SJALVSTANDIGA ARBETEN I MATEMATIK

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

An Introduction to Abstract Harmonic Analysis

av

Tim Seo

2021 - No K40

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM






An Introduction to Abstract Harmonic Analysis

Tim Seo

Sjalvstandigt arbete i matematik 15 hogskolepodng, grundniva
Handledare: Salvador Rodriguez

2021









Abstract

This thesis will provide an introduction to Fourier analysis on locally compact
abelian Hausdorff groups. The abstract Fourier transform unifies the classical
Fourier transforms and will enable us not only to see the classical transforms
as realizations in different groups but also lets us prove theorems regarding
all of them in one stroke. The theory also gives us the opportunity to apply
Fourier analysis in more exotic settings. Examples of Fourier Transforms are
among many others the Fourier transform on the real line, Fourier series and
the discrete Fourier transform. In the end two applications in number theory
will be given.



Acknowledgements

I would first like to thank my supervisor Salvador Rodriguez-Lopez for all of his
support and guidance, his insightful comments and his unprecedented patience.
I would also like to thank Professor Annemarie Luger for her many valuable
comments regarding the structure and contents of this thesis.



Contents
1 Introduction

2 Topological Groups and Haar Measures
2.1 Topological Groups and their basic properties . . . . . . ... ..
2.2 The Haar-measure . . . . . . . . . .. v

3 The Dual Group and the Fourier Transform
3.1 Basic Definitions . . . . . . ... ...
3.2 The Weak Topology of the Dual Group . . .. ... ... .. ..

4 Convolutions and Algebras
4.1 Convolution of Functions . . . . .. .. ... ... ... .....
4.2 Convolution of Measures . . . . . . . ... ... ... .......
4.3 The Fourier-Stieltjes Transform . . . . . . . ... ... ... ...

5 Bochner’s Theorem and the Inverse Fourier Transform
5.1 Positive Definite Functions . . . . . . . . .. .. ... ... ...
5.2 Bochner’s Theorem . . . . . . . .. .. ... ... ... ......
5.3 The Fourier Inversion Theorem . . . . ... ... .. ... ....

6 Plancherel’s Theorem
6.1 Plancherel’s Theorem . . . ... ... ... ... ... ......
6.2 Parseval’s Formula and other Corollaries . . . . . ... ... ...

7 Pontryagin’s Duality Theorem
7.1 The Compact-Open Topology of the Dual Group . . . ... ...
7.2 A Characterization for the Topology on G . . . . . ... .. ...
7.3 Pontryagin’s Duality Theorem . . . . . . ... .. ... ... ...

8 Examples
81 TheRealLine. . . . . . . . . ... . .
82 Thelntegers. . . . . . . . . . . . L
83 TheUnit Circle . . . . . . . . ... . .
8.4 The Group of Integers Mod N . . . . .. ... ... ... ....

9 The Collatz Conjecture
9.1 Introduction to the Collatz Conjecture . . . . . . . . ... .. ..
9.2 Collatz Cycles and the Discrete Fourier Transform . . . . .. ..
9.3 Applying the Inversion Theorem . . . ... .. ... ... .. ..
9.4 Summary of the Results and Questions for the Reader . . . . . .

10 A Formula for the Partition function

References

17
17
18

25
25
29
35

37
37
39
47

54
54
56

59
59
61
64

69
69
72
72
75

76
76
76
78
82

83

87



1 Introduction

The area of Fourier analysis studies how signals can be decomposed with its
frequency components and is used throughout science, mathematics and engi-
neering. The Fourier transform of an integrable function f is given by

f(&)::t/fm f(a)e € de.

Here each £ € R can be seen as a frequency corresponding to the frequency
component e*® and R is called the frequency space. The Fourier transform
evaluated at £ is a complex number which shows how f depends on the frequency
component e*?. The magnitude of the complex number f (&) is the amplitude
of the frequency component €* and the angle of f(¢) is the phase of e%®,
You can also (with some assumptions) recover f by integrating each frequency
component with its amplitude and adjust for its phase over the frequency space:

f@) =5 [ Feesuae.

This is the content of Fourier’s inversion theorem. When studying periodic
function over [0,27] the frequency components are instead the functions e™®
for n € Z hence Z is the frequency space. For a given periodic function f
the amplitude and phase of the component ¢! are now given by its Fourier
coefficient

. 1 [2r .
fn) =5 f(@)e " dx

- 2 0
and f can (with some assumptions) be recovered with the formula

flx) =" fm)e™.

nez

The so called Fourier series. Similarly, if f is defined on Z/NZ then the fre-
quency components are given by the functions y(n) = e2™**/N for [k] € Z/NZ
and the amplitude and phase is calculated with the discrete Fourier transform

N-1
Fk) = 3 flmperizmtn/,
n=0

The function can recovered by

_ i & £ i2wkn/N
F) = o= 3 Fpemin,
k=0

—

These entirely different situations are remarkably similar. In each of the three
situations the frequency components are complex exponentials and each Fourier



transform is calculated by integrating or summing the function with the inverse
of the frequency component over its domain of definition. The function is then
recovered by integrating or summing the Fourier transform with each frequency
component over the frequency space.

It turns out that the unifying factor in these different situations is that the do-
main of definition for the given functions is a locally compact abelian Hausdorff
group. In our case the real numbers, the unit circle and Z/nZ respectively. The
frequency components in each case correspond to continuous homomorphisms
into the unit circle, the so called dual group. Generalizations of the idea of
decomposing functions with their frequency components is called abstract har-
monic analysis.

In this thesis an introduction to Fourier analysis on locally compact abelian
Hausdorff groups will be given. The first 6 chapters will give an introduction
to the general theory and the presentation is inspired by chapter 1 in Rudin’s
Fourier Analysis on Groups [3]. After this is done we show that the abstract
Fourier transform is truly a generalization by showing that it coincides with the
usual transforms when applying it to various classical groups. In the last two
chapters two applications in number theory will be given, one about the Collatz
conjecture and one about the partition function.

The two main components in the general theory are the Haar-measure and the
dual group. The Haar-measure will enable us to apply integration theory on our
groups and the dual group can be seen as the frequency space corresponding to
our group. Once they have been established the abstract Fourier transform will
be defined and theorems such as the inversion theorem and Plancherel’s theorem
will be transferred to this abstract setting. We will also prove the remarkable
Pontryagin’s duality theorem which roughly states that the frequency space of
the frequency space, that is the dual group of the dual group is isomorphic the
group itself.

The groups in question that this thesis studies are the locally compact abelian
Hausdorff groups. In order to not get into too much technicalities we will also
assume that the Haar-measure of our group is o-finite. This is not a big restric-
tion on scope of the theory.

As preliminaries a firm grasp of the first 9 chapters in [1] is recommended where
chapter 1, 2, 3 and 6 are especially important. Most of the topology needed can
also be found in [1] but for a more comprehensive treatment relevant parts of
chapter 2, 3 and 4 in [6] can be consulted. The theory of Banach algebras will
be relevant in some proofs but has been tried to be kept at a minimum in order
to not expand the scope of the thesis too much. A nice but not completely
sufficient introduction is chapter 18 in [1] and a more complete treatment is
given in chapter 10 and 11 in [2].



2 Topological Groups and Haar Measures

In this section we will define and prove basic properties regarding topological
groups and define the Haar-measure. If one needs a reminder of the various
topological definitions that I take for granted section 1.2 and 2.3 in [1] can be
consulted for a minimal treatment or relevant parts of Chapter 2, 3 and 4 in [6]
can be consulted for a more complete treatment on the topic.

2.1 Topological Groups and their basic properties
We begin by recalling the definition of a group

Definition 1. Let G be a set and - : G x G — G be a binary operator, called
multiplication. We say that (G,-) is a group if the following properties hold
i)(x-y)-z=x-(y-2) forany z,y,2 € G

it) There exists an element 1 € G such that x-1=1-z =1 for anyx € G

iii) For each x € G there exists an element x~! € G such that v~ = 1o =1

Remark. Aziom i) is called associativity, the element 1 is called the identity,
the element x~1 is called the inverse of x for each x € G and the function
i(x) = 271 is called inversion. It is common practice to write xy instead of x -y
and call G a group when the operation is known from the context. Furthermore,
we say that G is abelian if xy = yx for any x,y € G. When G is an abelian
group, additive notation is often used where the binary operator is denoted by
+, inversion is denoted by i(x) = —z and the identity element is called 0.

Definition 2. We say that a group, G equipped with a topology T is a topological
group if multiplication and inversion are continuous functions with respect to this
topology. In other words: G is a topological group if the functionsi: G — G
and m : G x G — G given by i(x) = 2% and m(z,y) = zy are continuous.
Here it is assumed that G X G has been given the product topology (Sets of the
form U x V where U and V are open in G is a basis for 7).

Proposition 1. For any fired x € G in the abelian group G the map T, : G — G
given by T.(y) = = + y and the map i(y) = —y are both homeomorphisms (a
bijective continuous map with continuous inverse).

Proof. Choose x € G. It is clear that T, is surjective and injective. Since
the inverse of T, is given by T_, we only need to prove continuity of T,. The
map T, is equal to the composition m o ¢, where ¢, : G — G x G is given by
tz(y) = (z,y). The map m is continuous since G is topological group and ¢,
is continuous by the definition of the product topology hence T}, is continuous.
For the inversion map ¢ it is easy to check that it is a bijection with inverse 4
since i(i(y)) = y. Since ¢ is continuous it follows that the inverse is continuous
S0 ¢ is homeomorphism. O

Remark. Since T, is a homeomorphism the set x + E := T,(F) is compact,
open or closed whenever E is compact, open or closed respectively for any x € G.



Another useful property of topological groups is the following

Proposition 2. For any open set V of 0 in the abelian group G there exists an
open set W containing 0 such that W = —W (where —W s the set of inverses
of elements of W) and

W+WCV.

Proof. Let V' be an open set containing 0. By continuity of multiplication the
set m~1(V) is open in G x G and contains (0,0). By definition of the product
topology there exists a basis element B = By x By containing (0,0) where By
and Bs are open in G. If we let W = (B1N—B1)N(B2N—Bs) then it follows that
W is open since inversion is a homeomorphism (and therefore takes open sets
to open sets) and W contains 0. If z is an element of W then z is an element of
B1N—Bj hence —x € W so W = —W. Lastly we recall that By x B, C m~1(V)
hence

W+WCB +B,CV.
O

Remark. If G is any topological group and H is a subgroup of G then H
equipped with the subspace topology is also a topological group since the restric-
tions mlgxyg : Hx H — H and i|g : H — H are continuous functions in the
subspace topology.

Proposition 3. If G is an abelian group and H is a subgroup of G that is open
in G then H is closed in G.

Proof. Define ¢ + H = T, (H) for any z € G. Since H is open and T, is a
homeomorphism = + H is open for any « € G. If T,,(H) N H # & then for some
h € H there exists hg € H such that h = hg + « hence t = h — hg € H. If we
define

V.= U (r+ H).
zeG—H
Then it follows that V is open, VU H = G and VN H = @. It follows that
H =G -V is closed. O

Proposition 4. If H is a topological subgroup of a topological group G then H
is also a topological group.

Proof. Since G is a topological group it is sufficient to prove that the group
operations restricted to H map into H which happens if and only if the map
f:Hx H — G given by f(x,y) = zy~! has its image contained in H. Since
f=mogwhere g: Hx H— G x G is given by g(z,y) = (x,i(y)) it follows
that f is a continuous map. Note that H x H C f~!(H) since H is a group.

By continuity of f we know that f~!(H) is closed and it follows that
Hx HC f'(H).



After taking images we have
f(HxH)CH.

If (z,y) is an element in H x H then for any open V C G such that HNV = &
it follows that neither x nor y is an element of V. Now if C' C G x G is a closed
set containing H x H then C = G x G — U;V; x U; for some collection of open
sets (V;), (U;) each having empty intersection with H. It follows that (z,y) is
not an element of V; x U; for any ¢ and it follows that (x,y) € C. Since C was
an arbitary closed set containing H x H it follows that (z,y) € H x H hence

f(HxH)C f(HxH)CH.
[

Definition 3. Let X be a Hausdorff space. We say that X is locally compact
if any x € X has an open neighbourhood V' containing x such that the closure

of Vin X, V is compact.

Proposition 5. If X is a subspace of a Hausdorff space Y such that X is dense
i Y and X is locally compact then X is open in Y.

Proof. Pick € X then by local compactness of X there exists an open set V'
in X containing = such that the closure of V in X, K := clx(V) is compact
in X. Since the inclusion map ¢ : X — Y is continuous it follows that K is
compact in Y. Since compact subsets of Hausdorff spaces are closed we know
that K is closed in Y. Since the set V is open in X there exists an open U in Y
such that V= X NU. Since X is dense in Y and U C Y is open it follows that
cly (U) = cly (X NU). This is true since if z is an element of cly (U) and W is
any open neighbourhood of z then U NW is open and by density of X it follows
that (X NU) N W # @ which is equivalent to saying that z € cly (X NU). It
follows that

zeUCcyU)=cy(XNU)=cly(V)C K CX.
Hence X is open in Y. O

Using the commutative group operation for abelian groups we can also in-
troduce the concept of uniform continuity.

Definition 4. If f is a function from an abelian group G into a metric space
M with metric d and E is a subset of G then f is uniformly continuous on E if
for every e > 0 there exists an open set V' of G containing 0 such thatx —y € V
implies d(x,y) < € whenever x,y € E.

Proposition 6. If f is a continuous function defined on the abelian group G
into a metric space M and K is a compact subset of the G then f is uniformly
continuous on K.



Proof. Choose € > 0. For each y in K, there exists by continuity of f an open
set V;, of 0 such that V,,+y contains y and | f(x) — f(y)| < § whenever z € V4.
By Proposition 2 we can find, for each y in K an open set A, containing 0 such
that A, + A, C V,. The set

U (Ay +y)

yeK

is an open cover of K and by compactness of K it has a finite subcover

Note also that if we define

then V is open since each A, is open and is non-empty since it contains 0. If
x —y is an elements of V' then there exists n such that y =y, + Ay, Cyn +V,
and

rey+Ay, Cynt Ay, +4y, SCunt+Vy,.

Hence

[f (@) = fW) < 1F (@) = flyn)| + [f(yn) = F(W)] <&

2.2 The Haar-measure

Let G be an abelian group. In order to define a Fourier transform on G we first
need to be able integrate complex functions defined on G and for that we need
a measure on (. Since we are working in the context of topological groups it
is reasonable to demand that our measure interacts nicely with the topological
group structure of G. More precisely we want to define a non-trivial positive
measure, m : M — [0, +00] where M is the o-algebra of Borel subsets of G. Re-
call that the o-algebra of Borel sets is the minimal o-algebra containing all the
open sets. Furthermore, another property we would like is that m is translation
invariant, that is, if z € G and E € 9 then  + E € M and m(E) = m(z + E).
Other useful properties to have would be that m(K) < +oo for any compact K
and that m(E) = supxc g m(K) holds true (atleast when F is open or of finite
measure) where the supremum is over compact K. Similarly we would like that
m(E) = infy5gm(V) for any E € 9 where the infimum is over open supersets
of .

10



It turns out that if we put some restrictions on G we can always find such
a measure. The restrictions on G we need for this to hold true are the following;:
we need G to be a locally compact, abelian topological Hausdorff Group. We
call this measure a Haar-measure and define it formally below.

Definition 5. Let G be a locally compact abelian Hausdorff group. We say that
a non-trivial positive measure m on G is a Haar-measure if its corresponding
o-algebra, M consists of the Borel sets of G and that m satisfies the following:
i) x+ E € M and m(z + E) = m(E) whenever x € G and E € M.

it) m(K) < +oo for any compact K.

itt) m(E) = infgcy m(V) for any E € 9 where the infimum is over open su-
persets of E.

w) m(E) = supgcpm(K) for any E € 9 which is either open or of finite
measure. The supremum is over compact subsets of E.

Remark. Property i) is called translation invariance. Property iii) and iv) are
called outer- and inner reqularity respectively.

Theorem 1. If G is a locally compact abelian Hausdorff group then G admits
a Haar-measure.

Proof. We do not sketch the entire proof since it is quite lengthy and techni-
cal. Various references for this construction are given in Section 1.1.1 in [3].
The idea of the construction of m is to construct a positive linear functional, A
on C.(@), (the set of complex valued continuous functions defined on G with
compact support) which also satisfies that Af, = Af for any f € C.(G) and
y € G where f, is defined by f,(z) = f(x —y). Since G is locally compact and
Hausdorff the Riesz representation Theorem for positive linear functionals on
C.(G) can be applied (see, Theorem 2.14 in [1]) from which we get a measure
m defined on the Borel sets such that Af = [, f(x)dm(z). The measure m also
satisfies property ii), iii) and iv) of Definition 5.

Lastly we prove property i), namely that z + E € 9 and m(z + E) = m(F)
whenever x € G and E € 9. Let 91 denote the Borel sets and fix an z € G.
Then since the function T_,(y) = —z + y is a homeomorphism it follows that
T_,(9M) contains any open set. Since T, is a bijection it commutes with
unions and intersections and it follows that 7T_, is a o-algebra containing the
open sets. By definition of the Borel sets it follows that 9t C T, (9). Taking
T,-images on both sides yields T, (9) C T, (T—_,(M)) = M. This clearly shows
that x + E € 9 whenever x € G and F € 9.

We now show that m(x + E) = m(E) for any z € G and E € M. Let x € G
and assume first that £ = K € 9 is compact. Since T, is homeomorphism
it follows that = 4+ K is compact hence x + K € 9 since compact subsets of
Hausdorft spaces are closed. Proving m(z + K) = m(K) is straightforward if

11



we can find a sequence f,, € C.(G) such that each f,, is dominated by an L'(G)
function and that lim, ;. fn = Xk a.e where xx denotes the characteristic
function on K. Since if we construct such a sequence (f,) we also get that
limy, 4 oo (fn)z = Xetx a.e and using that Af, = A(f,), we get:

m(K) = /G xx@)dm(y) = lim /G fa(w)dm(y) = lim Af,

n——+oo n—+oo

n——+oo n——+oo

= lim A(fp). = lim G(fn)z(y)dm(y)

- / Xes k (W)dm(y) = m(z + K).
G

Note that the dominated convergence theorem was applied twice. Since property
i) is then true for any compact set it follows from inner regularity that prop-
erty i) is also true for any open set V since z + V is open and hence is member
of M. By outer regularity it then follows that property i) holds for any Borel set.

The only thing that remains is to construct the sequence (f,) in C.(G) which
converges to x i a.e and each f,, is dominated by an L!(G) function. Let K C G
be a compact set. Since m(K) = infxcy m(V) there exists for each positive
integer n an open set V;, such that m(K) < m(V,) < m(K) + 1. After con-
sidering U,, = (N, Vi we can assume that V,,;1 C V,, for all n. By Urysohn’s
Lemma (see Theorem 2.12 in [1]) we know that for each V,, there exists a func-
tion f, € Cc(G) such that 0 < f, <1, f, = 1 on K and f, is supported in
V. Consider the function g(z) = lim,— 100 fn(z) for any x € G where it is
well-defined. Clearly g(z) =1 when z € K and g(z) =0 whenz € G-\, V,
hence g(z) = xk(z) except possibly on the set ((),—,V,) — K. But since
m(K) < +oo we have

m((VVi = K) = m([ Vi) = m(K)

<m(Vy) —m(K)

<m(E) + - —m(K) =

for any n. Since n is an arbitrary positive integer it follows that g = xx a.e.
Furthermore f,, < xv, for each n and yy, € L'(G). O

Remark. Since the Haar-measure is fundamental for the Fourier transform we
will after this always let G denote a locally compact abelian Hausdorff group
and m a Haar-measure of G with the Borel o-algebra M. Furthermore, in order
to be able to apply Fubini’s theorem without any technicalities we also always
assume that G is o-finite with respect to m which means that G is a countable
union of sets (X;); where m(X;) < oo for all i.

12



Another benefit of assuming that G is o-finite is that m is inner regular on
any Borel set.

Theorem 2. m(E) = supgcp for any E € I where the supremum is over
compact subsets of B

Proof. Since X is o-finite there exists a sequence of measurable sets (X;)1<;
such that X = J,; X; and m(X;) < 400 for each i. We can also assume that
X;NX; = ( whenever i # j. Pick E € MM and € > 0 then, since m(ENX;) < +o0
there exists for each i a compact set K; C E N X; such that

m(ENX;) > m(Ki) >m(ENX;) — 2i

Define C,, = U?zl K, it follows that C,, is compact and
—+o0 —+o0o €
m(FE) = m(ENX;) < m(K;) + —
(E) g (ENX;) g( (Ki) + 57)

<e+ Zm(Ki) =e+ lim m(C,).

n——+oo

It follows that

n——+oo

m(E) —e< lm m(C,) < Is(lé%m(K) Cm(E).

Since € was arbitrary it follows that

m(E) = sup m(K).
KCE

Proposition 7. m(V) > 0 whenever V C G is open and non-empty.

Proof. Assume that V is open, non-empty and m(V) = 0. Let K C G be a
compact set and pick av € V. Since k = k—v+ v for any k € K it follows that
k € (k—v)+V hence Ugex (k—v)+V is an open cover of K. By outer regularity
and translation invariance it follows that m(K) = 0. Since K was an arbitrary
compact set it follows that any compact set has measure 0. By inner regularity
it follows that any open set has measure 0 and lastly by outer regularity it
follows that m(E) = 0 for any E € 9 so m is the trivial measure. O

Remark. The proof above shows that we don’t need to assume that the Haar
measure is inner reqular on all sets for Proposition 7 to hold, that is we don’t
need to assume that G is o-finite with respect to the Haar-measure. We will
assume as said in the above remark that G is o-finite with respect to m.

Remark. The uniqueness Theorem below of the Haar measure comes from The-
orem 1.1.3 in [3].

13



Theorem 3. Ifm and p are two Haar-measure of G then there exists a constant
¢ > 0 such that m(E) = cu(E) for any Borel set E C G.

Proof. By outer regularity it will follow that there exists a ¢ > 0 such that
m(E) = cu(F) for any Borel set E if m(V') = cp(V) for any open set V. Pick
a positive g € Cc(G) such that [, gdp = 1 and pick any f € C.(G). Using
Fubini’s theorem, (see Theorem 8.8 in [1]) twice and translation invariance we
get the following:

/G fdm = /G ( /G gdps) fdm = /G /G 9(@)du(@) f(y)dm(y)
= [ [ ste=wiu@rrwyimn) = [ [ st =) s)dnte)im)

- / / oz — ) f(y)dm(y)du(z) = / / o(~1) £y + 2)dm(y)du(z)
GJG GJG

- / / o(—9) F(y + 2)dpu(x)dm(y) = / a(~y) / £+ 2)du(z)dm(y)
GJG G G

- /G o(—y) /G F(@)du(a)dm(y) = /G o(~y)dm(y) /G F(@)du(z).

Letting ¢ = [, g(—y)dm(y) we see that ¢ > 0 and [, fdm = c [ fdp for any
f € C(G). Soif A and A’ are the functionals on C,(G) corresponding to m
and p respectively it follows that A = ¢A’. Since the Haar-measure of an open
set is defined completely in terms of the corresponding linear functional (see the
proof of Theorem 2.14 in [1]) it follows that m(V) = cu(V).

Note that the function F(z,y) = g(z — y)f(y) is continuous since if we de-
fine the continuous functions ¢(z,y) = ¢ —y and 7(x,y) = y on G x G then
F(z,y) = g(é(z,y)) f(n(z,y)). Since go ¢ and f o7 are continuous and since
the product of two continuous functions is continuous it follows that F' is con-
tinuous and hence measurable. It follows that F' € C.(G x G) and therefore
Jo Jalo(z — y) f(y)|dp(z)dm(y) < +oo hence the first application of Fubini’s
theorem was legitimate. A similar argument shows that it was also legitimate
for the function given by G(z,y) = g(—y)f(y + z).

O

Remark. Since the Haar measure is unique up to multiplicative constant we
shall often write L' (G) instead of L' (m) and [, f(x)dx instead of [, f(x)dm(z).

Proposition 8. Let —F denote the set of inverses of elements of E where
E € M then m(E) = m(—E).

Proof. Define u(E) = m(—E) for any E € 9 then
w(@+ E) = m(—(x + E)) = m(~a + (~E)) = m(~E) = u(E)
and it follows by checking the rest of the Haar-measure properties that p is

another Haar-measure on G. By uniqueness it follows that m = cu for some

14



¢ > 0. If K is compact and chosen such that m(K) > 0 then —K is compact
and

m(KU—-K) =cu(KU-K)
=cm(—(K U -K))
=cm(K U-K)
hence ¢ =1 since 0 < m(K U —K) < 4o0. O

Corollary 1. If f € LY(G) then

/Gf(x)dx:/(;f(—x)dx.

Proof. Let s(z) =Y., a;xp, () be a simple function then

/GS(—x)d;y - /Gg aixg, (—r)de = /G g a; X—g, (x)dx
= io‘im(_Ei) = iaim(Ei) = /s(x)dm.

By definition of the Lebesgue integral we have for positive f

/Gf(a:)daczzlgc)/c;s(x)dx zilsl[f)/Gs(—a:)dw = /Gf(—x)dx

where s denotes a simple function. If f maps into C the proposition follows
after writing f as a sum of its real positive, real negative, imaginary positive
and imaginary negative part. O

The following proposition shows that equivalent topological groups will have
the same Haar-measures.

Proposition 9. Let G be an abelian topological group with Haar-measure m
and let H be a topological group. If there exists a function ® : G — H which is
an isomorphism of groups and a homeomorphism then my(E) = m(®~Y(E)) is
a Haar measure on H. Furthermore, by uniqueness any Haar measure p on H
will be of the form u = cmpy for some real positive constant c.

Proof. Define my(E) = m(®~1(E)). The set function my is clearly not trivial
since m is not trivial. It is easy to check that mpy is a measure and that its
domain of definition is the Borel sets since homeomorphisms maps Borel sets
to Borel sets. Since ® is an isomorphism the function ®~! is a homomorphism
and it follows that

mi(z+ ) = m(@ (¢ + E) = m(@ (z) + 2~}(E))
— m(@(E)) = my (E).
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For any Borel set F in H and x in H so my is translation-invariant. The measure
my is finite on compact subsets of H since m is finite on compact subsets of
G and ®! takes compact sets to compact sets. Since ® is a homeomorphism
between GG and H the open subsets of GG are in bijection with the open subsets
of H, hence for any Borel set F/

. - . - . 1
jal mu(V) = | inf m(2(W)) = | Iof  m(@7(@(W)))
= inf m(W)= inf m(W)

eW)CE WCee—(E)

=m(®7Y(E)) = mu(E).

Using outer regularity of m. Thus we have proved outer regularity of mpy. A
similar argument shows the inner regularity of my. O
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3 The Dual Group and the Fourier Transform

In this chapter we will define the Fourier transform but in order to do that we
first need to define the dual group of G. We will then proceed to show the
important property that the dual group of G is itself a locally compact abelian
Hausdorff group. Many of the theorems in this section can be found in section
1.2 in [3]. The theory of Banach Algebras will be used in several theorems in
this chapter as well as in subsequent chapters and for this I refer to Chapter
18 in [1] for an introduction or Chapter 10 and 11 in [2] for a more complete
treatment.

3.1 Basic Definitions

Definition 6. Let T C C denote the unit circle. A group homomorphism = :
G — T is called a character of G. The set ' of all continuous characters of G
is called the dual group of G.

Proposition 10. T is an abelian group under pointwise multiplication of func-
tions

Proof. The group operation is clearly associative since multiplication in C is
associative. If 7,9 € T' then for any x,y € G we have

() (& +y) =v(z +y)d(x +y) = y(2)y(y)d(2)d(y) = (v6)(2)(v6)(y)

S0 4 is homomorphism and 6 € T since +¢ is continuous. Clearly our group
operation is commutative since C is commutative under multiplication. The
function 1 : G — T defined by 1(z) = 1 for all € G is the identity element of
I'. Lastly if v € I' then we can define y~*(2) = y(z) where the overline is the
complex conjugate. Since [y = |y| = 1 we know that y~! maps G into T and

vy~! = 1. For any z,y € G we have

Yz +y) =v(@)v(y) = v(2)7(Y)

and it follows that 4~! is a homomorphism. Since |z — w| = [z — w| for all
z,w € C it follows that complex conjugation is continuous hence v € ' so T
is an abelian group. O

Remark. We will often denote the inverse of v € T by 7 since v~ *(z) = v(z)
for any x € G.

We are now able to define the Fourier transform.

Definition 7. Pick an f € L*(G) and define the function

o) = /G @) (—a)de

for v € I'. We call this function the Fourier transform of f and we also define
A = {f; f € LY(Q)}, the set of all fourier transforms defined on T.

17



3.2 The Weak Topology of the Dual Group

We want to give I' a topology which turns it into a locally compact Hausdorff
group. A natural candidate is a topology which makes any f € A(I') a contin-
uous function.

Definition 8. Let X be any set, Y be a topological space and let M be any set
of functions defined on X which maps into Y. Define & to be the set of all
elements of the form

where f, € M and V,, CY is open for eachn and N € N. This  will be shown
to be the basis of a topology on X and this topology is called the weak topology
on X induced by M.

We recall that a basis for a topology, 4 is a set of open sets such that any
open set can be written as a union of elements of %

Proposition 11. £ is a basis of a topology, 7. Furthermore this topology is
the weakest topology which makes any f € M a continuous function. In other
words: if T C T is another topology on X and any f € M is continuous with
respect to T’ then T = 7'.

Proof. Pick an x € X and let By, By € % be two basis elements which contains
x. In order to show that % is a basis we need to find a B € 4 such that
x € B C By N By. Since x € By there exists functions f, € M and open sets
V,, CY and a natural number N such that = € (,_, f. ' (V;,) = By. Similarly
we can find functions g, € M, open sets W,, C Y and a natural number M such
that = € N, g7 ' (W,) = By. If

N M
B=(£"'WVa) 0 () gm' (Win).

n=1 m=1
Then it follows that B € Z and z € B C B1NB; so A is the basis of a topology
7. Now let 7/ C 7 be another topology on X such that any f € M is continuous
with respect to 7/. If 7/ is a proper subset of 7 there exists functions f,, € M
and open sets V5, C Y and a natural number N such that ﬂgil AWV ¢ .
But since an intersection of finitely many open sets is open it follows that there
exists an n such that f,1(V,) ¢ 7" which contradicts continuity of f,, hence
T=r1. 0

Definition 9. We give I the weak topology induced by A(T), that is, the weakest

topology which makes any Fourier transform f a continuous function on T' for
any f € LY(G).

Proposition 12. The dual group T' is locally compact when equipped with the
weak topology
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Proof. We will show in Proposition 15 that the set of non-zero complex multi-
plicative linear functionals on L'(G) (independently of this proof) is in bijection
with functionals of the form

A () = f().

Let D = {A, : v € T'} and give D the weak topology induced by functions of
the form ey : D — C where ef(A,) = A, (f) for f € L'(G). To show that I is
homeomorphic to D define ® : I' — D by ®(y) = A, pick f € L}(G) and an
open set B C C then we get

CD_l(eJ?l(B)) ={yel:A, e e;l(B)}

={yel:B3er(Ay) =M () =F()}
= f71(B)

the last set is open in I' and it follows that ® is continuous. The same type of
argument shows that ®~! is continuous. Since

A (N = 1F I < If1h

it follows that D C S* C L'(G)* where L'(G)* denotes the space of bounded
linear functionals on L'(G) and S* is the unit ball in L!'(G)* with respect
to operator norm. If we also give L'(G)* the weak topology induced by the
collection of functions ef, f € L'(G) then it is clear that the weak topology on
D coincides with the subspace topology inherited from L'(G)*. By the Banach-
Alaoglu theorem S* is compact in L!(G)* with the weak topology, see Theorem
3.15 in [2]. According to corollary D4 in [3] the set D U {0} is closed hence
compact since it is a subspace of S*. If Ay, A are distinct elements of Ll(G)*
then there exists f such that

Ay (f) # Aa(F)

hence ef(A1) # ef(A2) and from continuity of ey it follows that we can separate
Ay and A, with open sets and it follows that L!(G)* is Hausdorff.

Pick A, € D. Since L'(G)* is Hausdorff it follows that we can find open
sets Ay € V, and 0 € W,, with empty intersection. It follows that the closure of
V, in D U {0} which is compact does not contain 0 hence this closure coincides
with the closure of V, in D and it follows that D is locally compact. Since D
homeomorphic to I' it follows that I' is locally compact. O

Equipped with this topology the Fourier transform has the following prop-
erties, where i) to iv) and vi) can be found in Theorem 1.2.4 in [3] with less
details and v) can also be found in Theorem 1.2.6 in [3].

Proposition 13. The following properties hold A
i) if f € LYG), mg € G and v € T then fu,(v) = v(—z0) f (7).
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ii) The Fourier transform seen as a map taking elements of L*(G) to elements
of A(T") maps into Co(T).

iti) The Fourier transform seen as a map from L*(Q) to Co(T') is norm decreas-
ing, ||fllee < ||f|l1 and therefore continuous.

iv) The Fourier transform separates points on T, that is for distinct v,06 € T
there exists an f € A(T) such that f(v) # f(6).

v) The function defined on G x T’ which takes (x,7) to y(z) is continuous.

vi) A(T') is dense in Cy(I)

Proof. 1)
Pick f € L'(G@), o € G and 7y € T then

) = /G fro (@)Y(—2)da = /G £ — z0)y(—c)de

— [ s@nt-z - ao)de =(-a0) | Flap(-ads
G G
= (=20)f(7)
ii) Recall that F is an element of Cy(T') if F' is a complex valued continuous
function and for any € > 0 there exists a compact set K C I' such that |F(z)| <e
whenever z lies in the complement of K. The space Cy(T") is normed by the

supremum norm. If f € L!(G) then f is continuous by definition of the topology
on I'. Pick € > 0 and consider the set

K={yeT:|f(y)|>¢}

Using the notation and the homeomorphism from Proposition 12 K is mapped
into

K'={A, €D:[f(7)] > ¢}
—{A, € DU{0} : fes(A,)] = e}

It follows that K’ is a closed subset of the compact set DU {0} and is therefore
compact. Hence K is compact which shows that f € Co(T).

iii) If f € L'(G) then
|f(v)|=|/Gf(w)7(—ﬂf)dx| s/Glf(x)ny(—w)ldxsl\flll

hence || flloo < |If[h

iv) Let 4,8 € I be distinct characters. If f(y) = f(8) for all f € A(T) then by
definition of the Fourier transform it follows that

[ f@0) — s-o)ds =0
G
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for all f € LY(G). Since 7 # 4 there exists a 2o € G such that v(—zq) # 6(—zo)
and by local compactness of GG there exists an open set V' C G such that —xg € V
and K =V is compact. Let f(z) = xx(z)(y(—x) — §(—=x)) then f € L(G)
since

/ Ixk (z)(y(—z) — 6(—z))|dz < / [v(— |da¢+/ |0(—z)|dz = 2m(K) < oo
using the fact that K is compact. It follows that

|l = s(-a)fae =o.

Hence y(—z) — §(—x) = 0 for all x € K since m(K) > m(V) > 0. In particular
it follows that y(—zg) = d(—zo) hence v = ¢ and the Fourier transform sepa-
rates points.

v) Pick a point (xg,70) € G x I' By i) we have that

f*wo (0) = ’Yo(f'?o)f(%)

for any f € LY(G). If f(z) = g(z)yo(x) where g is a continuous, non-negative
and non-zero L!(G)-function it follows that

F(0) = Il > 0.

Hence
20) = f 000(70)
Yo(zo) o)

Since f is continuous and non-zero at 7o it follows that ~(z) is continuous at
(z0,7v0) if fz(v) is continuous at (yo,xg). Since the mapping taking x € G to
fz € Ll(G) is continuous there exists an open set V' C G containing zg such
that

€
1 = faollt < 5

whenever x € V. By continuity of the Fourier transform there exists an open
set U C T containing 7o such that

p p €
|f$0(7) - fwo(’YO)‘ < 5
whenever v € U. If (z,v) € V x U it follows that

‘fT('y) - fmo(’YO)| S |fT(’7) - fro(7)| + ‘fro(v) - fz0(70)|
<|fe = faolll + |meo(7) - fxo(’YO)‘ <e
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vi) We know by iv) that A(T') separates points on I and by ii) we know that
A(T") C Cy(I). In the next section an operation in L'(G) called convolution will
be defined which satisfies m('y) = f(7)§(~) where f,g € L'(G) and * denotes
convolution, see Proposition 14. This shows that A(T') is multiplicatively closed
set under pointwise multiplication of functions. It is easy to check that A(T")
is closed under conjugation since given f € L!'(G) we can define the function
g(x) = f(—x) and it is easy to show that § = f hence f € A(T). Lastly we prove
that for any vy € I" there exists a Fourier transform that does not evaluate to
0 at 7. Pick a function f € L'(G) such that [, fdz # 0 then it follows that

)77\0(70) = fG fdz # 0. Tt follows from the Stone-Weierstrass Theorem, (see
Appendix A.14 in [3]) that A(T") is dense in Cy(T"). O
A different proof of Theorem 4 for is given in Theorem 1.2.6 in [3].

Theorem 4. If we give I' the weak topology induced by A(T") then I' is a locally
compact, abelian, Hausdorff topological group.

Proof. The only things that remains to be shown is that I' is Hausdorff and that
multiplication and inversion are continuous group operations.

To show that I' is Hausdorff, let v, 6 € T" be distinct characters. Since the Fourier
transform separates points there exists an f € A(I) such that f(y) # f(6).
Since C is Hausdorff there exists Vi, Va2 C T! both open such that f(’y) e n,
f(6) € Vo and V4 NV, = 0. By continuity of f the sets f~(V1) and f~1(V3)
are both open, they contain v, d respectively and they are disjoint since Vi, V5
are disjoint and it follows that I' is Hausdorff.

We now show that inversion, ¢ : I' — T is continuous. By definition of con-
tinuity we need to show that i=1(W) is open whenever W C T is open. It is

sufficient to show it when W is a basis element so pick functions f,, € A(T) and
open sets V,, € C. We then need to show that

U= () f)ET

is open. We have

U={yeD;y e (V,) vn}
={y€TD; fu(y7") € Vp, ¥n}

N
= ﬂ{’y € F;fn(fy_l) € Vn}

n=1
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For any n we have

fuly ) = /G Fule)y ™ (—a)de = /G fule P (—a)dx

- / Fal@)(—2)dz = Fo(7):
G

Hence if conj(E) C C denotes the set of complex conjugates of elements of
E C C then

—

U= ({veT:fulr) € Va}

{7 €15 ful) € conj(V)}

Il
D=1

1

n

=

7 (conj(Vi)

n
which is open since conj(V,,) is open and f,, € A(I") is continuous.

We now show that multiplication, m : I' x I' — T' is continuous. Pick a
point (7p,d0) € T' x T', continuity of m is equivalent to showing that for any
open T C T such that vydp € T there exists open subsets V, W of T such that
(70,00) € V x W and m(V,W) C T. By our basis of I' we know that there
exists functions f,, € LI(G) and open sets U,, C C such that

N
S0 € () fu'(Un) CT.
n=1

We are done if we can find V' and W such that v € V', §o € W and for each n,
1 <n < N we have that fn(&y) € U, whenever v € V and § € W. Since U, is
open there exists for each n an ¢, > 0 such that the ball centered at fn (7000)
with radius €, is contained in U,. Define

€= min ¢, > 0.
1<n<N

Pick an n, 1 < n < N. Since C.(G) is dense in L'(G), (see Theorem 3.14 in
[1]) there exists a function g, € C.(G) supported in the compact set K, C G
such that || f, — gnll1 < §. Pick a point ¢ € K,, then the inequality

[7(=z) =0 (=) < |v(=2) = v0(=20)| + [0(=x0) — Y0(—2)]
= [v(z) — v0(z0)| + [r0(z0) — Y0(2)]
= [y(z) = vo(w0)| + [70(w0) — Y0()]
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holds for any x € G. Combining this inequality with Propostition 13 v) and
continuity of 7o at xo shows that there exists open sets N, C G and M,, C T’
containing xy and 7y respectively such that

[7(=2) —v0(—2)| < m

whenever (z,v) € Ny, X M,,. Since

K.c |J N

zeEKy

is an open cover and K, is compact there exists x1, ...,z such that

M
K, C Ng,,-
m=1
If we define
M
V= () M,
m=1

then V' is a non-empty open set of I' since it contains 7y and

[v(=z) — v (=) < m

for any = € K,, whenever v € V. Defining W analogously for §, we get that
| fn (1) = Fa(3000)] S/G\fn(w)llv(—w)5(—w) — Y0(—2)do(—z)|dz
< / [fn(@) = gn(@) + gn(2)| Iy (=2)d(—2) — Y0 (—2)do (—)|dx
G
<2 fn = gullx +/ lgn (2)| 1y (=2)d(—z) — yo(—2)do(—)|dx
<5t [ lan@l-) = do(olda+ [ Ifx@)lh(-a) = (-a)lds

<€
<eén

whenever (7,8) € V x W. Which shows that f,(y0) € U, whenever (v,8) €
V x W which proves that multiplication is continuous in I'. O
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4 Convolutions and Algebras

4.1 Convolution of Functions

A very useful operation in Fourier analysis is convolution. Convolution takes
two functions in L!(G) and produces a third function f g which can be thought
of as a weighted average of translates of f with weight function g. Parts of this
section can also be found in sections 1.1.6, 1.2.2 and 1.3 in [3] with a somewhat
different exposition and parts are left to the reader. A great resource for complex
measures is Chapter 6 in [1].

Definition 10. Let f,g € L'(G) the convolution of f and g, f x g is given by
(r+9)@) | 1o =gy

Provided that
L1 = gty < +.

As the next theorem shows, when f,g € L'(G) then [, |f(z —y)g(y)|dy <
+oo0 for almost all y € G and f x g € LY(G) and L*(G) equipped with * is a
commutative Banach algebra. This proof of Theorem 5 is found in 1.1.6 in [3]

Theorem 5. if f and g are in L*(G) then

/Wﬂx—wﬂmwy<+m
G

for almost all x € G and f x g € L'(G). Furthermore the following properties
hold

i) 11£ *glls < 111 llgll-

i) fxg=gxf.

iii) (f * g) * h = f * (g * h) whenever h € L(G).

Proof. The proof proceeds by Fubini’s theorem (see Theorem 8.8 in [1]) so we
begin by proving that H(z,y) = f(z — y)g(y) is a (Borel) measurable function
on G x G. Define ¢(z,y) = x —y and w(z,y) = y then it is enough to prove
(Borel) measurability of f o ¢ and g ow. Let 9 denote the Borel sets in G,
M ® M denote the Borel sets of G x G and let V be an open subset of C. It
follows that g=1(V) € 91 since g is Borel measurable. Recall that 9t @ 901 is the
smallest o-algebra that contains all sets of the form F; x Es for any Fq, Fy € 91
(see Definition 8.1 in [1]) hence

7 g (V) =G xg (V) eMaMm

and it follows that g o w is measurable. Similarly since f is Borel measurable we
have that f~1(V) € M. It is clear that

o (V) ={(zy) e Gx Gz —y € fTH(V)}
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If we define the function F': G x G — G x G given by F(z,y) = (z + y,y) then
it is clear that F' is a homeomorphism and therefore maps Borel sets to Borel
sets. It follows that

TV =F(fHV) x G) e Me M

hence f o ¢ is measurable and therefore H is measurable. By Fubini’s theorem
(see Theorem 8.8 in [1]) we then get that

/G/G|f(:p—y)g(y)ldydxz/G/GIf(w—y)g(y)ldmdy
= [ 1ol [ 15~ ldody
= [l [ 17@)dzay

= [[f1lxllgllx < +o0.

Hence
/|f:1cf y)|dy < oo a.e

and it follows that f * g is well defined as a function for almost all x € G. From
above we see that

IIf*ngSL/g\f(x—y)g(y)ldydw=||f|\1||g||1

and 1) follows.
For ii) we have that

(f * 9)(x) = /G f(x - y)a(y)dy
=/ flz—(y+2z))gy +x)dy
/f y+x

/f (—y +2)dy = (g % ) ().

For f,g € L'(G). Note that Corollary 1 was used above. For iii) we have that
((f*g) *h) (@) = /G (f * 9)(x — y)h(y)dy = /G ( /G (f(z — y — 2)g(z)d=)h(y)dy
- /G /G F@ =y — 2)g(2)dzh(y)dy = /G /G £z — 2)g(= — y)dzh(y)dy
= /G/Gf(x —2)g(z — y)h(y)dzdy = /Gf(x —2) /Gg(z —y)h(y)dydz
:/Gﬂx—z)(g*h)(z)dz:<f*<g*h>><x>.
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Whenever f,g,h € L*(G). Where the usage of Fubini’s theorem is justified by
the discussion in i) O

Two useful properties of convolution are the following

Proposition 14.

i) If .9 € L}(G) then (f +g) = fg.
ii) If f,g € L*(G) then f * g is well-defined and continuous

Proof. i) Let f,g € L*(G) then
Tr9)() = /G (f * 9) (@)(—x)da = /G /G 1@ = Wg(y)v(—a)dyds

=/ / flx —y)g(y)y(—z)drdy
GJG

=//f(x—y)g(y)w(—wry—y)dxdy
GJG
/G () (— /fx— y)y (= +y)dzdy
~ [ ston(- / @)y (~a)dedy = F(x)a()
G

ii) Let f,g € L?(G) and pick y € G then Hélder’s inequality gives
[(fxg)()] < /G [f(y —2)llg(@)ldz < [|f|[3]lg]13 < +oo

which shows that f g is well defined. Define f~ by f~(x) = f(—z). Then by
continuity of the map that sends z € G to f, € L?(G), the translate of f~,
there exists an open set V' containing y such that z € V' implies

1f2 = fylle < o Ve

[lgll2 ||
hence if z € V it follows by Holder’s inequality that

((f*9)(2) = (Fx )W)l < |IF2 = £,/ 11311gll3 < €
which shows that f * g is continuous. O

Remark. If A is complete Banach space that has an operator - : A x A — A
called multiplication that is associative and satisfies

a(zy) = (ax)y = z(ay)
(z+y)z=2z+4yz
z(y+2) =y + xz

llzyll < [yl
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For any x,y,z € A and a € C. Then A is called a Banach Algebra. Note that
LY(G) is a Banach Algebra with convolution. If B is another Banach Algebra
and A : A — B is a linear functional that is also multiplicative,

Azy) = A(z)A(y)
Then A is called a Banach Algebra homomorphism.
Remark. The proof of Proposition 15 can be found in section 1.2.2 in [3].

Proposition 15. For any fixed v € T the Fourier transform which takes f €
LY(G) to f(v) € C is a complex valued Banach Algebra homomorphism that is
not the zero homomorphism. Conversely any complex valued Banach Algebra
homomorphism of L'(G) that is not the zero homomorphism is of the form
h(f) = f(v) for some v € T'. Furthermore different elements of T corresponds
to distinct homomorphisms.

Proof. Using Proposition 14 it is clear that any function of the form A, (f) =

f (7) is a complex Banach Algebra homomorphism. Given v we can pick an
f € LY(G) that is not 0 and then we have

A7) = 1l >0

so Ay is not the zero functional. If A,, = A, then

| @ 0n(=2) = ra(a)ydz =0
for any f € L'(G) from which it follows that v; = vo.

Conversely, suppose that A is a complex Banach Algebra homomorphism that is
not the zero functional. Since the kernel of A, is a maximal ideal (see Theorem
11.5 in [2]) and maximal ideals are closed it follows that the kernel is closed.
Since linear functionals are continuous if and only if their kernel is closed it
follows that A is a bounded linear functional. By Theorem 11.9 in [2] we know
that ||A]] < 1. Since G is assumed to be o-finite it follows from Theorem 6.16
in [1] that there exists a unique A € L>°(G) such that ||A||cc = [|A]| < 1 and

A(f) = /G @)\ ) dz.
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If f and g are in L'(G) then
| APs@@) = A(1AG) = A +0)

~ [ G @@
G

=/ / f(x —y)g(y)dy\(x)dx
GJG

=/ / [z —y)\z)dzg(y)dy
GJG

=/ A(fy)g(y)dy
G

Note that Fubinis Theorem, (see Theorem 8.8 in [1]) is applicable since

/G /G (@ — A @)g(w)drdy < [N /G 19(v)| /G f (@ — y)\drdy

= 1A llso /G 19(v)| /G \f ()| dxdy
111 ]lglls Ao < +o

It follows that

APMz) = Alfe) (1)

for almost all z € G. By continuity of translation and continuity of A it follows
that the right hand side of above is continuous. Since A # 0 we can choose

an f such that A(f) # 0 and conclude that A(z) coincides with a continuous

A(fz)
A(f)
set of measure 0 and it follows that we can assume that A is continuous on G.

Substitute  with « 4+ y in (1) to obtain

ANz +y) = Afary) = A(f2
= A(f2)A(y) = A(f

on this

function almost everywhere on G. We can redefine A as A(z) =

)y)
JA@)A(Y)-
Hence
Az +y) = A@)Ay)-
Lastly, since |A(z)] < 1 for all z € G and A(—z) = A(x)~! it follows that
|A(z)] =1 for all x € G hence A € T". O

4.2 Convolution of Measures

It will be shown later that L'(G) does not have a unit in most cases. However
L'(G) can always be embedded in a commutative Banach algebra with a unit,
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M(G), the algebra of complex regular Borel measures on G. We begin with
some definitions.

Definition 11. We say that a complexr Borel measure X\ is regular if

AIE) = jaf (V) = sup |XI(K)

for any Borel set E where |\| is the total variation measure of \.

By defining (A + p)(E) := A(E) + p(E) and (cA)(E) := c\(E) for any Borel
set F and any complex Borel measures p, A and any ¢ € C it is easy to show
that the set of complex Borel measures is a vector space. It is also easy to
show that this addition and multiplication preserves regularity so the set of
complex regular Borel measures M (G) is also vector space. If we also define
[|All = |A(G) for any A € M(QG) it follows that M (G) is a normed vector space
and by Theorem 6.4 in [1] we have p(G) < +oo for any u € M(G) so ||u|| < 400
for any p € M(G). We summarize the results below.

Proposition 16. Let M(G) be the set of all complex reqular Borel measures on
G and define the function ||u|| = |u|(G) for any p € M(G). Then the function
|| - || defines a norm on M(G) so M(G) is a normed space

Proposition 17. M(G) is complete and hence a Banach space.

Proof. Let Cy(G)* be the dual space of Cyp(G). That is the the set of all bounded
linear functionals on Cy(G) normed by

IAll = sup |Af].
llfll<1

Then it is well known that the dual of a normed space is a Banach space so
Co(G)* is a Banach space. By the Riesz representation theorem for bounded
linear functionals (see Theorem 6.19 in [1]) there is a bijective correspondence
between Cy(G)* and M (G) which we will denote by ® : Cy(G)* — M (G) which
also satisfies [|[®(A)|| = [|A]| for any A € Co(G)*. Recall that integration with
respect to a complex measure y is defined as

/G fp = /G fhdlul

where the right hand side is the polar decomposition of u (see Theorem 6.12 in
[1]) where || is the total variation measure and |h(z)| =1 for all z € G. From
this it follows that

/ \idi = / xhdlu| = / hdl| = u(E)
G G E
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for any Borel set £ C G. Hence if A also is a complex measure and E C G is a
Borel set we have

/G xed(p+ N) = (1 + N)(E) = p(E) + A(E)

- / xwdp + / \dh.
G G

By a standard approximation argument with simple functions it follows that

[ tavn = [ rans [ i

for any f € L'(x). With a similar argument it is easy to show that

/G fd(ap) = a /G fdu

For any a € C and f € L'(u). Using these two relations it follows that

/G FAB(ahs + BAs) = (s + BA2)f = aAsf + Bhof
—a /G FdB(Ay) + B /G Fd®(As)
— [ sdavan)+ [ fase(a)
G G
- /G Fd(aB(A; + 5B(As))

for any A1, Ay € Co(G)* and o, € C. It follows by uniqueness of the Riesz
representation theorem (see Theorem 6.19 in [1]) that @ is linear and hence
an isometric isomorphism between Cy(G)* and M(G). Since Cy(G)* is com-
plete and isometric isomorphisms preserve completeness it follows that M (G) is
complete and hence a Banach space. O

We now give M(G) a multiplicative structure.

Definition 12. Pick two measures A\, u € M(G) and consider the linear func-
tional A defined on Cy(G) by

A(f) = /G /G £z + 1)dA@)d(y).
Since

A < /G /G (@ + 1) ldA @) duy)

< /G /G [ flloodA @) du(y)
— 11l NG ()

= [[f o Il
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We see that A is a bounded linear functional of norm less than ||A||||u||- By
the Riesz representation theorem for bounded linear functionls there corresponds
unique measure denoted X x p € M(G) such that ||A* p|| < ||A||||p]| and

/G Fd( ) = /G /G f(& + y)dA@)du(y)

for any f € Co(G). We call A x u the convolution of A and p.

By the theorem below it follows that M(G) equipped with * is a unital
commutative Banach algebra.

Theorem 6. Let A\, i and v be arbitrary elements of € M(G) then
i) Axp € M(QG)

ii) 1A% al < ANl

W) Axp = px

w) Axp)xv=A*x(uxv)

v) there exists e € M(G) such that e x u=p

Proof. 1) and ii) was shown above. For iii) we note that if A\, u € M(G) then
they are finite measures and by Fubini’s theorem (see Theorem 8.8 in [1]) we
get that

/G/Gf(x"‘y)d)‘(x)dﬂ(y):/G/Gf(y-i-x)d,u(y)d)\(x)

for any f € Co(G). The left hand side functional of above correspond to the
unique measure A * p. Similarly the right hand side functional corresponds
uniquely to the measure p * A and since the two functionals are equal it follows
that the corresponding measures are equal aswell which shows iii). For iv) we
pick f € Cy(G) and see that

Lrasmen = [ [ f@enioo @)
_ /G /G /G Flo 4y + 2)dN@)dpu(z) (2)dv(y)
= [ [ ] rete+ man) @i mana)
= [ [ 1wt v)maa)
= [ [ s+ nar@i )
:/Gfd(k*(u*v))

and by the Riesz representation theorem (see Theorem 6.19 in [1]) it follows
that (A% p) xv = A* (u=*v). For v) we can define e := Jy where dg is the
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measure defined as 6o(E) = 1if 0 € E and §p(E£) = 0 otherwise. It is clear
that dp € M(G), inner regularity follows from that any set containing 0 has the
same measure as any compact set containing 0 and any set not containing 0 has
the same measure as any compact set not containing 0, outer regularity has the
same argument. It is easy to show that

/ﬂmm@=ﬂm
G

for any f € Co(G) hence

| [ s nasaut) = [ [ - @as(@n

=l/‘f—yUDdu(y)
G

= / f(y)du(y)
G

The left hand side functional corresponds to dg * p while the right hand side
corresponds to p and v) is proved. O

Proposition 18. If f € L'(G) and the complex Borel measure iy is defined by

18) = [ fayis

then py € M(G).

Proof. For any integer n > 0 let V,, be an open set containing E such that
m(E) <m(V,) < m(E) 4+ L. We can also freely assume that V,,4+1 C V;,. Then
lim,, 00 Xv, () = xg(z) for any z € G except possibly on the set N,V,, — E
but m(N,V;,—E) = 0. From Theorem 6.6 in [1] we know that the total variation
is given by

mmmzﬁmmm

for any Borel set A C G. By the dominated convergence theorem it follows that

inf |pr < I = i
g lesl(V) < T gl (Vo) = B J - |fldm
= lm | xv, f\dm:/xE|f|dm:|uf\(E).

So |p|(E) > infgcy |u|(V) and it follows that ps is inner regular. Since G is
assumed to be o-finite we know that m is inner regular on any Borel set F.
It follows that for any n > 0 we can find a compact set K,, C FE such that
m(E) — < m(K,) < m(E). We can without loss of gencrality assume that
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K,, C K,,+1 then as above lim,_, 1o Xk, = XE except on a set of measure zero
and by the monotone convergence theorem it follows that

n——+oo

sup lugl(K) = Tim |ugl(K) = tim [ |flam
KCE n—-+oo K,

= Gim [ e |fldm = / x| Fldm = |y |(E).
G G

n—-+4oo

Hence |p|(E) < supycp|p/(K) and it follows that py is outer regular which
proves that uy € M(G). O

We now come to to the embedding of L (G). Define the mapping ¢ : L*(G) —
M(G) given by «(f) = py. The following properties show us that ¢ is an em-
bedding of L!(G) into M(G).

i) If pug = pg then f =g in LY(G)

ii) If f,g € L*(G) and ¢ € C then pfyg = piy + pg and prep = cuy
i) fifug = prp * pig

) llegl| = 111

The proof of i) amounts to showing that if [, (f — g)dm = 0 for any E then
f = g a.e which is a well known property of measurable functions. Property ii)
is trivial and iv) is true since

Hufll=qu|(G)=/G|f|du:||f||1
using Theorem 6.13 in [1]. For part iii) we pick h € Cy(G) then
/Ghd(,uf*,ug):/G/Gh(x-i-y)dﬂf(m)dﬂg(y)
=//h(w+y)f(fv)dfvg(y)dy
GJG
— [ [ m@ysta = w)dzgly)ay
GJG
- /G hz) /G F( - y)g(y)dyds
— [ h@)(f + p)a)do
G

= / hdpifg
G

and by the Riesz representation theorem (see Theorem 6.19 in [1]) it follows
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that py * g = py.g. Note that Fubinis theorem could be applied since

/ / Ih(@) (@ — y)g(y)ldedy < / / 1hllool £ (& — )l delg())dy
GJaG GJaG
= |[Allso /G /G (@ — y)ldelg(y)|dy

= [[Alloo /G /G | (@) dzlg(y)ldy

= [[Allol[f1l1llgll1 < 400

4.3 The Fourier-Stieltjes Transform

Since L(G) can be embedded in M (G) the Fourier-Stieltjes transform is natural
to consider.

Definition 13. The Fourier-Stieltjes transform. If p is in M(G) the function
g T — C given by

fi(y) = /Gv(—x)du

is called the Fourier-Stieltjes Transform of p.

Remark. If iy € M(G) is the embedding of f € L*(G) then

i) = [ a)dns@) = [ ent-o)is = fo)
The following uniqueness theorem will be used in the proof of Pontryagins
duality theorem. Pontryagins theorem in turn will show that applying this

uniqueness theorem to I' in place of G will give us the uniqueness theorem for
the Fourier-Stieltjes transform.

Proposition 19. If p € M(T) and

/F (@) du() = 0

for any x € G then u = 0.

Proof. Asssume that u is as above and pick f € L!(G), then it follows that

/F fp = / /G £ (@)y(—a)dzdp()

- /G [ f@n(=ointr)do
= [ 1@ [ s=)intis =o.
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Since ||p|] is finite we can interchange integration above. If we define the linear
transformation B on Cy(T') as the integral [i. gdu we see that |B(g)| < ||g]]so||1l]
hence B is a bounded linear transformation. Pick g € Cy(T"). By Proposition

13, A(T) is dense in Co(T") hence there exists a sequence f, € A(T') such that
llg — fulloo — 0 and therefore

B(g)| = | / gdu| < | / 0= Fodul +| / Fodul
I T I
< /F 19— Faldie < lallllg — Fulloe = 0.

Thus B(g) = 0 for any g € Cy(T") and by the Riesz representation theorem for
bounded linear functionals on Cp(T") (see Theorem 6.19 in [1]) it follows that
u=0. U
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5 Bochner’s Theorem and the Inverse Fourier
Transform

5.1 Positive Definite Functions

We will first introduce the positive-definite functions. The reason why we choose
to study such functions is that for functions which are L!'(G) and positive-
definite the Fourier inversion theorem holds. Bochner’s Theorem and the Fourier
inversion theorem are the highlights of the section and the proofs follow the
proofs in 1.4.3 and 1.5.1 respectively in [3] but with more detail.

Definition 14. Let f be a complex valued function defined on G. We say that f
is positive-definite if for any complex sequence ci,...,cn and sequence Ty, ...,TN
in G the inequality

N
Z Cnémf(xn - xm) >0

n,m=1
holds.
Remark. The proof of the following can also be seen in 1.4.1 in [3].

Proposition 20. If f is a positive definite function on G then
i) f(0) >0

i) f(~x) = f(z)
i) | f(x)] < f(0)
i) | f(x) — f(W)]? < 2Ff(0)R(f(0) — f(z —y)) hence f is uniformly continuous if

it is continuous at 0.

Proof. If we let N =1 and ;1 = 0 and ¢ = 1 in the definition we get f(0) > 0.
Now let N =2 and set ¢c; = 1,¢c0 = ¢,x1 = 0,29 = x then

(1 +1e)£(0) +ef(—2) + cf(x) 2 0. (1)

Letting ¢ = 1 in (1) we see by i) that f(—z) + f(x) from which it follows that
Sf(x) = =S f(—x). Letting ¢ = 4 in (1) we get that i(f(x) — f(—=x)) is real
hence Rf(z) = Rf(—x) from which it follows that f(z) = f(—) which proves
ii). Part iii) is trivially true at the point z if f(z) = 0 so assume that f(z) # 0
and set ¢ = —|f(x)|/f(z) in (1) to get

—f@) =@
20(0) + =5 (a) + g @) 20
After simplifying the second term with ii) and rearranging we get
f(0) = |f(2)]

which proves iii).
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Now for iv), if f(z) = f(y) then iv) is clearly true so assume that f(x) # f(y).
Let N=3,21=0,20=2,23=1y,c; =1 and

o 1@ =)
flx) = f(y)
for some real ¢ and lastly let ¢c3 = —co. Then the following relations follows

|CQ|2 + |63‘2 = 2t2.
cof (@) +esf(y) = tlf(x) — f(y)l-
Using 4i) we also get that
e f(—x) +e3f(—y) = tlf(z) — fF(y)l-
and lastly we have
eesf(z —y) + s fly —x) = —2(f(z —y) + fly — 2))
= —t*(f(z —y) + flz —y)
— C2R(f(w — ).

By applying the definition of positive definite and the relations above it follows
that

(1+26)£(0) + 2t|f(2) — f(y)] = 2°R(f (2 — ) > 0.
Using i) this can be rewritten as

F(0) + 2t () = f(y)| + 2R(£(0) — f(z — 1)) > 0.

This is a quadratic polynomial in ¢ which must be positive for all ¢ € R. Which
happens if and only if the quadratic polynomial does not have two distinct real
roots which happens if and only if the discrimant is less than or equal to 0. In
our case this is equivalent to

Alf(2) = f)I* = 4£(0)2R(f(0) = f(z —y)) <O

From which we see that

[f(z) = f)I? <2fO)R(f(0) - f(z —y))

An example of a positive definite function is the following

Proposition 21. If p € M(T') is a positive measure on the dual group we can
define

ﬂm:ﬁﬂmwm

then f(x) is positive-definite and continuous.
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Proof. We have

N N
Z CnTmf(va - xm) = Z Cnc’im/ ’V(xn - xm)dﬂ(f)/)
n,m=1 n,m=1 r
N [
= / > entmy(@n)y(@m)du()
Fn,m:l

= [ 13 enten)dut = 0

Hence f is positive definite. The function f is also continuous since if we pick
€ > 0 then by inner regularity of p there exists a compact K C I such that

€
plT) = & < () < ()
since p is assumed to be real. It follows that

u(l' = K) <

1 o

An easy computation then gives
€
[f (@) = f(zo)| < max |y(z — z0) — 1 p(K) + 3. (1)
yeK 2

By continuity of y(z) on I" x G there exists for each vy in K an open set V,, of
I' containing vy and an open set W, of G containing x — xg such that v € V,,
and y € W,, implies that

€

v(y) —1] < (K

The union Uwe x V4 is an open cover of the compact set K hence K has the
finite subcover V,, U...UV, . The set W = W,, Nn...NW,,  is a non-empty
open subset of G and if x is in W + z then (1) shows us that | f(z) — f(zo)| < €
hence f is continuous. O

5.2 Bochner’s Theorem

We have just shown that any function of the form f(z) = [.~(z)du(y) with
a non-negative p in M(G) is continuous and positive-definite. The content of
Bochner’s theorem is that the converse is also true, any continuous positive
definite function is of that form.

Theorem 7. Bochner’s Theorem. The function f is a continuous positive-
definite function if and only if there exists a unique postive measure p in M (T)
such that

ﬂm:ﬁwmww> 1)
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Proof. The easy part, that any function of the form (1) is continuous and
positive-definite was shown above. Assume that f : G — C is a continuous
and positive-definite function. From propostion 10 we see that we can without
loss of generality assume that f(0) = 1. The idea of the proof is to construct a
bounded linear functional A on Cy(T") which can then be rewritten as an inte-
gral with respect to a complex measure with the Riesz representation theorem.
This measure will be the measure in (1). To do that we first need to define the
functional T on L!(G) given by

7(0) = [ o) (@)
Since | f(z)| < f(0) for all z in G the functional is well defined. The goal with

the remainder of the proof is to show that 7" can be used to define a linear
functional Cy(I") which we will call A. We begin by proving the inequality

IT(g9)]* < T(g*39) (2)

where §(z) = g(—x). If we define for g and h in L'(G) the function
l9,h) = T(g *h).

Using Fubini’s theorem (see Theorem 8.8 in [1]) we see that
0= [ @+ D@ @)z = [ (i g)@)f(@)da
— [ [ A= st @dys
GJG
=//@g(y+r)f(x)dydm
GJG
— [ [ v+ o) (w)dndy
GJG
=/ / 9(@)h(y) f(x — y)dady.
GJG

From this expression we see that [g, k] is linear in g and [g, h] = [h, g]. It follows
that

[Q,Oéhl + ﬂhﬂ = a[g7 hl] +B[gv h2]

whenever a, 8 are complex. Assume for the moment that

[9,9] >0

for any g in L'(G). Then we can show that

lg, h]1* < [g, g][h. h] (3)
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holds for any g and h in L'(G). Since if [g,h] # 0 we can let o = I{g;ﬂl then

| = 1| and for any real r we have

9,9 — rah] — ralh, g — rah)
g,9) —ralg, h] — ralh, g] + r*|al?[h, ]

0<l[g—rah,g—rah)
=
=
= [9, 9] = 2r[[g, B]| +r*[h, R].
This is a positive quadratic in 7. We know by assumption that [k, h] > 0 and if
[, h] = 0 we must have [g, h] = 0 since otherwise the quadratic is negative for

large enough r. If [h, h] > 0 then we can let r = % and obtain

lg, P11* | llg,P]I?
0<[g,9] -2 ] + o

Hence

lg. hlI*> < [g,g][h, h].

We now show that [g, g] > 0 which amounts to showing that

/ / o(2)3@) f (@ — y)dady > 0
GJG

for any ¢ € LY(G). Pick a g in C.(G) with support in the compact set K
and note that the continuous function ¢(z,y) = g(2)g(y) f(z — y) is uniformly
continuous on K x K since K x K is compact. By uniform continuity there exists
an open set V C K x K containing the identity such that (z1,y1) — (z2,y2) € V
implies |¢(z1,y1) — é(22,y2)| < €. By using the basis of the product topology
there exists By and By open in G such that 0 € By x Bo C V. Let B = B1N By
then 0 € B x B C V hence

|P(z1,51) — d(22,92)| <€
whenever (z1,y1) — (2,y2) € B x B. Since B is open and
K< |J@+B)
reK
is an open cover of K it follows that there exists points x1, ..., zx such that

N
K< |J(@n+B)

n=1
Let By = K N (z, + B) and define for 1 <n < N

E,=((z,+B)—E)NK.
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It is then clear that the sets (E,), are mutually disjoint and

N
K=|JE,

n=1
Furthermore (yn,ym) € E, X E,, implies that

10(Yn, Ym) — (@0, Tm)| < €.
Since sets of the form FE,, are mutually disjoint and cover K it follows that

N

m(K)? = Y m(Eny)m(Epy).

n,m=1

Using these properties we get

N
|/(:/G¢(I’y)dxdy_nglm(E”)m(Em)gb(x"’xm”
N

= |/K/K¢(I,y)da:dynmz_l /En /Em O(Tn, Ty )dady|

N N
- |n%::1 /En /Em ¢($7y)d$dy - n%::1 /Em /En ¢(xn7xm)dxdy|

N
< 3 [, 106w st aaiy

N
<anL=1/En /En edxdy

N
= Z m(Ey)m(Ep)e = em(K)?>.

n,m=1

So the difference betweem the double integral of ¢(z,y) and the sum

N N
Z m(En)m(Epm)p(en, tm) = Z m(En)g(@n)m(Em)g(@m) f(2n — Zm)

(4)

can be made arbitrary small. Since f is positive-definite it follows that the sum
in (4) is always positive and therefore the integral is always positive,

/ / 9(2)7W)f (x — y)dedy > 0 (5)
GJG
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if g € C.(G). Assume now that g is in L*(G). Since C.(G) is dense in L*(G) we
can find a sequence of functions (g,) in C.(G) converging to g in L'(G). This
implies that

Jin [ s @nie =ty = [ [ s@ia@ie -y ©)

Since

| Jim / / gn(@)gn(y) f (x — y)dzdy — /G /G 9(x)g(y) f (x — y)dzdyl

< lim / / 9n(@)3n(¥) — 9(@)FW1f (@ — v)|dady

n—-+oo

< Jim ) [ [ 10,0050 - 905,00 + 9(2)5.0) - a(@al)ldrdy

< tim_ fO)(lgn — llllgnll + llgllllgn — gll) =0

From (5) and (6) it follows that
9, 9] / / 9(@)g(y)f(x — y)dady > 0
for any g in L*(G).

Pick € > 0. By uniform continuity of f there exists an open set V of 0 such
that x —y € V implies that |f(z) — f(y)| < e. By continuity of multiplication
m and definition of the product topology there exists an open set By x By of
G x G which contains (0,0), let U = By N By then U is an open subset of G
which contains 0 such that U +U C V. After considering W = U N (-U) we
can assume that U = —U. Now let h = ( ) then

[h, h] —1—// h(y) f(x — y)dedy — //dxdy

- 7 /U (F( ) ~ F(O)dndy < c.

Therefore
[h,h] —1<e. (7
Also, for any g in L'(G)

011 =T(0) = [ [ a@h@ifa = dody— [ g(o)f(a)da
- [ 22 /U fla=saydo~ [ 20| sy
= [ 25 [ =) - sy
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IfyeUthenx —y—ax=—-yeU CV hence

|lg, h] = T(g)| < ellgll1-

It follows by the reverse triangle inequality that

T(g)l < llg, Pl + €llgllx- (8)
Using (3), (7) and (8) we get

IT(9)1> < |lg, hI* + 2l[g, hllellgll + €||g]I3

< [9, gl[h, B] + 2+/1g, gl Blellgllx + €[] g]|?

<19, 91(1 +€) +2/[9, g1(1 + e)ellgl1 + €*[[g] 3
= (g, 9]+ €(l9. 9] + 2v/19. 911 + ©)llg|]1 + €llgl[})

Letting ¢ — 0 we see

T(9)]* <lg,9] =T(g%37)

which gives us (2). We now have what we need to show 7" can be used to define
a bounded linear functional A on Cy(T").

Define k = g * § and k" = k"~ ! x k for any integer n > 1. By commuta-
tivity of convolution we get that k™ = k x k»~!. Using Corollary 1 we see that
for any pair of functions X, Y in L}(G) we have

(X*Y /X( r—y)Y(y) dy—/X -z —y)Y (y)dy

_ / XV )y = / Xo ()Y (—y)dy

/X(y—:l: dy—/Xx— (y)dy

— (X «T)(@).
Applying this to the case X =g and Y = g we get
kak=(g%g)* (Gxg)=(9%9) % (g*7) =kxk=k
By induction on n and associativity of convolution we have

k™ % (74:;) = (k * k"_l) * (k"/——I:k)
:k*kznfl*(ﬁ)*%:k*kz(”fl)*/;
— k2 * k2(n—1) _ k:Qn
hence

K™ % (kn) = k2. (9)
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By combining (9) and (2) repeatedly we get the expression
IT(g)* < T(g*3) =T(k)
< T(k* k)2 =T(k*)?
< T(k2 * ];2)1/4 _ T(k’4)1/4
<L <TEH?T

for any positive integer n. Since ||f|loc = 1 it follows that ||T|| < 1 hence
IT(k2")| < ||k%"||; and therefore

T(g)I> < T(**")* " < | )1F "

Recall that L(G) is a sub-Banach-Algebra of the unital Banach Algebra M (G)
hence if we let n — +o0 then

T(@)f < [IK*"|IF " = p(k) (10)
by the spectral radius formula, see Theorem 18.9 in [1] where
p(k) = sup{|A|; k — Ae is not invertible}

and e = Jp is the unit element in M (G). Note that if \g is such that k — Age
is not invertible then by Theorem 18.17 b in [1] there exists a complex linear
functonal hgy defined on M (G) which is not 0 everywhere, ho(zy) = ho(x)ho(y)
for any z,y € M(G) and ho(k — Aoe) = 0. It follows that ho(k) = Aoho(e) and
since hg # 0 it follows that ho(k) = Ag. Let A be the set of all complex linear
functionals defined on M (G) which are also multiplicative, then it follows that

sup [h(k)| = [ho(k)] = Ao
heA

Since Ay was an arbitrary element of the set of all elements A € C such that
k — Xe is not invertible it follows that

p(k) < sup |h(k)| < sup [h(g * g)]
hen heA

< sup |h(g®)] < (sup |h(g)])?
heA heA

and combining this with (10) we get
T(g)| < sup |h(g)]- (11)
heA
We know that the supremum is not achieved at h = 0. If we let A’ — {0} be the

set of all function restrictions to L'(G) C M(G) of elements in A — {0} then
A’ — {0} is in correspondence with I' by Proposition 15 hence

T(g)| < sup [h(g)| = sup [g()] = [|9]]oo- (12)
heA ~yerl
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If g isin A(T) (the set of all Fourier transforms) then we can define A : A(T') — C
by

A(g) =T(g). (13)

If g1 = g2 then ||g1 — §2||oc = 0 and therefore (12) shows us that T'(§1) = T(§2)
so it follows that A is well defined. The expression (12) also shows us that
A is a bounded linear function of norm [|A|| < 1. Since A(T) is a subspace
of the Banach space Cp(I") the Hahn-Banach Theorem (see Theorem 5.16 in
[1]) allows us to extend A to a bounded linear functional on Cy(I') of norm
less than 1 (which we will also call A). By the Riesz Representation Theorem
of bounded linear functionals (see Theorem 6.19 in [1]), there exists a unique
regular complex Borel measure v defined on I' such that

Ag = /F g(y)dv(7)

for any g € Co(T") and |[v[(T') = [[v|| = [[A[| < 1. If we define u(E) = v(—FE)
(where —F is the inverses of E in I') then it is easy to show that y is a complex
regular Borel measure such that |u|(T') = |¢|(T') < 1. We also have for any Borel
set E the formula

]ﬁXE(—VWQNW)::jCX—ECﬂdMUﬂ

=WEFW@=AMMMM-

By linearity we get

/Fs(—'y)du(’y) Z/FS(V)dV(V)

for any simple function s in L'(u). Since those simple functions are dense in
LY(p) and Co(T) € L' (u) we get that

ﬁaewmwzﬁemwm
for any G in Cy(T). If g is in L(G) it follows that

ﬂmzA@waém—www>

and by Fubini’s Theorem (see Theorem 8.8 in [1]) we have
[ st@)ste)iz = 76) = a@)
= /Fg(—v)du(w)

=meﬁﬂmwmm
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and therefore
/@@xmw—/ﬂwwwwm=o
G T

If we let g = xg where E is any Borel set of finite measure we see that

@) = [ A@duz) e on 2 (14)

Since G is locally compact any = € G has an open neighbourhood V,, with finite
Haar-measure. If we restrict the left hand side and the right hand side of (14)
to V,, then we know that f|y, is continuous since f is continuous by assumption.
The proof in proposition 21 transfers directly to arbitrary elements of M (G) by
using the polar decomposition du = hd|u| which shows that the right hand side
(14) is continuous when restricted to V,. It follows that

ﬂmzéwwwm (15)

for all y € V.. Since sets of the form V, are an open cover of G it follows that
(15) holds for all y € G.

If we let y = 0 in (15) yields

L= £0) = [ du=p(T) < () < 1,
r
It follows that || — |u||| = 0 hence p = |p| and therefore p > 0. O

5.3 The Fourier Inversion Theorem
Definition 15. Let B(G) be the set of all functions f : G — C such that there
exists a measure 1 € M(G) that satisfies

ﬂmzﬁﬂmwm

for any x in G.

Remark. If p is in M(G) it can clearly be written on the form p = p1 + ius
where 1, po are both real measures in M(G). Using the Hahn Decomposition
we can decompose both 1 and po as the difference of two positive measures in
M(G) respectively. Therefore we have

po=pi =y g =iy
and Bochner’s Theorem implies that B(G) is the set of all linear combinations

of positive definite functions.
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Theorem 8. The Fourier Inversion Theorem. If f is in L'(G) N B(G) then f
is in LY(T') and if the Haar measure on T is suitably normalized the inversion
formula

- / For @)y
T

holds for any x in G.

Proof. If f is in L'(G) N B(G) then there exists a measure py in M(G) such
that

@) = [ A@)dus(y) 1)
r
If h is any function in L!(G) then

(h+ £)(0) = /G h(—2)f (2)ds = / [ mar @ ()

Fubini’s theorem (see Theorem 8.8 in [1]) clearly applies since h is L*(G) and
| Jer(@)dps ()] < [lpgl| so

(hx £)(0 / / v(@)dzdps(7y)
= [ | ranadodns )

= / h(y)dpg(7y)-
r

Let g be in L'(G) N B(G) and associate py, € M(G) to g as in (1). By using
properties of convolution and letting h* g take the role of h in the formula above

we obtain
/ hgdpy = / (hx g)dps
r r

= ((hxg) = f)(0)
= ((h* f) % 9)(0)

_ / hidu,.

From this it follows that complex measures vy and v, given by integrating g
with respect to puy and integrating f with respect to 4 respectively satisfy

/iLdl/f I/iLdVg
r r
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for any h in L'(G). Define the linear functional L : Co(I') — C by

L(F):AFd(Vf—Ug).

The functional L is well defined on Co(I") since vy, v, are complex measures
and hence vy — v4|(I') < 4+o00. The functional is also bounded since |L(F)| <
lvs — 1| (T) whenever ||F||o < 1. By construction L(h) = 0 for any h € L'(G),
so L vanishes on the set A(T') C Cy(T"). Since A(T") is dense in Cy(I") it follows
that L(F) = 0 for any F' € Cy(T") and by the Riesz representation theorem for
bounded linear functionals (see Theorem 6.19 in [1]) this can only happen if
vy = V.

We will now define a positive linear functional T' on C.(T"). Pick ¢ in C.(T") and
let Ky be the support of 9. If vy € Ky we see by picking v in C.(G), ||v][1 # 0
that the function given by (vyo)(z) = v(z)yo(z) for = € G satisfies v75(70) # 0.
So for any 7o € Ky there exists a function u € C.(G) such that @(vyy) # 0. By
defining @(z) = u(—x) it follows that @ = @ hence the Fourier transform of u i
is nowhere negative and strictly positive at ~q.

For any 7o in Ky we have for the corresponding function v € C.(G) that the
set

M,, = {y € T;|uxa| > 0}

is open and therefore the family of sets (M) ,ex, is an open cover of K.
By compactness of K, there exists functions ui, ..., u, in C.(G) such that the
continuous function

n
=1

satisfies that ¢ > 0 on K. By the definition of a positive definite function it is

clear that any finite sum of positive definite functions is positive definite so g is

positive definite if each wu; * u; is. But u; * w; is positive definite for each i since
N

cjCk(u; * ;) (w5 — x1) =

N
jk=1 jk=1

N

k=

1

N
Z cicrui(z; — y)ui(zr — y)dy
G k=1
N

=/ 1> cjuila; — y)*dy > 0.
¢ o

J

49



By Bochner’s theorem there exists a positive measure ug in M(I') such that

o(z) = /F () dp.

We can now define the functional T : C.(I') — C by

T = [ L,
P

Here of course g depends implicitly on 1 by its construction. The functional
T is well defined in the sense that g can be replaced with any other positive
definite function f € C.(G) such that f is strictly positive on K, in the defining
equation for T'(¢) without changing the value of T'(1). This is true since

" v
—du, = ~fdu, = ~d
K, 90 /mgff““’ ko df
¥ v
/m af? /K af’ "

¥
/muf

From this it is also clear that T is linear. Also, since § > 0 on the support of 9
and p4 is a positive measure it follows that T'(¢)) > 0 whenever ¢ > 0, that is,
T is a positive linear functional.

Notice that for the function g defined above we have that pu,(I' — K3) = 0.
If this was not the case then there exists by inner regularity of u, a compact set
K CT — K such that 0 < py(K) < pup(T' — Kj). Construct a positive definite
function f such that f > 0 on K then since vy = vy it follows that

[ dauy = [ adus=o.
K K

Since f > 0 on K it follows that uy(K) = 0, a contradiction. Hence § # 0 a.e.
with respect to pg and it follows that we can instead equivalently define T by
integrating over I' instead of Ky:

Y
T(y) = / —dpig.
rdg
Pick a function ¢ in C,(I") that is non-negative and not the zero function and,
as before pick a positive definite function f such that f > 0 on Ky4. Then since
the measure py is positive by Bochners theorem we get

r0f) = [ ©

Afdug=/¢duf >0
g r
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so T is not the zero functional.

We now prove that T is translation-invariant. Pick ¢ € C.(T'), 7o € T and
set Yo(v) = Yv(vvg ). Contruct the g corresponding to v such that § is also
strictly positive on the support of tg. Define f by f(z) = vo(—z)g(x), then it
follows that f(v) = §(770) and f is continuous. Associate g to g with Bochners
theorem,

Mmzﬁyuw%wy
Then we have that
ﬂx)=w¢—xmcw::[}wwxmmMAv)

By defining p(E) = pg(y0E) on any Borel set E C T' it follows that p € M(T")
and p > 0 since pg4 satisfies the same properties. By definition of p we also have

/F xe(y)du(y) = /F X0 (V) dpg(v) = /F XE(707)dig ()

for any Borel set E. By a standard approximation argument of simple functions
it follows that

/F F(3ov)dpg(v) = /F F(y)du(y)

for any F € L'(py). In particular, by letting Fy () = () for any fixed z € G
it follows that

ﬂ@=LWM@MMﬂ=LW@WM-

From Béchners theorem it follows that f is positive definite and its correspond-
ing measure py is given by pf(E) = u(E) = pg(1E). By letting

Y(v)
(95 ()

F(y) =

where we recall that (§)x5(7) = g(y07) it follows that

T(vh) = /F %(V)dug(w) = /F w(%v)dug(v)

a(v) ()
_ [ ¥O0) _ — _
—Fm%%wW“”‘AFWMWM”‘

= /F F(y)dps(y) = /F ;(Z)V(Zi)duf(v) =

[ () B
Afwwmwﬂw
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Hence T : C,(I") — C is a positive translation-invariant linear functional. By
the Riesz representation theorem for positive linear functionals on C.(T"), (see
Theorem 2.14 in [1]) there corresponds a regular measure m on I' such that

ﬂwzﬁwm

Since T is translation invariant we see from the proof of the construction of the
Haar measure, Theorem 1 that m is in fact a Haar-measure on I" and we will
denote it by dm(y) = dy. If v € C.(T), f € L'(G) N B(G) and g is positive
definite L!(G)-function such that § > 0 on the support of 1) then

[vit=1whH = [ if iy

= [ Sy = [ vy

Since above is true for any ¢ € C.(T") it follows that

us(E) = [ fan.

Since jif is a finite measure it follows that f € LYI) and since f € B(G) we
have

f(x) = /F Y (@)dps () = /F (@) F(7)dy

and the theorem follows. O

Proposition 22. If H is another topological group and the function ® : G — H
is a group isomorphism and a homeomorphism then

/ f(@)dm(z) = / F@1(y))dma (y)
G H

for any f € LY(G) where m is the Haar-measure on G and mpy is defined by
mu(E) = m(® 1 (E)) for any Borel set E C H. Note that by Proposition 9
mpy is a Haar-measure.

Proof. Let f be in L'(G). After decomposing f into its real positive-, real
negative- , imaginary positive- and imaginary negative part we can without
loss of generality assume that f is positive. Since f is positive there exists a
sequence of simple measurable functions (s, ), converging to f pointwise such
that s,(x) < spt1(z) < f(z) for each x and n (see Theorem 1.17 in [1]). If
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s = Zgil anXE, is any simple function defined on G then

/Hs( Yy))dmp(y) = Zan/ xE, (@71 (y)dmp (y) :i /X@(En)(y)de(y)

=Y (@) = Zan “(@(E)

= Z anm(E,) = /Gs(x)dm(x)

n=1

So the proposition holds for any simple function. After using the monotone
convergence theorem twice below the theorem follows

/H F@ )dma(y) = tim [ sa(®(y))dmu(y)

n—+oo Jrr

= lirnOo Gsn(m)dm(m)z/Gf(x)dm(x).

n—-+

Note that the composition s, 0 ®~! is a simple function for each n. O
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6 Plancherel’s Theorem

In this section we will prove Plancherels Theorem and some important Corol-
laries. Plancherels Theorem will allow us to define the so called Plancherel
transform. Less detailed proofs can be found in Section 1.6 in [3].

6.1 Plancherel’s Theorem

Theorem 9. Plancherel’s Theorem. The Fourier transform restricted to L*(G)N
L?(G) is an isometry with respect to L*>-norms onto a dense linear subspace of
L3(T'). Therefore it may be extended uniquely to an isometry of L*(G) onto
L?(T). This extension is often referred to as the Plancherel transform.

Proof. Assume that f € L'(G) N L*(G) and define f(z) = f(—x) and set
g = f*f. Then we have that g € L'(G) and that g is continuous by Proposition
14. We also know as shown in the inversion Theorem proof that g is positive
definite. After applying the Fourier inversion theorem to g and the relation
lg| = | f |2 we get the following relation

[Jﬂmﬁmwiéfuﬁm—xram»:ﬂﬁwmeVZAJﬂ%m

It follows that ||f||2 = ||f||2. Hence the Fourier transform is an L2-norm isom-
etry when restricted to L'(G) N L2(G). If we let © be the set of all Fourier
transforms of functions in L'(G) N L?(G) then we need to show that © is dense
in L*(T). Since the Fourier transform is an L2-isometry of L'(G) N L?(G) into
L2(T) it is clear that © C L?(T"). Since the Fourier transform of a translate of
a function is

foo(7) = (=20) f(7)

it follows that H(y) = F(v)y(zo) is in © whenever F € © for any zg € G.
Hence if ¢ € L?(T) and

, = dv =0
(6, %) /F Prhdy
for any ¢ in © then

/F () ()Y (7)dy =0

for any € G. By defining the measure n by dn = ¢(v)¢(v)dy we get from
above that

Awmmwvm
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for any x € G. By Proposition 19 it follows that n = 0 since n € M(I'). It
follows that

&) =0 a.e.

for any ¢ in ©. Note that © is translation invariant since the Fourier transform
for the function h(z) = d(z)f(x), d € I is equal to h( )= f(yo ).

Now pick a 79 € I'. Since there exists a Fourier transform F : I' — C which
is strictly p051tlve at 1 € T, the identity in I' it follows that the function F
translated by v, F%q is in © and |F 71(70)| > 0. By continuity of F -1

there exists a neighbourhood around ~y such that F%—l is strictly positive in
this neighbourhood. By letting ¢ = F,Y(;l in

&p =0 a.e.

it follows that 1 = 0 almost everywhere inside that neighbourhood. Since 7o
was we see that

=0 a.e.

It follows that the only element in L?(T") which is orthogonal to every element
of ©®is 0. Any f € L?(T') can be decomposed as f = Pf + Qf where Pf € ©
and (g,Qf) = 0 for any g € © see (Theorem 4.11 in [1]). If (g,Qf) = 0 for any
g € O then in particular (g,Qf) = 0 for any g € © hence Qf = 0 and it follows
that f = Pf € © so © is dense in L*(T).

We have that the Fourier transform is an L?-norm isometry of L*(G) N LY(G)
onto a dense linear subspace of L?(I'). We will now extend this to an L2-
norm isometry of L?(G) onto L?(I'), the so called Plancherel transform. Since
C.(G) C LY(G) N L*(G) and C,(G) is dense in L?(G) it follows that L'(G) N
L?(G) is dense in L*(G). If f is in L?(G) we can take a sequence f, in
LY(G) N L*(G) such that f, — f in L?(G) and define the Plancherel trans-
form of f, f as

where the f,, on the right side denotes the regular Fourier transform and the limit
is in L2(T"). This is well-defined since if g, is another such sequence converging
to f we have by the isometry of the Fourier transform

lim an gnll2 = hHl an gnll2
n—+4oo
= 11111 H.fn gn”2 =0.

n—-+00

Hence lim,,_, 1 fn — Gn = 0in L3(T) and it follows that

lim f,= lim f,—gn+0n= lim gy
nH fn i o= 0n +0n o G
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The Plancherel transform clearly coincides with the Fourier transform when
restricted to L'(G) N L?(G) and by the reverse triangle inequality we see that
it is an isometry since

1]l = Jm 1 fulla = tim || fallz = [1f1l2-

It remains to show that the Plancherel transform maps onto L?(T'). Choose a
function F € L%(T). Since O is dense in L?(T) there exists a sequence F,, in ©
such that F,, — F in L*(T") and by definition of © there exists a sequence of
functions f,, in L'(G) N L?(G) such that fn = F,,. Using the isometry property
and the triangle inequality we get

fn = fmllz < {IF = Fullz + [|[Fn = Fll2.

thus f,, is a Cauchy sequence in L?(G). By completeness of L?(G) the sequence
fn converges to a function f € L?(G) and by definition of the Plancherel trans-
form we get

f= lim fn: lim F,, =F.

n—-—+oo n—-+4oo

6.2 Parseval’s Formula and other Corollaries

Corollary 2. Parseval’s formula. If f,g € L?(G) then Parseval’s formula

/f(w dz—/fw

holds where f denotes the plancherel transform of f.

Proof. Let f,gbein L?(G). Using the fact that for any complex valued function
f we have |f(z)|? = f(x)f(x), the polarization identity is easily verified

Afg=If+gP> = If — gl +ilf + gl —ilf —igl*.

Using Plancherel’s theorem we see that

4 /G f(@)g@)de =

:/ \f+g|2dx—/ |f—g\2dx+i/ |f+ig|2dx—i/ \f —igl*de
G G G G
=/|f+§|2dv—/rIf—ﬁlzdvﬂ'/r|f‘+i§|2d7—i/rlf—i§|2dv
—4/f g(y)dn.
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Corollary 3. The set A(I') coincides with the set of all convolutions of the
form F x G where F,G € L*(I).

Proof. Let f,g bein L?(G). If h = g is the conjugate of g then fz(’y) = (%) and
replacing g with h in Parseval’s formula gives

/G f(@)g(x)dz = / F(na@E)dy

If we let k(z) = g(x)y0(—2z) for some o € T then k(v) = §(y70) and replacing
g with k£ above yields

/G f@ano-o)dz = [ ity = (F <60

Any H € L'(G) can be decomposed as H = |H|P where |P(z)| = 1 for all
z € G and then it follows that H = (|H|2)(|H|z P) := fg can be written as a
product of L2(G)-functions and from above we see that F' = f§. On the other
hand, if F,G € L?() then by Plancherels theorem there exists f,g € L*(G)
such that f = F and g = G and from above we know that

(FxG)(y0) = / f@)g(z)vo(—x)dx € A(T)

O

Corollary 4. If V C T is a non-empty and open then there exists f e A(D)
such that f =0 outside V' but f # 0.

Proof. To simplify notation we will use additive notation for I". Assume that
V C T is a non-empty and open. By inner regularity of the Haar measure we
can find a compact K C V such that m(K) > 0. We can also find an open set
W such that K + W C V and m(W) > 0. This is true since if we pick any
~v € K then by continuity of addition at the point (0,) it follows that there
exists open sets Uy, W, in v € Uy, 0 € W, and U, + W, C V. Since K is
compact the collection of all U, is an open cover for K hence it has a finite
subcover

K

i

N
C=

Uy

n=1

Let W = ﬂgzl W.,, then W is open and non-empty and

N
K+wc|Jw, +w,,)cV.
n=1

Since I is locally compact there exists an open neighbourhood S of 0 such that
the closure of S is compact. By replacing W with W’ = W N S if needed it
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follows that we can assume that 0 < m(W) < +oc.

Let f = yw * xx then f € A(T) by Corollary 3 and by definition of convo-
lution we have

f(0) :/FXW('Y)XK(’YO*’Y)d’Y:/ dry

KN(vo—W)
=m(K N (v —W)).

If o ¢ V then 7o ¢ W + K hence there exists no wo € W and ky € K such
that v9 = wo + ko hence K N (yo — W) = @ and it follows that f(vyp) = 0 for
any o ¢ V. Since

It follows that f # 0 and the Corollary follows. O
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7 Pontryagin’s Duality Theorem

We know that the dual of the dual of G which we will call " is a locally compact
abelian group since I' is. In this section we will prove Pontryagin’s duality
Theorem which shows that G is in fact isomorphic to G as topological groups.
As we will soon see this theorem will enable us prove many useful Corollaries, so
called dual statements simply by applying previously proved Theorems to the
pair (T',T') = (I, G) instead of (G,T). Before we prove the duality Theorem we
need to prove some important topological characterizations of both I' and G.
The characterization of I" uses the compact open topology which will be defined
below

7.1 The Compact-Open Topology of the Dual Group

Definition 16. Let X and Y be a topological spaces and let M be a set of
functions mapping X to Y. Define for any compact K C X and open V CY
the set

Bryv ={fe€M;f(K)CV}

The compact-open topology on M induced by X and Y is the topology generated
by basis elements of the form

N
B = () Bx,.v,-

n=1
It is clear that such elements form a basis so the definition is well defined.

Theorem 10. If we give I' the compact-open topology induced by G and T then
any subset of ' is open in the weak topology induced by A(T) if and only if it is
open with respect to the compact open topology.

Proof. We begin by showing that ’yngK,V is open in the compact-open topol-
ogy for any vy € I'. Pick v € vo_lBKy then it follows that

(Y0)(K) CV

hence

Y(@)v0(z) €V

for all x € K. Since T is a topological group there exists for each z € K open
sets S, T, of T containing v(z) and vo(x) respectively such that 7,5, C V.
Since G is locally compact and Hausdorfl there exists for each z € K open sets
A, and B, in G both containing x such that both A, and B, are compact and
A, CA, Ty NTh),
B, € By €5 ' (Sa),
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see Theorem 2.7 in [1]. Since each set A, N B, contains z for each x € K they
form an open cover of K. By compactness of K they have a finite subcover

N
K |J(4,, nB,,).

n=1

The sets defined by

K,=4, NB,

n

for 1 <n < N are compact. If we let

N
W= () Bx,1.,
n=1

Then it is clear that W C T' is open in the compact-open topology. Since
v(Ky,) C Ty, for each n it follows that v € W. Pick 6 € W and y € K. Then
y € K, for some n. Since § € W it follows that d(y) € T,,,. We also have that
K, is a subset of 75 (S, ) hence yo(y) € Sy, . It follows that

SW(y) € Tw,Se, SV

Thus W is an open subset of ’YJIBK,V containing v and it follows that ValBK,V
is an open subset in the compact open topology.

We can now show that any weakly open subset in I is open in the compact-open
topology. This will be done if we show that f ~1(B) is open in the compact open
topology for any f € L'(G) and B C C open. Pick such f and B and let g be
an element of f_l(B). There exists an r > 0 such that the open ball of radius
r centered at f(70), B(r, f(70)) is strictly contained in B. Since C.(G) is dense
in L'(G) there exists a function fx supported in the compact set K such that
I1f =[xl < §. If we let

_r
2|| fxclloo”

then since V = ’YOB—K,B(QW’“ —.1) it follows that V' is open by what we proved
JK oo
above. If v € V then

V={yeT; (v3% ")(-K) C B( 1)}

F) = o)l = | /G F@) () — ol —z)de]
- /G (@) — fre(@) + (@] (=) — yo(—2)|dx
SQHf—fKHl+|\fKHoo/K|7(—9C)—’70(—$)|d95

<+l [ 10770 = 1lde <
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thus v € f_l(B(r,
topology.

(0))) € f~Y(B) so f~Y(B) is open in the compact open

To show that any compact-open set in I' is open in the weak topology in-
duced by the Fourier transforms it is enough to show that By y is open in the
weak topology for any K € G compact and V' C T open in the weak topology.
Note that, in the rest of the proof, ”open” in relation to I' refers to open in
the weak topology. Pick 6 € Bk y, by continuity of the map taking (v, ) to
v(z) it follows that for each x € K there exists a V,, C G open and W,, C T
open containing x and § respectively such that y € V. and v € W, implies that
~v(y) € V. The sets V, form an open cover of K hence K has a finite subcover

C=

K C Ve,

n

n=1

The set
N
W= (W,
n=1

is non-empty since it contains ¢ and open. If v € W then y(z) € V for allz € K
hence v € Bk v and it follows that Bg v is open. O
7.2 A Characterization for the Topology on G

Corollary 5. Sets of the form

is a basis for the weak topology on I'.
The following Lemma was found in Section 1.5.2 in [3].

Lemma 1. The collection of all sets of the form
Vv ={x€G;v(z) CU ,Vye K}

where U is an open subset of T containing 1 and K is a compact subset of T
is a neighbourhood basis at 0 of G. Furthermore the set Vi is open for any
compact K CT and U C C open.

Proof. Recall that a neighbourhood basis at 0 is a collection of open sets con-
taining 0 such that any open subset of 0 has a basis element as a subset. We
begin to show that Vi 1 is open where K C I is compact and U C T is open.
Choose g € Vk,u. By continuity of the map taking (v, ) to v(z) we can find,
for each v € K open sets V,, C G and W,, C I containing x¢ and v respectively
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such that §(z) € U whenever § € W, and = € V. The sets W, form an open
cover of K hence

N
Kc|Jw,.
n=1
Note that the set
N
V= ﬂ Vin
n=1

is open and contains zg and if « is in V then v(z) € U for all v € K so Vi is
an open subset of G.

To show that any subset open subset V' C G which contains 0 contains a set
of the form Vg y we pick by Proposition 2 an open set W C G such that
W+ (=W) CV and let f = xw. It is clear that we can assume m(W) < 400
hence f € LY(G) N L%(G). Define g = f % f where f(z) = f(—x) and recall
(Proposition 14) that g is continuous since it is a convolution of L?(G)-functions.
By calculating

g(w) = /GXW(x —y)xw(—y)dz

= /mefw(y)xfw(y)dy
=m((z - W)n(=W))

and using Proposition 7 it follows that g(x) # 0 if and only if
(x—=W)N(-W) #£ 2.

The set (x — W) N (—=W) is not empty if and only if there exists wy,wy € W
such that © — w; = —ws which is equivalent to saying that x is an element of

W + (=W). Since W + (=W) C V it follows that if
g(x) >0
then = € V. By the convolution formula we know that § = |f|2 > 0 and in the

proof of the inverse transform theorem we saw that g is positive definite. The
conditions for the inversion theorem are therefore satisfied hence

gurzﬁgwwwm7

for all z € G where dy denotes integration with respect to a Haar measure on
I'. Note that g(0) = m((0 — W) N (=W)) > 0 hence

9(0) = /F §(7)dy > 0.
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Using the embedding of L*(T) into M (I") it follows that the measure defined by

wE) = /Eﬁ(v)dv

for any Borel set £ C I' is an element of M(I") and u(E) > 0 since g > 0. It
follows by inner regularity that there exists a compact set K C I' such that

R 2
90) = u0) = [ 561 > 200),
K
It is then clear that

[ atn@al< [ st < 5900

Define the set U C T by
2
U={z€T; R(z)> §}

where R(z) is the real part of z. Since R is a continuous function on C and
U=R"'((%,00)) N T it follows that U is open in T. If

reVky={x€qG; y(zx)eUVye K}

then since g is a real valued function we have
@) = [ atnt@ar= [ aon@an
- [am@ar+® [ aon@an

I'-K

/ﬁ( Ry (2)dy — I%/ g (@)dy|
(

K
>2 /K d(7)dy — | / i)
4
)

9(0) — 59(0) = 59(0) >0

and since g(x) > 0 implies that z € V' it follows that Vi i is a subset of V. O
The following Proposition was also proved in Section 1.5.2 in [3].

Proposition 23. If z,y are distinct elements of G then there exists v € I’ such
that v(x) # v(y), that is, T separates points on G.

Proof. Choose any zg € G — {0}. In the second part of the proof of Lemma 1
where it was shown that any open subset of V' of G contains an element of the
form Vi iy we can let V' be any open subset of 0 not containing xp and from
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the proof conclude that y(zg) # 1 for some v € T". This is true since (using the
same notation as in the proof) we have Vi 7 C V and therefore

zo ¢ Vo ={z; 7(x) CU ¥y € K}
2
= {z; Ry(z) > 3 Vy € K}.

Hence there exists v € K such that Ry(zo) < 2 hence y(zo) # 1. If z,y are
distinct elements of G then above can be applied with o =z — y # 0 and find
a v € I such that v(z —y) # 1 hence v(x) # y(y). O

7.3 Pontryagin’s Duality Theorem

We now prove Pontryagin’s duality Theorem which says that G is isomorphic
and homeomorphic to its double dual. The proof and the Corollaries can be
found in Section 1.7 in [3].

Theorem 11. Pontryagin’s duality Theorem. Let I be the dual of ' and fix an
element x € G. Define the map e, : I' — T by ex(7) = v(x) then ex € I and the
map ¢ : G — r given by ®(x) = e, is an isomorphism and a homeomorphism
between the two groups.

Proof. Let e;(y) = v(z) for a fixed € G. Then clearly |e,(y)| =1forally €T
and it follows that e, : ' = T. If v and ¢ are two characters of I then

ex(70) = (v6)(x) = 7(2)0(x) = ex(7)ex(9)

hence e, is a homomorphism.

Pick y € G, 70 € T' and V C T open such that vy(y) € V. By Proposition
13 the mapping defined on G x T" which takes (z,7) to v(z) is continuous hence
the set M = {(z,v) € G xT'; v(z) € V } isopen in G x I'. Since (yo,y) € M
it follows by the definition of the product topology that there exists an open
W C T and an open U C G such that (y,v0) € UxW C M. Since {y} xU C M
it follows that if v € U then e, () = y(y) € V so e, is continuous. Hence e, € T
for each y € G.

Define ® : G — I' by ®(z) = e,. The function ® is a homomorphism since
the relation

(@(z+y)(7) = eaty(7V) =7(@ +y) =
(@(2))(V)(@(y)(v) =

holds for all z,y € G and v € T.

V(@) v(y) = ex(v)ey(v)
(@(2)®(y))(7)

If ®(z) = ®(y) then ey(y) = ey(y) for all v € T then v(z) = ~(y) for all
v € T Since T" separates points on G (Proposition 23) it follows that z = y
hence @ is injective.
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Since @ is an injective homomorphism it follows that its inverse ®~! : &(G) — G
is also a homomorphism. It therefore remains to prove that ®(G) =I' and that
® is a homeomorphism onto its image (with the subspace topology).

Note that if ® : G — I' is continuous then ® : G — ®(G) is continuous.
For continuity of ® : G — I' it is enough to prove that ®~1(B) is open in G for
any basis element B of I. By Corollary 5 a basis for I is given by elements of
the form

for some compact sets K,, C I and open sets V,, C T. Let B C I" be as above,
then using the notation in Lemma 1 it follows that

=z

o (B) = ﬂ Bk, v,) =[] ® "(Bx,.v.)

n=1

= n{x € Gsey € By, v, }

n=1

N
n{xGG; ex(7) €V Vy e Ky}

n=1

z

_ﬂ{xeG y(z) €V, VyeK,}

z

=) Vx..v.

n=1

which is open in G by Lemma 1 and the continuity of ® follows.

To prove that ® : G — ®(G) is an open map (where (®(G) C I' has the
subspace topology) we recall from Lemma 1 that sets of the form Vi yy where
K C T compact and U C T open such that 1 € U is neighbourhood basis of
G at 0. It follows that for any open set V and any point x € V there exists
a K, C T compact and U, C T open containing 1 such that x + Vi, , C V.
Pick any open V C G then

V= U z+ Vi, U,
zeV
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and it follows that

(V) = & U (+Vk,v.)) = U ®(z+ Vi, v,))

zeV zeV

= J{ewty € 2(G); y € Vi, 1, }
zeV

= |J {exey € ©(G); y € Vi, 1, }
zeV

= | ex{ey € 2(G); y € Vi, 0}
zeV

= U ex{ey € ®(G); v(y) € Uy ¥y € Kz}
zeV

= U eﬂc{ey € ¢(G); ey(Kx) C U}
zeV

= |J e(Bxk, v, N ®(G)).
zeV

Corollary 5 and Definition 16 show that By _ y, is a (basis) open set in I and
therefore By, 7, N ®(G) is open in ®(G). Since ®(G) C T with the subspace
topology is a topological group and translations are homeomorphisms (Propo-
sition 1) it follows that

ex(Bk, v, N ®(G)) (2)

is open in ®(G) for any x € V and it follows that ®(V) is open in ®(G) and
therefore ® : G — ®(G) is a homeomorphism.

Note that showing ®(G) = [ is equivalent to showing that ®(G) is dense in
I’ and ®(G) is closed in T

Clearly ®(G) C I is closed if and only if ®(G) is closed in ®(G) but since ®(G)
is a topological group (Proposition 4) it follows from Proposition 3 that open
subgroups are closed and it is therefore sufficient to show that ®(G) C ®(G) is
open. ®(G) is locally compact since G is locally compact and ® is a homeo-
morphism and clearly ®(G) is dense in ®(G) hence Proposition 5 gives us that
®(@) is open in ®(G). It follows that ®(QG) is closed in T'.

Assume that ®(G) is not dense in I. Then there exists an open V' C lA“Asuch
that V' N ®(G) = 9. By Corollary 4 there exists an F' € A(I') such that F' =0
on ®(G) but F # 0. For any x € G we then have

o=F@wﬂ»:1£Fwwﬂﬁm7

= [P

66



If we define up € M(T) by

() = /F F(y)dy

then the uniqueness Theorem of proposition 19 can be applied to pp and it
follows that pr = 0. But this leads to the contradiction F'(§) =0 for any 4 € T’
since

F(3) = / F()A)dy
z/rﬁ(ﬁ)d/w(v) =0.

Hence ©(G) is dense in I and closed in I and therefore ®(G) = I and therefore
® : G — I is an isomorphism and homemorphism of topological groups. O

Corollary 6. If p € M(G) and 1 =0 then p =0

Proof. Applying Proposition 19 to the pair (', G) yields the statement, if u €
M (G) and

[ @dnt) =0

G

for all v € T then p = 0. Now note that for any v € I we have
i) = [ =o)in(e) = [ F@aua) =0

since y € I. U

Corollary 7. If 4 € M(G) and i € L*(T) then there exists f € L'(G) such
that dp = fdx and

f@) = [ inta)ar
foranyx € G
Proof. Define

fa) = / A (@) dr.

It is easy to show that i € B(T') hence applying the inversion Theorem on fi
shows that f € L'(G) and that for any v € T we have

Aly) = /G A@)y()de
- / f(—a)y(x)de
G
- / f(@)y(—)de.
G
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But by definition of f it follows that

| =)@ = dua)) =0
hence by Corollary 6 we see that f(x)dx = du O
Corollary 8. If f € L'(G) and f € L'(T') then

f(x) = / Fe )y

for almost all x € G.

Proof. Let uy € M(G) be the embedding of f. Since i = f it follows that we
can apply Corollary 7 to get a function

F(z) = / Fr(@)dy
such that
ni(B) = [ Fys

By definition of iy it follows that

[ (#@) = Fapaz =0
E

for any Borel set £ C G. From which it follows that

=/ d
@) = [ Fon@an
for almost all z € G. O

Corollary 9. Every compact group is the dual of a discrete group and every
discrete group is the dual of a compact group

Proof. By Theorem 1.2.5 in [3] the dual of a compact group is discrete and the
dual of a discrete group is compact. Applying Pontryagin yields the corollary.
O

Corollary 10. LY(G) = M(G) if and only if G is discrete. Also, L'(G) has a
unit if and only if G is discrete.

Proof. If G is not discrete then I' is not compact by Corollary 9 and it follows
that Cy(I") does not contain the constant function that equals 1 and therefore
does not contain a unit. It follows that A(T") does not contain a unit. Therefore
LY(G) does not contain a unit since the Fourier transform of it would map
to a unit in A(T') which is a contradiction. Hence L'(G) # M(G). If G is
discrete the Radon-Nikodym theorem, (see Theorem 6.10 in [2]) gives a bijective
correspondence between M (G) and L'(G). O
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8 Examples

In this section we will calculate the dual groups and Fourier transforms for the

groups R, T, Z, and Z/nZ. The dual group of G will be denoted by G.

8.1 The Real Line

We begin with R. The Haar measure is then given by the ordinary Lebesgue
measure, dr. Now let v € R, that is, v is a continuous homomorphism from R
into T. Since (1) € T there exists a § € R such that

7(1) = exp(iB).

If n is an integer the homomorphism property gives us

v(n) = y(nl) = exp(iB)" = exp(ifin).
We also have that

exp(if) =1(3) =1(5)"

for any non-zero integer n. Hence

1 i 2K,
v(;) = exp(;) exp(———

).

where K, is an integer such that 0 < K,, < n — 1 corresponding to an n:th-root
of (). If B is a rational number the formula

i8p

1 2n K p
= 7(5)17 = eXp(T) exp(iq

p
V(&)

)

follows. Pick a real x and let (5—”)n be a sequence of rational numbers converging
to z. By continuity of v and exp we get

i27quﬂ,pn

)

L Pny_ o i3pn
v(w)—ngrfmv(qn)—ngrfooem( 0 ) exp( -

= exp(ifz) exp(i2rx nEI-‘,I-loo K,.).

The limit lim,,— 4 K, exists since the left hand side is well-defined. Further-
more, lim,,_,; K, is an integer since (K, ), is a sequence of integers. Let =
be an irrational number and pick rational sequences ($*),, and (*),, converging
to x, then '

exp(i2nx nll)r_‘r_lm Ky, ) = exp(i2nx nll)rfoo Ka,)

hence

i2ﬂ$(nli>1£m Ky, — Kag,) = i2nm(b, d, )
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where m(b, d, z) is an integer. Thus

b,d
lm K, — Ky = 7057
n—-+4oo €T
and it follows that we must have m(b,d,2)=0 in order for the right hand side
to be an integer. Therefore
nggtloo Kb” - nEIEoo Kd" - K(I)
That is, for any irrational x the limit of (K, ), where (gn)» is the denominator

of some Cauchy sequence converging to x depends only on x and we denote this

limit as K (x) (which is an integer). Note that for any irrational number z the
[227]
2’VL

rational sequence ( ), converges to x since

<z

Hence

K([L’) = lim K2n

n—-+4oo

for any irrational . Therefore K (x) = k is a constant function on the irrationals
and it follows that

~v(x) = exp(ifx) exp(i2wzk) = exp(i(8 + 27k)x) = exp(iax)

for any irrational z where o = 8 4 2wk. Since the continuous functions v and
exp(iax) agree almost everywhere in R they must in fact agree on all of R. Thus
any character v is of the form

1) = e

for some real a and conversely any function of the form e*** for some o € R
defines a character on R. If o and 8 are distinct real numbers then the corre-
sponding characters e'® and e??* are also distinct (which can be seen from the
fact that they have different Taylor expansions). Thus we have the following
characterization for R

R = {€"*%;a € R}.
Define the map & : R >R by ®(ei*®) = a. We have already showed that ®
is well defined and surjective and it is trivially injective. If y(z) = €!*® and

d(x) = €% then the expression

B(70) = B(e"ePT) = () = a + § = B(y) + ©(9)
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shows that ® is an isomorphism of groups between R and R. We will now
show that @ is an homeomorphism so R and R can be identified as topological
groups. We begin by showing that ® is an open mapping which (since ® is
injective) amounts to saying that whenever B C C is open and f € L'(R) then
®(f~1(B)) C R is open. Observe that

o(f1(B) =d({¢*" eT; f(e*) e BY)
={a eR; /Rf(x)e_“”dx € Bj}.

If we let a;, be a sequence of real numbers converging to o and let
F) = [ fa)evdo
R

for y € R. The dominated convergence theorem then gives that F(a,,) — F(«)
and therefore F' is sequentially continuous and therefore continuous since R is
a metric space. Since

BB = lac ks [ fwerds e B)
R
_r(B)
it follows that <I>(f_1(B)) is open thus ® is an open mapping.

To prove continuity it is enough to show that the set
U ={e"";|a| < e}

is open for any € > 0. Pick € > 0 and define the sets K = [—1,1] and

V = {z € T; |Arg(z) — m| < €} where Arg is the principal argument function
with branch cut at the non-positive real axis. By continuity of Arg outside the
branch cut it follows that V is open. Since the compact open sets are open in
T" it follows that the set

{ef*®; el ¢ V Vo € [-1,1]}

is open in R. But |[Arg(e’*®) — 7| < € for all z € [—1,1] if and only if |a| < €
hence U is open and ® is a homeomorphism and is thus an isomorphism of
topological groups. It follows that

R={e*:acR} =R

and using the isomorphism we define the Fourier transform as it is commonly
introduced

flo) = [ sy

for o € R.
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8.2 The Integers

Now let G = Z and pick v € Z. Then (1) = ¢ for some a € R and since 7 is
a homomorphism it follows that v(n) = ¢?*". Define the map ® : T — Z by

(I)(eia) — ez’om.
It is clear that ® maps T onto Z. If ®(e*) = ®(e'?) then e = " for all
n € Z hence €' = ¢'# so ® is injective. We also have that
D(He?) = @) = o
_ eianezﬂn _ q)(eia)q)(eiﬁ)

so @ is a homomorphism. It is clear that the counting measure on Z is a Haar
measure hence if f € L1(Z) then the function F' = f o ® is given by

P(e) = f(e*m) = 3 fn)(e) ™.

If e?@n — €@ then the dominated convergence Theorem shows that F(ei®n) —
F(e™) so F is continuous. Pick an element f € L'(G) and an open set B C C
then

o' (f71(B)) = {e'; F(¢'"™) € B} = F'(B)

and it follows that ® is continuous. Since ® is a bijective continuous function
from a compact space into a Hausdorff space it follows from the closed map
Lemma, (see Lemma 4.50 in [6]) that ® is a homeomorphism. Hence the dual
group of Z is isomorphic to T and

Z={e": e e T} = T.

It follows using our isomorphism Z 2 T that the Fourier transform in this case
is given by

fei) =3 fnyeer

for any e € T.

8.3 The Unit Circle

Now let G = T. Since Z = T the Pontryagin duality Theorem gives that

T~7Z=>7. Defined:R — T by ®(z) = €. By using the first isomorphism
Theorem for groups and passing ® to the quotient (see Theorem 3.7.3 in [6]) it
follows that R/277Z = T as topological groups. Denoting this isomorphism with
P - R/27Z — T which is given by

(x4 277) = €
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it is straightforward to show that elements of T are in bijection with elements

—

of R/2nZ. By passing to the quotient we see that elements of f € R/27Z are in
bijection with elements of f € R that are constant on sets of the form x 4 277Z
for 2 € R. Hence it follows that any f € R/27Z has the form

f(x +277Z) = elor

for some o € R. In order for the function e’*® to be constant on sets of the
form x + 277, for x € R it is necessary that

eza(z+27r) — low.

hence o € Z. Conversely if @ € Z then e’®® is constant on sets of the form

x + 2nZ for x € R. It follows that
f(z +2n7Z) = e
for some n € Z. Using the isomorphism ®~! :E_i R/27Z it follows that any
v € T has the form v = f o ®~! for some f € R/27Z hence
A€ ) = (F o d1)(e') = fla +27Z) = e
for some n € Z. Hence
T={e"neZ} =7

For the Haar-measure on T we do the following. The restriction map ®|jg o]
is clearly continuous when [0,27] C R has been given the subspace topology.
Define the set function

ma(E) = m(®[g},(E))

for any Borel set £ C T where m denotes the ordinary Lebesgue measure on R.
Since ®|(g 2, is continuous the inverse image of any Borel set is a Borel set and
it follows that mr is a well-defined function on the Borel sets. It is not hard to
show that my is a measure. Since mp(T) = m([0,27]) = 27 it is clear that mr
is finite on compact sets. If E C T is a Borel set and e’® € T then

)

{x € [0,27];¢"" € e'“F})
{z € [0,2n]; '@~ € E})

mr(e'®E) = m(
(
(
{z —a+ae0,27];e*=% ¢ E})
(
(—
(
(

{z —a€[-a,—a+2n];e@ ¢ E})

a+{z—ac|0,2n);eE e E})
{z —ae0,2n];¢'" ¢ E})
3L ()

I
SSSSSSSS

=
—

=
N
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Hence mr is translation-invariant. Let K,, C <I>[6127r] (E) C [0,27] be a collec-

tion of compact sets such that lim,,_, . m(K,) = m(<I>[5127T] (E)). Then since
continuous functions preserve compactness it follows that

K)> 1 B 0n) (K
;gmqr( )2 lm my(P,om (Kn))

= ngrf_loo m((I)[B}QW] (CD[O,27T] (Kn)))

> lim m(K,)

n——+oo

=1m(®pg 5 (E))
= TTLT(E)

Hence mr is inner regular. To prove outer regularity we do the following. Use
inner regularity to find compact sets K,, C T — E such that

mT(Kn) — m’]r(T — E)

as n — +oo. Then the sets V,, = T — K,, are open since the K,, are closed and
FE CV,, for all n. Hence

inf mp(V) < lim mp(V,)

ECV n—+oo

= lim mp(T-K,)

n——+00

= lim mp(T) — mp(K,)

n—4oo
= mT(']I') - m'ﬂ'(T — E)
= mr(E)
since mq(T) = 27 is finite. It follows that my is a Haar-measure. We normalize
mr by replacing my with %mqr from which it follows that mr(T) = 1. This is
also the proper normalization of the Haar-measure in T which appears in the

inversion theorem formulas for the pairs (T,Z) and (Z,T). For any Borel set
E C T we have

/XEme =mr(E)
T

— (@ (B)

[0,27]
1
= o /RX%,‘sz))dx
1 .
= — xe(e)dx.
2m [0,27]

From a standard approximation argument it is clear that
1 .
/fqur = —/ f(e®)dx.
T 2m [0,27]
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for any f € L1(T). It follows that the Fourier transform on T is given by

. 1 [%7 ) ,
fln)=— fe™e " dy.

:271'0

Letting F(x) = f(e'®) we recognize above as the commonly used definition for
Fourier series.

Remark. A more direct but less intuitive way of finding the Haar measure on
T is to define the positive linear functional A : C.(T) — C by

Af =2 [ femyde

:27T 0

and prove that it is translation invariant. The Riesz representation Theorem
(Theorem 2.14 in [1]) then yields our Haar-measure mp on T.

8.4 The Group of Integers Mod N

Let G = Z/NZ and pick v € Z//N\Z If g: Z — Z/NZ is the quotient map then
it follows that v o ¢ € Z hence there exists e’® € T such that v([n]) = e**",

where [n] = n 4+ NZ. In order for e!®" to be constant on the fibers of ¢ we
ian iam

must in particular have that if n —m = N then ¢'*" = ¢ which implies that
alN = 27k for some k € Z and therefore

([ = e,

If k1 =2 ks mod N it follows that

eiQTrkln/N _ €i27rk2n/N
for any [n] € Z/NZ hence it follows that
Z/NZ = {27 /N . [k] € Z/NZ).

From which it is clear that Z//\NZ & 7 /NZ since the dual of a compact group
is discrete. Since Z/NZ is discrete the Haar measure is given by the counting
measure and it follows that

N—-1
F(K]) = Z F([n])e-i2mhn/N
n=0

which we recognize as the discrete Fourier transform.
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9 The Collatz Conjecture

9.1 Introduction to the Collatz Conjecture
Let N = {1,2,...} and define the function ¢ : N — N by,

5, if n is even,
c(n) = e
3n+1, if n is odd.

Pick a number n € N and associate to it its Collatz sequence f;(n) given by,

fi(n) = c'(n),

for i > 0 where ¢ denotes i-fold function composition and ¢’(n) = n. The
Collatz conjecture can now be stated as follows: is it true that for any n € N
there exists an integer j > 0 such that f;(n) =17

Note that ¢(1) = 4, ¢(4) = 2 and ¢(2) = 1 hence if f;(n) = 1 for some j then
the Collatz sequence will cycle through 1,2 and 4 indefinitely after it reaches j.

Upon inspecting the problem there are two ways for the Collatz conjecture
to be false, either there exists a Collatz sequence which contains another cycle
or there exists a Collatz sequence which diverges towards infinity.

In this application we will use the discrete Fourier transform to derive prop-
erties that any cycle, including the known (1,4,2)-cycle or any other potential
cycle must satisfy. Finding another Collatz cycle will disprove the Collatz con-
jecture.

9.2 Collatz Cycles and the Discrete Fourier Transform

Definition 17. A finite sequence (an)o<n<n—1 of mutually distinct integers
is a (Collatz) cycle of order N if clany_1) = ap and c(a,) = ant1 whenever
0<n<N-1.

Any cycle can be naturally extended to an infinite sequence by defining
an = c"(ag) for n € Z. I n =m mod N then a,, = a,, hence our cycle can be
regarded as a function a defined on Z/NZ by a([n]n) = ¢"(ap). The notation
a[n] = ¢"(ap) will be used for brevity if N is clear from the context. Throughout
this application (a,), will denote a cycle of order N and the letter a will be
reserved for the corresponding function a : Z/NZ — N.

The discrete Fourier transform of a, a : Z/NZ — C is defined by,

N—

alk] = Y alnje~2mkn/N,

=0

—

3
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Note that this expression can clearly be rewritten as,

N—-1
d[k‘] _ Z ane—ﬁﬂ'kn/N'

n=0

Theorem 12. Let a, be a cycle of order N then the Fourier transform of a is

given by
1 N-1 _
alk] = 9ei2mk/N _ | Z (5ay, + 2)e2mhn/N,
a:igd

Proof. We derive the identity by calculating co a(k) in two ways. Firstly,

Nl N-1
coalk] = Z c(afn])e=2™kn/N = Z afn + 1)e~i2mhn/N
n=0 n=0
N—1
_ ei27rk:/N Z CL[TL+ 1]67i27rlc(n+1)/N _ eiZﬂ—k/Nd[k],
n=0

hence
coalk] = /N a[k].
We also have,

N-1
c/o\a[k:} _ Z C(an)e—iQTrkn/N
n=0

N-1 No1o
— ZO (3an+1)e—127rkn/N+ ZO 7“6—127rkn/N
a:_odd a:gven
—1 5 1 N-1
= Zo (§an + 1)ei2mkn/N 4 3 ZO a, e 2mkn/N
an odd "
1 5 1
= Y Gant Dem 2N 4 k),
2 2
an odd
hence,
=5 1
coalk] = Y (5an + 1)e 2mkn/N 4 Salk].
aZL:o(()id
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Combining (1) and (2) gives,

No1 o, 1
e'L27Tk5/N&[k] _ Z (ian + 1)67127rkn/N + §d[k],
a,?:o(c)ld
and if we solve for a[k] we get

N-1
~ _ 1 —i27kn/N
a, odd
O

Corollary 11. Let [ be the number of all odd terms in the cycle (an)o<n<nN—1,
O be sum of all the odd terms in (an)o<n<n—1 and E be the correspoding sum
of all the evens terms then,

40+20=FL.

Proof. We have by Theorem 12 and the definition of the discrete Fourier trans-
form the equality

=z

- (5an +2) = a9 = Z Q- (1)

0
dd

33
oll

Rewriting (1) in terms of O, E and [ yields
50+2l=0+E,
hence

40+20=F

9.3 Applying the Inversion Theorem

In this section an expression for a, will be derived from the inverse transform.
Define b: Z/NZ — C and ¢ : Z/NZ — C by,

1

b[ ] = 2ei2mk/N _ 1’

o

and,

N—-1
Z 5a +2 7127rkn/N.
n—0

a, odd
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From Theorem 12 it is clear that a[k] = b[k]c[k] and by the convolution formula

it follows that,

—

(bx ¢)[k] = b[k]c[k] = a

(1)

where “denotes the inverse transform and * denotes convolution. By uniqueness
of the Fourier transform we have a = b * ¢. The inverse transform for b is given

by

- N— 2 kN N- 7,27Tnk/N
b[n] = N Z ﬁ ; 92¢i27k/N _ 1

The inverse transform for c is,

1 N-1
C[TL] — N C[k}ez%rnk/N
k=0
1 N—-1 N-1
. Z 50,] +2 —zQﬂ'k]/N) i2nnk/N
N k=0 5=0
aj odd
N— _
Z (5aJ + 2) Z eiQTrk(n—j)/N'
7=0 k=0
od
Fix n and j then if n = j we see that,
N-1 N—-1
Z 67;27rk(n7j)/N _ Z 1=N.
k=0 k=0

Otherwise, if n # j the geometric series formula applies and we obtain,

N-1 (eiQTr(nfj)/N)N _1

2nk(n—j)/N _ _
Z € T ei2m(n—j)/N _1 0.
k=0

Consider now arbitrary n € Z, if a,, is even then it follows that

1 N-1 N-1 . ) N—
N O (5aj +2) Y BTN = Z (5a; +2)0 =0,
Jj=0 k=0 7:

a; odd

hence ¢é[n] = 0. If a,, is odd it follows that,

=

-1
eiZWk(nfj)/N # 0,

el
Il

0
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only if n = j hence,

N1
1 ,
¢n] = N(E)a" +2) E e Zh(n=n)/N — 54, 42,
k=0

Therefore,

“In] 0, if a,, is even
n| =
,ba, + 2, if a, is odd.

> bl — el
N-1 1 N-1 227r(n J)k/N

Z 2ei2mk/N _ l)v[]]

k=0

[
2?
(==}

1 N-1 7.271'(71 J)k/N

3 (%Z ci2nk/N _ 1 )(5a; +2).
k=

.
Qo

d

j O

s)
<)

Define the function

1 Nz ji2mnk/N
- N 9¢i2mk/N _ 1" (4)
k=0

Then we have

an = Z w(n — j)(5a; + 2). (5)

We will now give a formula for w and after that we will summarize the results.

It is clear from (4) and the inversion theorem that

1

w(k) = 9¢i2rk/N _ 1"

Consider now the function x : Z/NZ — C by first mapping [n]y to its principal
remainder n and then mapping the principal remainder to 1721,1\, 2=(+1) then
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it follows that the Fourier transform for z is

N—-1
iy =3 L o (mt1) —2mhn/N
B 1—2-N
n=0

1 1 N-1 e—27‘rk/N

=P Ml

n=0
—27k/N
1 11— (==5—)V
1_9-N 5 1— e—2mk/N
2
1 1 1-27N
1-2-N2qp _ e2h/N
2

e27rk/N

~ 9e2nk/N _ |

= 2™/ Nap(k).
Hence
w(k) = &(k)e 2mk/N,

Note that the function x (1} satisfies ¥(1y[k] = e=?™*/" and it follows that

wln] = (z * xq13)[n]
= > xn— klxqy k]
k=0
=z[n —1]

‘We summarize the result below.

Theorem 13. Let (an)o<n<n—1 be a Collatz cycle. Then it follows that

N-1
an = Y wln—j)(5a; +2)
j=0
ajodd
where w is given by

v, if [n] =
_Jav—1
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9.4 Summary of the Results and Questions for the Reader

In this section we have proved that any Collatz cycle a,, of order N has a discrete
Fourier transform given by

N—1
~ 1 —i2wkn/N
ik = S X_% (5ay, +2)e

an odd

and that if [ is the number of odd elements in the cycle, O is the sum of all the
odd terms in the cycle and E is the sum of all the even terms in the cycle then

40+20=FL.

We have furthermore also proved that a,, satisfies the following (non-linear)
system of equations

N-1
an, = Z wln — j](5a; + 2)

ajodd

where w is given by

wln] = 2N71Il’ 1{[71] .: 0
—=w27", if [n] # 0.
My question to the reader is if these relations can be used to show that there
can’t exists cycles of certains lengths, or to derive upper bounds of the length
of a cycle. T am also interested in knowing if the relations can be used to derive
upper bounds of the elements in a cycle.
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10 A Formula for the Partition function

In this section we will derive an integral formula for the partition function. We
define the partition function, p to be the number of ways that we can add to n
using only positive integers while not caring about the order of the terms. For
example, p(4) = 5 since we can add to 4 with only positive integer terms in the
following 5 ways including the trivial way

1+1+1+1=24+1+1=3+1=2+2=4.

By convention we set p(0) = 1 and p(n) = 0 if n is negative. The key part of
this application is Euler’s Pentagonal formula, (see Section 19.10 in [4]) which
states that we have the following recursion formula for p

p(n) = (=17 (p(n— j(3] — 1)/2) + p(n — j(3j +1)/2)
§>0

where n > 1. Note that the sum is finite since p(n) = 0 for negative n. To
simplify notation we will write

a; =735 —1)/2,

by = (35 +1)/2
The famous Hardy-Ramanujan formula, (see Introduction in [5]) will also be
used which asserts that

1 Zn
n) ~ e"V s
p(n) ~ 7

which is the same as saying

lim ()
n—-+oo 1 ™ %

471\/§
The Hardy-Ramanujan formula gives us the following proposition.

Proposition 24. The function f(n) = % is in LY(Z)

Proof. The proof will actually show that the function nf(n) is in L!(Z) which
will be used in the next theorem. Note that nf(n) € L1(Z) implies that f(n) €
LY(Z). The Hardy-Ramanujan formula gives us that there exists an integer N
such that

=1.

p(n)

2n

<2

T

1
4n\/§ €
whenever n > N. It follows that

\Inf(n ZP ZP +ZP

nez n>N

<Z P(

n>N
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2 .
Note that ’/T\/g < é\/ﬁ whenever n > ¢ := 8% and since

1 my/ 2R

e 1 Zn
Z pAnv3 ~ = NG Z eV 3
n>max(N,c) ¢ 4v3 n>max(N,c)
1 3
_ 3 NECVEEND
= e
4\/3 n>max(N,c)
1 1
<L Y evatvEevm
4\/3 n>max(N,c)

1 _n
:m Z e 2 <400

n>max(N,c)
the proposition follows. O

If we parameterize T with e, where x € [0, 27) it follows that we can denote
the Fourier transform on Z by

§2) = 3 glme

nez

for © € [0,27m). The Fourier transform of the partition function p is clearly
not well defined since it is not bounded but as Proposition 24 showed we can

calculate the Fourier transform for f(n) = %.

Theorem 14. The Fourier transform for f(n) = 2 s given by

. 1
A TS SRS Ve P e P

Proof. We showed that f € L'(Z) so the transform is well-defined. We can now
calculate it with the Euler-Pentagonal formula and the translation invariance of
the Haar-measure.

f(.’l:') _ Z Mefinm =14+ +Z°0 Mefinz

neZ

+oo
=1+ Z é(Z(—l)j—l(p(n —aj)+p(n— bj)))e—inm

>0

+oo
=1+ Z Z(_l)jflp(n — aj) +p(n - bj)efinm.

en
n=135>0

Note that since p(n) is increasing we have that

3 |(_1)j—1p(” —aj) +p(n— bj)e_mZ| < onP).

en en
7>0
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Since we proved that nZ7* ) is in LY(Z) it follows that our double sum is ab-
solutely summable and therefore we can interchange the summation signs and
get

1-) =1+ Z—"—z‘o(_l)jflp(n — a‘j) +p(n - bj)efinx

j>0n71 ¢
_1+ZZ )] lp(n a]) —znz+zz )] lp(n b) —znz
j>0n=1 j>0n=1

We begin by calculating the first sum

ZZ( 1] 1p 7znm ZZ j 1 1]. p(:n - )efinx

7>0n=1 j>0n=1
_ - ] 1 p(n — a]) —Lnx
B Z( e Z en—a;
7>0 n=
— Z 7mJ Zpen - 71(n aj)x
7>0 n=1
_ Z 7m]z Z p(:niacfj 71(71 aj)x
7>0 nez
=D (T e f(w)
j>0
~ . 1 .
— _1\j—1_— _—iajx
= f(m)Z( 1) oy € i
3>0
The second sum is completely analogous and it follows that
1 + Z 1)] —zaj:r ie—iajr) =1
et
7>0

for any real x. It follows that
1+ 3 (1 (e 4 =iy £
€% ebi
3>0
hence

f( ) !
)= . . . .
14> j>0(—1)3 (e—ie—10;% 4 ¢=bje—ibj7)
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Theorem 15. We have the following formula for the partition function.

en eznz

27
= — , . ———dx.
p(n) 2w /0 1+ Zj>0(—1)ﬂ(e*aje*mﬂ + e bigmibiT) v

Proof. If we instead regard the Fourier transform

1
1 + Zj>0(—1)j(e_aj€—iujm + e_bje_ibjz)

fl) =

of 2 a5 a function on T, which we for clarity call F'. Then we know that

F Ge Co(T) and T is compact hence F € L*(T). By Proposition 24 we know
that pgf) € LY(Z). Using our Haar-measure on T calculated in Section 8.3 and

applying Corollary 8 then shows that

M:/EF(eit)(eit)nme(eit)

e’!’l

inT

1 [ e
T or /0 L+ 37 g(=1)i(emmeia® + e~bie~ibiv)

dx

for almost all n € Z. But the only set of measure in Z is @ hence

e’ﬂ e’L’ﬂ$

2m
= _ s ———dx.
p(n) 27’(_/0 1+2j>0(_1)j(e—aje—mjx+e—bj€—zbjx) x

for all n € Z. ]
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