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Abstract

The SEIR (Susceptible-Exposed-Infected-Removed) model is a compart-
mental epidemiological model used to investigate and predict the spread of
disease. In this thesis a modification is presented in which the transferals
between compartments is modified.

The main purpose of this thesis is to study the stability of equilibrium
points of both the conventional SEIR model as well as the modified version.
The stability characteristics of equilibria is significant epidemiologically as it
determines whether a given disease will die out or persist in the population.

Local stability is determined through linearization utilizing the Hartman-
Grobman theorem, and asymptotic stability is determined through the use of
Lyapunov functions and LaSalle’s invariance theorem.
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1
Introduction
The aim of this thesis is to describe the SEIR (Susceptible-Exposed-Infected-Removed)
model and to determine the stability of its equilibria. In addition a modified version
of the SEIR model is described and the local stability of the equilibria determined.
The tools used to do this are linearization, utilizing the Hartman-Grobman Theorem
[12], LaSalle’s invariance theorem [16] and Lyapunov functions [18]. The stability
analysis is not only interesting from a mathematical standpoint, but are also sig-
nificant epidemiologically. The stability of the equilibria is a determining factor in
whether the disease persists in the population or not. Establishing under what con-
ditions a given equilibrium is stable is therefore important, as the insights can be
used to inform mitigation or eradication efforts.

1.1 Background

Pestilence and parasites have been constant and destructive companions of mankind.
As technology has progressed we have unlocked new tools to combat disease, but
we have also become more connected through transportation and trade. Pathogens
can be accidentally transported across the globe, turning a local outbreak into a
pandemic. Global outbreaks are of course particularly troublesome, by virtue of
spreading in a large portion of the total population and because of that poten-
tially causing large scale casualties, and large scale disruptions to the economy.
Pandemics occured several times throughout the previous century. The epidemics
varied in severity, as one would expect, with the 1918 influenza estimated to have
caused the death of >50 million people, while the 1957-1958 influenza and the 1968
influenza pandemics are estimated to have caused around 1 million deaths each [8,
9, 10]. These examples are not even a comprehensive list of influenza pandemics
that occurred in the 1900’s.

At the time of this thesis being written there are two major ongoing pandemics.



HIV/AIDS had caused an estimated 32.7 million deaths as of the end of 2019, and
COVID-19 had caused an estimated 3.1 million deaths as of 27-04-2021 [1, 2]. It is
clear that fairly damaging pandemics are not black swan events, but should rather
be expected to occur. Consider then that in addition to the risk of epidemics and
pandemics, diseases like tuberculosis are endemic to parts of the world and cause
great harm year after year.

Disease does not only cause direct harm to human beings. Economic damage can
be done by disrupting trade networks. By affecting plants or animals a pathogen
can decrease biodiversity, or cause food insecurity.

By understanding a disease and by accurate modelling we may be able to for-
mulate better strategies to mitigate and overcome it. Overcoming or mitigating a
disease may mean protecting livelihoods and the availability of vital supplies, it may
mean protecting our environment, and most importantly it may mean preventing
deaths.

1.2 A brief history

In this section we will give a cursory account of the development of compartmental
models in epidemiology, particularly the SIR (Susceptible-Infected-Removed) model.
We will focus on the models themselves, and results directly relevant to the focus of
this thesis.

We will begin with a paper by Sir Ronald Ross published in 1916 [21]. The
paper is concerned with "a priori pathometry", which may require some explanation.
Pathometry is a now largely obsolete term that means measurement of disease, and a
priori pathometry is then simply epidemiological modelling (we construct the model
based on a priori knowledge). Ross had been doing research in this area since 1899,
then in the context of malaria. Worth noting is that he was awarded the 1902 Nobel
prize in physiology or medicine for his work on malaria, but not for his work in
epidemiological modelling.

The model presented in the paper divides a population P into two compartments,
Z for affected and A for not affected, which to me seem like somewhat confusing
names. The parameters n,m, i and e represent nativity, mortality, immigration and
emigration for the unaffected compartment A, while N,M, I and E represent the
same for the affected compartment Z. This means that the model allows for different
birthrates, different immigration rates and so on for the two compartments, which
is pretty interesting in my opinion. Finally there are two parameters governing
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the transition between compartments, h governing the transition from A to Z and r
governing Z to A. The model is not framed as specifically an epidemiological model.
The parameters h and r are named as such as a "happening" causes an unaffected
individual to become affected, and they later "revert" to being unaffected. The
different applications of the model mentioned in the paper are interesting, but sadly
not relevant to this thesis. In the case of infectious diseases, the case which we are
interested in, h will be a function of Z. Specifically h(Z) = cZ

P
[21]. The following

diagram is a visualization of the model for such a scenario.

A Z
(n+i−m−e)A+NZ

cZA
P

rZ

(I−M−E)Z

This is what we would call a SIS model today, simply replacing the terms not af-
fected with susceptible, and affected with infected (as well as using some simpler
vital dynamics typically). This type of model is used to this day for modelling dis-
eases that do not confer immunity, or diseases where you are infectious in perpetuity
(setting r = 0).

The second paper that we will look at is written by Sir Ronald Ross again, this
time joined by Dr Hilda Phoebe Hudson. The paper was published in 1917 [22], and
we are presented with another model. The model is intended for situations in which
individuals may not become affected again after having been previously affected.
The model parameters are named in the same way as for the previous model, but
now with an additional compartment. The compartments are now unaffected A,
infectious X and immune Y . Most of the parameters such as immigration are
discarded for the sake of simplicity in the paper, only keeping M as mortality caused
by the disease. To include the others, one would simply add them to the model in
a manner analogous to the previous model.

A X Y
cZA

P rX

MX

This is for all intents and purposes what we today would call a SIR model, with
compartments Susceptible, Infected and Removed. The model as presented is func-
tionally what we could call a SIRD model, only lacking a compartment for the dead,
because of the mortality associated with the disease [22].
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In the final paper of this brief history, the authors William Ogilvy Kermack and
Anderson Gray McKendrick are dealing with a much more general model. The SIR
model is a special case of this much more complex model, and is described in section
B of the paper.

The fact that many epidemics eventually end had been hypothesized to be caused
by either a reduction in the infectiousness of the pathogen over time, or by there
simply being no susceptible individuals left in the population. These ideas clearly
have some problems. There does not seem to be any good reason why a pathogen
itself would become less infectious as an epidemic progresses, and outbreaks of dis-
ease seem to end without the entire population having become ill. This paper
demonstrates that in a SIR model an epidemic can end before the exhaustion of
susceptible individuals, without decreasing the infectiousness of the pathogen. This
demonstrated that neither hypothesis is necessarily true, given that the model is
an accurate approximation of reality. Most importantly for the understanding of
the model itself, it is shown that given the infection-, death- and recovery rates,
there exists a critical population density. If this population density is exceeded an
epidemic will occur, and if this population density is increased the extent of the
outbreak will as well. If it is below the critical density, no epidemic will occur. In
section B of the paper the following model is examined:





dx
dt

= −κxy
dy
dt

= κxy − ly

dz
dt

= ly

N = x+ y + z

The N represents the population density in this paper. This model is completely
recognizable as a SIR model without vital dynamics. The magnitude of the pandemic
(z at the end of the epidemic) is found to be 2 l

κ

N− l
κ

N
, and it follows that N0 = l

κ

is the threshold density required for there to be an epidemic [15]. If we want to
deal with N as the population rather then the density, we simply replace κ with κ

N
.

It then follows that the magnitude will be 2N l
κ

(
1 − l

κ

)
and we get that l

κ
< 1 is

required for an epidemic. This is more commonly expressed as R0 = κ
l
> 1, where

R0 is called the basic reproduction number.

The basic reproductive number had been developed previously in demograph-
ics modelling, or modelling of vector borne diseases (such as malaria), but Ogilvy
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Kermack and McKendrick were (to the best of my knowledge) the first to develop
it for a model where the disease is transmitted by interaction between infected and
susceptible individuals [19].
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2
The models
The models in this paper are non-linear ordinary differential equations that both
split the population into four compartments, Susceptible, Exposed, Infected and
Removed. To avoid confusion I will refer to the conventional version as the SEIR-
model, and I will refer to the modified version as "the modification" or variants
thereof.

The models are not directly time dependent, but depend only on the state itself.
This means that a given state will always evolve in the same way. There are versions
of SEIR where this is not the case, such as when the parameter governing the spread
of disease is a function of time rather then a constant. This is commonly used to
model diseases that have seasonality such as influenza, where infectivity is higher in
the winter giving rise to influenza seasons [17].

2.1 SEIR

The SEIR model aims to incorporate the fact that an individual does not immedi-
ately become infectious once exposed. For some diseases the period between expo-
sure and infectivity can be significant. Lets imagine a scenario where a disease has a
10 day latency period between an individual being exposed and becoming infectious.
If we fit a SIR model based on how many people are currently ill, we will not be able
to capture the fact that there is a ten day backlog of exposed individuals. In the SIR
model individuals essentially run into each other and instantly turn each other in-
fectious. In SEIR we could have a situation where the disease is very infectious, and
also has a long latency period. In such a situation lots of people would be exposed
very quickly, to then slowly but surely trickle into the Infected compartment.

Remark 2.1. In this thesis all parameters and variables of the models will be elements
of R or Rn unless explicitly stated.
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



Ṡ = µ− µS − βIS

Ė = βIS − (µ+ σ)E

İ = σE − (γ + µ)I

Ṙ = γI − µR

where β, σ, γ, µ > 0

The basic reproduction number of the SEIR model is:

R0 = σ

γ + µ

β

µ+ σ

This is interesting because if µ = 0 we get β
γ
. So R0 only depends on σ if peo-

ple can die. If there is no other way to leave exposed than becoming infected, the
speed at which exposed become infected is irrelevant to the long term outcome of
the outbreak. If people can die, however, the fact that some exposed individuals
will die before becoming infectious is very relevant to the long term outcome of the
outbreak.
The following diagram is intended to illustrate the transitions between compart-
ments, as well as the vital dynamics.

S E I R

µ

βIS

µS

σE

µE

γI

µI µR

2.2 SEIR: Modification

This modification is intended to correspond to a scenario where some exposed people
act as spreaders of the disease without ever getting ill themselves. These individuals
will be called asymptomatic, while those who do not spread the disease while exposed
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and get ill will be called symptomatic.




Ṡ = µ− µS − β
(

σ2
σ1+σ2

E + I
)
S

Ė = β
(

σ2
σ1+σ2

E + I
)
S − (µ+ σ1 + σ2)E

İ = σ1E − (γ + µ)I

Ṙ = σ2E + γI − µR

where β, σ1, σ2, γ, µ > 0

This modification is an attempt to model asymptomatic transmission without in-
creasing the dimensionality of the state space. The basic reproduction number of
the model is

R0 = RI
0 +RE

0

Where
RI

0 = βσ1

(µ+ σ1 + σ2)(µ+ γ) , RE
0 = βσ2

(µ+ σ1 + σ2)(σ1 + σ2)

The reasoning for the notation is then that RI
0 describes the spread in a com-

pletely susceptible population caused by infected individuals. In the same way RE
0

describes the spread caused by exposed individuals. The following diagram illus-
trates the transitions between compartments as well as the vital dynamics.

S E I R

µ
β

(
σ2

σ1+σ2
E+I

)
S

µS

σ1E

µE

σ2E

γI

µI µR

2.3 The parameters

For the SEIR model with vital dynamics and constant population there are four
parameters to consider, µ, β, γ and σ. In this thesis the birth rate is assumed to be
equal to the (natural) mortality µ, and as such the population is of constant size.
This assumption is not always appropriate, but when considering a population where
the change in population is steady and small on the time scales we are interested
in, it is a fair approximation. The importance of the µ is mainly that without vital
dynamics it is not possible to have an equilibrium with E, I > 0. This is intuitively
clear, as the total number susceptible individuals is finite if µ = 0. When µ > 0 there
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is a continuous replenishment of susceptible individuals. It is therefore possible for
the disease to persist indefinitely, given the right conditions. The parameters σ and
γ are fairly straightforward. They govern the rate at which people go from exposed
to infected, and infected to removed respectively. Additionally 1

σ+µ and 1
γ+µ give us

the average time spent as Exposed or Infected.
The parameter β is a bit more complicated, and as such requires a bit more

explanation. It is clear that exposure to a pathogen requires an interaction between
susceptible and infected individuals. Consider a physical system of two ideal gases
A and B. Then the collision frequency Z is

Z = NANBσABcAB

where NA, NB are the number of particles in each gas, σAB is the collisional crossec-
tion and cAB is the average velocity of particles in the system [4]. As we are not
overly interested in the specific physical properties of a gas we can consider the cross
section and the velocity to be simply a constant that affects the number of collisions.
Consider a collision between a particle of type A and a particle of type B analogous
to an interaction where an infected individual exposes a susceptible individual. With
β being a constant governing the frequency of collisions analogous to the physical
constants we then have βIS collisions, and thus exposures, per unit time.
One issue with this approach is that every particle in an ideal gas is equally likely
to collide with any other. In reality we tend to see behaviours such as clustering
of cases, rather then a uniform spread throughout the entire population. Consider
a human being living in some particular city as an example. It seems likely that
this individual will interact with other denizens of their city more frequently then
denizens of other cities. We should be aware that the uniform probability of inter-
action in the entirety of the population is a simplification that may or may not be
appropriate.

The modification is very similar to the ordinary SEIR-model in terms of param-
eters.

S E I R

µ
β

(
σ2

σ1+σ2
E+I

)
S

µS

σ1E

µE

σ2E

γI

µI µR

The first difference is that the transition rate out of the exposed compartment is
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governed by two parameters (disregarding µ). The first, σ1 acts in an identical man-
ner to σ in the SEIR-model. The second parameter, σ2, acts as a bypass of the
infected compartment. Disregarding deaths (we assume that those who die while
exposed are asymptomatic and symptomatic in the same proportion as those who
live), per time unit (σ1 +σ2)E leave the exposed compartment, and are either symp-
tomatic or asymptomatic. Of these σ2E enter the removed compartment, and are
thus asymptomatic. If we consider that the asymptomatic are precisely those who
enter the removed compartment from the exposed compartment, then the fraction
σ2

σ1+σ2
is simply the proportion of asymptomatic individuals in E. The second dif-

ference compared to the SEIR model is the term β σ2
σ1+σ2

ES. This acts in the same
manner as βIS, except only the asymptomatic portion, σ2

σ1+σ2
E, can expose others

while exposed. This portion are assumed to be precisely as infectious as those in
the Infected compartment.1

The basic reproduction number R0 is often described as the number of infections
an infected individual is expected to cause. This is essentially true, but there is a
nuance to keep in mind. It is more precisely the number of expected infections in a
completely susceptible population. Intuitively we can think of it as the number of
infections per infected when there are no limiting factors such as immunity or others
already being infected.

2.4 CWD as a SEIR candidate

In the interest of further motivating the importance of analysing these models, we
will consider Chronic Wasting Disease.

Reading the paper by Osterholm et. al. published in 2019 [20], as well as the
center of disease control website [6, 7], we can learn the following about the disease.
Chronic wasting disease is a transmissible spongiform encephalopathy (TSE) affect-
ing cervids, such as moose, deer and reindeer. The disease affects the nervous system
and brain, and is like all TSE’s always fatal. Once infected there is a significant in-
cubation period, perhaps over a year. The pathogen is a prion, a misfolded protein
with the unfortunate property that it causes normal variants of the protein to be-
come misfolded too. The prions cause neurons to die, which in turn gives the brain a
sponge-like appearance under a microscope. The prions are present in bodily fluids

1The choice of β σ2
σ1+σ2

as the constant governing spread caused by exposed individuals is dis-
cussed in the Closing Remarks
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such as saliva, feces and urine, and can persist in the environment for years. The
most likely main mechanism of spread is direct contact between cervids, although
it is possible for animals to become infected by contact with excreted prions in the
environment. Human activity, such as the movement and feeding of cervids, is con-
tributing by transporting infected animals to unaffected areas and by concentrating
animals at locations where they are fed. Currently the evidence of zoonotic potential
is not strong, but the CDC recommends taking steps to minimize exposure. Even so,
it is estimated that 7000-15000 infected animals are consumed each year by humans.
If there is zoonotic transmission of CWD, the long incubation period of similar prion
diseases in humans likely means that once cases are detected transmission has been
ongoing for some time. This is exacerbated by the difficulty in diagnosis, which
may further delay discovery of animal to human transmission [20, 6, 7]. Shedding
of CWD prions have been detected "as early as" 3 months post exposure in white-
tailed deer [14]. Coupled with the long incubation this means that animals are likely
infectious for an extended period before symptoms manifest.

CWD is a strong candidate to be modelled by an autonomous SEIR-model for
a number of reasons. As a consequence of the lethality of the pathogen reinfections
are not a factor that needs to be considered. The long time between exposure
and shedding motivates the inclusion of an Exposed compartment. There is no
evidence of seasonality as far as the sources of this thesis are concerned, which lends
credence to constant parameters being sufficient for modelling. It is also a concerning
pathogen, even if one disregards the zoonotic potential.
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3
Theory
The aim of this section is to provide a sufficiently thorough account of dynamical
systems and the theory underpinning the analysis performed in this thesis in partic-
ular. The overview of dynamical systems is intended to be very general, while the
section on autonomous continuous-time ODE is intended to be more specific .

3.1 An overview of dynamical systems

Dynamical systems are, as one might suspect, dynamic. They evolve and change,
and this is their defining feature. The fact that we live in a universe that evolves in
a manner described by mathematical laws, means that these systems are very useful
for those with a bent toward application. Many phenomena are prime candidates
for modelling as dynamical systems, such as simulations of physical systems and
modelling populations of animals. Dynamical systems are of course not limited
to practical applications, a personal favourite of mine is the Mandelbrot set which
arises out of a dynamical system. The unifying principle is dealing with a state that
evolves over time, where time is more or less literal depending on the system at
hand.

To have a dynamical system, we need a set of states which the system can be in,
and a mechanism for the states to change.
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Definition 3.1 (Dynamical system). A dynamical system is a triple (M,T, φ) sat-
isfying:

1. M 6= ∅ is a set

2. T is a monoid.

3. D ⊆ M × T s.t. proj1(D) = M where proj1 : (x, t) 7→ x

4. φ : D → M with φ(x, 0) = x and φ(φ(x, t2), t1) = φ(x, t1 + t2)

for t2, t1 + t2 ∈ I(x) = {t ∈ T | (x, t) ∈ D}, t1 ∈ I(φ(x, t2))

The set M is called the state space of the system, T is called the time set of the
system and φ is called the state transition of the system [11].

The condition requiring that M 6= ∅ is fairly self explanatory, a dynamical
system without states isn’t very dynamic at all.
As for T , consider four common choices: Z, Z+, R and R+. The differences
between the four structures are very significant to the system. With Z and Z+ we
have a discrete time system, whilst with R and R+ we will have a continuous time
system. The fact that Z+ and R+ are monoids under addition (they lack additive
inverses) on the other hand will yield time irreversible systems. For Z and R we
have time reversible systems (perhaps for a very limited interval of time), where we
can apply the state transition φ on a state with negative time to ’wind back the
clock’ of the system. In practice however it is common to say that t ∈ R even when
the system is irreversible.

Invariant Sets

In this thesis we are mainly interested in the limiting behaviour of the system that
we are modelling, and more precisely we are interested in the limiting behaviour
as time increases. We wonder if, given the state of the system today, whether the
disease will persist or die out as time passes.

Definition 3.2 (Trajectory). Given a dynamical system (D,T, φ), x ∈ D the set

γx = {φ(x, t)|t ∈ I(x)}

is called the trajectory of x.
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The trajectory is in other words the states that x evolves into. The term orbit
is also used for this concept in the literature, but we elect for the term trajectory for
clarity, as orbit can imply a periodic or closed nature (such as the orbits of celestial
bodies).

Definition 3.3 (Invariant set). Consider the dynamical system (D,T, φ), and the
subset Ω ⊆ D of the state space. The set Ω is said to be invariant, if the image of
Ω × T under the state transition φ is Ω:

φ(Ω, T ) = {φ(x, t) | x ∈ Ω, t ∈ T} = Ω

This means that for all x ∈ Ω we have that I(x) = T . It also means that
∀x ∈ Ω, γx ⊆ Ω. This is a good start to understanding the dynamics of the system.
If we have an invariant set, we know that all states therein remain there for all time.
If the system is time reversible, e.g. T = R, that means that not only do no states
leave the set, no states that are outside the set can enter. There is a special kind of
invariant set that we are especially interested in in this thesis.

Definition 3.4 (Equilibrium point). The point x is said to be an equilibrium
point of the dynamical system (D,T, φ) if φ(x) = x for all t ∈ T .

The final type of set we will define in this section is a limit set.

Definition 3.5 (ω-limit set). The ω-limit set of a trajectory γx is the set:

lim
ω
γx =

⋂

s∈T
{φ(x, t) | t > s}

If we consider t < s above we arrive at the α-limit set.

3.2 Autonomous Continuous-time ODE

There are some specific terms used for the particular type of dynamical systems that
this thesis deals with, autonomous continuous time ODE.

Definition 3.6. A system of ODE

ẋ(t) = f(x(t)), f : Rn → Rn

is called autonomous if f does not depend explicitly on t.

18



This means that the evolution of the system depends only on the state of the
system. The systems that are considered in this thesis are autonomous, however
there are many cases in epidemiology alone where non-autonomous systems may
be a better choice. A good example is influenza, as we are more than likely to be
aware of the "influenza season". This is caused by seasonal changes that affect the
infectiousness of the pathogen. In the case of the models in this thesis this would
be modelled by having parameters be time-dependent, thus losing the autonomy of
the system. More generally there are other approaches, and for anyone interested in
particulars about the seasonality and modelling of influenza I recommend [17].

There are a few types of invariant sets that we did not include in the previous
section that will be important going forward. The reason why they are relegated to
this section is that they are a bit difficult to put in such general terms. So in the
interest of clarity I will define them in a context where the time set is R. Definition
3.3 is certainly a useful definition, but what if we are only interested in one direction
of time? If one is concerned with forecasting, or perhaps understanding the origins of
some current state, then the behaviour of the model is only of interest as it progresses
in a certain direction in time. This is exactly the case in the epidemiological models
in this thesis. In fact, we can begin in a state that is valid in the context of the
model, and by moving the clock backwards we can enter invalid states. But this is
of no concern to us, as long as the set of valid states is positively invariant, any valid
initial state will remain so as it evolves forward in time.

Definition 3.7 (Positively- and Negatively invariant sets). Consider the dynamical
system (D,R, φ) and the subset Ω ⊆ D of the state space. Furthermore define the
following sets:

R+ = {t ∈ R | t ≥ 0}, R− = {t ∈ R | t ≤ 0}

Then Ω is said to be positively invariant and/or negatively invariant if

φ(Ω,R+) = Ω, φ(Ω,R−) = Ω

respectively.

This means that if Ω is positively invariant, then all x ∈ Ω have R+ ⊆ I(x). I
will give a proof of this fact for ẋ = f(x) when f is locally Lipschitz in proposition
3.15. The definition of sets that tend toward some equilibrium point is also relegated
to this less general section.
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Definition 3.8 (Stable and unstable sets). For a dynamical system (D,R, φ), with
an equilibrium point x ∈ D and t ∈ R, the stable set of x is defined as

{x ∈ D | φ(x, t) → x, t → ∞}

and the unstable set of x is defined as

{x ∈ D | φ(x, t) → x, t → −∞}

The commonly used term for a state transition is different when dealing with
continuous time systems:

Remark 3.9 (Flow). A state transition φ : M × R → M is called a flow.

As the models in this thesis are continuous time models, the state transition
function will be referred to as the flow. At times x(t) may be referred to as the flow,
as x(t) = φ(x(0), t). Continuous time systems have an added benefit of equilibrium
points being easy to identify:

Remark 3.10 (Equilibrium point). The point x is an equilibrium point of the system
ẋ = f(x), where f : Rn → Rn, if f(x) = 0.

This fact will be of use when identifying equilibrium points of the models.

Existence and Uniqueness

The existence and uniqueness of solutions to a particular problem is a theme that
runs through much of mathematics. Can a certain problem be solved, is a potential
solution unique? These questions are often the ones that we seek to answer. When
considering systems that are supposed to model some kind of physical reality, how-
ever, we may have to make assumptions to ensure the existence of a unique solution,
at least locally.
Let’s consider a simple pendulum, as an example. It would be problematic if the
same initial state could lead to different evolutions of the system, as we expect it
to evolve deterministically. As the models in this thesis aim to model the spread of
disease in a deterministic fashion we are interested in what assumptions are required
to ensure it. There are stochastic models of disease spread, but they are beyond the
scope of this thesis.
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Definition 3.11. For metric spaces (X, dX) and (Y, dY ) function f : X → Y is said
to be locally Lipschitz continuous if for all x ∈ X there exists a neighborhood
x ∈ N ⊆ X and k ∈ R+ such that

∀x1, x2 ∈ N, dY (f(x1), f(x2)) ≤ k · dX(x1, x2)

If k < 1, then f is a contraction, and the Banach fixed point theorem can be
used. This can in turn be used to prove the upcoming uniqueness and existence
theorem. However we will utilize the following inequality as it will be of help when
we consider a compact positively invariant set.

Proposition 3.12 (Grönwall’s Inequality). Let I be an interval [t0, T ], [t0, T ) or
[t0,∞) and C(I) be the class of continuous functions on I. Furthermore let a, f, g :
I → R where g, f ∈ C(I) and the negative part of a is integrable on every compact
sub-interval of I. Then if g ≥ 0, a is not decreasing and f satisfies

f(t) ≤ a(t) +
∫ t

t0
f(s)g(s)ds

then f satisfies
f(t) ≤ a(t)e

∫ t

t0
f(s)g(s)ds

Proof: See Bellman, 1943 [5].
The above is the integral version of Grönwall’s inequality.

Theorem 3.13 (Picard-Lindelöf). Let f : Rn → Rn and consider the system



ẋ(t) = f(x(t))

x(t0) = x0

If f is locally Lipschitz continuous in x, then there exists a unique solution x∗(t) ∈
C1 ((t0 − ε, t0 + ε))

Proof: Assume there exists two different solutions y, x satisfying the initial value
problem. If there is in fact a unique solution on some interval, then the metric
d(x(t), y(t)) must be zero on that interval. Let us write the metric in terms of the
norm, ||x(t) − y(t)||. A solution must furthermore satisfy x(t) = x(t0) +

∫ t
t0 ẋ(s)ds.

||x(t) − y(t)|| = ||
∫ t

t0
ẋ(s) − ẏ(s)ds|| ≤

∫ t

t0
||ẋ(s) − ẏ(s)||ds
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By the continuity of x(t) and y(t), as well as the fact that x(t0) = y(t0), we can find
t such that x(t), y(t) ∈ N , where N is the neighborhood of x(t0) where f is Lipschitz
continuous. In this neighborhood we have:

∫ t

t0
||f(x(s)) − f(y(s))|| ≤

∫ t

t0
K||x(s) − y(s)||ds

Using Grönwalls Inequality with f(t) = ||x(t) − y(t)||, a(t) = 0, g(t) = K, we get

||x(t) − y(t)|| ≤ 0 ⇐⇒ x(t) = y(t) for x(t), y(t) ∈ N

By continuity there exists a ε > 0 such that

x(t), y(t) ∈ N, ∀t ∈ (t0 − ε, t0 + ε)

So there is a unique solution locally. □
In the context of the models in this thesis, and the assumption that birth and death
rates are the same, we are really only interested in a positively invariant subset of
R3.

Proposition 3.14. If f : Rn → Rn is a locally Lipschitz continuous function in x,
and Ω is a positively invariant compact set of the system





ẋ = f(x)

x(t0) = x0 ∈ Ω

then there exists a unique solution for t ∈ [t0,∞).

Proof: As f is locally Lipschitz continuous, there exists a neighborhood around
every point in Ω where f is Lipschitz continuous. The union of all these open sets
form an open cover of Ω, and by the compactness of Ω there is a finite subcover. It
follows that there is a Lipschitz constant K such that f is Lipschitz continuous in x
in the entirety of Ω.
Let x(t), y(t) be solutions to the system. Following the procedure of the previous
theorem, but with Ω instead of an neighborhood, we arrive at

x(t) = y(t), x(t), y(t) ∈ Ω

which by positive invariance of Ω is true for t ∈ [t0,∞). □
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So we have arrived at the conclusion that any initial state in the compact invariant
set has a unique solution forward in time. This is welcome as the models are in-
tended to evolve in a deterministic manner.
Note: As solutions are unique this means that no trajectory can reach an equilib-
rium point in finite time, as this would violate the uniqueness of solutions.

3.3 Stability

The main focus of this thesis is the stability of the equilibrium points of the models
in question. As such it is important to have a notion of what exactly it means for an
equilibrium point to be stable. There are two notions of stability that are adressed
in this text. The first is the idea that states close to the equilibrium should stay
close:

Definition 3.15. An equilibrium point x∗ is called Lyapunov stable if

∀ε > 0, ∃δ > 0, s.t. ||x(t0) − x∗|| < δ =⇒ ||x(t) − x∗|| < ε, ∀t ≥ t0

This stability is limited in some ways. It does not really tell us much of the larger
scale behaviour of the system, as it is mainly focused on states in the neighborhood
of the equilibrium. As we are interested in a more global notion of stability we
introduce the second type of stability:

Definition 3.16. An equilibrium point x∗ is called asymptotically stable if, in
addition to being stable, it satisfies

∃δ0, ||x(t0) − x∗|| < δ0 =⇒ lim
x→∞x(t) = x∗

This is much more stringent, as it requires states to approach the equilibrium
as t → ∞. The main focus of this thesis is the asymptotic stability of equilibrium
points. A point that satisfies this condition is called ’attractive’ or an ’attractor’.
An equilibrium is called locally asymptotically stable if there is a neighborhood
where it is asymptotically stable. If an equilibrium is asymptotically stable on some
invariant set, we will say that it is globally stable.
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3.4 Local Stability

Linear ODE are nice to deal with, especially in terms of stability. A linear system
ẋ = Ax is asymptotically stable at 0 if all eigenvalues λi of A satisfy Re(λi) <
0. Under what circumstances are the behaviours of a non linear system and its
linearization the same in terms of stability?

Definition 3.17. An equilibrium x∗ of a system ẋ = f(x) is said to be hyperbolic,
if all eigenvalues λi of the Jacobian Jf (x∗) satisfy

Re(λi) 6= 0

Definition 3.18. A system ẋ = f(x) with a flow φ is said to be topologically flow
conjugate with another system ẏ = g(y) with flow ψ if there is a homeomorphism
h such that

x0 xt

y0 yt

φ

h h

ψ

commutes.

That h is a homeomorphism means that it is bijective, continuous and that its
inverse h−1 is continuous.

Theorem 3.19 (Hartman-Grobman). A system ẋ = f(x) with smooth f and a
hyperbolic equilibrium point x∗ is topologically flow conjugate to its’ linearization
Ẋ = Jf (x∗)X in some neighborhood of x∗.

Proof: See Hartman 1964 [13].
The Hartman-Grobman Theorem tells us that when a system has a hyperbolic

fixpoint it will behave locally as its linearization does. This is powerful because
there is an algorithmic method to determine when the eigenvalues all have negative
real part, the Routh-Hurwitz Criterion.

Proposition 3.20 (Routh-Hurwitz stability Criterion). For second and third degree
polynomials in particular:

x2 + ax+ b has all roots in the open left half plane ⇐⇒ a, b > 0

x3 + ax2 + bx+ c has all roots in the open left half plane ⇐⇒ a, c > 0, ab > c
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For higher degree polynomials the Routh-Hurwitz stability criterion gets rather
complicated, but since we will have to deal with 3rd degree polynomials at most we
will leave it at that.

3.5 Global stability

Local asymptotic stability is good, but what about asymptotic stability on arbitrary
sets?

Theorem 3.21 (LaSalle theorems). Let M be some set. We say that x(t) → M if
for all ε > 0 there exists a T > 0 such that for all t > T there exists p ∈ M such
that ||x(t) − p|| < ε.

1. Let Ω be a compact positively invariant set, and suppose V (x) ∈ C1(Ω) and
V̇ (x) ≤ 0 in Ω. Let M be the maximal invariant subset of {x ∈ Ω | V̇ (x) = 0},
then

x ∈ Ω, t → ∞ =⇒ x → M

2. Let Ω := {x | V (x) ≤ c} for some c. Suppose V (x) ∈ C1(Ω) and that ∀x ∈
Ω, V̇ (x) ≤ 0. Let M be the maximal invariant subset of {x ∈ Ω | V̇ (x) = 0}.
Then

x ∈ Ω, t → ∞ =⇒ x → M

Proof: See Lasalle, 1960 [16].
The fact that x → M means that the limiting set limω γx is contained in M . This
theorem will be very useful, because functions that satisfy the conditions in it are
easier to find than Lyapunov functions (because the conditions are more lenient).

Definition 3.22 (Lyapunov function). Consider a system ẋ = f(x), and WLOG
let 0 be an equilibrium point. We say that a function V : Rn → R, V ∈ C1, is a
Lyapunov function if

1. V (x) > 0 ⇐⇒ x 6= 0

2. V (x) = 0 ⇐⇒ x = 0

3. V̇ (x) = ∇V (x) · f(x) ≤ 0
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Definition 3.23 (Lyapunov function). Given a system ẋ = f(x) We say that a
function V : Rn → R is a Strict Lyapunov function, if, in addition to being a
Lyapunov function it satisfies

V̇ (x) = ∇V (x) · f(x) < 0, ∀x 6= 0

A common way to explain these functions is as similar to the energy of a physical
system. A physical system tends toward its lowest energy state, and in an analogous
manner we want to find the ’energy’ of our system. By this line of thinking the goal
is to demonstrate that the ’energy’ of our system will decrease until it reaches the
equilibrium. I personally, however, found that it was more intuitive to think of it
in a different manner. For the sake of our intuition we will consider a vector field
in two dimensions. Our goal then is to find a surface such that all vectors in the
vector field point "downhill", and where the lowest point is the equilibrium point.
A initial point then I think of as something like a marble placed on the surface,
and then rolling down toward the equilibrium. This is not a very rigorous way of
thinking about Lyapunov functions, but it did help me to get an intuitive idea of
how stability follows from the existence of such a function.
In the case where the set of interest is the entirety of Rn, the following is true:

Remark 3.24. Let V (x) be a strict Lyapunov function for a system. If it is radially
unbounded, that is V (x) → ∞ as ||x|| → ∞, then the system is globally stable on
Rn.

We want to determine sufficient conditions on a Lyapunov function for global
stability on arbitrary sets however.

Definition 3.25 (sublevel set). Given a real valued function, a set of the form

{x | f(x) ≤ C}

is called a sublevel set.

In the case of Lyapunov functions, which have a minimum of 0, the preimage
V −1([0, C]) is the sublevel set {x | V (x) ≤ C}.
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Proposition 3.26. The requirement of radial unboundedness for global stability is
equivalent to requiring compact sublevel sets.

Proof: The condition is that V (x) is a proper map, that is for all compact sets
S ⊆ R the preimage V −1(S) is a compact set in Rn. By the definition of radial
unboundedness we know that the preimage of a compact interval is bounded, and
by continuity we know that it is closed. It follows from Heine-Borel that the preimage
is compact, and therefore the sublevel set is compact. □

Theorem 3.27 (Lyapunov direct method). If V (x) is a strict Lyapunov function
with compact sublevel sets on Ω ⊆ Rn, then the equilibrium x∗ is asymptotically
stable and attractive for all points in Ω.

Proof: As V is a strict Lyapunov function it certainly satisfies the conditions on V in
theorem 3.21 ii. Ω may not be compact, but ∀y ∈ Ω the sublevel set V −1 ([0, V (y)])
is compact by assumption, and positively invariant since 0 ≤ V (t) ≤ V (s) when
t > s. All elements in Ω is part of such a sublevel set. As there is only one x such
that V̇ (x) = 0, and since this point x∗ is invariant it follows by theorem 3.21 that

∀x(t0) ∈ Ω, lim
t→∞

x(t) = x∗

And x∗ is therefore asymptotically stable and attractive in Ω. □
This concludes the theory section, and we are now ready to begin the analysis

of the models.
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4
Analysis of the models
In this section the analysis of the models is presented. Initially the basic reproduction
number will found using the next generation method, and then the existence of
equilibria will be established. After that the set of viable states will be shown to be
positively invariant. Finally the local and global stability of the equilibria will be
analyzed using linearization, Lyapunov functions and LaSalle’s invariance theorem.

4.1 The Basic reproduction number

There are surprisingly many ways to calculate the basic reproduction number R0 for
a model. The method we will use is the next generation method.

Definition 4.1 (Next generation matrix). Consider a compartmental model with
m infected compartments xi (such as exposed and infected). Let ẋ0 = fi(x) − vi(x)
where fi is the rate of transition into compartment i, excluding incoming transitions
from other infected compartments. vi is the rate of transition out of compartment
i, minus the influx to compartment i from other infected compartments. Let F and
V be matrices with entries:

Fi,j = ∂fi(x0)
∂xj

, Vi,j = ∂gi(x0)
∂xj

Then the next generation matrix is:

FV −1

The idea is that R0 is the spectral radius (maximum magnitude eigenvalue) of
the next generation matrix [19].
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Let us begin with the SEIR-model.

0 β

0 0






1
µ+σ 0

1
(µ+γ)(µ+σ)

1
µ+γ


 =




βσ
(µ+σ)(µ+γ)

β
µ+γ

0 0




The spectral radius is clearly βσ
(µ+σ)(µ+γ) = R0. Let’s do the same for the modification.


β

σ2
σ1+σ2

β

0 0






1
µ+σ1+σ2

0
σ1

(µ+γ)(µ+σ1+σ2)
1

µ+γ


 =




βσ2
(µ+σ1+σ2)(σ1+σ2) + βσ1

(µ+σ1+σ2)(µ+γ)
β

µ+γ

0 0




The spectral radius is then βσ2
(µ+σ1+σ2)(σ1+σ2) + βσ1

(µ+σ1+σ2)(µ+γ) = R0.

4.2 Equilibria

The existence and stability of equilibria is of great interest in these epidemiological
models, as we can determine the behaviour of an outbreak. A globally stable Disease
Free Equilibrium, for an example, will as the name implies mean that the disease
will die out on its own.
The first order of business is to determine the equilibria of the models in question.
A fundamental requirement for an equilibrium is that the time derivatives at that
point are zero. 




0 = µ− µS − βIS

0 = βIS − (µ+ σ)E

0 = σE − (γ + µ)I

0 = γI − µR

That a Disease Free Equilibrium exists can easily be intuited, if there is no one who
can transmit the disease, then no one will move from Susceptible to Exposed. This
equilibrium, (1, 0, 0, 0), follows from assuming there is an equilibrium that is without
infected. With strictly positive parameters it follows that there can be no Exposed
nor Recovered, and that S = 1. This Equilibrium will exist for all models presented
in this text, and will often be referred to as the ’DFE’.
If we instead posit that there is an Endemic Equilibrium ("EE") with I > 0 we arrive
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at the following through the derivation in the section 7.1 of the appendix:




S = 1
R0

E = (R0 − 1) µ(γ+µ)
σβ

I = (R0 − 1) µ
β

R = (R0 − 1) γ
β

We can see that it is necessary for R0 to be greater that 1 for this equilibrium to
exist, and that as R0 approaches one this equilibrium will get arbitrarily close to the
DFE.
We proceed in the exact same manner for the modification





0 = µ− µS − β
(

σ2
σ1+σ2

E + I
)
S

0 = β
(

σ2
σ1+σ2

E + I
)
S − (µ+ σ1 + σ2)E

0 = σ1E − (γ + µ)I

0 = σ2E + γI − µR

Appendix 7.2 details the derivation of the Endemic Equilibrium in the modification.
We arrive at: 




S = 1
R0

E =
(
1 − 1

R0

)
µ

µ+σ1+σ2

I =
(
1 − 1

R0

)
RI

0
µ
β

R =
(
1 − 1

R0

)
γRI

0+(σ1+σ2)RE
0

β

4.3 Invariant set

As we are modelling a population it is of importance that S,E, I ≥ 0. There is no
such thing as a negative number of infected individuals, and it is important that our
models reflect this. As we have made an assumption that the population remains
constant, it is also important that S + E + I ≤ 1. It is therefore necessary that
as any "valid" initial state (a state that satisfies the two conditions above) of the
system evolves, it remains valid. The set defined by these constraint needs to be a
positively invariant set to ensure that this remains true for any initial state that is
valid.
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Proposition 4.2. The compact set

Ω := {(S,E, I)| S,E, I ≥ 0, S + E + I ≤ 1}

is a positively invariant set for the SEIR model and the modification.

Proof: The boundary ∂Ω consists of four planes in R3, S = 0, E = 0, I = 0 and
S + E + I = 1.

S = 0 =⇒ Ṡ = µ > 0,

E = 0 =⇒ Ė = βIS ≥ 0

I = 0 =⇒ İ = σE ≥ 0

So (S,E, I) will not leave the positive octant of R3

S + E + I = 1 =⇒ Ṡ + Ė + İ = −γI ≤ 0

S + E + I will not be greater than 1. For the modification we have:

S = 0 =⇒ Ṡ = µ > 0

E = 0 =⇒ Ė = βIS ≥ 0

I = 0 =⇒ İ = σ1E ≥ 0

S + E + I = 1 =⇒ Ṡ + Ė + İ = −σ2E − γI ≤ 0

It follows that the set is invariant for both models □

This conforms with the expectation we have based on the underlying reality that
we are modelling. This set is, in addition to positively invariant, compact. It follows
that solutions exist and are unique for t ∈ [t0,∞) for both models.

4.4 Local stability

Initially we will assess the stability of the equilibria locally. This is not only interest-
ing in its own right, but a locally unstable equilibrium is clearly unstable in general.
In some sense the most important thing to establish using this method is under what
circumstances the DFE is stable. To have even a sliver of hope of eradicating the
disease, the disease free equilibrium must be locally stable.
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The SEIR model

Using the fact that E + I +R = 1 − S it is sufficient to consider the system




Ė = βI(1 − E − I −R) − (µ+ σ)E

İ = σE − (γ + µ)I

Ṙ = γI − µR

Evaluating the Jacobian at the Disease Free Equilibrium (E, I,R) = (0, 0, 0) we
find:

J (xDFE) =




−µ− σ β 0
σ −γ − µ 0
0 γ −µ




We want to find the characteristic polynomial of this matrix.

det (J (xDFE) − λI) = (−µ− λ)((−µ− σ − λ)(−γ − µ− λ) − σβ)

We disregard the factor (−µ − λ), since this eigenvalue will always be negative.
Using the Routh-Hurwitz Criterion for second degree polynomials on the expanded
expression

λ2 + (γ + 2µ+ σ)λ− σβ + (µ+ σ)(µ+ γ)

we conclude that all eigenvalues will lie in the negative half plane when

σβ < (µ+ σ)(µ+ γ) ⇐⇒ R0 < 1

For the Endemic Equilibrium we follow the same procedure.

J (xEE) =




−µ(R0 − 1) − µ− σ β
R0

0
σ −γ − µ 0
0 γ −µ




det (J (xEE) − λI) = (−µ− λ)
∣∣∣∣∣∣
−µR0 − σ − λ β

R0

σ −γ − µ− λ

∣∣∣∣∣∣

Again, disregard the factor (−µ− λ).

λ2 + (µR0 + σ + γ + µ)λ+ (µR0 + σ)(γ + µ) − (γ + µ)(σ + µ)
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Simplifying we get the following expression:

λ2 + (µR0 + σ + γ + µ)λ+ (R0 − 1)µ(γ + µ)

By the Routh-Hurwitz stability criterion for second degree polynomials, the eigen-
values have negative real part if and only if R0 > 1.

In conclusion we find that when R0 < 1 the Disease Free Equilibrium is locally
stable, and that when R0 > 1 we have a locally stable Endemic Equilibrium and an
unstable Disease Free Equilibrium. When R0 = 1 linearization can not be used to
evaluate the stability as the equilibria are not hyperbolic.

The Modification

Because the modification is a little bit more complex than SEIR, the characteristic
polynomials end up being pretty cluttered in comparison. The Jacobian for the DFE
is:

J (xDFE) =




−µ − βσ2
σ1+σ2

−β
0 βσ2

σ1+σ2
− µ− σ1 − σ2 β

0 σ1 −γ − µ




We want to find the characteristic polynomial of this matrix. Using Laplace expan-
sion we get:

det (J (xDFE) − λI) = (−µ− λ)
∣∣∣∣∣∣

βσ2
σ1+σ2

− µ− σ1 − σ2 − λ β

σ1 −γ − µ− λ

∣∣∣∣∣∣

Disregarding the term (−µ− λ), as this eigenvalue is always negative, we get:
(

βσ2

σ1 + σ2
− µ− σ1 − σ2 − λ

)
(−γ − µ− λ) − σ1β

Expanding this expression we get:

λ2 +
(

(γ + 2µ+ σ1 + σ2 − βσ2

σ1 + σ2

)
λ+ (γ + µ)(µ+ σ1 + σ2) − βσ2(γ + µ)

σ1 + σ2
− σ1β
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We can rewrite the constant term as follows using the definition of R0:

(γ + µ)(µ+ σ1 + σ2) − βσ2(γ + µ)
σ1 + σ2

− σ1β = −(γ + µ)(µ+ σ1 + σ2)(1 −R0)

By the Routh-Hurwitz criterion for second degree polynomials we need

(γ + µ)(µ+ σ1 + σ2) (1 −R0) > 0

and
γ + µ+ (µ+ σ1 + σ2)(1 −RE

0 ) > 0

for all eigenvalues to lie in the open half left plane. Thus we require that:

R0 = RI
0 +RE

0 < 1 and RE
0 <

µ+ γ

µ+ σ1 + σ2
+ 1

Since RI
0, R

E
0 > 0 only the first constraint is needed. It follows that the DFE is

locally stable when = R0 < 1.
Recall the Endemic equilibrium of the modification:





S = 1
R0

E =
(
1 − 1

R0

)
µ

µ+σ1+σ2

I =
(
1 − 1

R0

)
RI

0
µ
β

The Jacobian at the endemic equilibrium is then:

J (xEE) =




−µR0 −RE
0
R0

(µ+ σ1 + σ2) − β
R0

µ(R0 − 1) (µ+ σ1 + σ2)
(
RE

0
R0

− 1
)

β
R0

0 σ1 −µ− γ




We want to find the characteristic polynomial of this matrix.

det(J (xEE) − λI) =

∣∣∣∣∣∣∣∣∣∣

−µR0 − λ −RE
0
R0

(µ+ σ1 + σ2) − β
R0

µ(R0 − 1) (µ+ σ1 + σ2)
(
RE

0
R0

− 1
)

− λ β
R0

0 σ1 −µ− γ − λ

∣∣∣∣∣∣∣∣∣∣
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Using Laplace expansion we get

−σ1

∣∣∣∣∣∣
−µR0 − λ − β

R0

µ(R0 − 1) β
R0

∣∣∣∣∣∣
− (µ+ γ + λ)

∣∣∣∣∣∣∣

−µR0 − λ −RE
0
R0

(µ+ σ1 + σ2)
µ(R0 − 1) (µ+ σ1 + σ2)

(
RE

0
R0

− 1
)

− λ

∣∣∣∣∣∣∣

which finally results in the following characteristic polynomial

−λ3 − λ2
(
µ+ γ + µR0 + RI

0
R0

(µ+ σ1 + σ2)
)

−λ
(
µR0(µ+ γ) + RI

0
R0

(µ+ σ1 + σ2)(µ+ γ) +
(
RI

0 +RE
0

(
1 − 1

R0

))
µ(µ+ σ1 + σ2) + σ1β

R0

)

−
(
RI

0 +RE
0

(
1 − 1

R0

))
µ(µ+ σ1 + σ2)(µ+ γ) + σ1βµ

R0

This polynomial is unwieldy to say the least. Luckily we have the Routh-Hurwitz
criterion for 3rd degree polynomials: the polynomial x3 + ax2 + bx+ c has all roots
in the open left half plane if and only if a, c > 0 and ab > c. Using this criterion we
first get

µ+ γ + µR0 + RI
0

R0
(µ+ σ1 + σ2) > 0

which is always true given the restrictions on our parameters. Let
(
RI

0 +RE
0

(
1 − 1

R0

))
=

r, then the next inequality is:

rµ(µ+ σ1 + σ2)(µ+ γ) − σ1βµ

R0
> 0

Multiplying by R0 and using the definition of RE
0 we get

R0r(µ+ σ1 + σ2)(µ+ γ) > RI
0(µ+ σ1 + σ2)(µ+ γ)

By the fact that parameters are positive and non-zero it follows that

R0r > RI
0 ⇐⇒ R0(RI

0 +RE
0 ) −RE

0 > RI
0 ⇐⇒ R2

0 > R0 =⇒ R0 > 1

For the final inequality it is sufficient to consider:

(µ+ γ + µR0)rµ(µ+ σ1 + σ2) − rµ(µ+ σ1 + σ2)(µ+ γ) + σ1βµ

R0
> 0

35



As the full product of the coefficients for λ2 and λ is greater than this and

r(µR0)µ(µ+ σ1 + σ2) + σ1βµ

R0
> 0, for R0 > 1

It follows that we have local asymptotic stability when R0 > 1.
So, in a similar way to the conventional SEIR model, the DFE of the modification

is locally stable when R0 < 1. When R0 > 1 there is a locally stable EE, and the DFE
is unstable. When R0 = 1 the equilibrium is again not hyperbolic, and linearization
is not usable.

4.5 Lyapunov functions for SEIR

Lyapunov functions are tricky to find, and there are no general methods that allows
you to produce them for arbitrary systems. There are known Lyapunov functions
for certain types of system, and for sufficiently smooth systems one can find an
approximate Lyapunov function by finding one for the polynomial approximation of
the system.
The Lyapunov functions in this section are not of my making. See Korobeinikov,
2004 [3] for the more general versions of the functions which I have simplified here.
The functions as written do not necessarily equal zero at the equilibrium as written,
but this is only a matter of adding a constant and as such it is omitted for parsimony.
Recall that (S0, E0, I0) = (1, 0, 0) is the disease free equilibrium.

Proposition 4.3. The function

VDFE(S,E, I) = S − ln(S) + E + σ + µ

σ
I

Is a Lyapunov function for the SEIR model in {(S,E, I)|S > 0, E, I ≥ 0} when
R0 ≤ 1

Since S > ln(S) and σ, µ, S, E, I ≥ 0 it is clear that VDFE ≥ 0. VDFE(1, 0, 0) is
the minimum, and we simply add a constant such that VDFE(1, 0, 0) = 0.

V̇DFE = −µ(1 − S)
( 1
S

− 1
)

− (γ + µ)(σ + µ)
σ

(1 −R0)I

Since γ, µ, σ, R0, S, I,≥ 0

−(γ + µ)(σ + µ)
σ

(1 −R0) ≤ 0, for R0 ≤ 1
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−µ(1 − S)
( 1
S

− 1
)

≤ 0

For a more detailed version see Appendix 7.3.
As such V̇DFE(S,E, I) < 0 for (S,E, I) 6= (1, 0, 0), and V̇DFE(1, 0, 0) = 0. It follows
that VDFE is a strict Lyapunov function for {(S,E, I)|S > 0, E, I ≥ 0} [3]. It
follows that the Disease free equilibrium is globally stable in this set when R0 ≤ 1.

Let S∗, E∗, I∗ be the endemic equilibrium.

Proposition 4.4. The function

VEE(S,E, I) = S − S∗ ln(S) + E − E∗ ln(E) + σ + µ

σ
(I − I∗ ln(I))

Is a Lyapunov function for the SEIR-model in {(S,E, I)|S,E, I > 0} when R0 > 1.

The gradient of this function is

∇VEE(S,E, I) =
(

1 − S∗

S
, 1 − E∗

E
,
σ + µ

σ

(
1 − I∗

I

))

Which has a minimum at (S∗, E∗, I∗).

V̇EE(S,E, I) =
(

1 − S∗

S

)
Ṡ +

(
1 − E∗

E

)
Ė + σ + µ

σ

(
1 − I∗

I

)
İ

The fact that this function is a strict Lyapunov in the positively invariant set for
R0 > 1 is shown in the paper by Korobeinikov [3]. However, as this paper deals with
a variation of the model there are extra variables and a variable substitution that
is superfluous in the case of the ordinary SEIR-model. Furthermore there are some
’non-obvious’ steps taken. As such I am including a somewhat more comprehensive
version that is specific to this model in the Appendix 7.4. Hopefully this will be
helpful to elucidate how exactly we arrive at the conclusion that this is in fact a
strict Lyapunov function.

4.6 LaSalle invariance theorem for the DFE of both
models

While Lyapunov functions, especially strict Lyapunov functions, are incredibly pow-
erful they are also difficult to find. In this section two functions will be presented,
one for SEIR and one for the modification, that utilize theorem 3.21 by LaSalle [16].
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Both functions are of the form V = AE+BI, where we will have V̇ = 0 on the S-axis,
and V̇ < 0 elsewhere in the invariant set {(S,E, I) | S,E, I ≥ 0, S+E+ I ≤ 1}. It
follows from theorem 3.21, and the fact that the only possible limit set on the S-axis
is the singleton set {(1, 0, 0)}, that the DFE is asymptotically stable for all initial
states in the invariant set. These functions only really tell us this when R0 < 1,
which is a drawback. The advantage is that in the case of the SEIR model the
Lyapunov function is not defined when S = 0, and in the case of the modification
we do not have a Lyapunov function.

Proposition 4.5. The function

V = E + σβ + (σ + µ)(γ + µ)
2σ(γ + µ) I

Proves asymptotic stability in {(S,E, I) | S,E, I ≥ 0, S+E+I ≤ 1} for the disease
free equilibrium (1, 0, 0) of the SEIR model when R0 < 1.

Proof: See appendix 7.5.

Proposition 4.6. The function

V (x) = E + (1 −RE
0 +RI

0)(σ1 + σ2 + µ)
2σ1

I

Proves asymptotic stability in {(S,E, I) | S,E, I ≥ 0, S+E+I ≤ 1} for the disease
free equilibrium (1, 0, 0) of the modification when R0 < 1.

Proof: See appendix 7.5.
The method of finding these functions is very straightforward. We know that

we have a compact invariant set, and as such theorem 3.21 i) is applicable. We also
know that the S-axis is a stable set of the DFE (when E, I = 0 then

(
Ṡ, Ė, İ

)
=

(µ− µS, 0, 0). As such the only requirements are that the function is continuously
differentiable, and that the time derivative is negative except on the S-axis where it
should be zero. To find a suitable function of the form AE+BI is therefore merely a
matter of finding A,B such that the time derivative is negative wherever A,B > 0.
The process to determine the particular values of A and B used here can be found
in Appendix 7.5.
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5
Closing remarks

When I first encountered the literature on compartmental epidemiological models I
found it to be a much more sizeable body of work then I had expected. I found the
variety of models, and variants of models overwhelming. As such I am fairly certain
that the modification in this thesis is not truly novel. But I came up with it on my
own, and I felt strongly about any results that I produced regarding it. As such
there are two main things I would want to do if I were to continue working on this:
I would like to show asymptotic stability for the modifications endemic equilibrium
on (almost) the entire invariant set (for R0 > 1), and I would like to generalize the
modification.

The choice of β σ2
σ1+σ2

as the constant governing the spread caused by exposed in-
dividuals was, in hindsight, a bit misguided. It was made to allow for asymptomatic
transmission of the disease. There where two main motivations for doing it this way.
The first was to preserve the dimensionality of the SEIR model, as it is essentially 3
dimensional and as such it is possible to visualize to a greater extent then a higher di-
mensional model. Therefore I opted for not adding a compartment for asymptomatic
individuals like in a SEIAR (Susceptible-Exposed-Infected-Aymptomatic-Removed)
model. The second motivation was a desire to add as few new parameters to estimate
as possible. In the modification there is only one additional parameter as compared
to the SEIR model. As I have become more familiar with epidemiology I see that
this minimalist urge has led to a pretty constrained model. For one it does not
allow for asymptomatic individuals to be more or less infectious then symptomatic
individuals. In addition increasing the proportion of asymptomatic individuals es-
sentially means increasing the speed at which asymptomatic individuals leave the
exposed compartment. This means that this model is not particularly well suited
for the purpose I intended for it. If I were to continue working on this, I would
certainly consider a model such as the following:
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



Ṡ = µ− µS − αES + βIS

Ė = αES + βIS − (µ+ σ1 + σ2)E

İ = σ1E − (γ + µ)I

Ṙ = σ2E + γI − µR

The modification in this thesis is, after all, only a special case of this more general
model. It allows for interesting things, like exposed individuals being infectious
without there being any asymptomatic individuals, essentially modelling two stages
of infectivity. It could also be used in scenarios like the previous one, except some
individuals do not become infected. This relatively simple change to the model
makes it more flexible, and more applicable to real disease.

In terms of expanding on the subject, there are a number of fairly obvious di-
rections to go in. Analyzing non-autonomous versions of the models is a clear next
step to take. Time varying population is particularly interesting to me, as in the
case of CWD it may be an important factor to consider. Animal populations can
fluctuate a great deal and it may be important to capture this in order to model the
disease accurately. Models with more compartments are also an option to analyze,
particularly the previously mentioned SEIAR model.
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7
Appendix

7.1 Derivation of EE in SEIR





0 = µ− µS − βIS

0 = βIS − (µ+ σ)E

0 = σE − (γ + µ)I

0 = γI − µR

Rearranging (recall that parameters are positive and non-zero) we get




S = 1 − βIS
µ

E = βIS
(µ+σ)

I = σ
(γ+µ)E

R = γ
µ
I

Using the fact that I = σ
(γ+µ)E and E = βIS

(µ+σ) we get

γ + µ

σ
I = β

µ+ σ
IS ⇐⇒ γ + µ

σ

µ+ σ

β
= S ⇐⇒ 1

R0
= S

Using this we can express both E and R in terms of I

1 = S +E + I +R = 1
R0

+ γ + µ

σ
I + I + γ

µ
I ⇐⇒

(
1 − 1

R0

)
= I

(
γ + µ

σ
+ 1 + γ

µ

)

Dividing by the coefficient of I we get
(

1 − 1
R0

)
σµ

γµ+ µ2 + σµ+ γσ
=
(

1 − 1
R0

)
σµ

(µ+ γ)(µ+ σ) =
(

1 − 1
R0

)
σµ

(µ+ γ)(µ+ σ) = I
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Where
σµ

(µ+ γ)(µ+ σ) = σµ
σβ
R0

= µR0

β

Thus we have an expression of the endemic equilibrium in terms of the parameters:




S = 1
R0

E =
(
1 − 1

R0

)
µR0
β

γ+µ
σ

I =
(
1 − 1

R0

)
µR0
β

R =
(
1 − 1

R0

)
µR0
β

γ
µ

7.2 Derivation of EE in modification





0 = µ− µS − β
(

σ2
σ1+σ2

E + I
)
S

0 = β
(

σ2
σ1+σ2

E + I
)
S − (µ+ σ1 + σ2)E

0 = σ1E − (γ + µ)I

0 = σ2E + γI − µR

Rearranging, and using that E = γ+µ
σ1
I we get





µ=
(
µ+ β( σ2

σ1+σ2

(γ+µ)
σ1

I + I)
)
S

(µ+ σ1 + σ2) (γ+µ)
σ1

I = β( σ2
σ1+σ2

(γ+µ)
σ1

I + I)S

E = (γ+µ)
σ1

I

µR =
(
σ2

(γ+µ)
σ1

+ γ
)
I

Let I > 0 (if I = 0 this is the Disease free equilibrium). Then we can divide by I in
the second equation.

(µ+ σ1 + σ2)
(γ + µ)
σ1

= β( σ2

σ1 + σ2

(γ + µ)
σ1

+ 1)S

Rearranging we get

(µ+ σ1 + σ2)(γ + µ)
σ1

= βσ2(γ + µ) + βσ1(σ1 + σ2)
σ1(σ1 + σ2)

S
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Dividing by the coefficient of S (recall that coefficients are non-zero and positive).

(µ+ σ1 + σ2)(γ + µ)
σ1

σ1(σ1 + σ2)
βσ2(γ + µ) + βσ1(σ1 + σ2)

= S

(µ+ σ1 + σ2)(γ + µ)(σ1 + σ2)
βσ2(γ + µ) + βσ1(σ1 + σ2)

= S

Recall that

R0 = RI
0 +RE

0 = βσ1

(µ+ σ1 + σ2)(µ+ γ) + βσ2

(µ+ σ1 + σ2)(σ1 + σ2)

We therefore arrive at
1
R0

= S

Using that S +E + I +R = 1 and the fact that E and R can be expressed in terms
of I

1 − 1
R0

= E + I +R =
(
µ+ γ

σ1
+ 1 + σ2(µ+ γ) + σ1γ

σ1µ

)
I

Simplify
1 − 1

R0
= (µ+ σ1 + σ2)(γ + µ)

σ1µ
I

We can now express I in terms of the parameters

I =
(

1 − 1
R0

)
σ1µ

(µ+ σ1 + σ2)(µ+ γ)

As a result we can also express E and R the same manner:

E =
(

1 − 1
R̃0

)
µ

µ+ σ1 + σ2
, R =

(
1 − 1

R0

)
σ2(µ+ γ) + σ1γ

(µ+ σ1 + σ2)(µ+ γ)

We arrive at an expression of the EE in terms of the parameters.




S = 1
R0

E =
(
1 − 1

R0

)
µ

µ+σ1+σ2

I =
(
1 − 1

R0

)
RI

0
µ
β

R =
(
1 − 1

R0

)
γRI

0+(σ1+σ2)RE
0

β
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7.3 SEIR Lyapunov DFE

This section aims to clarify that the function

VDFE(S,E, I) = S − ln(S) + E + σ + µ

σ
I

is a Lyapunov function for the specific SEIR model in this thesis. The gradient of
VDFE is:

∇VDFE =
(

1 − 1
S
, 1, σ + µ

σ

)

The time derivative is then

V̇DFE =
(

1 − 1
S

)
(µ− µS − βIS) + βIS − (σ + µ)E + σ + µ

σ
(σE − (γ + µ)I)

By simplifying we get

V̇DFE = −µS + 2µ− µ

S
+
(
β − (σ + µ)(γ + µ)

σ

)
I

and by using the following

−µS + 2µ− µ

S
= −µ(1 − S)

( 1
S

− 1
)

β = R0
(σ + µ)(γ + µ)

σ

We have arrived at

V̇DFE = −µ(1 − S)
( 1
S

− 1
)

− (1 −R0)
(σ + µ)(γ + µ)

σ
I

Which is negative when R0 ≤ 1 for E, I ≥ 0 and S > 0.

7.4 SEIR Lyapunov EE

The following is intended to give a clearer account on why the function

VEE(S,E, I) = S − S∗ ln(S) + E − E∗ ln(E) + σ + µ

σ
(I − I∗ ln(I))
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is a Lyapunov function for the specific SEIR model in this thesis. The gradient of
this function is

∇VEE(S,E, I) =
(

1 − S∗

S
, 1 − E∗

E
,
σ + µ

σ

(
1 − I∗

I

))

which has a minimum at (S∗, E∗, I∗). The time derivative is then:

V̇EE(S,E, I) =
(

1 − S∗

S

)
Ṡ +

(
1 − E∗

E

)
Ė + σ + µ

σ

(
1 − I∗

I

)
İ

Recall that 



Ṡ = µ− µS − βIS

Ė = βIS − (µ+ σ)E

İ = σE − (γ + µ)I

With endemic equilibrium and R0





S∗ = 1
R0

E∗ = (R0 − 1) µ(γ+µ)
σβ

I∗ = (R0 − 1) µ
β

R0 = σβ

(µ+ γ)(µ+ σ)

Let’s first expand the terms of V̇EE individually.
(

1 − S∗

S

)
Ṡ = µ− µS − βIS − µ

S∗

S
+ µS∗ + βIS∗

(
1 − E∗

E

)
Ė = βIS − (µ+ σ)E − βE∗IS

E
+ (µ+ σ)E∗

σ + µ

σ

(
1 − I∗

I

)
İ =

(
σ + µ

σ

)(
σE − (γ + µ)I − σEI∗

I
+ (γ + µ)I∗

)

Adding these together we arrive at

V̇EE(S,E, I) = µ− µS − µ
S∗

S
+ µS∗ + βIS∗ − βSE∗I

E
+ (µ+ σ)E∗

+
(
µ+ σ

σ

)
(γ + µ)I∗ −

(
µ+ σ

σ

)
(γ + µ)I − (σ + µ)EI

∗

I
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We begin by simplifying the terms that are constants
(
µ+ σ

σ

)
(γ + µ)I∗ =

(
µ+ σ

σ

)
(γ + µ) (R0 − 1) µ

β
= µ

(
1 − 1

R0

)
= µ− µS∗

(µ+ σ)E∗ = (µ+ σ) (R0 − 1) µ(γ + µ)
σβ

= µ
(

1 − 1
R0

)
= µ− µS∗

We proceed with the goal of getting (µ− µS∗) as a factor.

−(σ + µ)EI
∗

I
= −(σ + µ)E∗EI

∗

E∗I
= − µ

R0
(R0 − 1)EI

∗

E∗I
= − (µ− µS∗) EI

∗

E∗I

−βSE∗I

E
= −βS∗I∗ SE

∗I

S∗EI∗ = −(µ− µS∗) SE
∗I

S∗EI∗

Knowing the expression for R0 we find that

βIS∗ −
(
µ+ σ

σ

)
(γ + µ)I = β

R0
I − β

R0
I = 0

We arrive at

V̇EE(S,E, I) = (µ− µS∗)
(

2 − EI∗

E∗I
− SE∗I

S∗EI∗

)
+ µ− µS + µS∗ − µ

S∗

S

V̇EE(S,E, I) = (µ− µS∗)
(

3 − S∗

S
− EI∗

E∗I
− SE∗I

S∗EI∗

)
− µS − µ

(S∗)2

S
+ 2µS∗

Which neatly leads us to

V̇EE(S,E, I) = (µ− µS∗)
(

3 − S∗

S
− EI∗

E∗I
− SE∗I

S∗EI∗

)
− µS∗

(
S

S∗ + S∗

S
− 2

)

let S
S∗ = x, E∗I

EI∗ = y, a = (µ− µS∗), b = µS∗

a

(
3 − 1

x
− 1
y

− xy

)
+ b

(
2 − x− 1

x

)

Since a, b > 0 given that R0 > 1, the following must be true for V̇EE to satisfy the
conditions on a strict Lyapunov function

1
x

− 1
y

− xy

3 > 1 and
x+ 1

x

2 > 1
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Using the inequality between arithmetic- and geometric mean we have

1
x

− 1
y

− xy

3 ≥ 3

√
xy

xy
= 1 and

x+ 1
x

2 >

√
x

x
= 1

With equality only when 1
x

= 1
y

= xy and x = 1
x

respectively (when S = S∗, E =
E∗, I = I∗). The function therefore satisfies the conditions on a strict Lyapunov
function.

7.5 LaSalle invariance theorem for DFE (both models)

Finding Lyapunov functions can be difficult. We will instead find a simpler function
satisfying the conditions in theorem 3.21 i). To do this we will leverage the fact that
any point on the S-axis (E = I = 0) goes to the DFE as t → ∞.
Let us begin with the modification. Consider a function of the form V (x) = AE+BI.
Then its time derivative will be

V̇ (x) = A

(
βσ2

σ1 + σ2
ES + βIS − (µ+ σ1 + σ2)E

)
+B(σ1E − (γ + µ)I)

which we can rearrange as

E

(
A

βσ2

σ1 + σ2
S +Bσ1 − A(µ+ σ1 + σ2)

)
+ I(AβS −B(γ + µ))

We want V̇ (x) = 0 for x = (S, 0, 0) and V̇ (x) < 0 otherwise in the invariant set.
As E, I ≥ 0 this is achieved if

AβS −B(γ + µ) < 0 and A
βσ2

σ1 + σ2
S +Bσ1 − A(µ+ σ1 + σ2) < 0

Let S = 1 and rearrange the inequalities.

Aβ < B(γ + µ)

By the positivity of the parameters and the definition of RI
0

A(σ1 + σ2 + µ)RI
0 < Bσ1
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Continuing with the second inequality in a similar manner

A
βσ2

σ1 + σ2
+Bσ1 < A(σ1 + σ2 + µ)

Rearranging and applying the definition of RE
0

Bσ1 < A(1 −RE
0 )(σ1 + σ2 + µ)

We have therefore bounded Bσ1, and therefore B, from below as well as above.

A(σ1 + σ2 + µ)RI
0 < Bσ1 < A(1 −RE

0 )(σ1 + σ2 + µ)

Such a Bσ1 can only exist if

A(1 −RE
0 )(σ1 + σ2 + µ) − A(σ1 + σ2 + µ)RI

0 > 0

which is neatly rewritten as

A(σ1 + σ2 + µ)(1 −RE
0 −RI

0) > 0

It follows that A,B ≥ 0 since RE
0 , R

I
0 ≥ 0. More importantly we see that RE

0 +RI
0 =

R0 < 1 is a requirement. So let A = 1 and B be the arithmetic mean of the bounds
divided by σ1

A = 1, B = (1 −RE
0 +RI

0)(σ1 + σ2 + µ)
2σ1

Then we arrive finally at the following function

V (x) = E + (1 −RE
0 +RI

0)(σ1 + σ2 + µ)
2σ1

I

By theorem 3.21 i)

∀x0 ∈ {(S,E, I) | 0 ≤ S,E, I, S + E + I ≤ 1}, lim
t→∞

x(t) → {(S, 0, 0) | 0 ≤ S ≤ 1}

Which means that E(t), I(t) → 0 as t → ∞. In fact x(t) → (1, 0, 0), as ẋ(t) does
not go to zero anywhere else on the S-axis.
The same can be done for the SEIR model with little trouble. Following the same
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steps as for the modification (presented in an ebbreviated manner)

(AβS −B(γ + µ))I + (Bσ − A(σ + µ))E

A
β

(γ + µ) < B < A
(σ + µ

σ

let A = 1, then the following is required for B to exist

σ + µ

σ
− β

γ + µ
= (σ + µ)(γ + µ) − σβ

σ(γ + µ) > 0

From the definition of R0 and the positivity of parameters we have

(σ + µ)(γ + µ) − σβ > 0 when R0 < 1

So the function
V = E + σβ + (σ + µ)(γ + µ)

2σ(γ + µ) I

Satisfies theorem 3.21 i), and thus the DFE of the SEIR model is asymptotically
stable in the invariant set when R0 < 1

7.6 Illustration

In the two dimensional case phase portraits can be analysed to great effect. In higher
dimensions this approach is significantly less useful as a tool to determine asymptotic
behaviour of the system. However it is still help to gain some intuitive understanding
and insight into the system. Where ever the boundary of the invariant set intersects
the plane shown (other than the axes) will be illustrated with a dashed red line in
the images. When there is only one equilibrium, that is when R0 ≤ 1, four images
will be presented. The area to the left and below the red dotted lines are the areas
of these planes contained in the invariant set.
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Figure 1: Phase portraits, SEIR, at the boundary, R0 = 0.72

We get the sense of how the trajectories go to (S,E, I) = (1, 0, 0), as well as a sense
of the fact that the subset is positively invariant, but clearly not negatively invariant.
We must keep in mind that we are only seeing a few slices of the three dimensional
system however, and that this illustration does not give us a complete picture.
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Figure 2: Phase portraits, SEIR, at the boundary, R0 = 3.6

When R0 > 1 the behavior along the boundary may not seem to fit our expecta-
tions. Take as an example the SE-plane. It looks like the system is approaching
the disease free equilibrium. However a trajectory will not travel in the SE-plane in
the manner that it appears, because exposed individuals will transition to infected
individuals and the trajectory will move into the interior of the set. To show the
behavior around the endemic equilibrium somewhat more accurately, we will show
three planes intersecting the equilibrium point, each being paralell to one of the
axes.
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Figure 3: Phase portraits, SEIR, planes intersecting at equilibrium, R0 = 3.6

Here we get a fairly clear sense of the fact that the endemic equilibrium is indeed
asymptotically stable, at least for most of the invariant set. We should still keep in
mind that these images do not prove anything in and of themselves.
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