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Abstract

Einstein’s general relativity theory changed our understanding of
gravity. First defined by Newton as an attractive force between mat-
ter, general relativity connects it to the geometry of the space-time
and particularly to its curvature. This thesis focuses on the historical
role of the triangle’s angle sum in defining and deriving curvature and
developing non-Euclidean geometry. This was needed for Einstein to
be able to formulate the relation between the curvature and the energy
and momentum. The curvature of a surface is shown to be an intrinsic
property of the space, calculable by the angle sum of a triangle. From
the results of an experiment testing general relativity in 1919, the an-
gle sum of a triangle is shown to exceed 180 ° verifying that space is
curved. The thesis also deals with Einstein’s special relativity theory,
proving that time and distances are relative to the frame of reference.
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1 Introduction

If you ask a high school student what the angle sum of a triangle is, the
answer will most likely be that it is always 180°. This is true in Euclidean
geometry but the students will probably not know that there are different
non-Euclidean geometries where the angle sum can be greater or smaller. Up
until the 19th century this was not known to most mathematicians either.
The development of non-Euclidean geometry, that originated from trying
to prove the parallel postulate, has not only led to new understandings of
geometry but also insights about space and physics. Without it Einstein
couldn’t have formulated the relation between the energy and the curvature
of space and time in his general relativity theory.

This thesis will deal with the triangle’s angle sum through history as it
laid the ground to differential geometry that later on became the tool used
in general relativity, which was one of the starting points of modern physics.

First, in section 2 we will look at Euclidean geometry; how it was struc-
tured by Euclid and how the angle sum of a triangle played a part in it.
The main source of information for this part will be Wolfe (1945), which
will also be relevant when we look at how non-Euclidean geometry started
taking form in section 3 . Section 2 will also deal with the history of spheri-
cal triangles and we show how their angle sum differs from that of a triangle
in the plane, using Rosenfeld (1988) as the primary source.

In section 3, we will look at how C.F. Gauss , using triangles, defined
curvature in R3 and proved that it is intrinsic. We will also mention how B.
Riemann extended Gauss’ work in an n-dimensional space. For this we will
use mostly Spivak (1999) as an inspiration.

In section 4 and 5 we will, mostly following Ellis and Ruth (2000), look
at Einstein’s theory of relativity by first looking at the special relativity
and how the invariance of the speed of light led to time and distances being
dependent on the frame of reference of the observer. We will continue in
section 5 by briefly looking at the principles behind general relativity and
how it connects with what Gauss and Riemann discovered. We will end by
showing the results from Eddington’s experiment in 1919 that proved that
a triangle in general relativity can have an angle sum greater than 180°.

I entreat you, leave the doctrine of parallel lines alone; you should
fear it like a sensual passion; it will deprive you of health, leisure
and peace; it will destroy all joy in your life.

(Farkas Bolyai to his son Janos Bolyai)
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2 Euclidean geometry

In about 300 B.C., Euclid wrote Elementa, a compilation of his work as
well as the work of the Greek and Egyptian mathematicians before him
(Waerden, 1975). Even though most of the discovering have been made
before him by mathematicians like Thales or Pythagoras, Euclid contributed
by organizing all the knowledge into a logical structure (Waerden, 1975). It
was Euclid’s understanding that not everything can be proven, that you have
to draw the line somewhere. So he used postulates he assumed to be true
based on experience and intuition as a starting point from which his other
propositions would then logically follow. This was to be the standard in how
mathematical reasoning would be done for over two thousand years until the
late 1900th century when a more rigorous axiomatic method started taking
its place (Mueller, 1969).

Euclid based his geometrical proofs on ten assumptions divided into two
groups called ”common notations” and ”postulates”. Though it is not clear
what he thought the difference was, it is believed that the common nota-
tions were applicable to all sciences and the postulates were more specific
to geometry.

Euclid’s five common notations were (Fitzpatrick, 2008):

1. Things that are equal to the same thing are also equal to one.

2. If equals are added to equals, the wholes are equal.

3. If equals be subtracted from equals, the remainders are equal.

4. Things which coincide with one another are equal to another.

5. The whole is greater than the part.

The first notation defines transitive property in relations between elements
and can be expressed as: If a = b and b = c then it follows that a = c.

The second and third are known as addition and subtraction of equals
and denotes as : If a = b then it follows that a+c = b+c and that a−c = b−c

The forth notation, that says that for example any e.g. number or set,
a, is equal to itself, seems to be redundant but it is used in proofs when
comparing angles or line segments with themselves.

The fifth notation is often attributed to Aristoteles even though he
phrased it differently than what Euclid wrote in Elementa. Euclid’s way
of phrasing it meant that the whole can be divided into parts and that any
of those parts is lesser than the whole. This can be written as:

If a = |b|+ |c| than a > b and a > c
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Euclid’s postulates were (Fitzpatrick, 2008):

1. To draw a straight line from any point to any point.

2. To produce a finite straight line continuously in a straight line.

3. To describe a circle with any centre and distance

4. That all right angles are equal to one another.

5. That, if a straight line falling on two straight lines makes the interior
angles on the same side less than two right angles, the two straight
lines, if produced indefinitely, meet on that side on which the angles
are less than two right angles.

In Euclid’s first postulate it is presumed that he says that there can only be
one unique straight line connecting two points. This seems intuitively clear
the shortest distance between the two points. Looking at a sphere we could
easily see that this isn’t always true. We could e.g. draw two lines of equal
lengths between two antipodal points that collate the shortest distance. The
postulate infer that you can’t enclose a space using two unique straight lines
since they can’t coincide more than once.

The second postulate explains that a finite line can only be continued in
its both extremities in only one way, which leads to the conclusion that two
separate lines can’t share a segment.

In the third and fourth postulate Euclid defines circles with a distance
from its center to every point on its circumference and provides a measure-
ment for angles.

The fifth postulate, also known as the parallel postulate, is equivalent
to the claim that the sum of the internal angles in any triangle is 180°. The
parallel postulate was early on criticized for being too complex and not self
evident to be a postulate, but was regarded more as a proposition. The
order of the postulates and Euclid postponing the usage of the postulate
indicates that he himself was aware of this but could neither prove it nor
proceed without it (Lewis, 1920).

Many tried to prove the parallel postulate using Euclid’s four other pos-
tulates and for a long time it was believed that Proclus (410-485 A.D.)
already had done so in the 5th century. The problem was that Proclus and
those after him had to make new assumptions to make it work, such as Pro-
clus assuming parallel lines have a constant distance between them when
parallel lines are only defined as two straight lines that do not intersect at
any point.
In trying to simplify the statement, the parallel postulate has often been
substituted by equivalent postulates, of which one of the most common is
Playfair’s axiom that says
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In a plane, given a line and a point not on it, at most one
line parallel to the given line can be drawn through the point.

Playfair’s axiom, unlike the Parallel postulate, uses parallel lines and from
it the parallel postulate, as Euclid defined it, can be deduced.

2.1 Triangles in spherical geometry

The earliest systematic work on spherical geometry has been written by
Theodosius (169-100 B.C) and is called Sphaerica. In it, he defines many
concepts of spherical geometry like the center and the diameter. To create
circles he uses planes intersecting with the surface of the sphere. The planes
that also go through the center of the sphere creates so-called great circles,
the largest circles on the sphere. Thedosius created angles on the surface
of the sphere by the inclination of two planes that intersect the sphere.
He didn’t consider spherical triangles though, that was first introduced and
defined by Menelaus (70 -140) in his book On the sphere. To create a triangle
on the sphere Menelaus used three great circles that would bound a triangle.
Menelaus’ work was much more concentrated on angles and sides of spherical
triangles. Many of those propositions were analogous to that of Euclid in
plane geometry and are interchangeable. The one that wasn’t analogous
was a proposition on the relation between the exterior angle of a spherical
triangle and the interior angles opposite to it. The proposition also infer the
sum of the interior angles of a spherical triangle and was worded as follows:

Theorem 2.1. An exterior angle of any three-sided figure is smaller than
the sum of both interior angles opposite to it.

To prove this Menelaus used another proposition which is formulated
below:

Lemma 2.2. Let there be a triangle 4ABC on the sphere with the vertices
A,B and C and exterior angle ∠BCD created by extending the line AC to
an arbitrary point D. We have then the following equivalences:

∠BCD is equal to ∠A if and only if AB + BC is equal to a semicircle
∠BCD is greater than ∠A if and only if AB+BC is less than a semicircle
∠BCD is lesser than ∠A if and only if AB+BC is greater than a semicircle

Proof. We create a spherical triangle 4ABC on the sphere with the vertices
A,B and C. We extend the line AC to an arbitrary point D creating the
exterior angle ∠BCD .

To prove this proposition we need to show that ∠BCD < ∠ABC +
∠BAC.
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Figure 1: A triangle on a sphere with the vertices A,B and C where the segment AC
has been extended to point D and AB has extended to E.

We assume that ∠BCD is greater than ∠BAC otherwise the proof would
be trivial. This allows us to construct a new angle ∠DCE equal to ∠BAC
but less than ∠BCD by drawing a line from C to E where E is on the
extension of the segment AB creating the figure shown in figure 1. Since
∠DCE is an exterior angle to 4AEC and is equal to ∠BAC the segments
AE+EC must be equal to a semicircle according to lemma 2.2 . Therefore
the segments BE +EC must be smaller than a semicircle and thus the ex-
terior angle ∠ABC to the triangle 4BCE must be greater than the interior
angle ∠BCE according to 2.2. If we add the angles ∠BAC to both sides
we get

∠BCE + ∠BAC < ∠ABC + ∠BAC

If we then use that we created ∠ECD so that ∠ABC = ∠ECD and
∠BCE + ∠DCE = ∠BCD we get

∠BCE + ∠BAC = ∠BCE + ∠DCE = ∠BCD < ∠ABC + ∠BAC Q.E.D

If we were to add the remaining interior angle ∠ACB to the inequality
we would get that the angle sum of the triangle would be greater than that
of a straight line. This would be contradictory to Euclid’s parallel postulate
but many thought of triangles on the sphere as a separate entity from that
on the plane. The spherical triangle was instead often compared to that of
a triangle in plane geometry. Comparing the two’s angle sum, the spherical
triangle would be greater than that in the plane. The difference, called
angular excess, would be α+β+γ−π, if the angles in the spherical triangle
are α, β and γ.

Much later in the 17th century Albert Girard (1595-1632) showed that
this angular excess is equivalent to the area of the triangle . His proof was
not rigorous so we will use a version of Euler’s proof made about 150 years
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later. He used Menelaus’ definition of triangles as the surface bound by
three great circles. These great circles will intersect with each other in three
points creating a spherical triangle.

Theorem 2.3. The area, A, of a triangle on a sphere with the radius R is

A = R2(α+ β + γ − π)

if α,β and γ is its angles.

To prove this we need to use the notion of a spherical digon. A digon is
defined by two great circles that intersect twice on a sphere in two antipodal
points that are the digon’s vertices. We will use that the area is proportional
to the angle between the two great circles.

Lemma 2.4. The area, A, of a digon on a sphere with the radius R equals

A = 2θR2

where θ is the angle between the two sides of the digon.

Figure 2: A sphere with two triangles bounded by three great circles with the vertices
A, B and C and their antipodal points D,E and F respectively. The triangles have the
angles α, β and γ

Proof. We create a triangle ABC using three great circles intersecting at
A,B and C, which are the triangle’s vertices. The great circle will also
intersect at the vertices’ antipodal points D,E and F respectively, creating
the triangle DEF with an equal area to ABC. The great circles will also
create three pairs of digons, AD,BE and CF that have the angles α,β and γ
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respectively. These six digons will cover up the entire surface of the sphere,
but will overlap over both of the triangle seen in figure 2. So we can equate
the area of the digons if we remove four times the area of the triangles. Thus
we have

2 ·Area(AD) + 2 ·Area(BE) + 2 ·Area(CF )− 4 ·Area(4ABC) = 4πR2.

Using lemma (2.4) we have

2 · 2αR2 + 2 · 2βR2 + 2 · 2γR2 − 4 ·Area(4ABC) = 4πR2.

We simplify and solve for the area of the triangle and get

Area(4ABC) = αR2 + βR2 + γR2 − πR2 = R2(α+ β + γ − π). (2.1)

This leads to the conclusion that the angle sum must be greater than
π if the area is to have a non-zero positive value. One also concludes that
the greater the triangle on a sphere is the greater is its angular excess and
therefore also the greater is the angle sum.

3 Non-Euclidean geometry

When there still was no sound proof of Euclid’s parallel postulate in the
beginning of the 18th century Girolamo Saccheri (1667-1733) tried a new
approach nobody had thought of before. He used the Reductio ad absurdum
method, trying to prove the parallel postulate by assuming its opposite and
showing that it would lead to contradiction. He used a quadrilateral with
right angles at the base and that the segments from the base to the summit
were of equal length. Saccheri then stated three hypotheses about the length
of the summit being equal to, greater or lesser than the base. Using the
parallel postulate, the summit’s length must be equal to the base and the
angles at the summit must be that of right angles. For a quadrilateral
Saccheri proved that if the line joining the midpoints of the base and the
summit is perpendicular to the both the base and the summit then the angles
at the summit are equal and acute if the summit is greater than the base or
obtuse if the summit is less. These are named as Saccheri quadrilaterals.

Showing that the angles of the summit being acute or obtuse would lead
to contradictions would then prove that the parallel postulate to be true by
elimination of alternatives. Sacchieri named these as the hypothesis of the
acute and the hypothesis of the obtuse angles.

To find the contradictions we look at a quadrilateral where both the
base angles and one of the summit angles are right under the hypothesis of
the acute angle and the hypothesis of the obtuse angle separately and then
deduce the fourth angle.
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Figure 3: A quadrilateral ABCD with extended segment from AB to E. The line EF is
perpendicular to AE.

We create a quadrilateral ABCD where the angles at A,B and D are
right. We extend the segment BA to E so that AE is equal to BA. From
E we draw the line EF perpendicular to AE so that EF is equal to BC.
From F we draw lines to D and to A. To join A and C we also draw the
line AC. This would give us the figure shown in figure 3 .

By construction, the triangles AEF and ABC have two sides and their
included angle congruent to the corresponding sides and angle (SAS) and
therefore the triangles are also congruent. This implies that the angles EAF
and BAC are equal.

The angle EAD is a supplementary angle with the right angle BAD and
is therefore also a right angle. Thus the angles DAF and DAC must be
equal. Then we have in triangles ADF and ACD a shared common side
in AD and congruent sides in AF and AC with an equal included angle
with DAF and DAC and thus the triangles are also congruent. It follows
that the angle ADF is a right angle and therefore F,D and C are collinear
since ADF and ADC are supplementary angles to the line FC. This makes
BCFE a Saccheri quadrilateral and thus the angles at C and F must be
acute under the acute hypothesis and obtuse under the obtuse hypothesis
respectively. We use this lemma to deduce the angle sum of a triangle.

We first look at the situation of a right triangle ABC with the right angle
at C. From the midpoint M of A and B we draw the line MP perpendicular
to BC with P located on BC. We then draw the line AD so that the angle
BAD is equal to ABC and so AQ is equal to PB, with Q located on AD.

Joining Q and M we get the picture shown in figure 4. In the triangle
BMP sides BM and BP will be equal to AM and AQ with an equal
included angle. Therefore the triangles BMP and AQM are congruent and
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Figure 4: A triangle ABC with a right angle at C. M is the midpoint of AB. AD is
drawn so the angle BAD is equal to ABC and the point Q lies on AD so AQ is equal to
PB.

that implies that the angle AQM is right. Since the angle AQM is equal
to BMP and BMP is a supplementary angle with AMP then AQM must
also be a supplementary angle with AMP and therefore the points Q,M
and P must be collinear.

This makes AQPC to be a quadrilateral with three right angles and an
acute or obtuse angle at A under the acute and obtuse hypothesis respec-
tively. Since the angle ABC is equal to BAD and the angle at A is the sum
of BAC and BAD we get that the sum of ABC and BAC is equal to the
angle at A. Therefore the sum of the angles of the triangle ABC is the sum
of the angles at A and C. Under the acute hypothesis, where the angle at
A is less than 90°, the angle sum would be less than two right angles and
under the obtuse hypothesis it would be greater than two right angles .

Saccheri’s assumption that the angels were obtuse led him to the con-
tradiction that the extensions of the parallel base and summit intersect.
Assuming Euclid’s second postulate also to be true, that you can extend a
finite line indefinitely. Trying to refute the acute hypothesis never gave him
a contradiction he wanted but led him to many strange conclusions like the
two parallel straight lines intersecting, or having a common perpendicular on
each side of which they diverge, or diverge in one direction and converge in
the other. Even though not able to find a contradiction, he stated the acute
hypothesis to be false claiming it to be ”...repugnant to the nature of straight
lines” (Rosenfeld, 1988). In his attempt to disprove it he was forced to prove
several propositions along the way, thus unknowingly providing some of the
classical theorems in what will be later known as hyperbolic geometry.

Half a century later a German mathematician Johann Hemrich Lam-
bert (1718-1777) tried to prove the parallel postulate similarly to Saccheri’s
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method. Lambert, like Saccheri, refutes the obtuse angle hypothesis and
even though he acknowledges the flaws of his arguments he also refuted
the acute angle. In his work Lambert proved not only that under the ob-
tuse and acute hypothesis the angle sum of a triangle is greater respectively
lesser than 180°, but also how this angular defect relates to the triangle’s
area under the acute hypothesis.

Figure 5: A triangle ABC with a line AD drawn from A to any point D on the line CB

If we look at a triangle ABC and draw a line from A to D on the line
BC we get the triangle in figure 5. The sum of the angular defect for the
triangle ABD and ACD is

180°− ∠ABD − ∠ADB − ∠BAD + 180°− ∠ACD − ∠ADC − ∠CAD

With ADB and ADC being supplementary angles equal to 180° and BAD
and CAD being adjacent angles equal to BAC we get

180°− ∠ABD − ∠BAC − ∠ACD.

Since ∠ABD = ∠ABC and ∠ACD = ∠ACB the sum of the angular defect
is

180°− ∠ABC − ∠BAC − ∠ACB

,which is the angular defect of the triangle ABC. This together with Euclid’s
fifth common notation lead Lambert to the conclusion that not only that the
greater area a triangle has the greater the angular defect and therefore the
lesser the angle sum but also that the triangles area A must be proportional
to the angular defect : A = C(180− (α+ β + γ)) , where C is an unknown
constant and α, β, γ are the triangle’s angles. Lambert also proved that for
the obtuse hypothesis, the triangle’s area would also be proportional to the
angular defect but that the angle sum would always be greater than 180°.
He observed the resemblance with the spherical triangle, stating that the
obtuse hypothesis would work on a sphere instead of a plane. From this he
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also stated that the acute angle hypothesis must hold on some imaginary
sphere with an imaginary radius. If we put the radius as c · i in the formula
for the area of a spherical triangle 2.1 we would get

Area = c2i2(α+ β + γ − π) = c2(π − (α+ β + γ)),

which resembles the result for the acute hypothesis.
Another consequence Lambert found was that under the acute hypoth-

esis there is an absolute measure of length for every line, of area for every
surface and of volume for every physical space. This differed from the con-
sensus at that time that the measure depended on how it was represented.

3.1 Gaussian geometry

In the beginning of the 19th century many mathematicians were trying to
solve the problem with the parallel postulate by e.g. using the Reductio
ad absurdum method, trying to prove that the opposite would be absurd
(Wolfe, 1945). One who spent a lot of his work on Euclidian geometry
was Carl Friedrich Gauss(1777-1855). He had, from the assumption that
a triangle could be greater than 180°, formed a new geometry which he
called ”non-Euclidean geometry”, a geometry not built on Euclid’s parallel
postulate(ibid). Like Girard, he found that on a surface matching that of
a sphere the sum of the angles of a triangle could be greater than 180° and
that the difference would be proportional to its area.

When studying curved surfaces Gauss found it unnecessary to use Carte-
sian coordinates to indicate a point in the Euclidean space (Fre, 2018). In-
stead he used two different systems of curves where the curves within the
system all are considered as parallel to each other. Then for all points of
the surface there would be one curve from both systems which the point
would lie on. Since there can only be one specific curve from each system
which intersect at this point, the curves would then indicate the point’s
position. Distances on the surface couldn’t be measured using euclidean
geometry but instead Gauss thought of distances as the sum of infinitesi-
mal segments along the surface between two points. A segment that starts
in the point (u, v) where the curves u and v intersect would then end at
(u + du, v + dv) where du and dv are infinitesimals. Since the change is so
small, both points and the segment could be approximately lie in the tan-
gent plane of point (u, v). In this plane Euclidean geometry could be applied
and if the change of coordinates in this planes axis is dx, dy and dz the dis-
tance in quadratic form, ds2, could be calculated using Pythagoras theorem:
ds2 = dx2 +dy2 +dz2. Studying the geometry of the surface, Gauss used the
unit sphere in defining the curvature. By mapping the unit normals from
the neighbourhood of a point P on the surface to a fixed point, the unit
vectors would point to the surface of the unit sphere. The curvature of the
surface of P is then determined by the area on the unit sphere divided by
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the area on the surface. The more the surface would curve at P the more
the unit normal would diverge and the greater the area would become on
the unit sphere. When defining the curvature Gauss arrived at his result
using a cumbersome calculus method, we will instead use a more modern
approach with vector calculus but getting the same result as Gauss.

Definition 3.1. Let M be a 2-dimensional submanifold of R3 with the in-
clusion map i : M ↪→ R3 At each point pεM there is a unique unit vector ν
that is perpendicular to Mp Then we have a normal map ν : M 7→ S2 ⊂ R3

where S2 is the surface of the unit sphere. If UεM is the neighbourhood
around the point p then he curvature K at point p is then given by

K(p) = lim
U→p

Area of ν(U)

Area of U
.

If we represent the points on M using two independent system of curves
(s, t) on M with the coordinate system X : M 7→ R2 the inverse function f
will be f = X−1 : R2 7→ M ⊂ R3. If p = f(s, t) then the neighbourhood of
p is made up by the points

f(s, t), f(s+ ∆s, t), f(s, t+ ∆t) and f(s+ ∆s, t+ ∆t).

This surface can be approximated by the parallelogram in the tangent
plane TM(p) of M at p, which is spanned by δf

δs∆s and δf
δt∆t.

The area of the neighbourhood of p is then given by

|δf
δs

∆s× δf

δt
∆t| = |δf

δs
× δf

δt
|∆s∆t.

This tangent plane must be parallel to the tangent plane TS2(ν(p)) of
the unit sphere at the point ν(p) because ν(p) is perpendicular to TM(p) by
definition. The tangent plane of the unit sphere is given by the change of
the normal vector.

Definition 3.2. If the normal map is defined by ν : M 7→ S2 ⊂ R3 then
δ(ν) : TM(p) 7→ TS2(ν(p)).

Thus the curvature K(p) can be calculated using the areas on the tangent
planes spanned by the tangent vectors where the tangent vectors on TS2(ν(p))

are given by δν
δs and δν

δt . If M is the graph of g : R2 7→ R so that

M = (x, y, (g(x, y)) : (x, y)εR2,

then M is the image off : R2 7→ R3 defined by

f(s, t) = (s, t, g(s, t))
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We choose the vectors u and w as
{
u = δf

δs = (1, 0, δgδs )

w = δf
δt = (0, 1, δgδt ).

(3.1)

The area on TM(p) is then given by

Area of U = |u× w| = |(−δg
δs
,−δg

δt
, 1| =

√
(
δg

δs
)2 + (

δg

δt
)2 + 1.

The normal vector is given by

ν(f(s, t)) =
u× w
|u× w| =

(− δg
δs ,−

δg
δt , 1)√

( δgδs )2 + ( δgδt )
2 + 1

. (3.2)

Therefore the area on the sphere is then given by

Area of ν(U) = |δν
δs
× δν

δt
| =

δ2g
δs2

δ2g
δt2
− ( δ

2g
δsδt)

2

(( δgδs )2 + ( δgδt )
2 + 1)3/2

.

(for a more detailed derivation see Appendix A).
This leads us to the conclusion that the curvature equals

K(p) = lim
U→p

Area of ν(U)

Area of U
=
| δνδs × δν

δt |
|u× w| =

δ2g
δs2

δ2g
δt2
− ( δ

2g
δsδt)

2

(( δgδs )2 + ( δgδt )
2 + 1)2

. (3.3)

If we take the squared first partial derivatives of f and define them as E,F
and G we would get 




E = δf
δs
δf
δs = 1 + δg

δs

2

G = δf
δt
δf
δt = 1 + δg

δt

2

F = δf
δs
δf
δt = δg

δs
δg
δt .

(3.4)

Then we obtain (like Gauss did) the area of U to be given by

Area of U = |u× w| =
√
EG− F 2. (3.5)

Furthermore if we denote the second partial derivatives times the normal
vector as L,M, and N we would have





L = δ2f
δs2
·

δf
δs
× δf
δt

| δf
δs
× δf
δt
| =

δ2g

δs2√
( δg
δs

)2+( δg
δt

)2+1

N = δ2f
δt2
·

δf
δs
× δf
δt

| δf
δs
× δf
δt
| =

δ2g

δt2√
( δg
δs

)2+( δg
δt

)2+1

M = δ2f
δsδt ·

δf
δs
× δf
δt

| δf
δs
× δf
δt
| =

δ2g
δsδt√

( δg
δs

)2+( δg
δt

)2+1

(3.6)
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which we could use to rewrite the area of ν(U) to be

Area of ν(U) = |δν
δs
× δν

δt
| = LN −M2

√
EG− F 2

(3.7)

and we would finally have the curvature as follows

K =
LN −M2

EG− F 2
. (3.8)

This is how Gauss expressed it except he used D,D′ and D′′ instead of L,M
and N which is a more modern notation. Now we will prove that the surface
curvature isn’t dependent on how it is embedded in space but only of the
properties within the surface. To do this we will first define a geodesic and
the curvature of a curve.

3.1.1 Curves

In defining the curvature of a curve we will measure its deviation from a
straight line, which would be represented by the tangent vector given by the
partial derivatives of the curve. Calculating how much the tangent vector
changes along the normal vector gives us the curvature of the curve.

Definition 3.3. Let α be a regular curve on a surface SεR3 and s be a
segment on S. Let also the tangent vector t be given by dα

ds and the curvature
κ of α given by

κ = | dt
ds
|.

If we consider an orthonormal basis (t, t×N,N) ,where N is the normal
vector to the surface S, then dt

ds can be written as a a combination of N that
is orthogonal to the surface and t×N that is tangential to the surface since
t is orthogonal to dt

ds . Namely

dt

ds
= κgt×N + κNN. (3.9)

The coefficient κg is called the geodesic curvature, it represents the amount
the curve deviates from a geodesic on S, where a geodesic is a curve between
two points on a surface that realizes the shortest path. In the Euclidean
space the geodesic is a straight line.

Definition 3.4. Let α be a regular curve on a surface SεR3 and s be a
segment on S. Let the tangent vector t be given by dα

ds and N be the normal
vector to S then α is a geodesic if at every point on α:

t×N = 0
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This means the geodesic follows the surface and the curvature of the
curve is dependent only on the surface.

The coefficient κN is called the normal curvature and is related to how
the surface curves in R3.

If we take the scalar product of equation (3.9) with t × N we get that
the geodesic curvature equals

κg =
dt

ds
· t×N. (3.10)

3.1.2 Curvature being intrinsic

Theorem 3.1 (The Gauss-Bonnet theorem for a triangle(Woodward and
Bolton, 2018)). Let T be a triangle on a surface SεRn and let A, B and
C be the interior angles of T then the integral of the geodesic curvature kg
along the boundary of T and the total curvature of the triangle satisfies the
relation ∫

δT
kg ds+

∫∫

T
KdA = A+B + C − π

Proof. We will first define an orthonormal basis (e1, e2, ) in the tangent plane
at every point of δT where e1 and e2 are functions of the parameters (u, v).
If N is the normal vector then (e1, e2, N) forms an orthonormal basis of R3.
Let θ be the angle between the tangent vector α̇ and the unit vector e1.
This gives us

α̇ = cos θe1 + sin θe2

and the second derivative then is

α̈ = cos θė1 + sin θė2 + θ′(− sin θe1 + cos θe2). (3.11)

With N = e1 × e2 we also have

N × α̇ = − sin θe1 + cos θe2. (3.12)

Equations 3.11 and 3.12 in the definition for geodesic curvature from 3.10

kg = (N × α̇) · α̈ =

= (− sin θe1 + cos θe2)(cos θė1 + sin θė2 + θ̇(− sin θe1 + cos θe2)) =

= θ̇ + cos2 θ(ė1 · e2)− sin2 θ(ė2 · e1) + sin θ cos θ(ė2 · e2 − ė1 · e1).

Since e1 and e2 are orthogonal unit vectors we have

ė1 · e1 = ė2 · e2 = 0, ė1 · e2 = −e1 · ė2.

Thus
kg = θ̇ − e1 · ė2. (3.13)
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The integral along the boundary δT then gives us
∫

δT
kgds =

∫

δT
θ′−e1 · ė2ds =

∫

δT
θ̇ds−

∫

δT
(e1 · e

2

du
)du+(e1 · e

2

dv
)dv. (3.14)

With Green’s theorem the second integral can be rewritten as
∫∫

T
(
d

du
(e1 · e2

v)−
d

dv
(e1 · e2

u))dudv =

=

∫∫

T
(e1
u · e2

v − e1
v · e2

u)dudv.

(3.15)

Since e1, e2 and N constitute an orthonormal basis we can use them to
express the partial derivatives of e1 and e2. Because the partial derivatives of
e1 and e2 are perpendicular to e1 respectively e2 they will only be dependent
on e2 and N respectively e1 and N . Therefore





e1
u = a1e

2 + λ1N

e1
v = b1e

2 + µ1N

e2
u = a2e

1 + λ2N

e2
v = b2e

1 + µ2N

(3.16)

where a1, a2, b1, b2, λ1, λ2, µ1, and µ2 are scalars that could depend on u and
v. Using that e1 and e2 are perpendicular, we have e1 · e2 = 0 . The
derivative of this equation with respect to u gives

e1
u · e2 + e2 · e2

u = 0.

With (3.16) it becomes

(a1e
2 + λ1N) · e2 + (a2e

1 + λ2N) · e1 = a1 + λ1N · e2 + a2 + λ2N · e1 = 0

From this relation it is clear that a1 = −a2 and differentiating with respect
to v we would analogously get b1 = −b2 and (3.16) becomes





e1
u = a1e

2 + λ1N

e1
v = b1e

2 + µ1N

e2
u = −a1e

1 + λ2N

e2
v = −b1e1 + µ2N.

(3.17)

It follows that :
e1
u · e2

v − e1
v · e2

u = λ1µ2 − λ2µ1. (3.18)

If we now instead take the scalar product between the vectors e1 and e2 with
N and differentiate it with respect to u and w we would get





e1 ·Nu = −e1
u ·N

e1 ·Nv = −e1
v ·N

e2 ·Nu = −e2
u ·N

e2 ·Nv = −e2
v ·N.

(3.19)
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Determining Nu and Nv we use the relation between the normal vector and
the curvature given by (3.3). Namely

K =
|Nu ×Nv|
|u× v|

and we rewrite it to

|Nu ×Nv| = K · (u× v). (3.20)

Using (3.5) in the formula for the normal vector from (3.2) we could use the
equation u× v = N

√
EG− F 2. This is substituted in (3.20) together with

the formula for K from (3.8) and we get that

Nu ×Nv =
LN −M2

EG− F 2
N ⇔ (Nu ×Nv)N =

LN −M2

EG− F 2
.

Since N = e1 × e2 the equation results in

LN −M2

EG− F 2
= (Nu ×Nv)(e

1 × e2) = (Nu · e1)(Nv · e2)− (Nu · e2)(Nv · e1).

Using (3.19) we could rewrite it as

LN −M2

EG− F 2
= (e1

u ·N)(e2
v ·N)− (e2

u ·N)(e1
v ·N).

Using (3.17) we have

LN −M2

EG− F 2
= λ1µ2 − λ2µ1

and finally by equating it with (3.18) we get

e1
u · e2

v − e1
v · e2

u =
LN −M2

EG− F 2
= K.

Thus is (3.15) equal the integral of the curvature K. The integral of the
geodesic curvature in (3.14) then becomes:

∫

δT
kgds+

∫∫

T
KdA =

∫

δT
θ̇ds. (3.21)

To conclude the proof we will use .a standard argument from the Hopf
Umlaufsatz called Theorem of Turning Tangents. It says that the total
rotational angle of the tangent vector given by

∫
θ̇ds along a simple and

closed curve is 2π . If there are singularities and the curve is piecewise
regular by (α1, ..., αn) the total rotation angle is 2π−∑n

i=1 φ where φ is the
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angle between αi and αi+1. For a triangle with vertices (A,B,C) we then
have (Woodward and Bolton, 2018)

∫

δT
θ′ds = 2π−

n∑

i=1

φ = 2π− ((π−A) + (π−B) + (π−C)) = A+B+C−π

This in Eq. 10 and it gives us

∫

δT
kgds+

∫∫

T
KdA = A+B + C − π

and our proof is completed.

Since a triangle is constructed by geodesics the geodesic curvature by
definition is 0 we can conclude

∫∫

T
KdA = A+B + C − π

This shows that the curvature of a surface is independent of the surface’s
embedding in space, but is an intrinsic invariant and can be determined
by only measuring distances, angles and areas on the surface. Gauss did a
more general proof of this fact in 1827 and called it the remarkable theorem
Theorema Egregium since it means if the Gaussian curvature is the same
then the distances,angles and areas are unchanged.

3.2 Riemannian geometry

Until the 19th century the concept of physical space and Euclidean geometry
were indistinguishable. Euclidean geometry was the only accepted geometry
at that time and was thought to be applicable to all spaces (Farwell and
Knee, 1990). Non-Euclidean geometry had been independently invented by
Nikolai Lobachevsky and Janos Bolyai in the 1830s, but it was assumed by
many that a contradiction would be soon found.

Bernhard Riemann (1826-1866), who studied under Gauss, gave a famous
lecture called About the hypothesis which geometry is based upon for his
lectureship in 1854 (Mlodinow, 2000). Riemann wanted to move away from
applying Euclidean geometry to any space a-priori, but instead approached
it by letting experience determine which geometry to apply (Farwell and
Knee, 1990). In his lecture he gave an early definition of a manifold which
he called an ”n fold extended quantity” that was locally like a n-dimensional
Euclidean space. Like Gauss, Riemann thought of distances as integrals
of infinitesimal segments along a curve where the segments are given by
the tangent vectors of the curve. If the curve on the manifold is given by
γ = (x1, x2, ...., xn) then the infinitesimal distance ds can be determined by
using the quadratic form ds2 = γ̇ · γ̇ =

∑
i=1

∑n
j=1 gijdx

idxj , where gij is a
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number and g =
∑

i=1 gij is called the Riemann metric. Riemann assumed
that this metric could be determined by the curvature.

He introduced the Riemann curvature tensor R that assigns a tensor to
every point on a manifold that represents the curvature at that point. A
modern definition of the Riemann curvature tensor uses the affine connec-
tions and is expressed with the Levi-Civita connection∇:

R(u,v)w = ∇u∇vw −∇v∇uw −∇[u,v]w, (3.22)

where u and v are vector fields on the manifold and w is a vector. The
∇u∇vw part transports w an infinitesimal distance in v’s direction then
in u’s direction . Likewise ∇v∇uw transports w but in reversed order. It
can therefore be interpreted as the discrepancy when transporting a vector
along two vector fields in different orders. We can say that a vector is
transported along a curve if the angle between the transported vector and
the tangent to the curve remains constant throughout the entire transport.
On a flat manifold it would give the same vector independent of order but on
a curved manifold the resulting vector would differ. The last part ∇[u,v]w
is a necessary correction if the transport of the vector doesn’t end up at the
same point.

19



4 Special relativity

4.1 The invariance of the speed of light

After a double slit experiment in 1801, that showed the interference of
light, the wave theory of light was established followed by the aether the-
ory (Mlodinow, 2000). Light moving like a wave through space without a
medium seemed implausible at the time so the idea of a medium, called
the aether, that was thought to be everywhere but undetectable and only
affecting light, became leading . The idea was that light moved with differ-
ent speeds depending on the inertial system where the aether’s frame would
be absolute and the only one where the speed would be constant, noted
as c (Resnick, 1968). In the 1880’s Michelson and Morley tried to detect
the Earth’s motion through this aether by using addition of velocities. Ac-
cording to Galilean relativity used at the time, the speed of light in Earth’s
frame, c′, would be the sum of the speed of light in the ethers frame, c, and
the speed of the Earth through the ether ,v (Resnick, 1968). The experi-
ment was carried out by transmitting a beam of light with a single frequency
against the Earth’s movement through the assumed ether. The beam is then
divided by a mirror, M , into two beams with one beam continuing along
the same path and the other one reflected 90 °. Both beams travel then the
length L to two mirrors M1 respectively M2 to be reflected back to mirror
M where they reflect one last time to a telescope T where they converge.
The difference in time the beams travel will emerge from travelling back and
forth to mirror M . The beam that the first time passes through M will first
move in the same direction as the Earth and then against in on the way
back. Accordingly to Galilean relativity it will take the round trip in the
time

t1 =
L

c+ v
+

L

c− v = L
(c+ v) + (c− v)

c2 − v2
= L

2c

c2(1− v2

c2

=
2L

c

1

1− v2

c2

.

Mirror M2 is at distance L from M but since the Earth has moved vt2/2
from when the beam travels from M to M2 the distance the beam travels is
given by Pythagoras theorem as:

2(c
t1
2

)2 = L2 + (v
t1
2

)2 ↔ 4L2 = c2t22 − v2t22.

We solve for t2 and get

t2 = 2
L√

c2 − v2
= 2L

1√
c2(1− v2

c2
)

=
2L

c

1√
1− v2

c2

.

The difference in time between the two beams are therefore:

∆t = t1 − t2 =
2L

c

1

1− v2

c2

− 2L

c

1√
1− v2

c2

=
2L

c
((1− v2

c2
)−1 − (1− v2

c2
)−1/2).
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Since v2

c2
<< 1 we can use the binomial approximation that states (1+x)a ≈

1 + ax we then get

∆t =
2L

c
((1 +

v2

c2
)− (1 +

v2

2c2
)) =

L

c

v2

c2
.

To find the path difference, ∆λ, we multiply with c and get

∆λ = c∆t = L
v2

c2

If the path difference is an integer of the wavelength, λ, there will be con-
structive interference, white fringes will appear on the screen of the tele-
scope. If the whole apparatus would then rotate 90° the path difference
would then analogously be ∆λ′ = −Lv2

c2
and the fringes should shift. To

find the fringe shift, ∆N , we subtract the path differences and divide by the
wavelength:

∆N =
∆λ−∆λ′

λ
=

2Lv2

λc2
.

Michelson and Morely predicted a shift of ∆N = 0, 4 but the experiment
showed almost no shift at all (Resnick, 1968)). The experiment was repeated
during all time of the day and all seasons of the year to counter the effect
of Earth’s spin and velocity relative to the aether, but with no change in
outcome (Resnick, 1968).

One explanation for the negative results would be if the speed of light
was the same in all frames of reference and there is no absolute frame.

4.2 Lorentz transformation

Lorentz, a supporter of the aether theory, wanted to explain the null result
and went to prove ad hoc how the ether contracted bodies with a factor of√

1− v2

c2
(Resnick, 1968).

Einstein did the same thing, probably unaware of Lorentz contribution,
but based on two axioms: the speed of light is an invariant, the same in all
inertial systems, and the laws of physics apply to all systems.

If we define two inertial systems, S and S′, such as:

1. x and x′ are positive axis are in the same direction

2. S′ moves with the constant speed, v, from S along the positive x-axis

3. The y and y′ axis and the z and z′ axis are parallel

4. The origo in S and S′ coincide at t = t′ = 0.

Due to the fact that accelerations only can occur from forces and not from
transformations and that a point in one system can’t have two corresponding
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Figure 6: Two inertial systems S and S′ that move with the speed v along the x-axis
direction

points in another system the relation between x and x′ must be linear. We
then get

x′ = γx+ bt (4.1)

where γ and b are unknown constants. During the time ,t , since S and S′

coincided the distance S’ has moved in S is equal to vt . Therefore x′ = 0
in S′ has the coordinate x = vt in S. This would lead to the equation (4.1)
becoming

0 = γvt+ bt↔ b = −γv.
We substitute b in (4.1) and then we acquire that x′ becomes

x′ = γx− γvt = γ(x− vt). (4.2)

Analogously we get the reverse transformation, transforming from S′ to S,
using that the distance now is instead −vt. This would instead result in the
relation

x = γ(x′ + vt). (4.3)

If we now use a light that moves in the x- and x′-axis direction from S and
S′ origo at t = t′ = 0. The distance the light traveled would be x = ct in S
and x′ = ct′ in S′. Using this we get that (4.3) becomes

ct′ = γ(ct− vt) = γt(c− v).

If we then solve for t
t′ , we get

t

t′
=

c

γ(c− v)
. (4.4)
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In the same way (4.3) becomes

ct = γ(ct′ + vt′) = γt′(c− v).

Solving for t
t′ , we get

t

t′
=
γ(c+ v)

c
. (4.5)

Equating (4.4) and (4.5) we get that

γ(c+ v)

c
=

c

γ(c− v)
,

solve it for γ2, we get

γ2 =
c2

(c− v)(c+ v)
=

c2

c2 − v2
=

c2

c2(1− v2

c2
)

=
1

1− v2

c2

,

giving

γ =
1√

1− v2

c2

. (4.6)

The number γ is know as the Lorentz factor. The transformation equation
(4.1) and the reversed transformation equation (4.3) is defined as

x′ = γ(x− vt) =
x− vt√
1− v2

c2

(4.7)

and

x = γ(x′ + vt′) =
x′ + vt′√

1− v2

c2

. (4.8)

To find the transformation equation between t′ and t we substitute x′ from
(4.7) and put it into (4.8) and get

x =
x− vt
1− v2

c2

+
vt′√

1− v2

c2

. (4.9)

Multiplying by 1− v2

c2
, we get

x(1− v2

c2
) = x− vt+ vt′

√
1− v2

c2
. (4.10)

Solving for t′, one obtains

t′ =
t− vx

c2√
1− v2

c2

= γ(t− vx

c2
). (4.11)
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The inverse function would analogously be

t =
t′ + vx′

c2√
1− v2

c2

= γ(t′ +
vx′

c2
). (4.12)

Lorentz called t the local time and t′ the universal time thinking that the
universal time was the correct time and local time was just a mathematical
construct needed to make his hypothesis consistent with experimental facts
(Mlodinow, 2000). It was Einstein who showed that time is relative and not
the same for all observers.

4.3 Minkowski and space-time

In 1908 Minkowski gave a lecture called Space and time where he intro-
duced using the four variables (ct, x, y, z) of space and time in coordinate
form where a point in space would be equivalent to an event in space-time.
According to Minkowski, space and time can not be seen geometrically by
themselves but only as a union. According to special relativity, an event
would be different in different inertial frames. To be able to measure in-
tervals in space-time the invariant speed of light, c, is used as a conversion
factor for the time dimension. Interval in space-time between two events is
defined as

ds =
√
c2∆t2 − (∆x2 + ∆y2 + ∆z2) (4.13)

To compare the interval in different inertial frames we use equations (4.8)
and (4.12) and get

ds =

√
c2(γ(∆t′ +

v∆x′

c2
)2 − ((γ(∆x′ + vt′))2 + ∆y′2 + ∆z′2).

Expanding it gives us

ds =

√
c2γ2(∆t′2 +

2v∆x′∆t′

c2
+
v2∆x′2

c4
)− γ2(∆x′ + 2v∆t′∆x′ + v2∆t′2)−∆y′2 −∆z′2.

By simplifying and factorising ∆t′2 and ∆x′2 we get

ds =

√
γ2(c2 − v2)∆t′2 − γ2(1− v2

c2
)∆x′2 −∆y′2 −∆z′2.

Using c2 − v2 = c2(1− v2

c2
) and γ2 = 1

1− v2
c2

we would finally have

ds =
√
c∆t′2 −∆x′ −∆y′2 −∆z′2 = ds′. (4.14)

This shows that under transformations the interval is an invariant and will
not change.
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Since according to special relativity matter moves with a speed lower

than the speed of light c therefore we get ∆x2+∆y2+∆z2

∆t2
< c2, which gives

us an interval greater than zero. This interval is dominated by the time
separation and is therefore is called timelike. If instead the interval ds =
0 the time separation and distance are equal, the two events could only
be connected by light and the interval is then called lightlike. The last
possibility is that ds < 0. Such an interval is called spacelike and means the
two events cannot be connected at all since nothing can move faster than
the speed of light.

4.4 General Lorentz transformation

Let us instead consider at a general transformation between two inertial
systems that moves with respect to each other with a constant speed in an
arbitrary direction.

We look at an event with the space-time coordinates (ct, x1, x2, x3) in S
inertial system where the distance vector is ~r = x1 ~e1 +x2 ~e2 +x3 ~e3. Another
inertial system S′ moves with the velocity vector ~v = v1 ~e1 + v2 ~e2 + v3 ~e3

relative S. In S′ the same event has the coordinates (ct′, x′1, x
′
2, x
′
3) with the

distance vector ~r′ = x′1 ~e1 + x′2 ~e2 + x′3 ~e3.

Figure 7: Two inertial systems S and S’ in R3 with the relative speed v between the two
systems in an arbitrary direction. The position vectors ~r and ~r′ points to the same point
from the two systems.
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Transforming time between the systems according to (4.11):

t′ = γ(t− ~r · ~v
c2

) = γt− γ x1v1

c2
− γ x2v2

c2
− γ x3v3

c2
.

Extending with c on both sides and introducing ~β = ~v
c = (v1c ,

v2
c ,

v3
c ) we

would get

ct′ = γct− γx1β1 − γx2β2 − γx3β3. (4.15)

Now divide ~r into two vectors ~r‖ and ~r⊥ that are respectively parallel

and perpendicular to ~v. When transforming between ~r′ and ~r it is only the
part that is in the same direction as the velocity vector that is affected.
According to (4.7) the relation is

~r′ = ~r⊥ + γ(~r‖ − ~vt).

We can use the relation ~r = ~r‖+ ~r⊥ and solve for ~r⊥ and substitute it in the
transformation

~r′ = ~r + ~r‖ + γ(~r‖ − ~vt) = −γ~vt+ ~r + (γ − 1)~r‖. (4.16)

Seeing that ~r‖ has the same direction as the velocity, ~v, between the systems,
the dot product between ~r and ~v is the same as the scalar product between
~r‖ and ~v which in turn is the product of their magnitudes. Solving for |~r‖|,
we get

|~r‖| =
~r‖ · ~v
|~v| =

~r · ~v
|~v| .

If we combine this with writing ~r‖ as its magnitude times ~v’s direction
we get

~r‖ = |~r‖|
~v

|~v| =
~r · ~v
|~v|

~v

|~v| = ~r · ~v ~v

|~v|2 .

Using this in (4.16) we get the transformation of the position vectors

~r′ = −γ~vt+ ~r + (γ − 1)~r · ~v ~v

|~v|2 .

Transformation of the components are

x′i = γvit+ xi + (γ − 1)
vi
|v|2 (x1v1 + x2v2 + x3v3)

for i = 1, 2, 3.
Using β1 = v1/c, β2 = v2/c, β3 = v3/c and (4.15) we can write the coordi-
nate transformation as

x′i = γβict+ xi + (γ − 1)
βi
|β|2 (x1β1 + x2β2 + x3β3)
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ct′ = γct− γx1β1 − γx2β2 − γx3β3




ct′

x′1
x′2
x′3


 =




γ γβ1 γβ2 γβ3

γβ1 1 + (γ − 1)
β2
1
|β|2 (γ − 1)β1β2|β|2 (γ − 1)β1β3|β|2

γβ2 (γ − 1)β1β2|β|2 1 + (γ − 1)
β2
2
|β|2 (γ − 1)β2β3|β|2

γβ3 (γ − 1)β1β3|β|2 (γ − 1)β2β3|β|2 1 + (γ − 1)
β2
3
|β|2







ct
x1

x2

x3




where the Lorentz factor in the vector form is γ = 1√
1−~v·~v

c2

= 1√
1− |~v|2

c2

.

4.5 Time dilation and length contraction

If we look at how much time has elapsed between two points in time, tA
and tB in S from S′ point of view the time that has taken place would be
according to Lorentz time transformation (4.11) be given by

∆t′ = t′B − t′A = γ(tB −
vxB
c2

)− γ(tA −
vxA
c2

) =

= γ(tB − tA +
v

c2
(xA − xB)) = γ(tB − tA −

v

c2
(tB − tA)(

xB − xA
tB − tA

))

= γ(tB − tA)(1− v

c2

xA − xB
tB − tA

).

Using that tB − tA = ∆t and that xB−xA
tB−tA = v we get

∆t′ = γ∆t(1− v2

c2
).

Since 1− v2

c2
= γ−2 we finally have

∆t′ = γ−1∆t (4.17)

From the local frame of reference of S the time in S′ is perceived as going
slower and vice versa from the S’ frame of reference.

Looking at how distance might be distorted, we use Lorentz transfor-
mation (4.8) on a length L in S that goes from coordinate xa to xb and
transform it to S′ coordinates. Obtaining

L = xb − xa = γ(x′b − vt′b)− γ(x′a − vt′a) = γ(x′b − x′a) + γ(vt′b − vt′a).

We assume when the length is measured the coordinates are determined
simultaneously and therefore t′a = t′b. The length L′ in S′ is x′b − x′a making
the equation

L = γL′.
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Lengths in S′ that are in the same direction as S′ velocity relative S will
seem to be contracted from S perspective, but any length that isn’t in the
same direction will be unaffected.

5 Beginning of general relativity

Einstein wasn’t content with the special relativity, only working on inertial
systems that have an uniform motion, but wanted to create a model that
worked for any frame of reference. To understand the frame of reference with
acceleration Einstein used thought experiments and set up a situation with
an elevator that was free falling toward the Earth. He concluded that any
object in the elevator would free fall with the same motion as the elevator
and would be stationary to the elevator’s frame of reference (unless a force
acted upon it). The inside of the accelerated elevator could thus be seen as
an inertial system.

In another thought experiment the elevator is accelerated in space with
the constant value of Earth’s gravitational acceleration. Since anyone in the
elevator would be pressed toward the floor with the same amount of force
as on Earth and thus be unable to distinguish between the two, they are
therefore equivalent. Einstein concluded that (Mlodinow, 2000):

It is impossible to distinguish, except in comparison to other
bodies, whether a body is undergoing uniform acceleration or is
at rest in a uniform gravitational field.

This is called the principle of equivalence and is the third axiom in rela-
tivity. By using the work of Gauss and Riemann, Einstein could later on
also include non-uniform gravitational fields by seeing them as infinitesimal
patches of uniform gravitational fields.

If we see space-time as infinitesimal patches, the distance, L between
two events using (4.13) can be seen as the sum of these patches using the
Riemann metric.

L =

∫ √
ds2 =

∫ ∑√
gijdxidxj

Since we have shown in (4.14) that ds is intrinsic, Lmust also be intrinsic.
The shortest distance and the curve that is a geodesic is then the path that
minimizes L. This is realized for light rays since their interval is ds = 0 at
each point. In other words, lights are geodesics in curved space-time.

In a third thought experiment a light beam entered the elevator through
one side and hit the opposite wall. When the elevator is at rest the light
travels the shortest distance in a straight line. If the elevator instead would
be accelerating upwards the light would go in a curved path hitting the op-
posite wall a small distance below where it would have if the elevator hadn’t
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been accelerating. The path that the light takes is therefore curved and
since the accelerated frame of reference is equivalent to a uniform gravita-
tional field it means that the mass creating the gravitational field curves the
space-time.

From this Einstein concluded that unless a force acts upon it matter
follows the shortest path in space-time but the space-time could be curved
and then the shortest path is a geodesic. The source of this curvature would
be matter itself, so gravity wouldn’t be a force but simply the result of the
curvature of space-time.

Einstein formulated an equation for how the curvature relates to matter
distribution called Einstein field equation and can be written as :

Gµν =
8πG

c4
Tµν ,

where Gµν , the Einstein tensor, is dependent on the Riemann metric and
its first and second derivatives. G is Newton’s constant of gravitation and
Tµν is the mass-energy tensor that describes the density and flux of energy
and momentum in space-time.

5.1 Testing general relativity

In 1919 Eddington tested Einstein’s general relativity theory by measuring
if the sun would bend light from other stars. During an eclipse that year the
sun would be in front of a prominent group of stars known as the Hyades.
The experiment from the Island of Principe showed that the light’s path
from the stars was bent resulting in the stars seeming to be displaced when
the sun was in front of them. From the displacements Eddington concluded
that the deflection by the sun to be 1, 61 arcseconds equal to 4, 47 · 10−4

°

confirming general relativity within a 10 error margin (Dyson et al., 1920).
We define ε1 as the angle between the light direction toward Earth from
the star when the sun is between the star and Earth and not, we define ε2
likewise but as the received light on Earth shown in figure 8.

If we draw asymptotes to the lights path from the star S and the Earth
O the deflection of the light δ will be the angle between them. If we then
draw a parallel line to SO where the asymptotes intersect we will split δ in
two angles θ1 and θ2. θ2 and ε2 are corresponding angles and therefore equal
and θ1 and ε1 are alternate angles and are also equal. Then the deflection
of the light is δ = ε1 + ε2.

If we then have two stars that with the Earth make up a triangle with
the angles α, β and γ that adds up to 180°

The sum of the angles of this triangle is:

(α+ε1)+(β+ε2)+(α+ε2+ε4) = α+β+γ+(ε1+ε2)+(ε3+ε4) = α+β+γ+2δ
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Figure 8: The deflection of
light by a mass between the
source, S and the observer,
O. S′ is the perceived source
by the observer

Figure 9: The triangle
made by deflected light from
two stars S1 and S2. α, β
and γ are the angles without
the deflection.

With δ being 4, 47 · 10−4
° we have that the angle sum is equal

180 + 2 · 4, 47 · 10−4 = 180, 00894°

Therefore we have a triangle greater than two right angles and space must
be curved.

6 Conclusions

In this thesis we have shown that one of Euclid’s axioms, the parallel pos-
tulate, doesn’t hold on a sphere since the angle sum of triangles is greater
than 180°. We concluded that the difference between the angle sum of the
triangle and 180°, known as angular defect, is proportional to the area of
the triangle, not only on the sphere but also if we start with the hypothesis
that the angle sum is greater or lesser than 180°.

We have also seen this relation between the area of the triangle and it’s
angle sum in the curvature of a surface. Using the area of the triangle in
the definition of curvature, we deduced that the curvature only depends on
the angles of the triangle and are therefore intrinsic. This curvature tells us
the geometry of space and is affected by the mass-energy density as shown
by Einstein in his general relativity.

With the experiment made by Eddington that tested general relativity,
we have produced a light triangle that shows that the parallel postulate isn’t
true but that space is partly curved giving the angle sum a greater value
than 180°.

We have also shown how Einstein, using the invariance of the light axiom
in special relativity came to the conclusion that space and time are relative
to the inertial system of the observer.
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A Gauss curvature

Let M be a 2-dimensional submanifold of R3 with the inclusion map i : M 7→
R3 At each point of pεM there is a unique unit vector ν that is perpendicular
to Mp Then we have a normal map ν : M 7→ S2 ⊂ R3 where S2 is the surface
of the unit sphere.

If we express the points on M using two independent system of curves
(s, t) on M with the coordinate system X : M 7→ R2 the inverse function
function f will be f = X−1 : R2 7→M ⊂ R3.

If p = f(s, t) and if M is the graph of g : R2 7→ R so that

M = (x, y, (g(x, y)) : x, yεR2,

then M is the image off : R2 7→ R3 defined by:

f(s, t) = (s, t, g(s, t))

We choose the vectors u and w:

u =
δf

δs
= (1, 0,

δg

δs
)

w =
δf

δt
= (0, 1,

δg

δt
)

the cross product of u and w and its scalar is:

u× w = (−δg
δs
,−δg

δt
, 0)

|u× w| =

√
δg

δs

2

+
δg

δt

2

+ 1

To make it easier to follow we will make these notations:

a =
δg

δs
, b =

δg

δt

α =
δa

δs
=
δ2g

δs2
, β =

δb

δt
=
δ2g

δt2

and

γ =
δa

δt
=
δb

δs
=

δ2g

δsδt

The tangent vector to the unit sphere will then be:

δν

δt
=

δ

δt

u× w
|u× w| =

( δuδt × w + u× δw
δt )|̇u× w| − u× w δ

δt |u× w|
|u× w|2

δu

δt
× w = (0, 0, γ)× (0, 1, b) = (−γ, 0, 0)
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u× δw

δt
= (1, 0, a)× (0, 0, β) = (0,−β, 0)

δu

δt
× w + u× δw

δt
= (−γ,−β, 0)

δ|u× w|
δt

=
δ

δt

√
a2 + b2 + 1 =

aγ + bβ√
a2 + b2 + 1

then the tangent vector can be written as:

δν

δt
=

(−γ,−β, 0)
√
a2 + b2 + 1− (−a,−b, 1) bβ+aγ√

a2+b2+1

a2 + b2 + 1
=

=
(abβ − b2(γ + 1), abγ − β(a2 + 1),−bβ − aγ)

(a2 + b2 + 1)3/2

The tangent vector δν
δs on the unit sphere can likewise be written as:

δν

δs
=

δ

δs

u× w
|u× w| =

( δuδs × w + u× δw
δs )|̇u× w| − u× w δ

δs |u× w|
|u× w|2

δu

δs
× w = (0, 0, α)× (0, 1, b) = (0,−α, 0)

u× δw

δt
= (1, 0, a)× (0, 0, γ) = (−γ, 0, 0)

δu

δs
× w + u× δw

δs
= (−γ,−α, 0)

δ|u× w|
δs

=
δ

δs

√
a2 + b2 + 1 =

aα+ bγ√
a2 + b2 + 1

δν

δs
=

(−γ,−α, 0)
√
a2 + b2 + 1− (−a,−b, 1) aα+bγ√

a2+b2+1

a2 + b2 + 1
=

=
(abγ − α(b2 + 1), abα− γ(a2 + 1),−aα− bγ)

(a2 + b2 + 1)3/2

The area of the parallelogram made by the tangent vectors on the unit
sphere is:

δν

δs
× δν

δt
= (

(abα− γ(a2 + 1))(−bβ − aγ)− (abγ − β(a2 + 1))(−aα− bγ))

(a2 + b2 + 1)3
,

(−aα− bγ)(abβ − b2(γ + 1))− (abγ − α(b2 + 1))(−bβ − aγ)

(a2 + b2 + 1)3
,

(abγ − α(b2 + 1))(abγ − β(a2 + 1))− (abα− γ(a2 + 1))(abβ − b2(γ + 1))

(a2 + b2 + 1)3
) =
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=
(aγ2 − aαβ)(a2 + b2 + 1), (bγ2 − bαβ)(a2 + b2 + 1), (αβ − γ2)(a2 + b2 + 1)

(a2 + b2 + 1)3
=

=
(aγ2 − aαβ, bγ2 − bαβ, αβ − γ2)

(a2 + b2 + 1)2

|δν
δs
× δν

δt
| =

√
(aγ2 − aαβ)2 + (bγ2 − bαβ)2 + (αβ − γ2)2

(a2 + b2 + 1)2
=

=

√
γ4(a2 + b2 + 1)− 2αβγ2(a2 + b2 + 1) + α2β2(a2 + b2 + 1)

(a2 + b2 + 1)2
=

=

√
(αβ − γ2)2

(a2 + b2 + 1)3/2
=

αβ − γ2

(a2 + b2 + 1)3/2

replacing our notations we then conclude:

∴ |δν
δs
× δν

δt
| =

δ2g
δs2

δ2g
δt2
− ( δ

2g
δsδt)

2

(( δgδs )2 + ( δgδt )
2 + 1)3/2
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