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Abstract

This thesis studies how uncertainty affects solutions to linear equations. In
particular, the Robust Least Square problem is studied in terms of the worst
case residual. The robust analysis and solutions are investigated through a
second order cone program and its duality. Numerical examples are also pre-
sented to illustrate the relation between the conditioning and the robustness
of the problem.

1 Introduction

The background to studying how uncertainty affects solutions to robust
max-norm minimization lies in the theory of numerical analysis.

Research into this topic has focused on fields such as engineering with prob-
lems of the form [8]

minimize ‖H(x)‖

where H(x) = H0 +
m∑

i=1

xiHi

where Hi, i = 1, . . . , n are given p×q matrices, but also branches into topics
in Linear Algebra with robust eigenvalue minimization. Such examples will
only be mentioned briefly in this thesis.

Throughout the thesis we will use different notations, namely

A+: The m×n matrix A+ is the Moore-Penrose inverse of the m×n matrix
A satisfying the Penrose conditions, namely AA+A = A, A+AA+ =
A+, A+A and AA+ are hermitian.

Sn: The set of all symmetric matrices, i.e. the set of all matrices equal to
its transpose.

C: The set of complex numbers.

R: The set of real numbers.

κ(A): The condition number of a matrix A. The condition number measures
how the output value of a function is affected for a small change in the
input argument.

C(A): Set of all vectors of the form Ax.

∆
=: For example, A

∆
= B means “A is defined to be B ”.
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Furthermore, the definitions used are

i. Subordinate matrix norm: A matrix norm that is said to be the natural
norm induced by, or subordinate to, a previously defined vector norm.

ii. Least-squares solution: A least-squares solution solves the equation
Ax = b as close as possible, such that the sum of the squares of the
difference b−Ax is minimized.

iii. Feasible solution: A set of values for the decision variables satisfying
all constraints in an optimization problem.

iv. Primal problem: The Conic Programming, or CP, problem.

v. Strictly feasible: All constraints are satisfied and nonlinear constraints
are satisfied with strict inequalities.

vi. Condition Number: See κ(A) above.

vii. Structured problems: Problems which can be solved by repeating ex-
amination and testing on the problem.

Note that this thesis is not meant to delve into the subject of numerical
analysis or find novel methods of solving subject equations even though the
main idea of our thesis is taken from numerical analysis. Instead, it is meant
to study the subject of Least Squares from a theoretical aspect, hence why
many theorems, propositions and remarks are referenced from sources that
have studied this topic extensively.

We will discuss how uncertainty affects solutions to robust max-norm mini-
mization with the help of a worked expression. The first section shall state
theorems and proofs pertaining to norms for both vectors and matrices. The
second section will treat the topic of error bounds and robustness for linear
systems. The third section shall develop the previous and deal with error
analysis for least squares problems. The fourth section will develop conic
programming and the fifth section, based on all previous sections, will regard
the main question of this thesis by computing an example. The sixth and
final section shall mention robust polynomial interpolation, but will only
regard it in the most basic terms since it is beyond the scope of this thesis.

2 Matrix and vector norms

When numerically solving a system of equations Ax = b we tend to use direct
methods. These include, for example, Gaussian Elimination on the Trian-
gular Decomposition of a Matrix, Gauss-Jordan algorithm or the Cholesky
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Decomposition.

However, when using these methods we may sometimes receive an approxi-
mation x̃ to the true solution x. To measure how accurate x̃ is, we need to
measure the error

x− x̃

by measuring the size of a vector, or rather its norm. Hence, a norm ‖x‖ is
introduced on the vector space Cn over the complex numbers, or rather a
function

‖ · ‖ : Cn → R

which assigns to each vector x ∈ Cn a real value ‖x‖ which is a measure of
the size of x. This function must satisfy three properties:

i. Positivity: ‖x‖ > 0 for all x ∈ Cn, x 6= 0.

ii. Homogeneity: ‖αx‖ = |α|‖x‖ for all α ∈ C, x ∈ Cn.

iii. Triangle Inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ Cn.

Theorem 1. Each norm ‖·‖ on either Rn (or Cn) is a uniformly continuous
function with respect to the metric ρ(x, y) = maxi |xi − yi| on Rn (or Cn)

Our second theorem is thus

Theorem 2. All norms on Rn (or Cn) are equivalent in the sense that for
each pair of norms p1(x) and p2(x) there are positive constants m and M
satisfying

mp2(x) ≤ p1(x) ≤Mp2(x) for all x

The proofs for these theorems are left out, however they can be found in
Stoer and Bulirsch [2].

Now we prove that for the vector x = (x1, ..., xn)T , and p ≥ 1,

‖x‖p =

(
n∑

i=1

|xi|p
)1/p

defines a norm.
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Obviously ‖x‖p ≥ 0, and for ‖x‖p to be zero all |xi| = 0 and so x = 0. Hence
the first axiom holds. The second axiom is also true, since

‖αx‖pp =
n∑

i=1

|αxi|p =
n∑

i=1

|α|p|xi|p = |α|p
n∑

i=1

|xi|p = |α|P ‖x‖pp.

Finally, the triangle inequality follows from Minkowski’s inequality. 1

Note that ‖x‖2, called the Euclidean norm, is often considered as the length
of the vector x.

Next we extend the vector norm to the matrix norm. This is important,
since we need to measure the size of a matrix, for example in solving linear
equations Ax = b. Let M(m,n) be a vector space of all m×n matrices. We
can use the vector p-norms defined above for matrices as well.

If A ∈M(m,n) we have the matrix norm

‖A‖(p) =


∑

i,j

|aij |p



1/p

.

The frequently used matrix norms are 2, which is also called the Frobenius
norm:

‖A‖F = ‖A‖(2) =

√∑

i,j

|aij |2.

The following properties show why this norm is interesting.

• ‖x‖F = ‖x‖2 for any column or row vector x.

• ‖AB‖F ≤ ‖A‖F ‖B‖F (the size of A and B can be different as far as
AB is well-defined).

• ‖Ax‖2 ≤ ‖A‖F ‖x‖2 for any column vector x.

It is trivial that the first property holds by definition. The last property
follows from the first and the second. It remains to show that the second
property holds. Let now C = AB, then

|cij |2 =

∣∣∣∣∣
∑

k

aikbkj

∣∣∣∣∣

2

≤
(∑

k

|aik||bkj |
)2

≤
(∑

k

|aik|2
)(∑

k

|bij |2
)

1

(
k∑

i=1

|xi + yi|p
)1/p

≤
(

k∑

i=1

|xi|p
)1/p

+

(
k∑

i=1

|yi|p
)1/p

. The proof of it is based on

Hölder’s inequality, a generalization of the Cauchy-Schwarz’ inequality. See e.e. https:

//www.comm.utoronto.ca/frank/notes/ineq.pdf using convexity arguments.
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where we applied the Cauchy-Schwarz inequality in the last step. Hence

‖AB‖2F =
∑

i,j

|cij |2 ≤
∑

i,j

(∑

k

|aik|2
)(∑

k

|bij |2
)

=
∑

j


∑

i,k

|aik|2


(∑

k

|bij |2
)

=
∑

j

‖A‖F
(∑

k

|bij |2
)

=‖A‖F


∑

j,k

|bij |2

 = ‖A‖F ‖B‖F

To summarize, like the vector norm the Frobenius norm, in general ‖A‖(p),
satisfies

1. Positivity : ‖A‖F < 0 for all A 6= 0;

2. Homogeneity: ‖αA‖F = |α|‖A‖F ;

3. Triangle inequality: ‖A+B‖F ≤ ‖A‖F + ‖B‖F .

Moreover it satisfies

Submultiplicity: ‖AB‖F ≤ ‖A‖F ‖B‖F .

However, we learned in the basic linear algebra course that any matrix is
a linear transformation, i.e. if we have a linear transformation we would
like the matrix norm to have the same value for any matrix representing the
linear transformation and the Frobenius norm are definitely not such norms,
which can be seen from the following two matrices

[
2 0
0 1

] [
2 3
0 1

]
.

They are similar matrices but the Frobenius norms are
√

5 and
√

14 respec-
tively. Therefore we aim to define a matrix norm which can overcome this
drawback.

We consider A ∈ M(n, n). Remember that it is a matrix representation of
the linear operator on the vector space V of dimension n with norm ‖x‖.
We define

lub(A) := max
x 6=0

‖Ax‖
‖x‖ .

This is called the subordinate matrix norm in some literature (e.g. [2]) or
the operator norm. A few arguments are now in order.

6



First, we have to prove that maximum exists, since the set for which x 6= 0
is open and we know that not every continuous function has a maximum on
an open set. But if x 6= 0 then ‖x‖ 6= 0. Therefore, using the properties of
the vector norm on V , we get

‖Ax‖
‖x‖ =

∥∥∥∥A
x

‖x‖

∥∥∥∥ = ‖Ay‖.

where y = x
‖x‖ , whose norm is equal to 1. This shows that the maximum in

question exists, since the set {x : ‖x‖ = 1} is compact and ‖ ·‖ is continuous
by Theorem 1. Consequently

lub(A) = max
x 6=0

‖Ax‖
‖x‖ = max

‖x‖=1
‖Ax‖.

Next we show that it is a norm. It is apparent that this definition satisfies
the positivity and homegeneity of the norm. To prove the triangle inequality,
we note first that by definition

‖Ax‖
‖x‖ ≤ lub(A)

that is,
‖Ax‖ ≤ lub(A)‖x‖.

This means that such a matrix norm is consistent with the vector norm.
Pick any vector x with unit norm and any two matrices A and B using
triangle inequality for the vector norm and we have

‖(A+B)x‖ = ‖Ax+Bx‖ ≤ ‖Ax‖+ ‖Bx‖ ≤ lub(A) + lub(B).

Consequently, maximum over ‖x‖ = 1 gives

lub(A+B) ≤ lub(A) + lub(B).

Finally, let x 6= 0, using the consistency property twice we have

‖ABx‖ = ‖A(Bx)‖ ≤ lub(A)‖Bx‖ ≤ lub(A)lub(B)‖x‖.

Thus
‖ABx‖
‖x‖ ≤ lub(A)lub(B)

Maximizing over x 6= 0 yields the submultiplicity

lub(AB) ≤ lub(A)lub(B)

Now we consider some simple examples.
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If A = 0, then lub(A) = 0 for any choice of norm on V . If A = I then

lub(I) = max
x 6=0

‖Ix‖
‖x‖ = max

x6=0

‖x‖
‖x‖ = 1

for any subordinate matrix norm. But ‖I‖(p) = n1/p when n is the dimen-
sion of V . If A = a is a scalar then lub(A) = |a|.

Although we defined the subordinate matrix norm for square matrices and
operators, it can be reformulated to non-square matrices. We will show
this with a case that is of interest to us in answering the question on how
to calculate and use this norm for any concrete operator or matrix. Since
we will study the least square problems, the natural norm is the Euclidean
vector norm or 2-norm ‖x‖2 =

√
〈x, x〉2, where 〈x, x〉2 is the standard inner

product. Related to this norm we have

Proposition 3. For A ∈M(m,n), related to the Euclidean vector norm the
subordinate matrix norm

lub2(A) = σ1

the largest singular value of A. In particular we denote ‖A‖2 = lub2(A).

Proof. We show this via Singular Value Decomposition, or SVD, of A, i.e.
there are an m×m unitary matrix U and an n× n unitary matrix V such
that A = UΣV ∗, where V ∗ = V̄ t and

Σ =

[
Σ1 0
0 0

]

which is an m × n matrix with Σ1 = diag(σ1, . . . , σr), σ1 ≥ . . . ≥ σr > 0
being singular values of A, and r ≤ min(m,n), the rank of A. Thus,

‖Ax‖22 = ‖UΣV ∗x‖22 = 〈UΣV ∗x, UΣV ∗x〉2
= 〈ΣV ∗x, U∗UΣV ∗x〉2
= 〈ΣV ∗x,ΣV ∗x〉2

By variable change, y = V ∗x ∈ Cn we receive

‖Ax‖22 = 〈Σy,Σy〉 = 〈y,Σ∗Σy〉

=
r∑

i=1

σ2
i |yi|2 ≤ σ2

1‖y‖2
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and ‖x‖2 = ‖V y‖2 = ‖y‖2. Hence,

max
x 6=0

‖Ax‖2
‖x‖2

= max
y 6=0

(∑r
i=1 σ

2
i |yi|2

) 1
2

‖y‖2
≤ σ1.

However, for y = (1, 0, . . . , 0)t ⇔ x = v1 with Av1 = σ1u1, where u1 is
the first column of the matrix U and v1, the first column for matrix V , the
maximum is attained at x = v1 and therefore

max
x6=0

‖Ax‖2
‖x‖2

= σ1.

Remark 4. We can equivalently use ‖A‖2 = max
‖x‖2=1

‖Ax‖2.

Note that this is just one possible subordinate matrix norm. For example,
we have

• For ‖x‖∞, ‖A‖∞ := lub∞(A) = maxi
∑

j |Aij |;

• For ‖x‖1, ‖A‖1 := lub1(A) = maxj
∑

i |Aij |.

Following [9] we define the Euclidean condition number κ2(A) for a rectan-
gular m× n matrix A with linearly independent columns, i.e. A−1 exists if
m = n,

κ2(A) =

max
‖x‖2=1

‖Ax‖2
min
‖x‖2=1

‖Ax‖2
.

If m = n, then by SVD max
‖x‖2=1

‖Ax‖2 = σ1, min
‖x‖2=1

‖Ax‖2 = σn = ‖A−1‖2, the

smallest singular value of A. We recover therefore the ordinary definition in
2-norm

κ2(A) = ‖A‖2‖A−1‖2.

Generally we have

Proposition 5. κ2
2(A) = κ2(ATA) =

max
i
λi

min
i
λi

where λi are eigenvalues of

ATA, where A is a rectangular m× n matrix.
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Proof. By definition of the Euclidean condition number we have

κ2
2(A) =




max
‖x‖2=1

‖Ax‖2
min
‖x‖2=1

‖Ax‖2




2

(Proposition 3)

=

(
σ1

σn

)2

(definition of Singular values)

=


λ

1
2
1

λ
1
2
n




2

=
λ1

λn
,

where λ1 is the maximum eigenvalue of ATA and λn, the minimum eigen-
value of ATA.

As stated before the Frobenius norm is not a subordinate matrix norm. But
we can show

Proposition 6. Let A be a m× n real matrix.

1. ‖A‖F =
√

tr(ATA);

2. Let A be a real rank-1 matrix. Then ‖A‖F = ‖A‖.
Proof. The first part follows from a straightforward calculation. We now
show the second part.

First we prove that if A is a rank one matrix then there are vectors u ∈ Rn
and v ∈ Rn such that A = uvT .

If A is rank 1, then the columns of A, a1, . . . , an, have maximum one linearly
independent vector. Without loss of generality, assume a1 6= 0. Then ai =
αiai, αi ∈ R, i = 2, . . . , n. Thus

A = (a1, α2a1, . . . , αna1) = a1(1, α2, . . . , αn).

Let u = a1 ∈ Rm, v = (1, α2, . . . , αn)T ∈ Rn. Then A = uvT . Furthermore,
by definition (Remark 4)

‖A‖ = max
‖x‖=1

‖Ax‖ = max
‖x‖=1

‖uvTx‖ = max
‖x‖=1

‖u‖|vTx| = ‖u‖max
‖x‖=1

|vTx| = ‖u‖·‖v‖.

Now we compute

‖A‖2F = tr(ATA) = tr
(
(uvT )T (uv)T

)
= tr(vuTuvT ) = tr(vT vuTu) = ‖v‖2‖u‖2

proving that ‖A‖F = ‖A‖.
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3 Error Bounds and Sensitivity of Square Linear
Systems

We have shown the properties of the norm and in this section we shall in-
vestigate approximate solutions to a system Ax = b, where A is a square
matrix. The following results will be useful in such a study. The matrix
norm in this section can be any subordinate matrix norm, although our pri-
mary interest will be the subordinate matrix to the Euclidean vector norm,
i.e.

Lemma 7. If F is an n × n matrix with ‖F‖ < 1, then (I + F )−1 exists
and satisfies

‖(I + F )−1‖ ≤ 1

1− ‖F‖ .

Recall the condition number of an invertible matrix A is defined as κ(A) :=
‖A‖‖A−1‖. Then we have

Theorem 8. Let A be a nonsingular n×n matrix, B = A(I +F ), ‖F‖ < 1
and x and ∆x be defined by Ax = b, B(x+ ∆x) = b. It follows that

‖∆x‖
‖x‖ ≤

‖F‖
1− ‖F‖ ,

as well as

‖∆x‖
‖x‖ ≤

κ(A)

1− κ(A)‖B−A‖‖A‖

‖B −A‖
‖A‖

if κ(A) · ‖B −A‖‖A−1‖ < 1.

The proofs are omitted but can be found in Stoer and Bulirsch [2]. Our task
here is to study the sensitivity of changes if the solutions of A or b are per-
turbed when solving a system of the form Ax = b. We divide this into two
cases. First, b is replaced by b+∆b and the second A is replaced by A+∆A.

Let us now assume ‖x‖ is an arbitrary vector norm and ‖A‖ a consistent
submultiplicative matrix norm. If the solution x + ∆x corresponds to the
right hand side b+ ∆b then the relation ∆x = A−1∆b follows from A∆x =
∆b, and by the norm property it follows that

‖∆x‖ ≤ ‖A−1‖‖∆b‖.

11



Hence relative change ‖∆x‖/‖x‖ is bounded as follows:

‖∆x‖
‖x‖ ≤ ‖A‖‖A

−1‖‖∆b‖‖b‖ = κ(A)
‖∆b‖
‖b‖

since ‖b‖ = ‖Ax‖ ≤ ‖A‖‖x‖. Here, the condition number of A, κ(A), mea-
sures the sensitivity of the relative error in the solution to changes in the
right hand side of b.

Next we want to know the sensitivity of the solution to changes in the matrix.
If x̃ is an approximate solution to Ax = b with the residual

r(x̃) = b−Ax̃

then x̃ is the exact solution of

Ax̃ = b− r(x̃).

Since A∆x = r(x̃), or equivalently ∆x = A−1r(x̃), we have that the estimate

‖∆x‖ ≤ ‖A−1‖‖r(x̃)‖

must hold for the error ∆x defined by ∆x = x− x̃.

Theorem 8 states that κ(A) measures the sensitivity of the solution x to
changes in the matrix A. By considering the relations

C = (I + F )−1 = B−1A

F = A−1B − I

it follows from Lemma 5 that

‖B−1A‖ ≤ 1

1− ‖I −A−1B‖ .

SwitchingA andB, we find a new condition given rise fromA−1 = A−1BB−1,

‖A−1‖ ≤ ‖A−1B‖‖B−1‖ ≤ ‖B−1‖
1− ‖I −B−1A‖
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and then using the residual estimate from above, ‖∆x‖ ≤ ‖A−1‖‖r(x̃)‖, we
find the bound

‖x̃− x‖ ≤ ‖B−1‖
1− ‖I −B−1A‖‖r(x̃)‖, r(x̃) = b−Ax̃

where B−1 is an approximate inverse to A with ‖I −B−1A‖ < 1. The esti-
mates that we have found give bounds on the error x̃−x, however evaluation
of these bounds requires a basic knowledge of the inverse to A, namely A−1.

We now discuss a different set of estimates that do not require any knowl-
edge of A−1, based on Prager and Oettli, 1964 [10].

The given data A0, b0 of an equation system A0x = b0 tends to be inexact if
it has been affected by measurement errors ∆A, ∆b. Thus, it is reasonable
to assume an approximate solution x̃ to the above equation system is correct
if x̃ is the exact solution to a neighbouring system of equations Ax̃ = b with

A ∈ A := {A |A−A0| ≤ ∆A}
b ∈ B := {b |b− b0| ≤ ∆b}

Let αij be the component of A and βi be the component of b. That is A =
(αij), b = (β1, · · · , βn)T . Then denote |A| = (|αij |), |b| = (|β1|, · · · , |βn|)T .

Theorem 9. Let ∆A ≥ 0, ∆b ≥ 0, and let A, B be defined as above. Then,
for any approximate solution x̃ of the system A0x = b0 there exists a matrix
A ∈ A and a vector b ∈ B satisfying Ax̃ = b if and only if

|r(x̃)| ≤ ∆A|x̃|+ ∆b

where r(x̃) := b0 −A0x̃ is the residual of x̃.

Proof. We divide the proof in two steps.

1) We first assume Ax̃ = b holds for some A ∈ A, b ∈ B. Since

A = A0 + δA where |δA| ≤ ∆A

b = b0 + δb where |δb| ≤ ∆b

we have
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|r(x̃)| = |b0 −A0x̃| = |b− δb− (A− δA)x̃|
= | − δb+ (δA)x̃|
≤ |δb|+ |δA||x̃|
≤ ∆b+ ∆A|x̃|.

2) If |r(x̃)| ≤ ∆b+ ∆A|x̃|, and if r and s stand for the vectors

r := r(x̃) = (ρ1, . . . , ρn)T

s := ∆b+ ∆A|x̃| ≥ 0, s = (s1, . . . , sn)T .

Further, set

δA = (δαij), δb =



δβ1

...
δβn


 , x̃ =



ζ1
...
ζn




δαij := ρi∆αij · sign(ζj)/si

δβi := −ρi∆βi/si, where ρi/si := 0 if si = 0

From |r(x̃)| ≤ ∆b+ ∆A|x̃| we have that |ρi/si| ≤ 1 and thus

A = A0 + δA ∈ A

b = b0 + δb ∈ B

and, for i = 1, 2, . . . , n,

ρi = βi −
n∑

j=1

αijζj =


∆βi +

n∑

j=1

∆αij |ζj |


 ρi
si

= −δβi +

n∑

j=1

δαijζj

which can be rewritten as

n∑

j=1

(αij + δαij)ζj = βi + δβi.
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In other words,

Ax̃ = b

which is what we wanted to show.

The requirements for the above theorem allows us to investigate a solution
from the smallness of its residual.

For example, if all components of A0 and b0 have the same relative accuracy
ε, that is

∆A = ε|A0|
∆b = ε|b0|

then the condition of the theorem is satisfied when

|A0x̃− b0| ≤ ε(|b0|+ |A0||x̃|)

Using this inequality, the smallest ε is computed for which a given x̃ can
still be accepted as a solution. This is in fact a robust analysis because we
can consider the data (A, b) with uncertainty.

4 Error Analysis of Least Squares Problem

Least squares are used in a variety of applications, for example in regression
analysis to approximate the solution of overdetermined systems by minimiz-
ing the sum of the squares of the residuals made in the results of every single
equation. An overdetermined system is a system containing more equations
than unknown variables.

Let us regard least squares for the matrix equation Ax = b. First we show
that the solution exists

Theorem 10. Let A be a m× n matrix with linearly independent columns
and b, a column vector with (m) components. The least-squares solution of
Ax = b is the solution to the matrix equation

ATAx = AT b

15



Proof. Let W = C(A), that is W is the set of all vectors of the form Ax.
Let b = bW + bW⊥ be the orthogonal decomposition with respect to W . By
definition, bW lies in W and hence there exists a vector x in Rn such that
Ax = bW . Choosing any such x, we have b − bW = b − Ax lying in W⊥.
This belongs to N (AT ), the null space of AT , and thus 0 = AT (b − Ax) =
AT b−ATAx, so ATAx = AT b.

Moreover, this implies that ATAx = AT b is consistent, i.e the system has at
least one solution.

Note that ATAx = AT b, called the normal equation, is the necessary con-
dition for x to be the minimum of ‖b − Ax‖2 which can be checked by a
straightforward computation of the gradient to ‖b−Ax‖2.

Example 1
Find the least-squares solutions of Ax = b where:

A =




2 0
−1 1
0 2


 b =




1
0
−1




Solution
We first calculate

ATA =

[
2 −1 0
0 1 2

]


2 0
−1 1
0 2


 =

[
5 −1
−1 5

]

AT b =

[
2 −1 0
0 1 2

]


1
0
−1


 =

[
2
−2

]
.

We form the augmented matrix and row reduce to

[
5 −1 2
−1 5 −2

]
∼
[
1 0 1

3
0 1 −1

3

]
.

Hence, the only least square solution is x = 1
3

[
1
1

]
.

However, there are some issues in using the normal equation. We illustrate
this by the next example.
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Example 2

Let y(s) = x1
s + x2

s2
+ x3

s3
with x1 = x2 = x3 = 1. If we have a data set

(si, y(si)), i = 1, . . . , 10 with a machine that deals with the rounding error
ε.

We wish to recover the solution (1, 1, 1)t by determining x1, x2 and x3 given
data (si, y(si)). We consider two cases:

a) yi = yi(s), i = 1, . . . , 10 exact.

b) yi are not exactly yi(s).

a) We have the exact value yi = y(si), and since it is exact we know that
there is an x such that the residual satisfies

r(x) = b−Ax = 0

where b = (y1, y2, . . . , y10)T and

A =




1
s1

1
s21

1
s31

1
s2

1
s22

1
s32

. . . . . . . . .
1
s10

1
s210

1
s310




and x = (x1, x2, x3) should be determined through Ax = b, given
si = s0 + i, i = 1, . . . , 10 where s0 is a given number.

First, we solve it by directly solving the normal equation

ATAx = AT b

To this end we use the computer program Mathematica, and so we
enter s0 = 10, 50, 100, 150 and 200 to estimate the condition numbers
of A and error norms ∆x = x − x̂, where x̂ = (1, 1, 1)t is the exact
solution:

s0 10 50 100 150 200

κ2(A) 6.6× 103 1.3× 106 1.7× 107 8.0× 107 2.5× 108

‖∆x‖2 2.4× 10−11 8.8× 10−8 1.2× 10−5 2.5× 10−5 2.1× 10−4
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Note that the condition number increases as s increases and Math-
ematica warns when s = 50. To avoid ill-conditioning we can use
orthogonalization.

Let us decompose A = QR into matricesQ, a 10×10 orthogonal matrix

where R =

[
R0

0

]
, with R0 being a 3 × 3 invertible upper triangular

matrix. Partition Q =
(
Q1 Q2

)
according to R and we see that

ATA = (QR)TQR = RT (QTQ)R = RTR = [RT0 0]

[
R0

0

]
= RT0 R0

and

AT b =
[
RT0 0

] [QT1
QT2

]
b = RT0 Q

T
1 b.

Thus, the normal equation becomes

RT0 R0x = RT0 Q
T
1 b⇔ R0x = QT1 b.

Using the same linear solver as above in Mathematica, we receive the
error norm ‖∆xorth‖2 in the following table together with the error
obtained above.

s0 10 50 100 150 200

‖∆x‖2 2.4× 10−11 8.8× 10−8 1.2× 10−5 2.5× 10−5 2.1× 10−4

‖∆x(orth)‖2 4.0× 10−14 1.8× 10−11 3.3× 10−10 8.4× 10−10 8.5× 10−9

Hence, orthogonalization gives better results and Mathematica does
not complain about ill conditioning.

b) Assume there is a disturbance in the data set yi which is replaced
by yi + λvi, λ ∈ R, where v satisfies AT v = 0, v = (v1, . . . , v10).
Theoretically, the solution should remain unchanged

(ATA)x = AT (b+ λv) = AT b

On the other hand, the residual r(x) = b + λv − Ax = λv. We
vary λ = 0, 10−6, 10−4, 10−2, 100, 102 and we let s0 = 10, v =
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(0.1331,−0.5184, 0.6591, 0.2744, 0, 0, 0, 0, 0, 0)T . With s0 = 10 we have
‖A‖2 ≈ 0.22 as shown above.

Like a), we determine x by directly solving the normal equation and
orthogonalising, respectively. Using Mathematica we receive

λ 0 10−6 10−4 10−2 100 102

‖r(x)‖2 0 9× 10−7 9× 10−5 9× 10−3 9× 10−1 9× 101

‖∆x‖2 2.4× 10−11 2.4× 10−11 3.5× 10−11 2.4× 10−11 1.6× 10−10 4.4× 10−10

‖∆xorth‖2 4.0× 10−14 4.0× 10−14 4.0× 10−14 8.1× 10−13 4.7× 10−11 4.8× 10−9

From both a) and b) we see our errors are different. We can prove the
general result [2]

Theorem 11. The relative error using QR is

‖∆xorth‖2
‖x‖2

≤ κ(R)
‖∆A‖2
‖A‖2

+ κ(R)2 ‖r‖2
‖A‖2‖x‖2

‖∆A‖2
‖A‖2

+ κ(R)
‖b‖2

‖A‖2‖x‖2
‖∆b‖2
‖b‖2

where A is replaced by A + ∆A and b, by b + ∆b, with ∆A and ∆b being
small in relation to A and b respectively. If ATA is replaced by ATA + G
and AT b by AT b+ ∆̃b in the normal equation, we have

‖∆x‖2
‖x‖2

≤ κ(A)2

(
‖G‖2
‖ATA‖2

+
‖∆̃b‖2
‖AT b‖2

)

where G and ∆̃b are small relative to ATA and AT b, respectively.

Proof. In this proof ‖ · ‖ = ‖ · ‖2. If ATA, AT b in the normal equation are
perturbed in the form ATA + G and Atb + ∆̃b, then the solution is also
perturbed to x+ ∆x. Thus we have the equation

(ATA+G)(x+ ∆x) = AT b+ ∆̃b

To a first order approximation, this becomes

ATA∆x+Gx = ∆̃b

or equivalently, since A is assumed to have linearly independent columns,

∆x = (ATA)−1(∆̃b−Gx).

Then
‖∆x‖ ≤‖(ATA)−1‖(‖∆̃b‖+ ‖G‖‖x‖)

=‖(ATA)−1‖‖ATA‖
(
‖∆̃b‖
‖ATA‖ +

‖G‖
‖ATA‖‖x‖

)
.
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Thus
‖∆x‖
‖x‖ ≤ ‖(A

TA)−1‖‖ATA‖
(

‖∆̃b‖
‖ATA‖‖x‖ +

‖G‖
‖ATA‖

)
.

From ATAx = AT b,
‖AT b‖ ≤ ‖ATA‖‖x‖.

So

‖∆x‖
‖x‖ ≤ ‖(A

TA)−1‖‖ATA‖
(
‖∆̃b‖
‖AT b‖ +

‖G‖
‖ATA‖

)
= κ(ATA)

(
‖∆̃b‖
‖AT b‖ +

‖G‖
‖ATA‖

)
.

By Proposition 5,

‖∆x‖
‖x‖ ≤ κ(A)2

(
‖∆̃b‖
‖AT b‖ +

‖G‖
‖ATA‖

)
.

We turn to orthogonalization. The matrix A and the vector b are replaced
by A+ ∆A and b+ ∆b, respectively. Then the resulting normal equation is

(A+ ∆A)T (A+ ∆A)(x+ ∆x) = (A+ ∆A)T (b+ ∆b).

To a first order approximation, this becomes

ATAx+ATA∆x+ (∆A)TAx+AT∆Ax = AT b+AT∆b+ (∆A)T b.

Now that ATAx = AT b we get

∆x = (ATA)−1
(
AT∆b+ (∆A)T b− (∆A)TAx−AT∆Ax

)
.

Substituting r = b−Ax in above equation yields

∆x = (ATA)−1
(
AT∆b+ (∆A)T r −AT∆Ax

)
.

Then

‖∆x‖ ≤‖(ATA)−1AT ‖‖∆A‖‖x‖+ ‖(ATA)−1AT ‖‖∆b‖+ ‖(ATA)−1‖‖(∆A)T ‖‖r‖

=‖(ATA)−1AT ‖‖A‖‖∆A‖‖A‖ ‖x‖+ ‖(ATA)−1AT ‖‖A‖ ‖b‖‖A‖
‖∆b‖
‖b‖

+ ‖(ATA)−1‖‖AT ‖2 ‖(∆A)T ‖
‖AT ‖

‖r‖
‖AT ‖ .

Next using the QR factorization of A: A = Q

[
R
0

]
where Q is an m × m

orthogonal matrix and R is an n × n invertible upper triangular matrix, it
follows that

ATA = RTR, (ATA)−1 = R−1(RT )−1, (ATA)−1AT =
[
R−1 0

]
QT .
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Note that Q is orthogonal. The Euclidean norm is preserved. So

‖(ATA)−1AT ‖‖A‖ =
∥∥[R−1 0

]
QT
∥∥
∥∥∥∥Q
[
R
0

]∥∥∥∥

=
∥∥[R−1 0

]∥∥
∥∥∥∥
[
R
0

]∥∥∥∥ = ‖R−1‖‖R‖ = κ(R),

and
‖(ATA)−1‖‖AT ‖2 =‖(ATA)−1‖‖A‖2 = ‖(RTR)−1‖‖R‖2

≤‖R−1‖2‖R‖2 = κ(R)2.

By substituting these two estimates in the previous inequality divided by
‖x‖ we obtain

‖∆x‖
‖x‖ ≤ κ(R)

‖∆A‖
‖A‖ + κ(R)2 ‖r‖

‖A‖‖x‖
‖∆A‖
‖A‖ + κ(A)

‖b‖
‖A‖‖x‖

‖∆b‖
‖b‖ .

The proof is complete.

Remark 12. One way to measure ∆A and ∆b relatively small to A and b
can be

‖∆A‖2 ≤ f(m) · ε · ‖A‖2
‖∆b‖2 ≤ f(m) · ε · ‖b‖2

with f(m) = O(m), a slightly increasing function of m, and eps the machine
precision.

Similarly, we can make an interpretation for G and ∆̃b where

‖G‖2 ≤ g(n) · ε · ‖ATA‖2
‖∆̃b‖2 ≤ g(n) · ε · ‖A‖2‖b‖2

where g(n) ≈ O(n).

Remark 13. If both A and b are perturbed with ∆A and ∆b, we would get
a solution perturbed by z = x + ∆x, that is (A + ∆A)Z = b + ∆b. This is
equivalent to determining z where

min
z
‖(b+ ∆b)− (A+ ∆A)z‖2

Although orthogonalization can improve the accuracy of numerical compu-
tations, it needs other techniques to deal with input errors. Therefore, we
consider next ∆A and ∆b as uncertainty in the data. Thus we wish to
find a minimum z in the worst case assuming ∆A and ∆b have some con-
straints. We assume in this thesis that the augmented matrix

[
∆A ∆b

]
,

an m× (n+ 1) matrix, satisfies ‖ [∆A∆b] ‖ ≤ ρ1, where ρ1 ≥ 0 is given.
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5 A brief review of theory on conic programming
problems

To study robustness of the least square problem we will make use of second-
order conic programming problems. To obtain some intuition we consider
the following three optimization problems

a) A classic Linear Programming problem:

minimize 2x1 + x2 + x3

subject to x1 + x2 + x3 = 1

(x1;x2;x3) ≥ 0

b) A second order Cone Linear Programming problem

minimize 2x1 + x2 + x3

subject to x1 + x2 + x3 = 1

x1 −
√
x2

2 + x2
3 ≥ 0

where the bottom constraint puts the variables in an ice-cream cone,
or rather a second-order cone.

c) A semidefinite Cone Linear Programming problem

minimize 2x1 + x2 + x3

subject to x1 + x2 + x3 = 1
[
x1 x2

x2 x3

]
� 0

where the symbol � 0 implies the left-side symmetric matrix must be
positive semidefinite.

Even though the objective function and the first constraint are identical the
last constraint distinguishes them as a different optimization problem. Thus,
for example, the simplex method which works for LP does not work for the
other two problems. Note, however, that interior-point methods developed
for LP are naturally applied to solving the other two problems. To see this
we look at the last constraint more closely. First, they can be viewed as the
following three cones respectively.
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the non-negative orthant: R3
+ := {x ∈ R3 : x1 ≥ 0, x2 ≥ 0, x3 ≥ 0},

the second-order cone: L3 := {x ∈ R3 : x1 ≥
√
x2

2 + x2
3},

the semi-definite cone: S2
+ := {X ∈ S2 : X � 0},

where S2 is the set of all positive semi-definite (2×2) matrices. Note further
that these cones are nested in the sense that we can view the non-negative
orthant as the projection of a direct product of second-order cones on a
subspace (by imposing x2 = x3 = 0) in the second-order cone L3. Similarly,
a projection of the semi-definite cone on a specific subspace gives the second-
order cone, since

∥∥∥∥
[
x2

x3

]∥∥∥∥ ≤ x1 ⇐⇒ X =



x1 x2 x3

x2 x1 0
x3 0 x1


 � 0. (1)

The proof of (1) is as follows. Decompose the matrix X into four blocks

X =



x1 x2 x3

x2 x1 0
x3 0 x1




By a straightforward matrix manipulation we obtain that X is congruent to

 x1 − [x2 x3]x−1

1

[
x2

x3

]
0

0 x1I2


 =

[
x1 − x−1

1 (x2
2 + x2

3) 0

0 x1I2

]
.

Therefore X � 0 is equivalent to x1 ≥ 0 and x1− x−1
1 (x2

2 + x2
3) ≥ 0 which is∥∥∥∥

[
x2

x3

]∥∥∥∥ ≤ x1.

Note that this interpretation is valid also for larger problems. Moreover,
notice that the matrix manipulation above can be carried out for a general
positive semidefinite matrix if one of the main diagonal blocks is invert-
ible. The diagonal blocks in the resulting matrix are commonly called Schur
complement. This technique will be used later in reformulation of robust
polynomial interpolation.

From the above argument we can cast the above three types of problem in
a uniform formulation, called conic programming problem:

min
x∈Rn

〈c, x〉2
s.t. Ax = b,

x ∈ K,
(2)
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where c ∈ Rn, b ∈ Rm, A ∈ Rm×n, 〈·, ·〉2 the inner product and K ⊂ Rn is a
convex cone. In other words K is a convex set with the property that for all
x ∈ K, λx ∈ K for all λ > 0. In practice, the cone K is the direct product
K = K1×K2× . . .×Kl where K1, . . . ,Kl are cones, which is what we have
later.

In this report we need the duality theory for the second-order programming
problem. To this end we need a notion of dual cone which covers the above
three cases.

5.1 Generalized inequalities

We start with the constraint inequality Ax ≥ b in LP to see how the in-
equality can be generalized. Given two vectors a, b ∈ Rm, we say a ≥ b if
the coordinates of a majorise the corresponding coordinates of b, i.e:

a ≥ b⇔ ∀i ∈ {1, . . . ,m} : ai ≥ bi

Here, the latter relation uses the arithmetic ≥ - a relation between real
numbers. This “coordinate-wise” partial ordering of vectors in Rm satisfies
the following basic properties. For all vectors a, b, c, d, . . . ∈ Rm we have:

1. Reflexivity: a ≥ a;

2. Anti-symmetry: if both a ≥ b and b ≥ a then a = b;

3. Transitivity: if both a ≥ b and b ≥ c then a ≥ c;

4. Compatibility with linear operations

(a) Positive Homogeneity: if a ≥ b and λ is a nonnegative real, then
λa ≥ λb;

(b) Additivity: if both a ≥ b and c ≥ d then a+ c ≥ b+ d.

Consider vectors from a finite-dimensional Euclidean space E with an inner
product 〈·, ·〉 and assume that E has a partial ordering, in other words a
vector inequality, denoted by �. We denote this as a good ordering if it
obeys the above axioms.

Moreover, a vector inequality � which we can consider to be good is fully
identified by the set K of �-nonnegative vectors

K = {a ∈ E : a � 0}.

That is

24



a � b⇔ a− b � 0 [⇔ a− b ∈ K].

However, this set K in the above observation cannot be any arbitrary set.
It has to satisfy the following conditions

1. K is convex, nonempty and closed under addition

a, a′ ∈ K⇒ a+ a′ ∈ K

2. K is a conic set

a ∈ K, λ ≥ 0⇒ λa ∈ K

3. K is pointed

a ∈ K and − a ∈ K⇒ a = 0

Hence, K must be a pointed cone.

Every pointed cone K in E induces a partial ordering on E satisfying the
above axioms. This ordering is denoted ≥K:

a ≥K b⇔ a− b ≥K 0⇔ a− b ∈ K

The cone responsible for the standard coordinate-wise ordering ≥ on E =
Rm is the cone comprised of vectors with nonnegative entries, the nonnega-
tive orthant

Rm+ = {x = (x1, . . . , xm)T ∈ Rm : xi ≥ 0, i = 1, . . . ,m}.

The pointed cone that is the nonnegative orthant satisfies two properties

1. The cone is closed: if a sequence of vectors ai from the cone has a
limit point, the latter also belongs to the cone.

2. The cone possesses a nonempty interior : there exists a vector such
that a ball of positive radius centered at the vector is contained in the
cone.
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When mentioning vector inequalities ≥K we assume that the underlying set
K is a pointed and closed cone with a nonempty interior.

Allowing K to be a regular cone in E, meaning the cone is convex, pointed,
closed and with a nonempty interior, and given an objective c ∈ Rn, a linear
mapping Rn → E : x → Ax and a right hand side b ∈ E, we have the
optimization problem

min
x
{cTx : Ax ≥K b}.

We refer to the above problem as CP, the conic problem. The main differ-
ence between CP and LP is that the latter deals with the particular choice
E = Rm, K = Rm+ .

5.2 Dual cones

The same reasoning that applies to the dual problem in LP can be applied
to the dual problem in CP. We wish to know the “admissible” weight vectors
λ, that is the vectors such that the scalar inequality 〈λ,Ax〉 ≥ 〈λ, b〉 is a
consequence of the vector inequality Ax ≥K b.

Answering this question is the same as saying what the weight vectors λ are
s.t

∀a ≥K 0 : 〈λ, a〉 ≥ 0.

When λ has the above property the scalar inequality 〈λ, a〉 ≥ 〈λ, b〉 is a
consequence of the vector inequality a ≥K b:

a ≥K b

⇔ a− b ≥K 0

⇒ 〈λ, a− b〉 ≥ 0

⇔ 〈λ, a〉 ≥ λT b.

If λ is an admissible weight vector for the partial ordering ≥K:

∀(a, b : a ≥K b) : 〈λ, a〉 ≥ 〈λ, b〉

then λ satisfies the above property.
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The weight vectors λ which are admissible for a partial ordering ≥K are
exactly the vectors satisfying the above property, or the vectors from the set

K∗ = {λ ∈ E : 〈λ, a〉 ≥ 0 ∀a ∈ K}.

The set K∗ is comprised of vectors whose inner products with all vectors
from K are nonnegative. This set K∗ is called the cone dual to K:

Theorem 14 (Properties of the dual cone). Let E be a finite dimensional
Euclidean space with inner product 〈·, ·〉 and let K ⊂ E be a nonempty set.
Then

i) The set

K∗ = {λ ∈ Em : 〈λ, a〉 ≥ 0 ∀a ∈ K}

is a closed cone

ii) If int K 6= ∅, that is the interior of the cone K 6= ∅, then K∗ is pointed

iii) If K is a closed convex pointed cone, then int K∗ 6= ∅

iv) If K is a closed cone, then so is K∗, and the cone dual to K∗ is K
itself:

(K∗)∗ = K

For example Rn+ := {x ∈ Rn : x ≥ 0}, Ln := {(x, t) ∈ Rn+ : t ≥ ‖x‖2} and
Sn+ := {X ∈ Sn : X � 0} are self dual cones.

A summarized comment on the proofs for the above is required. First, for
Rn+ we see that

yTx ≥ 0 ∀ x � 0 ⇔ y � 0

Hence, the cone is its own dual, or rather self dual.

If we assume ‖y‖2 ≥ s, s ≥ 0 we see by using Cauchy-Schwarz reversed that
(x, y) + st ≥ −‖x‖2 ‖y‖2 + st ≥ 0, for all ‖x‖2 ≤ t showing (y, s) is in the
dual cone of Ln. We can also show that (y, s) ∈ Ln by assuming conversely
that (y, s) is in the dual cone. Hence, the so called Lorentz cone is self dual.
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Moreover, for the positive semidefinite cone Sn+ we use the inner product
tr(X,Y ) =

∑n
i,j=1XijYij . Supposing that Y 6∈ Sn+ there exists a q ∈ Rn

with

qTY q = tr(qqTY ) < 0

Since the positive semidefinite matrix X = qqT satisfies tr(XY ) ≤ 0 we have
that Y 6∈ Sn+. Assuming conversely that X,Y ∈ Sn+ we can use eigenvalue
decomposition to show that Y ∈ Sn+. Hence, this cone is self dual[1].

5.3 The Dual of the Conic Programming Problem

Now we derive the dual of the CP problem following the standard Lagrangian
theory [11].

Associate with the CP given in (2) a Lagrangian of the form L : Rn×Rm×
K∗ → R

L(x, y, s) = cTx+ yT (b−Ax)− sTx.
Minimizing L(x, y, s) over x yields

φ(y, s) = min
x
cTx+ yT (b−Ax)− sTx = min

x
(c−AT y − s)Tx+ bT y

=

{
bT y if c−AT y − s = 0

−∞ otherwise.

We maximize φ(y, s) over all (y, s) ∈ Rm ×K∗ to acquire the conic dual, or
CD, problem as

max bT y

s.t. c−AT y = s

s ∈ K∗.
(3)

Similar to LP duality we have

Theorem 15 (Weak Conic Duality Theorem). The optimal value of CD is
a lower bound on the optimal value of CP

Proof. The proof is straightforward. Let x̄ be a feasible solution to (2) and
(ȳ, s̄) be the feasible solution of (3)

bT ȳ = (Ax̄)T ȳ = x̄T (AT ȳ) = x̄T (c− s̄) = cT x̄− s̄T x̄ ≤ cT x̄.

The last inequality holds due to the fact that s̄ ∈ K∗, i.e. s̄T x̄ ≥ 0.
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Note that the gap between the dual and primal problem is called the duality
gap. In duality theory of LP, the duality gap is 0. Unfortunately, this is not
the case for CP although geometrically there is a similarity between CP and
LP. However, this can be recovered if we assume a constrained qualification
condition. In the case at hand it is in fact the so-called Slater’s condition.
More precisely we have

Theorem 16. [6] Consider a conic problem

c∗ = min
x
{cTx : Ax ≥K b}

along with its conic dual

b∗ = max{〈b, λ〉 : A∗λ = c, λ ≥K∗ 0}.

1. The duality is symmetric: the dual problem is conic, and the problem
dual to dual is the primal.

2. The value of the dual objective at every dual feasible solution λ is ≤
the value of the primal objective at every primal feasible solution x, so
that the duality gap

cTx− 〈b, λ〉

is nonnegative at every primal-dual feasible pair (x, λ).

3. (a) If the primal CP is a bounded below and strictly feasible (i.e.
Ax >K b for some x), then the dual CD is solvable and the opti-
mal values in the problems are equal to each other, i.e. c∗ = b∗.

(b) If the dual CD is bounded above and strictly feasible (i.e. exists
λ >K 0 such that A∗λ = c, then the primal CP is solvable and
c∗ = b∗.

4. Assume that at least one of the problems CP, CD is bounded and
strictly feasible. Then a primal-dual feasible pair (x, λ) is a pair of
optimal solutions to the respective problems

(a) if and only if

〈b, λ〉 = cTx

and

(b) if and only if

〈λ,Ax− b〉 = 0

This proof is more involved but is not encompassed in this thesis.
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5.4 Derivation of the Dual Problem of SOCP

We are interested in the second-order cone program of the form

min cTx

s.t. ‖Aix+ bi‖2 ≤ cTi x+ di, i = 1, . . . ,m

where c ∈ Rn, Ai ∈ ni × n, bi ∈ Rni , ci ∈ Rn, di ∈ R, i = 1, . . . ,m and
x ∈ Rn is a variable. Here we derive two methods such that the dual can be
expressed as

max

m∑

i=1

(bTi ui + divi)

s.t.
∑

(ATi ui + civi) + c = 0

‖ui‖2 ≤ vi, i = 1, . . . ,m

with variable ui ∈ Rni , vi ∈ R, i = 1, . . . ,m. Note that this is once more a
second-order conic programming problem.

Method 1 (in terms of conic dual)

We begin from the conic form of the SOCP and use its conic dual, with the
fact that the second order cone is self dual, which allows us to express the
SOCP as a conic form

min
x
cTx (SOCP)

s.t. − 〈cTi x+ di, Aix+ bi〉 �Ki 0, i = 1, . . . ,m

where Ki is the second order cone for each i. The Lagrangian is given by

L(x, ui, vi) = cTx−
m∑

i=1

(Aix+ bi)
Tui −

m∑

i=1

(cTi x+ di)vi

=

(
c−

m∑

i=1

(
ATi ui + civi

)T
)
x−

m∑

i=1

(bTi ui + divi)

for 〈ui, vi〉 �K∗i 0, or equivalently vi ≥ ‖ui‖2. Minimizing the Lagrangian
over x, the dual objective function is

θ(ν, µ) =

{
−∑m

i=1(bTi νi + diµi) if
∑

(ATi νi + µici) = c

−∞ otherwise
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Thus, the dual of the (SOCP) is

max
νi,µi
−

n∑

i=1

(bTi νi + diµi)

s.t.
∑

(ATi νi + µici) = c

〈νi, µi〉 �Ki 0, i = 1, . . . ,m

Method 2 (reformulation)

Introduce new variables yi ∈ Rni and ti ∈ R as well as equalities yi = Aix+bi
and ti = cTi x+ di. The (SOCP) can be reformulated as

min cTx

s.t ‖yi‖2 ≤ ti, i = 1, . . . ,m

yi = Aix+ bi, ti = cTi x+ di, i = 1, . . . ,m

The Lagrangian with dual variable λ ≥ 0, since it is associated with the
inequality constraints ν, µ is

L(x, y, t, λ, ν, µ)

= cTx+

m∑

i=1

λi(‖yi‖2 − ti) +

m∑

i=1

νTi (yi −Aix− bi) +

m∑

i=1

µi(ti − cTi x− di)

= (c−
m∑

i=1

ATi νi −
m∑

i=1

µici)
Tx+

m∑

i=1

(λi‖yi‖2 + νTi yi)

+

m∑

i=1

(−λi + µi)ti −
m∑

i=1

(bTi νi + diµi).

Since the variables x, t, y are separated in the Lagrangian, the minimization
of the Lagrangian over x, t, y can be carried out by three suboptimal prob-
lems over x, t and y independently. So we solve each of the optimization
problems.

i. The minimum over x is bounded below if and only if

m∑

i=1

(ATi νi + µici) = c.
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ii. The minimum over t is bounded below if and only if

λi = µi.

iii. To minimize over y, we assume ‖νi‖2 ≤ λi and by the Cauchy-Schwarz
inequality we receive

−νTi yi ≤ ‖νi‖2‖yi‖2 ≤ λi‖yi‖2

which implies that

λi‖yi‖2 + νTi yi ≥ 0.

Thus, it follows that

inf
yi
λi‖yi‖2 + νTi yi = 0.

On the other hand, assume ‖ν‖2 > λi ≥ 0. Taking yi = −sνi for some
s > 0, we have

λi‖yi‖2 + νTi yi = λis‖νi‖2 − s‖v‖22 = (λi − ‖νi‖2)s‖vi‖2 < 0.

To minimize this we let s be very large so that

inf
yi
λi‖yi‖2 + νTi yi = −∞.

Combining i-iii we have

inf
yi

(λi‖yi‖2 + νTi yi) =

{
0 if ‖νi‖2 ≤ λi
−∞ otherwise.

Thus, the dual objective function is

φ(λ, ν, µ) =

{
−∑(bTi νi + diµi) if

∑m
i=1(ATi νi + µici) = c,

−∞ otherwise
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which leads to the dual problem

max −
m∑

i=1

(btiνi + diµi)

s.t.

m∑

i=1

(ATi νi + λici) = c

‖νi‖2 ≤ λi, i = 1, . . . ,m

We have now mentioned Conic Programming, its prerequisites as well as
how it connects to Linear Programming, and Conic Duality with its theo-
rem and proofs.

The most effective methods for SOCP are interior-point methods, much
like any other LP problem. Moreover, having been extensively researched,
SOCP is found in numerous applications ranging from finance to engineering
to control [7].

6 Unstructured Robust Least Square Problems

Previously we studied the numerical rounding error in solving the least
square problem. However, the input data in many problems can have errors.
It is therefore natural to ask the following questions:

i. What is a least square solution if there are input data errors?

ii. How robust is the least square problems with uncertainties?

The task of this section is to answer these questions.

For an unknown matrix [∆A,∆b] define the worst-case residual:

φ(A, b, ρ)
∆
= max
‖[∆A,∆b]‖F≤ρ

‖(A+ ∆A)x− (b+ ∆b)‖2.

The robust least square (RLS) problem is to determine the minimum of the
worst case residual, i.e. we have to solve the min-max problem

min
x

max
‖[∆A,∆b]‖F ‖eρ‖

‖(A+ ∆A)x− (b+ ∆b)‖2.

When ρ = 0, we find a standard least square problem, and when ρ > 0,
φ(A, b, ρ) = ρφ(A/ρ, b/ρ, 1) why ρ = 1 and φ(A, b) are taken for the remain-
der of this section. To simplify notation in this section the norms ‖ · ‖ are
2-norms unless explicitly stated.
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Theorem 17. When ρ = 1, the worst case residual is

r(A, b, x) = ‖Ax− b‖+
√
‖x‖2 + 1.

There is a unique solution to the problem of minimizing r(A, b, x) over x ∈
Rm.

Proof. For fixed x ∈ Rm,

r(A, b, x) ≤ ‖Ax− b‖+
√
‖x‖2 + 1.

Choose ∆ := [∆A,∆b] as

[∆A,∆b] =
u√

‖x‖2 + 1

[
xT 1

]
, where u =

{
Ax−b
‖Ax−b‖ if Ax 6= b

any unit-norm vector otherwise

Since the rank of ∆ is one, by Proposition 6 we have ‖∆‖F = ‖∆‖ = 1.
Moreover, we have

‖(A+ ∆A)x− (b+ ∆b)‖ = ‖Ax− b‖+
√
‖x‖2 + 1

implying ∆ is a worst case perturbation and the equality always holds in
r(A, b, x). Finally, uniqueness of the minimiser x follows from the strict
convexity of the worst case residual which is a sum of two strictly convex
functions.

Theorem 16 only says that the RLS problem has a unique solution. Note
that the problem of minimizing r(A, b, x) can be formulated as a second
order cone. The next theorem provides an exact solution,

Theorem 18. When ρ = 1, the unique solution xRLS to the RLS problem
is

xRLS =

{
(µI +ATA)−1AT b if µ

∆
= (λ− τ)/τ > 0

A+b otherwise.

where (λ, τ) is the unique optimal pair for the second order cone program
problem

minimize λ subject to ‖Ax− b‖ ≤ λ− τ,
∥∥∥∥
[
x
1

]∥∥∥∥ ≤ τ. (4)
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Proof. Using the duality result shown in Section 5.3, the dual problem of
(4) is

maximize bT z − v subject to AT z + u = 0, ‖z‖ ≤ 1,

∥∥∥∥
[
u
v

]∥∥∥∥ ≤ 1.

All constraints are satisfied and the nonlinear constraints are satisfied with
strict inequalities for the primal problem, so both the primal as well as the
dual are strictly feasible. By strong duality, this implies that optimal points
exist for both. If λ = τ at the optimum, then Ax = b as well as

λ = τ =
√
‖x‖2 + 1.

Here, the optimal x is the unique minimum norm solution to Ax = b, that
is x = A+b.

Assume instead that λ > τ . Since the same condition for the primal and
dual holds here as above, the primal and dual optimal objectives are equal

‖Ax− b‖+
∥∥[xT 1

]∥∥ = λ = bT z − v = −(Ax− b)T z −
[
xT 1

] [−AT z
v

]
.

With ‖z‖ ≤ 1, ‖
[
uT v

]T ‖ ≤ 1, u = −AT z, by inspection we have

z = − Ax− b
‖Ax− b‖ and

[
uT v

]
= −

[
xT 1

]
√
‖x‖2 + 1

.

Thus

u = − x√
‖x‖2 + 1

v = − 1√
‖x‖+ 1

.

Plugging expressions for z and u in the constraint AT z + u = 0 yields

AT (Ax− b)
‖Ax− b‖ +

x√
‖x‖2 + 1

= 0.

Rearranging terms in this equation we receive
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(ATA+ µI)x = AT b

with

µ =
‖Ax− b‖√
‖x‖2 + 1

=
λ− τ
τ

.

Hence

x = (ATA+ µI)−1AT b

Now we try to answer the question on robustness of LS. To this end we make
use of the SVD of the matrix A, i.e. there are unitary matrices U and V
such that

A = U

[
Σ1 0
0 0

]
V ∗

with Σ1 = diag(σ1, ..., σr) and σ1 ≥ · · · ≥ σr > 0 being singular values of A.
Note that Σ1 is an r × r invertible matrix.

Let U∗b =

[
b1
b2

]
. Assume λ > τ at the optimal solution of (4). Since the

primal and dual optimal values are the same we have

λ = bT z − v =
bT (b−Ax)

‖Ax− b‖ +
1√

‖x‖2 + 1
=
bT (b−Ax)

τ
+

1

τ
,

as shown in the proof of Theorem 17. Now we compute the numerator of
the first term using the SVD and the formula for the RLS solution xRLS of

bT (b−Ax) = bT (b−A(ATA+ µI)−1AT b) = bT (I −A(ATA+ µI)−1AT )b

=bT


I − U

[
Σ1 0
0 0

]
V ∗
(
V

[
Σ1 0
0 0

]T
U∗U

[
Σ1 0
0 0

]
V ∗ + µI

)−1

V

[
Σ1 0
0 0

]T
U∗


 b

=bT


I − U

[
Σ1 0
0 0

]([
Σ1 0
0 0

]T [
Σ1 0
0 0

]
+ µI

)−1 [
Σ1 0
0 0

]T
U∗


 b

=bTU∗
(
I −

[
Σ1(µI + Σ2

1)−1Σ1 0
0 0

])
U∗b

=
[
b∗1 b∗2

] [I − Σ1(µI + Σ2
1)−1Σ1 0

0 I

] [
b1
b2

]

=
[
b∗1 b∗2

] [(I + µ−1Σ2
1)−1 0

0 I

] [
b1
b2

]
= b∗2b2 + b∗1(I − µ−1Σ2

1)−1b1

.

36



Hence
bT (b−Ax)

τ
=

b∗2b2
λ− τ + b∗1((λ− τ)I + τΣ2

1)−1b1.

Consequently

λ =
1

τ
+

b∗2b2
λ− τ + b∗1((λ− τ)I + τΣ2

1)−1b1.

This leads to

λ2 =
λ

τ
+
λb∗2b2
λ− τ + λb∗1((λ− τ)I + τΣ2

1)−1b1

because λ = 0 is not feasible. Introduce now θ = τ
λ . Then

λ2 =
1

θ
+

b∗2b2
1− θ + b∗1((1− θ)I + θΣ2

1)−1b1 =: f(θ) (5)

From the constraints of (4) we have τ ≥ 1 and λ ≤ ‖b‖ + 1, which implies
that θ ≥ θmin := 1

‖b‖+1 . That is θmin ≤ θ ≤ 1.

These computations show that we have reduced the optimization problem
to determine the worst-case residual to the following optimization problem
of a one variable function

inf
θmin≤θ≤1

f(θ)

Taking a closer look at the function f(θ), the point θ = 1 needs more
attention. However, θ = 1 is equivalent to λ = τ and we know that the
optimum λ = 1 + ‖x‖2 = 1 + ‖A+b‖2 for b ∈ C(A) by the proof of Theorem
17. It is clear that f(θ) → ∞ if b 6∈ C(A). Furthermore, if we backward
substitute SVD of A into f(θ) we obtain for θmin ≤ θ < 1

f(θ) =
1

θ
+ bT ((1− θ)I + θAAT )−1b.

Observe that

f(θ) =
1

θ
+
‖b2‖2
1− θ +

r∑

i=1

b21,i
1 + θ(σ2

i − 1)

is a twice differentiable function and its first and the second derivatives are

df

dθ
= − 1

θ2
+
‖b2‖2

(1− θ)2
+

r∑

i=1

b21,i((1− σ2
i )

(1 + θ(σ2
i − 1))2

and
d2f

dθ2
=

2

θ3
+

2

(1− θ)3
+

r∑

i=1

2b21,i((1− σ2
i )

2

(1 + θ(σ2
i − 1))3

.
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We know that θ < 1⇔ (1−θ)3 > 0 and 1+θ(σ2
i −1) = (1−θ)+θσ2

i ≥ 0 for

all i = 1, ..., r proving that d2f
dθ2

> 0. This shows that f(θ) is a strictly con-
vex function for θmin ≤ θ < 1 and consequently the necessary and sufficient
condition for the minimizer θ∗ is that θ∗ is a solution (if any) to the equation

− 1
θ2

+ ‖b2‖2
(1−θ)2 +

∑r
i=1

b21,i((1−σ2
i )

(1+θ(σ2
i−1))2

= 0 ⇔ 1
θ2

= ‖b2‖2
(1−θ)2 +

∑r
i=1

b21,i((1−σ2
i )

(1+θ(σ2
i−1))2

.

Hence we have proved the following theorem.

Theorem 19. Assume ρ = 1. Then the solution of the unstructured RLS
can be derived from the solution to the convex optimization problem of one
variable

inf
θmin≤θ≤1

f(θ)

where

f(θ) =





1
θ + bT ((1− θ)I + θAAT )−1b if θmin ≤ θ < 1{
∞ if b 6∈ C(A)

1 + ‖A+b‖2 if b ∈ C(A)
if θ = 1

.

Moreover the worst-case residual is

φ(A, b)2 = inf
θmin≤θ≤1

f(θ).

Some remarks are in order. If an SVD is available then Theorem 19 gives an
alternative solution to the RLS and it can be solved, for example, by New-
ton’s algorithm efficiently. As commonly known, an SVD requires a cost of
about O(nm2 + m3) which is not much cheaper than the SOCP method.
Moreover, the SVD does not extend to the structured RLS, for example the
robust polynomial interpolation as discussed later. One of the advantages
of this solution is that it provides an easier robustness analysis as we will
now show.

Intuitively, when RLS and LS solutions coincide we can say that the LS
solution is robust. This occurs if and only if θ = 1 and b ∈ C(A), In this
case f has to be differentiable at θ = 1 and its minimum over θmin ≤ θ ≤ 1
is at θ = 1 if and only if df

dθ (1) ≤ 0.

Now

df

dθ
= − 1

θ2
− bT ((1− θ)I + θAAT )−1d((1− θ)I + θAAT )

dθ
((1− θ)I + θAAT )−1b

= − 1

θ2
− bT ((1− θ)I + θAAT )−1(AAT − I)((1− θ)I + θAAT )−1b.
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Then
df

dθ
(1) = −1− bT (AAT )+(AAT − I)(AAT )+b.

It requires that it be ≤ 0 for b ∈ C(A), that is,

b ∈ C(A), bT ((AAT )2)+b ≤ 1 + bT (AAT )+b. (6)

If (6) holds then the RLS and LS coincide. Otherwise the optimal θ < 1
and x = xRLS given in Theorem 17.

If not, θ < 1 and x is given by xRLS that we defined above. We can write
this latter condition in the case when the norm-bound of the perturbation
ρ is different from 1 as ρ > ρmin, where

ρmin(A, b)
∆
=





√
1+‖A+b‖2
‖(AAT )+b‖ if b ∈ C(A), A 6= 0, b 6= 0

0 otherwise

Hence, ρmin can be thought of as the perturbation level that the LS solution
allows. Thus, the LS and RLS solutions coincide whenever the norm-bound
on the perturbation matrix ρ satisfies ρ ≤ ρmin(A, b), where ρmin(A, b) is
defined as above. Hence, ρmin(A, b) can be thought of as the robustness
measure of the LS solution.

We regard the above mentioned example in numerical fashion.

A numerical example

We shall now compute the perturbation level of Example 2. If yi = y(si),
si = s0 + i, i = 1, . . . , 10. Since Ax = b, b ∈ C(A), the LS is naturally robust
with

ρmin(A, b) =

√
1 + ‖A+b‖2
‖(AAT )+b‖

We now calculate ρmin for s0 = 10, 50, 100, 150, and 200 as well as the
solution to xRLS for the RLS. To get this solution we need to solve the
SOCP problem

min λ

s.t ‖Ax− b‖ ≤ λ− τ ,

∥∥∥∥
[
x
1

]∥∥∥∥ ≤ τ
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With the help of Mathematica we obtain

s0 10 50 100 150 200

λ 1.20847 1.05663 1.02984 1.02027 1.01535
τ 1.02416 1.00164 1.00045 1.00021 1.00045

µ = λ−τ
τ 0.1800 0.054897 0.029381 0.0200602 0.014893

ρmin 7.6× 10−5 9.8× 10−8 1.5× 10−5 4.8× 10−6 2.1× 10−6

XRLS




0.2206
0.0159
0.0012







0.05730
0.00104
0.00002







3.0× 10−2

2.9× 10−4

2.7× 10−6







2.0× 10−2

1.3× 10−4

8.4× 10−7







1.6× 10−2

7.6× 10−5

3.7× 10−7




From above we see that ρmin, considered as the perturbation level which
the LS solution allows, is decreasing as the condition number of A increases,
except for s0 = 50 when λ is very close to τ .

Simplifying the above observation, we find a gradually less robust solution
as the condition number increases.

7 Robust Polynomial Interpolation

In this section we will show that some least square problems are structured
and hence it is desired to take the structure into account. We illustrate this
by polynomial interpolation.

For some integer k and n ≥ 1, we search for a polynomial of degree n − 1
such that

p(t) = x1 + x2t+ . . .+ xnt
n−1

that interpolates given data (ai, bi), i = 1, . . . , k, or more precisely,

p(ai) = bi, i = 1, . . . k.

Let us first assume that (ai, bi) are known. So the above interpolation con-
ditions gives the linear equations




1 a1 . . . an−1
1

1 a2 . . . an−1
2

... . . . . . .
...

1 ak . . . an−1
k







x1
...
...
xn




=




b1
...
...
bk




where x = (x1, . . . , xn)T is unknown.
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If n = k, then this becomes a system of equations with a Vandermonde
matrix as its coefficient matrix A. Assume further that the ai’s are dis-
tinct. Then det(A) =

∏
1≤i≤j≤n(aj − ai) 6= 0 if ai 6= aj for i 6= j. So we

obtain a unique solution x and hence a unique interpolating polynomial p(t).

If instead k > n, then we solve this by the standard least square method.
Important to note is that the condition numbers often tend to be very poor
if some ai’s are close to one another.

Here, we consider the case where the interpolation data is known but not
exact. For example, assume bi are known exactly, but ai are parameter
dependent of the form

ai(δ) = ai + δi, i = 1, . . . , k

where the δi’s are bounded but unknown: |δi| ≤ ρ, i = 1, . . . k where ρ ≥ 0 is
given. When k = n we apply Theorem 8 if the δi’s are considered round-off
errors and ρ as machine-epsilon. When k ≥ n in general, we apply robust
least square above. Thus, we look for a robust interpolant p(t) such that x
minimises the worst case residual

max
‖δ‖∞≤ρ

‖A(δ)x− b‖

where

A(δ) =




1 a1(δ) a1(δ)2 . . . a1(δ)n−1

1 a2(δ) a2(δ)2 . . . a2(δ)n−1

...
...

...
...

1 ak(δ) ak(δ)
2 . . . ak(δ)

n−1


 .

We see that this matrix has a Vandermonde structure. We regard the struc-
ture of this particular least square problem. We can rewrite A(δ)x− b as

A(δ)x− b = [A(δ), b]

[
x
−1

]

We show that [A(δ), b] can be rewritten into linear fractional form

[A(δ), b] = [A(0), b] + L∆(I −D∆)−1[RA, 0]

where L,∆, D,RA shall be given precisely.
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For a fixed row index i, we have

(1, (ai + δi), (ai + δi)
2, . . . , (ai + δi)

n−1, bi)

=(1, a1, a
2
i , . . . , a

n−1
i , bi) + Li∆i(In−1 −Di∆i)

−1(Ri, 0)

where

Di =




0 1 ai . . . an−3
i

. . .
. . .

. . .
...

. . .
. . . ai
. . . 1

0



∈ R(n−1)×(n−1), i = 1, . . . k,

Ri =




0 1 ai . . . an−2
i

. . .
. . .

. . .
...

. . .
. . . ai
. . . 1

0



∈ R(n−1)×n, i = 1, . . . k.

Stack rows, we get

[A(δ), b] = [A(0), b] + L∆(I −D∆)−1[RA, 0]

where L = diag(L1, . . . , Lk), ∆ = diag(∆1, . . . ,∆k), D = diag(D1, . . . Dk),

RA =



R1
...
Rk


 and Li = (1, ai, . . . a

n−2
i ), ∆i = δiIn−1.

Note that since D is strictly upper triangular, (I−D∆) is invertible. Hence,
this is the linear fractional structured robust least square problem. The
computation of the worst-case residual is NP-complete, however positive
semidefinite programming can provide upper bounds, see [8].
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