2 ≤ dN+1

2 e.
We observe that σN converges to 1

2 as N →∞; hence the series
∑∞
k=0(−1)k

is Cesàro summable to 1
2 . Seeing that the partial sums alternate between 0

and 1, this lines up with basic intuition that the ”limit” of the series should lie
midway between these values.
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The example above shows us that there are divergent series that are Cesàro
summable. What about the converse?

Lemma 2.5. Let
∑∞
k=0 ck be a series with ck ∈ C. If the partial sums Sn

converge to a limit S as n→∞, then the Cesàro sums satisfy

lim
N→∞

σN = S.

Our proof of this lemma will closely follow the one given in chapter 1 of [4].

Proof. Let ε > 0 be given. Since Sn → S as n → ∞, we can find an integer
m > 0 such that n ≥ m imples |Sn − S| ≤ ε

2 .
Now define

A =
m∑

k=0

|Sk − S|,

and choose m′ > m such that

m′ ≥ 2A

ε
⇔ A ≤ m′ε

2
.

Then, whenever N ≥ m′, we have

|σN − S| =
∣∣∣∣∣

(
1

N

N−1∑

k=0

Sk

)
− NS

N

∣∣∣∣∣

=

∣∣∣∣∣
1

N

N−1∑

k=0

(Sk − S)

∣∣∣∣∣

≤ 1

N

N−1∑

k=0

|Sk − S|

=
1

N

(
m∑

k=0

|Sk − S|+
N−1∑

k=m+1

|Sk − S|
)

≤ 1

N

(
A+ (N − 1−m)

ε

2

)

≤ 1

N

(
εN

2
+
εN

2

)

= ε.

This proves that σN → S as N →∞.

Let us take a look at the Cesàro sums of the Fourier series of an (Riemann)
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integrable, 2π-periodic function f . We get

σN (f)(x) =
S0(f)(x) + · · ·+ SN−1(f)(x)

N

=
(f ∗D0)(x) + · · ·+ (f ∗DN−1)(x)

N

= f ∗
(
D0(x) + · · ·+DN−1(x)

N

)
,

by the properties of convolutions given in Proposition 2.2. The term D0(x)+···+DN−1(x)
N

actually has its own name:

Definition 2.7. We define the N th Fejér kernel FN (x) by

FN (x) =
D0(x) + · · ·+DN−1(x)

N
.

Using the definition above, we see that given a (Riemann integrable, 2π-
periodic) function f , the N th Cesàro sum of its Fourier series is

σN (f)(x) = (f ∗ FN )(x).

Let us now establish some facts about the Fejér kernel.

Lemma 2.6. (i) The Fejér kernel has a closed form formula given by

FN (x) =
1

N
· sin2(Nx2 )

sin2(x2 )
.

(ii) The Fejér kernel is a good kernel.

Proof. (i) Recall from Remark 2.3 that theN th Dirichlet kernel can be written
as

DN (x) =
N∑

n=−N
einx =

(eix)−N − (eix)N+1

1− eix ,

for x 6= 0, so

NFN (x) =

N−1∑

k=0

Dk(x)

=
N−1∑

k=0

(eix)−k − (eix)k+1

1− eix

=
1

1− eix

(
N−1∑

k=0

(eix)−k −
N−1∑

k=0

(eix)k+1

)

whenever x 6= 0.
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By applying the usual formula for geometric sums, we get

NFN (x) =
1

1− eix

(
N−1∑

k=0

(eix)−k −
N−1∑

k=0

(eix)k+1

)

=
eix

1− eix

(
(eix)−N − 1

1− eix − 1− (eix)N

1− eix

)

= eix · (eix)−N − 2 + (eix)N

(1− eix)2

=
(eix)−N − 2 + (eix)N

(e−ix/2)2(1− eix)2

=
((eix)−N/2 − (eix)N/2)2

((eix)−1/2 − (eix)1/2)2

=
sin2(Nx2 )

sin2(x2 )
.

We conclude that

FN (x) =
1

N
· sin2(Nx2 )

sin2(x2 )
,

for x 6= 0. As was the case with the Dirichlet kernel, the limit of the closed

form
sin2(Nx2 )

N sin2( x2 )
as x→ 0 coincides with the value of FN (0).

(ii) (a) For each N ≥ 1,

1

2π

∫ π

−π
FN (x) dx =

1

2π

∫ π

−π

∑N−1
k=0 Dk(x)

N
dx

=
1

N

N−1∑

k=0

(
1

2π

∫ π

−π
Dk(x) dx

)

=
1

N

N−1∑

k=0

1

= 1,

following from the fact that the Dirichlet kernel has property (a) of
good kernels.

(b) FN (x) is positive, and thus

∫ π

−π
|FN (x)| dx =

∫ π

−π
FN (x) dx

= 2π,

by (a).
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(c) Given ε ∈ (0, 1], there exists a δ > 0 such that δ ≤ |x| ≤ π implies
sin2(x2 ) ≥ ε. Then

FN (x) =
sin2(Nx2 )

N sin2(x2 )
≤ 1

Nε
.

Therefore
∫

δ≤|x|≤π
|FN (x)| dx =

∫

δ≤|x|≤π
FN (x) dx→ 0

as N →∞.

Figure 2: The Fejér kernel for N = 10 and N = 30.

The lemma above leads us to an interesting result concerning Fourier series,
due to Fejér.

Theorem 2.7. (Fejér) Let f be a Riemann integrable, 2π-periodic function.
Then the Fourier series of f is Cesàro summable to f at every point of continuity
of f . Moreover, if f is continuous everywhere, its Fourier series is uniformly
Cesàro summable to f .

Proof. Apply Theorem 2.3 to σN (f) = (f ∗ FN )(x).

The following corollary can be seen as the trigonometric equivalent of Weier-
strass polynomial approximation theorem, and will be used in the next section.

Corollary 2.7.1. Functions that are continuous on [−π, π] with f(−π) = f(π)
can be uniformly approximated by trigonometric polynomials; i.e., given ε > 0
there exists a trigonometric polynomial P such that

|f(x)− P (x)| < ε

for x ∈ [−π, π].

Proof. Since the partial sums SN (f) are trigonometric polynomials, so are the
Cesàro sums, which uniformly sum up to f as N →∞ by Theorem 2.7.
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It turns out that the uniqueness property of Fourier series (Theorem 2.1)
can be seen as a direct corollary of the theorem above. The proof is simple; if
f̂(n) = 0 for all n ∈ Z, then σN (f) = 0, and by Theorem 2.7, f = 0 at its points
of continuity.

There are other summation methods of relevance in the context of Fourier
series. We can define the notion of a series being Abel summable to a limit, and
prove a similar result to Theorem 2.7 using Abel summability instead of Cesàro
summability. The interested reader is referred to section 5.3 in chapter 2 of [5]
for further exploration of this topic.

3 Criteria for convergence

In this section, we will systematically present and prove some notable results
concerning the convergence of Fourier series. Given a function f , our goal is to
find criteria which will ensure different types of convergence of its corresponding
Fourier series.

Firstly, we will study so called mean-square convergence by using concepts
the reader might recognize from linear algebra. From this, we will be able to
derive a result which can be ingeniously applied to finding the limits of infinite
series.

We will then move on to the familiar notion of uniform convergence, and
see how it ties in with the absolute convergence of Fourier series. We will find
that f being continuously differentiable is enough to ensure uniform conver-
gence of its Fourier series, and then discover that uniform convergence can be
guaranteed even when we place weaker conditions - certain kinds of so called
Hölder conditions - on f .

Finally, we will investigate what needs to be required of f to guarantee
pointwise convergence of its associated Fourier series. We will see that in this
case, it is sufficient for f to simply be differentiable.

3.1 Mean-square convergence

Let us first state the theorem which will be the main focus of this particular
section.

Theorem 3.1. (Mean-square convergence) Let f be a 2π-periodic, Rie-
mann integrable function. Then

1

2π

∫ π

−π
|f(x)− SN (f)(x)|2 dx→ 0

as N →∞.

To prove this, we will use the concept of orthogonality. Our setting must
thus be a vector space with an inner product. If the reader wishes to refresh
their memory on the topic of vector spaces and inner products, we refer them
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to section 1.1 in chapter 3 of [5]. In this text, we will use the properties of such
objects freely.

We mainly restrict ourselves to complex-valued, 2π-periodic, Riemann inte-
grable functions, and define the inner product of two such functions f and g
as

(f, g) =
1

2π

∫ π

−π
f(x)g(x) dx .

This yields norm ‖f‖ such that

‖f‖2 = (f, f) =
1

2π

∫ π

−π
|f(x)|2 dx .

Hence we can rephrase the statement of Theorem 3.1 as ‖f − SN (f)‖ → 0 as
N →∞.

To simplify notation, let en(x) = einx for every n ∈ Z. Note that {en}n∈Z
is an orthonormal family with respect to the inner product we just defined;

(en, em) =

{
1 for n = m,

0 for n 6= m.

Another important observation is

(f, en) =
1

2π

∫ π

−π
f(x)e−inx dx = f̂(n).

We see that

SN (f) =
∑

|n|≤N
f̂(n)en =

∑

|n|≤N
anen,

if we let an = f̂(n) denote the Fourier coefficients of f . Moreover, note that

(
f −

∑

|n|≤N
anen

)
⊥
∑

|n|≤N
bnen (2)

for any bn ∈ C, since

((
f −

∑

|n|≤N
anen

)
,
∑

|n|≤N
bnen

)
=
(
f,
∑

|n|≤N
bnen

)
−
( ∑

|n|≤N
anen,

∑

|n|≤N
bnen

)

=
∑

|n|≤N
anbn −

∑

|n|≤N
anbn

= 0

by the orthonormality of {en}n∈Z and the relation (f, en) = an.
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Since bn are arbitrary complex numbers, we can set bn = an and conclude
that

(
f −

∑

|n|≤N
anen

)
⊥
∑

|n|≤N
anen.

By applying the Pythagorean theorem (see [5]) to

f = f −
∑

|n|≤N
anen +

∑

|n|≤N
anen,

we get

‖f‖2 =
∥∥∥f −

∑

|n|≤N
anen

∥∥∥
2

+
∥∥∥
∑

|n|≤N
anen

∥∥∥
2

=
∥∥∥f −

∑

|n|≤N
anen

∥∥∥
2

+
∑

|n|≤N
|an|2, (3)

where we have again used the orthonormality of {en}n∈Z in the last step. This
leads us to the following lemma:

Lemma 3.2. (Best approximation) If f is a Riemann integrable, 2π-periodic

function with Fourier coefficients an = f̂(n), then

‖f − SN (f)‖ ≤
∥∥∥f −

∑

|n|≤N
cnen

∥∥∥

for any cn ∈ C. Moreover, the equality holds precisely when cn = an for all
|n| ≤ N .

Proof. Let bn = an − cn. Then

f −
∑

|n|≤N
cnen = f − SN (f) +

∑

|n|≤N
bnen.

Since (f − SN (f)) ⊥∑|n|≤N bnen by (2), we can apply the Pythagorean theo-
rem:

∥∥∥f −
∑

|n|≤N
cnen

∥∥∥
2

=
∥∥∥f − SN (f)

∥∥∥
2

+
∥∥∥
∑

|n|≤N
bnen

∥∥∥
2

.

Note that ‖ · ‖2 is always non-negative. Thus

‖f − SN (f)‖ ≤
∥∥∥f −

∑

|n|≤N
cnen

∥∥∥

with equality only when cn = an (i.e. bn = 0) for all |n| ≤ N .
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We can interpret this lemma as saying that the trigonometric polynomial of
degree M ≤ N that is “closest” to f in our norm is precisely SN (f). For this
reason, the lemma is often called the best approximation lemma.

Before we move on to proving Theorem 3.1, we must first establish the
following result:

Lemma 3.3. Suppose f is a 2π-periodic, Riemann integrable function bounded
by B > 0. Then there exists a sequence {fk}∞k=1 of continuous, 2π-periodic
functions such that

sup
x∈[−π,π]

|fk(x)| ≤ B

for each k, and

∫ π

−π
|f(x)− fk(x)| dx→ 0

as k tends to infinity.

Our proof uses the same argument as the one given in section 1 in the
appendix of [5].

Proof. We restrict ourselves to the case where f is real-valued. (When consid-
ering complex-valued functions f = u+ iv, apply the same kind of argument to
the real-valued u and v.)

Let ε > 0 be given, and choose a partition, say P ,

−π = x0 < x1 < · · · < xN = π

of [−π, π] such that the upper and lower Riemann sums of f satisfy

U(P, f)− L(P, f) <
ε

2
.

(This is possible since f is assumed to be Riemann integrable.)
Consider the step function defined by

f∗(x) = sup
xj−1≤y≤xj

f(y) if x ∈ [xj−1, xj) for 1 ≤ j ≤ N.

Note that this yields |f∗| ≤ B, and

∫ π

−π
|f∗(x)− f(x)| dx < U(P, f)− L(P, f)

<
ε

2
.

This function f∗ approximates f , but it is not continuous. However, we can
use f∗ to construct a new continuous function f̃ . For small δ > 0, let f̃(x) =
f∗(x) when the distance from x to any of the points xj of the partition is greater
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or equal to δ. When x is in the δ-neighborhood of a point xj , j = 1, . . . , N − 1,

let f̃(x) be the linear function for which f̃(xj ± δ) = f∗(xj ± δ). Near x0 = −π,

let f̃ be linear with f̃(−π) = 0 and f̃(−π + δ) = f∗(−π + δ). Near xN = π, let
f̃ be linear with f̃(π − δ) = f∗(π − δ) and f̃(π) = 0.

Visually, we have modified the step function f∗ by shortening the ends of
each step by δ and connecting these updated ends with linear segments, as
shown in Figure 3. Since we have constructed f̃ such that f̃(−π) = f̃(π), we
may also extend it to be 2π-periodic on R. By our construction, this extension
will still be bounded by B.

Figure 3: Construction of f̃ . The orange graph is shifted slightly below the step
function for the sake of clarification.

Note that f̃ differs from f∗ only in the N intervals of length 2δ around points
x0, . . . , xN . We observe that

∫ π

−π
|f∗(x)− f̃(x)| dx ≤ 2BN · 2δ = 4BNδ.

Choosing δ sufficiently small yields

∫ π

−π
|f∗(x)− f̃(x)| dx < ε

2
.

Using our previously established result along with the triangle inequality finally
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yields

∫ π

−π
|f(x)− f̃(x)| dx ≤

∫ π

−π
|f(x)− f∗(x)| dx

+

∫ π

−π
|f∗(x)− f̃(x)| dx

< ε.

By denoting f̃ by fk for ε = 1
k , we obtain our desired sequence of continuous

functions {fk}.

The main idea for the proof above is fairly simple, especially when we visual-
ize our constructed function f̃ ; we created a step function using the supremum
of our original function on different intervals, and then proceeded to connect the
steps with linear segments. However, as we saw, formalizing this idea required
some attention to detail. The good news is that we now have all the machinery
we need to prove Theorem 3.1.

Proof. (Of Mean-square convergence.) Firstly, recall that

1

2π

∫ π

−π
|f(x)− SN (f)(x)|2 dx = ‖f(x)− SN (f)(x)‖2.

Hence we aim to prove that ‖f − SN (f)‖ → 0 as N →∞.
We begin with the case where f is continuous. Let ε > 0 be given. By

Corollary 2.7.1, there exists some trigonometric polynomial P - say of degree
M - such that

|f(x)− P (x)| < ε

for all x. In particular,

‖f(x)− P (x)‖2 =
1

2π

∫ π

−π
|f(x)− P (x)|2 dx

<
1

2π

∫ π

−π
ε2 dx

<
(π − (−π))

2π
ε2

= ε2,

and so

‖f(x)− P (x)‖ < ε.

By the best approximation lemma, whenever N ≥M , we have

‖f − SN (f)‖ < ε.



3 CRITERIA FOR CONVERGENCE 27

Since ε can be chosen arbitrarily small, this proves that ‖f −SN (f)‖ → 0 as N
tends to infinity for continuous functions f .

Now suppose f is merely (Riemann) integrable. Using Lemma 3.3, we choose
a continuous, 2π-periodic function g satisfying

sup
x∈[−π,π]

|g(x)| ≤ sup
x∈[−π,π]

|f(x)| = B

and
∫ π

−π
|f(x)− g(x)| dx < ε2.

In this case,

‖f − g‖2 =
1

2π

∫ π

−π
|f(x)− g(x)|2 dx

=
1

2π

∫ π

−π
|f(x)− g(x)||f(x)− g(x)| dx

≤ 2B

2π

∫ π

−π
|f(x)− g(x)| dx

< Cε2

for a constant C > 0. Since g is continuous, we can apply Corollary 2.7.1 and
approximate g with some trigonometric polynomial P of degree M ≤ N such
that ‖g − P‖ < ε. By the triangle inequality,

‖f − P‖ ≤ ‖f − g‖+ ‖g − P‖
< ε+ C ′ε

< C ′′ε

for constants C ′, C ′′ > 0. Applying the best approximation lemma yields

‖f − SN (f)‖ < C ′′ε

for all N ≥M . This concludes our proof.

We can use mean-square convergence to establish the following result, usually
called Parseval’s identity.

Theorem 3.4. (Parseval’s identity) Let f be a Riemann integrable, 2π-

periodic function. With notation an = f̂(n), we have

∞∑

n=−∞
|an|2 = ‖f‖2 =

1

2π

∫ π

−π
|f(x)|2 dx .
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Proof. Recall from (3) that

‖f‖2 = ‖f − SN (f)‖2 +
∑

|n|≤N
|an|2.

By Theorem 3.1, we have
∑

|n|≤N
|an|2 → ‖f‖2

as N →∞.

Example 3.1. Let us take a small detour and see a clever application of Parse-
val’s identity, found in section 11 in chapter 7 of [1]. Recall that while we have
mainly restricted ourselves to 2π-periodic functions, all theory presented here
can be extended to any Riemann integrable function f : [a, b] → C (see Defi-
nition 2.1). Parseval’s identity still holds if we decide to work with the vector
space of such functions instead, and define the inner product of f, g : [a, b]→ C
by

(f, g) =
1

b− a

∫ b

a

f(x)g(x) dx .

Having established this, consider f(x) = x for x ∈ [−1, 1]. The Fourier
coefficients of f are given by

f̂(n) =
1

2

∫ 1

−1
f(x)e−iπnx dx

=
1

2

∫ 1

−1
xe−iπnx dx .

For n = 0, we have

f̂(0) =
1

2

∫ 1

−1
x dx = 0.

For n 6= 0, we can use integration by parts to obtain

f̂(n) =
1

2

[
e−iπnx(1 + iπnx)

π2n2

]1

−1

=
1

2π2n2
(e−iπn(1 + iπn)− eiπn(1− iπn)),

and using Euler’s identity eiπ = −1 yields

f̂(n) =
1

2π2n2
((−1)n + iπn(−1)n − (−1)n + iπn(−1)n)

=
1

2π2n2
(2iπn(−1)n)

=
i

πn
(−1)n.
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The Fourier series of f is given by

f(x) ∼ i

π

∑

n 6=0

(−1)n

n
eiπnx.

Note that

‖f‖2 =
1

2

∫ 1

−1
x2 dx =

1

2

[
x3

3

]1

−1
=

1

3
.

By Parseval’s identity,

1

3
=

∞∑

n=−∞
|f̂(n)|2

=
∑

n 6=0

1

π2n2

=
2

π2

∞∑

n=1

1

n2
.

We finally arrive at a familiar result;

∞∑

n=1

1

n2
=
π2

6
.

Finding the limit of this series has historically been called the Basel problem.
It was first solved by Leonhard Euler in the early 1700s.

We conclude this section with the following lemma:

Lemma 3.5. (Riemann-Lebesgue) Suppose f is Riemann integrable and 2π-

periodic. Then f̂(n)→ 0 as |n| → ∞.

Proof. By Parseval’s identity,
∑∞
n=−∞ |f̂(n)|2 converges. Thus |f̂(n)|2 → 0 as

|n| → ∞, and so f̂(n)→ 0 as |n| tends to infinity.

Let us not forget that while this looks like a simple enough result, it did take
quite a bit of work to get here. Recall that convergence of a series

∑
an implies

that an → 0 as n → ∞, although the converse implication does not hold. If it
did, we could have concluded that

∑∞
n=−∞ f̂(n) converged as well, but this in

turn would not guarantee a convergent Fourier series. We have no choice but to
continue our search for necessary criteria to ensure the convergence of Fourier
series.
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3.2 Uniform convergence

We now prove our first theorem concerning the uniform convergence of Fourier
series, using the uniqueness property. We apply the technique used in section 2
in chapter 2 of [5].

Theorem 3.6. Suppose f is a continuous, 2π-periodic function. If

∞∑

n=−∞
|f̂(n)| <∞,

then SN (f) converges uniformly to f as N →∞.

Proof. Define the function

g(x) =
∞∑

n=−∞
f̂(n)einx.

Note that

|g(x)− SN (f)(x)| =
∣∣∣∣∣
∞∑

n=−∞
f̂(n)einx −

N∑

n=−N
f̂(n)einx

∣∣∣∣∣

=

∣∣∣∣∣∣
∑

|n|>N
f̂(n)einx

∣∣∣∣∣∣

≤
∑

|n|>N
|f̂(n)|.

The last sum can be made arbitrarily small, by our assumption of absolute
convergence. Therefore, the partial sums SN (f) converge uniformly to g. Since
{SN (f)} is a sequence of continuous, 2π-periodic functions converging uniformly,
their limit g must be continuous and 2π-periodic as well.

Let us take a look at the Fourier coefficients of g:

ĝ(n) =
1

2π

∫ π

−π
g(x)e−inx dx

=
1

2π

∫ π

−π

( ∞∑

m=−∞
f̂(m)eimx

)
e−inx dx

=
1

2π

∞∑

m=−∞
f̂(m)

∫ π

−π
eix(m−n) dx,

where the sum and integral can be interchanged thanks to the uniform conver-
gence of the series. Note that

∫ π

−π
eix(m−n) dx = 0
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for m 6= n. Therefore,

ĝ(n) =
1

2π

∞∑

m=−∞
f̂(m)

∫ π

−π
eix(m−n) dx

=
1

2π
f̂(n)

∫ π

−π
e0 dx

=
1

2π
f̂(n)(π − (−π))

= f̂(n).

By applying Theorem 2.1 to f − g, we finally conclude that f = g.

With this theorem, we have found conditions that will ensure the convergence
of a Fourier series to its corresponding function - namely, continuity of the
function and absolute convergence of the Fourier series. The question is now,
when is the Fourier series associated with a function f absolutely convergent?
What must be required of f for

∑∞
n=−∞ |f̂(n)| < ∞ to hold? The purpose of

this section is to find some conditions which will guarantee absolute convergence
of a given function’s Fourier series.

Before we move on to such matters, we must establish the following lemma:

Lemma 3.7. Suppose f is a 2π-periodic, differentiable function with a contin-
uous derivative f ′. Then

f̂ ′(n) = inf̂(n).

Proof. For n = 0, we have inf̂(n) = 0, and

f̂ ′(0) =
1

2π

∫ π

−π
f ′(x)e0 dx

=
1

2π

[
f(x)

]π
−π

= 0,

since f is 2π-periodic. It is clear that the formula holds for n = 0.
For n 6= 0, we use integration by parts;

2πf̂(n) =

∫ π

−π
f(x)e−inx dx

=

[
− f(x)

e−inx

in

]π

−π
+

1

in

∫ π

−π
f ′(x)e−inx dx .

The first term is zero, since f is 2π-periodic. We conclude that

f̂(n) =
1

in · 2π

∫ π

−π
f ′(x)e−inx dx =

1

in
f̂ ′(n).
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With the help of this lemma, we can prove the following result.

Theorem 3.8. Let f be a 2π-periodic, differentiable function with a continuous
derivative. Then the Fourier series of f converges absolutely and uniformly to
f .

Proof. Applying the formula f̂ ′(n) = inf̂(n) as well as Parseval’s identity, we
obtain

∞∑

n=−∞
n2|f̂(n)|2 =

∞∑

n=−∞
|f̂ ′(n)|2 = ‖f ′‖2. (4)

Since f ′ is continuous, we know ‖f ′‖2 to be finite.
Note that we can write

∞∑

n=−∞
|f̂(n)| = |f̂(0)|+

∑

n6=0

|f̂(n)|

= |f̂(0)|+
∑

n6=0

n|f̂(n)| · 1

n
.

To prove the convergence of the last sum, we apply the Cauchy-Schwarz
inequality;

(∑

n6=0

n · |f̂(n)| · 1

n

)2

≤
∑

n6=0

1

n2

∑

n 6=0

n2|f̂(n)|2.

Since
∑
n 6=0

1
n2 = 2

∑∞
n=1

1
n2 = π2

3 , we get

(∑

n 6=0

n · |f̂(n)| · 1

n

)2

≤
∑

n 6=0

1

n2

∑

n 6=0

n2|f̂(n)|2

=
π2

3
‖f ′‖2

by (4). The quantity on the right-hand side is finite, so

∑

n 6=0

|f̂(n)| ≤ π√
3
‖f ′‖.

We finally arrive at

∞∑

n=−∞
|f̂(n)| = |f̂(0)|+

∑

n6=0

|f̂(n)| <∞.

By Theorem 3.6, the Fourier series converges uniformly to f .
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The theorem above states that it is enough for f to be continuously differ-
entiable to guarantee that its Fourier series is absolutely convergent (and thus
converges uniformly to f). We will conclude this section with an even stronger
result, but we must first define a new concept.

Definition 3.1. We say that a function f satisfies a Hölder condition of
order α if there exists some 0 < α ≤ 1 and some constant C > 0 such that

|f(x)− f(y)| ≤ C|x− y|α

holds for all x and all y.

Note that a function f satisfying a Hölder condition implies that f is uni-
formly continuous; given ε > 0, choose a δ such that δ < ( εC )1/α. It follows that
|x− y| < δ implies |f(x)− f(y)| < ε.

Moreover, if f is continuously differentiable on an interval [a, b], it satisfies
a Hölder condition for α = 1 (a so called Lipschitz condition) on that interval.
By the Mean Value Theorem, f(x)− f(y) = f ′(ξ)(x− y) for some ξ ∈ (y, x) ⊂
[a, b]. Since f ′ is assumed to be continuous, it must be bounded on [a, b] (recall
that closed and bounded intervals are compact in R). Hence there exists some
constant C > 0 such that |f(x)− f(y)| ≤ C|x− y| holds.

The following example shows that the converse does not hold; f satisfying a
Lipschitz condition does not ensure differentiability.

Example 3.2. The function f(x) = |x| satisifes a Lipschitz condition on all of
R; by the reverse triangle inequality, we have that

|f(x)− f(y)| = ||x| − |y|| ≤ |x− y|

for all x, y ∈ R.

Now that we have introduced Hölder conditions, we can state the theorem
we intend to prove:

Theorem 3.9. (Bernstein) Suppose f is a continuous, 2π-periodic function
that satisfies a Hölder condition of order α > 1/2, i.e. there exists some C > 0
and some α > 1/2 such that

|f(x)− f(y)| ≤ C|x− y|α

holds for all x, y. Then the Fourier series of f converges absolutely and uni-
formly to f .

To prove this, we first need to establish a couple of lemmas. (We follow the
proof outlined in the exercises in chapter 3 of [5].)

Lemma 3.10. Let f be a Riemann integrable, 2π-periodic function for which
there exists some C > 0 and some α > 1/2 such that

|f(x)− f(y)| ≤ C|x− y|α
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holds for all x, y. Define

gh(x) = f(x+ h)− f(x− h)

for h > 0. Then

(a) 1
2π

∫ π
−π |gh(x)|2 dx =

∑∞
n=−∞ 4| sin(nh)|2|f̂(n)|2,

(b)
∑∞
n=−∞ | sin(nh)|2|f̂(n)|2 ≤ C2h2α22α

4 .

Proof. (a) Let us take a look at the Fourier coefficients of gh:

ĝh(n) =
1

2π

∫ π

−π
(f(x+ h)− f(x− h))e−inx dx

=
1

2π

(∫ π

−π
f(x+ h)e−inx dx−

∫ π

−π
f(x− h)e−inx dx

)
.

We perform a change of variables y = x + h and z = x − h. Note that the
bounds of integration do not need to be changed, since f is 2π-periodic and
we are still integrating over intervals of length 2π.

ĝh(n) =
1

2π

(∫ π

−π
f(y)e−inyeinh dy−

∫ π

−π
f(z)e−inze−inh dz

)

= f̂(n)(einh − e−inh)

= 2i sin(nh)f̂(n),

where we have used the fact that sin(nh) = einh−e−inh
2i . We can now apply

Parseval’s identity;

1

2π

∫ π

−π
|gh(x)|2 dx =

∞∑

n=−∞
|2i sin(nh)f̂(n)|2

=
∞∑

n=−∞
4| sin(nh)|2|f̂(n)|2.

This concludes our proof of the first part of the lemma.

(b) Since we supposed |f(x)− f(y)| ≤ C|x− y|α, we have

|gh(x)| = |f(x+ h)− f(x− h)| ≤ C(2h)α.

Then

1

2π

∫ π

−π
|gh(x)|2 dx ≤ 1

2π

∫ π

−π
|C(2h)α|2 dx

= C222αh2α.



3 CRITERIA FOR CONVERGENCE 35

By (a),

∞∑

n=−∞
| sin(nh)|2|f̂(n)|2 ≤ C222αh2α

4
.

This concludes our proof of the lemma.

We need one more lemma before we arrive at the much anticipated proof of
Bernstein’s theorem:

Lemma 3.11. Suppose f is a Riemann integrable, 2π-periodic function for
which there exists some C > 0 and some α > 1/2 such that

|f(x)− f(y)| ≤ C|x− y|α

holds for all x, y. Let p be a positive integer. Then

∑

2p−1<|n|≤2p
|f̂(n)|2 ≤ C2π2α

22αp+1
.

Proof. To prove this, we will apply part (b) of Lemma 3.10 with h = π
2p+1 . Then

∑

2p−1<|n|≤2p

∣∣∣sin
( πn

2p+1

)∣∣∣
2

|f̂(n)|2 ≤ C2π2α

22αp+2
.

Note that we are only summing over 2p−1 < |n| ≤ 2p, where

π2p−1

2p+1
<
∣∣∣ πn
2p+1

∣∣∣ ≤ π2p

2p+1
⇔ π

4
<
∣∣∣ πn
2p+1

∣∣∣ ≤ π

2
.

This implies

1

2
≤
∣∣∣sin

( πn

2p+1

)∣∣∣
2

≤ 1.

Hence

1

2

∑

2p−1<|n|≤2p
|f̂(n)|2 ≤

∑

2p−1<|n|≤2p

∣∣∣sin
( πn

2p+1

)∣∣∣
2

|f̂(n)|2

≤ C2π2α

22αp+2
.

We conclude that

∑

2p−1<|n|≤2p
|f̂(n)|2 ≤ C2π2α

22αp+1
.
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We now have all the machinery needed to prove Bernstein’s theorem.

Proof. (Of Bernstein.) We apply the Cauchy-Schwarz inequality and obtain

( ∑

2p−1<|n|≤2p
|f̂(n)|

)2

≤
∑

2p−1<|n|≤2p
|f̂(n)|2

∑

2p−1<|n|≤2p
1.

By Lemma 3.11, we have

∑

2p−1<|n|≤2p
|f̂(n)|2

∑

2p−1<|n|≤2p
1 ≤ C2π2α

22αp+1
· 2p

=
C2π2α

2p(2α−1)+1
.

Combined, this yields

∑

2p−1<|n|≤2p
|f̂(n)| ≤ Cπα√

2p(2α−1)+1
.

Note that we can write

∞∑

n=−∞
|f̂(n)| = |f̂(0)|+ |f̂(1)|+ |f̂(−1)|+

∞∑

p=1

∑

2p−1<|n|≤2p
|f̂(n)|

≤ |f̂(0)|+ |f̂(1)|+ |f̂(−1)|+ Cπα
∞∑

p=1

1√
2p(2α−1)+1

. (5)

We simplify the sum to

Cπα
∞∑

p=1

1√
2p(2α−1)+1

=
Cπα√

2

∞∑

p=1

1

2p(α−1/2)

=
Cπα√

2

∞∑

p=1

( 1

2α−1/2

)p
.

Moreover, by the formula for geometric sums, we have

∞∑

p=1

( 1

2α−1/2

)p
= −1 +

∞∑

p=0

( 1

2α−1/2

)p
= −1 +

1

1−
(

1
2α−1/2

)

whenever
∣∣ 1
2α−1/2

∣∣ < 1, i.e. whenever α > 1
2 . Applying this to (5), we arrive at

∞∑

n=−∞
|f̂(n)| ≤ |f̂(0)|+ |f̂(1)|+ |f̂(−1)|+ Cπα√

2

(
− 1 +

1

1−
(

1
2α−1/2

)
)

for α > 1
2 . In this case, the Fourier series of f converges uniformly to f by

Theorem 3.6.
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Remark 3.1. Our purpose in this section has been to give a brief overview
of some conditions which ensure absolute convergence of the Fourier series as-
sociated with a given function. The space of continuous functions on the unit
circle (i.e. 2π-periodic) with absolutely convergent Fourier series is called the
Wiener algebra. It is denoted by A(T) (where T denotes the unit circle). By
letting C1(T) denote the space of continuously differentiable functions on the
unit circle, Theorem 3.8 can be rephrased as C1(T) ⊂ A(T).

The Wiener algebra has many interesting properties; it is a so called Banach
algebra, an algebra that forms a complete normed vector space (a Banach space)
while its norm also satisfies ‖xy‖ ≤ ‖x‖‖y‖ for all its elements x, y. For more
information about A(T) and its structure, we refer the reader to section 6 in
chapter 1, as well as chapter 8, of [3].

3.3 Pointwise convergence

It turns out that when we settle for pointwise convergence instead of uniform
convergence, we can put even fewer restrictions on a function f to ensure con-
vergence of its associated Fourier series. We will prove the following:

Theorem 3.12. Let f be a Riemann integrable, 2π-periodic function which is
differentiable at a point x0. Then SN (f)(x0)→ f(x0) as N →∞.

Here, as opposed to in Theorem 3.8, we do not need f to be continuously dif-
ferentiable - differentiability in itself is enough. However, we can only guarantee
pointwise convergence of the partial sums, not uniform convergence.

To prove this result, we will apply the same technique as the one used in
section 2.1 in chapter 3 of [5]. Firstly, we must establish a result concerning
Riemann integrability in general.

Proposition 3.13. Suppose f is a bounded function on the (closed, bounded)
interval [a, b], and let c ∈ (a, b). If f is Riemann integrable on [a, c − δ] and
[c+ δ, b] for all small δ > 0, then f is integrable on [a, b].

Proof. Suppose |f | ≤M , and let ε > 0 be given. Choose δ > 0 small enough to
satisfy

4δM ≤ ε

3
.

Since f is integrable on [a, c− δ] and [c+ δ, b], we can find partitions P1, P2

of each of these intervals such that

U(Pi, f)− L(Pi, f) <
ε

3

for i = 1, 2. We define the common refinement P = P1 ∪ P2, a partition of the
entire interval [a, b]. Now observe that

U(P, f)− L(P, f) = (U(P1, f)− L(P1, f))

+
(

sup
c−δ≤x≤c+δ

f(x)− inf
c−δ≤x≤c+δ

f(x)
)

((c+ δ)− (c− δ))

+ (U(P2, f)− L(P2, f)).
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By the triangle inequality,

U(P, f)− L(P, f) ≤ (U(P1, f)− L(P1, f))

+ 2δ

∣∣∣∣ sup
c−δ≤x≤c+δ

f(x)− inf
c−δ≤x≤c+δ

f(x)

∣∣∣∣

+ (U(P2, f)− L(P2, f))

≤ ε

3
+ 2δ · 2M +

ε

3
≤ ε.

This proves that f is integrable over [a, b].

We now have the machinery we need to prove Theorem 3.12.

Proof. (Of Theorem 3.12.) We begin by defining

F (t) =

{
f(x0−t)−f(x0)

t , for t 6= 0 and |t| < π,

−f ′(x0), for t = 0.

Note that F is differentiable at t = 0, and thus bounded around this point.
Moreover, for every small δ > 0, F is integrable on [−π,−δ] ∪ [δ, π], since f is
integrable there and |t| > δ on these intervals. By Proposition 3.13, F must be
integrable on [−π, π].

Recall now that
SN (f)(x) = (f ∗DN )(x),

where DN (x) is the N th Dirichlet kernel. Moreover, we know that

1

2π

∫ π

−π
DN (x) dx = 1.

Hence

SN (f)(x0)− f(x0) = (f ∗DN )(x0)− f(x0)

=
1

2π

∫ π

−π
f(x0 − t)DN (t) dt−f(x0)

=
1

2π

∫ π

−π
(f(x0 − t)− f(x0))DN (t) dt

=
1

2π

∫ π

−π
F (t)tDN (t) dt .

By the closed form formula of DN ,

tDN (t) =
t

sin( t2 )
sin
((
N +

1

2

)
t
)
,
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where t
sin( t2 )

is continuous on [−π, π] and

sin
((
N +

1

2

)
t
)

= sin(Nt) cos
( t

2

)
+ cos(Nt) sin

( t
2

)
.

Applying this yields

SN (f)(x0)− f(x0) =
1

2π

∫ π

−π
F (t)tDN (t) dt

=
1

2π

∫ π

−π
F (t)

t

sin( t2 )

(
sin(Nt) cos

( t
2

)
+ cos(Nt) sin

( t
2

))
dt

=
1

2π

∫ π

−π
F (t)t sin(Nt)

cos
(
t
2

)

sin
(
t
2

) dt

+
1

2π

∫ π

−π
F (t)t cos(Nt) dt .

Applying the terminology of Example 2.3, we observe that the first integral
above is the Fourier coefficient bN of 1

2

(
F (t) t

sin(t/2) cos(t/2)
)
, and the second

integral is the Fourier coefficient aN of 1
2F (t)t. These functions are Riemann

integrable, and so by the Riemann-Lebesgue lemma, their Fourier coefficients
tend to 0 as N →∞. We conclude that

SN (f)(x0)− f(x0)→ 0

as N tends to infinity.

At this point, it is easy to get lulled into a false sense of security, and imagine
that the differentiability condition in Theorem 3.12 can be replaced with a plain
and simple condition of continuity. Many distinguished mathematicians thought
so for a long time. We are, however, rapidly approaching one of the highlights
of this thesis; the construction of a continuous function whose Fourier series
diverges at one point. Before taking on this noble task, we establish one last
result.

Theorem 3.14. (Riemann localization principle) Suppose f and g are two
Riemann integrable, 2π-periodic functions, and for some x0 there exists an open
interval I containing x0 such that

f(x) = g(x) for all x ∈ I.

Then SN (f)(x0)− SN (g)(x0)→ 0 as N →∞.

Proof. Note that for all x ∈ I, we have that f(x)− g(x) = 0. This implies that
f − g is differentiable at x0. By Theorem 3.12, SN (f)(x0)− SN (g)(x0)→ 0 as
N →∞.

From this theorem, we conclude - with some surprise - that the convergence
of SN (f)(x0) depends solely on f ’s behavior near x0, despite the fact that we
need to integrate f over an interval of length 2π to obtain its Fourier coefficients.
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4 A special function

At last we arrive at the much anticipated construction of a continuous function f
whose Fourier series diverges at one point (which we, without loss of generality,
choose to be the origin). The first construction of such a function was produced
by the German mathematician Paul Du Bois-Reymond in 1876. At this time,
many prominent mathematicians - including Riemann, Dirichlet and Weierstrass
- believed that the Fourier series of every continuous function must converge
(as told in chapter 18 of [4]). In this context, it is easy to see why Du Bois-
Reymond’s counter example came as such a surprise.

Since the first construction of a continuous function with a diverging Fourier
series, several other examples have been produced. We will follow the technique
used in chapter 18 of [4]. For alternative constructions, the reader is referred to
section 10.3 in chapter 10 of [2] and section 2.2 in chapter 3 of [5].

Theorem 4.1. (Du Bois-Reymond) There exists a 2π-periodic, continuous
function f : R→ C such that lim supN→∞ |SN (f)(0)| =∞.
Remark 4.1. If one would rather that the Fourier series of f diverges at an
arbitrary point x0, one may study f(x− x0).

The question is, where to begin? To make things easier for ourselves, we will
break our construction into steps by setting some sub-goals. Firstly, we aim
to find a reasonably well-behaved, but not necessarily continuous, 2π-periodic
function h for which supx |h(x)| is small but supN |SN (h)(0)| is very large. Our
next goal is to use our function h to find a continuous, 2π-periodic function g
for which supx |g(x)| is small but supN |SN (g)(0)| is very large. Finally, we will
try to modify g and construct our desired function f of Theorem 4.1.

Recall from our discussion about kernels and convolutions that the Dirichlet
kernel DN (x) =

∑N
n=−N e

inx satisfies

SN (h)(x) = (h ∗DN )(x),

and so

SN (h)(0) =
1

2π

∫ π

−π
h(x)DN (−x) dx .

By Proposition 2.4,

1

2π

∫ π

−π
|DN (x)| dx ≥ 4

π2
ln(2(N + 1)).

These results will be useful to us as we prove the following;

Lemma 4.2. Let hN (x) = sgn(DN (−x)). Then

(a) hN is constant on intervals
(

kπ
2N+1 ,

(k+1)π
2N+1

)
for k ∈ N,

(b) |hN (x)| ≤ 1 for all x,
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(c) SN (hN )(0) ≥ 4
π2 ln(2(N + 1)).

Proof. By definition,

hN (x) =





1 for DN (−x) > 0,

0 for DN (−x) = 0,

−1 for DN (−x) < 0.

This, along with the closed form formula DN (x) =
sin((N+ 1

2 )x)

sin( x2 )
(x 6= 0), proves

properties (a) and (b) (meaning hN is reasonably well-behaved). Moreover,

SN (hN )(0) =
1

2π

∫ π

−π
hN (x)DN (−x) dx

=
1

2π

∫ π

−π
|DN (−x)| dx

=
1

2π

∫ π

−π
|DN (x)| dx

≥ 4

π2
ln(2(N + 1)).

This concludes our proof.

With that, we have found our desired function h = hN . Before we move
on, let us establish some results that will be needed in our next step of the
construction.

Lemma 4.3. If g, h : R → C are 2π-periodic, Riemann integrable functions,
then

(a) |ĝ(n)− ĥ(n)| ≤ 1
2π

∫ π
−π |g(x)− h(x)| dx for all n,

(b) |SN (g)(0)− SN (h)(0)| ≤ 2N+1
2π

∫ π
−π |g(x)− h(x)| dx for all n ≥ 0.

Proof. (a) Simply observe that

|ĝ(n)− ĥ(n)| =
∣∣∣∣

1

2π

∫ π

−π
(g(x)− h(x))e−inx dx

∣∣∣∣

≤ 1

2π

∫ π

−π
|(g(x)− h(x))e−inx| dx

=
1

2π

∫ π

−π
|g(x)− h(x)| dx .
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(b) We use (a) to obtain

|SN (g)(x)− SN (h)(x)| =
∣∣∣∣∣

N∑

n=−N
(ĝ(n)− ĥ(n))einx

∣∣∣∣∣

≤
N∑

n=−N
|(ĝ(n)− ĥ(n))einx|

=

N∑

n=−N
|ĝ(n)− ĥ(n)|

≤
N∑

n=−N

( 1

2π

∫ π

−π
|g(x)− h(x)| dx

)

=
2N + 1

2π

∫ π

−π
|g(x)− h(x)| dx .

We now find our desired function g;

Lemma 4.4. For each N ≥ 0 there exists a continuous, 2π-periodic function
gN : R→ R such that

(a) |gN (x)| ≤ 1 for all x,

(b) |SN (gN )(0)| ≥ 4
π2 ln(N + 1).

Proof. We can construct a continuous function gN such that |gN (x)| ≤ 1 for all
x and

1

2π

∫ π

−π
|gN (x)− hN (x)| dx ≤ 1

4(2N + 1)
.

As hN (x) is a step function, this can be done using the same kind of technique
as in the proof of Lemma 3.3 (see Figure 3).

Our previous results, Lemmas 4.2 and 4.3, finally yield

|SN (gN )(0)| ≥ |SN (hN )(0)| − |SN (gN )(0)− SN (hN )(0)|

≥ 4

π2
ln(2(N + 1))− 1

4

=
4

π2
ln(N + 1) +

4

π2
ln(2)− 1

4

≥ 4

π2
ln(N + 1).

For convenience’s sake, we replace gN with a trigonometric polynomial GN ,
which is still continuous and well-behaved with SN (GN )(0) large.
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Lemma 4.5. For each N ≥ 0 there exists a trigonometric polynomial GN such
that

(a) |GN (x)| ≤ 2 for all x,

(b) |SN (GN )(0)| ≥ 4
π2 ln(N + 1)− 1.

Proof. Recall Corollary 2.7.1, by which we can find a trigonometric polynomial
GN with

|GN (x)− gN (x)| ≤ 1

2N + 1

for all x. Then

1

2π

∫ π

−π
|GN (x)− gN (x)| dx ≤ 1

2N + 1
. (6)

By Lemma 4.4,

|GN (x)| ≤ |GN (x)− gN (x)|+ |gN (x)|

≤ 1

2N + 1
+ 1

≤ 2

for all x. Using Lemma 4.3 and (6), we obtain

|SN (GN )(0)| ≥ |SN (gN )(0)| − |SN (GN )(0)− SN (gN )(0)|

≥ 4

π2
ln(N + 1)− 1.

At last, we are ready to prove Theorem 4.1.

Proof. (Of Du Bois-Reymond.) By Lemma 4.5, we can find a sequence of
trigonometric polynomials Hk, k = 1, 2, . . ., and positive integers nk such that

(a) |Hk(x)| ≤ 1 for all x,

(b) |Snk(Hk)(0)| ≥ 22k.

Moreover, let qk be a sequence of integers such that qk > nk and qk ≥ qk−1 for
each k = 1, 2, . . . Then we can write

Hk(x) =

qk∑

r=−qk
αk,re

irx,

for some complex numbers αk,r. Additionally, we define pk =
∑k
j=1(2qj + 1).

(The reasons behind these definitions will become clear further along the proof.)
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Now we can define, for positive integers m, the functions

fm(x) =

m∑

k=1

2−keipkxHk(x).

Note that each fm is the sum of continuous, 2π-periodic functions, and thus
continuous and 2π-periodic itself.

We observe that, for m ≥ m′ + 1,

|fm(x)− fm′(x)| =
∣∣∣∣∣

m∑

k=m′+1

2−keipkxHk(x)

∣∣∣∣∣

≤
m∑

k=m′+1

|2−keipkxHk(x)|

≤
m∑

k=m′+1

2−k

= 2−m
′
(2−1 + 2−2 + · · ·+ 2−(m−m

′))

≤ 2−m
′ → 0

as m′ →∞. Then the sequence of functions fm is a Cauchy sequence, and since
we are operating in a complete metric space, we may conclude that fm → f for
some f . By the inequality above, the convergence is uniform. Since f is the
uniform limit of continuous, 2π-periodic functions, f must be continuous and
2π-periodic as well.

Moreover,

f̂m(n) =
1

2π

∫ π

−π
e−inxfm(x) dx→ 1

2π

∫ π

−π
e−inxf(x) dx = f̂(n)

as m→∞. For this reason, we must study the Fourier coefficients of fm(x);

f̂m(n) =
1

2π

∫ π

−π
e−inxfm(x) dx

=
1

2π

∫ π

−π
e−inx

(
m∑

k=1

2−keipkxHk(x)

)
dx .

By the uniform convergence of fm, we can interchange integration and summa-
tion:

f̂m(n) =
1

2π

∫ π

−π
e−inx

(
m∑

k=1

2−keipkxHk(x)

)
dx

=
m∑

k=1

2−k

2π

∫ π

−π
e−ix(n−pk)Hk(x) dx .
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Let ` be a positive integer such that m ≥ `. Then

f̂m(n) =
m∑

k=1

2−k

2π

∫ π

−π
e−ix(n−pk)Hk(x) dx

=
2−`

2π

∫ π

−π
e−ix(n−p`)H`(x) dx+

m∑

k=1
k 6=`

2−k

2π

∫ π

−π
e−ix(n−pk)Hk(x) dx

= 2−`Ĥ`(n− p`) +
m∑

k=1
k 6=`

2−k

2π

∫ π

−π
e−ix(n−pk)Hk(x) dx . (7)

We now study the sum in (7). Note that, by using the definition of Hk(x),
we obtain

m∑

k=1
k 6=`

2−k

2π

∫ π

−π
e−ix(n−pk)Hk(x) dx

=
m∑

k=1
k 6=`

2−k

2π

∫ π

−π
e−ix(n−pk)

(
qk∑

r=−qk
αk,re

irx

)
dx

=
m∑

k=1
k 6=`

2−k
qk∑

r=−qk

αk,r
2π

∫ π

−π
e−ix(n−pk−r) dx . (8)

Recall that the last integral satisfies

1

2π

∫ π

−π
e−ix(n−pk−r) dx =

{
1 if n− pk − r = 0,

0 if n− pk − r 6= 0.
(9)

Now let u be an integer such that |u| ≤ q`, and let n = p` + u. For ` < k,
we have

n− pk − r = p` + u− pk − r

= u− r +
∑̀

j=1

(2qj + 1)−
k∑

j=1

(2qj + 1)

= u− r −
k∑

j=`+1

(2qj + 1).
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Since |r| ≤ qk and |u| ≤ q`,

n− pk − r = u− r −
k∑

j=`+1

(2qj + 1)

≤ q` + qk −
k∑

j=`+1

(2qj + 1)

< 0,

where we have used that all qj are positive integers and that qj ≥ qj−1 for all j
by definition. For ` > k,

n− pk − r = u− r +
∑̀

j=k+1

(2qj + 1)

≥ −q` − qk +
∑̀

j=k+1

(2qj + 1)

> 0.

We have established that n− pk − r 6= 0 for n = p` + u, and so

1

2π

∫ π

−π
e−ix(n−pk−r) dx =

1

2π

∫ π

−π
e−ix(p`+u−pk−r) dx

= 0.

Hence the sum in (8) equals zero for n = p` + u. By (7),

f̂m(p` + u) = 2−`Ĥ`(p` + u− p`) + 0

= 2−`Ĥ`(u).

Since we have established that f̂m(n)→ f̂(n) as m→∞ for fixed n, we conclude
that

f̂(p` + u) = 2−`Ĥ`(u) for all |u| ≤ q`. (10)

Similarly to above, we note that for n < 0,

n− pk − r = n−
k∑

j=1

(2qj + 1)− r

≤ n+ qk −
k∑

j=1

(2qj + 1)

< 0,
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by the way we defined qk and the fact that |r| ≤ qk. Using (9), we see that

f̂m(n) =
1

2π

∫ π

−π
e−inxfm(x) dx

=

m∑

k=1

2−k
qk∑

r=−qk

αk,r
2π

∫ π

−π
e−ix(n−pk−r) dx

= 0

for n < 0. Thus

f̂(n) = 0 for all n < 0.

Let us now take a look at the partial sums

Spk+nk(f)(0) =

pk+nk∑

u=−(pk+nk)
f̂(u) =

pk+nk∑

u=0

f̂(u),

Spk−nk−1(f)(0) =

pk−nk−1∑

u=−(pk−nk−1)
f̂(u) =

pk−nk−1∑

u=0

f̂(u).

We observe that

|Spk+nk(f)(0)− Spk−nk−1(f)(0)| =
∣∣∣∣∣

pk+nk∑

u=pk−nk
f̂(u)

∣∣∣∣∣ =

∣∣∣∣∣
nk∑

u=−nk
f̂(pk + u)

∣∣∣∣∣ .

Note now that since we are summing over all integers u such that |u| ≤ nk <
qk, we can use (10) and conclude that

|Spk+nk(f)(0)− Spk−nk−1(f)(0)| =
∣∣∣∣∣

nk∑

u=−nk
f̂(pk + u)

∣∣∣∣∣

=

∣∣∣∣∣
nk∑

u=−nk
2−kĤk(u)

∣∣∣∣∣

= 2−k|Snk(Hk)(0)|
≥ 2−k · 22k = 2k →∞

as k →∞. Hence

lim
k→∞

max(|Spk+nk(f)(0)|, |Spk−nk−1(f)(0)|) =∞.

From this, we may finally conclude that

lim sup
N→∞

|SN (f)(0)| =∞.
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Remark 4.2. After Du Bois-Reymond presented his construction of a con-
tinuous function whose Fourier series diverges at one point, public opinion in
the mathematical community began to change - it was now suspected that the
Fourier series of a continuous function could possibly diverge at every point.
In 1926, Andrey Kolmogorov presented a Lebesgue integrable function whose
Fourier series diverges everywhere, strengthening the belief that there might
exist a continuous function with the same property. However, in 1964, Swedish
mathematician Lennart Carleson proved that the Fourier series of any continu-
ous function f converges to f almost everywhere, i.e. for all x /∈ E where E is
some set of measure zero. (All this history and more can be found in chapter
19 of [4].)

We restrict ourselves to simply mentioning these results here, as they are
quite advanced and require in-depth knowledge of measure theory and Lebesgue
integrability. The interested reader is referred to section 3 in chapter 2 of [3] as
well as section 10.4 in chapter 10 of [2].
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