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Abstract

This thesis is an introduction to hyperbolic geometry and Fuchsian
groups. We will introduce the Poincaré models of the hyperbolic plane
and give a matrix representation of the group of hyperbolic isometries.
A Fuchsian group is a discrete group of orientation-preserving hyperbolic
isometries. We will give a definition of a fundamental domain for a
Fuchsian group and describe the relation between Fuchsian groups
and hyperbolic tessellations. One of the main results of this work is
the Poincaré Polygon Theorem, which states that given a hyperbolic
polygon we can find, provided that certain conditions are met, a
Fuchsian group which has this polygon as a fundamental domain.
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1 Introduction

There are many reasons to study hyperbolic geometry. The charm of straight
lines that do not appear to be straight; a small tweak of a metric making
trivial patterns beautifully complex. The sheer visual beauty of hyperbolic
tessellations may be enough a reason, but beyond this, one finds a particularly
lavish and spectacular example of non-euclidean geometry.

The hyperbolic plane is the long sought after anti-sphere: a complete surface
of constant negative curvature. The famous Uniformization Theorem states
that the universal cover of a Riemann surface is either the euclidean plane, the
sphere, or the hyperbolic plane. In the light of this result hyperbolic geometry
arises as an infinite source of surfaces of genus two or higher. Hyperbolic
geometry does exist outside the mathematical universe too, from the intricacy
of crinkled lettuce leaves and jellyfish tentacles, to the vast landscape of
special relativity and, possibly, the geometry of our universe.1

The richness of hyperbolic geometry seeps into several areas of mathematics,
with the notion of polygonal tessellations being at the intersection of these
areas, and at the heart of this thesis. A tessellation is, naively, a covering
of a space with a repeating pattern of shapes, with no overlaps or gaps.
Tessellations by regular polygons of the euclidean plane are limited to triangles,
squares and hexagons, and of the sphere to the five regular polyhedra. If
we want to explore regular tessellations further, we have to look towards the
hyperbolic plane.

The first part of this thesis is a brief introduction to hyperbolic geometry.
Hyperbolic isometries will be studied from two perspectives: as elements of
matrix groups, and as reflections in hyperbolic lines. Towards the end of
the first part we seek to harmonise these two perspectives into a complete
classification of hyperbolic isometries. Our ultimate goal is to, given a
hyperbolic polygon, construct a tessellation of the hyperbolic plane. We will
discover that Fuchsian groups, that is, discrete groups of orientation-preserving
hyperbolic isometries, play a key role to our endeavour. A fundamental domain
is a subset of the hyperbolic plane that tessellates the plane under the action
of a Fuchsian group. Part two is dedicated to this special kind of isometry
groups and their fundamental domains. The Poincaré Polygon Theorem,
which will be our main concern in the third part, provides conditions for a
polygon to generate a tessellation. We will not treat this theorem in its most
general form, but give a proof in the case of compact hyperbolic polygons.

1A random forum post. Yes, I’ve done my research.
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2 The Playground

Let us delve daringly into the magical world of hyperbolic geometry! We will
spend most of our time with the hyperbolic plane; this is where the magic
happens. To bring this mystical creature down to earth, or rather, to the
euclidean plane where things are more familiar, we will present two models
in which the hyperbolic plane sits as a subspace of the complex plane C.
Many of the characteristics of the hyperbolic plane are uncovered by studying
its isometries. We will arrive at the isometry group through two different
routes, picking up anything that piques our curiosity along the road (or in
the gutter2).

2.1 The Poincaré Models

Excuse Me, Where Am I?

There are several models of the hyperbolic plane; we will work with two
closely related models – the Poincaré half-plane and the Poincaré disc – as
they give us exactly what we want (and more, if we’re feeling greedy). The
underlying space for both models is the complex plane C. The half-plane
model is the upper half-plane

H = {z ∈ C | Im(z) > 0}

equipped with the element of arc-length

ds =
|dz|
Im(z)

. (2.1)

We find the hyperbolic length of paths by integrating the hyperbolic element
of arc-length (2.1) as follows.

Definition 2.1. Let γ : [0, 1]→ H be a piecewise differentiable path given
by γ(t) = z(t) = x(t) + iy(t). The hyperbolic length of γ is given by

lengthH(γ) =

∫

γ

ds =

∫

γ

|dz|
Im(z)

=

∫ 1

0

∣∣dz
dt

∣∣ dt
y(t)

.

From this we derive a metric on H.
2Maths is hard sometimes.
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Definition 2.2. The hyperbolic distance between two points z and w
in H, denoted by dH(z, w), is the infimum of the lengths of all piecewise
differentiable paths connecting the two points.

Verifying that Definition 2.2 defines a metric is fairly straightforward; thus
(H, dH) is a metric space.3

We now introduce a type of complex functions that will play a key role
throughout this work.

Definition 2.3. A Möbius transformation is a transformation of the
complex plane of the form

z 7→ az + b

cz + d
with a, b, c, d ∈ C and ad− bc 6= 0. (2.2)

The domain of Möbius transformations extends to the extended complex
plane C∪{∞}. For reasons that will be clear later, it is helpful to treat H as
a subspace of C ∪ {∞}. Moreover, introducing the point at infinity allows us
to generalize the notion of a circle in C as either a circle or the union of a line
with {∞}, thus treating lines as ’circles with infinite radius’. A quick check
confirms that Möbius transformations are bijections of C∪ {∞} and that the
set of Möbius transformations forms a group under function composition.

Recall that a map is conformal if it preserves angles. An important feature
of Möbius transformations is that they are conformal, and furthermore, that
they preserve circles in C ∪ {∞}.4

Proposition 2.4. Any Möbius transformation

(i) preserves angles, and

(ii) takes circles in C ∪ {∞} to circles in C ∪ {∞}.
The disc model is constructed by mapping H onto the unit disc

D = {z ∈ C | |z| < 1}

using the Möbius transformation

J(z) =
iz + 1

z + i
. (2.3)

J maps the extended real line R ∪ {∞} onto the unit circle, and takes points
above the real axis to interior points of the unit circle. In particular, i is

3[1], Theorem 3.16.
4[1], Theorem 2.5 and Theorem 2.23.
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mapped to 0, ∞ is mapped to i, and ±1 are fixed. Each model has its
advantages, we will thus work with the two interchangeably, swapping back
and forth via the map J .

We define the distance between points w1 and w2 in D to be the distance
between their preimages J−1(w1) and J−1(w2) in H. It follows that the
isometries of D are conjugates of isometries of H, that is, any D-isometry is
of the form JhJ−1, where h is an H-isometry.

The preimage of a point w ∈ D is given by

J−1(w) =
−iw + 1

w − i .

Plugging this into (2.1) we find the element of arc-length on D to be

ds =

∣∣∣∣d
−iw + 1

w − i

∣∣∣∣

/
Im
(−iw + 1

w − i

)

=

∣∣∣∣
−2dw

(w − i)2

∣∣∣∣

/
Im
(

(1− iw)(w̄ + i)

|w − i|2
)

=
|2dw|

1− |w|2 .

We use the usual notion of angle that H inherits from C. As J is conformal,
this definition is carried over to D without modification.

We will later see that the geodesics in H (i.e. the shortest paths between
points) are euclidean lines and semicircles orthogonal to the real axis (Theorem
2.9). These subsets of H, which we will call hyperbolic lines, are preserved by
a certain subgroup of Möbius transformations (Theorem 2.7). The notion of
a circle in the extended complex plane gracefully unifies the two seemingly
different kinds of hyperbolic lines.

Definition 2.5. A hyperbolic line is the intersection of H with a circle in
C ∪ {∞} orthogonal to the real axis.

As the map J takes the real axis onto the unit circle, Proposition 2.4 reveals
the lines in D – the images of lines in H under J – as circles orthogonal to
the unit circle.

As in the euclidean plane, hyperbolic lines extend indefinitely. This is because
the length of paths tends to infinity as points approach the boundary. Accord-
ingly, we will refer to the boundary of H – the extended real line R ∪ {∞} –
as the circle at infinity. In D this is of course the unit circle.
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Figure 2.1. Asymptotic lines. Figure 2.2. Ultraparallel lines.

Figure 2.3. Several parallel lines.

Another way in which hyperbolic lines behave as euclidean is that for any two
points in the hyperbolic plane there is a unique hyperbolic line connecting the
two points. Through a euclidean lens, it is easy to see that there is a unique
circle (in the general sense) orthogonal to the real axis passing through the
two points.

We say that two hyperbolic lines are parallel if they are disjoint. The notion
of parallel lines showcases the particularities of hyperbolic geometry. Given
any line in the hyperbolic plane and any point not on the line, there are
infinitely many lines through the given point and parallel to the given line.
This is an example of how the hyperbolic plane diverts from the euclidean in
the opposite way to the sphere, in which there are no parallel lines.

In addition to this excess of parallel lines, some lines enjoy a special status:
they are lines that meet on the circle at infinity. In this case we say that the
lines are asymptotic. Asymptotic lines are strictly speaking disjoint since
the common point does not lie in the hyperbolic plane. To distinguish this
special kind of parallel lines from the properly disjoint kind, we refer to the
latter as ultraparallel.
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In the remaining sections we will work our way towards a suitable presentation
of the isometry group of H. Let us denote it by Iso(H). It turns out that
Möbius transformations serve as an excellent starting point.

2.2 The Group PSL(2,R)

The Group with Capital G

Building on the preceding discussion, we impose conditions on Möbius trans-
formations to map H onto itself. First we note that a map preserving H must
preserve its boundary R∪{∞}. For a Möbius transformation (2.2) this is the
case when the coefficients are real. Let T (z) = az+b

cz+d
with a, b, c, d ∈ R. Since

T (z) =
(az + b)(cz̄ + d)

|cz + d|2 =
aczz̄ + adz + bcz̄ + bd

|cz + d|2 ,

we have that

Im (T (z)) =
1

|cz + d|2 Im(z)(ad− bc). (2.4)

It follows that Im(z) > 0 implies Im(T (z)) > 0 if and only if ad− bc > 0. We
may multiply numerator and denominator by a constant to obtain ad−bc = 1,
as this represents the same transformation. Hence the Möbius transformations
preserving H are of the form

z 7→ az + b

cz + d
with a, b, c, d ∈ R and ad− bc = 1. (2.5)

The set of functions (2.5) form a group under function composition. Taking
a closer look, one realises that the group structure is very much similar to
that of the special linear group SL(2,R). More precisely, we may define a
surjective homomorphism ψ from SL(2,R) onto the group of transformations
(2.5) by

ψ

([
a b
c d

])
=

(
z 7→ az + b

cz + d

)
. (2.6)

Since the kernel of this map is ±Id, where Id is the identity in SL(2,R), the
group of Möbius transformations preservingH is isomorphic to SL(2,R)/{±Id}.
We call this group the projective special linear group, denoted by PSL(2,R).

Theorem 2.6. PSL(2,R) acts on H by isometries.
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Proof. We show that PSL(2,R) preserves the length of paths, it then follows
from the definition that the hyperbolic distance is preserved. Let γ : [0, 1]→ H
be a piecewise differentiable path given by z(t) = x(t) + iy(t), let T be an
element of PSL(2,R), and w = T (z) = az+b

cz+d
. Put T (z(t)) = w(t) = u(t)+iv(t).

We have that
dw

dz
=

1

(cz + d)2
.

By (2.4) v = y
|cz+d|2 , so

∣∣dw
dz

∣∣ = 1
|cz+d|2 = v

y
. Hence

lengthH(T (γ)) =

∫ 1

0

∣∣dw
dt

∣∣ dt
v(t)

=

∫ 1

0

∣∣dw
dz

dz
dt

∣∣ dt
v(t)

=

∫ 1

0

∣∣dz
dt

∣∣ dt
y(t)

= lengthH(γ).

�

As elements of PSL(2,R) preserve angles by Proposition 2.4, PSL(2,R) is a
group of orientation-preserving isometries of H.

Theorem 2.7. The set of lines in H is invariant under PSL(2,R).

Proof. As PSL(2,R) maps R ∪ {∞} onto itself, this is an immediate conse-
quence of Proposition 2.4. �

The following lemma will greatly facilitate our work as it allows us to swiftly
transfer a situation to a simpler one by change of coordinates.

Lemma 2.8. PSL(2,R) acts transitively on the set of hyperbolic lines.

Proof. We prove the equivalent statement that for any hyperbolic line L there
exists an element of PSL(2,R) mapping L to the positive imaginary axis I. Let
α, α′ be the endpoints at infinity of L. We show that T (z) = −(z − α)−1 + β
takes L to I for a suitable choice of β. First note that a matrix representation
of T is [

β −αβ − 1
1 −α

]

which is clearly in PSL(2,R). By Theorem 2.7, it suffices to check that the
endpoints of L are mapped to the endpoints 0 and ∞ of I. If L is a euclidean
line with α ∈ R and α′ =∞ we set β = 0. If L is a euclidean semicircle with
α, α′ ∈ R, α < α′ we set β = 1

α′−α . �

We now turn to proving that hyperbolic lines behave as one would expect
lines to behave, that is, that they are the shortest paths between points in
the plane.
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Theorem 2.9. The distance between two distinct points in H is the length
of the unique hyperbolic line segment joining the two points.

Proof. First, we consider points ia and ib on the positive imaginary axis with
a < b. Let γ : [0, 1]→ H be any piecewise differentiable path connecting ia
and ib, defined by γ(t) = (x(t), y(t)). We have

lengthH(γ) =

∫ 1

0

√(
dx
dt

)2
+
(
dy
dt

)2
dt

y(t)
(2.7)

≥
∫ 1

0

∣∣dy
dt

∣∣ dt
y(t)

≥
∫ 1

0

dy
dt
dt

y(t)

= ln
b

a
.

ln b
a
is precisely the length of the segment of the imaginary axis joining ia

and ib, and so the result holds in this case.

For arbitrary z1, z2 ∈ H, let L be the unique hyperbolic line joining the two
points. By Lemma 2.8 there is a transformation mapping L to the imaginary
axis. By the invariance of the hyperbolic metric under PSL(2,R), the problem
is reduced to the first case, and we conclude that the segment of L joining z1

and z2 is the shortest path between the two points. �

Letting a approach zero and letting b approach∞ in the proof of Theorem 2.9
shows that hyperbolic lines extend indefinitely. We say that the hyperbolic
lines are geodesics; we call the unique line segment joining two distinct
points z and w the geodesic segment joining z and w, denoted by [z, w].

Corollary 2.10. Let z, w be distinct points in H. Then

dH(z, w) = dH(z, ξ) + dH(ξ, w)

if and only if ξ ∈ [z, w].

We now derive a formula for the hyperbolic distance.

Proposition 2.11.

dH(z, w) = ln
|z − w̄|+ |z − w|
|z − w̄| − |z − w| (2.8)

for any z, w ∈ H.
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Proof. The left-hand side of (2.8) is invariant under PSL(2,R) by Theorem
2.6. We prove that the right-hand side is invariant. Lemma 2.8 then reduces
the problem to showing that (2.8) holds for points on the imaginary axis, and
a short calculation confirms that this is the case. Let T ∈ PSL(2,R). Using
ad− bc = 1 we get

T (z)− T (w) =
az + b

cz + d
− aw + b

cw + d

=
(z − w)(ad− bc)
(cz + d)(cw + d)

=
(z − w)

(cz + d)(cw + d)
.

Substituting into the right-hand side of (2.8) we see after some not so elegant
algebraic manipulation that

ln
|T (z)− T (w)|+ |T (z)− T (w)|
|T (z)− T (w)| − |T (z)− T (w)|

= ln
|z − w̄|+ |z − w|
|z − w̄| − |z − w| .

�

We will now look at some specific isometries that will come in handy later.

Example 2.12.

(i) Euclidean rotation

rθ(w) = eiθw with θ ∈ R

around 0 in D is a D-isometry. The absolute value |w| of points w ∈ D
is preserved by rotation around 0. Since the element of arc-length on D
depends only on |w|, distance is preserved.

(ii) Euclidean translation

tα(z) = z + α with α ∈ R

is given by the matrix
[
1 α
0 1

]
in PSL(2,R), hence it is an H-isometry.

(iii) Euclidean dilatation

dρ(z) = ρz with positive ρ ∈ R

is given by the matrix
[√

ρ 0
0 1√

ρ

]
in PSL(2,R).
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Although (i) can be seen as a hyperbolic rotation, (ii) is not a hyperbolic
translation, but an isometry unique to hyperbolic geometry called limit
rotation, and (iii) is in fact a hyperbolic translation. This terminology will
make sense once we understand isometries as reflections in hyperbolic lines.
A definition will be given in Section 2.4 (Definition 2.28). With a hint of
foreshadowing, the isometries in Example 2.12 give us a very good idea of
how to visualise the action of PSL(2,R) on the hyperbolic plane.

Each isometry permutes a certain set of lines, and leaves invariant curves
orthogonal to the permuted lines. rθ permutes the diameters of D, and leaves
invariant circles centred at 0. In H, the permuted lines are euclidean circles
through i, and the invariant curves are hyperbolic circles with centre i. tα
permutes the lines x = constant and leaves invariant the curves y = constant.
These curves are called horocycles. In D the permuted lines are hyperbolic
lines through i, and the invariant horocycles are euclidean circles tangential
to the circle at infinity. dρ permutes euclidean semicircles with centre 0, and
leaves invariant euclidean lines y = x× constant. In D the permuted lines are
euclidean circles orthogonal to the imaginary axis, and the invariant curves
are euclidean circles passing through ±i. Figure 2.4, Figure 2.5, and Figure
2.6 picture some of the permuted lines and invariant curves for rθ, tα, and dρ
respectively, in the disc model and in the half-plane model.

Figure 2.4.
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Figure 2.5.

Figure 2.6.

2.3 Reflections

Upside Down and Inside Out (We Are All Mad Here)

In this section we will explore hyperbolic reflections. The definition is analo-
gous to the usual notion of reflection.

Definition 2.13. Let L be a hyperbolic line and let P be a point not on
L. Let M be the unique line through P intersecting L orthogonally. Let Q
be the intersection point. The mirror image of P with respect to L is the
point P ′ such that

(i) P ′ lies on M , and

(ii) dH(P,Q) = dH(P ′, Q).

14



We define hyperbolic reflection in L to be the map fixing points on L and
sending points not on L to their mirror images with respect to L.

Remark 2.14. To see that M is uniquely determined by P , we take L to be
the imaginary axis. Then M is a circle with centre 0, and P is a point on M ,
so the radius of M is the euclidean distance from 0 to P .

When the line of reflection is a euclidean line, hyperbolic reflection coincides
with euclidean reflection.

Example 2.15. Euclidean reflection in the imaginary axis r̄I(z) = −z̄ is a
H-reflection. Figure 2.7 shows a point P in H and its mirror image under r̄I .

Proposition 2.16. Reflection in the line x = ε is given by tεr̄It−1
ε .

To establish what it means to ’reflect’ in a circle, we need the following
definition from euclidean geometry.

Definition 2.17. Let C be a euclidean circle with centre O and radius ρ,
and let P be a point different from O. The inverse of P with respect to C
is the point P ′ such that

(i) P ′ lies on the line through O and P , and

(ii) |OP ′||OP | = ρ2.

We define inversion in C to be the map sending points to their inverses with
respect to C.

Remark 2.18. As P 6= O, |OP | is nonzero and so P ′ is the point on the line
through O and P with distance ρ2/|OP | from O. Note that if P lies on the
circle C, then P ′ = P . Furthermore, we can extend the definition to C∪{∞}
by letting inversion in C interchange O and ∞.

Example 2.19. Inversion in the unit circle is given by I(z) = 1/z̄. To
see this, rewrite I(z) as z/|z|2. As each point z is scaled by a factor |z|2,
condition (i) of Definition 2.17 is satisfied. For the unit circle condition (ii)
reads |z||z|2 |z| = 1, which obviously holds for all z different from 0.

Lemma 2.20. Inversion in a circle centred on the real axis is conjugate to
inversion in the unit circle.

Proof. Consider the circle Cε,ρ with centre ε ∈ R and radius ρ. Let P be
some point in H with P ′ its image under inversion in Cε,ρ. We apply the
isometry t−1

ε : z 7→ z − ε to move the centre of the circle to the origin. Let
P1 = t−1

ε (P ), P ′1 = t−1
ε (P ′). It is clear that P1, P

′
1 satisfy conditions (i) and

(ii) of Definition 2.17 for inversion in the circle with radius ρ centred at 0.

15



Figure 2.7. Figure 2.8.

Now we apply the isometry d−1
ρ = z 7→ z/ρ. This moves points along lines

radiating from the origin, so condition (i) still holds. As P1, P ′1, and ρ are
scaled by the same factor, condition (ii) holds. Hence inversion in the circle
Cε,ρ is the map tεdρId−1

ρ t−1
ε . �

Proposition 2.21. Inversion in a euclidean circle centred on the real axis is
a H-reflection.

Proof. By Lemma 2.20, it suffices to prove that inversion in the unit circle is
a hyperbolic reflection. Passing to D, we see that JIJ−1 is the map w 7→ w̄,
which is reflection in the real axis. This is clearly a D-reflection. Figure
2.8 shows a point P in D and its mirror image under reflection in the real
axis. �

Proposition 2.21 and Proposition 2.16 cover all hyperbolic reflections. A
calculation similar to the proof of Theorem 2.6 proves that inversion in the
unit circle is an isometry of H. It is clear that r̄I is an isometry. As any
hyperbolic reflection is a conjugate of either of these two reflections, we see
that hyperbolic reflections are isometries.

It is a standard result that inversions are are anti-conformal and map circles
to circles.5 However, with the tools at hand, proving the following is an easy
task.

5[6], p.55.
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Proposition 2.22. Reflection in a hyperbolic line

(i) maps hyperbolic lines to hyperbolic lines, and

(ii) preserves angles, but reverses their signs.

Proof. Let L be the line of reflection. As elements of PSL(2,R) take hyperbolic
lines to hyperbolic lines and preserve angles, we can apply Lemma 2.8 to map
L to the imaginary axis, for which the result is trivial. �

Proposition 2.22 tells us that reflections are orientation-reversing. Conse-
quently, a product of two reflections is orientation-preserving.

We have seen that hyperbolic lines are length-minimising paths; the following
lemma provides another characterization of lines.

Lemma 2.23. The set of points equidistant from two points P, P ′ ∈ H is a
line L, and reflection in L exchanges P and P ′.

Proof. By rotation and euclidean translation we can take the points to be
mirror images in the imaginary axis. Reflection r̄I in the imaginary axis
exchanges P and P ′ and fixes the imaginary axis. Hence any point on
the imaginary axis is equidistant from P, P ′, so that the imaginary axis
is contained in the set of equidistant points. Suppose there is a point R
equidistant from P, P ′ not on the imaginary axis. Then the mirror image R′
of R is equidistant from P, P ′. Without loss of generality, we may assume a
situation like that in Figure 2.9. Let Q be the point of intersection of the
lines P ′R and PR′ (which obviously lies on the imaginary axis). Then we
have

dH(P ′, R′) = dH(P,R) by reflection
= dH(P ′, R) by assumption
= dH(P ′, Q) + dH(Q,R) by Corollary 2.10
= dH(P ′, Q) + dH(Q,R′) by reflection.

Since Q is not on the line segment joining P ′ and R′, this contradicts Corollary
2.10. We conclude that the imaginary axis is the equidistant set of P, P ′. �
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Figure 2.9.

The following theorem is of importance. It shows that Iso(H) is generated by
reflections in hyperbolic lines.

Theorem 2.24. Any hyperbolic isometry can be expressed as a product of
one, two, or three reflections.

Proof. We begin with noting that any H-isometry is uniquely determined by
the images of three points not in a line. This is because each point of H is
determined by its distance to three points A,B,C not in a line: if there were
two points P, P ′ with the same distance to A,B,C then these points lie in
the equidistant set of P, P ′, contradicting Lemma 2.23. To prove the theorem
let f ∈ Iso(H) and pick A,B,C as above.

Case 1 : f fixes two of the points, say A and B. Then A = f(A) and B = f(B)
are contained in the equidistant set of C and f(C). Hence reflecting in the
line joining A and B sends C to f(C), and we are done.

Case 2: f fixes one of the points, say A. Then A lies on the line of points
equidistant from B and f(B). Hence reflection ḡ in this line sends B to f(B)
and A to f(A). If this leaves C at f(C) we are done. If not, reflection h̄ in
the line through f(A) and f(B) sends ḡ(C) to f(C).

Case 3: None of the points are fixed by f . Then we construct f as above
with one, two, or three reflections ḡ, h̄, ī in lines equidistant from A and f(A),
ḡ(B) and f(B), and h̄ḡ(C) and f(C) respectively. �
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We are now ready to complete the task set out earlier – to identify the isometry
group of H. Let PS∗L(2,R) = S∗L(2,R)/{±Id}, where S∗L(2,R) is the group
of real matrices with determinant ±1. PSL(2,R) is a subgroup of PS∗L(2,R)
of index 2.

Theorem 2.25. Iso(H) is generated by PSL(2,R) together with r̄I(z) = −z̄
and is isomorphic to PS∗L(2,R). PSL(2,R) is the subgroup of orientation-
preserving isometries.

Proof. Let

f(z) =
az + b

cz + d
with ad− bc = 1, (2.9)

and
f̄(z) =

az̄ + b

cz̄ + d
with ad− bc = −1. (2.10)

Note that the maps f̄ ∈ Iso(H) are orientation-reversing isometries as they are
compositions of r̄I with orientation-preserving isometries (2.9). Composing
two isometries (2.10) will again result in an isometry of the form (2.9).

We claim that the map ψ : PS∗L(2,R)→ Iso(H) defined by

ψ

([
a b
c d

])
=

{
z 7→ f(z) if ad− bc = 1

z 7→ f̄(z) if ad− bc = −1

is an isomorphism.

A routine calculation shows that ψ is a homomorphism. We see that r̄I is
in the image of ψ. As PSL(2,R) acts transitively on hyperbolic lines, any
reflection is a conjugate of r̄I and so is of the form (2.10). By Theorem 2.24,
this covers all isometries. Hence ψ is surjective. It is clear that the kernel is
trivial, so that ψ is in fact an isomorphism. �

2.4 Classification of Hyperbolic Isometries

Mad About Fixed Points

We have seen how to describe isometries as complex functions represented
by matrices, and as reflections in hyperbolic lines. We now set out to give a
complete classification of hyperbolic isometries and to merge the two different
perspectives.

We borrow the following classification of elements of PSL(2,R) from linear
algebra, depending on the absolute value of the trace tr(T ) = a+ d.
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Definition 2.26. Let T ∈ PSL(2,R).

(i) If |tr(T )| < 2 then T is called elliptic.

(ii) If |tr(T )| = 2 then T is called parabolic.

(iii) If |tr(T )| > 2 then T is called hyperbolic.

We solve the equation

z =
az + b

cz + d
(2.11)

to find the fixed points of T . If c = 0 then there is either one solution z =∞
when a = d, or two solutions z = ∞, b/(d − a) when a 6= d. If c 6= 0 then
using ad− bc = 1 we have the solutions

z =
a− d±

√
(a+ d)2 + 4(bc− ad)

2c
=
a− d±

√
(a+ d)2 − 4

2c
.

This concludes that the trace squared determines whether T fixes one or two
points on the circle at infinity, or two complex conjugate points, corresponding
to one in H. In particular, this tells us that a nontrivial orientation-preserving
isometry can have no more than two fixed points. We summarise this in the
following proposition.

Proposition 2.27.

(i) An elliptic transformation has one fixed point in H.

(ii) A parabolic transformation has one fixed point in R ∪ {∞}.
(iii) A hyperbolic transformation has two fixed points in R ∪ {∞}.
As any orientation-preserving isometry f(z) ∈ Iso(H) is the product of an
even number of reflections, Theorem 2.24 infers that f(z) is the product of
two reflections. The lines of reflection are either intersecting, asymptotic, or
ultraparallel. This gives rise to the following definition.

Definition 2.28.

(i) A hyperbolic rotation is a composition of reflections in two intersecting
lines.

(ii) A limit rotation is a composition of reflections in two asymptotic lines

(iii) A a hyperbolic translation is a composition of reflections in two ultra-
parallel lines.
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We wish to identify these different types of isometries with the classification
of elements of PSL(2,R) given in Definition 2.26. As you may have sensed
by now, the link between H-isometries expressed as reflections in hyperbolic
lines and their matrix representations is provided by their fixed points.

Before moving on, we need to remark that we are using the term ’fixed point’
a little irresponsibly. In order to distinguish the different types of isometries,
we allow fixed points on the circle at infinity. However, points on the circle at
infinity are not actual fixed points of their action on H. Any isometry with
fixed points on the circle at infinity is in reality fixed point free. As elliptic
elements are the only isometries with a fixed point in H, groups of isometries
containing elliptic elements are the only subgroups of PSL(2,R) not acting
freely on H.

Proposition 2.29. Let L,M be two distinct hyperbolic lines. Let r̄L denote
reflection in L and r̄M reflection in M .

(i) If L,M intersect in a point P ∈ H then P is the unique fixed point of
the rotation r̄M r̄L.

(ii) If L,M are asymptotic then the unique fixed point of the limit rotation
r̄M r̄L is the common endpoint of L and M .

Proof. The proofs of the two cases are identical, so we take L,M to be either
intersecting or asymptotic at P . It is clear that P is fixed. Suppose r̄M r̄L
fixes a point Q different from P . Any such point cannot be fixed by both
reflections and hence we must have that both r̄L and r̄M interchanges Q and
some point Q′. This implies that M and L belong to the equidistant set of
Q,Q′ and so by Lemma 2.23 we have M = L, a contradiction. �

To determine the fixed points of a translation we need two lemmas.

Lemma 2.30. Suppose L,M are two distinct lines. Then reflection in L
preserves M if and only if M intersects L orthogonally. Furthermore, if
M is mapped onto itself by reflection in L, then the endpoints of M are
interchanged.

Proof. As PSL(2,R) preserves angles, we may apply Lemma 2.8 to map L to
the positive imaginary axis. Then M is preserved by r̄I if and only if it is a
semicircle centred at 0. The second claim of the lemma is evident. �
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Figure 2.10.

Lemma 2.31. Suppose L,M are ultraparallel lines. Then there is a unique
line intersecting both L and M orthogonally.

Proof. As in the proof of the previous lemma we take L to be the positive
imaginary axis. Then M is a euclidean circle which does not intersect the
imaginary axis (see Figure 2.10). Let ε denote the centre of M and ρ its
radius. Suppose N is a common perpendicular to L and M . Any hyperbolic
line perpendicular to L is a euclidean circle with centre 0. Let r denote the
radius of N . For N to intersect M orthogonally the equation ε2 = r2 + ρ2

must be satisfied, which has a unique positive solution for r. �

Proposition 2.32. Let L,M be two ultraparallel lines, and let N be the
unique common perpendicular of L and M . Then the endpoints of N are the
unique fixed points of the translation r̄M r̄L.

Proof. It follows from the above lemmas that r̄M r̄L leaves N invariant. As
each reflection r̄L, r̄M interchanges the endpoints of N , the endpoints are
fixed by r̄M r̄L. Since an orientation-preserving isometry has at most two fixed
points, we are done. �

We call the common perpendicular the axis of the translation. We will now
see how Example 2.12 ties into the discussion.

Proposition 2.33.

(i) Each rotation in H is conjugate to cos(θ)z+sin(θ)
− sin(θ)z+cos(θ)

for some θ ∈ R.

(ii) Each limit rotation in H is conjugate to tα(z) = z + α for some α ∈ R.
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(iii) Each translation in H is conjugate to dρ(z) = ρz for some positive
ρ ∈ R.

Proof. The property of pairs of lines being intersecting, asymptotic, or ul-
traparallel is preserved by isometries. Hence by transitivity of PSL(2,R) we
may apply isometries to obtain one of the standard isometries introduced in
Example 2.12.

Let f(z) = r̄M r̄L for two distinct lines L,M .

(i) In this case L and M are intersecting, and we can apply suitable
transformations tα and dρ to map the intersection point to i. Passing to
D, reflecting in lines intersecting at J(i) = 0 gives a rotation rθ in D, as
these lines are diameters of D. Conjugating by J gives the formula for
rotation around i in H:

f(z) = J−1rθJ(z) =
cos(θ)z + sin(θ)

− sin(θ)z + cos(θ)
.

(ii) In this case L and M are asymptotic at, say, a ∈ R. We may apply
z 7→ 1

a−z to map the common endpoint to ∞. Then L and M are
euclidean lines and f(z) = tα(z) for some α ∈ R.

(iii) In this case L and M are ultraparallel. We may apply an isometry
that takes the axis of f(z) to the imaginary axis. Then L and M are
semicircles with centre 0, and f(z) = dρ(z) for some ρ > 0.

�

At this point, we have everything we need to give a complete classification of
orientation-preserving H-isometries.

Theorem 2.34 (Classification). Let T ∈ PSL(2,R).

A. The following are equivalent.

(i) T is a rotation.

(ii) T is elliptic.

(iii) T fixes one point in H.

(iv) T is conjugate to
[
cosθ sin θ
− sin θ cos θ

]
for some θ ∈ R.
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B. The following are equivalent.

(i) T is a limit rotation.

(ii) T is parabolic.

(iii) T fixes one point in R ∪ {∞}.

(iv) T is conjugate to
[
1 α
0 1

]
for some α ∈ R.

C. The following are equivalent.

(i) T is a translation.

(ii) T is hyperbolic.

(iii) T fixes two points in R ∪ {∞}.

(iv) T is conjugate to
[
ρ 0
0 1/ρ

]
for some nonzero ρ ∈ R.

We now introduce a new type of hyperbolic isometry.

Definition 2.35. A glide reflection is a translation (possibly trivial) com-
posed with a reflection in the axis of the translation.

We will prove that all orientation-reversing isometries are glide reflections.
First we need a little piece of information about the fixed points of an
orientation-reversing isometry.

Lemma 2.36. An orientation-reversing H-isometry has two fixed points on
the circle at infinity.

Proof. Using the fact that x = x̄ for x ∈ R∪{∞}, we find the fixed points on
the circle at infinity of an orientation-reversing isometry (2.10) by again solving
(2.11), this time for real values. If c = 0 the solutions are x = b/(d− a),∞.
Otherwise, we have the solutions

x =
−(d− a)±

√
(d− a)2 + 4bc

2c

=
a− d±

√
d2 − 4ad+ 2ad+ a2 + 4bc

2c

=
a− d±

√
(a+ d)2 + 4(bc− ad)

2c

=
a− d±

√
(a+ d)2 + 4

2c
,
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using ad − bc = −1 in the last step. This gives two distinct real solutions
since (a+ d)2 + 4 > 0. �

Theorem 2.37. Any orientation-reversing isometry is a glide reflection.

Proof. Let f̄ ∈ Iso(H) be orientation-reversing. By Lemma 2.36 f̄ has two
fixed points on the circle at infinity. Let L be the unique geodesic connecting
the two fixed points. Now the isometry f = f̄ r̄L is orientation-preserving and
fixes the endpoints of L, so f must be a translation with axis L (possibly
trivial). It follows that f̄ = f r̄L is a glide reflection with axis L. �
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3 The Tools

Now that we have located the playground and gotten somewhat confident
with navigating around it, how do we play? There are naturally many ways
to go about this. In order to not stray too far away from the path and get
completely lost, we will keep our gaze fixed at tessellations, whilst keeping an
open mind.

3.1 Basics

Topology Bonanza or the Not so Basic Basics

Before we dig through the art supplies, we need to brush up our topology
skills. Here we will introduce concepts that will be frequently used, and state
a few important results that we will refer to later on. We do assume the
reader to be somewhat familiar with these concepts and keep the discussion
brief. Everything presented in this section can be found in [4].

3.1.1 Topological Groups

Definition 3.1. A topological group G is a group and a topological space
such that the group operation map G×G→ G defined by (x, y) 7→ xy, and
the inversion map G→ G defined by x 7→ x−1 are continuous.

The following is a direct consequence of the continuity of these maps.

Proposition 3.2. Let G be a topological group and let a ∈ G be some fixed
element of G. Then the map G→ G defined by x 7→ ax is a homeomorphism.

It follows that a topological group is homogeneous, that is, given any two
points x, y ∈ G, there is a homeomorphism of G mapping x to y (namely
t 7→ yx−1t). What this means is that local properties of G can be verified
by considering only one element of G. This gives us a nice condition for
discreteness of topological groups.

Proposition 3.3. A topological group is discrete if and only if the identity
element is isolated.

3.1.2 Local Properties

Definition 3.4. Let X be a topological space. X is called locally compact
if for every point x of X, there exists a compact set K ⊂ X containing a
neighbourhood of x.
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Definition 3.5. A family A of subsets of a topological space X is said to be
locally finite if each point of X has a neighbourhood V that intersects at
most finitely many of the sets in A.
For a locally compact space, we may rephrase Definition 3.5 as follows.

Proposition 3.6. Let X be a locally compact topological space. Then a family
A of subsets of X is locally finite if and only if for any compact subset K ⊂ X,

K ∩ A 6= ∅ for at most finitely many A ∈ A. (3.1)

Proof. Suppose (3.1) holds. Let x ∈ X. By local compactness of X, there
is a compact set K and a neighbourhood V with x ∈ V ⊂ K. Then the set
{A ∈ A |V ∩ A 6= ∅} is a subset of the finite set {A ∈ A |K ∩ A 6= ∅}, so is
finite. So A is locally finite.

Conversely, suppose A is locally finite and let K be a compact subset of X.
For all x ∈ K, there is a neighbourhood Vx intersecting at most finitely many
elements of A. We have that K ⊂ ⋃x∈K Vx. Since K is compact, finitely
many of the neighbourhoods Vx cover K. Thus K is contained in a finite
union of sets, each of which intersects finitely many of the sets in A. So (3.1)
holds. �

3.1.3 Covering Spaces

Here we present two results that will be needed for the proof of the Poincaré
Polygon Theorem (Theorem 4.6). First, we need a few definitions.

Definition 3.7. Let E and X be topological spaces and q : E → X a
continuous map. An open subset U of X is said to be evenly covered by q
if the preimage of U is a disjoint union of connected open subsets of E, called
the sheets of the covering, and if q restricts to a homeomorphism from each
sheet to U .

Definition 3.8. A covering map is a continuous map q : E → X such
that every point of X has an evenly covered neighbourhood. We call E a
covering space of X, and X the base of the covering.

Lemma 3.9. Suppose M and N are metric spaces, f : M → N , and suppose
there exists an ε > 0 such that for every x ∈ M , f restricts to an isometry
Bε(x)→ Bε(f(x)). Then f is a covering map.

Proof. Let y ∈ N and let f−1(y) be the preimage of y. We want to prove that
Bε(y) is evenly covered. More precisely, we prove that the preimage of Bε(y)
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is the disjoint union of the balls Bε(x) for each x ∈ f−1(y). By assumption
Bε(x) ⊆ f−1(Bε(y)) for all x ∈ f−1(y).

Suppose z is a point in the preimage of Bε(y). Then Bε(f(z)) contains y. By
assumption Bε(f(z)) = f(Bε(z)). So f(Bε(z)) contains y. So Bε(z) contains
a point in the preimage of y. That is, x ∈ Bε(z) for some x ∈ f−1(y), which is
equivalent to z ∈ Bε(x). We have proved that f−1(Bε(y)) =

⋃
x∈f−1(y) Bε(x).

It remains to prove that the balls Bε(x) are disjoint. Suppose Bε(xi)∩Bε(xj) 6=
∅ for some xi, xj ∈ f−1(y). Pick z ∈ Bε(xi) ∩ Bε(xj). Then xi, xj ∈ Bε(z).
Then dM(xi, xj) = dN(f(xi), f(xj)) = dN(y, y) = 0, so xi = xj.

We conclude that the preimage of Bε(y) is the disjoint union
⋃
x∈f−1(y) Bε(x).

Each sheet Bε(x) is mapped homeomorphically onto Bε(y), as any isometry
is also a homeomorphism. �

The following theorem is a standard consequence of the classification of
covering spaces.

Theorem 3.10. Suppose X is simply connected, locally simply connected,
and locally path-connected, and suppose E is path-connected and nonempty.
Then every covering map q : E → X is a homeomorphism.

3.2 Fuchsian Groups

For the Love of Abstract Algebra

Landing softly once more on hyperbolic ground, we endow H with the metric
topology. The next result shows that the hyperbolic plane and the euclidean
plane are homeomorphic.

Proposition 3.11. The hyperbolic metric and the euclidean metric induce
the same topology on H.

Proof. We show that a hyperbolic disc in the upper half-plane is a euclidean
disc and vice versa. The metric topology is generated by the set of all open
discs, and the result follows. Euclidean circles in D with centre 0 are clearly
hyperbolic circles. Mapping to H, this is enough to identify all hyperbolic
circles. However, we may also find the circles in H directly. Consider the
hyperbolic circle with radius r and centre w ∈ H. We use the formula for the
hyperbolic distance given in Proposition 2.11. For any point z on the circle
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we have

r = ln
|z − w̄|+ |z − w|
|z − w̄| − |z − w| ⇐⇒

er =
|z − w̄|+ |z − w|
|z − w̄| − |z − w| ⇐⇒

er(|z − w̄| − |z − w|) = |z − w̄|+ |z − w| ⇐⇒
|z − w̄|(er − 1) = |z − w|(er + 1) ⇐⇒

|z − w|
|z − w̄| =

er − 1

er + 1
.

So the ratio of the distance between z and w to z and w̄ is a constant between
0 and 1. Hence z lies on the Apollonian circle with focus points w and w̄;
furthermore, the circle lies entirely in H. �

Hence to our convenience H inherits many useful properties of C. For instance,
we deduce that H is second countable, locally compact and simply connected.

SL(2,R) can be identified with the subset {(a, b, c, d) ∈ R4 | ad− bc = 1} of
R4. In other words we identify the matrix

A =

[
a b
c d

]
∈ SL(2,R)

with the point (a, b, c, d) ∈ R4. We define a norm on SL(2,R) by ||A|| =√
a2 + b2 + c2 + d2. Then SL(2,R) is a topological space with respect to the

metric d(A,B) = ||A−B||. The map (2.6) from SL(2,R) to PSL(2,R) defines
an equivalence relation A ∼ −A on SL(2,R) and PSL(2,R) is topologized as
the quotient space under this equivalence relation. As orientation–reversing
isometries are given by matrices in GL(2,R) with determinant −1, Iso(H)
can be topologized using the same metric. We define convergence in Iso(H)
with respect to the metric as usual.

Now that we have entered the realm of topology, we can make sense of the
title of this section.

Definition 3.12. A Fuchsian group is a discrete subgroup of PSL(2,R).
In other words, Fuchsian groups are discrete groups consisting of orientation-
preserving H-isometries.

We give an example of a Fuchsian group that we will return to later, as well
as a non-example.
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Example 3.13. The subgroup of PSL(2,R) consisting of matrices with
integer coefficients is clearly discrete. We call this group the modular
group, denoted by PSL(2,Z).

Example 3.14. The extension PS∗L(2,Z) of the modular group to include
orientation-reversing isometries with integer coefficients is an example of a
discrete group of H-isometries which is not Fuchsian.

We will now zoom in on the action on H by Fuchsian groups. Let Γ be a
subgroup of PSL(2,R) and let Id denote the identity in Γ. Of special interest
are the orbits under Γ. We first remind ourselves of the definition.

Definition 3.15. The Γ-orbit of a point z in H is the family {T (z) |T ∈ Γ},
denoted by Γz. We count each point of Γz with multiplicity equal to the
order of the stabilizer StabΓ(z) of z in Γ. We say that two points z1, z2 ∈ H
are Γ-equivalent if they belong to the same orbit.

Recall the definition of a locally finite collection of subsets (Definition 3.5).
As H is locally compact, we can use Proposition 3.6 to define what it means
for an orbit to be locally finite.

Definition 3.16. Γz is called locally finite if for any compact subsetK ⊂ H,
the set {T ∈ Γ |T (z) ∩K 6= ∅} is finite.
Definition 3.17. Γ acts properly discontinuously on H if the Γ-orbit of
any point of H is locally finite.

The aim of this section is to prove that Fuchsian groups act properly dis-
continuously on H. Definition 3.17 may seem a bit technical, the following
proposition gives equivalent characterizations of properly discontinuous ac-
tions.

Proposition 3.18. The following are equivalent.

(i) Γ acts properly discontinuously on H.

(ii) For any z ∈ H the orbit Γz is discrete and the stabilizer StabΓ(z) is
finite.

(iii) Each point z ∈ H has a neighbourhood V such that

T (V ) ∩ V 6= ∅ for only finitely many T ∈ Γ. (3.2)

Proof. Let z ∈ H.

(i) =⇒ (ii): Suppose the stabilizer of z is infinite. Let K be a compact subset
of H containing z (such as {z}). Then T (z) = z ∈ K for infinitely
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many T ∈ Γ, and so the orbit of z is not locally finite. Now, suppose
the orbit of z is not discrete. Then there is x ∈ Γz such that any
neighbourhood of x contains infinitely many distinct elements of Γz.
Let K be a compact subset of H containing a neighbourhood of x. Then
K contains infinitely many distinct elements of Γz, and so Γz is not
locally finite.

(ii) =⇒ (i): Suppose (ii) holds. Let K be a compact subset of H. Since Γz is
discrete, the set Γz ∩K is finite. For each point x in Γz, the stabilizer
is finite and so the set {T ∈ Γ |T (z) = x} is finite. It follows that the
set {T ∈ Γ |T (z) ∈ K ∩ Γz} = {T ∈ Γ |T (z) ∈ K} is a finite union of
finite sets, so is finite.

(ii) =⇒ (iii): Suppose (ii) holds. Since Γz is discrete, there exists a neigh-
bourhood V of z containing no points of Γz other than z. Then
T (V ) ∩ V 6= ∅ implies that T ∈ StabΓ(z). This is possible only for
finitely many T , or the stabilizer would be infinite.

(iii) =⇒ (ii): Suppose Γz is not discrete. Then there is x ∈ Γz such that
any neighbourhood of x contains infinitely many elements of Γz, con-
tradicting (3.2). Now suppose the stabilizer of z is infinite. Then
any neighbourhood of z contains infinitely many of its images, again
contradicting (3.2).

�

For the proof of the main result of this section we need two lemmas.

Lemma 3.19. Let z0 ∈ H and K a compact subset of H. Then the set

E = {T ∈ PSL(2,R) |T (z0) ∈ K}

is compact.

Proof. Since PSL(2,R) is topologized as a quotient space of SL(2,R) the
quotient map ψ : SL(2,R)→ PSL(2,R) defined by (2.6) is continuous. We
prove that the set

E1 = {T ∈ SL(2,R) |T (z0) ∈ K}

is compact, it then follows that E = ψ(E1) is compact. By continuity of
Möbius transformations, the map β : SL(2,R)→ H defined by

β(A) = ψ(A)(z0)
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is continuous. Since E1 = β−1(K) and K is closed, so is E1. It remains to
prove that E1 is bounded. Since K is bounded there exists M1 > 0 such that

for all
[
a b
c d

]
∈ E1

∣∣∣∣
az0 + b

cz0 + d

∣∣∣∣ < M1. (3.3)

Since K is compact in H there exists M2 > 0 such that for all
[
a b
c d

]
∈ E1

Im
(
az0 + b

cz0 + d

)
≥M2.

Using (2.4) we rewrite this as

|cz0 + d| ≤
√

Im(z0)/M2.

Combining with (3.3) gives

|az0 + b| ≤M1

√
Im(z0)/M2.

We have proved that |az0+b| and |cz0+d| are bounded. It follows that a, b, c, d
are bounded. To see this, suppose that a is unbounded. Then Im(az0 + b) is
unbounded and hence |az0 + b| is. So a must be bounded. Then suppose b is
unbounded. It follows that Re(az0 + b) is unbounded and hence |az0 + b| is.
We conclude that E1 is bounded. �

Lemma 3.20. Let Γ be a subgroup of PSL(2,R) acting properly discontinu-
ously on H and suppose p ∈ H is fixed by some element of Γ. Then there is a
neighbourhood V of p such that no other point of V is fixed by a nontrivial
element of Γ.

Proof. Suppose T fixes p for some nonidentity element T of Γ, and assume for
contradiction that any neighbourhood of p contains fixed points of transfor-
mations in Γ. This means that there is a sequence {pn} in H converging to p
with Tn(pn) = pn for Tn ∈ Γ. Let ε > 0. Since Γ acts properly discontinuously
on H the set {T ∈ Γ |T (p) ∈ Bε(p)} is finite. These two claims imply that
there exists an integer N such that for all n > N , dH(pn, p) < ε/2 while
dH(Tn(p), p) > ε. Using the triangle inequality and the invariance of the
hyperbolic metric we reach a contradiction: for all n > N we have

dH(Tn(p), p) ≤ dH(Tn(p), Tn(pn)) + dH(Tn(pn), p)

= dH(p, pn) + dH(pn, p) < ε.

�
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Lemma 3.20 enables us to pick a point of H that is not fixed by any element of
Γ other than the identity. This is crucial for the construction of the Dirichlet
polygon which we will discuss in the next section.

Theorem 3.21. A subgroup Γ of PSL(2,R) is Fuchsian if and only if Γ acts
properly discontinuously on H.

Proof. Suppose Γ is Fuchsian. Let z ∈ H and K a compact subset of H.
Consider the set

{T ∈ Γ |T (z) ∈ K} = {T ∈ PSL(2,R) |T (z) ∈ K} ∩ Γ.

The first set in the intersection is compact by Lemma 3.19, the second is
discrete by assumption. It follows that the intersection is finite. So Γ acts
properly discontinuously on H. For the converse, suppose Γ is not discrete.
Then there is a sequence {Tk} of distinct elements in Γ converging to the
identity. By Lemma 3.20 there is a point s ∈ H not fixed by any element of
the sequence. Then {Tk(s)} is a sequence of points distinct from s converging
to s. Hence every closed hyperbolic disc centred at s contains infinitely many
points of the orbit, i.e. Γ does not act properly discontinuously on H. �

Corollary 3.22. A subgroup Γ of PSL(2,R) acts properly discontinuously
on H if and only if for all z ∈ H, Γz is a discrete subset of H.

Proof. Let z ∈ H. If Γ acts properly discontinuously on H then by Proposition
3.18 it follows that Γz is discrete. Suppose the action of Γ is not properly
discontinuous. Then by Theorem 3.21, Γ is not discrete. We pick s ∈ Γz and
as in the proof above construct a sequence {Tk(s)} of points distinct from
s converging to s. Thus any neighbourhood of s contains infinitely many
elements of Γz and so Γz is not discrete. �

We close this section with a nice property of Fuchsian groups.

Proposition 3.23. Any Fuchsian group is countable.

Proof. Let Γ be a Fuchsian group and assume for contradiction that Γ is
uncountable. Pick z ∈ H. By Proposition 3.18 and Theorem 3.21 the Γ-orbit
of z is discrete and the stabilizer finite. The order of the orbit is equal
to the index of the stabilizer, why the orbit must be uncountable. Let B
be a countable basis for the topology on H. We reach a contradiction by
constructing an injection from the uncountable set Γz to the countable set B.
Since Γz is discrete, each point x ∈ Γz is contained in a basis element Bx ∈ B
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containing no other points of Γz. Thus the map Γz → B which sends x ∈ Γz
to the basis element Bx is injective. �

3.3 Fundamental Polygons

Playing Tetris with Group Theory

Fundamental polygons are the building blocks of tessellations by Fuchsian
groups. In this section we will see that any Fuchsian group possesses a
fundamental polygon.

Definition 3.24. Let H = {Hα}α∈A be a collection of half-planes in H. For
each α ∈ A, let Lα be its bounding line. We say that H is locally finite if
each point z in H has a neighbourhood V intersecting only finitely many of
the bounding lines Lα

Definition 3.25. A hyperbolic polygon D is a closed subset of H with
nonempty interior that can be expressed as the intersection of a locally finite
collection of half-planes.

LetD be a hyperbolic polygon and let L be a hyperbolic line. If the intersection
∂D ∩ L of L with the boundary ∂D of D is nonempty, we call it a vertex if
it is a single point, otherwise we call it an edge or a side. Each side of D is
contained in one of the bounding lines of the half-planes that define D, and
each vertex is the intersection of two sides.6 If two sides are asymptotic, the
corresponding vertex on the circle at infinity is called an ideal vertex. Note
that it follows from Proposition 3.6 that a compact polygon has finitely many
sides.

Definition 3.26. We say that a polygon is regular if its sides are of equal
length, and all of its interior angles are equal.

Definition 3.27. A fundamental domain for a Fuchsian group Γ is an
open set F in H with the following properties.

(i) No two points of F are Γ-equivalent.

(ii) Every point in H is Γ-equivalent to a point in the closure F of F in H.

A fundamental polygon for Γ is a polygon whose interior is a fundamental
domain for Γ.

6[1], p.158 and Lemma 5.9.
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We will now present a method of constructing a fundamental polygon for a
Fuchsian group. Let Γ be a Fuchsian group, let Γ′ be the set of nontrivial
elements of Γ, and let p be a point not fixed by any element of Γ′. For each
T ∈ Γ′, let LT be the equidistant set of p and T (p). Let HT be the closed
half-plane determined by LT containing p. We define the Dirichlet polygon
centred at p to be the intersection

DΓ(p) =
⋂

T∈Γ′

HT .

Note that

HT = {w ∈ H | dH(p, w) ≤ dH(T (p), w)},

so

DΓ(p) = {w ∈ H | dH(p, w) ≤ dH(T (p), w) for all T ∈ Γ′}

is an equivalent definition of the Dirichlet polygon.

Proposition 3.28. DΓ(p) is a fundamental polygon for Γ.

Proof. As Γp is discrete, DΓ(p) contains a neighbourhood of p and so has
nonempty interior. DΓ(p) is defined as the intersection of a collection of closed
sets, so it is closed. To prove that DΓ(p) is a polygon, it remains to prove that
the collection of half-planes {HT |T ∈ Γ′} is locally finite. For any ε > 0, we
have by construction of LT that LT ∩Bε(p) 6= ∅ if and only if T (p) ∈ B2ε(p).
As the orbit of p is discrete, Γp ∩B2ε(p) contains only finitely many elements
of Γp. So Bε(p) ∩ LT 6= ∅ for finitely many T ∈ Γ′. Let z ∈ H, δ > 0, and
ε = dH(p, z) + δ. Then Bδ(z) ⊆ Bε(p). So Bδ(z) intersects finitely many of
the bounding lines LT . This completes the proof that DΓ(p) is a polygon.

Next, we prove that DΓ(p) contains representatives of every orbit of Γ. Let
w ∈ H. As Γp is discrete, there exists a point Tw(p) ∈ Γp with smallest
distance to w. That is,

dH(w, Tw(p)) ≤ dH(w, T (p)) for all T ∈ Γ.

By the invariance of the hyperbolic metric under Γ we may rewrite this as

dH(T−1
w (w), p) ≤ dH(T−1

w (w), T−1
w T (p)) for all T ∈ Γ.

Any element of Γ can be written as T−1
w T for some T ∈ Γ, so this implies

that T−1
w (w) is contained in DΓ(p).
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Figure 3.1. Fundamental polygon for PSL(2,Z).

Lastly, we prove that IntDΓ(p) contains no two points from the same orbit.
Assume the contrary. Then for some T ∈ Γ′, IntDΓ(p)∩T (IntDΓ(p)) contains
a point x. Since x ∈ IntDΓ(p) we have

dH(x, p) < dH(x, T (p)). (3.4)

Since x ∈ T (IntDΓ(p)) we have x = T (y) for some y ∈ IntDΓ(p). So

dH(y, p) < dH(y, T−1(p)).

T is an isometry so this is equivalent to

dH(x, T (p)) < dH(x, p),

contradicting (3.4). �

Example 3.29 (Modular Group). In this example we construct the Dirichlet
polygon for Γ = PSL(2,Z) centred at 2i. It is easily verified that 2i is not
fixed by any non-identity element of Γ. We claim that the closure F of the
set

F = {z ∈ H | |z| > 1, |Re(z)| < 1

2
}

is the Dirichlet polygon for Γ centred at 2i. Note that F is the (asymptotic)
triangle with angles 0, π

3
, π

3
bounded by the lines Re(z) = ±1

2
and |z| = 1.

The isometries s(z) = −1
z
and t(z) = z + 1 are clearly in Γ. As above, let Ls

denote the equidistant set of 2i and s(2i), and so on. We have that |z| = 1 is
the line Ls, Re(z) = 1

2
is the line Lt, and Re(z) = −1

2
is the line Lt−1 . The
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intersection of the half-planes associated to these lines is precisely F , and so
DΓ(2i) ⊂ F . This shows that any point of H is Γ-equivalent to a point in F .
To complete the proof that F is the Dirichlet polygon for Γ, we prove that
F ∩ T (F ) 6= ∅ implies T = Id. Suppose there is T ∈ Γ′ with z, T (z) ∈ F .
Put T (z) = az+b

cz+d
and recall that Im(T (z)) = Im(z)/|cz + d|2 by (2.4). Then

since |z| > 1 and Re(z) > −1
2
we have

|cz + d|2 = c2|z|2 + 2Re(z)cd+ d2 > c2 − |cd|+ d2 = (|c| − |d|)2 + |cd| ≥ 1.

The last inequality holds since |cd| is nonzero and c, d ∈ Z. Replacing z with
T (z) and T with T−1 in the argument above yields Im(z) = Im(T (z))/|cz−a|2,
and using |z| > 1 and Re(z) < 1

2
we obtain

|cz − a|2 = c2|z|2 − 2Re(z)ca+ a2 > c2 − |ca|+ d2 = (|c| − |a|)2 + |ca| ≥ 1.

Putting it all together gives Im(z) < Im(T (z)) < Im(z), a contradiction.
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4 The Art

Let us take a look at all the tools scattered on the hyperbolic floor. We have
seen how to, given a Fuchsian group, construct a fundamental polygon for
its action on H. Ideally, we would like to reverse this process: start with a
polygon D, and find a discrete group which has D as a fundamental domain.
This is the content of Poincaré’s Polygon Theorem, which we will now give
our undivided attention to.

4.1 Tessellations

Enough with the Secrecy!

We have avoided it long enough. Let us come clean and state what we mean
by a tessellation of the hyperbolic plane. For a clear view, it is helpful to
broaden the perspective and allow the tessellated space to be either the
euclidean plane, the sphere, or the hyperbolic plane. Let X be any of the
aforementioned.

Definition 4.1. A tessellation T of X is a family of congruent polygons
in X such that

(i) IntD ∩ IntD′ = ∅ for distinct D,D′ ∈ T , and
(ii)

⋃
D∈T D = X.

Each individual polygon in T is called a tile. We say that a tessellation is
regular if the tiles are regular polygons.

For T to be a tessellation of X it is necessary that at any point p ∈ X where
polygons of T meet at their vertices, the angles of the polygons at p sum to
2π, so that the union of the polygons meeting at p contains a neighbourhood
of p. In the case of a regular tessellation, this imposes the condition that the
angle of the regular polygon generating the tessellation is a submultiple of 2π.
This is why the regular tessellations of the euclidean plane and the sphere
are limited to a finite number. In the hyperbolic case the angle condition
imposes no threat and the possibilities are endless.

It is becoming very obvious that fundamental polygons are so intimately
related to tessellations that we may equally well define the former in terms of
the latter.

Proposition 4.2. Let Γ be a Fuchsian group and let F be a hyperbolic polygon.
Then F is a fundamental polygon for Γ if and only if the family {T (F ) |T ∈ Γ}
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is a tessellation of H.

Note that the polygons T (F ) are congruent since length, area7 and angles are
preserved by PSL(2,R). We have already found an example of a hyperbolic
tessellation by the Dirichlet polygon of the modular group given in Example
3.29. In the next section we will present the Poincaré Polygon Theorem,
which will enable us to construct a multitude of tessellations with ease.

4.2 The Poincaré Polygon Theorem

Endgame

Before stating the theorem, there are a few things that need to be defined.

Definition 4.3. Let D be a hyperbolic polygon and s a side of D. An element
gs ∈ Iso(H) is called a side pairing transformation associated to s if there
is a side s′ of D (not necessarily distinct from s) so that

(i) gs(s′) = s, and

(ii) gs(D) ∩D = s.

Definition 4.4. A side pairing Φ of a polygon D is a choice of side pairing
transformations gs for each side s such that gs′ = g−1

s . If gs ∈ Φ with
gs(s) = s′ for sides s, s′ in D, then points w ∈ s and w′ = gs(w) ∈ s′ are
said to be identified by gs. A vertex cycle is a chain of identified vertices
{v1, . . . , vk} where vi is identified with vi+1 by some gi ∈ Φ.

Now, let D be a compact hyperbolic polygon equipped with a side pairing
Φ. Let v1 be a vertex of D. Pick one of the sides intersecting at v1 and call
it s1. Let s′1 be the side of D paired with s1 by g1 ∈ Φ, so that s′1 = g1(s1).
Set v2 = g1(v1). s′1 shares the endpoint v2 with another side of D which
we label as s2. Let s′2 be the side of D paired with s2 by g2 ∈ Φ so that
s′2 = g2(s2). Set v3 = s2(v2). v3 is an endpoint of s′2, and of another side of D
which we label as s3. Continuing in this manner, we obtain a sequence {gi}
of side pairing transformations, a sequence {vi} of identified vertices, and a
sequence {(si, s′i)} of pairs of sides, where s′i and si+1 are adjacent. Since D
has finitely many sides, we will eventually reach the side we started off with,
and gn(vn) = v1 for some n. Set

φ = gn ◦ · · · ◦ g1.

7[3], Theorem 1.4.1.
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Definition 4.5. We call φ a cycle transformation associated to the vertex
v1. We let τ denote the order of φ. We define the angle sum of v1 to be

sum(v1) =
n∑

k=1

α(vk),

where vk is a vertex in the vertex cycle and α(vk) is the interior angle of D
at vk.

We can view the side pairing transformations as a recipe for gluing together
translates of D. The translates of D that share the vertex v1 are

g−1
1 (D), g−1

1 g−1
2 (D), . . . , φ−1(D), g−1

1 φ−1(D), g−1
1 g−1

2 φ−1(D), . . . , φ−τ (D).
(4.1)

For these translates to contain a neighbourhood of v1, the interior angles at
v1 must sum to 2π. We say that D satisfies the cycle condition if for any
vertex v of D, τsum(v) = 2π.

Theorem 4.6 (Poincaré). Let D be a compact hyperbolic polygon equipped
with a side pairing Φ satisfying the cycle condition. Then the subgroup of
Iso(H) generated by Φ is discrete and has D as a fundamental polygon.

Let us take a moment to contemplate. Proposition 4.2 tells us that what
Poincaré’s Theorem amounts to is claiming that when the conditions are met,
H is tessellated by images of D under Γ. The purpose of the cycle condition is
to guarantee that there is a local tessellation at any vertex of D; the theorem
claims that this is enough to guarantee a tessellation of all of H. However, let
us not get too lost in intuition before we lay out the proof.

4.3 Proof of Poincaré’s Theorem

Let’s Get Our Hands Dirty

We go about this in a somewhat roundabout way, by constructing a space H∗
that is tessellated by D under the action of the group Γ generated by Φ, and
then showing that this space is homeomorphic to H. With a little help from
Section 3.1, the last step boils down to proving that the natural map from
H∗ to H satisfies the conditions of Lemma 3.9, and so is a covering map. As
the spaces in question are sufficiently nice, Theorem 3.10 applies, from which
it follows that they are in fact homeomorphic.

Consider the space Γ×D. We may view this space as the disjoint union of
copies of D, indexed by elements of Γ. We will define an equivalence relation
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on this space generated by Φ, which has the effect of gluing copies of D at
their adjacent edges. Let s, s′ be sides of D with gs ∈ Φ taking s to s′. For
any h ∈ Γ and x ∈ s, define ∼ by (hgs, x) ∼ (h, gsx). For interior points of
D we define (h, y) ∼ (g, x) if and only if h = g and x = y. This relation is
symmetric and reflexive, but fails to be transitive. Let ∗ be the transitive
closure of ∼. That is, (g, x) ∗ (h, y) if and only if there is a chain of points
(gi, xi) of Γ×D with

(g, x) = (g1, x1) ∼ (g2, x2) ∼ · · · ∼ (gn, xn) = (h, y).

We denote the equivalence class of (g, x) by 〈g, x〉. Note that

〈g, x〉 = 〈h, y〉 =⇒ gx = hy, (4.2)

and for x, y ∈ IntD

〈g, x〉 = 〈h, y〉 ⇐⇒ g = h and x = y. (4.3)

We give Γ the discrete topology, D the subspace topology and Γ × D the
product topology. Once we prove that Γ has a fundamental domain in H, it
follows that Γ is discrete in Iso(H), which is what we ultimately want. We
now define H∗ to be the quotient of Γ×D by ∗, endowed with the quotient
topology. The natural map

α : H∗ → H
〈g, x〉 7→ gx

is well-defined by (4.2).

The action map Γ×H→ H restricts to a map

γ : Γ×D → H
(g, x) 7→ gx.

γ factors through the quotient map

β : Γ×D → H∗

(g, x) 7→ 〈g, x〉

and the following diagram commutes.

Γ×D H∗

H

γ

β

α
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The quotient map β is automatically continuous. We prove that γ is con-
tinuous. Let A be an open subset of H. The preimage of A under γ is the
set
⋃
g∈Γ{g} × (g−1(A) ∩D) = {(g, x) ∈ Γ ×D | gx ∈ A}. By continuity of

g, g−1(A) is open in H, so g−1(A) ∩D is open in D. Finally, {g} is open in
Γ. It now follows from the definition of the product topology that γ−1(A)
is open in Γ×D. α−1(A) is open in H∗ if and only if β−1α−1(A) is open in
Γ×D. Hence continuity of α follows from continuity of γ.

We define a metric on H∗ as follows. Let a, b ∈ H∗, and consider sequences of
points in Γ×D of the form

p1, q1, p2, q2, . . . , pn, qn

where a = β(p1), β(qi) = β(pi+1), b = β(qn), and pi, qi belong to the same
copy of D in Γ×D. We define the distance between points (g, x), (g, y) in
Γ×D to be d((g, x), (g, y)) = dH(x, y). Then the distance between a and b
in H∗ is

d∗(a, b) = inf Σn
i=1d(pi, qi),

where the infimum is taken over all such possible sequences of points.

Note that
d∗(a, b) ≥ dH(α(a), α(b)), (4.4)

since the image of such a path in H will be a polygonal path, for which the
length is greater than or equal to the geodesic segment connecting α(a) and
α(b).

Each f ∈ Γ induces a map

f ∗ : H∗ → H∗

〈g, x〉 7→ 〈fg, x〉.

If 〈g, x〉 = 〈h, y〉, it follows from 4.2 that 〈fg, x〉 = 〈fh, y〉, so f ∗ is well-
defined. Furthermore, the maps f ∗ are bijections of H∗, and as d∗ is defined
in terms of the hyperbolic metric, which is preserved by Γ, we see that the
maps f ∗ are in fact isometries of H∗.

Set

〈D〉 = {〈Id, x〉 |x ∈ D}

and similarly for the interior of D. As g∗〈D〉 = {〈g, x〉 |x ∈ D}, we see that
⋃

g∈Γ

g∗〈D〉 = H∗. (4.5)
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Figure 4.1. Figure 4.2.

Furthermore, for distinct g, h ∈ Γ we have by (4.3) that

g∗〈IntD〉 ∩ h∗〈IntD〉 = ∅.

In other words, 〈D〉 is a fundamental polygon for Γ. From this we see that if α
is surjective then

⋃
g∈Γ g(D) = X, and if α is injective then for distinct g, h in

Γ, g(IntD)∩ h(IntD) = ∅. Thus if we can prove that α is a homeomorphism,
we find that the Γ-images of D tessellate H.

This is where Lemma 3.9 comes into play. We will prove that α is a covering
map by proving that it is a local isometry, and that there is a lower bound on
the radius of neighbourhoods on which α restricts to an isometry. Once we
know that α is a covering map it follows that it is a homeomorphism, since
H is simply connected.

To this end, we construct a system of neighbourhoods of points in D, and
simultaneously a system of neighbourhoods of points in 〈D〉. More precisely,
we find for each point x in D a neighbourhood in H∗ such that α restricts to a
bijection from this neighbourhood to Bε(x). There are three cases to consider:
(a) interior points; (b) points on single edges of D; and (c) vertices of D.
Cases (a) and (b) are illustraded in Figure 4.1 and Figure 4.2 respectively.

(a) x ∈ IntD. Let ε > 0 be less than the distance from x to ∂D, so that
Bε(x) ⊂ IntD. Then α−1(Bε(x)) = {〈Id, y〉 | y ∈ Bε(x)}, and by (4.3),
〈Id, y〉) contains only (Id, y). It is clear that α restricts to a bijection
from 〈Id, Bε(x)〉 in H∗ to Bε(x) in H.

(b) x is contained in the interior of a side s of D. Then there is gs ∈ Φ
with gs(s) = s′ for some side s′ of D. Set x′ = gs(x). x is contained
in exactly one other copy of D, namely g−1

s (D). Let ε1 > 0 be less
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than the distance from x to ∂D − s, ε2 > 0 be less than the distance
from x′ to ∂D − s′, and set ε = min(ε1, ε2). Let Ns = Bε(x) ∩D, and
Ns′ = Bε(x

′)∩D. Then Bε(x) = Ns∪g−1
s (Ns′). Note that Definition 4.3

(ii) ensures that Ns and g−1
s Ns′ overlap only on the boundary. We have

that Bε(x) = α(〈Id, Ns〉 ∪ 〈Id, g−1
s (Ns′)〉). This set consists of single

point equivalence classes of interior points e.g. (Id, x) for x ∈ Ns and
(g−1
s , x) for x ∈ Ns′ , and two-point equivalence classes of points in s,

for example 〈Id, x〉 contains (Id, x) and (g−1
s , x′). Again we see that α

restricts to a bijection from 〈Id, Ns〉 ∪ 〈Id, g−1
s (Ns′)〉 to Bε(x).

(c) x is a vertex of D. This is where we need to make use of the cycle
condition. Let φ be a cycle transformation associated to x. Consider
the translates of D under φ sharing the vertex x as in (4.1). Relabel
them as D1, D2, . . . , Dk = φ−τ (D) = D. Let hi ∈ Γ be the element
taking D to Di (for example, as D1 = g−1

1 (D), we have h1 = g−1
1 ).

Set xi = h−1
i (x). Let si, si−1 be the sides adjacent to xi. Let εi > 0

be less than the distance between xi and ∂D − {si ∪ si−1}, and let
ε = min(ε1, . . . , εn). Set Ni = Bε(xi) ∩ D. Again, the sets hi(Ni)
overlap only on their boundaries. Furthermore, the cycle condition
guarantees that Bε(x) =

⋃n
i=1 hi(Ni). As in case (b), the preimage of

Bε(x) contains one-point equivalence classes of interior points of Ni,
and two-point equivalence classes of pairs of points on sides of D. It
also contains the equivalence class 〈Id, x〉, which consists of the points
(hi, xi). As in the previous cases we find that α restricts to a bijection
from 〈Id, Bε(x)〉 to Bε(x).

We want to prove that the restriction of α to each of these neighbourhoods is
an isometry. The next step is thus to examine how it treats distance between
points in these neighbourhoods. This is accomplished by employing (4.4),
which gives us a lower bound on the distance between points in H∗. We
construct a path connecting two points in H∗ whose length is precisely the
hyperbolic distance between their images under α. We can then infer that
this is the distance between the points in H∗.

(a) In this case Bε(x) is contained in D, so all points of 〈Id, Bε(x)〉 belong
to the same copy of D. So for any a, b ∈ Bε(x), we choose the geodesic
segment in Γ×D from (Id, a) to (Id, b) whose length is dH(a, b). Then
by (4.4) we have d∗(α−1(a), α−1(b)) = dH(a, b).

(b) Here we have to consider points that belong to different copies of D, say,
a ∈ Ns, b ∈ g−1

s (Ns′). Let c be the point where the geodesic segment
[a, b] intersects ∂D. Set c′ = gs(c). Consider the polygonal path with
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breakpoints

(Id, a), (Id, c), (g−1
s , c′), (g−1

s , b).

The length of this path is dH(a, b), so d∗(α−1(a), α−1(b)) = dH(a, b).

(c) For a, b ∈ Bε(x) we have two new cases to consider: 1) the geodesic
segment [a, b] intersects more than two copies ofD, and 2) [a, b] intersects
the common vertex x. As the number of copies of D intersecting at
x is finite, we can proceed as in (b) to construct a finite sequence of
points in Γ ×D, giving us a polygonal path whose length is dH(a, b).
Whenever the geodesic segment [a, b] passes through the vertex x, it
will do so from one copy of D to another, so this case reduces to the
case in (b).

We have found that α is a local isometry when restricted to a neighbourhood
of 〈D〉. We know that Γ acts on 〈D〉 by isometries. We also know by (4.5)
that the translates of 〈D〉 by elements of Γ cover H∗. This concludes that α
is a local isometry.

To apply Lemma 3.9, we need to show that the radius of neighbourhoods for
which α restricts to an isometry can be defined globally on H∗, independent of
x. Here we use the assumption that D is compact. Similarly to the argument
above, we first find a δ > 0 such that the restriction of α to Bδ(x) is an
isometry for points in 〈D〉; it then follows from (4.5) that this holds for all
points of H∗.

The collection of ε−neighbourhoods of points of D is an open cover of D. As
D is compact, by Lebesgue’s Number Lemma there exists δ > 0 such that
every subset of D with a diameter less than δ is contained in some set in
the cover. Passing to the neighbourhoods in H∗, this gives us an open cover
U of 〈D〉 such that each U ∈ U has a diameter at least δ and is mapped
isometrically onto α(U). Now it follows from Lemma 3.9 that α is a covering
map.

To conclude that α is a homeomorphism, we need to know that H∗ is path-
connected. We have already seen that the neighbourhoods constructed above
are path-connected, so that H∗ is locally path-connected. As a locally path-
connected space is path-connected if and only if it is connected, it suffices to
prove that H∗ is connected.

As D is connected, so are (g,D) and 〈(g,D)〉. For any h ∈ Γ and any gs ∈ Φ
we have

〈hgs, D〉 ∩ 〈h,D〉 6= ∅,
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since for x ∈ s, both equivalence classes contain the point (hgs, x) ∗ (h, gsx).
It follows that for any sequence g1, g2, . . . , gn of elements of φ with h1 =
hg1g2 · · · gn, we have that 〈h1, D〉 and 〈h,D〉 belong to the same connected
component of H∗. As any h ∈ Γ is a product of elements of φ, it follows that H∗
is connected. This proves that H∗ is path-connected. H is simply connected,
and so the conditions of Theorem 3.10 are satisfied, and we conclude that α
is a homeomorphism.

4.4 Examples

The Plane Is Our Canvas

It is time to put the theorem to work. We will look at two examples in the
disc model.

Example 4.7. Let D be a compact regular octagon in D whose interior
angles are 1

4
π. Label the sides counterclockwise as s1, s2, . . . , let gk be the

translation whose axis is the perpendicular bisector of sk and s4+k and that
satisfies gk(s4+k) = sk. Each gk is a side pairing transformation for D, since
gk(s4+k) = sk, gs4+k

= g−1
sk
, and gk(D) ∩ D = sk. Let vk be the common

vertex of sk and sk+1. We determine the cycle transformation associated to
v1, starting with s1. s1 is paired with s5 by g−1

1 , which takes v1 to v4. The
other side adjacent to v4 is s4. s4 is paired with s8 by g−1

4 , which takes v4 to
v7, and so on. We obtain the vertex cycle

v1

g−1
1−−→ v4

g−1
4−−→ v7

g3−→ v2

g−1
2−−→ v5

g1−→ v8
g4−→ v3

g−1
3−−→ v6

g2−→ v1,

and the cycle transformation associated to v1 is

φ = g2 ◦ g−1
3 ◦ g4 ◦ g1 ◦ g−1

2 ◦ g3 ◦ g−1
4 ◦ g−1

1 .

This is the identity, so τ = 1. The angle sum at v1 is sum(v1) = 8
4
π = 2π. If we

start with any other vertex, we will get a permutation of the transformations in
the composition above, which will again be the identity. Hence the conditions
of Theorem 4.6 are satisfied, and so the group generated by the side pairings
is discrete and has D as a fundamental polygon.

We have centred the discussion around Fuchsian groups, but we have not
assumed the side pairing transformations to be orientation-preserving, and
the statements made about Fuchsian groups apply to all discrete subgroups
of Iso(H). In the following example the side pairing transformations are
reflections.
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Example 4.8. Consider the hyperbolic triangle with interior angles π/2,π/3,
π/7. Let v1, v2, v3 be the vertices with interior angles π/2,π/3, and π/7,
respectively. Let si be the side opposite vi. Let gi be reflection in the
line containing the side si. Note that gi is a side pairing transformation
as gi(si) = si, g−1

i = gi, and gi(D) ∩ D = si. We determine the cycle
transformation associated to v1, starting with the side s2. The corresponding
side pairing transformation is g2, fixing both s2 and v1. The other side
adjacent to v1 is s3. The corresponding side pairing transformation is g3,
again fixing v1 and s3. The other side adjacent to v1 is s2, and we are done.
Thus the cycle transformation associated to v1 is φ = g3 ◦ g2. The angle sum
at v1 is the sum of the interior angles at g2(v1) = v1 and g3 ◦ g2(v1) = v2. So
sum(v1) = π. As φ is composed by reflections in two intersecting lines, it is a
rotation. If we take the vertex to be at 0 in D, we see that reflection in lines
which intersect at angle θ is rotation through 2θ. So φ is rotation through π
and thus τ = 2. So τsum(v1) = 2π, as required. The construction of a cycle
transformation associated to the remaining vertices is analogous, and so the
conditions of Theorem 4.6 are satisfied.

The group generated in Example 4.7 is Fuchsian, as it is generated by trans-
lations. The group generated in Example 4.8 is not Fuchsian, as it contains
reflections. However, the index 2 subgroup of orientation-preserving isometries
is Fuchsian, and a fundamental polygon for this group is given by the union
of one triangle with its reflection with respect to one of its sides. In Figure
4.4 this is the union of a black and a white triangle. Furthermore, we see that
the union of the fourteen triangles meeting at the origin is a regular heptagon,
so this triangular tessellation also gives a regular tessellation by heptagons.

There is a version of the Poincaré Polygon Theorem for noncompact polygons,
but this imposes further conditions to ensure that the translates cover all of
H. For example, the fundamental polygon for the modular group found in
example 3.29 is noncompact, but the transformations s(z) and t(z) defined
in the example provide a side pairing for this polygon, and they are in fact
generators of PSL(2,Z).

Polygons as the octagon and triangle in the examples above do not exist
in euclidean or spherical geometry. In hyperbolic geometry, their existence
is guaranteed by the Gauss-Bonnet Formula, which relates the sum of the
interior angles of a polygon to its hyperbolic area. Example 4.8 is an example
of a more general construction of tessellations by triangles. For a triangle
with angles π/p, π/q, π/r, the cycle condition is satisfied as long as p, q, r are
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integers. When

1

p
+

1

q
+

1

r
< 1, (4.6)

there are infinitely many possibilities, and the triangle with interior angles
π/p, π/q, π/r is hyperbolic, as the angle sum is less than π (the angle sum of
a euclidean triangle is equal to π, and the angle sum of a spherical triangle
is greater than π). This explains why there are infinitely many hyperbolic
tessellations.
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Figure 4.3. Hyperbolic tessellation by regular octagons.
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Figure 4.4. Hyperbolic tessellation by triangles.
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5 The Aftermath

5.1 Conclusion

After Maths Comes More Maths

In our search for pretty patterns, the Poincaré Polygon Theorem emerges as a
recipe for creating a tessellation of the hyperbolic plane with a given polygon.
In the process, we have gained access to an endless supply of Fuchsian groups.

The construction of Fuchsian groups from polygons is tightly intertwined
with the construction of hyperbolic surfaces. There is a version of the
Uniformization Theorem mentioned in the introduction stating that any
Riemann surface is the quotient of the euclidean plane, the sphere, or the
hyperbolic plane by a discrete, fixed point free group of isometries, which
in turn can be viewed as a quotient space of a fundamental polygon. As
an example of this relationship, the quotient of the hyperbolic plane by the
Fuchsian group generated by the octagonal tessellation in Example 4.7 is a
compact hyperbolic surface of genus 2: the ’double torus’. Since the modular
group and the Fuchsian group generated by the triangle in Example 4.8
contain rotations, these groups do not act freely on the hyperbolic plane, and
so the quotient spaces are not hyperbolic surfaces. Instead, they are examples
of a more general structure called an orbifold. But that is a topic for another
story time.
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