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Abstract

A linear quantum mechanical system (Hamiltonian) is called exactly solvable
if all its eigenfunctions and eigenvalues can be found explicitly. This means
that for all its energy levels and corresponding wave functions, an explicit
expression can be obtained and will give us the entire spectrum.

Such systems include the standard quadratic oscillator and several other
examples, but very few.

In the late 1980s a new type of quantum mechanical systems has been
discovered which are called quasi-exactly solvable. In such systems, it is possible
to explicitly find a limited part of the spectrum, but not all of it, which means
that there is a finite part of the energy spectrum, and related eigenfunctions
that can be found exactly. Examples of such systems are quasi-exactly solvable
potentials which usually depend on an integer parameter M . Usually for a
given positive integer M , one can explicitly find the first M eigenfunctions and
eigenvalues.

In this paper we give a short introduction to exactly solvable systems
and quasi-exactly solvable systems. We give some important examples and
an analysis of a particular quasi-exactly solvable system appearing in recent
research. We introduce the framework of Schrödinger equations in quantum
mechanics and study in details the case of the quantum harmonic oscillator. We
also give a short introduction to the WKB approximation, which is a method
one can use to obtain approximate information about quasi-exactly solvable
systems.
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1 Introduction
In this section, we will go through the basic definitions and concepts of classical and
quantum mechanics in order to understand the main ideas of quasi-exact solvability
in quantum mechanics. For some notions and pre-requisites, we refer readers to the
appendices.

1.1 Classical Mechanics

Classical mechanics is one of the oldest areas in physics and studies the motion of
physical systems.

The earliest major progress in classical mechanics is Newtonian mechanics has been
made by Isaac Newton in the 1670s and is now called Newtonian mechanics.

Isaac Newton was born in 1642 and made enormous contributions to many natural
sciences, in the first place, to Newtonian mechanics and differential equations. One of
his most important works is the book Philosophiæ Naturalis Principia Mathematica
[5], which was published in 1687. In this treaties he formulated the three universal
laws of motions ; describing the relation of the forces acting on physical bodies and
their resulting motions. These three laws laid the foundations of classical mechanics.

Further development of Newtonian mechanics has led to more general Hamiltonian
mechanics developed mainly in the 19th century.

A Hamiltonian system is a dynamical system in a 2N−dimensional linear space with
coordinates (q,p) which is completely determined by a scalar function H(q,p, t),
called its Hamiltonian.

The generalized coordinates momentum p and position q, where both p and q are
vectors of dimension N , define the state of the system. The 2N−dimensional vector
r = (q,p) completely describes it.

Trajectories (p(t), q(t)) are uniquely determined by the system of the so-called
Hamilton-Jacobi equations and their initial values, which are given by

dp

dt
= −∂H(p, q, t)

∂q
and

dq

dt
=
∂H(p, q, t)

∂p
. (1.1)

In the special case where the Hamiltonian H = H(p, q) has no explicit time depen-
dence, we can, by using the Hamilton-Jacobi equations, show that the value of the
function H(p(t), q(t)) remains a constant independent of t. For more about how, see
for instance [43].

By interpreting this constant with the energy, we can see that for time-independent
systems the energy is preserved.

A simple example of a time-independent Hamiltonian system is the harmonic oscil-
lator. Its phase space is 2-dimensional with coordinates p = p and q = x, and its
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Hamiltonian is given by

H =
p2

2m
+

1

2
kx2, (1.2)

where p is the momentum, m is the mass of a particle, x is the position and k is
the force constant, which is also known as the spring constant and is measured in
Newtons per meter. Note that H is the total energy of the system, p2

2m
is the potential

energy and 1
2
kx2 is the kinetic energy.

Since the Hamiltonian is independent of time, the total energy of the system is
preserved.

1.1.1 The Harmonic Oscillator

The harmonic oscillator is one of the simplest systems in classical mechanics. It
models small motions of a pendulum or a weight on a spring. When a weight
attached to a spring is displaced from its equilibrium position, the spring reacts with
a restoring force ~F ,

~F = −k~x, (1.3)

proportional to its displacement. Here k is a non-negative constant characterizing
the constant of proportionality, often called the spring constant, and is measured in
Newtons per meter. The spring constant is a measure of the stiffness of the spring
and varies for different springs and materials. The greater the spring constant, the
stiffer the spring, which makes it more difficult for it to stretch. The displacement ~x
is in the positive x-direction. The potential energy 1

2
kx2 of the weight during the

motion is interacting with its kinetic energy 1
2
mv2. Therefore, the total energy E of

the oscillating weight is the sum of its kinetic energy and its potential energy,

E =
1

2
mv2 +

1

2
kx2. (1.4)

In particular, at the equilibrium position of the spring, when x = 0, all of its potential
energy has been converted into kinetic energy. Hence,

E =
1

2
mv2.

Newton’s second law for objects and systems with constant mass is given by

F = m
d2x

dt2
. (1.5)

By substituting (1.3) into (1.5), we obtain

m
d2x

dt2
= −kx. (1.6)

It is standard to remove the constant k from the Hamiltonian and replacing it with
the classical oscillator frequency ω2 = k

m
. We use this to rewrite (1.6) as

d2x

dt2
+ ω2x = 0. (1.7)
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From theory of ordinary differential equations, we know that (1.7) is a homogeneous
linear differential equation with constant coefficients, so its solutions can be written
as linear combinations of suitably chosen exponential functions, for example as
x(t) = Ceλt. Differentiating and by inserting it into (1.7), we obtain the so-called
characteristic polynomial λ2 +ω2 = 0. The solutions for the constant λ are now given
by

λ1,2 = ±iω.
This means that x1(t) = C1 e

iωt and x2(t) = C2 e
−iωt, with C1, C2 ∈ C solve the

differential equation. The general solution is therefore given by

x(t) = C1 e
iωt + C2 e

−iωt. (1.8)

By using Euler’s formula eiφ = cosφ+ i sinφ, we can express equation (1.8) in the
real form as the following,

Rex(t) = C1 cos(ωt) + C2 sin(ωt).

If |C1| = |C2|, the right-hand side is equal to A sin(ωt+ φ). Then we have

x(t) = A sin(ωt+ φ), (1.9)

where A denotes the amplitude of the motion and φ determines the starting point
on the sine wave. Both A and φ can be determined from the initial conditions.

By inserting (1.9) together with its derivative into (1.4), and choosing φ = 0, we
obtain the total energy

E =
1

2
A2(mω2(cosωt)2 + k(sinωt)2)

=
1

2
A2

(
m

(
k

m

)
(cosωt)2 + k(sinωt)2

)
=

1

2
kA2.

(1.10)

The total energy of the system is constant and independent of time.

We will return to the quantum analogue of the harmonic oscillator later.

1.1.2 Hamiltonian Systems and Symplectic Structure

A fundamental property of the Hamilton-Jacobi equations is that they preserve
the so-called standard symplectic structure. In this section, we sketch how the
Hamiltonian dynamical system fits in the context of symplectic geometry.

We start with some definitions.

Definition 1.1 (Differential Manifold). A differential manifold is a topological space
which locally resembles real n-dimensional Euclidean space with a globally defined
structure that allows differential calculus on the manifold.

Definition 1.2 (k-form). A k-form is an oriented density which can be integrated
over a k-dimensional oriented manifold.

An example is the 1-form f(x) dx: if a < b, then the 1-form can be integrated over
the interval [a, b] as

∫ b
a
f(x) dx.

Another example is the 2-form, which can be integrated over an oriented surface.
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Now we are ready to sketch.

Symplectic geometry studies differential manifolds which are equipped with a closed,
non-degenerate 2-form that is defined on a smooth even-dimensional space. A
2N−dimensional symplectic geometry can be formed by taking pairs of directions

(
(x1, x2), (x3, x4), ..., (x2N−1, x2N)

)

in a 2N−dimensional manifold along with a symplectic form

ω = dx1 ∧ dx2 + dx3 ∧ dx4 + ...+ dx2N−1 ∧ dx2N .

Let us give an example of a symplectic structure for the motion of a body in one
dimension. In order to specify its trajectory, one requires both its position q and its
momentum p. The symplectic form in this case is

ω = dp ∧ dq.

For general m ∈ N we let I = Im and 0 = 0m denote the m×m identity and zero
matrix, respectively. The subscript will be omitted, whenever no confusion may arise.
We let J be the real skew-symmetric 2N × 2N matrix

J =

[
0 I
−I 0

]
.

We can, by taking ~x to be the 2N−dimensional vector ~x =

(
p
q

)
and F (~x) to be

F (~x, t) = J · ∂H
∂~x
, with ∂H

∂~x
=

[
∂H/∂p
∂H/∂q

]
. We can now write the equations in (1.1) as

d~x

dt
= F (~x, t). (1.11)

The J−matrix preserves the Hamiltonian structure.
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1.2 Quantum Mechanics

In the end of the 19th century, important experiments and observations such as
the black-body radiation and the correspondence between energy and frequency of
the photoelectric effect were made. Such results could not be explained from the
positions of classical mechanics. More exactly, the experiments with small particles
such as electrons, contradicted the interpretation as bodies since they both have
shown the characteristic features of particles as well as waves, and a new type of
physics was needed to explain these phenomena. This was how quantum mechanics
gradually arose; as a theory to explain such observations.

1.2.1 The Schrödinger Equation

In 1926, the Austrian physicist Erwin Schrödinger published a paper on wave
mechanics called Quantisierung als Eigenwertproblem (Quantization as an Eigenvalue
Problem) [6] and there presented what we now call the Schrödinger equation. In
this paper, he gave a heuristic derivation of the wave equation for time-independent
quantum systems and showed that one can obtain the correct predictions of the
energy eigenvalues for a hydrogen-like atom. This marked the beginning of the
creation of quantum mechanics.

In quantum mechanics, the wave function, denoted by Ψ(x, t), is a complex-valued
function which describes the quantum mechanical state of an elementary particle or
a system of elementary particles. Its amplitude |Ψ(x, t)|2 determines the probability
density for the position or the momentum of the particle. As we already mentioned,
light behaves as both a particle and a wave, which we call wave-particle duality. The
photon is a particle with energy E, but has a frequency ν, which is the number of
occurrences of a repeating event per unit of time, which is a wave attribute, and h is
the Planck constant, where

E = hν. (1.12)

The particle has a momentum p, but at the same time another wave attribute - a
wavelength λ, which is given by

λ =
h

p
. (1.13)

In 1924, French physicist Louis de Broglie proposed that the wave-particle duality
was also valid for the matter particles such as electrons and neutrons, and concluded
that (1.12) also holds for these particles.

We can rewrite (1.13) as

p =
h

λ
=

h

2π

2π

λ
= ~k, (1.14)

which in terms of the momentum fixes the wavelength, where ~ = h
2π

and where k is
the wave number.1

We can also rewrite (1.12) as
E = ~ω, (1.15)

1In quantum mechanics, it is convenient to use the wave number k = 2π
λ instead of the wavelength

λ. A wave number is defined as the number of radians per unit distance, and
~ = h

2π = 1.054572× 10−34 Js, where h is Planck’s constant.
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where ω = 2πν is the frequency of the wave and is measured in radians per second,
which fixes the frequency of the wave ω in terms of the energy E of the particle.

The relations in (1.14) and (1.15) are called de Broglie relations and are valid for all
particles. We can use these to derive the Schrödinger equation as follows.

The most basic wave function has the form,

Ψ(x, t) = Aeiω(t−x
v

), (1.16)

where A is the amplitude of the oscillations, ω is the angular frequency, t is the
time, x is the position and v is the velocity of the particle associated with this wave
phenomenon.

By using (1.15), we can rewrite (1.16) as

Ψ(x, t) = Ae−i2πν(t− x
vλ

) = Ae−i2π(νt− x
λ

), (1.17)

where ν is the frequency of oscillations.

By inserting ω = 2πν into (1.15) we obtain E = 2π~ν. Solving for ν gives ν = E
2π~ .

We also decide to rewrite (1.13) as λ = 2π~
p
. Now, we will use both of these relations

and insert them into (1.17) to obtain

Ψ(x, t) = Ae−i2π( Et
2π~−

xp
2π~ ) = Ae−

i
~ (Et−xp), (1.18)

which is a wave function associated with the motion of a free particle moving in the
+x−direction with total energy E and momentum p.

From classical mechanics, momentum is defined as p = mv so we can write the total
energy as the following equation

E =
1

2
mv2 + V (x) =

p2

2m
+ V (x), (1.19)

where V (x) is the potential energy.

If we would multiply both sides of equation (1.19) by the wave function, we obtain

EΨ =
p2

2m
Ψ + V (x)Ψ. (1.20)

Differentiating (1.18) twice with respect to x, we obtain

∂Ψ

∂x
= A

(
ip

~

)
e

−i
~ (Et−xp) (1.21)

∂2Ψ

∂x2
= −A

(
p2

~2

)
e

−i
~ (Et−xp) =

p2

~
Ψ. (1.22)

Therefore, p2Ψ = −~2 ∂2Ψ
∂x2

.

If we now differentiate (1.18) with respect to t, we will obtain the time derivative,

∂Ψ

∂t
= −AiE

~
e

−i
~ (Et−xp) =

−iE
~

Ψ, (1.23)
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so EΨ = −~
i
∂Ψ
∂t
.

We use our results above and insert them into (1.20)

− ~
i

∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂x2
+ V (x)Ψ. (1.24)

Since Ψ depends on both x and t, we write (1.24) as

i~
∂

∂t
Ψ(x, t) =

[
− ~2

2m

∂2

∂x2
+ V (x, t)

]
Ψ(x, t), (1.25)

which is the required Schrödinger equation.

By solving the Schrödinger equation (1.25) with a given potential, we obtain the wave
function Ψ(x, t) of the particle. Any solution to the Schrödinger equation with given
initial data Ψ(x, 0) is unique. As the wave function is time-dependent, it changes
with time. The wave function is very useful for describing physical processes such as
scattering or interference of particles.

1.2.2 The Time-Independent Schrödinger Equation and its Solutions

The time-independent Schrödinger equation relates in an interesting way to the
time-dependent one. The time-independent Schrödinger equation only involves one
independent variable x, and is therefore an ordinary differential equation instead
of a partial differential equation, which the time-dependent Schrödinger equation
is, but exactly how does one come up with it? With the requirement that H is
time-independent, one can derive the time-independent Schrödinger equation by
separating the wave function in a time-dependent and a space-dependent part,

Ψ(x, t) = f(t)Ψ(x). (1.26)

We insert it into the time-dependent Schrödinger equation (1.25),

− ~2

2m

∂2Ψ(x)f(t)

∂x2
+ V (x)f(t)Ψ(x) = i~

∂f(t)Ψ(x)

∂x
,

where 



∂2Ψ(x)f(t)

∂x2
= f(t)

∂2Ψ(x)

∂x2

∂Ψ(x)f(t)

∂t
= Ψ(x)

∂f(t)

∂t
.

Thus, we rewrite the Schrödinger equation,

− ~2

2m
f(t)

∂2Ψ(x)

∂x2
+ V (x)f(t)Ψ(x) = i~Ψ(x)

∂f(t)

∂t
.

By dividing both sides by f(t)Ψ(x), we have

1

Ψ(x)

[
− ~2

2m

∂2Ψ(x)

∂x2
+ V (x)Ψ(x)

]
= i~

1

f(t)

df(t)

dt
.
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Since the right-hand side only depends on t, while the left-hand side is solely
dependent on x, both of them must be equal to a constant. We call this constant E,
with units of energy because the Hamiltonian operator H has units of energy. Then,
we get

1

ψ(x)

[
− ~2

2m

∂2ψ(x)

∂x2
+ V (x)ψ(x)

]
= E

and
i~

1

f(t)

∂f(t)

∂t
= E,

where the first equation yields

− ~2

2m

∂2ψ(x)

∂x2
+ V (x)ψ(x) = Hψ(x), (1.27)

and the second equation yields

i~
∂f(t)

∂t
= Hf(t), (1.28)

with the solution
f(t) = e−iEt/~.

The states ψ(x, t) = e−iEt/~ψ(x) are called stationary, since the associated probability
density functions |ψ(x, t)|2 = |ψ(x)|2 are time-independent.

For the space-dependent part, we obtain

Hψ = Eψ

accordingly. This equation is called the time-independent Schrödinger equation.

It follows that E must be an eigenvalue of the Hamiltonian H := − ~2
2m

d2

dx2
+ V (x).

In other words,

− ~2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x) (1.29)

for some eigenvalue E and some eigenfunction ψ ∈ C.

The relationship between the time-dependent and the time-independent equation
can now be explained in the following way: Assume that E is an eigenvalue of the
Hamiltonian with eigenfunction ψ(x). Then we can observe that

i~
∂

∂t
e−iEtψ(x) = i~ · (−iEe−iEtψ(x)) = E~e−iEtψ(x) = ~e−iEtHψ(x).

In other words, the function Ψ(x, t) := e−iEtψ(x) solves the time-dependent Schrödinger
equation. We summarize this information in the following lemma.

Lemma 1. Assume that ψ(x) solves the time-independent Schrödinger equation
(1.29). Then the propagated function Ψ(x, t) := e−iEtψ(x) is the unique solution to
the time-dependent Schrödinger equation (1.27). Moreover, the derivative of the wave
function is given by

d

dx
Ψ(x, t) = e−iEt

d

dx
ψ(x).
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We will now study the solutions to the time-independent Schrödinger equation
(1.29). For a Hamiltonian H we are interested in finding its eigenfunctions ψ and
its eigenvalues E, which are its corresponding energies. The possible energies of the
time-independent Schrödinger equation may be either a discrete set, or a continuous
set. For any given potential, there are many solutions. For convenience, we assume
that the eigenfunctions and their energies can be enumerated by,

ψ1(x), E1

ψ2(x), E2

...
...

(1.30)

Let us assume that the eigenfunctions form a complete set of orthonormal functions
(where every function can be expressed as a linear combination of some members of
that set), ∫

ψ∗i (x)ψj(x) = δij, (1.31)

where δ is the Kronecker delta, satisfying

δij =

{
1 if i = j

0 otherwise.

If we now consider the time-independent Schrödinger equation in the following form,

d2ψ

dx2
= −2m

~2
(E − V (x))ψ, (1.32)

then its solutions ψ will depend on the properties of the potential V (x). It is difficult
to make any general statements about the wave function, so we have to put restrictions
on the potentials. Here, we will consider continuous as well as piece-wise continuous
potentials. The potentials can also be unbounded and we will allow them to become
+∞ beyond certain points, which we will represent as thick barriers. Lastly, we will
allow delta functions but we will not consider their powers nor their derivatives.

We seek to understand the general properties of the functions ψ and their behavior
at points where V (x) may have singularities. But we start by claiming that we
must have a continuous wave function, because, if ψ is discontinuous, its derivative
will contain the physical delta functions, also known as the Dirac delta function2.
Then, ψ′′ on the left-hand side of equation (1.32) will contain derivatives of delta
functions, which means that the right-hand side, too, has to contain derivatives
of delta functions and then they would have to appear in the potential. This will
contradict our earlier assumption that our potential would not contain derivatives of
delta functions. So, our ψ must be continuous.

Now, we consider four possibilities regarding the potential V (x):

(1) V (x) is continuous (and so is ψ). The continuity of ψ and (1.32) imply that ψ′′
is also continuous. For that to be fulfilled, ψ′ has to be continuous too.

(2) V (x) has finitely many discontinuities. Then ψ′′ also has finitely many disconti-
nuities. In this case, ψ′ must be continuous with discontinuous derivative.

2See Appendix C.
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(3)V (x) contains delta functions. In this case, ψ′′ also contains delta functions, and
ψ′ has a finite amount of discontinuities.

(4)V (x) contains a thick barrier at point x = a i.e., a potential that becomes infinite
for x > a and is finite to the left of x = a. Here, the wave function will vanish when
x ≥ a, and ψ′ will be finite as x→ a, but vanish for x > a. So, ψ′ is discontinuous
at this barrier.

Now to summarize the cases above; in cases (1) and (2), ψ′ is continuous, and in
cases (3) and (4), it can have a finite discontinuity. That is, both ψ and ψ′ are
continuous unless the potential contains delta functions or thick barriers, where ψ′
may have finite discontinuities.

We can explain the continuity of ψ and ψ′ in the case of a potential with finitely
many discontinuities using a different argument.

We start by integrating both sides of (1.32), from a − ε to a + ε, and then we let
ε→ 0. We obtain the following,

∫ a+ε

a−ε
dx

d

dx

(
dψ

dx

)
= −2m

~2

∫ a+ε

a−ε
dx(E − V (x))ψ(x), (1.33)

where the left-hand side integrand can be written as dψ
dx
|a+ε − dψ

dx
|a−ε.

Note that the potential V (x) in (1.33) shows us that there exists bounded particles.
Therefore, we will have boundary conditions, which we will try to find.

The discontinuity of ψ′ at x = a is, by definition, the limit as ε→ 0, so the left-hand
side can be written as

lim
ε→0

(
dψ

dx

∣∣∣∣
a+ε

− dψ

dx

∣∣∣∣
a−ε

)
= ∆a

(
dψ

dx

)
. (1.34)

We can now write

∆a

(
dψ

dx

)
= lim

ε→0

2m

~2

∫ a+ε

a−ε
dx(V (x)− E)ψ(x). (1.35)

Here, the potential V is not infinite around x = a but discontinuous. ψ, too, is finite.
E is assumed to be finite. Since the integrand remains finite, and the range of the
integral becomes vanishingly small about x = a, the integral goes to 0. Therefore,
we have

∆a

(
dψ

dx

)
= 0. (1.36)

In this way, we obtained one of our boundary conditions: there is no discontinuity in
ψ′.

We will now obtain the second boundary condition: the continuity of ψ.

We use (1.33) and apply the range from x0 < a to x. We obtain

dψ(x)

dx
=
dψ

dx

∣∣∣∣
x0

− 2m

~

∫ x

x0

(E − V (x′))dx′ (1.37)
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and note that the integral is a bounded function of x. Now, we integrate (1.37) from
a− ε to a+ ε,

ψ(a+ ε)− ψ(a− ε) = 2ε
dψ

dx

∣∣∣∣
x0

− 2m

~

∫ a+ε

a−ε
dx

∫ x

x0

dx′(E − V (x′)). (1.38)

By letting ε→ 0, the first term on the right-hand side vanishes and the second term
goes to 0, since the second integral is a bounded function of x. Finally, we have
∆aψ = 0, which shows that the wave function is continuous at x = a, which is our
second boundary condition.

1.2.3 The Quantum Harmonic Oscillator

In quantum mechanics, to describe the total energy (i.e. both the kinetic and the
potential energy) of a system we can use the Hamiltonian H. In the case of the
quantum harmonical oscillator, the Hamiltonian is given by

H =
p̂2

2m
+

1

2
mω2x̂2 = − ~2

2m

d2

dx2
+

1

2
mω2x2, (1.39)

where m is the mass of the particle, p̂ = −i~ ∂
∂x

is the momentum operator, ω =
√

k
m

is the angular frequency of the oscillator and x̂ = i~ ∂
∂p

is the position operator which
is given by x. The first term in the right-hand side represents the kinetic energy of
the particle and the second term represents its potential energy.

The time-independent Schrödinger equation is then
[
− ~2

2m

d2

dx2
+

1

2
mω2x2

]
ψ(x) = Eψ(x). (1.40)

The spectrum of the Hamiltonian, also known as the energy spectrum or set of energy
eigenvalues provides us with the information, for instance the frequency, the mass
and the energy, about possible solutions of the time-independent equation. In a
physical setting it may be obtained by measuring the total energy of the system.

We want to find the spectrum of the quantum harmonic oscillator, but first we notice
that the right-hand side of equation (1.39) is an expression of a characteristic length
scale a, such that ~2

2m
1
a2

= 1
2
mω2a2 where a2 = ~

mω
. Now, we will find the spectrum.

We start by multiplying equation (1.32) by ( 2
~ω ). We will then get

− ~
mω

d2ψ

dx2
+
mω

~
x2ψ =

2E

~ω
ψ, (1.41)

We introduce the dimensionless constant E := 2E
~ω and we continue by writing x = au,

where u is a new variable but without units. This gives us d
dx

= 1
a
d
du

and d2

dx2
= 1

a2
d2

du2
.

By inserting these derivatives as well as the above expression for a2 into (1.41), we
obtain

− d2ψ

du2
+ u2ψ = Eψ. (1.42)
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We want to apply asymptotic analysis to gain insight into what will happen. We
notice that

lim
u→∞

(u2 − E) ≈ u2.

In (1.42), we can see that u2ψ will be much larger than Eψ regardless what ψ is,
since we are working with some fixed energy. So, the equation we will try to solve,
as u→∞, is ψ′′ = u2ψ. We try ψ(u) = ψeαu

2/2, where α is a number, and we find
∂ψ
∂u

= αuψ and ∂2ψ
∂u2

= (α + α2u2)ψ ≈ α2u2ψ. We compare this with the differential
equation in (1.42). We see that we need α2 = 1, which gives us α = ±1. Since this
is a second order differential equation, it should have two independent solutions. So
for u→∞, we have ψ(u) = ψAe

u2/2 + ψBe
−u2/2.

The solution with coefficient A will not yield an energy eigenfunction, since it diverges
as u→∞, so we use the following ansatz,

ψ(u) = s(u)e−u
2/2. (1.43)

Finally, plugging (1.43) into (1.42) and simplifying, we find a second-order linear
differential equation for s(u) given by

d2s

du2
− 2u

ds

du
+ (E − 1)s = 0. (1.44)

If we assume that s(u) is a polynomial of degree j, giving

s(u) = uj + α1u
j−1 + α2u

j−2 + ...,

then the first term in equation (1.44) is a polynomial of degree j − 2 and each of
the other two terms are of degree j. So in order for the equation to make sense, the
coefficients of uj and uj−1 have to vanish. We start by calculating the coefficient of
uj:

−2j + E − 1 = 0 ⇒ E = 2j + 1.

From this, we know that a polynomial solution s(u) of degree j requires E = 2j + 1.
We continue by calculating the coefficient of uj−1:

(−2(j − 1) + E − 1)α1 = 0.

This is satisfied when α1 = 0. Thus, the polynomial is of the following form,

s(u) = uj + α2u
j−2 + ...

Since the harmonic oscillator is even, the states have to be either even or odd, and
since the exponential in (1.43) is even, ψ(u) will be either even or odd, depending on
what s(u) is.

If we now assume that s(u) is analytical and is a polynomial of degree k, we can
use the power series expansion which is a method used in for instance ordinary
differential equations,

s(u) =
∞∑

k=0

aku
k. (1.45)
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We select from each term the contribution to the coefficient of uj and plug it into
the differential equation. This yields

∞∑

j=0

((j + 1)(j + 2)aj+2 − (2j + 1− E)aj)u
j = 0, (1.46)

which means that
aj+2 =

2j + 1− E
(j + 1)(j + 2)

aj. (1.47)

In order to find all of the coefficients, we need to specify both a0 and a1. Let us
suppose that there exists an n such that when j = n, the numerator of (1.47) will be
equal to 0, giving E = 2n+ 1. Note that all of the subsequent terms satisfy aj = 0.
From before, we also know that E := 2E

~ω , therefore, under the assumptions we made,
the energy eigenvalues for a quantum harmonic oscillator are given by

En =

(
n+

1

2

)
~ω (n = 0, 1, 2, ...). (1.48)

Figure 1 below shows the energy eigenvalues for the first three energy levels for a
quantum harmonic oscillator. The parabola represents the potential V (x).

E

ψ0(x)

ψ1(x)

ψ2(x)

x

Figure 1. Wave function representations for the first three energy eigenvalues.
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2 Potentials
In this section we will provide examples of both exactly solvable potentials and
quasi-exactly solvable potentials.

Finding such potentials is still an active area of research in physics.

2.1 Exactly Solvable Potentials

As we mentioned above, exactly solvable potentials are potentials which can be solved
analytically exactly; that is all their wave functions and all the energy levels from
the ground state up to arbitrary excited states can be calculated in a finite number
of algebraic steps.

There are several known exactly solvable potentials besides the quadratic oscillator.
Table 1 describes a few of them; the first column contains the name of the potential,
the second column presents its equation, and the last column contains the description
of the equation.

The Coulomb
Potential [29] VE = 1

4πε0

Q
r

The Coulomb Potential VE de-
scribes the electric potential en-
ergy from a point charge Q, with
a distance r from another charge,
where ε0 is the permittivity of vac-
uum.

The Morse
Potential [30] V ′(r) = De(1− e−a(r−re))2

The Morse Potential is a model for
the potential energy of a diatomic
molecule, where r is the distance
between atoms, De is the dissoci-
ation energy, a is the width of the
potential and re is the equilibrium
bond distance.

The Rosen-Morse
Potential [31] V

(a,b,λ)
tRM (χ) = a(a−λ)

sin2 λχ
− 2b cotλχ

The Rosen-Morse Potential is
a trigonometric potential, where
λχ ∈ [0, π] rescales the parameter
of the angle, while χ = r

R
, where

r is the relative distance, and R is
a matching length parameter.

The Quartic
Potential [37] V (x) = ax2 + bx4, a, b ∈ R>0
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The Pöschl-Teller
Potential [9] V (x) = h2α2

8π2m
[ ν(ν−1)

sin2 α(r−r0)
+ µ(µ−1)

cos2 α(r−r0)
]

The symmetric Pöschl-Teller Po-
tential is one of the potentials for
which the Schrödinger equation
is analytically solvable. We have
that m is the mass of the oscilla-
tor, α is a reciprocal length, ν and
µ are two numbers greater than
one, and 0 ≤ α(r − r0) ≤ π

2
.

The
Woods-Saxon
Potential [32]

V (r) = − V0
1+exp( r−R

a
)

The Woods-Saxon Potential is
a mean field potential which is
used to approximately describe
the forces applied on each nucleon
inside the atomic nucleus, where
V0 is the depth of the potential
well, r is the distance from the cen-
ter of the nucleus, A is the atomic
mass number, R = r0A

1/3 is the
nuclear radius where r0 = 1.25
fm. By transforming this poten-
tial into a hypergeometric differ-
ential equation, you can solve the
Schrödinger equation analytically.

Table 1: Examples of exactly solvable potentials.

2.2 Quasi-Exactly Solvable Potentials

As mentioned above, in the late 1980s a new type of quantum mechanical systems
was discovered, which are called quasi-exactly solvable.

Unlike exactly solvable potentials, where the whole spectrum can be found explicitly,
for quasi-exactly solvable potentials only a limited part of the energy spectrum can
explicitly be found. Table 2 presents a few of them; the first column contains the
name of the potential, the second column presents its equation, and the last column
contains the description of the equation.

The Anharmonic
Oscillator
Potential
[19], [21]

V (x) = x6 + 2bx4 + (b2 − (4m+ 2p+
3))x2, p ∈ {0, 1}

The one-dimensional sextic anhar-
monic oscillator is frequently used
to approximate various situations
in quantum mechanics.
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The Quartic
Potential [18]

V (x) = −x4 + 2iax3 + (a2 − 2b)x2 +
2i(ab− J)x, J ∈ N, a, b ∈ R

Based on the assumption that
the Hamiltonian is non-Hermitian.
We can find exactly the first
J eigenvalues and eigenfunctions.
The lowest J eigenvalues are the
roots of a polynomial of degree J .
Its spectrum is real, discrete and
bounded below.

The Inverse
Quartic Power
Potential [10]

V (r) = a
r

+ b
r2

+ c
r3

+ d
r4
, d > 0

It determines analytic properties
of the scatterting amplitude in the
case of a singular potential. This
form of anharmonicity is useful in
physical applications.

The Inverse
Sextic Power
Potential [10]

V (r) = e
r4

+ d
r6
, d > 0

This is the case of a non-
relativistic quantum mechanics
problem of scattering by the sin-
gular potential d

r2+2n + e
r2+n

, where
n = 2. It is used in atomic, molec-
ular and nuclear physics.

The Inverse Oc-
tic Power Poten-
tial [10]

V (r) = a
r

+ b
r2

+ c
r3

+ d
r4

+ e
r5

+ f
r6

+
g
r7

+ h
r8
, h > 0

This potential is an extention of
the inverse quartic and the inverse
sextic power potentials.

The Inverse
Decatic Power
Potential [10]

V (r) = a
r4

+ b
r6

+ c
r8

+ d
r10
, d > 0

The Third-Order
Hyperbolic
Potential [11]

Va,b,c,d(x) = a tanh (x) + b tanh2(x) +
c tanh3(x) + d, a, b, c, d ∈ R

One considers the stationary
Schrödinger equation3 for a non-
solvable, hyperbolic potential of
the third order. A nonsolvable
third-order hyperbolic potential
becomes quasi-exactly solvable af-
ter the introduction of a hyper-
bolic effective mass step.

The Manning
Potential [12],
[13]

V (x) = ν1
cosh2(x)

+ ν2
1+g cosh2(x)

+
ν3

(1+g cosh2(x))2
, g � 1

The one-dimensional potential be-
comes the Manning potential,
where
V (x) = ν4 sech2(x) + ν5 sech4(x)

for ν4 = ν1 + ν2
g
, ν5 = ν3

g2
.

The one-dimensional Manning po-
tential is generally used in molec-
ular systems.

Table 2: The first column contains the name of the potential, the second column
presents its equation, and the last column contains the description of the equation.

4 1
2m(x)Ψ

′′(x)− m′

2m2(x)Ψ
′(x) + (E − V (x))Ψ(x) = 0 with the potential V and the effective mass

m, which we take to be a smooth step function m(x) = 1 + tanh(x).
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2.3 The Quartic Potential

In classical mechanics, the low-energy motion in a potential V (x), having its minimum
at the origin, can be approximated by the harmonic potential αx2, where α = 1

2
V ′′(0).

To describe this quantum motion, we have to consider the anharmonic corrections
to the harmonic term. The common model of this type is the quartic anharmonic
oscillator with the Hamiltonian

H = − ∂2

∂x2
+ αx2 + βx4, (2.1)

where the harmonic term is αx2 and the anharmonic term is βx4.

To find out the closeness of (2.1) to the harmonic oscillator, we first observe the
lowest energy level for the harmonic oscillator (H := − ∂2

∂x2
+ αx2), which is given by

the following wave function

ψ(x) = exp

{
−
√
αx2

2

}
.

This implies that the probability to find a particle when coordinate x is not 0 is in
the following domain,

x2 . 1√
α
.

When we compare the harmonic term with the anharmonic term within the above
mentioned domain, we obtain two essentially different cases:

i) β
α3/2 � 1

ii) β
α3/2 & 1

In case (i), we can see that the harmonic term is large in comparison with the
anharmonic term, which one can consider as a small correction. For low excitations,
the harmonic oscillator and (2.1) are quite similar. The perturbative approach4 can
be used to account for the small quantitative difference.

In case (ii), the anharmonic term has at least the same order as the harmonic
term. When we compare the physics of this system with the physics of the harmonic
oscillator, we can draw the conclusion that this cannot be studied using the same
approach as in case (i).

On the other hand, when α = 0, the wave function ψ(x) = exp

{
−
√
αx2

2

}
equals to 1

and its derivative ψ′(x) equals to 0. This means that we can not solve the associated
Schrödinger equation.

4See Appendix B.
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2.4 The Quasi-Exactly Solvable Sextic Oscillator

One can show that under the assumption that the Hamiltonian is Hermitian5, the one-
dimensional quasi-exactly solvable polynomial potential of lowest possible degree must
be sextic. Non-Hermitian Hamiltonians though, allow for new types of quasi-exactly
solvable theories.

As many physicists were working towards understanding the quartic anharmonic
oscillator, other polynomial models like the sextic did not get as much attention. The
one-dimensional quasi-exactly sextic oscillator is now frequently used to approximate
situations in quantum mechanics. The quasi-exactly solvable potential was the first
example of its kind in quantum mechanics and was discovered in 1978 by physicists
V. Singh, K. Datta and S. N. Biswas [21]. The potential is given by

V (x) = x6 + 2bx4 + (b2 − (4m+ 2p+ 3))x2, p ∈ {0, 1}, (2.2)

where m ∈ N is fixed and b ∈ C is arbitrarily chosen. It was proven by physicists
A. V. Turbiner and A. G. Ushveridze [22] that the value of b is independent on the
amount of eigenvalues for the Schrödinger equation. Therefore, the Schrödinger
equation

H = − d2

dx2
+ V (x) = λy (2.3)

with the boundary conditions
y(±∞) = 0

on R has m+ 1 explicitly calculable eigenfunctions. These eigenfunctions are of the
form

φ(x) = Q(x) exp

{
− x4

4
− bx2

2

}
, (2.4)

where Q(x) is either an even polynomial of degree 2m when p = 0 or an odd
polynomial of degree 2m+ 1 when p = 1, or

φ(x) = exp

{
− x4

4
− bx2

4

} ∞∑

n=0

(
− 1

4

)n
Pn(E)

n! Γ[n+ 1
2
]
x2n.

In our case, we are only interested in even solutions, so φ(x) has to fulfil

Pn(E) =

(
E − (4n− 3)b

2

)
Pn−1(E) + 16(n− 1)(n− J − 2)

(
n− 3

2

)
Pn−2(E),

where J is a non-negative integer. The initial conditions are given by P−1(E) = 0
and P0(E) = 1. By choosing a particular value of J , we obtain a particular solution
of our problem. The odd solutions can be treated analogy. Γ is the gamma function,
which by definition is a function with the property Γ(n) = (n− 1)! for each n ∈ N.

The quasi-exactly solvable problems, as mentioned in the introduction, only have a
finite quantity of eigenfunctions which can be found explicitly, while the rest can
be found by numerical methods. This means that both the eigenfunctions and
the eigenvalues that we will be able to find, can be found through an algebraic
procedure, which we soon will explain, while other solutions remain unknown. The

5See Appendix A.
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eigenvalues we can find will form the so-called algebraic part of the total spectrum of
H. The procedure to explicitly describe the algebraic part of the spectrum is purely
algebraic. If an eigenfunction φ(x) of the form (2.4) has an eigenvalue λ, we can, by
differentiating (2.4) and comparing it to the potential (2.2), show that its polynomial
factor Q(x) satisfies the following differential equation,

−Q′′(x) + 2(x3 + bx)Q′(x)− ((4m+ 2p)x2 − b)Q(x) = λQ(x). (2.5)

We define the following differential operator δ := − d2

dx2
+2(x3+bx) d

dx
−((4m+2p)x2−b),

which we can see occurs on the left-hand side of (2.5). This differential operator
will preserve the (m+ 1)−dimensional linear space Wev of all even polynomials of
degree ≤ 2m for when p = 0, and preserves the (m+ 1)−dimensional linear space
Wodd of all odd polynomials of degree ≤ 2m + 1. We can therefore state that the
algebraic part of the spectrum H is the spectrum of the operator δ restricted to Wev

for p = 0, or to Wodd for p = 1. We can explicitly calculate the action of δ by fixing
the monomial basis respectively for each linear space; (1, x2, x4, ..., x2m) in Wev, and
(x, x3, x5, ..., x2m+1) in Wodd.

By setting x2 = t for p = 0 we can rewrite equation (2.5) in the form

− 4t
d2Q(t)

dt2
+ (4t2 + 4bt− 2)

dQ(t)

dt
− (4mt− b)Q(t) = λQ(t). (2.6)

If we restrict equation (2.6) to Wev for p = 0, we can calculate the (m+ 1)× (m+ 1)-
matrix Mm(b). The case for when p = 1 can be solved in a similar way.

For Q(t) = 1Q(t) = 1Q(t) = 1 in (2.6), we get: −4mt+ b = λ.

For Q(t) = tQ(t) = tQ(t) = t, we get: 4t2 + 4bt− 2− (4mt− b)t = λt
⇒ t2(4− 4m) + t(5b)− 2 = λt.

For Q(t) = t2Q(t) = t2Q(t) = t2, we get: −4t · 2 + (4t2 + 4bt− 2) · 2t− (4mt− b)t2 = λt2

⇒ t3(8− 4m) + t2(9b) + t(−12) = λt2.

For Q(t) = t3Q(t) = t3Q(t) = t3, we get: −4t · 6t+ (4t2 + 4bt− 2) · 3t2 − (4mt− b)t3 = λt3

⇒ t4(12− 4m) + t3(13b) + t2(−30) = λt3.

...

We insert our values into our matrix where every row element follows the elements
in our basis (1, t, t2, ..., tn),

Mm(b) =




b −4m 0 0 0 · · ·
−2 5b 4− 4m 0 0 · · ·
0 −12 9b 8− 4m 0 · · ·
0 0 −30 13b 12− 4m · · ·
...

...
...

...
...

...



.
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Figure 2 below shows the first four eigenfunctions of the Mm(b)-matrix. The rows of
the matrix are represented as curves: the red curve represents Q(t) = 1, the blue
curve represents Q(t) = t, the green curve represents Q(t) = t2 and the yellow curve
represents Q(t) = t3.

Figure 2. The first four eigenfunctions of the Mm(b)-matrix.

We can compare this with the results obtained in [19] by B. Shapiro and M. Tater,
where the characteristic polynomials of principal submatrices ∆

(i)
m , i = 1, ...,m+ 1

were used. The determinant of the ith principal submatrix of λIm+1 −Mm(b), where
Im+1 is the identity matrix of size m+ 1. The characteristic polynomials will have
to be the same as in [19],

∆(i)
m = (λ− (4i− 3)b)∆(i−1)

m − 4(2i− 2)(2i− 3)× (m+ 2− i)∆(i−2)
m , (2.7)

where i = 1, ...,m + 1, with the initial conditions ∆
(−1)
m = 0 and ∆

(0)
m = 1. Using

the Gräffe-Lobachevskii method, a root-finding algorithm for polynomials which we
will omit to show, it is possible to calculate the density of the asymptotic root
distribution. In [17] by B. Shapiro and M. Tater, it was proven that the maximal
absolute value of the roots of Dm(λ, b) := ∆

(m+1)
m (λ, b) grows as 16m3/2

3
√

3
so the density

ρ is given by the following integral,

ρ =
C

π

∫ 1

0

dτ√
64τ(τ − 1)2 − C2x2

, (2.8)

where x ∈ [−C,C] and C = 16
3
√

3
.

By scaling b̃ = bm1/2 and λ̃ = λ
m3/2 in matrix Mm(b), we obtain the matrix M̃m(b),

M̃m(b) =




b
m

−4
m3/2 0 0 0 · · ·

−2
m3/2

5b
m

4−4m
m3/2 0 0 · · ·

0 −12
m3/2

9b
m

8−4m
m3/2 0 · · ·

0 0 −30
m3/2

13b
m

12−4m
m3/2 · · ·

...
...

...
...

...
...




.
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By studying degree m polynomial solutions in (2.6) with respect to the new variables
λ̃ and b̃, is

− 4t
d2Q(t)

dt2
+ (4t2 + 4b̃t− 2)

dQ(t)

dt
− (4mt− b̃)Q(t) = λ̃m3/2Q(t) (2.9)

obtained. The characteristic polynomials ∆̃
(i)
m (λ̃, b̃) of the principal submatrices of

M̃m(b) satisfy the following 3-term recurrence

∆̃(i)
m =

(
λ̃− 4i− 3

m
b̃

)
∆̃(i−1)
m − 4(2i− 2)(2i− 3)(m+ 2− i)

m3
∆̃(i−2)
m , (2.10)

where the initial values are ∆
(−1)
m = 0 and ∆

(0)
m = 1. For any given b̃, we can study

the asymptotic root-counting measure µb̃ of the polynomial sequence {D̃m(λ̃, b̃)},
where D̃m(λ̃, b̃) := ∆̃

(m+1)
m (λ̃, b̃). With results from [42] by A. B. J. Kuijlaars and W.

van Assche, we can calculate the Cauchy transform of the asymptotic root-counting
measure µb̃ outside a bounded domain in C by averaging the Cauchy transform in a
1-parameter family. That is, by letting i

m
→ τ, where τ ∈ [0, 1], we can consider the

1-parameter family of 3-term recurrence relations and rewrite (2.10) as follows

∆(i)
τ = (λ̃− 4τ b̃)∆(i−1)

τ − 4(2τ)2(1− τ)∆(i−2)
τ , τ ∈ [0, 1], (2.11)

where its characteristic equation is given by

ψ2 = (λ̃− 4τ b̃)ψ − 16τ 2(1− τ). (2.12)

The values of λ̃ in (2.12) are the points where it has a double root with respect to ψ.
These are determined by

(λ̃− 4τ b̃)2 = 64τ 2(1− τ), (2.13)

or
λ̃1,2(τ) = 4τ b̃± 8

√
τ 2(1− τ), τ ∈ [0, 1]. (2.14)

For when τ runs over the interval [0, 1], the Cauchy transform of µb̃ is given by the
following formula

Cb̃(z) =

∫ 1

0

dτ√
(z − 4τ b̃)2 − 64τ 2(1− τ)

. (2.15)

The polynomial sequence {D̃m(λ̃, b̃)} is therefore given by (2.14) and (2.15). With
this polynomial sequence, we can find all of the explicitly calculable eigenfunctions
of the spectrum of (2.3).
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3 The WKB Approximation
The WKB approximation is named after G. Wentzel, H. A. Kramers and L. N.
Brillouin.

By using the WKB approximation, one can obtain approximate information about the
asymptotical development of an oscillator where one do not need to find everything
explicitly. This technique is usual for high frequencies, while its validity deteriorates
at low frequencies. More about this can be found in for instance [39].

The method is based on the development of the Schrödinger equation in terms of
powers of ~. This gives the Hamilton-Jacobi equation of classical mechanics of the
0th order. The first order is the WKB approximation. We will only consider the
process in one dimension.

We consider the one-dimensional motion of a particle in a potential V (x). We can
for the Schrödinger equation create an ansatz

ψ(x) = exp

{
i

~
S(x)

}
,

where S(x) is a complex function. We assume that ψ 6= 0. The time-independent
Schrödinger equation − ~2

2m
∂2

∂x2
ψ(x) = (E − V (x))ψ(x) can be written in terms of the

local momentum squared,

−~ ∂2

∂x2
ψ = p2(x)ψ.

We insert the ansatz in the time-independent Schrödinger equation above and obtain

− ~2 d
2

dx2
exp

{
i

~
S(x)

}
= p2(x) exp

{
i

~
S(x)

}
, (3.1)

We differentiate the left-hand side and obtain

−~2 d
2

dx2

(
exp

{
i

~
S(x)

})
= −~2 d

dx

(
i

~
S ′(x) exp

{
i

~
S(x)

})
= −~2

(
iS ′′

~
−(S ′)2

~2

)
exp

{
i

~
S(x)

}
.

Plugging this back into (3.1), we obtain

−~2

(
iS ′′

~
− (S ′)2

~2

)
= p2(x).

We can rewrite this,
(S ′(x))2 − i~S ′′(x) = p2(x), (3.2)

which is our obtained final form.

If we now consider S(x) = S0 + ~S1 + ~2S2 + ... an expansion in ~ and insert this
expansion in (3.2), we get

(S ′0 + ~S ′1 + ~2S2 + ...)2 − i~(S ′′0 + ~S ′′1 + ~2S ′′2 + ...)− p2(x) = 0.

We see that the left-hand side is a power series expansion in ~. We neglect all terms
of order ~2 and higher and we get

(S ′0)2 − p2(x) + ~ (2S ′0S
′
1 − iS ′′0 ) = 0,
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which gives us two equations; one for the coefficient of ~0 and another for the
coefficient of ~. We start with the first equation for the coefficient of ~0,

(S ′0)2 − p2(x) = 0. (3.3)

Solving the differential equation of an eigenfunction of energy E

E =
1

2m
(S ′′0 ) + V (x),

we obtain

S0(x) = ±
∫ x

x0

√
2m(E − V (x′))dx′ =

∫ x

x0

p(x′)dx′. (3.4)

Using this, we can solve equation (3.3),

(S ′0) = ± p(x) ⇒ S0(x) = ±
∫ x

x0

p(x′)dx′. (3.5)

The second equation for the coefficient of ~ gives us

2S ′0S
′
1 − iS ′′0 = 0, (3.6)

which we will found to be imaginary,

S ′1 =
i

2

S ′′0
S ′0

=
i

2

(±p′(x))

2(±p(x)))
=
i

2

p′

p
, (3.7)

with solution
iS1(x) = −1

2
ln p(x) + C ′. (3.8)

Using the obtained results for S0 and S1, we have the following approximate solution,

ψ(x) = exp

{
i

~
(S0 + ~S1)

}

= exp

{
± i

~

∫ x

x0

p(x′)dx′
}

exp

{
− 1

2
log p(x) + C ′

}
.

(3.9)

Accordingly, the general solution to the Schrödinger equation up to the terms of
order ~2 is given by,

ψ(x) =
C

p(x)1/2
exp

{
± i

~

∫ x

x0

p(x′)dx′
}
, (3.10)

where C is a constant. When p(x)→ 0, this solution breaks down. Practically, this
happens when a particle stops and turns due to the potential. These points are
called classical turning points.
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3.1 The Quantum Harmonic Oscillator

In this section we will use the WKB approximation to obtain the eigenvalues of the
quantum harmonic oscillator.

The classical turning points ±A for when the kinetic energy equals to 0, that is when

− ~2

2m

d2

dx2
= 0,

then the energy E can be written as

E = V (x) =
1

2
mω2x2.

This is giving us

±A = ±
√

2E

mω2
.

By inserting these obtained values for x > A into (3.10), we get

ψ(x) = C
1

p(x)1/2
exp

{
−
∫ x

A

p(x)dx

}
. (3.11)

Using the connection formulas6 we obtain the following wave function for 0 < x < A,

ψ(x) = 2C
1

p(x)1/2
cos

{∫ A

x

p(x)dx− π

4

}
. (3.12)

We use the initial condition ψ(0) = 0, which gives us
∫ A

0

p(x)dx− π

4
=
π

2
(2n+ 1). (3.13)

Finally, inserting the values using the equation p(x) = 1
~

√
2m(E − V (x)), we obtain

p(x) =
1

~

√
2m

(
E − 1

2
mω2x2

)
=

(
mωA

~

)√
1−

(
x

A

)2

. (3.14)

Integrating (3.14) from 0 to A, setting
(
x
A

)2
= ρ2, we obtain

∫ A

0

p(x)dx =
mωA2

~

∫ 1

0

√
1− ρ2dρ =

mω2A2

~
· π

4
=

Eπ

2~ω
. (3.15)

Solving for E using (3.14) and (3.10), we find the eigenvalues,

En = ~ω
(
n+

1

2

)
, (n = 0, 1, 2, ...), (3.16)

which is the same result we got in equation (1.48), making the WKB approximation
to the energy levels of the quantum harmonic oscillator exact.

6For further reading about the connection formulas, see [40].
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Appendices

A Abstract Functional Analysis
Here we go deeper into the Hilbert space and spectral theory of hermitian operators.

The state of a physical system in quantum mechanics is represented by a vector
belonging to a complex vector space. To represent this, we use the Dirac "bra-ket"
notation. The Dirac "bra-ket" notation is generally used to represent linear algebra
but is mostly used in quantum mechanics. The physical state is then represented
by a symbol, | 〉, which is known as a state vector ket, or a wave function. In linear
algebra, this expression refers to the column vector of a function. Furthermore, the
set of all possible wave functions, which describe a given physical system, forms a
complex vector space H. This vector space is known as the Hilbert space of the
system and may be either infinite- or finite-dimensional. Another presentation of a
Hilbert space is a function space called Lebesgue space denoted by L2(X), where X
is a measure space. More about this comes later in this chapter.

Hilbert spaces inherit important properties of general vector spaces:

1. A linear combination |Ψ〉 of two (or more) vectors |ψ1〉 , |ψ2〉 , ... |ψn〉 is also
a vector of the system and is written on the following form

|Ψ〉 = c1 |ψ1〉+ c2 |ψ2〉+ ...+ cn |ψn〉 =
n∑

i=1

ci |ψi〉 ,

where c1, c2, ..., cn ∈ C.

2. Linearity. If a physical state of a system is given by a vector |Ψ〉, then the
vector c |Ψ〉, for c ∈ C and non-zero, will also represent the same system.

However, from linear algebra, we are aware of the existence of the row vector. The
quantity 〈Ψ| represents the complex conjugates of the corresponding vector |Ψ〉, and
is known as bra. These vectors are elements of the vector space H∗, also known as
the dual space of the Hilbert space H. Then, if a vector that represents the physical
space is given by |Ψ〉 = c1 |ψ1〉+ c2 |ψ2〉, the corresponding vector space spanned by
the bra vector is given by

〈Ψ| = c∗1 〈ψ1|+ c∗2 〈ψ2| .
For each ket vector in H, there will exist an associated bra vector in H∗.

A.1 Inner Product and Hilbert Spaces

If we let |ψ〉 and |φ〉 be any two wave functions in Hilbert space H, we can, by
definition, use the inner product, 〈ψ |φ〉. In quantum mechanics, this inner product
is an analog of the scalar product in vector spaces, where the inner product of two
vectors is a scalar, albeit in this situation a complex number. The value of the inner
product is the probability amplitude for the state φ to collapse into ψ (in other words,
it describes the overlap of φ onto ψ).

The inner product has the following properties,
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i) Distributivity and associativity 〈ψ | {c1 |φ1〉+c2 |φ2〉} = c1〈ψ |φ1〉+c2〈ψ |φ2〉
ii) Complex conjugate 〈ψ |φ〉 = 〈φ |ψ〉∗

iii) Positive definiteness 〈ψ |ψ〉 ≥ 0. 〈ψ |ψ〉 = 0 implies that the wave function
|ψ〉 = 0 is the null element of the Hilbert space (which is given by the functions
that are zero almost everywhere).

iv) Orthogonality Given two wave functions |ψ〉 and |φ〉, they are said to be
orthogonal if 〈ψ |φ〉 = 0.

We summarize this information in the following definiton,

Definition A.1 (Hilbert Space). A Hilbert space H is a complex vector space
equipped with an inner product.

All vectors in the Hilbert space have a finite norm so they can be normalized to
unity.

A.2 The Normalization Condition

We interpret the equation |ψ(x)|2 = ψ∗(x)ψ(x) as defining a probability distribution
for finding a particle at some position x. The sum of probabilities taken over all
possible positions x should be 1. We ensure that this is the case by normalizing
a wave function ψ (we multiply it by a constant). Therefore, we integrate the
probability distribution over the whole space,∫ ∞

−∞
ψ∗(x)ψ(x)dx = 1, (A.1)

or ∫ ∞

−∞
|ψ(x)|2dx = 1. (A.2)

A.3 Lebesgue Spaces

Lebesgue spaces, or the Lp-spaces are defined using p-norm (or lp-norm). On a
measure space (X,M, µ), where X is a set, M is a σ-algebra of subsets of X, and µ
is a countably additive measure on M , we can informally define an L2-function as a
function f : X → R,

|f |2 =

∫

X

|f |2dµ,

with respect to the measure µ exists and is finite.

The p-norm, for p ≥ 1, p ∈ R of vector x = (x1, ..., xn) is given by

||x||p :=

( n∑

i=1

|xi|p
)1/p

, (A.3)

and for p = 2 we get the Euclidean norm, which is the only Hilbert space among the
Lebesgue spaces.

The collection of L2-functions on a measure space X is denoted by L2(X).

L2-functions are important in quantum mechanics, where probabilities of wave
functions are given by equation (A.2). Here, L2-functions occur because of the
requirement that the quantities remain finite.
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A.4 Hermitian Operators in H
Definition A.2 (Hermitian Operator). A bounded linear operator A in a Hilbert
space H is called Hermitian if

〈Ax, y〉 = 〈x,Ay〉 (A.4)

holds for all x, y ∈ H.
Hermitian operators have two important properties that form the basis of quantum
mechanics; the eigenvalues of a Hermitian operator are real and the eigenfunctions
of a Hermitian operator are orthogonal to each other (or can be made orthogonal by
taking linear combinations of them). Proofs of these claims can be found in other
literature, for instance in [33] or [34].

For the time-independent Schrödinger equation, Hψ = Eψ, the physical quantities
must be Hermitian. Since each physical quantity of the system can be measured,
the eigenvalues which are being used to obtain them, must be real. In order for the
eigenvalues to be real, the corresponding operators must be Hermitian.

Theorem A.1 (Spectral Theorem). Let V be a finite-dimensional inner product
space over F and T : V → V is a Hermitian linear transformation. Then V has an
orthonormal basis eigenvectors of T , which tells us that T is diagonalizable.

The set of eigenvalues of T is called the spectrum of T .
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B Perturbation Theory
Perturbation theory is a useful approach in quantum mechanics for describing a real
complicated quantum system in terms of a simpler one.

Finding exact solutions to the Schrödinger equation for Hamiltonians can be difficult;
if the problem cannot be solved exactly, perturbation theory can be applied by adding
a small term to the exactly solvable problem.

The approach begins with a system that already has a known mathematical solution
and then adding an additional "perturbing" Hamiltonian that represents a weak
disturbance to the system. As long as this disturbance is kept small in comparison
to the size of the quantities themselves, the energy levels and eigenstates associated
with the perturbed system can by the means of perturbation theory be expressed as
small "corrections" to those of the simple system.

We can calculate them using approximated methods (for example with asymptotic
series; which we will omit in this thesis). As a result, the complicated system can
be studied using knowledge of the simpler system; so it is describing a complicated
unsolved system using a simple, solvable system.

The Hamiltonians, such as the quantum harmonic oscillator for which we have exact
solutions, are too idealized to describe most systems. Perturbation theory allows
one to apply known solutions to a range of more complicated systems. Although
the expressions produced by perturbation theory are not exact, they can lead to
accurate results.

However in some cases the perturbation theory can be an invalid approach to take.
This occurs for instance when the system we want to describe cannot be described
by a small perturbation imposed on some simple system.
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C The Dirac Delta Function
The Dirac delta function was introduced by physicist Paul Dirac as a tool often used
in probability theory. The Kronecker delta function is the discrete analog of the
Dirac delta function.

Definition C.1 (The Dirac Delta Function). The Dirac delta function is defined by

δ(x) =

{
0 if x 6= 0

∞ if x = 0,

with ∫ x2

x1

dx δ(x) = 1

if 0 ∈ [x1, x2] and 0 otherwise.

An important property of the Dirac delta function is
∫
dx f(x)δ(x) = f(0) (C.1)

for any function f(x). We know this, since δ(x) vanishes everywhere except for when
x = 0, so the importance of the values the function f(x) takes, except for when
x = 0, is low. Therefore we can write also write f(x)δ(x) = f(0)δ(x). Furthermore,
since f(0) is independent of x, we can pull this outside the integral, and then we
obtain the right-hand side in equation (C.1).

Equation (C.1) can also be generalized and have the form
∫
dt f(x)δ(x− x0) = f(x0).

Since the Dirac delta function is too singular, it is not a function, but a distribution
and can be used only inside integrals. As long as it is known that the Dirac delta
function will be integrated, we can use it as if it were a function.
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