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Abstract

This thesis will provide an introduction to Fourier analysis on locally compact
abelian Hausdorff groups. The abstract Fourier transform unifies the classical
Fourier transforms and will enable us not only to see the classical transforms
as realizations in different groups but also lets us prove theorems regarding
all of them in one stroke. The theory also gives us the opportunity to apply
Fourier analysis in more exotic settings. Examples of Fourier Transforms are
among many others the Fourier transform on the real line, Fourier series and
the discrete Fourier transform. In the end two applications in number theory
will be given.
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1 Introduction

The area of Fourier analysis studies how signals can be decomposed with its
frequency components and is used throughout science, mathematics and engi-
neering. The Fourier transform of an integrable function f is given by

f̂(ξ) =

∫ ∞

−∞
f(x)e−iξxdx.

Here each ξ ∈ R can be seen as a frequency corresponding to the frequency
component eiξx and R is called the frequency space. The Fourier transform
evaluated at ξ is a complex number which shows how f depends on the frequency
component eiξx. The magnitude of the complex number f̂(ξ) is the amplitude

of the frequency component eiξx and the angle of f̂(ξ) is the phase of eiξx.
You can also (with some assumptions) recover f by integrating each frequency
component with its amplitude and adjust for its phase over the frequency space:

f(x) =
1

2π

∫ ∞

−∞
f̂(ξ)eiξxdξ.

This is the content of Fourier’s inversion theorem. When studying periodic
function over [0, 2π] the frequency components are instead the functions einx

for n ∈ Z hence Z is the frequency space. For a given periodic function f
the amplitude and phase of the component einx are now given by its Fourier
coefficient

f̂(n) =
1

2π

∫ 2π

0

f(x)e−inxdx

and f can (with some assumptions) be recovered with the formula

f(x) =
∑

n∈Z
f̂(n)einx.

The so called Fourier series. Similarly, if f is defined on Z/NZ then the fre-
quency components are given by the functions γ(n) = ei2πkn/N for [k] ∈ Z/NZ
and the amplitude and phase is calculated with the discrete Fourier transform

f̂(k) =
N−1∑

n=0

f(n)e−i2πkn/N .

The function can recovered by

f(n) =
1

2π

N−1∑

k=0

f̂(k)ei2πkn/N .

These entirely different situations are remarkably similar. In each of the three
situations the frequency components are complex exponentials and each Fourier

5



transform is calculated by integrating or summing the function with the inverse
of the frequency component over its domain of definition. The function is then
recovered by integrating or summing the Fourier transform with each frequency
component over the frequency space.

It turns out that the unifying factor in these different situations is that the do-
main of definition for the given functions is a locally compact abelian Hausdorff
group. In our case the real numbers, the unit circle and Z/nZ respectively. The
frequency components in each case correspond to continuous homomorphisms
into the unit circle, the so called dual group. Generalizations of the idea of
decomposing functions with their frequency components is called abstract har-
monic analysis.

In this thesis an introduction to Fourier analysis on locally compact abelian
Hausdorff groups will be given. The first 6 chapters will give an introduction
to the general theory and the presentation is inspired by chapter 1 in Rudin’s
Fourier Analysis on Groups [3]. After this is done we show that the abstract
Fourier transform is truly a generalization by showing that it coincides with the
usual transforms when applying it to various classical groups. In the last two
chapters two applications in number theory will be given, one about the Collatz
conjecture and one about the partition function.

The two main components in the general theory are the Haar-measure and the
dual group. The Haar-measure will enable us to apply integration theory on our
groups and the dual group can be seen as the frequency space corresponding to
our group. Once they have been established the abstract Fourier transform will
be defined and theorems such as the inversion theorem and Plancherel’s theorem
will be transferred to this abstract setting. We will also prove the remarkable
Pontryagin’s duality theorem which roughly states that the frequency space of
the frequency space, that is the dual group of the dual group is isomorphic the
group itself.

The groups in question that this thesis studies are the locally compact abelian
Hausdorff groups. In order to not get into too much technicalities we will also
assume that the Haar-measure of our group is σ-finite. This is not a big restric-
tion on scope of the theory.

As preliminaries a firm grasp of the first 9 chapters in [1] is recommended where
chapter 1, 2, 3 and 6 are especially important. Most of the topology needed can
also be found in [1] but for a more comprehensive treatment relevant parts of
chapter 2, 3 and 4 in [6] can be consulted. The theory of Banach algebras will
be relevant in some proofs but has been tried to be kept at a minimum in order
to not expand the scope of the thesis too much. A nice but not completely
sufficient introduction is chapter 18 in [1] and a more complete treatment is
given in chapter 10 and 11 in [2].
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2 Topological Groups and Haar Measures

In this section we will define and prove basic properties regarding topological
groups and define the Haar-measure. If one needs a reminder of the various
topological definitions that I take for granted section 1.2 and 2.3 in [1] can be
consulted for a minimal treatment or relevant parts of Chapter 2, 3 and 4 in [6]
can be consulted for a more complete treatment on the topic.

2.1 Topological Groups and their basic properties

We begin by recalling the definition of a group

Definition 1. Let G be a set and · : G × G → G be a binary operator, called
multiplication. We say that (G, ·) is a group if the following properties hold
i) (x · y) · z = x · (y · z) for any x, y, z ∈ G
ii) There exists an element 1 ∈ G such that x · 1 = 1 · x = 1 for any x ∈ G
iii) For each x ∈ G there exists an element x−1 ∈ G such that x·x−1 = x−1·x = 1

Remark. Axiom i) is called associativity, the element 1 is called the identity,
the element x−1 is called the inverse of x for each x ∈ G and the function
i(x) = x−1 is called inversion. It is common practice to write xy instead of x ·y
and call G a group when the operation is known from the context. Furthermore,
we say that G is abelian if xy = yx for any x, y ∈ G. When G is an abelian
group, additive notation is often used where the binary operator is denoted by
+, inversion is denoted by i(x) = −x and the identity element is called 0.

Definition 2. We say that a group, G equipped with a topology τ is a topological
group if multiplication and inversion are continuous functions with respect to this
topology. In other words: G is a topological group if the functions i : G → G
and m : G × G → G given by i(x) = x−1 and m(x, y) = xy are continuous.
Here it is assumed that G ×G has been given the product topology (Sets of the
form U × V where U and V are open in G is a basis for τ).

Proposition 1. For any fixed x ∈ G in the abelian group G the map Tx : G→ G
given by Tx(y) = x + y and the map i(y) = −y are both homeomorphisms (a
bijective continuous map with continuous inverse).

Proof. Choose x ∈ G. It is clear that Tx is surjective and injective. Since
the inverse of Tx is given by T−x we only need to prove continuity of Tx. The
map Tx is equal to the composition m ◦ ιx where ιx : G → G × G is given by
ιx(y) = (x, y). The map m is continuous since G is topological group and ιx
is continuous by the definition of the product topology hence Tx is continuous.
For the inversion map i it is easy to check that it is a bijection with inverse i
since i(i(y)) = y. Since i is continuous it follows that the inverse is continuous
so i is homeomorphism.

Remark. Since Tx is a homeomorphism the set x + E := Tx(E) is compact,
open or closed whenever E is compact, open or closed respectively for any x ∈ G.
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Another useful property of topological groups is the following

Proposition 2. For any open set V of 0 in the abelian group G there exists an
open set W containing 0 such that W = −W (where −W is the set of inverses
of elements of W ) and

W +W ⊆ V.

Proof. Let V be an open set containing 0. By continuity of multiplication the
set m−1(V ) is open in G×G and contains (0, 0). By definition of the product
topology there exists a basis element B = B1 × B2 containing (0, 0) where B1

and B2 are open in G. If we let W = (B1∩−B1)∩(B2∩−B2) then it follows that
W is open since inversion is a homeomorphism (and therefore takes open sets
to open sets) and W contains 0. If x is an element of W then x is an element of
B1∩−B1 hence −x ∈W so W = −W . Lastly we recall that B1×B2 ⊆ m−1(V )
hence

W +W ⊆ B1 +B2 ⊆ V.

Remark. If G is any topological group and H is a subgroup of G then H
equipped with the subspace topology is also a topological group since the restric-
tions m|H×H : H ×H → H and i|H : H → H are continuous functions in the
subspace topology.

Proposition 3. If G is an abelian group and H is a subgroup of G that is open
in G then H is closed in G.

Proof. Define x + H = Tx(H) for any x ∈ G. Since H is open and Tx is a
homeomorphism x+H is open for any x ∈ G. If Tx(H)∩H 6= ∅ then for some
h ∈ H there exists h0 ∈ H such that h = h0 + x hence x = h − h0 ∈ H. If we
define

V :=
⋃

x∈G−H
(x+H).

Then it follows that V is open, V ∪ H = G and V ∩ H = ∅. It follows that
H = G− V is closed.

Proposition 4. If H is a topological subgroup of a topological group G then H
is also a topological group.

Proof. Since G is a topological group it is sufficient to prove that the group
operations restricted to H map into H which happens if and only if the map
f : H ×H → G given by f(x, y) = xy−1 has its image contained in H. Since
f = m ◦ g where g : H × H → G × G is given by g(x, y) = (x, i(y)) it follows
that f is a continuous map. Note that H × H ⊆ f−1(H) since H is a group.
By continuity of f we know that f−1(H) is closed and it follows that

H ×H ⊆ f−1(H).
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After taking images we have

f(H ×H) ⊆ H.

If (x, y) is an element in H ×H then for any open V ⊆ G such that H ∩V = ∅
it follows that neither x nor y is an element of V . Now if C ⊆ G×G is a closed
set containing H ×H then C = G×G− ∪iVi × Ui for some collection of open
sets (Vi), (Ui) each having empty intersection with H. It follows that (x, y) is
not an element of Vi × Ui for any i and it follows that (x, y) ∈ C. Since C was
an arbitary closed set containing H ×H it follows that (x, y) ∈ H ×H hence

f(H ×H) ⊆ f(H ×H) ⊆ H.

Definition 3. Let X be a Hausdorff space. We say that X is locally compact
if any x ∈ X has an open neighbourhood V containing x such that the closure
of V in X, V is compact.

Proposition 5. If X is a subspace of a Hausdorff space Y such that X is dense
in Y and X is locally compact then X is open in Y .

Proof. Pick x ∈ X then by local compactness of X there exists an open set V
in X containing x such that the closure of V in X, K := clX(V ) is compact
in X. Since the inclusion map ι : X → Y is continuous it follows that K is
compact in Y . Since compact subsets of Hausdorff spaces are closed we know
that K is closed in Y . Since the set V is open in X there exists an open U in Y
such that V = X ∩U . Since X is dense in Y and U ⊆ Y is open it follows that
clY (U) = clY (X ∩ U). This is true since if z is an element of clY (U) and W is
any open neighbourhood of z then U ∩W is open and by density of X it follows
that (X ∩ U) ∩W 6= ∅ which is equivalent to saying that z ∈ clY (X ∩ U). It
follows that

x ∈ U ⊆ clY (U) = clY (X ∩ U) = clY (V ) ⊆ K ⊆ X.

Hence X is open in Y .

Using the commutative group operation for abelian groups we can also in-
troduce the concept of uniform continuity.

Definition 4. If f is a function from an abelian group G into a metric space
M with metric d and E is a subset of G then f is uniformly continuous on E if
for every ε > 0 there exists an open set V of G containing 0 such that x−y ∈ V
implies d(x, y) < ε whenever x, y ∈ E.

Proposition 6. If f is a continuous function defined on the abelian group G
into a metric space M and K is a compact subset of the G then f is uniformly
continuous on K.
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Proof. Choose ε > 0. For each y in K, there exists by continuity of f an open
set Vy of 0 such that Vy+y contains y and |f(x)−f(y)| < ε

2 whenever x ∈ Vy+y.
By Proposition 2 we can find, for each y in K an open set Ay containing 0 such
that Ay +Ay ⊆ Vy. The set

⋃

y∈K
(Ay + y)

is an open cover of K and by compactness of K it has a finite subcover

K ⊆
N⋃

n=1

Ayn+yn .

Note also that if we define

V :=
N⋂

n=1

Ayn

then V is open since each An is open and is non-empty since it contains 0. If
x− y is an elements of V then there exists n such that y = yn +Ayn ⊆ yn +Vyn
and

x ∈ y +Ayn ⊆ yn +Ayn +Ayn ⊆ yn + Vyn .

Hence

|f(x)− f(y)| ≤ |f(x)− f(yn)|+ |f(yn)− f(y)| < ε.

2.2 The Haar-measure

Let G be an abelian group. In order to define a Fourier transform on G we first
need to be able integrate complex functions defined on G and for that we need
a measure on G. Since we are working in the context of topological groups it
is reasonable to demand that our measure interacts nicely with the topological
group structure of G. More precisely we want to define a non-trivial positive
measure, m : M→ [0,+∞] where M is the σ-algebra of Borel subsets of G. Re-
call that the σ-algebra of Borel sets is the minimal σ-algebra containing all the
open sets. Furthermore, another property we would like is that m is translation
invariant, that is, if x ∈ G and E ∈M then x+E ∈M and m(E) = m(x+E).
Other useful properties to have would be that m(K) < +∞ for any compact K
and that m(E) = supK⊆Em(K) holds true (atleast when E is open or of finite
measure) where the supremum is over compact K. Similarly we would like that
m(E) = infV⊃Em(V ) for any E ∈M where the infimum is over open supersets
of E.
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It turns out that if we put some restrictions on G we can always find such
a measure. The restrictions on G we need for this to hold true are the following:
we need G to be a locally compact, abelian topological Hausdorff Group. We
call this measure a Haar-measure and define it formally below.

Definition 5. Let G be a locally compact abelian Hausdorff group. We say that
a non-trivial positive measure m on G is a Haar-measure if its corresponding
σ-algebra, M consists of the Borel sets of G and that m satisfies the following:
i) x+ E ∈M and m(x+ E) = m(E) whenever x ∈ G and E ∈M.
ii) m(K) < +∞ for any compact K.
iii) m(E) = infE⊆V m(V ) for any E ∈ M where the infimum is over open su-
persets of E.
iv) m(E) = supK⊆Em(K) for any E ∈ M which is either open or of finite
measure. The supremum is over compact subsets of E.

Remark. Property i) is called translation invariance. Property iii) and iv) are
called outer- and inner regularity respectively.

Theorem 1. If G is a locally compact abelian Hausdorff group then G admits
a Haar-measure.

Proof. We do not sketch the entire proof since it is quite lengthy and techni-
cal. Various references for this construction are given in Section 1.1.1 in [3].
The idea of the construction of m is to construct a positive linear functional, Λ
on Cc(G), (the set of complex valued continuous functions defined on G with
compact support) which also satisfies that Λfy = Λf for any f ∈ Cc(G) and
y ∈ G where fy is defined by fy(x) = f(x− y). Since G is locally compact and
Hausdorff the Riesz representation Theorem for positive linear functionals on
Cc(G) can be applied (see, Theorem 2.14 in [1]) from which we get a measure
m defined on the Borel sets such that Λf =

∫
G
f(x)dm(x). The measure m also

satisfies property ii), iii) and iv) of Definition 5.

Lastly we prove property i), namely that x + E ∈ M and m(x + E) = m(E)
whenever x ∈ G and E ∈ M. Let M denote the Borel sets and fix an x ∈ G.
Then since the function T−x(y) = −x + y is a homeomorphism it follows that
T−x(M) contains any open set. Since T−x is a bijection it commutes with
unions and intersections and it follows that T−x is a σ-algebra containing the
open sets. By definition of the Borel sets it follows that M ⊆ T−x(M). Taking
Tx-images on both sides yields Tx(M) ⊆ Tx(T−x(M)) = M. This clearly shows
that x+ E ∈M whenever x ∈ G and E ∈M.

We now show that m(x + E) = m(E) for any x ∈ G and E ∈ M. Let x ∈ G
and assume first that E = K ∈ M is compact. Since Tx is homeomorphism
it follows that x + K is compact hence x + K ∈ M since compact subsets of
Hausdorff spaces are closed. Proving m(x + K) = m(K) is straightforward if
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we can find a sequence fn ∈ Cc(G) such that each fn is dominated by an L1(G)
function and that limn→+∞ fn = χK a.e where χK denotes the characteristic
function on K. Since if we construct such a sequence (fn) we also get that
limn→+∞(fn)x = χx+K a.e and using that Λfn = Λ(fn)x we get:

m(K) =

∫

G

χK(y)dm(y) = lim
n→+∞

∫

G

fn(y)dm(y) = lim
n→+∞

Λfn

= lim
n→+∞

Λ(fn)x = lim
n→+∞

∫

G

(fn)x(y)dm(y)

=

∫

G

χx+K(y)dm(y) = m(x+K).

Note that the dominated convergence theorem was applied twice. Since property
i) is then true for any compact set it follows from inner regularity that prop-
erty i) is also true for any open set V since x+ V is open and hence is member
of M. By outer regularity it then follows that property i) holds for any Borel set.

The only thing that remains is to construct the sequence (fn) in Cc(G) which
converges to χK a.e and each fn is dominated by an L1(G) function. Let K ⊆ G
be a compact set. Since m(K) = infK⊆V m(V ) there exists for each positive
integer n an open set Vn such that m(K) ≤ m(Vn) ≤ m(K) + 1

n . After con-
sidering Un =

⋂n
i=1 Vi we can assume that Vn+1 ⊆ Vn for all n. By Urysohn’s

Lemma (see Theorem 2.12 in [1]) we know that for each Vn there exists a func-
tion fn ∈ CC(G) such that 0 ≤ fn ≤ 1, fn = 1 on K and fn is supported in
Vn. Consider the function g(x) = limn→+∞ fn(x) for any x ∈ G where it is
well-defined. Clearly g(x) = 1 when x ∈ K and g(x) = 0 when x ∈ G−⋂∞

n=1 Vn
hence g(x) = χK(x) except possibly on the set (

⋂∞
n=1 Vn) − K. But since

m(K) < +∞ we have

m(

∞⋂

i=1

Vi −K) = m(

∞⋂

i=1

Vi)−m(K)

≤ m(Vn)−m(K)

< m(K) +
1

n
−m(K) =

1

n

for any n. Since n is an arbitrary positive integer it follows that g = χK a.e.
Furthermore fn ≤ χV1 for each n and χV1 ∈ L1(G).

Remark. Since the Haar-measure is fundamental for the Fourier transform we
will after this always let G denote a locally compact abelian Hausdorff group
and m a Haar-measure of G with the Borel σ-algebra M. Furthermore, in order
to be able to apply Fubini’s theorem without any technicalities we also always
assume that G is σ-finite with respect to m which means that G is a countable
union of sets (Xi)i where m(Xi) < +∞ for all i.
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Another benefit of assuming that G is σ-finite is that m is inner regular on
any Borel set.

Theorem 2. m(E) = supK⊆E for any E ∈ M where the supremum is over
compact subsets of E

Proof. Since X is σ-finite there exists a sequence of measurable sets (Xi)1≤i
such that X =

⋃
1≤iXi and m(Xi) < +∞ for each i. We can also assume that

Xi∩Xj = ∅ whenever i 6= j. Pick E ∈M and ε > 0 then, since m(E∩Xi) < +∞
there exists for each i a compact set Ki ⊆ E ∩Xi such that

m(E ∩Xi) ≥ m(Ki) > m(E ∩Xi)−
ε

2i
.

Define Cn =
⋃n
i=1Ki, it follows that Cn is compact and

m(E) =
+∞∑

i=1

m(E ∩Xi) ≤
+∞∑

i=1

(m(Ki) +
ε

2i
)

≤ ε+

+∞∑

i=1

m(Ki) = ε+ lim
n→+∞

m(Cn).

It follows that

m(E)− ε ≤ lim
n→+∞

m(Cn) ≤ sup
K⊆E

m(K) ⊆ m(E).

Since ε was arbitrary it follows that

m(E) = sup
K⊆E

m(K).

Proposition 7. m(V ) > 0 whenever V ⊆ G is open and non-empty.

Proof. Assume that V is open, non-empty and m(V ) = 0. Let K ⊆ G be a
compact set and pick a v ∈ V . Since k = k− v+ v for any k ∈ K it follows that
k ∈ (k−v)+V hence ∪k∈K(k−v)+V is an open cover of K. By outer regularity
and translation invariance it follows that m(K) = 0. Since K was an arbitrary
compact set it follows that any compact set has measure 0. By inner regularity
it follows that any open set has measure 0 and lastly by outer regularity it
follows that m(E) = 0 for any E ∈M so m is the trivial measure.

Remark. The proof above shows that we don’t need to assume that the Haar
measure is inner regular on all sets for Proposition 7 to hold, that is we don’t
need to assume that G is σ-finite with respect to the Haar-measure. We will
assume as said in the above remark that G is σ-finite with respect to m.

Remark. The uniqueness Theorem below of the Haar measure comes from The-
orem 1.1.3 in [3].
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Theorem 3. If m and µ are two Haar-measure of G then there exists a constant
c > 0 such that m(E) = cµ(E) for any Borel set E ⊆ G.

Proof. By outer regularity it will follow that there exists a c > 0 such that
m(E) = cµ(E) for any Borel set E if m(V ) = cµ(V ) for any open set V . Pick
a positive g ∈ Cc(G) such that

∫
G
gdµ = 1 and pick any f ∈ Cc(G). Using

Fubini’s theorem, (see Theorem 8.8 in [1]) twice and translation invariance we
get the following:
∫

G

fdm =

∫

G

(

∫

G

gdµ)fdm =

∫

G

∫

G

g(x)dµ(x)f(y)dm(y)

=

∫

G

∫

G

g(x− y)dµ(x)f(y)dm(y) =

∫

G

∫

G

g(x− y)f(y)dµ(x)dm(y)

=

∫

G

∫

G

g(x− y)f(y)dm(y)dµ(x) =

∫

G

∫

G

g(−y)f(y + x)dm(y)dµ(x)

=

∫

G

∫

G

g(−y)f(y + x)dµ(x)dm(y) =

∫

G

g(−y)

∫

G

f(y + x)dµ(x)dm(y)

=

∫

G

g(−y)

∫

G

f(x)dµ(x)dm(y) =

∫

G

g(−y)dm(y)

∫

G

f(x)dµ(x).

Letting c =
∫
G
g(−y)dm(y) we see that c > 0 and

∫
G
fdm = c

∫
G
fdµ for any

f ∈ Cc(G). So if Λ and Λ′ are the functionals on Cc(G) corresponding to m
and µ respectively it follows that Λ = cΛ′. Since the Haar-measure of an open
set is defined completely in terms of the corresponding linear functional (see the
proof of Theorem 2.14 in [1]) it follows that m(V ) = cµ(V ).

Note that the function F (x, y) = g(x − y)f(y) is continuous since if we de-
fine the continuous functions φ(x, y) = x − y and π(x, y) = y on G × G then
F (x, y) = g(φ(x, y))f(π(x, y)). Since g ◦ φ and f ◦ π are continuous and since
the product of two continuous functions is continuous it follows that F is con-
tinuous and hence measurable. It follows that F ∈ Cc(G × G) and therefore∫
G

∫
G
|g(x − y)f(y)|dµ(x)dm(y) < +∞ hence the first application of Fubini’s

theorem was legitimate. A similar argument shows that it was also legitimate
for the function given by G(x, y) = g(−y)f(y + x).

Remark. Since the Haar measure is unique up to multiplicative constant we
shall often write L1(G) instead of L1(m) and

∫
G
f(x)dx instead of

∫
G
f(x)dm(x).

Proposition 8. Let −E denote the set of inverses of elements of E where
E ∈M then m(E) = m(−E).

Proof. Define µ(E) = m(−E) for any E ∈M then

µ(x+ E) = m(−(x+ E)) = m(−x+ (−E)) = m(−E) = µ(E)

and it follows by checking the rest of the Haar-measure properties that µ is
another Haar-measure on G. By uniqueness it follows that m = cµ for some
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c > 0. If K is compact and chosen such that m(K) > 0 then −K is compact
and

m(K ∪ −K) = cµ(K ∪ −K)

= cm(−(K ∪ −K))

= cm(K ∪ −K)

hence c = 1 since 0 < m(K ∪ −K) < +∞.

Corollary 1. If f ∈ L1(G) then

∫

G

f(x)dx =

∫

G

f(−x)dx.

Proof. Let s(x) =
∑n
i=1 αiχEi(x) be a simple function then

∫

G

s(−x)dx =

∫

G

n∑

i=1

αiχEi(−x)dx =

∫

G

n∑

i=1

αiχ−Ei(x)dx

=
n∑

i=1

αim(−Ei) =
n∑

i=1

αim(Ei) =

∫
s(x)dx.

By definition of the Lebesgue integral we have for positive f
∫

G

f(x)dx = sup
s≤f

∫

G

s(x)dx = sup
s≤f

∫

G

s(−x)dx =

∫

G

f(−x)dx

where s denotes a simple function. If f maps into C the proposition follows
after writing f as a sum of its real positive, real negative, imaginary positive
and imaginary negative part.

The following proposition shows that equivalent topological groups will have
the same Haar-measures.

Proposition 9. Let G be an abelian topological group with Haar-measure m
and let H be a topological group. If there exists a function Φ : G→ H which is
an isomorphism of groups and a homeomorphism then mH(E) = m(Φ−1(E)) is
a Haar measure on H. Furthermore, by uniqueness any Haar measure µ on H
will be of the form µ = cmH for some real positive constant c.

Proof. Define mH(E) = m(Φ−1(E)). The set function mH is clearly not trivial
since m is not trivial. It is easy to check that mH is a measure and that its
domain of definition is the Borel sets since homeomorphisms maps Borel sets
to Borel sets. Since Φ is an isomorphism the function Φ−1 is a homomorphism
and it follows that

mH(x+ E) = m(Φ−1(x+ E)) = m(Φ−1(x) + Φ−1(E))

= m(Φ−1(E)) = mH(E).
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For any Borel set E inH and x inH somH is translation-invariant. The measure
mH is finite on compact subsets of H since m is finite on compact subsets of
G and Φ−1 takes compact sets to compact sets. Since Φ is a homeomorphism
between G and H the open subsets of G are in bijection with the open subsets
of H, hence for any Borel set E

inf
V⊆E

mH(V ) = inf
Φ(W )⊆E

mH(Φ(W )) = inf
Φ(W )⊆E

m(Φ−1(Φ(W )))

= inf
Φ(W )⊆E

m(W ) = inf
W⊆Φ−1(E)

m(W )

= m(Φ−1(E)) = mH(E).

Using outer regularity of m. Thus we have proved outer regularity of mH . A
similar argument shows the inner regularity of mH .
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3 The Dual Group and the Fourier Transform

In this chapter we will define the Fourier transform but in order to do that we
first need to define the dual group of G. We will then proceed to show the
important property that the dual group of G is itself a locally compact abelian
Hausdorff group. Many of the theorems in this section can be found in section
1.2 in [3]. The theory of Banach Algebras will be used in several theorems in
this chapter as well as in subsequent chapters and for this I refer to Chapter
18 in [1] for an introduction or Chapter 10 and 11 in [2] for a more complete
treatment.

3.1 Basic Definitions

Definition 6. Let T ⊆ C denote the unit circle. A group homomorphism γ :
G → T is called a character of G. The set Γ of all continuous characters of G
is called the dual group of G.

Proposition 10. Γ is an abelian group under pointwise multiplication of func-
tions

Proof. The group operation is clearly associative since multiplication in C is
associative. If γ, δ ∈ Γ then for any x, y ∈ G we have

(γδ)(x+ y) = γ(x+ y)δ(x+ y) = γ(x)γ(y)δ(x)δ(y) = (γδ)(x)(γδ)(y)

so γδ is homomorphism and γδ ∈ Γ since γδ is continuous. Clearly our group
operation is commutative since C is commutative under multiplication. The
function 1 : G→ T defined by 1(x) = 1 for all x ∈ G is the identity element of
Γ. Lastly if γ ∈ Γ then we can define γ−1(x) = γ(x) where the overline is the
complex conjugate. Since |γ| = |γ| = 1 we know that γ−1 maps G into T and
γγ−1 = 1. For any x, y ∈ G we have

γ(x+ y) = γ(x)γ(y) = γ(x)γ(y)

and it follows that γ−1 is a homomorphism. Since |z − w| = |z − w| for all
z, w ∈ C it follows that complex conjugation is continuous hence γ−1 ∈ Γ so Γ
is an abelian group.

Remark. We will often denote the inverse of γ ∈ Γ by γ since γ−1(x) = γ(x)
for any x ∈ G.

We are now able to define the Fourier transform.

Definition 7. Pick an f ∈ L1(G) and define the function

f̂(γ) =

∫

G

f(x)γ(−x)dx

for γ ∈ Γ. We call this function the Fourier transform of f and we also define
A(Γ) = {f̂ ; f ∈ L1(G)}, the set of all fourier transforms defined on Γ.
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3.2 The Weak Topology of the Dual Group

We want to give Γ a topology which turns it into a locally compact Hausdorff
group. A natural candidate is a topology which makes any f̂ ∈ A(Γ) a contin-
uous function.

Definition 8. Let X be any set, Y be a topological space and let M be any set
of functions defined on X which maps into Y . Define B to be the set of all
elements of the form

N⋂

n=1

f−1
n (Vn)

where fn ∈M and Vn ⊆ Y is open for each n and N ∈ N. This B will be shown
to be the basis of a topology on X and this topology is called the weak topology
on X induced by M .

We recall that a basis for a topology, B is a set of open sets such that any
open set can be written as a union of elements of B

Proposition 11. B is a basis of a topology, τ . Furthermore this topology is
the weakest topology which makes any f ∈ M a continuous function. In other
words: if τ ′ ⊆ τ is another topology on X and any f ∈ M is continuous with
respect to τ ′ then τ = τ ′.

Proof. Pick an x ∈ X and let B1, B2 ∈ B be two basis elements which contains
x. In order to show that B is a basis we need to find a B ∈ B such that
x ∈ B ⊆ B1 ∩ B2. Since x ∈ B1 there exists functions fn ∈ M and open sets
Vn ⊆ Y and a natural number N such that x ∈ ⋂

n=1 f
−1
n (Vn) = B1. Similarly

we can find functions gn ∈M , open sets Wn ⊆ Y and a natural number M such
that x ∈ ⋂M

n=1 g
−1
n (Wn) = B2. If

B =

N⋂

n=1

f−1
n (Vn) ∩

M⋂

m=1

g−1
m (Wm).

Then it follows that B ∈ B and x ∈ B ⊆ B1∩B2 so B is the basis of a topology
τ . Now let τ ′ ⊆ τ be another topology on X such that any f ∈M is continuous
with respect to τ ′. If τ ′ is a proper subset of τ there exists functions fn ∈ M
and open sets Vn ⊆ Y and a natural number N such that

⋂N
n=1 f

−1
n (Vi) /∈ τ ′.

But since an intersection of finitely many open sets is open it follows that there
exists an n such that f−1

n (Vn) /∈ τ ′ which contradicts continuity of fn hence
τ = τ ′.

Definition 9. We give Γ the weak topology induced by A(Γ), that is, the weakest

topology which makes any Fourier transform f̂ a continuous function on Γ for
any f ∈ L1(G).

Proposition 12. The dual group Γ is locally compact when equipped with the
weak topology
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Proof. We will show in Proposition 15 that the set of non-zero complex multi-
plicative linear functionals on L1(G) (independently of this proof) is in bijection
with functionals of the form

Λγ(f) = f̂(γ).

Let D = {Λγ : γ ∈ Γ} and give D the weak topology induced by functions of
the form ef : D → C where ef (Λγ) = Λγ(f) for f ∈ L1(G). To show that Γ is
homeomorphic to D define Φ : Γ → D by Φ(γ) = Λγ , pick f ∈ L1(G) and an
open set B ⊆ C then we get

Φ−1(e−1
f (B)) = {γ ∈ Γ : Λγ ∈ e−1

f (B)}
= {γ ∈ Γ : B 3 ef (Λγ) = Λγ(f) = f̂(γ)}
= f̂−1(B)

the last set is open in Γ and it follows that Φ is continuous. The same type of
argument shows that Φ−1 is continuous. Since

|Λγ(f)| = |f̂(γ)| ≤ ||f ||1

it follows that D ⊆ S∗ ⊆ L1(G)∗ where L1(G)∗ denotes the space of bounded
linear functionals on L1(G) and S∗ is the unit ball in L1(G)∗ with respect
to operator norm. If we also give L1(G)∗ the weak topology induced by the
collection of functions ef , f ∈ L1(G) then it is clear that the weak topology on
D coincides with the subspace topology inherited from L1(G)∗. By the Banach-
Alaoglu theorem S∗ is compact in L1(G)∗ with the weak topology, see Theorem
3.15 in [2]. According to corollary D4 in [3] the set D ∪ {0} is closed hence
compact since it is a subspace of S∗. If Λ1,Λ2 are distinct elements of L1(G)∗

then there exists f such that

Λ1(f) 6= Λ2(f)

hence ef (Λ1) 6= ef (Λ2) and from continuity of ef it follows that we can separate
Λ1 and Λ2 with open sets and it follows that L1(G)∗ is Hausdorff.

Pick Λγ ∈ D. Since L1(G)∗ is Hausdorff it follows that we can find open
sets Λγ ∈ Vγ and 0 ∈Wγ with empty intersection. It follows that the closure of
Vγ in D ∪ {0} which is compact does not contain 0 hence this closure coincides
with the closure of Vγ in D and it follows that D is locally compact. Since D
homeomorphic to Γ it follows that Γ is locally compact.

Equipped with this topology the Fourier transform has the following prop-
erties, where i) to iv) and vi) can be found in Theorem 1.2.4 in [3] with less
details and v) can also be found in Theorem 1.2.6 in [3].

Proposition 13. The following properties hold
i) if f ∈ L1(G), x0 ∈ G and γ ∈ Γ then f̂x0(γ) = γ(−x0)f̂(γ).
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ii) The Fourier transform seen as a map taking elements of L1(G) to elements
of A(Γ) maps into C0(Γ).
iii) The Fourier transform seen as a map from L1(G) to C0(Γ) is norm decreas-

ing, ||f̂ ||∞ ≤ ||f ||1 and therefore continuous.
iv) The Fourier transform separates points on Γ, that is for distinct γ, δ ∈ Γ

there exists an f̂ ∈ A(Γ) such that f̂(γ) 6= f̂(δ).
v) The function defined on G× Γ which takes (x, γ) to γ(x) is continuous.
vi) A(Γ) is dense in C0(Γ)

Proof. i)
Pick f ∈ L1(G), x0 ∈ G and γ ∈ Γ then

f̂x0(γ) =

∫

G

fx0(x)γ(−x)dx =

∫

G

f(x− x0)γ(−x)dx

=

∫

G

f(x)γ(−x− x0)dx = γ(−x0)

∫

G

f(x)γ(−x)dx

= γ(−x0)f̂(γ)

ii) Recall that F is an element of C0(Γ) if F is a complex valued continuous
function and for any ε > 0 there exists a compact set K ⊆ Γ such that |F (x)| ≤ ε
whenever x lies in the complement of K. The space C0(Γ) is normed by the

supremum norm. If f ∈ L1(G) then f̂ is continuous by definition of the topology
on Γ. Pick ε > 0 and consider the set

K = {γ ∈ Γ : |f̂(γ)| ≥ ε}.

Using the notation and the homeomorphism from Proposition 12 K is mapped
into

K ′ = {Λγ ∈ D : |f̂(γ)| ≥ ε}
= {Λγ ∈ D ∪ {0} : |ef (Λγ)| ≥ ε}.

It follows that K ′ is a closed subset of the compact set D ∪{0} and is therefore

compact. Hence K is compact which shows that f̂ ∈ C0(Γ).

iii) If f ∈ L1(G) then

|f̂(γ)| = |
∫

G

f(x)γ(−x)dx| ≤
∫

G

|f(x)||γ(−x)|dx ≤ ||f ||1

hence ||f̂ ||∞ ≤ ||f ||1

iv) Let γ, δ ∈ Γ be distinct characters. If f̂(γ) = f̂(δ) for all f̂ ∈ A(Γ) then by
definition of the Fourier transform it follows that

∫

G

f(x)(γ(−x)− δ(−x))dx = 0
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for all f ∈ L1(G). Since γ 6= δ there exists a x0 ∈ G such that γ(−x0) 6= δ(−x0)
and by local compactness ofG there exists an open set V ⊆ G such that−x0 ∈ V
and K = V is compact. Let f(x) = χK(x)(γ(−x)− δ(−x)) then f ∈ L1(G)
since
∫

G

|χK(x)(γ(−x)− δ(−x))|dx ≤
∫

K

|γ(−x)|dx+

∫

K

|δ(−x)|dx = 2m(K) <∞

using the fact that K is compact. It follows that
∫

K

|(γ(−x)− δ(−x))|2dx = 0.

Hence γ(−x)− δ(−x) = 0 for all x ∈ K since m(K) > m(V ) > 0. In particular
it follows that γ(−x0) = δ(−x0) hence γ = δ and the Fourier transform sepa-
rates points.

v) Pick a point (x0, γ0) ∈ G× Γ By i) we have that

f̂−x0
(γ0) = γ0(x0)f̂(γ0)

for any f ∈ L1(G). If f(x) = g(x)γ0(x) where g is a continuous, non-negative
and non-zero L1(G)-function it follows that

f̂(γ0) = ||f ||1 > 0.

Hence

γ0(x0) =
f̂−x0(γ0)

f̂(γ0)
.

Since f̂ is continuous and non-zero at γ0 it follows that γ(x) is continuous at

(x0, γ0) if f̂x(γ) is continuous at (γ0, x0). Since the mapping taking x ∈ G to
fx ∈ L1(G) is continuous there exists an open set V ⊆ G containing x0 such
that

||fx − fx0
||1 <

ε

2

whenever x ∈ V . By continuity of the Fourier transform there exists an open
set U ⊆ Γ containing γ0 such that

|f̂x0
(γ)− f̂x0

(γ0)| < ε

2

whenever γ ∈ U . If (x, γ) ∈ V × U it follows that

|f̂x(γ)− f̂x0
(γ0)| ≤ |f̂x(γ)− f̂x0

(γ)|+ |f̂x0
(γ)− f̂x0

(γ0)|
≤ ||fx − fx0 ||1 + |f̂x0(γ)− f̂x0(γ0)| < ε
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vi) We know by iv) that A(Γ) separates points on Γ and by ii) we know that
A(Γ) ⊆ C0(Γ). In the next section an operation in L1(G) called convolution will

be defined which satisfies f̂ ∗ g(γ) = f̂(γ)ĝ(γ) where f, g ∈ L1(G) and ∗ denotes
convolution, see Proposition 14. This shows that A(Γ) is multiplicatively closed
set under pointwise multiplication of functions. It is easy to check that A(Γ)
is closed under conjugation since given f ∈ L1(G) we can define the function

g(x) = f(−x) and it is easy to show that ĝ = f̂ hence f̂ ∈ A(Γ). Lastly we prove
that for any γ0 ∈ Γ there exists a Fourier transform that does not evaluate to
0 at γ0. Pick a function f ∈ L1(G) such that

∫
G
fdx 6= 0 then it follows that

f̂γ0(γ0) =
∫
G
fdx 6= 0. It follows from the Stone-Weierstrass Theorem, (see

Appendix A.14 in [3]) that A(Γ) is dense in C0(Γ).

A different proof of Theorem 4 for is given in Theorem 1.2.6 in [3].

Theorem 4. If we give Γ the weak topology induced by A(Γ) then Γ is a locally
compact, abelian, Hausdorff topological group.

Proof. The only things that remains to be shown is that Γ is Hausdorff and that
multiplication and inversion are continuous group operations.

To show that Γ is Hausdorff, let γ, δ ∈ Γ be distinct characters. Since the Fourier
transform separates points there exists an f̂ ∈ A(Γ) such that f̂(γ) 6= f̂(δ).

Since C is Hausdorff there exists V1, V2 ⊆ T1 both open such that f̂(γ) ∈ V1,

f̂(δ) ∈ V2 and V1 ∩ V2 = ∅. By continuity of f̂ the sets f̂−1(V1) and f̂−1(V2)
are both open, they contain γ, δ respectively and they are disjoint since V1, V2

are disjoint and it follows that Γ is Hausdorff.

We now show that inversion, i : Γ → Γ is continuous. By definition of con-
tinuity we need to show that i−1(W ) is open whenever W ⊆ Γ is open. It is

sufficient to show it when W is a basis element so pick functions f̂n ∈ A(Γ) and
open sets Vn ⊆ C. We then need to show that

U = i−1(

N⋂

n=1

f̂−1
n (Vn)) ⊆ Γ

is open. We have

U = {γ ∈ Γ; γ−1 ∈ f̂−1
n (Vn) ∀n}

= {γ ∈ Γ; f̂n(γ−1) ∈ Vn ∀n}

=
N⋂

n=1

{γ ∈ Γ; f̂n(γ−1) ∈ Vn}.
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For any n we have

f̂n(γ−1) =

∫

G

fn(x)γ−1(−x)dx =

∫

G

fn(x)γ(−x)dx

=

∫

G

fn(x)γ(−x)dx = f̂n(γ).

Hence if conj(E) ⊆ C denotes the set of complex conjugates of elements of
E ⊆ C then

U =
N⋂

n=1

{γ ∈ Γ; f̂n(γ) ∈ Vn}

=

N⋂

n=1

{γ ∈ Γ; f̂n(γ) ∈ conj(Vn)}

=
N⋂

n=1

f̂n
−1

(conj(Vn))

which is open since conj(Vn) is open and f̂n ∈ A(Γ) is continuous.

We now show that multiplication, m : Γ × Γ → Γ is continuous. Pick a
point (γ0, δ0) ∈ Γ × Γ, continuity of m is equivalent to showing that for any
open T ⊆ Γ such that γ0δ0 ∈ T there exists open subsets V,W of Γ such that
(γ0, δ0) ∈ V ×W and m(V,W ) ⊆ T . By our basis of Γ we know that there
exists functions fn ∈ L1(G) and open sets Un ⊆ C such that

δ0γ0 ∈
N⋂

n=1

f̂−1
n (Un) ⊆ T.

We are done if we can find V and W such that γ0 ∈ V , δ0 ∈W and for each n,
1 ≤ n ≤ N we have that f̂n(δγ) ∈ Un whenever γ ∈ V and δ ∈ W . Since Un is

open there exists for each n an εn > 0 such that the ball centered at f̂n(γ0δ0)
with radius εn is contained in Un. Define

ε = min
1≤n≤N

εn > 0.

Pick an n, 1 ≤ n ≤ N . Since Cc(G) is dense in L1(G), (see Theorem 3.14 in
[1]) there exists a function gn ∈ Cc(G) supported in the compact set Kn ⊆ G
such that ||fn − gn||1 < ε

4 . Pick a point x0 ∈ Kn then the inequality

|γ(−x)− γ0(−x)| ≤ |γ(−x)− γ0(−x0)|+ |γ0(−x0)− γ0(−x)|
= |γ(x)− γ0(x0)|+ |γ0(x0)− γ0(x)|
= |γ(x)− γ0(x0)|+ |γ0(x0)− γ0(x)|
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holds for any x ∈ G. Combining this inequality with Propostition 13 v) and
continuity of γ0 at x0 shows that there exists open sets Nx0 ⊆ G and Mx0 ⊆ Γ
containing x0 and γ0 respectively such that

|γ(−x)− γ0(−x)| < ε

4||gn||1

whenever (x, γ) ∈ Nx0 ×Mx0 . Since

Kn ⊆
⋃

x∈Kn
Nx

is an open cover and Kn is compact there exists x1, ..., xM such that

Kn ⊆
M⋃

m=1

Nxm .

If we define

V :=

M⋂

m=1

Mxm

then V is a non-empty open set of Γ since it contains γ0 and

|γ(−x)− γ0(−x)| < ε

4||gn||1
for any x ∈ Kn whenever γ ∈ V . Defining W analogously for δ0 we get that

|f̂n(γδ)− f̂n(γ0δ0)| ≤
∫

G

|fn(x)||γ(−x)δ(−x)− γ0(−x)δ0(−x)|dx

≤
∫

G

|fn(x)− gn(x) + gn(x)||γ(−x)δ(−x)− γ0(−x)δ0(−x)|dx

≤ 2||fn − gn||1 +

∫

Kn

|gn(x)||γ(−x)δ(−x)− γ0(−x)δ0(−x)|dx

≤ ε

2
+

∫

Kn

|gn(x)||δ(−x)− δ0(−x)|dx+

∫

Kn

|fK(x)||γ(−x)− γ0(−x)|dx

< ε

≤ εn

whenever (γ, δ) ∈ V ×W . Which shows that f̂n(γδ) ∈ Un whenever (γ, δ) ∈
V ×W which proves that multiplication is continuous in Γ.
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4 Convolutions and Algebras

4.1 Convolution of Functions

A very useful operation in Fourier analysis is convolution. Convolution takes
two functions in L1(G) and produces a third function f ∗g which can be thought
of as a weighted average of translates of f with weight function g. Parts of this
section can also be found in sections 1.1.6, 1.2.2 and 1.3 in [3] with a somewhat
different exposition and parts are left to the reader. A great resource for complex
measures is Chapter 6 in [1].

Definition 10. Let f, g ∈ L1(G) the convolution of f and g, f ∗ g is given by

(f ∗ g)(x)

∫

G

f(x− y)g(y)dy

Provided that
∫

G

|f(x− y)g(y)|dy < +∞.

As the next theorem shows, when f, g ∈ L1(G) then
∫
G
|f(x − y)g(y)|dy <

+∞ for almost all y ∈ G and f ∗ g ∈ L1(G) and L1(G) equipped with ∗ is a
commutative Banach algebra. This proof of Theorem 5 is found in 1.1.6 in [3]

Theorem 5. if f and g are in L1(G) then
∫

G

|f(x− y)g(y)|dy < +∞

for almost all x ∈ G and f ∗ g ∈ L1(G). Furthermore the following properties
hold
i) ||f ∗ g||1 ≤ ||f ||1||g||1.
ii) f ∗ g = g ∗ f .
iii) (f ∗ g) ∗ h = f ∗ (g ∗ h) whenever h ∈ L1(G).

Proof. The proof proceeds by Fubini’s theorem (see Theorem 8.8 in [1]) so we
begin by proving that H(x, y) = f(x− y)g(y) is a (Borel) measurable function
on G × G. Define φ(x, y) = x − y and π(x, y) = y then it is enough to prove
(Borel) measurability of f ◦ φ and g ◦ π. Let M denote the Borel sets in G,
M ⊗M denote the Borel sets of G × G and let V be an open subset of C. It
follows that g−1(V ) ∈M since g is Borel measurable. Recall that M⊗M is the
smallest σ-algebra that contains all sets of the form E1×E2 for any E1, E2 ∈M
(see Definition 8.1 in [1]) hence

π−1(g−1(V )) = G× g−1(V ) ∈M⊗M

and it follows that g ◦π is measurable. Similarly since f is Borel measurable we
have that f−1(V ) ∈M. It is clear that

φ−1(f−1(V )) = {(x, y) ∈ G×G;x− y ∈ f−1(V )}.
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If we define the function F : G×G→ G×G given by F (x, y) = (x+ y, y) then
it is clear that F is a homeomorphism and therefore maps Borel sets to Borel
sets. It follows that

φ−1(f−1(V )) = F (f−1(V )×G) ∈M⊗M

hence f ◦ φ is measurable and therefore H is measurable. By Fubini’s theorem
(see Theorem 8.8 in [1]) we then get that

∫

G

∫

G

|f(x− y)g(y)|dydx =

∫

G

∫

G

|f(x− y)g(y)|dxdy

=

∫

G

|g(y)|
∫

G

|f(x− y)|dxdy

=

∫

G

|g(y)|
∫

G

|f(x)|dxdy

= ||f ||1||g||1 < +∞.
Hence ∫

G

|f(x− y)g(y)|dy <∞ a.e

and it follows that f ∗ g is well defined as a function for almost all x ∈ G. From
above we see that

||f ∗ g||1 ≤
∫

G

∫

G

|f(x− y)g(y)|dydx = ||f ||1||g||1

and i) follows.
For ii) we have that

(f ∗ g)(x) =

∫

G

f(x− y)g(y)dy

=

∫

G

f(x− (y + x))g(y + x)dy

=

∫

G

f(−y)g(y + x)dy

=

∫

G

f(−(−y))g(−y + x)dy = (g ∗ f)(x).

For f, g ∈ L1(G). Note that Corollary 1 was used above. For iii) we have that

((f ∗ g) ∗ h)(x) =

∫

G

(f ∗ g)(x− y)h(y)dy =

∫

G

(

∫

G

(f(x− y − z)g(z)dz)h(y)dy

=

∫

G

∫

G

f(x− y − z)g(z)dzh(y)dy =

∫

G

∫

G

f(x− z)g(z − y)dzh(y)dy

=

∫

G

∫

G

f(x− z)g(z − y)h(y)dzdy =

∫

G

f(x− z)
∫

G

g(z − y)h(y)dydz

=

∫

G

f(x− z)(g ∗ h)(z)dz = (f ∗ (g ∗ h))(x).
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Whenever f, g, h ∈ L1(G). Where the usage of Fubini’s theorem is justified by
the discussion in i)

Two useful properties of convolution are the following

Proposition 14.

i) If f, g ∈ L1(G) then (̂f ∗ g) = f̂ ĝ.
ii) If f, g ∈ L2(G) then f ∗ g is well-defined and continuous

Proof. i) Let f, g ∈ L1(G) then

(̂f ∗ g)(γ) =

∫

G

(f ∗ g)(x)γ(−x)dx =

∫

G

∫

G

f(x− y)g(y)γ(−x)dydx

=

∫

G

∫

G

f(x− y)g(y)γ(−x)dxdy

=

∫

G

∫

G

f(x− y)g(y)γ(−x+ y − y)dxdy

=

∫

G

g(y)γ(−y)

∫

G

f(x− y)γ(−x+ y)dxdy

=

∫

G

g(y)γ(−y)

∫

G

f(x)γ(−x)dxdy = f̂(γ)ĝ(γ)

ii) Let f, g ∈ L2(G) and pick y ∈ G then Hölder’s inequality gives

|(f ∗ g)(y)| ≤
∫

G

|f(y − x)||g(x)|dx ≤ ||f ||22||g||22 < +∞

which shows that f ∗ g is well defined. Define f− by f−(x) = f(−x). Then by
continuity of the map that sends x ∈ G to f−x ∈ L2(G), the translate of f−,
there exists an open set V containing y such that z ∈ V implies

||f−z − f−y ||2 <
1

||g||2
√
ε

hence if z ∈ V it follows by Hölder’s inequality that

|(f ∗ g)(z)− (f ∗ g)(y)| ≤ ||f−z − f−y ||22||g||22 < ε

which shows that f ∗ g is continuous.

Remark. If A is complete Banach space that has an operator · : A × A → A
called multiplication that is associative and satisfies

α(xy) = (αx)y = x(αy)

(x+ y)z = xz + yz

x(y + z) = xy + xz

||xy|| ≤ ||x||||y||
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For any x, y, z ∈ A and α ∈ C. Then A is called a Banach Algebra. Note that
L1(G) is a Banach Algebra with convolution. If B is another Banach Algebra
and Λ : A→ B is a linear functional that is also multiplicative,

Λ(xy) = Λ(x)Λ(y)

Then Λ is called a Banach Algebra homomorphism.

Remark. The proof of Proposition 15 can be found in section 1.2.2 in [3].

Proposition 15. For any fixed γ ∈ Γ the Fourier transform which takes f ∈
L1(G) to f̂(γ) ∈ C is a complex valued Banach Algebra homomorphism that is
not the zero homomorphism. Conversely any complex valued Banach Algebra
homomorphism of L1(G) that is not the zero homomorphism is of the form

h(f) = f̂(γ) for some γ ∈ Γ. Furthermore different elements of Γ corresponds
to distinct homomorphisms.

Proof. Using Proposition 14 it is clear that any function of the form Λγ(f) =

f̂(γ) is a complex Banach Algebra homomorphism. Given γ we can pick an
f ∈ L1(G) that is not 0 and then we have

Λγ(|f |γ) = ||f ||1 > 0

so Λγ is not the zero functional. If Λγ1 = Λγ2 then

∫

G

f(x)(γ1(−x)− γ2(−x))dx = 0

for any f ∈ L1(G) from which it follows that γ1 = γ2.

Conversely, suppose that Λ is a complex Banach Algebra homomorphism that is
not the zero functional. Since the kernel of Λγ is a maximal ideal (see Theorem
11.5 in [2]) and maximal ideals are closed it follows that the kernel is closed.
Since linear functionals are continuous if and only if their kernel is closed it
follows that Λ is a bounded linear functional. By Theorem 11.9 in [2] we know
that ||Λ|| ≤ 1. Since G is assumed to be σ-finite it follows from Theorem 6.16
in [1] that there exists a unique λ ∈ L∞(G) such that ||λ||∞ = ||Λ|| ≤ 1 and

Λ(f) =

∫

G

f(x)λ(x)dx.
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If f and g are in L1(G) then
∫

G

Λ(f)g(x)λ(x)dx = Λ(f)Λ(g) = Λ(f ∗ g)

=

∫

G

(f ∗ g)(x)λ(x)dx

=

∫

G

∫

G

f(x− y)g(y)dyλ(x)dx

=

∫

G

∫

G

f(x− y)λ(x)dxg(y)dy

=

∫

G

Λ(fy)g(y)dy

Note that Fubinis Theorem, (see Theorem 8.8 in [1]) is applicable since
∫

G

∫

G

|f(x− y)λ(x)g(y)|dxdy ≤ ||λ||∞
∫

G

|g(y)|
∫

G

|f(x− y)|dxdy

= ||λ||∞
∫

G

|g(y)|
∫

G

|f(x)|dxdy

= ||f ||1||g||1||λ||∞ ≤ +∞

It follows that

Λ(f)λ(x) = Λ(fx) (1)

for almost all x ∈ G. By continuity of translation and continuity of Λ it follows
that the right hand side of above is continuous. Since Λ 6= 0 we can choose
an f such that Λ(f) 6= 0 and conclude that λ(x) coincides with a continuous

function almost everywhere on G. We can redefine λ as λ(x) = Λ(fx)
Λ(f) on this

set of measure 0 and it follows that we can assume that λ is continuous on G.
Substitute x with x+ y in (1) to obtain

Λ(f)λ(x+ y) = Λ(fx+y) = Λ((fx)y)

= Λ(fx)λ(y) = Λ(f)λ(x)λ(y).

Hence

λ(x+ y) = λ(x)λ(y).

Lastly, since |λ(x)| ≤ 1 for all x ∈ G and λ(−x) = λ(x)−1 it follows that
|λ(x)| = 1 for all x ∈ G hence λ ∈ Γ.

4.2 Convolution of Measures

It will be shown later that L1(G) does not have a unit in most cases. However
L1(G) can always be embedded in a commutative Banach algebra with a unit,
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M(G), the algebra of complex regular Borel measures on G. We begin with
some definitions.

Definition 11. We say that a complex Borel measure λ is regular if

|λ|(E) = inf
E⊆V

|λ|(V ) = sup
K⊆E

|λ|(K)

for any Borel set E where |λ| is the total variation measure of λ.

By defining (λ+ µ)(E) := λ(E) + µ(E) and (cλ)(E) := cλ(E) for any Borel
set E and any complex Borel measures µ, λ and any c ∈ C it is easy to show
that the set of complex Borel measures is a vector space. It is also easy to
show that this addition and multiplication preserves regularity so the set of
complex regular Borel measures M(G) is also vector space. If we also define
||λ|| = |λ|(G) for any λ ∈M(G) it follows that M(G) is a normed vector space
and by Theorem 6.4 in [1] we have µ(G) < +∞ for any µ ∈M(G) so ||µ|| < +∞
for any µ ∈M(G). We summarize the results below.

Proposition 16. Let M(G) be the set of all complex regular Borel measures on
G and define the function ||µ|| = |µ|(G) for any µ ∈ M(G). Then the function
|| · || defines a norm on M(G) so M(G) is a normed space

Proposition 17. M(G) is complete and hence a Banach space.

Proof. Let C0(G)∗ be the dual space of C0(G). That is the the set of all bounded
linear functionals on C0(G) normed by

||Λ|| = sup
||f ||≤1

|Λf |.

Then it is well known that the dual of a normed space is a Banach space so
C0(G)∗ is a Banach space. By the Riesz representation theorem for bounded
linear functionals (see Theorem 6.19 in [1]) there is a bijective correspondence
between C0(G)∗ and M(G) which we will denote by Φ : C0(G)∗ →M(G) which
also satisfies ||Φ(Λ)|| = ||Λ|| for any Λ ∈ C0(G)∗. Recall that integration with
respect to a complex measure µ is defined as

∫

G

fdµ =

∫

G

fhd|µ|

where the right hand side is the polar decomposition of µ (see Theorem 6.12 in
[1]) where |µ| is the total variation measure and |h(x)| = 1 for all x ∈ G. From
this it follows that

∫

G

χEdµ =

∫

G

χEhd|µ| =
∫

E

hd|µ| = µ(E)
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for any Borel set E ⊆ G. Hence if λ also is a complex measure and E ⊆ G is a
Borel set we have∫

G

χEd(µ+ λ) = (µ+ λ)(E) = µ(E) + λ(E)

=

∫

G

χEdµ+

∫

G

χEdλ.

By a standard approximation argument with simple functions it follows that
∫

G

fd(µ+ λ) =

∫

G

fdµ+

∫

G

fdλ

for any f ∈ L1(µ). With a similar argument it is easy to show that
∫

G

fd(αµ) = α

∫

G

fdµ

For any α ∈ C and f ∈ L1(µ). Using these two relations it follows that
∫

G

fdΦ(αΛ1 + βΛ2) = (αΛ1 + βΛ2)f = αΛ1f + βΛ2f

= α

∫

G

fdΦ(Λ1) + β

∫

G

fdΦ(Λ2)

=

∫

G

fdαΦ(Λ1) +

∫

G

fdβΦ(Λ2)

=

∫

G

fd(αΦ(Λ1 + βΦ(Λ2))

for any Λ1,Λ2 ∈ C0(G)∗ and α, β ∈ C. It follows by uniqueness of the Riesz
representation theorem (see Theorem 6.19 in [1]) that Φ is linear and hence
an isometric isomorphism between C0(G)∗ and M(G). Since C0(G)∗ is com-
plete and isometric isomorphisms preserve completeness it follows that M(G) is
complete and hence a Banach space.

We now give M(G) a multiplicative structure.

Definition 12. Pick two measures λ, µ ∈ M(G) and consider the linear func-
tional Λ defined on C0(G) by

Λ(f) =

∫

G

∫

G

f(x+ y)dλ(x)dµ(y).

Since

|Λ(f)| ≤
∫

G

∫

G

|f(x+ y)|dλ(x)dµ(y)

≤
∫

G

∫

G

||f ||∞dλ(x)dµ(y)

= ||f ||∞|λ(G)||µ(G)|
= ||f ||∞||λ||||µ||
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We see that Λ is a bounded linear functional of norm less than ||λ||||µ||. By
the Riesz representation theorem for bounded linear functionls there corresponds
unique measure denoted λ ∗ µ ∈M(G) such that ||λ ∗ µ|| ≤ ||λ||||µ|| and

∫

G

fd(λ ∗ µ) =

∫

G

∫

G

f(x+ y)dλ(x)dµ(y)

for any f ∈ C0(G). We call λ ∗ µ the convolution of λ and µ.

By the theorem below it follows that M(G) equipped with ∗ is a unital
commutative Banach algebra.

Theorem 6. Let λ, µ and ν be arbitrary elements of ∈M(G) then
i) λ ∗ µ ∈M(G)
ii) ||λ ∗ µ|| ≤ ||λ||||µ||
iii) λ ∗ µ = µ ∗ λ
iv) (λ ∗ µ) ∗ ν = λ ∗ (µ ∗ ν)
v) there exists e ∈M(G) such that e ∗ µ = µ

Proof. i) and ii) was shown above. For iii) we note that if λ, µ ∈ M(G) then
they are finite measures and by Fubini’s theorem (see Theorem 8.8 in [1]) we
get that

∫

G

∫

G

f(x+ y)dλ(x)dµ(y) =

∫

G

∫

G

f(y + x)dµ(y)dλ(x)

for any f ∈ C0(G). The left hand side functional of above correspond to the
unique measure λ ∗ µ. Similarly the right hand side functional corresponds
uniquely to the measure µ ∗ λ and since the two functionals are equal it follows
that the corresponding measures are equal aswell which shows iii). For iv) we
pick f ∈ C0(G) and see that

∫

G

fd((λ ∗ µ) ∗ ν) =

∫

G

∫

G

f(x+ y)d(λ ∗ µ)(x)dν(y)

=

∫

G

∫

G

∫

G

f(x+ y + z)dλ(x)dµ(z)(x)dν(y)

=

∫

G

∫

G

∫

G

f−x(z + y)dµ(z)(x)dν(y)dλ(x)

=

∫

G

∫

G

f−x(y)d(µ ∗ ν)(y)dλ(x)

=

∫

G

∫

G

f(x+ y)dλ(x)d(µ ∗ ν)(y)

=

∫

G

fd(λ ∗ (µ ∗ ν))

and by the Riesz representation theorem (see Theorem 6.19 in [1]) it follows
that (λ ∗ µ) ∗ ν = λ ∗ (µ ∗ ν). For v) we can define e := δ0 where δ0 is the
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measure defined as δ0(E) = 1 if 0 ∈ E and δ0(E) = 0 otherwise. It is clear
that δ0 ∈M(G), inner regularity follows from that any set containing 0 has the
same measure as any compact set containing 0 and any set not containing 0 has
the same measure as any compact set not containing 0, outer regularity has the
same argument. It is easy to show that

∫

G

f(x)dδ0(x) = f(0)

for any f ∈ C0(G) hence

∫

G

∫

G

f(x+ y)dδ0dµ(y) =

∫

G

∫

G

f−y(x)dδ0(x)dµ(y)

=

∫

G

f−y(0)dµ(y)

=

∫

G

f(y)dµ(y).

The left hand side functional corresponds to δ0 ∗ µ while the right hand side
corresponds to µ and v) is proved.

Proposition 18. If f ∈ L1(G) and the complex Borel measure µf is defined by

µf (E) =

∫

E

f(x)dx

then µf ∈M(G).

Proof. For any integer n > 0 let Vn be an open set containing E such that
m(E) ≤ m(Vn) < m(E) + 1

n . We can also freely assume that Vn+1 ⊆ Vn. Then
limn→+∞ χVn(x) = χE(x) for any x ∈ G except possibly on the set ∩nVn − E
but m(∩nVn−E) = 0. From Theorem 6.6 in [1] we know that the total variation
is given by

|µf |(A) =

∫

A

|f(x)|dx

for any Borel set A ⊆ G. By the dominated convergence theorem it follows that

inf
E⊆V

|µf |(V ) ≤ lim
n→+∞

|µf |(Vn) = lim
n→+∞

∫

Vn

|f |dm

= lim
n→+∞

∫

G

χVn |f |dm =

∫

G

χE |f |dm = |µf |(E).

So |µ|(E) ≥ infE⊆V |µ|(V ) and it follows that µf is inner regular. Since G is
assumed to be σ-finite we know that m is inner regular on any Borel set E.
It follows that for any n > 0 we can find a compact set Kn ⊆ E such that
m(E) − 1

n < m(Kn) ≤ m(E). We can without loss of generality assume that
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Kn ⊆ Kn+1 then as above limn→+∞ χKn = χE except on a set of measure zero
and by the monotone convergence theorem it follows that

sup
K⊆E

|µf |(K) ≥ lim
n→+∞

|µf |(Kn) = lim
n→+∞

∫

Kn

|f |dm

= lim
n→+∞

∫

G

χKn |f |dm =

∫

G

χE |f |dm = |µf |(E).

Hence |µ|(E) ≤ supK⊆E |µ|(K) and it follows that µf is outer regular which
proves that µf ∈M(G).

We now come to to the embedding of L1(G). Define the mapping ι : L1(G)→
M(G) given by ι(f) = µf . The following properties show us that ι is an em-
bedding of L1(G) into M(G).
i) If µf = µg then f = g in L1(G)
ii) If f, g ∈ L1(G) and c ∈ C then µf+g = µf + µg and µcf = cµf
iii) µf∗g = µf ∗ µg
iv) ||µf || = ||f ||1

The proof of i) amounts to showing that if
∫
E

(f − g)dm = 0 for any E then
f = g a.e which is a well known property of measurable functions. Property ii)
is trivial and iv) is true since

||µf || = |µf |(G) =

∫

G

|f |dµ = ||f ||1

using Theorem 6.13 in [1]. For part iii) we pick h ∈ C0(G) then

∫

G

hd(µf ∗ µg) =

∫

G

∫

G

h(x+ y)dµf (x)dµg(y)

=

∫

G

∫

G

h(x+ y)f(x)dxg(y)dy

=

∫

G

∫

G

h(x)f(x− y)dxg(y)dy

=

∫

G

h(x)

∫

G

f(x− y)g(y)dydx

=

∫

G

h(x)(f ∗ g)(x)dx

=

∫

G

hdµf∗g

and by the Riesz representation theorem (see Theorem 6.19 in [1]) it follows
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that µf ∗ µg = µf∗g. Note that Fubinis theorem could be applied since

∫

G

∫

G

|h(x)f(x− y)g(y)|dxdy ≤
∫

G

∫

G

||h||∞|f(x− y)|dx|g(y)|dy

= ||h||∞
∫

G

∫

G

|f(x− y)|dx|g(y)|dy

= ||h||∞
∫

G

∫

G

|f(x)|dx|g(y)|dy

= ||h||∞||f ||1||g||1 < +∞

4.3 The Fourier-Stieltjes Transform

Since L1(G) can be embedded in M(G) the Fourier-Stieltjes transform is natural
to consider.

Definition 13. The Fourier-Stieltjes transform. If µ is in M(G) the function
µ̂ : Γ→ C given by

µ̂(γ) =

∫

G

γ(−x)dµ

is called the Fourier-Stieltjes Transform of µ.

Remark. If µf ∈M(G) is the embedding of f ∈ L1(G) then

µ̂f (γ) =

∫

G

γ(−x)dµf (x) =

∫

G

f(x)γ(−x)dx = f̂(γ)

The following uniqueness theorem will be used in the proof of Pontryagins
duality theorem. Pontryagins theorem in turn will show that applying this
uniqueness theorem to Γ in place of G will give us the uniqueness theorem for
the Fourier-Stieltjes transform.

Proposition 19. If µ ∈M(Γ) and

∫

Γ

γ(x)dµ(γ) = 0

for any x ∈ G then µ = 0.

Proof. Asssume that µ is as above and pick f ∈ L1(G), then it follows that

∫

Γ

f̂dµ =

∫

Γ

∫

G

f(x)γ(−x)dxdµ(γ)

=

∫

G

∫

Γ

f(x)γ(−x)dµ(γ)dx

=

∫

G

f(x)

∫

Γ

γ(−x)dµ(γ)dx = 0.
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Since ||µ|| is finite we can interchange integration above. If we define the linear
transformation B on C0(Γ) as the integral

∫
Γ
gdµ we see that |B(g)| ≤ ||g||∞||µ||

hence B is a bounded linear transformation. Pick g ∈ C0(Γ). By Proposition

13, A(Γ) is dense in C0(Γ) hence there exists a sequence f̂n ∈ A(Γ) such that

||g − f̂n||∞ → 0 and therefore

|B(g)| = |
∫

Γ

gdµ| ≤ |
∫

Γ

g − f̂ndµ|+ |
∫

Γ

f̂ndµ|

≤
∫

Γ

|g − f̂n|dµ ≤ ||µ||||g − f̂n||∞ → 0.

Thus B(g) = 0 for any g ∈ C0(Γ) and by the Riesz representation theorem for
bounded linear functionals on C0(Γ) (see Theorem 6.19 in [1]) it follows that
µ = 0.
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5 Bochner’s Theorem and the Inverse Fourier
Transform

5.1 Positive Definite Functions

We will first introduce the positive-definite functions. The reason why we choose
to study such functions is that for functions which are L1(G) and positive-
definite the Fourier inversion theorem holds. Bochner’s Theorem and the Fourier
inversion theorem are the highlights of the section and the proofs follow the
proofs in 1.4.3 and 1.5.1 respectively in [3] but with more detail.

Definition 14. Let f be a complex valued function defined on G. We say that f
is positive-definite if for any complex sequence c1, ..., cN and sequence x1, ..., xN
in G the inequality

N∑

n,m=1

cncmf(xn − xm) ≥ 0

holds.

Remark. The proof of the following can also be seen in 1.4.1 in [3].

Proposition 20. If f is a positive definite function on G then
i) f(0) ≥ 0
ii) f(−x) = f(x)
iii) |f(x)| ≤ f(0)
iv) |f(x)− f(y)|2 ≤ 2f(0)<(f(0)− f(x− y)) hence f is uniformly continuous if
it is continuous at 0.

Proof. If we let N = 1 and x1 = 0 and c = 1 in the definition we get f(0) ≥ 0.
Now let N = 2 and set c1 = 1, c2 = c, x1 = 0, x2 = x then

(1 + |c|2)f(0) + cf(−x) + cf(x) ≥ 0. (1)

Letting c = 1 in (1) we see by i) that f(−x) + f(x) from which it follows that
=f(x) = −=f(−x). Letting c = i in (1) we get that i(f(x) − f(−x)) is real
hence <f(x) = <f(−x) from which it follows that f(x) = f(−x) which proves
ii). Part iii) is trivially true at the point x if f(x) = 0 so assume that f(x) 6= 0
and set c = −|f(x)|/f(x) in (1) to get

2f(0) +
−|f(x)|
f(x)

f(−x) +
−|f(x)|
f(x)

f(x) ≥ 0.

After simplifying the second term with ii) and rearranging we get

f(0) ≥ |f(x)|

which proves iii).
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Now for iv), if f(x) = f(y) then iv) is clearly true so assume that f(x) 6= f(y).
Let N = 3, x1 = 0, x2 = x, x3 = y, c1 = 1 and

c2 =
t|f(x)− f(y)|
f(x)− f(y)

for some real t and lastly let c3 = −c2. Then the following relations follows

|c2|2 + |c3|2 = 2t2.

c2f(x) + c3f(y) = t|f(x)− f(y)|.

Using ii) we also get that

c2f(−x) + c3f(−y) = t|f(x)− f(y)|.

and lastly we have

c2c3f(x− y) + c3c2f(y − x) = −t2(f(x− y) + f(y − x))

= −t2(f(x− y) + f(x− y)

= −2t2<(f(x− y)).

By applying the definition of positive definite and the relations above it follows
that

(1 + 2t2)f(0) + 2t|f(x)− f(y)| − 2t2<(f(x− y)) ≥ 0.

Using i) this can be rewritten as

f(0) + 2t|f(x)− f(y)|+ 2t2<(f(0)− f(x− y)) ≥ 0.

This is a quadratic polynomial in t which must be positive for all t ∈ R. Which
happens if and only if the quadratic polynomial does not have two distinct real
roots which happens if and only if the discrimant is less than or equal to 0. In
our case this is equivalent to

4|f(x)− f(y)|2 − 4f(0)2<(f(0)− f(x− y)) ≤ 0.

From which we see that

|f(x)− f(y)|2 ≤ 2f(0)<(f(0)− f(x− y))

An example of a positive definite function is the following

Proposition 21. If µ ∈ M(Γ) is a positive measure on the dual group we can
define

f(x) =

∫

Γ

γ(x)dµ(γ)

then f(x) is positive-definite and continuous.
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Proof. We have

N∑

n,m=1

cncmf(xn − xm) =

N∑

n,m=1

cncm

∫

Γ

γ(xn − xm)dµ(γ)

=

∫

Γ

N∑

n,m=1

cncmγ(xn)γ(xm)dµ(γ)

=

∫

Γ

|
N∑

n=1

cnγ(xn)|2dµ(γ) ≥ 0.

Hence f is positive definite. The function f is also continuous since if we pick
ε > 0 then by inner regularity of µ there exists a compact K ⊆ Γ such that

µ(Γ)− ε

4
< µ(K) ≤ µ(Γ)

since µ is assumed to be real. It follows that

µ(Γ−K) <
ε

4
.

An easy computation then gives

|f(x)− f(x0)| ≤ max
γ∈K
|γ(x− x0)− 1|µ(K) +

ε

2
. (1)

By continuity of γ(x) on Γ×G there exists for each γ0 in K an open set Vγ0 of
Γ containing γ0 and an open set Wγ0 of G containing x− x0 such that γ ∈ Vγ0
and y ∈Wγ0 implies that

|γ(y)− 1| < ε

2µ(K)
.

The union
⋃
γ∈K Vγ is an open cover of the compact set K hence K has the

finite subcover Vγ1 ∪ ... ∪ Vγm . The set W = Wγ1 ∩ ... ∩Wγm is a non-empty
open subset of G and if x is in W +x0 then (1) shows us that |f(x)−f(x0)| < ε
hence f is continuous.

5.2 Bochner’s Theorem

We have just shown that any function of the form f(x) =
∫

Γ
γ(x)dµ(γ) with

a non-negative µ in M(G) is continuous and positive-definite. The content of
Bochner’s theorem is that the converse is also true, any continuous positive
definite function is of that form.

Theorem 7. Bochner’s Theorem. The function f is a continuous positive-
definite function if and only if there exists a unique postive measure µ in M(Γ)
such that

f(x) =

∫

Γ

γ(x)dµ(γ) (1)
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Proof. The easy part, that any function of the form (1) is continuous and
positive-definite was shown above. Assume that f : G → C is a continuous
and positive-definite function. From propostion 10 we see that we can without
loss of generality assume that f(0) = 1. The idea of the proof is to construct a
bounded linear functional Λ on C0(Γ) which can then be rewritten as an inte-
gral with respect to a complex measure with the Riesz representation theorem.
This measure will be the measure in (1). To do that we first need to define the
functional T on L1(G) given by

T (g) =

∫

G

g(x)f(x)dx.

Since |f(x)| ≤ f(0) for all x in G the functional is well defined. The goal with
the remainder of the proof is to show that T can be used to define a linear
functional C0(Γ) which we will call Λ. We begin by proving the inequality

|T (g)|2 ≤ T (g ∗ g̃) (2)

where g̃(x) = g(−x). If we define for g and h in L1(G) the function

[g, h] = T (g ∗ h̃).

Using Fubini’s theorem (see Theorem 8.8 in [1]) we see that

[g, h] =

∫

G

(g ∗ h̃)(x)f(x)dx =

∫

G

(h̃ ∗ g)(x)f(x)dx

=

∫

G

∫

G

h(−(x− y))g(y)f(x)dydx

=

∫

G

∫

G

h(y)g(y + x)f(x)dydx

=

∫

G

∫

G

g(y + x)h(y)f(x)dxdy

=

∫

G

∫

G

g(x)h(y)f(x− y)dxdy.

From this expression we see that [g, h] is linear in g and [g, h] = [h, g]. It follows
that

[g, αh1 + βh2] = α[g, h1] + β[g, h2]

whenever α, β are complex. Assume for the moment that

[g, g] ≥ 0

for any g in L1(G). Then we can show that

|[g, h]|2 ≤ [g, g][h, h] (3)
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holds for any g and h in L1(G). Since if [g, h] 6= 0 we can let α = [g,h]
|[g,h]| then

|α = 1| and for any real r we have

0 ≤ [g − rαh, g − rαh]

= [g, g − rαh]− rα[h, g − rαh]

= [g, g]− rα[g, h]− rα[h, g] + r2|α|2[h, h]

= [g, g]− 2r|[g, h]|+ r2[h, h].

This is a positive quadratic in r. We know by assumption that [h, h] ≥ 0 and if
[h, h] = 0 we must have [g, h] = 0 since otherwise the quadratic is negative for

large enough r. If [h, h] > 0 then we can let r = |[g,h]|
[h,h] and obtain

0 ≤ [g, g]− 2
|[g, h]|2
[h, h]

+
|[g, h]|2
[h, h]

.

Hence

|[g, h]|2 ≤ [g, g][h, h].

We now show that [g, g] ≥ 0 which amounts to showing that

∫

G

∫

G

g(x)g(y)f(x− y)dxdy ≥ 0

for any g ∈ L1(G). Pick a g in Cc(G) with support in the compact set K
and note that the continuous function φ(x, y) = g(x)g(y)f(x − y) is uniformly
continuous on K×K since K×K is compact. By uniform continuity there exists
an open set V ⊆ K×K containing the identity such that (x1, y1)− (x2, y2) ∈ V
implies |φ(x1, y1) − φ(x2, y2)| < ε. By using the basis of the product topology
there exists B1 and B2 open in G such that 0 ∈ B1×B2 ⊆ V . Let B = B1 ∩B2

then 0 ∈ B ×B ⊆ V hence

|φ(x1, y1)− φ(x2, y2)| < ε

whenever (x1, y1)− (x2, y2) ∈ B ×B. Since B is open and

K ⊆
⋃

x∈K
(x+B)

is an open cover of K it follows that there exists points x1, ..., xN such that

K ⊆
N⋃

n=1

(xn +B)

Let E1 = K ∩ (xn +B) and define for 1 < n ≤ N

En = ((xn +B)− E1) ∩K.
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It is then clear that the sets (En)n are mutually disjoint and

K =
N⋃

n=1

En

Furthermore (yn, ym) ∈ En × Em implies that

|φ(yn, ym)− φ(xn, xm)| < ε.

Since sets of the form En are mutually disjoint and cover K it follows that

m(K)2 =
N∑

n,m=1

m(En)m(Em).

Using these properties we get

|
∫

G

∫

G

φ(x, y)dxdy −
N∑

n,m=1

m(En)m(Em)φ(xn, xm)|

= |
∫

K

∫

K

φ(x, y)dxdy −
N∑

n,m=1

∫

En

∫

Em

φ(xn, xm)dxdy|

= |
N∑

n,m=1

∫

En

∫

Em

φ(x, y)dxdy −
N∑

n,m=1

∫

Em

∫

En

φ(xn, xm)dxdy|

≤
N∑

n,m=1

∫

En

∫

Em

|φ(x, y)− φ(xn, xm)|dxdy

<

N∑

n,m=1

∫

En

∫

En

εdxdy

=
N∑

n,m=1

m(En)m(Em)ε = εm(K)2.

So the difference betweem the double integral of φ(x, y) and the sum

N∑

n,m=1

m(En)m(Em)φ(xn, xm) =

N∑

n,m=1

m(En)g(xn)m(Em)g(xm)f(xn − xm)

(4)

can be made arbitrary small. Since f is positive-definite it follows that the sum
in (4) is always positive and therefore the integral is always positive,

∫

G

∫

G

g(x)g(y)f(x− y)dxdy ≥ 0 (5)
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if g ∈ Cc(G). Assume now that g is in L1(G). Since Cc(G) is dense in L1(G) we
can find a sequence of functions (gn) in Cc(G) converging to g in L1(G). This
implies that

lim
n→+∞

∫

G

∫

G

gn(x)gn(y)f(x− y)dxdy =

∫

G

∫

G

g(x)g(y)f(x− y)dxdy. (6)

Since

| lim
n→+∞

∫

G

∫

G

gn(x)gn(y)f(x− y)dxdy −
∫

G

∫

G

g(x)g(y)f(x− y)dxdy|

≤ lim
n→+∞

∫

G

∫

G

|gn(x)gn(y)− g(x)g(y)||f(x− y)|dxdy

≤ lim
n→+∞

f(0)

∫

G

∫

G

|gn(x)gn(y)− g(x)gn(y) + g(x)gn(y)− g(x)g(y)|dxdy

≤ lim
n→+∞

f(0)(||gn − g||1||gn||1 + ||g||1||gn − g||1) = 0.

From (5) and (6) it follows that

[g, g] =

∫

G

∫

G

g(x)g(y)f(x− y)dxdy ≥ 0

for any g in L1(G).

Pick ε > 0. By uniform continuity of f there exists an open set V of 0 such
that x − y ∈ V implies that |f(x) − f(y)| < ε. By continuity of multiplication
m and definition of the product topology there exists an open set B1 × B2 of
G × G which contains (0, 0), let U = B1 ∩ B2 then U is an open subset of G
which contains 0 such that U + U ⊆ V . After considering W = U ∩ (−U) we
can assume that U = −U . Now let h = χU

m(U) then

[h, h]− 1 =

∫

G

∫

G

h(x)h(y)f(x− y)dxdy − 1

m(U)2

∫

U

∫

U

dxdy

=
1

m(U)2

∫

U

∫

U

(f(x− y)− f(0))dxdy < ε.

Therefore

[h, h]− 1 < ε. (7)

Also, for any g in L1(G)

[g, h]− T (g) =

∫

G

∫

G

g(x)h(y)f(x− y)dxdy −
∫

G

g(x)f(x)dx

=

∫

G

g(x)

m(U)

∫

U

f(x− y)dydx−
∫

G

g(x)

m(U)

∫

U

f(x)dydx

=

∫

G

g(x)

m(U)

∫

U

(f(x− y)− f(x))dydx.
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If y ∈ U then x− y − x = −y ∈ U ⊆ V hence

|[g, h]− T (g)| < ε||g||1.

It follows by the reverse triangle inequality that

|T (g)| < |[g, h]|+ ε||g||1. (8)

Using (3), (7) and (8) we get

|T (g)|2 < |[g, h]|2 + 2|[g, h]|ε||g||1 + ε2||g||21
≤ [g, g][h, h] + 2

√
[g, g][h, h]ε||g||1 + ε2||g||21

< [g, g](1 + ε) + 2
√

[g, g](1 + ε)ε||g||1 + ε2||g||21
= [g, g] + ε([g, g] + 2

√
[g, g](1 + ε)||g||1 + ε||g||21).

Letting ε→ 0 we see

|T (g)|2 ≤ [g, g] = T (g ∗ g̃)

which gives us (2). We now have what we need to show T can be used to define
a bounded linear functional Λ on C0(Γ).

Define k = g ∗ g̃ and kn = kn−1 ∗ k for any integer n > 1. By commuta-
tivity of convolution we get that kn = k ∗ kn−1. Using Corollary 1 we see that
for any pair of functions X,Y in L1(G) we have

˜(X ∗ Y )(x) =

∫

G

X(−x− y)Y (y)dy =

∫

G

X(−x− y)Y (y)dy

=

∫

G

Xx(−y)Y (y)dy =

∫

G

Xx(y)Y (−y)dy

=

∫

G

X(y − x)Y (−y)dy =

∫

G

X̃(x− y)Ỹ (y)dy

= (X̃ ∗ Ỹ )(x).

Applying this to the case X = g and Y = g̃ we get

k ∗ k̃ = (g ∗ g̃) ∗ (g̃ ∗ g) = (g ∗ g̃) ∗ (g ∗ g̃) = k ∗ k = k2

By induction on n and associativity of convolution we have

kn ∗ (̃kn) = (k ∗ kn−1) ∗ ˜(kn−1 ∗ k)

= k ∗ kn−1 ∗ (̃kn−1) ∗ k̃ = k ∗ k2(n−1) ∗ k̃
= k2 ∗ k2(n−1) = k2n

hence

kn ∗ ˜(kn) = k2n. (9)
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By combining (9) and (2) repeatedly we get the expression

|T (g)|2 ≤ T (g ∗ g̃) = T (k)

≤ T (k ∗ k̃)1/2 = T (k2)1/2

≤ T (k2 ∗ k̃2)1/4 = T (k4)1/4

≤ ... ≤ T (k2n)2−n

for any positive integer n. Since ||f ||∞ = 1 it follows that ||T || ≤ 1 hence
|T (k2n)| ≤ ||k2n ||1 and therefore

|T (g)|2 ≤ T (k2n)2−n ≤ ||k2n ||2−n1 .

Recall that L1(G) is a sub-Banach-Algebra of the unital Banach Algebra M(G)
hence if we let n→ +∞ then

|T (g)|2 ≤ ||k2n ||2−n1 → ρ(k) (10)

by the spectral radius formula, see Theorem 18.9 in [1] where

ρ(k) = sup{|λ|; k − λe is not invertible}

and e = δ0 is the unit element in M(G). Note that if λ0 is such that k − λ0e
is not invertible then by Theorem 18.17 b in [1] there exists a complex linear
functonal h0 defined on M(G) which is not 0 everywhere, h0(xy) = h0(x)h0(y)
for any x, y ∈ M(G) and h0(k − λ0e) = 0. It follows that h0(k) = λ0h0(e) and
since h0 6= 0 it follows that h0(k) = λ0. Let 4 be the set of all complex linear
functionals defined on M(G) which are also multiplicative, then it follows that

sup
h∈4
|h(k)| ≥ |h0(k)| = λ0.

Since λ0 was an arbitrary element of the set of all elements λ ∈ C such that
k − λe is not invertible it follows that

ρ(k) ≤ sup
h∈4
|h(k)| ≤ sup

h∈4
|h(g ∗ g̃)|

≤ sup
h∈4
|h(g2)| ≤ (sup

h∈4
|h(g)|)2

and combining this with (10) we get

|T (g)| ≤ sup
h∈4
|h(g)|. (11)

We know that the supremum is not achieved at h = 0. If we let 4′−{0} be the
set of all function restrictions to L1(G) ⊆ M(G) of elements in 4 − {0} then
4′ − {0} is in correspondence with Γ by Proposition 15 hence

|T (g)| ≤ sup
h∈4
|h(g)| = sup

γ∈Γ
|ĝ(γ)| = ||ĝ||∞. (12)
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If ĝ is in A(Γ) (the set of all Fourier transforms) then we can define Λ : A(Γ)→ C
by

Λ(ĝ) = T (g). (13)

If ĝ1 = ĝ2 then ||ĝ1 − ĝ2||∞ = 0 and therefore (12) shows us that T (ĝ1) = T (ĝ2)
so it follows that Λ is well defined. The expression (12) also shows us that
Λ is a bounded linear function of norm ||Λ|| ≤ 1. Since A(Γ) is a subspace
of the Banach space C0(Γ) the Hahn-Banach Theorem (see Theorem 5.16 in
[1]) allows us to extend Λ to a bounded linear functional on C0(Γ) of norm
less than 1 (which we will also call Λ). By the Riesz Representation Theorem
of bounded linear functionals (see Theorem 6.19 in [1]), there exists a unique
regular complex Borel measure ν defined on Γ such that

Λg =

∫

Γ

g(γ)dν(γ)

for any g ∈ C0(Γ) and |ν|(Γ) = ||ν|| = ||Λ|| ≤ 1. If we define µ(E) = ν(−E)
(where −E is the inverses of E in Γ) then it is easy to show that µ is a complex
regular Borel measure such that |µ|(Γ) = |ν|(Γ) ≤ 1. We also have for any Borel
set E the formula

∫

Γ

χE(−γ)dµ(γ) =

∫

Γ

χ−E(γ)dµ(γ)

= µ(−E) = ν(E) =

∫

Γ

χE(γ)dν(γ).

By linearity we get
∫

Γ

s(−γ)dµ(γ) =

∫

Γ

s(γ)dν(γ)

for any simple function s in L1(µ). Since those simple functions are dense in
L1(µ) and C0(Γ) ⊆ L1(µ) we get that

∫

Γ

G(−γ)dµ(γ) =

∫

Γ

G(γ)dν(γ)

for any G in C0(Γ). If g is in L1(G) it follows that

T (g) = Λ(ĝ) =

∫

Γ

ĝ(−γ)dµ(γ)

and by Fubini’s Theorem (see Theorem 8.8 in [1]) we have
∫

G

g(x)f(x)dx = T (g) = Λ(ĝ)

=

∫

Γ

ĝ(−γ)dµ(γ)

=

∫

G

g(x)

∫

Γ

γ(x)dµ(γ)dx
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and therefore
∫

G

g(x)(f(x)−
∫

Γ

γ(x)dµ(γ))dx = 0.

If we let g = χE where E is any Borel set of finite measure we see that

f(x) =

∫

Γ

γ(x)dµ(γ) a.e on E (14)

Since G is locally compact any x ∈ G has an open neighbourhood Vx with finite
Haar-measure. If we restrict the left hand side and the right hand side of (14)
to Vx then we know that f |Vx is continuous since f is continuous by assumption.
The proof in proposition 21 transfers directly to arbitrary elements of M(G) by
using the polar decomposition dµ = hd|µ| which shows that the right hand side
(14) is continuous when restricted to Vx. It follows that

f(y) =

∫

Γ

γ(y)dµ(γ) (15)

for all y ∈ Vx. Since sets of the form Vx are an open cover of G it follows that
(15) holds for all y ∈ G.

If we let y = 0 in (15) yields

1 = f(0) =

∫

Γ

dµ = µ(Γ) ≤ |µ|(Γ) ≤ 1.

It follows that ||µ− |µ||| = 0 hence µ = |µ| and therefore µ ≥ 0.

5.3 The Fourier Inversion Theorem

Definition 15. Let B(G) be the set of all functions f : G→ C such that there
exists a measure µ ∈M(G) that satisfies

f(x) =

∫

Γ

γ(x)dµ(γ)

for any x in G.

Remark. If µ is in M(G) it can clearly be written on the form µ = µ1 + iµ2

where µ1, µ2 are both real measures in M(G). Using the Hahn Decomposition
we can decompose both µ1 and µ2 as the difference of two positive measures in
M(G) respectively. Therefore we have

µ = µ+
1 − µ−1 + iµ+

2 − iµ−2
and Bochner’s Theorem implies that B(G) is the set of all linear combinations
of positive definite functions.
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Theorem 8. The Fourier Inversion Theorem. If f is in L1(G) ∩B(G) then f̂
is in L1(Γ) and if the Haar measure on Γ is suitably normalized the inversion
formula

f(x) =

∫

Γ

f̂(γ)γ(x)dγ

holds for any x in G.

Proof. If f is in L1(G) ∩ B(G) then there exists a measure µf in M(G) such
that

f(x) =

∫

Γ

γ(x)dµf (γ) (1)

If h is any function in L1(G) then

(h ∗ f)(0) =

∫

G

h(−x)f(x)dx =

∫

G

∫

Γ

h(−x)γ(x)dµf (γ)dx.

Fubini’s theorem (see Theorem 8.8 in [1]) clearly applies since h is L1(G) and
|
∫

Γ
γ(x)dµf (γ)| ≤ ||µf || so

(h ∗ f)(0) =

∫

Γ

∫

G

h(−x)γ(x)dxdµf (γ)

=

∫

Γ

∫

G

h(x)γ(−x)dxdµf (γ)

=

∫

Γ

ĥ(γ)dµf (γ).

Let g be in L1(G) ∩ B(G) and associate µg ∈ M(G) to g as in (1). By using
properties of convolution and letting h∗g take the role of h in the formula above
we obtain

∫

Γ

ĥĝdµf =

∫

Γ

(̂h ∗ g)dµf

= ((h ∗ g) ∗ f)(0)

= ((h ∗ f) ∗ g)(0)

=

∫

Γ

ĥf̂dµg.

From this it follows that complex measures νf and νg given by integrating ĝ

with respect to µf and integrating f̂ with respect to µg respectively satisfy

∫

Γ

ĥdνf =

∫

Γ

ĥdνg
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for any h in L1(G). Define the linear functional L : C0(Γ)→ C by

L(F ) =

∫

Γ

Fd(νf − νg).

The functional L is well defined on C0(Γ) since νf , νg are complex measures
and hence |νf − νg|(Γ) < +∞. The functional is also bounded since |L(F )| ≤
|νf − νg|(Γ) whenever ||F ||∞ ≤ 1. By construction L(ĥ) = 0 for any h ∈ L1(G),
so L vanishes on the set A(Γ) ⊆ C0(Γ). Since A(Γ) is dense in C0(Γ) it follows
that L(F ) = 0 for any F ∈ C0(Γ) and by the Riesz representation theorem for
bounded linear functionals (see Theorem 6.19 in [1]) this can only happen if
νf = νg.

We will now define a positive linear functional T on Cc(Γ). Pick ψ in Cc(Γ) and
let Kψ be the support of ψ. If γ0 ∈ Kψ we see by picking v in Cc(G), ||v||1 6= 0
that the function given by (vγ0)(x) = v(x)γ0(x) for x ∈ G satisfies v̂γ0(γ0) 6= 0.
So for any γ0 ∈ Kψ there exists a function u ∈ Cc(G) such that û(γ0) 6= 0. By

defining ũ(x) = u(−x) it follows that ̂̃u = û hence the Fourier transform of u∗ ũ
is nowhere negative and strictly positive at γ0.

For any γ0 in Kψ we have for the corresponding function u ∈ Cc(G) that the
set

Mγ0 = {γ ∈ Γ; |û ∗ ũ| > 0}

is open and therefore the family of sets (Mγ0)γ0∈Kψ is an open cover of Kψ.
By compactness of Kψ there exists functions u1, ..., un in Cc(G) such that the
continuous function

g =
n∑

i=1

ui ∗ ũi

satisfies that ĝ > 0 on Kψ. By the definition of a positive definite function it is
clear that any finite sum of positive definite functions is positive definite so g is
positive definite if each ui ∗ ũi is. But ui ∗ ũi is positive definite for each i since

N∑

j,k=1

cjck(ui ∗ ũi)(xj − xk) =
N∑

j,k=1

cjck

∫

G

ui(xj − xk − y)ui(−y)dy

=

N∑

j,k=1

cjck

∫

G

ui(xj − y)ui(xk − y)dy

=

∫

G

N∑

j,k=1

cjckui(xj − y)ui(xk − y)dy

=

∫

G

|
N∑

j=1

cjui(xj − y)|2dy ≥ 0.
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By Bochner’s theorem there exists a positive measure µg in M(Γ) such that

g(x) =

∫

Γ

γ(x)dµg.

We can now define the functional T : Cc(Γ)→ C by

T (ψ) =

∫

Kψ

ψ

ĝ
dµg.

Here of course g depends implicitly on ψ by its construction. The functional
T is well defined in the sense that g can be replaced with any other positive
definite function f ∈ Cc(G) such that f̂ is strictly positive on Kψ in the defining
equation for T (ψ) without changing the value of T (ψ). This is true since

∫

Kψ

ψ

ĝ
dµg =

∫

Kψ

ψ

ĝf̂
f̂dµg =

∫

Kψ

ψ

ĝf̂
dνg

=

∫

Kψ

ψ

ĝf̂
dνf =

∫

Kψ

ψ

ĝf̂
ĝdµf

=

∫

Kψ

ψ

f̂
dµf .

From this it is also clear that T is linear. Also, since ĝ > 0 on the support of ψ
and µg is a positive measure it follows that T (ψ) ≥ 0 whenever ψ ≥ 0, that is,
T is a positive linear functional.

Notice that for the function g defined above we have that µg(Γ − Kĝ) = 0.
If this was not the case then there exists by inner regularity of µg a compact set
K ⊆ Γ−Kĝ such that 0 < µg(K) ≤ µf (Γ−Kĝ). Construct a positive definite

function f such that f̂ > 0 on K then since νg = νf it follows that

∫

K

f̂dµg =

∫

K

ĝdµf = 0.

Since f̂ > 0 on K it follows that µg(K) = 0, a contradiction. Hence ĝ 6= 0 a.e.
with respect to µg and it follows that we can instead equivalently define T by
integrating over Γ instead of Kψ:

T (ψ) =

∫

Γ

ψ

ĝ
dµg.

Pick a function φ in Cc(Γ) that is non-negative and not the zero function and,

as before pick a positive definite function f such that f̂ > 0 on Kφ. Then since
the measure µf is positive by Bochners theorem we get

T (φf̂) =

∫

Γ

φf̂

ĝ
dµg =

∫

Γ

φdµf > 0
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so T is not the zero functional.

We now prove that T is translation-invariant. Pick ψ ∈ Cc(Γ), γ0 ∈ Γ and
set ψ0(γ) = ψ(γγ−1

0 ). Contruct the g corresponding to ψ such that ĝ is also
strictly positive on the support of ψ0. Define f by f(x) = γ0(−x)g(x), then it

follows that f̂(γ) = ĝ(γγ0) and f is continuous. Associate µg to g with Bochners
theorem,

g(x) =

∫

Γ

γ(x)dµg(γ).

Then we have that

f(x) = γ0(−x)g(x) =

∫

Γ

(γ0γ)(x)dµg(γ)

By defining µ(E) = µg(γ0E) on any Borel set E ⊆ Γ it follows that µ ∈ M(Γ)
and µ ≥ 0 since µg satisfies the same properties. By definition of µ we also have

∫

Γ

χE(γ)dµ(γ) =

∫

Γ

χγ0E(γ)dµg(γ) =

∫

Γ

χE(γ0γ)dµg(γ)

for any Borel set E. By a standard approximation argument of simple functions
it follows that

∫

Γ

F (γ0γ)dµg(γ) =

∫

Γ

F (γ)dµ(γ)

for any F ∈ L1(µg). In particular, by letting Fx(γ) = γ(x) for any fixed x ∈ G
it follows that

f(x) =

∫

Γ

(γ0γ)(x)dµg(γ) =

∫

Γ

γ(x)dµ(γ).

From Böchners theorem it follows that f is positive definite and its correspond-
ing measure µf is given by µf (E) = µ(E) = µg(γ0E). By letting

F (γ) =
ψ(γ)

(ĝ)γ0(γ)

where we recall that (ĝ)γ0(γ) = ĝ(γ0γ) it follows that

T (ψ0) =

∫

Γ

ψ0(γ)

ĝ(γ)
dµg(γ) =

∫

Γ

ψ(γ0γ)

ĝ(γ)
dµg(γ)

=

∫

Γ

ψ(γ0γ)

ĝ(γ0γ0γ)
dµg(γ) =

∫

Γ

F (γ0γ)dµg(γ) =

=

∫

Γ

F (γ)dµf (γ) =

∫

Γ

ψ(γ)

ĝ(γ0γ)
dµf (γ) =

=

∫

Γ

ψ(γ)

f̂(γ)
dµf (γ) = T (ψ).
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Hence T : Cc(Γ) → C is a positive translation-invariant linear functional. By
the Riesz representation theorem for positive linear functionals on Cc(Γ), (see
Theorem 2.14 in [1]) there corresponds a regular measure m on Γ such that

T (ψ) =

∫

Γ

ψdm

Since T is translation invariant we see from the proof of the construction of the
Haar measure, Theorem 1 that m is in fact a Haar-measure on Γ and we will
denote it by dm(γ) = dγ. If ψ ∈ Cc(Γ), f ∈ L1(G) ∩ B(G) and g is positive
definite L1(G)-function such that ĝ > 0 on the support of ψ then

∫

Γ

ψf̂dγ = T (ψf̂) =

∫

Γ

ψf̂

ĝ
dµg

=

∫

Γ

ψ

ĝ
ĝdµf =

∫

Γ

ψdµf .

Since above is true for any ψ ∈ Cc(Γ) it follows that

µf (E) =

∫

E

f̂dγ.

Since µf is a finite measure it follows that f̂ ∈ L1(Γ) and since f ∈ B(G) we
have

f(x) =

∫

Γ

γ(x)dµf (γ) =

∫

Γ

γ(x)f̂(γ)dγ

and the theorem follows.

Proposition 22. If H is another topological group and the function Φ : G→ H
is a group isomorphism and a homeomorphism then

∫

G

f(x)dm(x) =

∫

H

f(Φ−1(y))dmH(y)

for any f ∈ L1(G) where m is the Haar-measure on G and mH is defined by
mH(E) = m(Φ−1(E)) for any Borel set E ⊆ H. Note that by Proposition 9
mH is a Haar-measure.

Proof. Let f be in L1(G). After decomposing f into its real positive-, real
negative- , imaginary positive- and imaginary negative part we can without
loss of generality assume that f is positive. Since f is positive there exists a
sequence of simple measurable functions (sn)n converging to f pointwise such
that sn(x) ≤ sn+1(x) ≤ f(x) for each x and n (see Theorem 1.17 in [1]). If
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s =
∑N
n=1 αnχEn is any simple function defined on G then

∫

H

s(Φ−1(y))dmH(y) =
N∑

n=1

αn

∫

H

χEn(Φ−1(y))dmH(y) =
N∑

n=1

αn

∫

H

χΦ(En)(y)dmH(y)

=
N∑

n=1

αnmH(Φ(En)) =
N∑

n=1

αnm(Φ−1(Φ(En)))

=

N∑

n=1

αnm(En) =

∫

G

s(x)dm(x)

So the proposition holds for any simple function. After using the monotone
convergence theorem twice below the theorem follows

∫

H

f(Φ−1(y))dmH(y) = lim
n→+∞

∫

H

sn(Φ−1(y))dmH(y)

= lim
n→+∞

∫

G

sn(x)dm(x) =

∫

G

f(x)dm(x).

Note that the composition sn ◦ Φ−1 is a simple function for each n.
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6 Plancherel’s Theorem

In this section we will prove Plancherels Theorem and some important Corol-
laries. Plancherels Theorem will allow us to define the so called Plancherel
transform. Less detailed proofs can be found in Section 1.6 in [3].

6.1 Plancherel’s Theorem

Theorem 9. Plancherel’s Theorem. The Fourier transform restricted to L1(G)∩
L2(G) is an isometry with respect to L2-norms onto a dense linear subspace of
L2(Γ). Therefore it may be extended uniquely to an isometry of L2(G) onto
L2(Γ). This extension is often referred to as the Plancherel transform.

Proof. Assume that f ∈ L1(G) ∩ L2(G) and define f̃(x) = f(−x) and set
g = f ∗ f̃ . Then we have that g ∈ L1(G) and that g is continuous by Proposition
14. We also know as shown in the inversion Theorem proof that g is positive
definite. After applying the Fourier inversion theorem to g and the relation
|ĝ| = |f̂ |2 we get the following relation

∫

G

|f(x)|2dx =

∫

G

f(x)f̃(0− x) = g(0) =

∫

Γ

ĝ(γ)γ(0)dγ =

∫

Γ

|f̂ |2dγ.

It follows that ||f ||2 = ||f̂ ||2. Hence the Fourier transform is an L2-norm isom-
etry when restricted to L1(G) ∩ L2(G). If we let Θ be the set of all Fourier
transforms of functions in L1(G)∩L2(G) then we need to show that Θ is dense
in L2(Γ). Since the Fourier transform is an L2-isometry of L1(G) ∩ L2(G) into
L2(Γ) it is clear that Θ ⊆ L2(Γ). Since the Fourier transform of a translate of
a function is

f̂x0
(γ) = γ(−x0)f̂(γ)

it follows that H(γ) = F (γ)γ(x0) is in Θ whenever F ∈ Θ for any x0 ∈ G.
Hence if ψ ∈ L2(Γ) and

(φ, ψ) =

∫

Γ

φψdγ = 0

for any φ in Θ then

∫

Γ

φ(γ)γ(x)ψ(γ)dγ = 0

for any x ∈ G. By defining the measure η by dη = φ(γ)ψ(γ)dγ we get from
above that

∫

Γ

γ(x)dη(γ) = 0
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for any x ∈ G. By Proposition 19 it follows that η = 0 since η ∈ M(Γ). It
follows that

φψ = 0 a.e.

for any φ in Θ. Note that Θ is translation invariant since the Fourier transform
for the function h(x) = δ(x)f(x), δ ∈ Γ is equal to ĥ(γ) = f̂(γδ−1).

Now pick a γ0 ∈ Γ. Since there exists a Fourier transform F̂ : Γ → C which
is strictly positive at 1 ∈ Γ, the identity in Γ it follows that the function F̂
translated by γ−1

0 , F̂γ−1
0

is in Θ and |F̂γ−1
0

(γ0)| > 0. By continuity of F̂γ−1
0

there exists a neighbourhood around γ0 such that F̂γ−1
0

is strictly positive in

this neighbourhood. By letting φ = F̂γ−1
0

in

φψ = 0 a.e.

it follows that ψ = 0 almost everywhere inside that neighbourhood. Since γ0

was we see that

ψ = 0 a.e.

It follows that the only element in L2(Γ) which is orthogonal to every element
of Θ is 0. Any f ∈ L2(Γ) can be decomposed as f = Pf + Qf where Pf ∈ Θ
and (g,Qf) = 0 for any g ∈ Θ see (Theorem 4.11 in [1]). If (g,Qf) = 0 for any
g ∈ Θ then in particular (g,Qf) = 0 for any g ∈ Θ hence Qf = 0 and it follows
that f = Pf ∈ Θ so Θ is dense in L2(Γ).

We have that the Fourier transform is an L2-norm isometry of L2(G) ∩ L1(G)
onto a dense linear subspace of L2(Γ). We will now extend this to an L2-
norm isometry of L2(G) onto L2(Γ), the so called Plancherel transform. Since
Cc(G) ⊆ L1(G) ∩ L2(G) and Cc(G) is dense in L2(G) it follows that L1(G) ∩
L2(G) is dense in L2(G). If f is in L2(G) we can take a sequence fn in
L1(G) ∩ L2(G) such that fn → f in L2(G) and define the Plancherel trans-

form of f , f̂ as

f̂ = lim
n→+∞

f̂n

where the f̂n on the right side denotes the regular Fourier transform and the limit
is in L2(Γ). This is well-defined since if gn is another such sequence converging
to f we have by the isometry of the Fourier transform

lim
n→+∞

||f̂n − ĝn||2 = lim
n→+∞

|| ̂fn − gn||2
= lim
n→+∞

||fn − gn||2 = 0.

Hence limn→+∞ f̂n − ĝn = 0 in L2(Γ) and it follows that

lim
n→+∞

f̂n = lim
n→+∞

f̂n − ĝn + ĝn = lim
n→+∞

ĝn.
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The Plancherel transform clearly coincides with the Fourier transform when
restricted to L1(G) ∩ L2(G) and by the reverse triangle inequality we see that
it is an isometry since

||f̂ ||2 = lim
n→+∞

||f̂n||2 = lim
n→+∞

||fn||2 = ||f ||2.

It remains to show that the Plancherel transform maps onto L2(Γ). Choose a
function F ∈ L2(Γ). Since Θ is dense in L2(Γ) there exists a sequence Fn in Θ
such that Fn → F in L2(Γ) and by definition of Θ there exists a sequence of

functions fn in L1(G)∩L2(G) such that f̂n = Fn. Using the isometry property
and the triangle inequality we get

||fn − fm||2 ≤ ||F − Fm||2 + ||Fn − F ||2.

thus fn is a Cauchy sequence in L2(G). By completeness of L2(G) the sequence
fn converges to a function f ∈ L2(G) and by definition of the Plancherel trans-
form we get

f̂ = lim
n→+∞

f̂n = lim
n→+∞

Fn = F.

6.2 Parseval’s Formula and other Corollaries

Corollary 2. Parseval’s formula. If f, g ∈ L2(G) then Parseval’s formula
∫

G

f(x)g(x)dx =

∫

Γ

f̂(γ)ĝ(γ)dγ

holds where f̂ denotes the plancherel transform of f .

Proof. Let f, g be in L2(G). Using the fact that for any complex valued function
f we have |f(x)|2 = f(x)f(x), the polarization identity is easily verified

4fg = |f + g|2 − |f − g|2 + i|f + ig|2 − i|f − ig|2.

Using Plancherel’s theorem we see that

4

∫

G

f(x)g(x)dx =

=

∫

G

|f + g|2dx−
∫

G

|f − g|2dx+ i

∫

G

|f + ig|2dx− i
∫

G

|f − ig|2dx

=

∫

Γ

|f̂ + ĝ|2dγ −
∫

Γ

|f̂ − ĝ|2dγ + i

∫

Γ

|f̂ + iĝ|2dγ − i
∫

Γ

|f̂ − iĝ|2dγ

= 4

∫

Γ

f̂(γ)ĝ(γ)dγ.
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Corollary 3. The set A(Γ) coincides with the set of all convolutions of the
form F ∗G where F,G ∈ L2(Γ).

Proof. Let f, g be in L2(G). If h = g is the conjugate of g then ĥ(γ) = ĝ(γ) and
replacing g with h in Parseval’s formula gives

∫

G

f(x)g(x)dx =

∫

Γ

f̂(γ)ĝ(γ)dγ.

If we let k(x) = g(x)γ0(−x) for some γ0 ∈ Γ then k̂(γ) = ĝ(γγ0) and replacing
g with k above yields

∫

G

f(x)g(x)γ0(−x)dx =

∫

Γ

f̂(γ)ĝ(γ0γ)dγ = (f̂ ∗ ĝ)(γ0).

Any H ∈ L1(G) can be decomposed as H = |H|P where |P (x)| = 1 for all

x ∈ G and then it follows that H = (|H| 12 )(|H| 12P ) := fg can be written as a

product of L2(G)-functions and from above we see that F̂ = f̂ ĝ. On the other
hand, if F,G ∈ L2(Γ) then by Plancherels theorem there exists f, g ∈ L2(G)

such that f̂ = F and ĝ = G and from above we know that

(F ∗G)(γ0) =

∫

G

f(x)g(x)γ0(−x)dx ∈ A(Γ)

.

Corollary 4. If V ⊆ Γ is a non-empty and open then there exists f̂ ∈ A(Γ)

such that f̂ = 0 outside V but f̂ 6= 0.

Proof. To simplify notation we will use additive notation for Γ. Assume that
V ⊆ Γ is a non-empty and open. By inner regularity of the Haar measure we
can find a compact K ⊆ V such that m(K) > 0. We can also find an open set
W such that K + W ⊆ V and m(W ) > 0. This is true since if we pick any
γ ∈ K then by continuity of addition at the point (0, γ) it follows that there
exists open sets Uγ ,Wγ in γ ∈ Uγ , 0 ∈ Wγ and Uγ + Wγ ⊆ V . Since K is
compact the collection of all Uγ is an open cover for K hence it has a finite
subcover

K ⊆
N⋃

n=1

Uγn .

Let W =
⋂N
n=1Wγn then W is open and non-empty and

K +W ⊆
N⋃

n=1

(Uγn +Wγn) ⊆ V.

Since Γ is locally compact there exists an open neighbourhood S of 0 such that
the closure of S is compact. By replacing W with W ′ = W ∩ S if needed it
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follows that we can assume that 0 < m(W ) < +∞.

Let f̂ = χW ∗ χK then f̂ ∈ A(Γ) by Corollary 3 and by definition of convo-
lution we have

f̂(γ0) =

∫

Γ

χW (γ)χK(γ0 − γ)dγ =

∫

K∩(γ0−W )

dγ

= m(K ∩ (γ0 −W )).

If γ0 /∈ V then γ0 /∈ W + K hence there exists no w0 ∈ W and k0 ∈ K such
that γ0 = w0 + k0 hence K ∩ (γ0 −W ) = ∅ and it follows that f̂(γ0) = 0 for
any γ0 /∈ V . Since

∫

Γ

f̂(γ)dγ =
̂̂
f(0) = ̂χW ∗ χK(0) = χ̂W (0) ∗ χ̂K(0) = m(W )m(K) > 0

It follows that f̂ 6= 0 and the Corollary follows.
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7 Pontryagin’s Duality Theorem

We know that the dual of the dual of G which we will call Γ̂ is a locally compact
abelian group since Γ is. In this section we will prove Pontryagin’s duality
Theorem which shows that Ĝ is in fact isomorphic to G as topological groups.
As we will soon see this theorem will enable us prove many useful Corollaries, so
called dual statements simply by applying previously proved Theorems to the
pair (Γ, Γ̂) = (Γ, G) instead of (G,Γ). Before we prove the duality Theorem we
need to prove some important topological characterizations of both Γ and G.
The characterization of Γ uses the compact open topology which will be defined
below

7.1 The Compact-Open Topology of the Dual Group

Definition 16. Let X and Y be a topological spaces and let M be a set of
functions mapping X to Y . Define for any compact K ⊆ X and open V ⊆ Y
the set

BK,V = {f ∈M ; f(K) ⊆ V }.

The compact-open topology on M induced by X and Y is the topology generated
by basis elements of the form

B =
N⋂

n=1

BKn,Vn .

It is clear that such elements form a basis so the definition is well defined.

Theorem 10. If we give Γ the compact-open topology induced by G and T then
any subset of Γ is open in the weak topology induced by A(Γ) if and only if it is
open with respect to the compact open topology.

Proof. We begin by showing that γ−1
0 BK,V is open in the compact-open topol-

ogy for any γ0 ∈ Γ. Pick γ ∈ γ−1
0 BK,V then it follows that

(γγ0)(K) ⊆ V

hence

γ(x)γ0(x) ∈ V

for all x ∈ K. Since T is a topological group there exists for each x ∈ K open
sets Sx, Tx of T containing γ(x) and γ0(x) respectively such that TxSx ⊆ V .
Since G is locally compact and Hausdorff there exists for each x ∈ K open sets
Ax and Bx in G both containing x such that both Ax and Bx are compact and

Ax ⊆ Ax ⊆ γ−1(Tx),

Bx ⊆ Bx ⊆ γ−1
0 (Sx),
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see Theorem 2.7 in [1]. Since each set Ax ∩Bx contains x for each x ∈ K they
form an open cover of K. By compactness of K they have a finite subcover

K ⊆
N⋃

n=1

(Axn ∩Bxn).

The sets defined by

Kn = Axn ∩Bxn
for 1 ≤ n ≤ N are compact. If we let

W =

N⋂

n=1

BKn,Txn

Then it is clear that W ⊆ Γ is open in the compact-open topology. Since
γ(Kn) ⊆ Txn for each n it follows that γ ∈ W . Pick δ ∈ W and y ∈ K. Then
y ∈ Kn for some n. Since δ ∈ W it follows that δ(y) ∈ Txn . We also have that
Kn is a subset of γ−1

0 (Sxn) hence γ0(y) ∈ Sxn . It follows that

δ(y)γ0(y) ∈ TxnSxn ⊆ V

Thus W is an open subset of γ−1
0 BK,V containing γ and it follows that γ−1

0 BK,V
is an open subset in the compact open topology.

We can now show that any weakly open subset in Γ is open in the compact-open
topology. This will be done if we show that f̂−1(B) is open in the compact open
topology for any f ∈ L1(G) and B ⊆ C open. Pick such f and B and let γ0 be

an element of f̂−1(B). There exists an r > 0 such that the open ball of radius

r centered at f̂(γ0), B(r, f̂(γ0)) is strictly contained in B. Since Cc(G) is dense
in L1(G) there exists a function fK supported in the compact set K such that
||f − fK ||1 < r

4 . If we let

V = {γ ∈ Γ; (γγ−1
0 )(−K) ⊆ B(

r

2||fK ||∞
, 1)}

then since V = γ0B−K,B( r
2||fK ||∞

,1) it follows that V is open by what we proved

above. If γ ∈ V then

|f̂(γ)− f̂(γ0)| = |
∫

G

f(x)(γ(−x)− γ0(−x)dx|

=

∫

G

|f(x)− fK(x) + fK(x)||γ(−x)− γ0(−x)|dx

≤ 2||f − fK ||1 + ||fK ||∞
∫

K

|γ(−x)− γ0(−x)|dx

≤ r

2
+ ||fK ||∞

∫

K

|(γγ−1)(−x)− 1|dx < r.

60



thus γ ∈ f̂−1(B(r, f̂(γ0))) ⊆ f̂−1(B) so f̂−1(B) is open in the compact open
topology.

To show that any compact-open set in Γ is open in the weak topology in-
duced by the Fourier transforms it is enough to show that BK,V is open in the
weak topology for any K ∈ G compact and V ⊆ T open in the weak topology.
Note that, in the rest of the proof, ”open” in relation to Γ refers to open in
the weak topology. Pick δ ∈ BK,V , by continuity of the map taking (γ, x) to
γ(x) it follows that for each x ∈ K there exists a Vx ⊆ G open and Wx ⊆ Γ
open containing x and δ respectively such that y ∈ Vx and γ ∈Wx implies that
γ(y) ∈ V . The sets Vx form an open cover of K hence K has a finite subcover

K ⊆
N⋃

n=1

Vxn .

The set

W =
N⋂

n=1

Wxn

is non-empty since it contains δ and open. If γ ∈W then γ(x) ∈ V for all x ∈ K
hence γ ∈ BK,V and it follows that BK,V is open.

7.2 A Characterization for the Topology on G

Corollary 5. Sets of the form

B =
N⋂

n=1

BKn,Vn

is a basis for the weak topology on Γ.

The following Lemma was found in Section 1.5.2 in [3].

Lemma 1. The collection of all sets of the form

VK,U = {x ∈ G; γ(x) ⊆ U , ∀γ ∈ K}

where U is an open subset of T containing 1 and K is a compact subset of Γ
is a neighbourhood basis at 0 of G. Furthermore the set VK,U is open for any
compact K ⊆ Γ and U ⊆ C open.

Proof. Recall that a neighbourhood basis at 0 is a collection of open sets con-
taining 0 such that any open subset of 0 has a basis element as a subset. We
begin to show that VK,U is open where K ⊆ Γ is compact and U ⊆ T is open.
Choose x0 ∈ VK,U . By continuity of the map taking (γ, x) to γ(x) we can find,
for each γ ∈ K open sets Vγ ⊆ G and Wγ ⊆ Γ containing x0 and γ respectively
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such that δ(x) ∈ U whenever δ ∈ Wγ and x ∈ Vγ . The sets Wγ form an open
cover of K hence

K ⊆
N⋃

n=1

Wγn .

Note that the set

V =
N⋂

n=1

Vγn

is open and contains x0 and if x is in V then γ(x) ∈ U for all γ ∈ K so VK,U is
an open subset of G.

To show that any subset open subset V ⊆ G which contains 0 contains a set
of the form VK,U we pick by Proposition 2 an open set W ⊆ G such that
W + (−W ) ⊆ V and let f = χW . It is clear that we can assume m(W ) < +∞
hence f ∈ L1(G) ∩ L2(G). Define g = f ∗ f̃ where f̃(x) = f(−x) and recall
(Proposition 14) that g is continuous since it is a convolution of L2(G)-functions.
By calculating

g(x) =

∫

G

χW (x− y)χW (−y)dx

=

∫

G

χx−W (y)χ−W (y)dy

= m((x−W ) ∩ (−W ))

and using Proposition 7 it follows that g(x) 6= 0 if and only if

(x−W ) ∩ (−W ) 6= ∅.

The set (x −W ) ∩ (−W ) is not empty if and only if there exists w1, w2 ∈ W
such that x − w1 = −w2 which is equivalent to saying that x is an element of
W + (−W ). Since W + (−W ) ⊆ V it follows that if

g(x) > 0

then x ∈ V . By the convolution formula we know that ĝ = |f̂ |2 ≥ 0 and in the
proof of the inverse transform theorem we saw that g is positive definite. The
conditions for the inversion theorem are therefore satisfied hence

g(x) =

∫

Γ

ĝ(γ)γ(x)dγ

for all x ∈ G where dγ denotes integration with respect to a Haar measure on
Γ. Note that g(0) = m((0−W ) ∩ (−W )) > 0 hence

g(0) =

∫

Γ

ĝ(γ)dγ > 0.

62



Using the embedding of L1(Γ) into M(Γ) it follows that the measure defined by

µ(E) =

∫

E

ĝ(γ)dγ

for any Borel set E ⊆ Γ is an element of M(Γ) and µ(E) ≥ 0 since ĝ ≥ 0. It
follows by inner regularity that there exists a compact set K ⊆ Γ such that

g(0) = µ(Γ) =

∫

K

ĝ(γ)dγ >
2

3
g(0).

It is then clear that

|
∫

Γ−K
ĝ(γ)γ(x)dγ| ≤

∫

Γ−K
ĝ(γ)dγ <

1

3
g(0).

Define the set U ⊆ T by

U = {z ∈ T; <(z) >
2

3
}

where <(z) is the real part of z. Since < is a continuous function on C and
U = <−1(( 2

3 ,∞)) ∩ T it follows that U is open in T. If

x ∈ VK,U = {x ∈ G; γ(x) ∈ U ∀γ ∈ K}

then since g is a real valued function we have

g(x) =

∫

Γ

ĝ(γ)γ(x)dγ = <
∫

Γ

ĝ(γ)γ(x)dγ

=

∫

K

ĝ(γ)<γ(x)dγ + <
∫

Γ−K
ĝ(γ)γ(x)dγ

≥
∫

K

ĝ(γ)<γ(x)dγ − |<
∫

Γ−K
ĝ(γ)γ(x)dγ|

>
2

3

∫

K

ĝ(γ)dγ − |
∫

Γ−K
ĝ(γ)γ(x)dγ|

>
4

9
g(0)− 1

3
g(0) =

1

9
g(0) > 0

and since g(x) > 0 implies that x ∈ V it follows that VK,U is a subset of V .

The following Proposition was also proved in Section 1.5.2 in [3].

Proposition 23. If x, y are distinct elements of G then there exists γ ∈ Γ such
that γ(x) 6= γ(y), that is, Γ separates points on G.

Proof. Choose any x0 ∈ G − {0}. In the second part of the proof of Lemma 1
where it was shown that any open subset of V of G contains an element of the
form VK,U we can let V be any open subset of 0 not containing x0 and from
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the proof conclude that γ(x0) 6= 1 for some γ ∈ Γ. This is true since (using the
same notation as in the proof) we have VK,U ⊆ V and therefore

x0 /∈ VK,U = {x; γ(x) ⊆ U ∀γ ∈ K}

= {x; <γ(x) >
2

3
∀γ ∈ K}.

Hence there exists γ ∈ K such that <γ(x0) ≤ 2
3 hence γ(x0) 6= 1. If x, y are

distinct elements of G then above can be applied with x0 = x− y 6= 0 and find
a γ ∈ Γ such that γ(x− y) 6= 1 hence γ(x) 6= γ(y).

7.3 Pontryagin’s Duality Theorem

We now prove Pontryagin’s duality Theorem which says that G is isomorphic
and homeomorphic to its double dual. The proof and the Corollaries can be
found in Section 1.7 in [3].

Theorem 11. Pontryagin’s duality Theorem. Let Γ̂ be the dual of Γ and fix an
element x ∈ G. Define the map ex : Γ→ T by ex(γ) = γ(x) then ex ∈ Γ̂ and the
map Φ : G → Γ̂ given by Φ(x) = ex is an isomorphism and a homeomorphism
between the two groups.

Proof. Let ex(γ) = γ(x) for a fixed x ∈ G. Then clearly |ex(γ)| = 1 for all γ ∈ Γ
and it follows that ex : Γ→ T. If γ and δ are two characters of Γ then

ex(γδ) = (γδ)(x) = γ(x)δ(x) = ex(γ)ex(δ)

hence ex is a homomorphism.

Pick y ∈ G, γ0 ∈ Γ and V ⊆ T open such that γ0(y) ∈ V . By Proposition
13 the mapping defined on G×Γ which takes (x, γ) to γ(x) is continuous hence
the set M = {(x, γ) ∈ G × Γ; γ(x) ∈ V } is open in G × Γ. Since (γ0, y) ∈ M
it follows by the definition of the product topology that there exists an open
W ⊆ Γ and an open U ⊆ G such that (y, γ0) ∈ U×W ⊆M . Since {y}×U ⊆M
it follows that if γ ∈ U then ey(γ) = γ(y) ∈ V so ey is continuous. Hence ey ∈ Γ̂
for each y ∈ G.

Define Φ : G → Γ̂ by Φ(x) = ex. The function Φ is a homomorphism since
the relation

(Φ(x+ y))(γ) = ex+y(γ) = γ(x+ y) = γ(x)γ(y) = ex(γ)ey(γ)

= (Φ(x))(γ)(Φ(y))(γ) = (Φ(x)Φ(y))(γ)

holds for all x, y ∈ G and γ ∈ Γ.

If Φ(x) = Φ(y) then ex(γ) = ey(γ) for all γ ∈ Γ then γ(x) = γ(y) for all
γ ∈ Γ Since Γ separates points on G (Proposition 23) it follows that x = y
hence Φ is injective.
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Since Φ is an injective homomorphism it follows that its inverse Φ−1 : Φ(G)→ G
is also a homomorphism. It therefore remains to prove that Φ(G) = Γ̂ and that
Φ is a homeomorphism onto its image (with the subspace topology).

Note that if Φ : G → Γ̂ is continuous then Φ : G → Φ(G) is continuous.
For continuity of Φ : G→ Γ̂ it is enough to prove that Φ−1(B) is open in G for
any basis element B of Γ̂. By Corollary 5 a basis for Γ̂ is given by elements of
the form

B =
N⋂

n=1

BKn,Vn

for some compact sets Kn ⊆ Γ and open sets Vn ⊆ T. Let B ⊆ Γ̂ be as above,
then using the notation in Lemma 1 it follows that

Φ−1(B) = Φ−1(

N⋂

n=1

BKn,Vn) =

N⋂

n=1

Φ−1(BKn,Vn)

=
N⋂

n=1

{x ∈ G; ex ∈ BKn,Vn}

=

N⋂

n=1

{x ∈ G; ex(γ) ∈ Vn ∀ γ ∈ Kn}

=
N⋂

n=1

{x ∈ G; γ(x) ∈ Vn ∀ γ ∈ Kn}

=
N⋂

n=1

VKn,Vn

which is open in G by Lemma 1 and the continuity of Φ follows.

To prove that Φ : G → Φ(G) is an open map (where (Φ(G) ⊆ Γ̂ has the
subspace topology) we recall from Lemma 1 that sets of the form VK,U where
K ⊆ Γ compact and U ⊆ T open such that 1 ∈ U is neighbourhood basis of
G at 0. It follows that for any open set V and any point x ∈ V there exists
a Kx ⊆ Γ compact and Ux ⊆ T open containing 1 such that x + VKx,Ux ⊆ V .
Pick any open V ⊆ G then

V =
⋃

x∈V
(x+ VKx,Ux).
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and it follows that

Φ(V ) = Φ(
⋃

x∈V
(x+ VKx,Ux)) =

⋃

x∈V
Φ(x+ VKx,Ux))

=
⋃

x∈V
{ex+y ∈ Φ(G); y ∈ VKx,Ux}

=
⋃

x∈V
{exey ∈ Φ(G); y ∈ VKx,Ux}

=
⋃

x∈V
ex{ey ∈ Φ(G); y ∈ VKx,Ux}

=
⋃

x∈V
ex{ey ∈ Φ(G); γ(y) ∈ Ux ∀γ ∈ Kx}

=
⋃

x∈V
ex{ey ∈ Φ(G); ey(Kx) ⊆ Ux}

=
⋃

x∈V
ex(BKx,Ux ∩ Φ(G)).

Corollary 5 and Definition 16 show that BKx,Ux is a (basis) open set in Γ̂ and

therefore BKx,Ux ∩ Φ(G) is open in Φ(G). Since Φ(G) ⊆ Γ̂ with the subspace
topology is a topological group and translations are homeomorphisms (Propo-
sition 1) it follows that

ex(BKx,Ux ∩ Φ(G)) (2)

is open in Φ(G) for any x ∈ V and it follows that Φ(V ) is open in Φ(G) and
therefore Φ : G→ Φ(G) is a homeomorphism.

Note that showing Φ(G) = Γ̂ is equivalent to showing that Φ(G) is dense in
Γ̂ and Φ(G) is closed in Γ̂.

Clearly Φ(G) ⊆ Γ̂ is closed if and only if Φ(G) is closed in Φ(G) but since Φ(G)
is a topological group (Proposition 4) it follows from Proposition 3 that open
subgroups are closed and it is therefore sufficient to show that Φ(G) ⊆ Φ(G) is
open. Φ(G) is locally compact since G is locally compact and Φ is a homeo-
morphism and clearly Φ(G) is dense in Φ(G) hence Proposition 5 gives us that
Φ(G) is open in Φ(G). It follows that Φ(G) is closed in Γ̂.

Assume that Φ(G) is not dense in Γ̂. Then there exists an open V ⊆ Γ̂ such
that V ∩ Φ(G) = ∅. By Corollary 4 there exists an F̂ ∈ A(Γ̂) such that F̂ = 0
on Φ(G) but F̂ 6= 0. For any x ∈ G we then have

0 = F̂ (Φ(e−x)) =

∫

Γ

F (γ)e−x(γ)dγ

=

∫

Γ

F (γ)γ(x)dγ
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If we define µF ∈M(Γ) by

µF (E) =

∫

Γ

F (γ)dγ

then the uniqueness Theorem of proposition 19 can be applied to µF and it
follows that µF = 0. But this leads to the contradiction F̂ (γ̂) = 0 for any γ̂ ∈ Γ̂
since

F̂ (γ̂) =

∫

Γ

F (γ)γ̂(γ)dγ

=

∫

Γ

γ̂(γ)dµF (γ) = 0.

Hence Φ(G) is dense in Γ̂ and closed in Γ̂ and therefore Φ(G) = Γ̂ and therefore
Φ : G→ Γ̂ is an isomorphism and homemorphism of topological groups.

Corollary 6. If µ ∈M(G) and µ̂ = 0 then µ = 0

Proof. Applying Proposition 19 to the pair (Γ, G) yields the statement, if µ ∈
M(G) and

∫

G

γ(x)dµ(x) = 0

for all γ ∈ Γ then µ = 0. Now note that for any γ ∈ Γ we have

µ̂(γ) =

∫

G

γ(−x)dµ(x) =

∫

G

γ(x)dµ(x) = 0

since γ ∈ Γ.

Corollary 7. If µ ∈ M(G) and µ̂ ∈ L1(Γ) then there exists f ∈ L1(G) such
that dµ = fdx and

f(x) =

∫

Γ

µ̂(γ)γ(x)dγ

for any x ∈ G
Proof. Define

f(x) =

∫

Γ

µ̂(γ)γ(x)dγ.

It is easy to show that µ̂ ∈ B(Γ) hence applying the inversion Theorem on µ̂
shows that f ∈ L1(G) and that for any γ ∈ Γ we have

µ̂(γ) =

∫

G

ˆ̂µ(x)γ(x)dx

=

∫

G

f(−x)γ(x)dx

=

∫

G

f(x)γ(−x)dx.
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But by definition of µ̂ it follows that
∫

G

γ(−x)(f(x)dx− dµ(x)) = 0

hence by Corollary 6 we see that f(x)dx = dµ

Corollary 8. If f ∈ L1(G) and f̂ ∈ L1(Γ) then

f(x) =

∫

Γ

f̂(γ)γ(x)dγ

for almost all x ∈ G.

Proof. Let µf ∈M(G) be the embedding of f . Since µ̂f = f̂ it follows that we
can apply Corollary 7 to get a function

F (x) =

∫

Γ

f̂(γ)γ(x)dγ

such that

µf (E) =

∫

E

F (x)dx.

By definition of µf it follows that
∫

E

(f(x)− F (x))dx = 0

for any Borel set E ⊆ G. From which it follows that

f(x) =

∫

Γ

f̂(γ)γ(x)dγ

for almost all x ∈ G.

Corollary 9. Every compact group is the dual of a discrete group and every
discrete group is the dual of a compact group

Proof. By Theorem 1.2.5 in [3] the dual of a compact group is discrete and the
dual of a discrete group is compact. Applying Pontryagin yields the corollary.

Corollary 10. L1(G) = M(G) if and only if G is discrete. Also, L1(G) has a
unit if and only if G is discrete.

Proof. If G is not discrete then Γ is not compact by Corollary 9 and it follows
that C0(Γ) does not contain the constant function that equals 1 and therefore
does not contain a unit. It follows that A(Γ) does not contain a unit. Therefore
L1(G) does not contain a unit since the Fourier transform of it would map
to a unit in A(Γ) which is a contradiction. Hence L1(G) 6= M(G). If G is
discrete the Radon-Nikodym theorem, (see Theorem 6.10 in [2]) gives a bijective
correspondence between M(G) and L1(G).
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8 Examples

In this section we will calculate the dual groups and Fourier transforms for the
groups R, T, Z, and Z/nZ. The dual group of G will be denoted by Ĝ.

8.1 The Real Line

We begin with R. The Haar measure is then given by the ordinary Lebesgue
measure, dx. Now let γ ∈ R̂, that is, γ is a continuous homomorphism from R
into T. Since γ(1) ∈ T there exists a β ∈ R such that

γ(1) = exp(iβ).

If n is an integer the homomorphism property gives us

γ(n) = γ(n1) = exp(iβ)n = exp(iβn).

We also have that

exp(iβ) = γ(
n

n
) = γ(

1

n
)n

for any non-zero integer n. Hence

γ(
1

n
) = exp(

iβ

n
) exp(

i2πKn

n
).

where Kn is an integer such that 0 ≤ Kn ≤ n− 1 corresponding to an n:th-root
of γ( 1

n ). If p
q is a rational number the formula

γ(
p

q
) = γ(

1

q
)p = exp(

iβp

q
) exp(

i2πKqp

q
)

follows. Pick a real x and let (pnqn )n be a sequence of rational numbers converging
to x. By continuity of γ and exp we get

γ(x) = lim
n→+∞

γ(
pn
qn

) = lim
n→+∞

exp(
iβpn
qn

) exp(
i2πKqnpn

qn
)

= exp(iβx) exp(i2πx lim
n→+∞

Kqn).

The limit limn→+∞Kqn exists since the left hand side is well-defined. Further-
more, limn→+∞Kqn is an integer since (Kqn)n is a sequence of integers. Let x
be an irrational number and pick rational sequences (anbn )n and ( cndn )n converging
to x, then

exp(i2πx lim
n→+∞

Kbn) = exp(i2πx lim
n→+∞

Kdn)

hence

i2πx( lim
n→+∞

Kbn −Kdn) = i2πm(b, d, x)

69



where m(b, d, x) is an integer. Thus

lim
n→+∞

Kbn −Kdn =
m(b, d, x)

x

and it follows that we must have m(b, d, x)=0 in order for the right hand side
to be an integer. Therefore

lim
n→+∞

Kbn = lim
n→+∞

Kdn = K(x).

That is, for any irrational x the limit of (Kqn)n where (qn)n is the denominator
of some Cauchy sequence converging to x depends only on x and we denote this
limit as K(x) (which is an integer). Note that for any irrational number x the

rational sequence ( bx2nc
2n )n converges to x since

x− 1

2n
≤ bx2nc

2n
≤ x.

Hence

K(x) = lim
n→+∞

K2n

for any irrational x. Therefore K(x) = k is a constant function on the irrationals
and it follows that

γ(x) = exp(iβx) exp(i2πxk) = exp(i(β + 2πk)x) = exp(iαx)

for any irrational x where α = β + 2πk. Since the continuous functions γ and
exp(iαx) agree almost everywhere in R they must in fact agree on all of R. Thus
any character γ is of the form

γ(x) = eiαx

for some real α and conversely any function of the form eiαx for some α ∈ R
defines a character on R. If α and β are distinct real numbers then the corre-
sponding characters eiαx and eiβx are also distinct (which can be seen from the
fact that they have different Taylor expansions). Thus we have the following

characterization for R̂

R̂ = {eiαx;α ∈ R}.

Define the map Φ : R̂ → R by Φ(eiαx) = α. We have already showed that Φ
is well defined and surjective and it is trivially injective. If γ(x) = eiαx and
δ(x) = eiβx then the expression

Φ(γδ) = Φ(eiαxeiβx) = Φ(ei(α+β)x) = α+ β = Φ(γ) + Φ(δ)
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shows that Φ is an isomorphism of groups between R̂ and R. We will now
show that Φ is an homeomorphism so R̂ and R can be identified as topological
groups. We begin by showing that Φ is an open mapping which (since Φ is
injective) amounts to saying that whenever B ⊆ C is open and f ∈ L1(R) then

Φ(f̂−1(B)) ⊆ R is open. Observe that

Φ(f̂−1(B)) = Φ({eiαx ∈ Γ̂; f̂(eiαx) ∈ B })

= {α ∈ R;

∫

R
f(x)e−iαxdx ∈ B}.

If we let αn be a sequence of real numbers converging to α and let

F (y) =

∫

R
f(x)e−iyxdx

for y ∈ R. The dominated convergence theorem then gives that F (αn)→ F (α)
and therefore F is sequentially continuous and therefore continuous since R is
a metric space. Since

Φ(f̂−1(B)) = {α ∈ R;

∫

R
f(x)e−iαxdx ∈ B}

= F−1(B)

it follows that Φ(f̂−1(B)) is open thus Φ is an open mapping.

To prove continuity it is enough to show that the set

U = {eiαx; |α| < ε}

is open for any ε > 0. Pick ε > 0 and define the sets K = [−1, 1] and
V = {z ∈ T; |Arg(z) − π| < ε} where Arg is the principal argument function
with branch cut at the non-positive real axis. By continuity of Arg outside the
branch cut it follows that V is open. Since the compact open sets are open in
Γ it follows that the set

{eiαx; eiαx ∈ V ∀x ∈ [−1, 1]}

is open in R̂. But |Arg(eiαx) − π| < ε for all x ∈ [−1, 1] if and only if |α| < ε
hence U is open and Φ is a homeomorphism and is thus an isomorphism of
topological groups. It follows that

R̂ = {eiαx : α ∈ R} ∼= R

and using the isomorphism we define the Fourier transform as it is commonly
introduced

f̂(α) =

∫

R
f(x)e−iαxdx

for α ∈ R.
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8.2 The Integers

Now let G = Z and pick γ ∈ Ẑ. Then γ(1) = eiα for some α ∈ R and since γ is

a homomorphism it follows that γ(n) = eiαn. Define the map Φ : T→ Ẑ by

Φ(eiα) = eiαn.

It is clear that Φ maps T onto Ẑ. If Φ(eiα) = Φ(eiβ) then eiαn = eiβn for all
n ∈ Z hence eiα = eiβ so Φ is injective. We also have that

Φ(eiαeiβ) = Φ(ei(α+β)) = ei(α+β)n

= eiαneiβn = Φ(eiα)Φ(eiβ)

so Φ is a homomorphism. It is clear that the counting measure on Z is a Haar
measure hence if f ∈ L1(Z) then the function F = f̂ ◦ Φ is given by

F (eiα) = f̂(eiαn) =
∑

n∈Z
f(n)(eiα)−n.

If eiαn → eiα then the dominated convergence Theorem shows that F (eiαn)→
F (eiα) so F is continuous. Pick an element f ∈ L1(G) and an open set B ⊆ C
then

Φ−1(f̂−1(B)) = {eiα;F (eiα) ∈ B} = F−1(B)

and it follows that Φ is continuous. Since Φ is a bijective continuous function
from a compact space into a Hausdorff space it follows from the closed map
Lemma, (see Lemma 4.50 in [6]) that Φ is a homeomorphism. Hence the dual
group of Z is isomorphic to T and

Ẑ = {eiαn : eiα ∈ T} ∼= T.

It follows using our isomorphism Ẑ ∼= T that the Fourier transform in this case
is given by

f̂(eiα) =
∑

n∈Z
f(n)e−iαn

for any eiα ∈ T.

8.3 The Unit Circle

Now let G = T. Since Ẑ = T the Pontryagin duality Theorem gives that

T̂ ∼= ̂̂Z ∼= Z. Define Φ : R → T by Φ(x) = eix. By using the first isomorphism
Theorem for groups and passing Φ to the quotient (see Theorem 3.7.3 in [6]) it
follows that R/2πZ ∼= T as topological groups. Denoting this isomorphism with
Φ̃ : R/2πZ→ T which is given by

Φ̃(x+ 2πZ) = eix
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it is straightforward to show that elements of T̂ are in bijection with elements

of R̂/2πZ. By passing to the quotient we see that elements of f̃ ∈ R̂/2πZ are in

bijection with elements of f ∈ R̂ that are constant on sets of the form x+ 2πZ
for x ∈ R. Hence it follows that any f̃ ∈ R̂/2πZ has the form

f̃(x+ 2πZ) = eiαx

for some α ∈ R. In order for the function eiαx to be constant on sets of the
form x+ 2πZ, for x ∈ R it is necessary that

eiα(x+2π) = eiαx.

hence α ∈ Z. Conversely if α ∈ Z then eiαx is constant on sets of the form
x+ 2πZ for x ∈ R. It follows that

f̃(x+ 2πZ) = einx

for some n ∈ Z. Using the isomorphism Φ̃−1 : T → R/2πZ it follows that any

γ ∈ T̂ has the form γ = f̃ ◦ Φ̃−1 for some f̃ ∈ R̂/2πZ hence

γ(eiα) = (f̃ ◦ Φ̃−1)(eiα) = f̃(α+ 2πZ) = einα

for some n ∈ Z. Hence

T̂ = {einα;n ∈ Z} ∼= Z.

For the Haar-measure on T we do the following. The restriction map Φ|[0,2π]

is clearly continuous when [0, 2π] ⊆ R has been given the subspace topology.
Define the set function

mT(E) = m(Φ|−1
[0,2π](E))

for any Borel set E ⊆ T where m denotes the ordinary Lebesgue measure on R.
Since Φ|[0,2π] is continuous the inverse image of any Borel set is a Borel set and
it follows that mT is a well-defined function on the Borel sets. It is not hard to
show that mT is a measure. Since mT(T) = m([0, 2π]) = 2π it is clear that mT
is finite on compact sets. If E ⊆ T is a Borel set and eiα ∈ T then

mT(eiαE) = m(Φ|−1
[0,2π](e

iαE))

= m({x ∈ [0, 2π]; eix ∈ eiαE})
= m({x ∈ [0, 2π]; ei(x−α) ∈ E})
= m({x− α+ α ∈ [0, 2π]; ei(x−α) ∈ E})
= m({x− α ∈ [−α,−α+ 2π]; ei(x−α) ∈ E})
= m(−α+ {x− α ∈ [0, 2π]; ei(x−α) ∈ E})
= m({x− α ∈ [0, 2π]; ei(x−α) ∈ E})
= m(Φ|−1

[0,2π](E))

= mT(E).
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Hence mT is translation-invariant. Let Kn ⊆ Φ−1
[0,2π](E) ⊆ [0, 2π] be a collec-

tion of compact sets such that limn→+∞m(Kn) = m(Φ−1
[0,2π](E)). Then since

continuous functions preserve compactness it follows that

sup
K⊆E

mT(K) ≥ lim
n→+∞

mT (Φ[0,2π](Kn))

= lim
n→+∞

m(Φ−1
[0,2π](Φ[0,2π](Kn)))

≥ lim
n→+∞

m(Kn)

= m(Φ−1
[0,2π](E))

= mT(E).

Hence mT is inner regular. To prove outer regularity we do the following. Use
inner regularity to find compact sets Kn ⊆ T− E such that

mT(Kn)→ mT(T− E)

as n→ +∞. Then the sets Vn = T−Kn are open since the Kn are closed and
E ⊆ Vn for all n. Hence

inf
E⊆V

mT(V ) ≤ lim
n→+∞

mT(Vn)

= lim
n→+∞

mT(T−Kn)

= lim
n→+∞

mT(T)−mT(Kn)

= mT(T)−mT(T− E)

= mT(E)

since mT(T) = 2π is finite. It follows that mT is a Haar-measure. We normalize
mT by replacing mT with 1

2πmT from which it follows that mT(T) = 1. This is
also the proper normalization of the Haar-measure in T which appears in the
inversion theorem formulas for the pairs (T,Z) and (Z,T). For any Borel set
E ⊆ T we have

∫

T
χEdmT = mT(E)

=
1

2π
m(Φ−1

[0,2π](E))

=
1

2π

∫

R
χΦ−1

[0,2π]
(E))dx

=
1

2π

∫

[0,2π]

χE(eix)dx.

From a standard approximation argument it is clear that
∫

T
fdmT =

1

2π

∫

[0,2π]

f(eix)dx.
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for any f ∈ L1(T). It follows that the Fourier transform on T is given by

f̂(n) =
1

2π

∫ 2π

0

f(eix)e−inxdx.

Letting F (x) = f(eix) we recognize above as the commonly used definition for
Fourier series.

Remark. A more direct but less intuitive way of finding the Haar measure on
T is to define the positive linear functional Λ : Cc(T)→ C by

Λ(f) =
1

2π

∫ 2π

0

f(eix)dx

and prove that it is translation invariant. The Riesz representation Theorem
(Theorem 2.14 in [1]) then yields our Haar-measure mT on T.

8.4 The Group of Integers Mod N

Let G = Z/NZ and pick γ ∈ Ẑ/NZ. If q : Z→ Z/NZ is the quotient map then

it follows that γ ◦ q ∈ Ẑ hence there exists eiα ∈ T such that γ([n]) = eiαn,
where [n] = n + NZ. In order for eiαn to be constant on the fibers of q we
must in particular have that if n−m = N then eiαn = eiαm which implies that
αN = 2πk for some k ∈ Z and therefore

γ([n]) = ei2πkn/N .

If k1
∼= k2 mod N it follows that

ei2πk1n/N = ei2πk2n/N

for any [n] ∈ Z/NZ hence it follows that

Ẑ/NZ = {ei2πkn/N : [k] ∈ Z/NZ}.

From which it is clear that Ẑ/NZ ∼= Z/NZ since the dual of a compact group
is discrete. Since Z/NZ is discrete the Haar measure is given by the counting
measure and it follows that

f̂([k]) =
N−1∑

n=0

f([n])e−i2πkn/N

which we recognize as the discrete Fourier transform.
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9 The Collatz Conjecture

9.1 Introduction to the Collatz Conjecture

Let N = {1, 2, ...} and define the function c : N→ N by,

c(n) =

{
n
2 , if n is even,

3n+ 1, if n is odd.

Pick a number n ∈ N and associate to it its Collatz sequence fi(n) given by,

fi(n) = ci(n),

for i ≥ 0 where ci denotes i-fold function composition and c0(n) = n. The
Collatz conjecture can now be stated as follows: is it true that for any n ∈ N
there exists an integer j ≥ 0 such that fj(n) = 1?

Note that c(1) = 4, c(4) = 2 and c(2) = 1 hence if fj(n) = 1 for some j then
the Collatz sequence will cycle through 1, 2 and 4 indefinitely after it reaches j.

Upon inspecting the problem there are two ways for the Collatz conjecture
to be false, either there exists a Collatz sequence which contains another cycle
or there exists a Collatz sequence which diverges towards infinity.

In this application we will use the discrete Fourier transform to derive prop-
erties that any cycle, including the known (1, 4, 2)-cycle or any other potential
cycle must satisfy. Finding another Collatz cycle will disprove the Collatz con-
jecture.

9.2 Collatz Cycles and the Discrete Fourier Transform

Definition 17. A finite sequence (an)0≤n≤N−1 of mutually distinct integers
is a (Collatz) cycle of order N if c(aN−1) = a0 and c(an) = an+1 whenever
0 ≤ n < N − 1.

Any cycle can be naturally extended to an infinite sequence by defining
an = cn(a0) for n ∈ Z. If n ≡ m mod N then an = am hence our cycle can be
regarded as a function a defined on Z/NZ by a([n]N ) = cn(a0). The notation
a[n] = cn(a0) will be used for brevity if N is clear from the context. Throughout
this application (an)n will denote a cycle of order N and the letter a will be
reserved for the corresponding function a : Z/NZ→ N.

The discrete Fourier transform of a, â : Z/NZ→ C is defined by,

â[k] =
N−1∑

n=0

a[n]e−i2πkn/N .
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Note that this expression can clearly be rewritten as,

â[k] =

N−1∑

n=0

ane
−i2πkn/N .

Theorem 12. Let an be a cycle of order N then the Fourier transform of a is
given by

â[k] =
1

2ei2πk/N − 1

N−1∑

n=0
an odd

(5an + 2)e−i2πkn/N .

Proof. We derive the identity by calculating ĉ ◦ a(k) in two ways. Firstly,

ĉ ◦ a[k] =

N−1∑

n=0

c(a[n])e−i2πkn/N =

N−1∑

n=0

a[n+ 1]e−i2πkn/N

= ei2πk/N
N−1∑

n=0

a[n+ 1]e−i2πk(n+1)/N = ei2πk/N â[k],

hence

ĉ ◦ a[k] = ei2πk/N â[k]. (1)

We also have,

ĉ ◦ a[k] =
N−1∑

n=0

c(an)e−i2πkn/N

=

N−1∑

n=0
an odd

(3an + 1)e−i2πkn/N +

N−1∑

n=0
an even

an
2
e−i2πkn/N

=
N−1∑

n=0
an odd

(
5

2
an + 1)e−i2πkn/N +

1

2

N−1∑

n=0

ane
−i2πkn/N

=
N−1∑

n=0
an odd

(
5

2
an + 1)e−i2πkn/N +

1

2
â[k],

hence,

ĉ ◦ a[k] =

N−1∑

n=0
an odd

(
5

2
an + 1)e−i2πkn/N +

1

2
â[k]. (2)
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Combining (1) and (2) gives,

ei2πk/N â[k] =

N−1∑

n=0
an odd

(
5

2
an + 1)e−i2πkn/N +

1

2
â[k],

and if we solve for â[k] we get

â[k] =
1

2ei2πk/N − 1

N−1∑

n=0
an odd

(5an + 2)e−i2πkn/N .

Corollary 11. Let l be the number of all odd terms in the cycle (an)0≤n≤N−1,
O be sum of all the odd terms in (an)0≤n≤N−1 and E be the correspoding sum
of all the evens terms then,

4O + 2l = E.

Proof. We have by Theorem 12 and the definition of the discrete Fourier trans-
form the equality

N−1∑

n=0
an odd

(5an + 2) = â0 =
N−1∑

n=0

an. (1)

Rewriting (1) in terms of O,E and l yields

5O + 2l = O + E,

hence

4O + 2l = E.

9.3 Applying the Inversion Theorem

In this section an expression for an will be derived from the inverse transform.
Define b : Z/NZ→ C and c : Z/NZ→ C by,

b[k] =
1

2ei2πk/N − 1
,

and,

c[k] =
N−1∑

n=0
an odd

(5an + 2)e−i2πkn/N .
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From Theorem 12 it is clear that â[k] = b[k]c[k] and by the convolution formula
it follows that,

(̂b̌ ∗ č)[k] = b[k]c[k] = â, (1)

whereˇdenotes the inverse transform and ∗ denotes convolution. By uniqueness
of the Fourier transform we have a = b̌ ∗ č. The inverse transform for b is given
by

b̌[n] =
1

N

N−1∑

k=0

b[k]ei2πnk/N =
1

N

N−1∑

k=0

ei2πnk/N

2ei2πk/N − 1
. (2)

The inverse transform for c is,

č[n] =
1

N

N−1∑

k=0

c[k]ei2πnk/N

=
1

N

N−1∑

k=0

(
N−1∑

j=0
aj odd

(5aj + 2)e−i2πkj/N )ei2πnk/N

=
1

N

N−1∑

j=0
aj odd

(5aj + 2)
N−1∑

k=0

ei2πk(n−j)/N .

Fix n and j then if n = j we see that,

N−1∑

k=0

ei2πk(n−j)/N =

N−1∑

k=0

1 = N.

Otherwise, if n 6= j the geometric series formula applies and we obtain,

N−1∑

k=0

ei2πk(n−j)/N =
(ei2π(n−j)/N )N − 1

ei2π(n−j)/N − 1
= 0.

Consider now arbitrary n ∈ Z, if an is even then it follows that

1

N

N−1∑

j=0
aj odd

(5aj + 2)
N−1∑

k=0

ei2πk(n−j)/N =
1

N

N−1∑

j=0
aj odd

(5aj + 2)0 = 0,

hence č[n] = 0. If an is odd it follows that,

N−1∑

k=0

ei2πk(n−j)/N 6= 0,
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only if n = j hence,

č[n] =
1

N
(5an + 2)

N−1∑

k=0

ei2πk(n−n)/N = 5an + 2.

Therefore,

č[n] =

{
0, if an is even

, 5an + 2, if an is odd.
(3)

Combining (1), (2) and (3) we have,

an = b̌ ∗ č(n)

=
N−1∑

j=0

b̌[n− j]č[j]

=
N−1∑

j=0

(
1

N

N−1∑

k=0

ei2π(n−j)k/N

2ei2πk/N − 1
)č[j]

=
N−1∑

j=0
ajodd

(
1

N

N−1∑

k=0

ei2π(n−j)k/N

2ei2πk/N − 1
)(5aj + 2).

Define the function

w(n) =
1

N

N−1∑

k=0

ei2πnk/N

2ei2πk/N − 1
. (4)

Then we have

an =

N−1∑

j=0
ajodd

w(n− j)(5aj + 2). (5)

We will now give a formula for w and after that we will summarize the results.

It is clear from (4) and the inversion theorem that

ŵ(k) =
1

2ei2πk/N − 1
.

Consider now the function x : Z/NZ→ C by first mapping [n]N to its principal
remainder n and then mapping the principal remainder to 1

1−2−N 2−(n+1) then
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it follows that the Fourier transform for x is

x̂(k) =

N−1∑

n=0

1

1− 2−N
2−(n+1)e−2πkn/N

=
1

1− 2−N
1

2

N−1∑

n=0

(
e−2πk/N

2
)n

=
1

1− 2−N
1

2

1− ( e
−2πk/N

2 )N

1− e−2πk/N

2

=
1

1− 2−N
1

2

1− 2−N

1− e−2πk/N

2

=
e2πk/N

2e2πk/N − 1

= e2πk/N ŵ(k).

Hence

ŵ(k) = x̂(k)e−2πk/N .

Note that the function χ{1} satisfies χ̂{1}[k] = e−2πk/N and it follows that

w[n] = (x ∗ χ{1})[n]

=

N−1∑

k=0

x[n− k]χ{1}[k]

= x[n− 1]

=

{
1

2N−1
, if [n] = 0,

1
1−2−N 2−n, if [n] 6= 0.

We summarize the result below.

Theorem 13. Let (an)0≤n≤N−1 be a Collatz cycle. Then it follows that

an =

N−1∑

j=0
ajodd

w[n− j](5aj + 2)

where w is given by

w[n] =

{
1

2N−1
, if [n] = 0

1
1−2−N 2−n, if [n] 6= 0.
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9.4 Summary of the Results and Questions for the Reader

In this section we have proved that any Collatz cycle an of order N has a discrete
Fourier transform given by

â[k] =
1

2ei2πk/N − 1

N−1∑

n=0
an odd

(5an + 2)e−i2πkn/N

and that if l is the number of odd elements in the cycle, O is the sum of all the
odd terms in the cycle and E is the sum of all the even terms in the cycle then

4O + 2l = E.

We have furthermore also proved that an satisfies the following (non-linear)
system of equations

an =

N−1∑

j=0
ajodd

w[n− j](5aj + 2)

where w is given by

w[n] =

{
1

2N−1
, if [n] = 0

1
1−2−N 2−n, if [n] 6= 0.

My question to the reader is if these relations can be used to show that there
can’t exists cycles of certains lengths, or to derive upper bounds of the length
of a cycle. I am also interested in knowing if the relations can be used to derive
upper bounds of the elements in a cycle.
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10 A Formula for the Partition function

In this section we will derive an integral formula for the partition function. We
define the partition function, p to be the number of ways that we can add to n
using only positive integers while not caring about the order of the terms. For
example, p(4) = 5 since we can add to 4 with only positive integer terms in the
following 5 ways including the trivial way

1 + 1 + 1 + 1 = 2 + 1 + 1 = 3 + 1 = 2 + 2 = 4.

By convention we set p(0) = 1 and p(n) = 0 if n is negative. The key part of
this application is Euler’s Pentagonal formula, (see Section 19.10 in [4]) which
states that we have the following recursion formula for p

p(n) =
∑

j>0

(−1)j−1(p(n− j(3j − 1)/2) + p(n− j(3j + 1)/2))

where n ≥ 1. Note that the sum is finite since p(n) = 0 for negative n. To
simplify notation we will write

aj = j(3j − 1)/2,

bj = j(3j + 1)/2.

The famous Hardy-Ramanujan formula, (see Introduction in [5]) will also be
used which asserts that

p(n) ∼ 1

4n
√

3
eπ
√

2n
3

which is the same as saying

lim
n→+∞

p(n)

1
4n
√

3
eπ
√

2n
3

= 1.

The Hardy-Ramanujan formula gives us the following proposition.

Proposition 24. The function f(n) = p(n)
en is in L1(Z)

Proof. The proof will actually show that the function nf(n) is in L1(Z) which
will be used in the next theorem. Note that nf(n) ∈ L1(Z) implies that f(n) ∈
L1(Z). The Hardy-Ramanujan formula gives us that there exists an integer N
such that

p(n)

1
4n
√

3
eπ
√

2n
3

< 2

whenever n ≥ N . It follows that

||nf(n)||1 =
∑

n∈Z
n
p(n)

en
=

N∑

n=0

n
p(n)

en
+

∑

n>N

n
p(n)

en

<

N∑

n=0

n
p(n)

en
+ 2

∑

n>N

n

1
4n
√

3
eπ
√

2n
3

en
.
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Note that π
√

2
3 ≤ 1

2

√
n whenever n ≥ c := 8π2

3 and since

∑

n>max(N,c)

n

1
4n
√

3
eπ
√

2n
3

en
=

1

4
√

3

∑

n>max(N,c)

eπ
√

2n
3 −n

=
1

4
√

3

∑

n>max(N,c)

e
√
n(π
√

2
3−
√
n)

≤ 1

4
√

3

∑

n>max(N,c)

e
√
n( 1

2

√
n−√n)

=
1

4
√

3

∑

n>max(N,c)

e−
n
2 < +∞

the proposition follows.

If we parameterize T with eix, where x ∈ [0, 2π) it follows that we can denote
the Fourier transform on Z by

ĝ(x) =
∑

n∈Z
g(n)e−inx

for x ∈ [0, 2π). The Fourier transform of the partition function p is clearly
not well defined since it is not bounded but as Proposition 24 showed we can

calculate the Fourier transform for f(n) = p(n)
en .

Theorem 14. The Fourier transform for f(n) = p(n)
en is given by

f̂(x) =
1

1 +
∑
j>0(−1)j(e−je−iajx + e−je−ibjx)

.

Proof. We showed that f ∈ L1(Z) so the transform is well-defined. We can now
calculate it with the Euler-Pentagonal formula and the translation invariance of
the Haar-measure.

f̂(x) =
∑

n∈Z

p(n)

en
e−inx = 1 +

+∞∑

n=1

p(n)

en
e−inx

= 1 +
+∞∑

n=1

1

en
(
∑

j>0

(−1)j−1(p(n− aj) + p(n− bj)))e−inx

= 1 +
+∞∑

n=1

∑

j>0

(−1)j−1 p(n− aj) + p(n− bj)
en

e−inx.

Note that since p(n) is increasing we have that

∑

j>0

|(−1)j−1 p(n− aj) + p(n− bj)
en

e−inx| ≤ 2n
p(n)

en
.
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Since we proved that np(n)
en is in L1(Z) it follows that our double sum is ab-

solutely summable and therefore we can interchange the summation signs and
get

f̂(x) = 1 +
∑

j>0

+∞∑

n=1

(−1)j−1 p(n− aj) + p(n− bj)
en

e−inx

= 1 +
∑

j>0

+∞∑

n=1

(−1)j−1 p(n− aj)
en

e−inx +
∑

j>0

+∞∑

n=1

(−1)j−1 p(n− bj)
en

e−inx.

We begin by calculating the first sum

∑

j>0

+∞∑

n=1

(−1)j−1 p(n− aj)
en

e−inx =
∑

j>0

+∞∑

n=1

(−1)j−1 1

eaj
p(n− aj)
en−aj

e−inx

=
∑

j>0

(−1)j−1 1

eaj

+∞∑

n=1

p(n− aj)
en−aj

e−inx

=
∑

j>0

(−1)j−1 1

eaj
e−iajx

+∞∑

n=1

p(n− aj)
en−aj

e−i(n−aj)x

=
∑

j>0

(−1)j−1 1

eaj
e−iajx

∑

n∈Z

p(n− aj)
en−aj

e−i(n−aj)x

=
∑

j>0

(−1)j−1 1

eaj
e−iajxf̂(x)

= f̂(x)
∑

j>0

(−1)j−1 1

eaj
e−iajx.

The second sum is completely analogous and it follows that

f̂(x)(1 +
∑

j>0

(−1)j(
1

eaj
e−iajx +

1

eaj
e−iajx) = 1

for any real x. It follows that

1 +
∑

j>0

(−1)j(
1

eaj
e−iajx +

1

ebj
e−ibjx) 6= 0

hence

f̂(x) =
1

1 +
∑
j>0(−1)j(e−aje−iajx + e−bje−ibjx)

.
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Theorem 15. We have the following formula for the partition function.

p(n) =
en

2π

∫ 2π

0

einx

1 +
∑
j>0(−1)j(e−aje−iajx + e−bje−ibjx)

dx.

Proof. If we instead regard the Fourier transform

f̂(x) =
1

1 +
∑
j>0(−1)j(e−aje−iajx + e−bje−ibjx)

of p(n)
en as a function on T, which we for clarity call F . Then we know that

F ∈ C0(T) and T is compact hence F ∈ L1(T). By Proposition 24 we know

that p(n)
en ∈ L1(Z). Using our Haar-measure on T calculated in Section 8.3 and

applying Corollary 8 then shows that

p(n)

en
=

∫

T
F (eit)(eit)ndmT(eit)

=
1

2π

∫ 2π

0

einx

1 +
∑
j>0(−1)j(e−aje−iajx + e−bje−ibjx)

dx

for almost all n ∈ Z. But the only set of measure in Z is ∅ hence

p(n) =
en

2π

∫ 2π

0

einx

1 +
∑
j>0(−1)j(e−aje−iajx + e−bje−ibjx)

dx.

for all n ∈ Z.
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