
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Quasi-Newton Methods for Neural Network Training in Machine

Learning

av

Stefan Miletic

2021 - No K37

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

Quasi-Newton Methods for Neural Network Training in Machine

Learning

Stefan Miletic

Självständigt arbete i matematik 15 högskolepoäng, grundnivå

Handledare: Yishao Zhou

2021

Abstract

The theory of mathematical optimization provides a powerful tool in
modern sciences as computational capabilities allow for fast and reliable
solutions. One of those application areas is deep learning where different
algorithms are trained to solve various problems within the field of ma-
chine learning. Typically a loss or error function is defined which needs to
be minimized. For this reason, a brief introduction to optimization the-
ory is given with focus on iterative methods incorporating line search and
trust region techniques. A lot of attention will be paid to Newton’s method
and we will see how it can be further improved to handle large-scale prob-
lems which usually arise as a consequence of network training. In order to
better understand the nature of these problems and why Newton-based it-
erative methods handle them well, a short introduction to neural networks
and network training will be mathematically presented, where attention
is paid to a special type of networks called feed-forward networks. Lastly,
popular quasi-Newton methods will be introduced and explored in great
detail with derivation and convergence analysis in focus. A large portion
of our attention will be dedicated to some recent improvements towards
quasi-Newton methods where deep neural network training performance is
of importance.

1

Contents

1 Introduction 3

2 Preliminaries 4
2.1 General Concepts . 4
2.2 Iterative Methods . 7

2.2.1 Line Search Methods . 8
2.2.2 Trust Region Methods . 10
2.2.3 Newton’s Method and Rise of Quasi-Newton Methods . . 11

2.3 Neural Networks . 14
2.3.1 Feed-forward Networks . 14
2.3.2 Network Training . 15

3 Quasi-Newton Methods 16
3.1 BFGS Method . 16

3.1.1 Nesterov’s Accelerated Quasi-Newton Method 19
3.2 SR1 Method . 22
3.3 Limited-memory BFGS and SR1 Methods 23

3.3.1 Sampled Limited-memory BFGS and SR1 Methods 24

4 Numerical Experiments 30

5 Discussion 32

References 32

2

1 Introduction

The general idea of unconstrained optimization concerns the minimization prob-
lem of a real-valued function f : Rn → R of an n-dimensional input variable x.
We call f an objective function and formulate this problem as

min
x
f(x).

One seeks to find a local minimizer, which we will denote by x∗, that satisfies

f(x∗) ≤ f(x), for all x in some neighborhood of x∗.

If that neighborhood is the whole domain of f , then x∗ is also said to be a global
minimizer. This can be further extended to more delicate situations where ad-
ditional constraints may be introduced. For example, we may be interested in
minimization of f(x) over a subset M ⊆ Rn for which some vector-valued func-
tion h(x) = (h1(x), . . . , hm(x))> satisfies certain conditions on its component
functions. The set M is called the feasible set, and this gives rise to constrained
optimization problems

min
x∈M

f(x) subject to

{
hi(x) = 0, i ∈ I
hj(x) ≤ 0, j ∈ J,

where I and J are sets of indices such that I ∩ J = ∅ and I ∪ J = {1, . . . ,m}.
The notion of convexity as a property of an objective function together with

the feasible set plays a fundamental role in optimization theory. We will define
convexity in the next section and derive one important conclusion from it. Of
particular interest for us will be optimization of nonlinear functions. These
functions appear in a lot of different application areas, inter alia, the study
of neural networks in deep learning where objective functions are often highly
nonlinear [2, 3].

The main disposition of this paper is split into two parts, the preliminaries
necessarry to understand the material (Chapter 2) and the main topic involv-
ing symmetric rank-one (SR1) and Broyden–Fletcher–Goldfarb–Shanno (BFGS)
quasi-Newton methods (Chapter 3). In the preliminary part, we will introduce
some general concepts within the multivariate analysis and optimization theory.
We will then use those concepts to develop some standard techniques which are
fundamental in the derivation of quasi-Newton methods. The covered tech-
niques are line search and trust region methods which together fall under one
broader idea called iterative methods. We will also derive Newton’s method and
see how it can be further developed into quasi-Newton methods. Since the goal
of this paper is to present quasi-Newton methods’ application in neural network
training, we will also mathematically present neural networks and show how
they are trained. In the main part (Chapter 3), we will derive standard quasi-
Newton methods (SR1 and BFGS) and then extend them to varieties which are
well suited for large-scale problems which naturally arise as a consequence of
neural network training (limited-memory SR1 and BFGS). These varieties will

3

also be further extended to some recent studies which proved to be even more
efficient and robust when it comes to deep neural network training. Lastly, we
will show some numerical experiments in (Chapter 4) where a small network is
trained on a personal computer using BFGS-based methods.

2 Preliminaries

2.1 General Concepts

Throughout this paper we will be dealing with a lot of terminology and it will
be useful to introduce some of the key concepts.

We begin by defining convexity for sets and functions, then show one of their
immediate consequences on local minimizers of convex functions.

Definition 2.1. Let S ⊂ Rn. We say that S is convex if for any two points
x1,x2 ∈ S the line segment connecting x1 and x2 lies entirely in S. That is, S
is convex if and only if for all x1,x2 ∈ S and t ∈ [0, 1],

tx1 + (1− t)x2 ∈ S.

Definition 2.2. Let S ⊂ Rn and f : S → R. We say that f is convex if and
only if S is convex and for all x1,x2 ∈ S and t ∈ [0, 1]

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2).

Theorem 2.1. If f : Rn → R is convex and x∗ is a local minimizer of f , then
x∗ is also a global minimizer of f .

Proof. Suppose that x∗ is not a global minimizer. Then there exists some x0

such that f(x0) < f(x∗). By convexity of f , we get

f(tx0 + (1− t)x∗) ≤ tf(x0) + (1− t)f(x∗)

< tf(x∗) + (1− t)f(x∗) = f(x∗),

where t ∈ (0, 1]. Since the argument of the left-hand side, tx0 + (1 − t)x∗,
corresponds to a line segment connecting x0 and x∗, it follows that any neigh-
borhood of x∗ will contain a subset of that line segment, hence f(x∗) cannot
be a local minimizer. It follows that x∗ is a global minimizer.

This is a very important result that can potentially save a lot of computa-
tional time. Suppose we are interested in minimization of an objective function
that is not convex, where a local minimum is obtained through an iterative
method. Since the objective function is not convex, there is no guarantee that
the minimum will be global, hence multiple solutions need be compared, typi-
cally by running the iteration several times with different initial values.

Next, we define the gradient and the Hessian of a function, positive definite-
ness and semi-definiteness of a matrix and present Taylor’s theorem.

4

Definition 2.3. Let f : Rn → R be a differentiable function of several variables
x = (x1, . . . , xn). Then the gradient of f is defined as

∇f := ∇f(x) :=

(
∂f

∂x1
, . . . ,

∂f

∂xn

)>
.

Definition 2.4. Let f : Rn → R be a twice continuously differentiable function
of several variables x = (x1, . . . , xn). Then the Hessian matrix, or Hessian, of
f is defined as

Hf := ∇2f := (∇2f(x))ij :=
∂2f

∂xi∂xj
.

Definition 2.5. Let M be a symmetric n × n real matrix and x ∈ Rn a real
vector. We say that M is:

positive definite if for all nonzero x x>Mx > 0,

positive semi-definite if for all x x>Mx ≥ 0.

Theorem 2.2 (Taylor’s theorem). Suppose that f : Rn → R is continuously
differentiable and let p ∈ Rn. Then for some t ∈ (0, 1) it follows that

f(x+ p) = f(x) + p>∇f(x+ tp).

Furthermore, if f is twice continuously differentiable, it follows that

f(x+ p) = f(x) + p>∇f(x) +
1

2
p>∇2f(x+ tp)p

and

∇f(x+ p) = ∇f(x) +

∫ 1

0

∇2f(x+ tp)p,

for some t ∈ (0, 1).

Proof. (See [8].)

We are now ready to state the necessary and sufficient conditions for opti-
mality which will be crucial guidelines to the most of iterative methods we will
discus later.

Theorem 2.3 (First-order necessary condition). Let f : Rn → R be a continu-
ously differentiable function of several variables x = (x1, . . . , xn) and x∗ a local
minimizer of f , then

∇f(x∗) = 0.

Proof. Since x∗ is a local minimizer of f , we have for all p ∈ Rn and τ sufficiently
small

f(x∗) ≤ f(x∗ + τp).

It follows from Taylor’s theorem that

f(x∗ + τp) = f(x∗) + τp>∇f(x∗ + tp),

5

for some t ∈ (0, τ), hence

f(x∗) ≤ f(x∗) + τp>∇f(x∗ + tp).

It follows for τ > 0 that

0 ≤ p>∇f(x∗ + tp)

≤ p>∇f(x∗),

where the last inequality follow from the fact that x∗ is a minimizer, that is,

f(x∗) ≤ f(x), for all x in some neighborhood of x∗.

Let p = −∇f(x∗) and it follows that 0 = ‖∇f(x∗)‖2, thus

∇f(x∗) = 0.

Theorem 2.4 (Second-order sufficient condition). Let f : Rn → R be a twice
continuously differentiable function of several variables x = (x1, . . . , xn) in some
neighborhood of x∗ and suppose that

∇f(x∗) = 0,

∇2f(x∗) is positive definite.

Then x∗ is a local minimizer of f .

Proof. Because f is twice continuously differentiable and ∇2f(x∗) is positive
definite, we can consider an open ball B centered at x∗ for which ∇2f(x) is
positive definite. Taking any nonzero vector p such that x∗ + p ∈ B gives in
Taylor’s expansion

f(x∗ + p) = f(x∗) + p>∇f(x∗) +
1

2
p>∇2f(x∗ + tp)p,

where t ∈ (0, 1). Now, since ∇f(x∗) = 0 and p>∇2f(x∗+tp)p > 0 as x∗+tp ∈
B, it follows that

f(x∗ + p) > f(x∗),

thus x∗ is a local minimizer of f .

Lastly, we define Lipschitz continuity and notions of convergence. If not
stated differently, ‖ · ‖ will denote the Euclidean vector and matrix norm, where
the latter one is defined by ‖A‖ := supx6=0 ‖Ax‖/‖x‖.

Definition 2.6. A function f : Rn → R is called Lipschitz continuous with
Lipschitz constant L, shortened as L-Lipschitz, if there exists a constant L > 0
such that

|f(x1)− f(x2)| ≤ L‖x1 − x2‖

6

for all x1,x2 ∈ Rn. Furthermore, we say that f has an L-Lipschitz continuous
gradient if f is continuously differentiable and

‖∇f(x1)−∇f(x2)‖ ≤ L‖x1 − x2‖

for some L > 0 and all x1,x2 ∈ Rn. Lastly, we say that f has an L-Lipschitz
continuous Hessian if f is twice continuously differentiable and

‖∇2f(x1)−∇2f(x2)‖ ≤ L‖x1 − x2‖

for some L > 0 and all x1,x2 ∈ Rn.

Definition 2.7 (Rates of convergence). Suppose that {xk} ⊂ Rn is a sequence
that converges to x∗. We say that it converges:

• Q-linearly if there is a constant r ∈ (0, 1) such that for all sufficiently large
k,

‖xk+1 − x∗‖ ≤ r‖xk − x∗‖,

• Q-superlinearly if

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 0,

• Q-quadratically if there is a constant K > 0 such that for all sufficinetly
large k,

‖xk+1 − x∗‖ ≤ K‖xk − x∗‖2.

When we talk about convergence in later chapters, we will omit the letter
”Q” and simply say that a method, i.e. the sequence generated by it, converges
linearly, superlinearly or quadratically. The reason why ”Q” is mentioned is to
emphasize that successive terms form a quotient in these definitions, which is
standard in most literature.

2.2 Iterative Methods

Iterative methods provide fast and reliable answers to many problems where
direct methods fail to yield solutions within a reasonable time. A general it-
erative method for optimization takes an initial value as a starting point then
updates it according to some scheme until convergence is reached. Since we will
be dealing with neural networks, suppose we are given an error function E(w)
associated with some network with parameters w which needs to be minimized.
The goal of an iterative method would then be to take this parameter vector
w and keep updating it until it reaches or approximates a minimum of E(w),
satisfying a predetermined precision condition. In other words, we update w
iteratively via

wk+1 = wk + pk, (2.1)

where pk is an update vector. The main difficulty then becomes choosing pk
and w0 correctly such that wk+1 converges to a minimum of E(w).

7

2.2.1 Line Search Methods

Further improvements can be introduced to the iteration formula (2.1) if we
impose a step length αk > 0 on pk. One then obtains a line search method

xk+1 = xk + αkpk (2.2)

and the optimization becomes a two-step problem, finding the update vector
pk, then finding its step length αk such that the univariate subproblem

arg min
αk

f(xk + αkpk) (2.3)

is solved as efficiently as possible without making the main problem (2.2) un-
necessarily slow [5, 8]. For this reason, αk is usually an approximate solution
to (2.3) and is chosen from a set of candidates. In this context we will call pk a
search direction and it is often required that it is a descent direction. Namely,
we want to ensure the reduction of f(xk+1) by setting

f(xk + αkpk) < f(xk). (2.4)

We then linearly approximate f(xk + αkpk) in (2.4) around xk using Taylor’s
theorem to obtain

f(xk) + αkp
>
k∇f(xk) < f(xk)

⇐⇒ p>k∇f(xk) < 0.
(2.5)

The definition of a descent direction is then deduced from (2.5).

Definition 2.8. For a differentiable function f : Rn → R a vector pk is called
a descent direction at point xk if

p>k∇f(xk) < 0.

When a descent direction pk has been chosen, the problem becomes picking
a good step size αk. One of the famous techniques for doing this is choosing αk
to satisfy the Wolfe conditions [8].

Definition 2.9 (Wolfe conditions). For some constants 0 < c1 < c2 < 1 a step
size αk is said to satisfy the Wolfe conditions for f : Rn → R if

f(xk + αkpk) ≤ f(xk) + c1αkp
>
k∇f(xk), (2.6)

p>k∇f(xk + αkpk) ≥ c2p>k∇f(xk). (2.7)

The inequalities (2.6) and (2.7) are known as the Armijo condition and cur-
vature condition respectively. The former one ensures that αk gives a sufficient
decrease in f , while the latter one ensures that αk is not unreasonably small. For
Newton and quasi-Newton methods, one typically sets c1 = 10−4 and c2 = 0.9
[8].

We will now show the convergence of a general line search method for smooth
functions as presented in [8].

8

Theorem 2.5. Suppose f : Rn → R is continuously differentiable and bounded
below by some scalar f̂ , and ∇f is L-Lipschitz continuous. Let {xk} be a se-
quance of iterates generated by a general line search method (2.2) where the
step size αk satisfies the Wolfe conditions (2.6) and (2.7), and pk is a descent
direction. Define angle θk between pk and −∇f(xk) as

cos θk :=
−p>k∇f(xk)

‖pk‖ · ‖∇f(xk)‖ .

Then it follows that
∞∑

k=0

cos2 θk‖∇f(xk)‖2 <∞.

Proof. Starting with (2.7) and noticing that xk+1 = xk + αkpk, we have that

p>k∇f(xk+1) ≥ c2p>k∇f(xk)

⇐⇒ p>k∇f(xk+1)− p>k∇f(xk) ≥ c2p>k∇f(xk)− p>k∇f(xk)

⇐⇒ p>k (∇f(xk+1)−∇f(xk)) ≥ (c2 − 1)p>k∇f(xk).

It follows from the Lipschitz continuity of ∇f that

‖∇f(xk+1)−∇f(xk)‖ ≤ L‖xk+1 − xk‖
=⇒ p>k (∇f(xk+1)−∇f(xk)) ≤ p>k L(αkpk) = αkL‖pk‖2,

hence

αk ≥
p>k (∇f(xk+1)−∇f(xk))

L‖pk‖2
≥ (c2 − 1)p>k∇f(xk)

L‖pk‖2
.

The Armijo condition (2.6) and definition of cos θk, together with the above
inequality, give now

f(xk+1) ≤ f(xk) + c1αkp
>
k∇f(xk)

⇐⇒ f(xk+1)− f(xk) ≤ c1αkp>k∇f(xk)

≤ c1
(c2 − 1)p>k∇f(xk)

L‖pk‖2
p>k∇f(xk)

= C
(p>k∇f(xk))2

‖pk‖2
= C cos2 θk‖∇f(xk)‖2,

where C = c1(c2− 1)/L. Summing both sides above for k = 0, . . . , N gives now

N∑

k=0

C cos2 θk‖∇f(xk)‖2 ≥
N∑

k=0

(f(xk+1)− f(xk))

= f(xN+1)− f(x0)

≥ f̂ − f(x0),

9

where f̂ is the assumed lower bound of f . Hence we get

N∑

k=0

cos2 θk‖∇f(xk)‖2 ≤ f(x0)− f̂
C

=⇒
∞∑

k=0

cos2 θk‖∇f(xk)‖2 ≤ f(x0)− f̂
C

<∞.

Theorem 2.5 has important consequences on the descent direction pk as it
can imply global convergence for the respective line search method [8]. If the
angle θk between pk and −∇f(xk) is strictly acute for all k, it follows that
δ ≤ cos θk ≤ 1 for some δ > 0, hence

∞∑

k=0

cos2 θk‖∇f(xk)‖2 <∞

=⇒ cos2 θk‖∇f(xk)‖2 → 0

=⇒ ‖∇f(xk)‖ → 0.

2.2.2 Trust Region Methods

Another standard approach for pursuing (2.1) utilizes a quadratic approximation
of the objective function around the current iterate xk. Here, a search direction
p is computed to minimize the quadratic model

mk(xk + p) = f(xk) + p>∇f(xk) +
1

2
p>Bkp, (2.8)

where f is the objective function and Bk a symmetric matrix (usually Hessian
or some approximation of it if it is not possible to compute it exactly). Further-
more, we introduce a trust region constraint by bounding the Euclidean norm
of p to a ball of predetermined radius ∆k. Thus

‖p‖ ≤ ∆k (2.9)

is imposed, in which mk can be trusted to accurately approximate f . A trust
region method is then defined as the constrained optimization problem

min
p∈Rn

mk(xk + p) subject to ‖p‖ ≤ ∆k. (2.10)

For trust region methods, it is necessary to redefine (2.9) in each iteration
in order for f(xk+1) to achieve an efficient reduction. If the reduction is not
achieved for a given radius ∆k it is important to reject it and reshape the trust

10

region with another choice of radius. The standard way to do this is to compute
a ratio of the actual reduction and predicted reduction

ρk =
f(xk)− f(xk+1)

mk(0)−mk(pk)
(2.11)

and look at its values [5, 8]. One way to adjust the trust region radius ∆k is
to introduce control parameters 0 ≤ c1 < c2 < 1, b1 > 1, b2 ∈ (0, 1), d ∈ (0, 1),
then [1]:

• set ∆k+1 = ∆k if ρk > c2 and ‖pk‖ ≤ d∆k,

• set ∆k+1 = b1∆k if ρk > c2 and ‖pk‖ > d∆k,

• set ∆k+1 = ∆k if c1 ≤ ρk ≤ c2,

• set ∆k+1 = b2∆k if ρk < c1.

The trust region scheme is thus carried out as (2.1) if for some predetermined
constant η > 0 we have ρk ≥ η. If ρk < η, then the iterate is left unchanged
as xk+1 = xk. At the end of each iteration, ρk is moderated according to the
above list.

We present a theorem which ensures that trust region methods converge
globally under certain assumptions [5].

Theorem 2.6. Let {xk} be a sequence of iterates generated by xk+1 = xk+pk,
where pk is computed by solving the trust region subproblem (2.10) for which
the trust radius ρk is moderated by the list following its definition in (2.11).
Assume that pk satisfies

mk(0)−mk(pk) ≥ ξ‖∇f(xk)‖min

{‖∇f(xk)‖
βk

,∆k

}
, (2.12)

for some ζ > 0, βk > 0, and the sequence of Hessian approximations {Bk} is
bounded in norm. Lastly, assume that ∇f(x) is L-Lipschitz continuous. Then
either one of the following three possibilities hold,

∇f(xk) = 0 for some k,

lim
k→∞

∇f(xk) = 0,

f is unbounded from below.

2.2.3 Newton’s Method and Rise of Quasi-Newton Methods

One of the classic iterative methods for root finding is Newton’s method. It is
based on a linear approximation of an objective function F and can be regarded
as an unconstrained optimization method if we assume Theorem 2.4 and apply
the method on F = ∇f(x) = 0. However, the iteration must start sufficiently
close to the minimizer in order for it to converge to that minimizer [5, 6, 8].

11

Given a step increment ∆x = xk+1 − xk, we can linearly approximate the
gradient of a twice continuously differentiable function f : Rn → R around the
current iterate xk using Taylor’s theorem, then evaluate it at the new iterate
xk+1, hence

∇f(xk+1) ≈ ∇f(xk) +∇2f(xk)∆x.

Newton’s method is then obtain via

∇f(xk) +∇2f(xk)∆x = 0

⇐⇒ ∆x = −(∇2f(xk))−1∇f(xk),

which gives the update scheme

xk+1 = xk − (∇2f(xk))−1∇f(xk). (2.13)

One can show under the assumptions of Theorem 2.4 and by picking the
initial x0 sufficiently close to the minimizer, which ensures the positive defi-
niteness, that Newton’s method converges quadratically [5, 6, 8]. It should be
noted, however, that not every function will satisfy positive definiteness of the
Hessian, and it is often required that it has some special property, e.g. being
convex.

We will now prove the convergence of Newton’s method as it is done in [5].

Lemma 2.7. Suppose that f : Rn → R, ∇f and ∇2f are Lipschitz continuous,
∇f(x∗) = 0 and ∇2f(x∗) is positive definite. Then there exists a ball Bδ(x

∗) of
radius δ > 0 centered at x∗ such that for all x ∈ Bδ(x∗) the following statements
hold:

‖∇2f(x)‖ ≤ 2‖∇2f(x∗)‖, (2.14)

‖(∇2f(x))−1‖ ≤ 2‖(∇2f(x∗))−1‖ (2.15)

and
‖x− x∗‖

2‖(∇2f(x∗))−1‖ ≤ ‖∇f(x)‖ ≤ 2‖∇2f(x∗)‖ · ‖x− x∗‖. (2.16)

Proof. (See [4].)

Theorem 2.8. Suppose that f : Rn → R, ∇f and ∇2f are Lipschitz continu-
ous, ∇f(x∗) = 0 and ∇2f(x∗) is positive definite. Then there exist K > 0 and
δ > 0 such that if xk ∈ Bδ(x∗), it follows that

‖xk+1 − x∗‖ ≤ K‖xk − x∗‖2, (2.17)

where xk+1 is given by the Newton scheme (2.13).

Proof. Choose δ such that Lemma 2.7 holds. The Newton scheme (2.13) gives

xk+1 − x∗ = xk − x∗ − (∇2f(xk))−1∇f(xk).

12

Let ek+1 = xk+1 − x∗, ek = xk − x∗. It follows from Taylor’s theorem that

ek+1 = (∇2f(xk))−1
∫ 1

0

(∇2f(xk)−∇2f(x∗ + tek)ek)dt

⇐⇒ ‖ek+1‖ = ‖(∇2f(xk))−1‖ ·
∥∥∥∥
∫ 1

0

(∇2f(xk)−∇2f(x∗ + tek)ek)dt

∥∥∥∥

≤ ‖(∇2f(xk))−1‖ ·
∫ 1

0

‖(∇2f(xk)−∇2f(x∗ + tek)‖ · ‖ek‖dt.

Now, since f is twice L-Lipschitz continuously differentiable, we get

‖ek+1‖ ≤ ‖(∇2f(xk))−1‖ ·
∫ 1

0

‖(∇2f(xk)−∇2f(x∗ + tek)‖ · ‖ek‖dt

≤ ‖(∇2f(xk))−1‖ ·
∫ 1

0

L‖xk − (x∗ + tek)‖ · ‖ek‖dt

= ‖(∇2f(xk))−1‖ ·
∫ 1

0

L‖ek‖2 · ‖1− t‖dt

=
L

2
‖(∇2f(xk))−1‖ · ‖ek‖2.

It follows from Lemma 2.7 that

‖ek+1‖ ≤
L

2
‖(∇2f(xk))−1‖ · ‖ek‖2

≤ L

2
2‖(∇2f(x∗))−1‖ · ‖ek‖2,

thus
‖xk+1 − x∗‖ ≤ L‖(∇2f(x∗))−1‖ · ‖xk − x∗‖2

and (2.17) follows for K = L‖(∇2f(x∗))−1‖.

A direct consequence of Theorem 2.8 is the following theorem which shows
that Newton’s method converges quadratically.

Theorem 2.9. Suppose that the assumptions of Theorem 2.8 hold and also
choose δ > 0 such that Kδ < 1. Then Newton’s method (2.13) converges
quadratically to x∗ if x0 ∈ Bδ(x∗).

Proof. It follows from Theorem 2.8 that

‖xk+1 − x∗‖ ≤ K‖xk − x∗‖2

if xk ∈ Bδ(x∗). Since x0 ∈ Bδ(x∗), we have that ‖x0 − x∗‖ ≤ δ, thus

‖x1 − x∗‖ ≤ K‖x0 − x∗‖2 ≤ Kδ‖x0 − x∗‖ < ‖x0 − x∗‖.

We get that x1 ∈ BKδ2(x∗) ⊂ Bδ(x
∗), from which it follows by successive

application of Theorem 2.8 and the above inequality that

‖xk+1 − x∗‖ ≤ K‖xk − x∗‖2 ≤ Kδ‖xk − x∗‖ < ‖xk − x∗‖ (2.18)

13

for all k ≥ 0. Thus every new iterate xk+1 will be contained in a ball centered
at x∗ of radius δ and (2.18) implies that xk → x∗ quadratically.

There are many ways in which Newton’s method can be improved to be
more robust to broader choices of the initial iterate x0. Some of them are based
on the techniques we have discussed in this chapter, namely line search and
trust region methods. In the context of line search, (2.2) is solved by letting the
search direction pk be the one we have obtained in (2.13), that is,

pk = −(∇2f(xk))−1∇f(xk), (2.19)

and the step length αk is computed to satisfy the Wolfe (or some other) con-
ditions. However, if ∇2f(xk) is not positive definite, we omit it and compute
some positive definite approximation of it [8]. On the other hand, the trust
region approach is very straight forward. The quadratic model mk in (2.8) does
not require Bk to be positive definite, thus (2.19) need not be changed and we
can proceed to the trust region subproblem (2.10) directly.

Computing the Hessian of an objective function f is not always easy or
possible. We have seen that Newton’s method relies heavily on it and we seek
to find a solution to the scenarios where it is necessary to approximate it. This
problem introduces quasi-Newton methods where the Hessian of the objective
function in Newton’s update scheme (2.13) is successively approximated in each
iteration [5, 8]. The new update scheme then becomes

xk+1 = xk −B−1k ∇f(xk), (2.20)

where Bk ≈ ∇2f(xk), and we call (2.20) a quasi-Newton method.

2.3 Neural Networks

Neural networks are a special type of compositions of functions used to extract
or predict information from a given data set. One feeds the observed information
to the network’s input layer, the network then processes the information in a
multiple of so called hidden layers, and lastly it returns the output values. If
there are more than one hidden layers, the network is called deep [3].

Mathematically, we have input variables x = (x1, . . . , xn) and a parame-
ter vector w that we use to construct a network model y(x,w) in order to
approximate another function. This goal function can be anything from sim-
ple mathematical functions to various types of classifiers and image or speech
recognition.

2.3.1 Feed-forward Networks

A special type of neural networks that never processes data backwards, i.e. sends
data from a layer to the previous layers, is called a feed-forward network. These
types of networks are excellent approximators of highly nonlinear functions and
will therefore be of interest for us [2, 3].

14

Suppose we are given N1 input variables x = (x1, . . . , xN1) and want to
build a feed-forward network. We need to define how many nodes the first
hidden layer will be comprised of. Suppose it has N2 nodes, then we can use
the input variables to define the k-th node in the first layer as

ck(x) =

N1∑

n=1

wknxn + wk0, k = 1, . . . , N2, (2.21)

where wkn are parameters called weights and wk0 parameters called biases. In
other words, nodes are linear combinations of weights w and input variables x
with additional biases. The next step would typically include a differentiable
activation function h1 which is used to transform (2.21) into h1(ck(x)). Thus

h1(ck(x)) = h1

(
N1∑

n=1

wknxn + wk0

)
(2.22)

is obtained as the k-th node, which for every k = 1, . . . , N2 defines the first
hidden layer. Now, by treating (2.22) as our new input values we can proceed
to the definition of the second hidden layer consisting of N3 nodes as

cj(x) =

N2∑

k=1

wjkh1(ck(x)) + wj0, j = 1, . . . , N3. (2.23)

Similarly, we introduce another differentiable activation function h2 and trans-
form (2.23) into

h2(cj(x)) = h2

(
N2∑

k=1

wjkh1(ck(x)) + wj0

)

= h2

(
N2∑

k=1

wjkh1

(
N1∑

n=1

wknxn + wk0

)
+ wj0

)
.

(2.24)

It is not generally specified how many layers or nodes per layer a network
should have and is something that should be determined in advance. One could
keep linearly transforming (2.24) until final outputs hi(c(x)) are reached. We
will denote these final outputs as yi(x,w), which together form the output layer

y(x,w). (2.25)

2.3.2 Network Training

Training a neural network is crucial to its performance and directly determines
how well a certain problem the network is constructed for will be resolved. The
central part in training is to find weight parameters w such that some error
function E(w) is minimized. This function typically involves a sum of squared
residuals, coming from an important probabilistic background [2, 3].

15

Suppose we have a set of some observed input values {xn} together with
the corresponding set of outputs {tn}. This type of training where the output
values are known is called supervised learning. The first step would typically
concern splitting the observed values into training and testing sets, e.g. a 75%-
25% split, however, further validation could be applied [2]. The training set,
which we will denote by T = {(xk, tk)}, is then used on a network model (2.25)
to define an error function

Ek(w) =
1

2
‖y(xk,w)− tk‖2.

The error function for the whole training set is then defined as

E(w) =
1

M

M∑

k=1

Ek(w), (2.26)

where M is the number of training pairs in T , i.e., M = |T |.
Minimizing E(w) in (2.26) with respect to weight parameters w is what we

will denote as network training. After the parameters have been chosen, another
error is calculated for the testing set to check the network’s performance on
unseen data.

For a general network model y(x,w), the error function E(w) need not be
convex. By using nonlinear activation functions, E(w) inherits highly nonlinear
dependence on the weights w [2]. What this implies in practice is that a mini-
mizer of E(w) is not always a global minimizer and we cannot use Theorem 2.1.
For this reason, it is usually necessary to compare different minima obtained by
using various initial values w0 in an iterative method and see which one yields
the best results.

3 Quasi-Newton Methods

We saw how quasi-Newton methods arise naturally as a consequence of inability
or inefficiency of computing the Hessian of an objective function. In this chapter,
we will explore different approaches to the quasi-Newton update scheme (2.20)
and see how each one of them approximates the Hessian. We will also see some
of the recent work in this field involving substantial improvements to some of
the classic quasi-Newton methods applied on neural network training [1, 7].

3.1 BFGS Method

One well established quasi-Newton method, named after its inventors, is the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) method [5, 8, 9].

Let us come back to the standard quasi-Newton scheme in (2.20), namely

xk+1 = xk −B−1k ∇f(xk).

16

Here, the search direction is given by

pk = −B−1k ∇f(xk),

and it will be used in BFGS as a descent direction for the line search scheme

xk+1 = xk − αkB−1k ∇f(xk), (3.1)

where αk is chosen to satisfy the Wolfe conditions. What is characteristic about
BFGS in its approximations is that it uses the information of latest two gradient
evaluations ∇f(xk) and ∇f(xk−1) to impose a secant condition on Bk [8]. In
other words, the new Hessian approximation should satisfy

Bk+1sk = yk, (3.2)

where (sk,yk) are called the curvature pairs and are defined as

sk = xk+1 − xk, yk = ∇f(xk+1)−∇f(xk). (3.3)

We require from Bk+1 to be symmetric positive definite, which means that the
curvature pairs must satisfy the curvature condition

s>k yk > 0, (3.4)

as seen from (3.2) since s>kBk+1sk = s>k yk > 0 needs to hold.
The following theorem shows that every curvature pair incorporating a step

size which satisfies the Wolfe conditions will automatically satisfy the curvature
condition (3.4).

Theorem 3.1. If a step size αk > 0 satisfies the Wolfe conditions in a quasi-
Newton scheme (3.1), then every curvature pair (sk,yk) will satisfy the curva-
ture condition (3.4).

Proof. Since αk satisfies the Wolfe conditions, it follows directly from (2.7) that

p>k∇f(xk+1) ≥ c2p>k∇f(xk)

⇐⇒ α−1k (xk+1 − xk)>∇f(xk+1) ≥ c2α−1k (xk+1 − xk)>∇f(xk)

⇐⇒ s>k∇f(xk+1) ≥ c2s>k∇f(xk)

⇐⇒ s>k (∇f(xk+1)−∇f(xk)) ≥ (c2 − 1)s>k∇f(xk)

⇐⇒ s>k yk ≥ (c2 − 1)αkp
>
k∇f(xk).

Now, since pk is a descent direction p>k∇f(xk) < 0 and 0 < c2 < 1, we have

s>k yk ≥ (c2 − 1)αkp
>
k∇f(xk) > 0.

17

To compute Bk+1, BFGS applies a rank-two update to Bk using symmetric
matrices in order to preserve symmetry. A general rank-two update is given by

Bk+1 = Bk + auu> + bvv>. (3.5)

Since the secant condition is required, we substitute (3.5) into (3.2) to obtain

yk = Bk+1sk

⇐⇒ yk = (Bk + auu> + bvv>)sk

= Bksk + au(u>sk) + bv(v>sk).

(3.6)

In order for this equality to hold, we must set u = −Bksk and v = yk, thus
scalars a and b must satisfy

a = 1/(u>sk), b = 1/(v>sk).

The rank-two update formula (3.5) is therefore given by

Bk+1 = Bk −
Bksks

>
kBk

s>kBksk
+
yky

>
k

y>k sk
. (3.7)

If we let Hk+1 := B−1k+1, we can apply the Sherman–Morrison–Woodbury for-
mula [8] on (3.7) to obtain

Hk+1 = V >k HkVk + ρksks
>
k , (3.8)

where ρk = 1/y>k sk and Vk = I − ρkyks
>
k (see [8]). The BFGS scheme is

therefore given by (3.1), where B−1k := Hk is computed according to (3.8).
The following theorem ensures that the BFGS method (3.1), where the in-

verse Hessians are generated by (3.8), establishes a superlinear rate of conver-
gence when the objective function is smooth and convex. The proof and further
insight can be found in [8].

Theorem 3.2. Suppose f : Rn → R is twice continuously differentiable. Let x0

be a starting point for the BFGS scheme (3.1), where the Hessians are generated
by (3.7) and B0 is a symmetric positive definite initial matrix. Assume that the
level set Ω = {x : f(x) ≤ f(x0)} is convex and there exist constants 0 < m ≤ L
such that

m‖z‖2 ≤ z>∇2f(x)z ≤ L‖z‖2

for all x ∈ Ω and z ∈ Rn. Then the sequence of iterates {xk} generated by the
BFGS scheme (3.1) converges to the minimizer x∗. Furthermore, assume that
∇2f(x) is Lipschitz continuous at x∗ and that

∞∑

k=1

‖xk − x∗‖ <∞

holds, then xk → x∗ superlinearly.

18

3.1.1 Nesterov’s Accelerated Quasi-Newton Method

One way of making the standard BFGS scheme (3.1) more robust to large-scale
problems, where the inverse Hessian approximations are constructed via (3.8),
is by incorporating Nesterov’s accelerated gradient in the search direction [7].

Consider the derivation which lead to the Newton’s scheme (2.13). Instead
of using the standard increment ∆x = xk+1 − xk, we introduce a so called
momentum term µpk, where µ ∈ (0, 1) is a momentum coefficient and pk is a
search direction, and define ∆x = xk+1−(xk+µpk). By linearly approximating
the gradient around xk + µpk and evaluating it at xk+1, we get

∇f(xk+1) ≈ ∇f(xk + µpk) +∇2f(xk + µpk)∆x.

By setting this approximation to zero, we obtain Newton’s method with the
momentum term µpk, that is,

0 = ∇f(xk + µpk) +∇2f(xk + µpk)∆x

⇐⇒ ∆x = −(∇2f(xk + µpk))−1∇f(xk + µpk)

⇐⇒ xk+1 = (xk + µpk)− (∇2f(xk + µpk))−1∇f(xk + µpk).

The Hessians ∇2f(xk + µpk) will be successively approximated by a rank-two
BFGS based scheme

B̃k+1 = B̃k −
B̃ks̃ks̃

>
k B̃k

s̃>k B̃ks̃k
+
ỹkỹ

>
k

ỹ>k s̃k
, (3.9)

in which the curvature pairs (3.3) get redefined to (s̃k, ỹk) such that

s̃k = xk+1 − (xk + µpk), ỹk = ∇f(xk+1)−∇f(xk + µpk). (3.10)

By applying the Sherman–Morrison–Woodbury formula [8] on (3.9) and letting
H̃k+1 := B̃−1k+1, we obtain

H̃k+1 = Ṽ >k H̃kṼk + σks̃ks̃
>
k , (3.11)

where σk = 1/ỹ>k s̃k and Vk = I − σkỹks̃>k [7, 8]. The Nesterov’s accelerated
quasi-Newton scheme (NAQ) is thus, in regards to (3.1), given by

xk+1 = (xk + µpk)− αkH̃k∇f(xk + µpk),

where αk is a step size. This leads to a new search direction given by

pk+1 = µpk − αkH̃k∇f(xk + µpk), (3.12)

and NAQ can be stated as

xk+1 = xk + pk+1, (3.13)

19

where pk+1 is computed via (3.12). Aside from initial x0 and H̃0, NAQ will
also require a momentum parameter µ in advance, as well as an initial p0 which
is set to 0 in [7].

The convergence for proposed NAQ follows from the convergence of BFGS
by verifying that B̃k+1 given by (3.9) preserves symmetric positive definiteness
if B̃k is symmetric positive definite, and if the secant equation ỹk = B̃k+1s̃k
holds for it. We show the derivation from [7].

Theorem 3.3. The curvature pairs (s̃k, ỹk) given by (3.10) and generated by
the NAQ scheme (3.13) satisfy the curvature condition s̃>k ỹk > 0.

Proof. For NAQ, the curvature condition (3.4) is given by

0 < s̃>k ỹk

= (xk+1 − (xk + µpk))>(∇f(xk+1)−∇f(xk + µpk))

= (−αkH̃k∇f(xk + µpk))>(∇f(xk+1)−∇f(xk + µpk))

= (−αk∇f(xk + µpk)>H̃k)(∇f(xk+1)−∇f(xk + µpk))

= −αk∇f(xk + µpk)>H̃k∇f(xk+1) + αk∇f(xk + µpk)>H̃k∇f(xk + µpk).

Consider now the exact line search minimization subproblem, analogously to
(2.3) but applied on (3.13),

arg min
αk

f(xk + pk+1).

The solution to this problem gives an optimal step size αk and is obtained by
solving

df(xk + pk+1)

dαk
=
df(xk + µpk − αkH̃k∇f(xk + µpk))

dαk
= 0

⇐⇒ −∇f(xk+1)>αkH̃k∇f(xk + µpk) = 0

⇐⇒ −αkH̃k∇f(xk + µpk)>∇f(xk+1) = 0.

It follows from the required curvature condition 0 < s̃>k ỹk that

0 < −αk∇f(xk + µpk)>H̃k∇f(xk+1) + αk∇f(xk + µpk)>H̃k∇f(xk + µpk)

= αk∇f(xk + µpk)>H̃k∇f(xk + µpk),

and since H̃k is the inverse of a positive definite matrix B̃k, it is also positive
definite, hence 0 < s̃>k ỹk will be satisfied.

Theorem 3.4. Let B̃k+1 be a Hessian approximation generated by (3.9). If B̃k

is symmetric positive definite, then B̃k+1 will be symmetric positive definite and
satisfy the secant condition ỹk = B̃k+1s̃k, where the curvature pairs (s̃k, ỹk) are
given by (3.10).

20

Proof. For the secant condition, we have from (3.9) that

ỹk = B̃k+1s̃k

=

(
B̃k −

B̃ks̃ks̃
>
k B̃k

s̃>k B̃ks̃k
+
ỹkỹ

>
k

ỹ>k s̃k

)
s̃k

= B̃ks̃k −
B̃ks̃ks̃

>
k B̃ks̃k

s̃>k B̃ks̃k
+
ỹkỹ

>
k s̃k

ỹ>k s̃k

= B̃ks̃k − B̃ks̃k + ỹk = ỹk.

The symmetry follows as well since

B̃>k+1 =

(
B̃k −

B̃ks̃ks̃
>
k B̃k

s̃>k B̃ks̃k
+
ỹkỹ

>
k

ỹ>k s̃k

)>

= B̃>k −
B̃>k s̃ks̃

>
k B̃
>
k

s̃>k B̃ks̃k
+
ỹkỹ

>
k

ỹ>k s̃k

= B̃k −
B̃ks̃ks̃

>
k B̃k

s̃>k B̃ks̃k
+
ỹkỹ

>
k

ỹ>k s̃k
= B̃k+1.

To show positive definiteness, consider the Cholesky decomposition B̃k+1 =
LL>, where L is some lower triangular matrix [8]. For an arbitrary nonzero
vector z, it follows that

z>B̃k+1z = z>LL>z

=
(z>LL>z)(s̃>k LL

>s̃k)

s̃>k LL
>s̃k

− (z>LL>s̃k)2

s̃>k LL
>s̃k

+
(z>LL>s̃k)2

s̃>k LL
>s̃k

.

The secant condition gives us ỹk = LL>s̃k, hence

z>B̃k+1z =
(z>LL>z)(s̃>k LL

>s̃k)− (z>LL>s̃k)2

s̃>k LL
>s̃k

+
(z>ỹk)2

s̃>k ỹk
. (3.14)

For some arbitrary vectors u and v, it follows from the Cauchy-Schwarz in-
equality that

0 ≤ (u>u)(v>v)− (u>v)2.

Let u = L>z 6= 0 and v = L>s̃k 6= 0, and from (3.14) follows

z>B̃k+1z ≥
(z>ỹk)2

s̃>k ỹk
.

Since the curvature condition ensures that s̃>k ỹk > 0, it follows that

z>B̃k+1z ≥ 0.

21

To show that it is a strict inequality, and thus positive definiteness of B̃k+1,
suppose for contradiction that the numerators in (3.14) can satisfy

(z>LL>z)(s̃>k LL
>s̃k)− (z>LL>s̃k)2 = 0

and
(z>ỹk)2 = 0.

This can hold if and only if L>z = cL>s̃k, for some nonzero scalar c, and thus
z = cs̃k. As a consequence, the second numerator becomes

(z>ỹk)2 = 0

⇐⇒ c2(s̃>k ỹk)2 = 0

=⇒ s̃>k ỹk = 0,

but this contradicts Theorem 3.3 and thus (3.14) implies positive definiteness
of B̃k+1.

3.2 SR1 Method

So far we have paid attention to the BFGS based methods which update the
Hessian approximation (or its inverse) of an objective function with a rank-two
matrix. In this section we will explore a method which is based on a weaker rank-
one update, the symmetric rank-one method (SR1) [5, 8]. The first drawback is
that the SR1 update will not guarantee that the new updated Bk+1 is positive
definite, but only that it is symmetric. Although this may be considered a
major disadvantage, the SR1 method can sometimes in practice, under mild
conditions, give better convergence towards the true Hessian than the BFGS
based algorithms [5, 8].

A general symmetric rank-one update is given by

Bk+1 = Bk + auu>, (3.15)

where a and u are chosen such that a = ±1 and the secant equation (3.2) holds,
that is,

yk = (Bk + auu>)sk

⇐⇒ (yk −Bksk) = (au>sk)u,
(3.16)

where (sk,yk) are curvature pairs [8]. Since (au>sk) is a scalar, it follows from
(3.16) that u is a multiple of (yk −Bksk), thus for some scalar c

u = c(yk −Bksk).

We can now use this form of u to transform (3.16) into

(yk −Bksk) = ac2(s>k (yk −Bksk))(yk −Bksk),

hence a and c are given by

a = sign(s>k (yk −Bksk)), c = ±(s>k (yk −Bksk))−1/2.

22

The SR1 update scheme for the Hessian approximation is thus given by

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)>

(yk −Bksk)>sk
. (3.17)

The way we update xk is this time not via line search, but via trust region.
The SR1 method computes a search direction pk by minimizing the constrained
subproblem (2.10), where Bk in the quadratic model mk (2.8) is given by (3.17).
The current iterate is then updated according to

xk+1 = xk + pk (3.18)

if for some predetermined constant η > 0 we have ρk ≥ η. If ρk < η, then the
iterate is left unchanged. After each iteration, ρk gets moderated according to
the list following its definition in (2.9).

The following theorem shows that xk converges to a minimizer x∗ superlin-
early when updated by the SR1 scheme (3.18), under a fair number of assump-
tions.

Theorem 3.5. Suppose that the sequence of iterates {xk} generated by the
SR1 scheme (3.18) does not terminate and remains in a compact convex set
in which f : Rn → R is twice continuously differentiable and has a unique
stationary point x∗. Suppose that ∇2f(x∗) is positive definite and ∇2f(x) is
Lipschitz continuous in a neighborhood of x∗. Lastly, suppose that the sequence
of Hessian approximations {Bk} generated by (3.17) is bounded in norm and
that

|(yk −Bksk)>sk| ≥ ε‖sk‖‖yk −Bksk‖ (3.19)

holds for all k, where ε ∈ (0, 1). Then xk → x∗ at an (n + 1)-step superlinear
rate, that is,

lim
k→∞

‖xk+n+1 − x∗‖
xk − x∗

= 0.

Proof. (See [8].)

3.3 Limited-memory BFGS and SR1 Methods

While working on large-scale problems such as considerably deep neural network
training, the standard BFGS scheme described in (3.8) may become computa-
tionally inefficient. The reason for this lies in the cost of storing and/or manipu-
lating dense inverse Hessian approximations Hk. One way around this practical
issue is to store a fixed number of curvature pairs {(si,yi)} corresponding to the
building process of Hk according to (3.8), which gives a slightly less accurate
version of it. The curvature pairs {(si,yi)} are then used to build Hk, hence
Hk∇f(xk) can be computed without the need to store Hk [1, 5, 8, 9].

Suppose we are at iteration k with m curvature pairs {(si,yi)}, where i =
k −m, . . . , k − 1. The computation of Hk builds upon some initial value H̃0,

23

which when put into the BFGS scheme (3.8) forms the limited-memory BFGS
(L-BFGS) scheme

Hk =
(
V >k−1 · · ·V >k−m

)
H̃0 (Vk−m · · ·Vk−1)

+ ρk−m
(
V >k−1 · · ·V >k−m

)
sk−ms

>
k−m (Vk−m · · ·Vk−1)

+ ρk−m+1

(
V >k−1 · · ·V >k−m

)
sk−m+1s

>
k−m+1 (Vk−m · · ·Vk−1)

+ . . .

+ ρk−1sk−1s
>
k−1,

(3.20)

from which Hk∇f(xk) can be computed recursively [8, 9]. When Hk∇f(xk) is
computed, the next iterate is obtained according to line search applied on (3.1),
that is,

xk+1 = xk − αkHk∇f(xk),

and the set of curvature pairs {(si,yi)} gets updated to the new most recent
m pairs. The procedure is repeated until convergence and defines the L-BFGS
method. Notice that the initial value for x0 should also be provided and that
every Hk can have a different initial H̃0 in (3.20).

Following the same idea as for the L-BFGS scheme (3.20), the SR1 method
can also be modified to a limited-memory variant. In that case, m curvature
pairs {(si,yi)} will get stored and used to calculate (3.17) recursively in each
iteration, analogously to (3.20). The corresponding L-SR1 formula for Hk will
this time get more complicated compact form (see e.g. [9]).

3.3.1 Sampled Limited-memory BFGS and SR1 Methods

While trying to make the BFGS and SR1 methods more practical, we have seen
how L-BFGS and L-SR1 methods can be used as a way around the computa-
tional cost and manipulation of dense inverse Hessian approximations. Another
technique which builds upon the limited-memory schemes is sampled L-BFGS
and L-SR1 (SL-BFGS and SL-SR1) proposed in [1]. The main difference in
this new approach is the way in which curvature pairs {(si,yi)} are constructed
and used. Here, the past curvature information is not used in the construction
of new pairs, but is obtained via sampling. In some cases, this has proven to
capture the curvature information of the objective function f better than the
regular BFGS, SR1, L-BFGS and L-SR1 methods, especially while training deep
networks [1].

Given a current iterate xk, a number of curvature pairs m and a sampling
radius r, the SL-BFGS and SL-SR1 methods construct curvature pairs {(si,yi)}
by sampling a random direction σi, setting x̃k = xk + rσi and then evaluating

si = xk − x̃k, yi =

{
∇f(xk)−∇f(x̃k), Option I

∇2f(xk)si, Option II
(3.21)

for every i = 1, . . . ,m [1]. Both Option I & II are viable and should be chosen
with regards to the nature of a given problem and computational resources.

24

The SL-BFGS method is carried out according to the limited-memory scheme
(3.20), where the curvature pairs are constructed via (3.21), leading to the line
search

xk+1 = xk − αkHk∇f(xk), (3.22)

given initial x0, sampling radius r and memory m.
Analogously to SL-BFGS and L-SR1, the SL-SR1 method is derived by solv-

ing the trust region subproblem (2.10) to obtain a search direction pk, where ρk
is used to control the trust radius ∆k according to the list below its definition in
(2.11), and the Hessian approximation in the quadratic model (2.8) is computed
recursively via sampling (3.21). Hence,

xk+1 = xk + pk (3.23)

defines the SL-SR1 scheme given some initial x0, initial trust radius ∆0, sam-
pling radius r and memory m. The current iterate xk is left unchanged if for
some predetermined constant η we have ρk < η.

We will now take a look at the convergence of these newly proposed methods,
as presented and proved by their authors in [1]. Starting with the SL-BFGS,
we will take a look at the convergence of strongly convex objective functions f .

Lemma 3.6. Suppose that f : Rn → R is twice continuously differentiable
and assume there exist constants 0 < m ≤ L such that ∇2f(x) − mI and
LI − ∇2f(x) are positive semi-definite for all x ∈ Rn. Then there exist some
constants 0 < µ1 ≤ µ2 such that for the inverse Hessian approximations Hk

generated within the SL-BFGS scheme (3.22), Hk − µ1I and µ2I − Hk are
positive semi-definite for all k ≥ 0.

Theorem 3.7. Suppose that f : Rn → R is twice continuously differentiable
and assume there exist constants 0 < m ≤ L such that ∇2f(x) − mI and
LI − ∇2f(x) are positive semi-definite for all x ∈ Rn. Let x∗ be a minimizer
of f , set f∗ := f(x∗) and let {xk} be generated by the SL-BFGS scheme (3.22),
where we let

0 < αk = α ≤ µ1

µ2
2L
. (3.24)

Then for all k ≥ 0, it follows that

f(xk)− f∗ ≤ (1− αmµ1)k(f(x0)− f∗). (3.25)

Proof. Let pk = −αHk∇f(xk) and we have

f(xk+1) = f(xk + pk). (3.26)

Taylor expanding the right-hand side of (3.26) gives

f(xk+1) = f(x) +∇f(x)>pk +
1

2
p>k∇2f(x+ tpk)pk, (3.27)

25

where t ∈ (0, 1). Since we have assumed that LI − ∇2f(x) is positive semi-
definite for all x ∈ Rn, it follows that

p>k (LI−∇2f(xk + tpk))pk ≥ 0

⇐⇒ p>k LIpk − p>k∇2f(xk + tpk)p>k ≥ 0

⇐⇒ p>k∇2f(xk + tpk)p>k ≤ L‖pk‖2,

hence for (3.27) we get

f(xk+1) ≤ f(xk) +∇f(xk)>pk +
L

2
‖pk‖2

= f(xk) +∇f(xk)>(−αHk∇f(xk)) +
L

2
‖αHk∇f(xk)‖2

= f(xk)− α∇f(xk)>Hk∇f(xk) +
α2L

2
‖Hk∇f(xk)‖2.

Using Lemma 3.6 gives similarly

f(xk+1) ≤ f(xk)− α∇f(xk)>Hk∇f(xk) +
α2L

2
‖Hk∇f(xk)‖2

≤ f(xk)− αµ1‖∇f(xk)‖2 +
α2µ2

2L

2
‖∇f(xk)‖2

= f(xk) + α

(
αµ2

2L

2
− µ1

)
‖∇f(xk)‖2,

and since for α we have (3.24), it follows that

f(xk+1) ≤ f(xk) + α

(
αµ2

2L

2
− µ1

)
‖∇f(xk)‖2

≤ f(xk) + α

(
µ1µ

2
2L

2µ2
2L
− µ1

)
‖∇f(xk)‖2

= f(xk)− αµ1

2
‖∇f(xk)‖2. (3.28)

Since f is twice continuously differentiable and ∇2f(x) −mI is positive semi-
definite for all x, it follows that f is strongly convex [6], i.e.

f(y) ≥ f(x) +∇f(x)>(x− y) +
µ

2
‖x− y‖2 (3.29)

for some µ > 0 and all x,y in the domain of f . It follows as a consequence of
(3.29) that

2µ(f(y)− f(x)) ≤ 2µ∇f(x)>(y − x) + ‖∇f(x)−∇f(y)‖2 (3.30)

for some µ > 0 and all x,y in the domain of f [6]. Now, by setting x = x∗ in
(3.30), we get

2µ(f(y)− f∗) ≤ ‖∇f(y)‖2,

26

hence it follows from (3.28) that

f(xk+1) ≤ f(xk)− αµ1

2
‖∇f(xk)‖2

≤ f(xk)− αµµ1(f(xk)− f∗)
⇐⇒ f(xk+1)− f∗ ≤ (1− αµµ1)(f(xk)− f∗). (3.31)

From (3.31) follows linear convergence, and recursive application of it gives
(3.25).

On the other hand, if the objective function f is non-convex, a slightly
different approach is needed because the standard L-BFGS method can diverge.
In this case, a cautious approach is used, that is, only those curvature pairs
(xk,yk) that satisfy

s>k yk ≥ ε‖sk‖2 (3.32)

for some predetermined ε > 0 are used in the computation of inverse Hessian
approximations [1].

Lemma 3.8. Suppose that f : Rn → R is twice continuously differentiable and
∇f(x) is Lipschitz continuous for all x ∈ Rn. Let {Hk} be the inverse Hessian
approximations generated within the SL-BFGS scheme (3.22) using only (sk,yk)
that satisfy (3.32), and let Hk = I if no curvature pairs satisfy it. Then there
exist some constants 0 < µ1 ≤ µ2 such that Hk−µ1I and µ2I−Hk are positive
semi-definite for all k ≥ 0.

Theorem 3.9. Suppose that f : Rn → R is twice continuously differentiable
and bounded below by some scalar B, and ∇f(x) is Lipschitz continuous for all
x ∈ Rn. Let {xk} be a sequence of iterates generated by the SL-BFGS scheme
(3.22), where

s>k yk ≥ ε‖sk‖2 (3.33)

is imposed on the curvature pairs (sk,yk) for some predecided constant ε > 0,
and Hk = I is set if no curvature pairs satisfy (3.32). Let also x0 be the initial
value and impose

0 < αk = α ≤ µ1

µ2
2L

(3.34)

on the step size αk. Then

lim
k→∞

‖∇f(xk)‖ → 0, (3.35)

and for every N > 1,

lim
N→∞

1

N

N−1∑

k=0

‖∇f(xk)‖2 ≤ lim
N→∞

2(f(x0)−B)

αµ1N
→ 0. (3.36)

Proof. We have from (3.28) that

f(xk+1)− f(xk) ≤ −αµ1

2
‖∇f(x)‖2.

27

Taking a sum on both sides for k = 0, . . . , N − 1 gives

−
N−1∑

k=0

αµ1

2
‖∇f(xk)‖2 ≥

N−1∑

k=0

(f(xk+1)− f(xk))

≥ f(xN)− f(x0)

≥ f̂ − f(x0),

where f̂ is the assumed lower bound of f . Hence

N−1∑

k=0

‖∇f(xk)‖2 ≤ 2

αµ1
(f̂ − f(x0))

=⇒ 0 <
∞∑

k=0

‖∇f(xk)‖2 <∞

is obtained, which means that the sum is convergent. It follows that

lim
k→∞

‖∇f(xk)‖ → 0.

If follows as well from

N−1∑

k=0

‖∇f(xk)‖2 ≤ 2

αµ1
(f̂ − f(x0))

that

lim
N→∞

1

N

N−1∑

k=0

‖∇f(xk)‖2 ≤ lim
N→∞

1

N

2

αµ1
(f̂ − f(x0)) = 0.

To establish convergence for SL-SR1, another cautious approach is used to
make sure that the denominator in (3.17) is bounded away from zero [1]. This
ensures that Bk+1 is well-defined and we impose

|(yk −Bksk)>sk| ≥ ε‖sk‖‖yk −Bksk‖

for some predetermined constant ε > 0.

Lemma 3.10. Suppose that f : Rn → R is twice continuously differentiable
and ∇f(x) is Lipschitz continuous for all x ∈ Rn. Assume also that there are
constants ξ ∈ (0, 1) and βk = 1+‖Bk‖ such that for all k the inequality in (2.12)
holds, where mk is defined by (2.8) and ∆k is a trust radius (2.9). Let {Bk}
be a sequence of Hessian approximations generated within the SL-SR1 scheme
(3.23) using only (sk,yk) that satisfy (3.19), and let Bk = I if no curvature
pairs satisfy it. Then there exists a constant ν > 0 such that ν ≥ ‖Bk‖ for all
k.

28

Theorem 3.11. Suppose that f : Rn → R is twice continuously differentiable
and bounded below by some scalar f̂ , ∇f(x) is Lipschitz continuous for all
x ∈ Rn and (2.12) holds for some ξ ∈ (0, 1), βk = 1 + ‖Bk‖ and all k. Let
{xk} be a sequence of iterates generated by the SL-SR1 scheme (3.23) using
only (sk,yk) for which the Hessians Bk satisfy (3.19) for some ε > 0, and let
Bk = I if no curvature pairs satisfy it. Then

lim
k→∞

‖∇f(xk)‖ = 0.

Proof. Recall that in (3.23) some iterates xk will be left unchanged if the corre-
sponding trust radius ρk < η for some predetermined η. Here, we will focus on
those iterates for which ρk ≥ η. Suppose for contradiction that there is a sub-
sequence of accepted iterates {xti}, with the indices ti ⊆ S = {k ≥ 0 : ρk > η},
such that for all i and some δ > 0

0 < 2δ ≤ ‖∇f(xti)‖. (3.37)

Then, as a consequence of a theorem mentioned in A.7 [1], there exist certain
indices li > ti such that

0 < ‖∇f(xli)‖ < δ.

Hence, there exists another subsequence of iterates {xli}, with the indices li ⊆
S, such that for all ti ≤ k < li it follows that

‖∇f(xli)‖ < δ ≤ ‖∇f(xk)‖. (3.38)

Recall the definition of ρk given in (2.11) and it follows from the assumption
(2.12) that for all indices in S,

ρk =
f(xk)− f(xk+1)

mk(0)−mk(pk)
≥ η

⇐⇒ f(xk)− f(xk+1) ≥ η(mk(0)−mk(pk))

≥ ηζ‖∇f(xk)‖min

{‖∇f(xk)‖
βk

,∆k

}
.

If we now restrict ourselves to only those indices in K = {k ∈ S : ti ≤ k < li} ⊆
S, it follows from (3.38) and Lemma 3.10 that

f(xk)− f(xk+1) ≥ ηζ‖∇f(xk)‖min

{‖∇f(xk)‖
βk

,∆k

}

≥ ηζδmin

{
δ

1 + ν
,∆k

}
.

Since we have assumed a lower bound f̂ for f and because ρk guarantees that
f(xk+1) < f(xk), it follows that {f(xk)} is monotonically decreasing and

29

bounded below, hence it converges. It follows that f(xk) − f(xk+1) → 0 as
k →∞, hence ∆k → 0 as k →∞. For a sufficiently large k, we get

f(xk)− f(xk+1) ≥ ηζδmin

{
δ

1 + ν
,∆k

}
= ηζδ∆k

=⇒ ∆k ≤
f(xk)− f(xk+1)

ηζδ
.

For sufficiently large i, we get consequently

‖xti − xli‖ ≤
li−1∑

j=ti
j∈K

‖xj − xj+1‖ ≤
li−1∑

j=ti
j∈K

∆j ≤
f(xj)− f(xj+1)

ηζδ
.

For similar reasons as before, we get that f(xj)−f(xj+1)→ 0 as i→∞, hence
‖xti−xli‖ → 0 as i→∞. The assumed Lipschitz continuity of ∇f implies now

‖∇f(xti)−∇f(xli)‖ → 0,

but this is a contradiction because (3.37) and (3.38) imply

‖∇f(xti)−∇f(xli)‖ ≥ δ,

thus no subsequence will satisfy (3.37).

4 Numerical Experiments

To give some intuition about quasi-Newton methods’ performance in practice,
a small neural network with one hidden layer is trained on a personal computer
with NVIDIA GeForce RTX 2060 6 GB, Intel Core i5-10400F and 8 GB RAM,
using CUDA parallel computing and Python 3.8.

The network has single neurons in the input/output layers and 7 neurons in
the hidden layer. Hidden neurons are activated with hyperbolic tangent. The
goal is to approximate a highly nonlinear function suggested in Example 1 in
[7], i.e.,

f(x) = 1 + (x+ 2x2) sin(−x2), |x| ≤ 4.

The methods that will be covered are BFGS, NAQ, L-BFGS and SL-BFGS
using various parameters. However, it should be mentioned that most of these
methods are well suited and designed for large-scale problems involving deeper
network structures. In the case of SL-BFGS, Option I (3.21) is used with r = 0.1.
The step lengths are computed using backtracking line search involving the
Armijo condition discussed in [8] with c = 0.001 and ρ = 0.001. The training set
is generated by sampling 400 observations {xi, f(xi)}, i = 1, . . . , 400 from the
interval xi ∈ [−4, 4] using a fixed increment 0.02, starting from -4 to 4, which are
then shuffled. The testing set is generated by sampling 10,000 uniformly random
values from the same interval. The error function is defined as (2.26) to which

30

normalized values from the training/testing sets are passed in the evaluation.
The initial values for the network weights w0 are randomly generated with
uniform values on the interval (−0.5, 0.5) for each complete training, and the
initial inverse Hessians H0 are set to identity for BFGS and NAQ, and (7.20)
in [8] for L-BFGS and SL-BFGS. Each training involved at most 100 epochs
over the training set after which the final network was run on the testing set.
The results were obtained by averaging 3 independent runs for each method
using different initial w0. The training was terminated if the gradient norm was
sufficiently small, i.e., if ‖∇E(w)‖ < 0.001.

Table 1: Simulation results for BFGS-based methods

Method Step length µ m
Training error

Ave./Best/Worst
Time(s)

Ave./Best/Worst
Epochs

Ave.
Testing error

Ave./Best/Worst

BFGS Armijo - - 0.03/0.02/0.15 5.70/5.44/7.25 9 0.01/0.01/0.02

NAQ Armijo
0.8 - 0.02/0.02/0.06 5.89/5.58/6.55 6 0.02/0.01/0.02

0.85 - 0.11/0.01/0.62 5.67/5.38/7.13 16 0.02/0.01/0.02

0.9 - 2.34/0.02/10.07 6.11/5.37/8.14 15 0.01/0.01/0.02

L-BFGS Armijo
- 3 0.03/0.02/0.11 7.18/5.33/10.27 58 0.01/0.01/0.02

- 5 0.03/0.01/0.13 7.09/5.44/9.81 79 0.01/0.01/0.02

SL-BFGS Armijo
- 3 0.03/0.02/0.25 9.85/9.04/12.70 100 0.02/0.01/0.02

- 5 0.17/0.06/0.22 15.46/13.17/19.06 100 0.05/0.05/0.07

The comparative results shown in Table 1 exhibit reasonable behavior when
we take in consideration the computational and storage costs of respective meth-
ods. For reference, we can take a look at a table in [1] (where we have added
NAQ as well), that is:

Table 2: Costs of BFGS-based methods per iteration
Method Computational cost Storage cost

BFGS/NAQ nd+ d2 + lnd d2

L-BFGS nd+ 4md+ lnd 2md
SL-BFGS nd+mnd+ 4md+ lnd -

In Table 2, n denotes the number of training samples, d number of weights
(gradient dimension), m memory size for limited-memory methods and l num-
ber of line search iterations. Roughly speaking, the difference in costs between
BFGS/NAQ and L-BFGS lies in the fact that BFGS/NAQ computes whole Hes-
sians or their inverses O(d2), while L-BFGS only needs m most recent gradient
evaluations O(md). Hence, if d becomes very large (in deep networks usually
thousands or millions of parameters), the cost per iteration for BFGS/NAQ will
become much higher than L-BFGS since BFGS/NAQ grows as O(d2) in differ-
ence and L-BFGS as O(md). On the other hand, if d is reasonably small as in
our example presented in Table 1, L-BFGS would not necessarily gain advan-
tage (same goes for SL-BFGS), hence we get very similar timestamps. However,

31

since L-BFGS does not compute whole Hessians, it needs more epochs to obtain
precision, thus we see that the average number of epochs is larger for L-BFGS.
When it comes to SL-BFGS, we must note that it does not store any curvature
information but instead samples it in each iteration, hence there is no storage
cost and the computational cost is slightly greater. The true advantage over
L-BFGS is obtained when the method is applied on very deep networks where
m � n, d and the computational costs approach O(nd) [1]. In these situations
SL-BFGS wins because the storage is not as strained. We can see in Table 1
that SL-BFGS gets slightly slower timestamps and requires even more epochs
to obtain precision because the curvature pairs are sampled. Lastly, we would
like to compare BFGS and NAQ but that is not as easy using information from
Tables 1 & 2. It can be shown that NAQ under certain circumstances, includ-
ing proper µ parameter choice, obtains desired precision, i.e. ‖∇E(w)‖ < δ for
some δ, in fewer epochs than BFGS (see Tables I & III in [7]).

5 Discussion

This paper explores some novel varieties of quasi-Newton methods which proved
to be effective on large-scale problems involving neural network training [1, 7].
All of these methods come with different benefits and drawbacks which are not
easy to generalize. In the case of NAQ, a proper study of parameter µ should
be considered and tuned for desired problems. A possible further research could
involve implementation of limited-memory NAQ. On the other hand, sampled
limited-memory variants of BFGS and SR1 are modified in [1] to disregard past
curvature pairs, which are usually stored in memory, and instead simply sample
them. This technique proved to be effective when the cost of computing and
storing those curvature pairs becomes more expensive. This technique could
also be investigated for NAQ. It should also be mentioned that different choices
of memory size m can affect these methods drastically. There is a brief study
of this for L-BFGS mentioned in Table 7.1 in [8] which could be interesting to
test on SL-BFGS for comparison.

References

[1] A. S. Berahas, M. Jahani, and M. Takáč, Quasi-newton methods for
deep learning: Forget the past, just sample, arXiv preprint arXiv:1901.09997,
(2019).

[2] C. M. Bishop, Pattern recognition and machine learning, springer, 2006.

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT
Press, 2016. http://www.deeplearningbook.org.

[4] C. T. Kelley, Iterative methods for linear and nonlinear equations, SIAM,
1995.

32

[5] , Iterative methods for optimization, SIAM, 1999.

[6] Y. Nesterov, Introductory lectures on convex optimization: A basic course,
vol. 87, Springer Science & Business Media, 2003.

[7] H. Ninomiya, A novel quasi-newton-based optimization for neural network
training incorporating nesterov’s accelerated gradient, Nonlinear Theory and
Its Applications, IEICE, 8 (2017), pp. 289–301.

[8] J. Nocedal and S. Wright, Numerical optimization, Springer Science &
Business Media, 2006.

[9] R. B. Schnabel, J. Nocedal, and R. H. Byrd, Representations of
quasi-newton matrices and their use in limited memory methods; cu-cs-612-
92, (1992).

33

