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Abstract

A subset S ⊆ V is a dominating set in a graph G = (V ,E) if every vertex v ∈ V \S is adjacent to
at least one vertex v ∈ S. The minimum cardinality of a dominating set is called the domination
number of G and it is denoted by γ(G). In this thesis, we study the domination number for standard
graphs and derive some upper and lower bounds for γ(G). The main object of this thesis to study
dominating set.
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1
Introduction
Graph theory is an important field of mathematics. It has applications in areas such as cognitive
science, physics, architecture, transportation networks and biological networks.

In this paper, we focus on an invariant of graphs called domination number. A set of vertices
S in a graph G is called dominating set, if every vertex outside S is adjacent to a vertex in S.
The dominating number of a graph is the smallest possible number of vertices in a dominating
set.

The paper is organized follows:
In Chapter 2, we review basic concepts and definitions in graph theory that are used later in this
thesis.

In Chapter 3, we define the domination number and calculate it for a number of standard exam-
ples.

In Chapter 4, we present bounds on domination number and prove some theorems about them.
We also illustrate the results on some examples.

1.1 History of domination in graphs

As written in the book by Haynes et al. [4], the idea of domination came into existence in 1850
when Chess freaks in Europe came up with the idea of finding the smallest number of queens that
can be placed on a chessboard with a goal so that all squares are either attacked by a queen or
inhibited by a queen. It was believed in the 1850s, that five is the smallest number of queens that
can dominate all of the squares in an 8× 8 chessboard. In 1862, De Jaenisch tried to determine
the minimum number of queens required to cover an n× n chess board, for n ≤ 8 (Bozoki et al.
[2]).

However, the study of domination in graphs developed from the 1950s onwards. As mentioned in
the Sugumaran and Jayachandran’s article [9], Claude Berge [1] defined the concept of domination
number of a graph in 1958, called as "coefficient of external stability", which is now called by
the domination number for a graph. Oystein Ore [7] introduced the name "dominating set" and
"domination number" for the same concept in his book on Theory of Graphs which was published
in 1962.

As described by Sukumaran and Jayachandran [9], Cockayne and Hedetniemi [3] published a
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study in the article Towards a theory of domination in graphs, in which the notation γ(G) for
the domination number of a graph G was first used, which has become very popular. Since the
publication of this article, the domination in graphs has been studied in detail and several additional
research articles on this topic have been published.
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2
Basic Definitions concerning Graphs
We cover some basic definitions here in graph theory. We will define others when needed. Most of
the terms and notations used may be found in Haynes [4].

Definition 2.1. A graph G = (V ,E) consists of two sets V and E, where V is non-empty set and
E is a set of unordered pairs of distinct elements of V . The element of V are called vertices of G,
and the elements of E are called edges.

Remark. We will only consider finite graphs, which means that we will always assume that V is
finite.

It is common to represent a graph with a figure where vertices are represented by points or nodes,
while the edges are similarly represented by lines between pairs of points.

This can be best illustrated with the following example found in Figure 1 below.
As per figure, the set V = {A,B,C,D,E,F} and E = {{A,B}, {A,C}, {B,D}, {C,D}, {D,E}, {E,F}}
define a graph with 6 vertices (V ) and 6 edges (E).

A B

DC

E F

Figure 1

In general, the sets of vertices and edges of a graph G are denoted by V (G) and E(G), respectively.
However, in the current discussion, an edge is represented by uv instead of {u, v}.

Definition 2.2. If two vertices are joined by an edge, they are called the endpoints or endvertices
for the edge.

Definition 2.3. Let u, v be two vertices of a graph G. If uv is an edge of G, then u and v are said
to be adjacent in G. It can also be said that u is connected to v or u is a neighbour of v.

Definition 2.4. If e = uv be an edge of graph G, then the edge e is said to be incident to the
vertices u and v.
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X Y

Z

Figure 2

Example 2.5. In the above Figure 2, vertices X and Y are endpoints of edge e1, also e1 is incident
to X and Y . We also say that X and Y are adjacent since they are endpoints of e1.

Definition 2.6. The set of neighbours of a vertex v is called the neighbourhood of v and is denoted
by N(v) = {u ∈ V (G) | vu ∈ E(G)}. Simultaneously, the closed neighbourhood of v is denoted by
N [v] = N(v) ∪ {v}.

Definition 2.7. The number of vertices in G is called the order of G, which is denoted by |V |.
Similarly, the number of edges in G is called the size of G, which is denoted by |E|.

Definition 2.8. The degree of v in V (G), is the number of edges incident to v and is denoted by
degG(v) or deg(v). Alternatively, deg(v) is the number of elements in the neighbourhood of v, i.e.
deg(v) = |N(v)|.

A vertex v is said be an isolated vertex if and only if deg(v) = 0.

Definition 2.9. The minimum degree of a graph G, is the minimum degree among all the vertices
of G and is denoted by δ(G). Formally we defined it as follows

δ(G) = min{deg(v)|v ∈ V (G)}

Definition 2.10. The maximum degree of a graph G, is the maximum degree among all the
vertices of G and is denoted by ∆(G). Formally we defined it as follows

∆(G) = max{deg(v)|v ∈ V (G)}

Example 2.11. From the illustration given in Figure 3 below, G has number of vertices n = 8 and
number of edges m = 9 ; vertices a and e are adjacent while vertices a and f are non-adjacent.
Also, N(g) = {b, d,h}, N [g] = {b, d, g,h} ; ∆(G) = 3 and δ(G) = 1.

Figure 3: Visual Presentation of Graph G. Source: Knor et al. [5]
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The following elementary result establishes a connection between the size of the graph and the
degrees of its vertices.

Theorem 2.12. For a graph G of size |E| = m,

∑

v∈V

deg(v) = 2m.

Proof. The sum
∑

v∈V deg(v) gives the number of edges at all vertices, where each edge is counted
twice because each edge is incident to exactly 2 vertices, which means that

∑
v∈V deg(v) = 2m.

Figure 4

Example 2.13. In the above graph (Figure 4), the red values show how many neighbours each
vertex has and |E| = 10, i.e. E = {ab, ad, ae, ag, bc, ce, cf , cg, de, ef}. So,

∑

v∈V

deg(v) = 20.

Definition 2.14. A graph H = (V1,E1) is called a subgraph of graph G = (V ,E), which is written
as H ⊆ G, if all the vertices and the edges of H are in G, i.e. V (H) ⊆ V (G) and E(H) ⊆ E(G).

It can be mentioned that G is said to contain H as a subgraph or H is contained in G.

A subgraph is obtained by deleting some vertices and edges from G.

A B C

DEF

A B C

E

Graph G Subgraph H
Figure 5

Definition 2.15. If the subgraph F = (V1,E1) of a graph G = (V ,E) has the same vertex set as
in G (i.e. V1 = V ), then F is called a spanning subgraph of G.

In other words, a spanning subgraph is obtained by deleting only some edges from G.
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A B C

DEF

A B C

DEF

Graph G Spanning subgraph F
Figure 6

Definition 2.16. If G1 = (V1,E1) is a subgraph of G = (V ,E) and for all u and v in V (G1),uv
in E(G1) if and only uv is in E(G) then G1 is called an induced subgraph of G.

In other words, an induced subgraph is obtained by deleting some vertices from G, along with their
adjacent edges.

The induced subgraph 〈G1〉 on the right can be denoted as G − {u1,u6} as illustrated in the
Figure 7.

u1

u2u5

u3u4

u5

u6

u7

u2u5

u3u4

u5

u7

Graph G Induced subgraph G1

Figure 7

Definition 2.17. A graph G is said to be a complete graph if every two distinct vertices of G are
adjacent. A complete graph of order n is denoted by Kn, it has n(n−1)

2 edges.

This is illustrated in Figure 8 below wherein |V | = n = 6 and |E| = m = 6(6− 1)/2 = 15.

u1

u2

u3u4

u5

u6

K6

Figure 8

Definition 2.18. A graph G = (V ,E) is called a bipartite graph if the vertex set of G can be
divided into two disjoint parts namely V1 and V2, and V = V1 ∪ V2, V1 ∩ V2 = ∅, such that every
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edge is of the form ab where a ∈ V1 and b ∈ V2.

If every vertex in V1 is adjacent to every vertex in V2, and there are no edges within V1 and V2, it
results a complete bipartite graph. This is denoted by Km,n, where |V1| = m and |V2| = n.

Bipartite graph Complete bipartite graph K2,4

Figure 9

Definition 2.19. A u− v walk W in G is a sequence of vertices and edges existing in a graph G,
which begins with u and ends at v such that consecutive vertices in the sequence are adjacent to
each other. More formally, a u− v walk W is a sequence of the following form:

W : u = v0, e1, v1, e2, ........, vk−1, ek, vk = v,

where each vi is a vertex of G and ei = vi−1vi for all i. Sometimes we will omit ei from the notation.
Vertex and edge can be repeated.

In a walk, if the starting and ending vertices are different, then it is said to be an open walk.
Meanwhile, if the starting and ending vertices are the same, a walk is said to be a closed walk.

yyyy
v1 v2 v3 v4

e1 e2 e3

Figure 10

Example 2.20. As depicted in the above graph (Figure 10), v1e1v2e2v3e3v4 is a walk (also it is an
open walk).

Definition 2.21. A trail is a walk with no repeated edges.

Definition 2.22. A closed trail is called a circuit.

Definition 2.23. A path is a walk with no repeated vertices.

Definition 2.24. A closed path is called a cycle.
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v1 v2
v3 v4

v5

v6 v7

e1 e2 e3

e4 e5

e6 e7
e8

e9

Figure 11

In the above graph (Figure 11):
v3e3v4e5v5e4v2e1v1 is an open walk and v2e2v3e3v4e5v5e4v2 is a closed walk.
v2e1v1e8v6e6v2e2v3 is a trail.
v2e1v1e8v6e6v2e2v3e9v5e4v2 is a circuit.
v1e1v2e2v3e3v4 is a path but v1e1v2e4v5e5v4e3v3e2v2 is not a path.
v1e8v6e6v2e1v1 is a cycle.

Definition 2.25. A path graph is a graph with vertices v1, v2, ...........vn where there is an edge
connecting vi and vi+1 for each i = 1, 2, .....,n− 1 and no other edges. It is denoted by Pn.

Definition 2.26. A graph with n vertices for n ≥ 3 and n edges forming a cycle with all its n
edges is called a cycle graph. It is denoted by Cn.

Cycle graphs are 2− regular, it means the every vertex in a cycle graph has degree 2.

For instance, we can see cycle graph of C4 and C5 in Figure 12. y
y
yy

y �
�
�

@
@
@y

yy
y

C4
C5

Figure 12

Definition 2.27. A graph is said to be acyclic if it does not contain a cycle. If a graph contains
at least one cycle, it is called as cyclic graph.

Definition 2.28. The length of a walk, a path, a trail or a cycle is its number of edges.

Thus, a path of n vertices has length n− 1, while a cycle of n vertices has length n. For example,
the length of path is 3 in the path v1e1v2e2v3e3v4, i.e. P4 = 3.
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Definition 2.29. If there is at least one path between every two vertices in a graph G, it is said
be a connected graph. Otherwise, it is a disconnected graph.

Definition 2.30. Let G be a connected graph of order n and u, v ∈ V (G). Hence, the distance
between u and v is the length of a shortest/minimal path from u to v in G. This minimal length
of a path is denoted by dG(u, v) or d(u, v).

Definition 2.31. The maximum distance between two vertices of G is called by diameter for a
connected graph G, which is denoted by diam(G).

We will now review some standard ways to construct new graphs out of given graphs.

Definition 2.32. A set of graphs is said to be vertex disjoint if no two of them have any vertex
in common (Wang et al. [11]).

Definition 2.33. The union, G ∪H is deemed to be a graph with vertex set V (G) ∪ V (H) and
edge set E(G) ∪E(H) for two graphs G and H.

Example 2.34. We can see in Figure 13, the union for two vertex-disjoint graphs G and H.

v1

v2

v3

u1

u2

v1

v2

v3

u1

u2

G H G∪H
Figure 13

Example 2.35. We can see in Figure 14, the union of for two graphs H1 and H2 that are not
vertex-disjoint.

a

be

cd

e b

f ⇒

a

be

f

cd

Graph H1 Graph H2 Graph G = H1 ∪H2

Figure 14

Definition 2.36. The join of vertex-disjoint graphs G+H consists of G∪H and all edges joining
every vertex of G to every vertex of H.
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Figure 15

Definition 2.37. A Fan graph denoted by Fn, is defined as the graph join of a single vertex and
a path graph. That is, Fn = K1 + Pn−1, where K1 is a single vertex.

Figure 16

Definition 2.38. A wheel graph Wn is the graph join of a single vertex and a cycle graph Cn−1.
One can say that Wn = K1 +Cn−1.

The number of edges in a wheel graph is m = 2n − 2. For instance, in the Figure 17 below,
m = (2× 6)− 2 = 10; diam(W6) = 2 and d(W6) = 1.w

w w w
w

w
W6

Figure 17

Definition 2.39. A Star is a graph in which n− 1 vertices have degree 1 and a single vertex has
degree n− 1. It is denoted by Sn or K1,n−1 with n vertices.

Example 2.40. For instance, in star graph S5 (Figure 18) it can be observed that, n− 1 vertices have
degree 1 and other one vertex has degree n− 1. That is, deg(a) = deg(b) = deg(c) = deg(d) = 1
and deg(e) = 4.
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S2 : S4 : S5 = K1,4 :

e b

c

d

a

S9 :
Figure 18: Star graph of order-n(Sn)

14



3
A dominating set and domination
number
Having defined basic notions in graph theory, we are now going to define and discuss the concept
of a dominating set in a graph.

Definition 3.1. A subset S ⊆ V of vertices in a graph G = (V ,E) is said to be a dominating set
if every vertex of V (G) \ S (i.e. every vertex not in S) is adjacent to at least one vertex in subset
S.

Example 3.2. In the graph illustrated in Figure 19, V = {u1,u2,u3,u4,u5,u6} and let S = {u3,u5},
so V \ S = {u1,u2,u4,u6}.
The vertices u1,u4 are adjacent to vertex u5 and vertices u2,u6 are adjacent to vertex u3. Therefore,
{u3,u5} is a dominating set of G.

u1

u2u5

u3u4

u5

u6

u1

u2u5

u3u4

u5

u6

u1

u2u5

u3u4

u5

u6

Figure 19

In Figure 19, {u3,u5}, {u2,u3,u5} and {u1,u4,u6} are dominating sets of G.

Definition 3.3. A dominating set with minimum cardinality is called minimum dominating set
in a graph G.

A minimum dominating set is usually not necessarily unique dominating set. However there are
graphs that have a unique dominating set.

For instance, C6 shown in Example 1 below has possible minimum dominating sets {u1,u4}, {u2,u5}, {u3,u6}.
So, a minimum dominating sets of a graph is not a unique in this case.

The graph shown in Example 2 has the unique dominating set {d, f}.
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u1

u2

u3u4

u5

u6 a

b

c

d e f

g

h

i

j

k

l

Example 1 Example 2

Definition 3.4. The domination number of the graph G is the cardinality of a minimum domi-
nating set, which is denoted by γ(G).

For the graph G in above Example 3.2, it can be seen that, γ(G) = 2 for minimum dominating set
{u3,u5}.

In general, the domination number is defined for every graph because every vertex set dominates
itself, so it is a dominating set.

Example 3.5. In the below Figure 20, {u3,u5} , {u2,u5,u6} and {u1,u3,u7} are dominating sets of
G and γ(G) = 2.

u1

u2u5

u3u4

u5

u6

u7 u1

u2u5

u3u4

u5

u6

u7

u1

u2u5

u3u4

u5

u6

u7 u1

u2u5

u3u4

u5

u6

u7

Figure 20

3.1 The domination number γ(G) for standard graphs

Observation 1 : If G is a graph of order n, then 1 ≤ γ(G) ≤ n.

Lemma 3.6. A graph G has a vertex of degree n− 1 if and only if γ(G) = 1.

Proof. Let u be a vertex of degree n− 1. Since u is adjacent to all the vertices of G, {u} is a
dominating set of G. Thus, γ(G) = 1.
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Conversely, suppose that γ(G) = 1. Let {u} be a dominating set of G. Since {u} is adjacent to
all the vertices of G, deg(u) = n− 1.

For example, it is easy to see in the below Figure 21: n = 5, then deg(u) = 4 and γ(G) = 1.

u da

b c

Figure 21

Corollary 3.7. γ(Kn) = 1 for n ≥ 2.

Proof. For any complete graph Kn(n ≥ 2), δ(Kn) = ∆(Kn) = n− 1. Therefore, each vertex of
Kn is a dominating set (by Lemma 3.6 ). Thus, γ(Kn) = 1.

Example 3.8. In the below Figure 22, {u1} is a dominating set of K4 and so γ(K4) = 1.

u1 u2

u3u4

Figure 22

Lemma 3.9. γ(Km,n) = 2, where 2 ≤ m ≤ n.

Proof. By definition, V (Km,n) = (V1 ∪V2), V1 and V2 are independent sets and V1 ∩V2 = ∅. That
is, V1 = {v1, v2, ....., vm} ,V2 = {u1,u2, .....,un} , and E(Km,n) =

{
viuj | 1 ≤ i ≤ m, 1 ≤ j ≤ n

}
.

At least one vertex from V2 is needed if V1 is to be dominated; likewise, vertex from V1 is needed
if V2 is to be dominated. In these conditions, the minimal dominating set is S = {vi,ui}, where
vi ∈ V1 and ui ∈ V2. So, γ(Km,n) = |S|. Thus, γ(Km,n) = 2.

Example 3.10. In the below Figure 23, {u1, v1} is a dominating set of K2,3 and also γ(K2,3) = 2.

u1 u2 u3

v2v1

Figure 23

Corollary 3.11. γ(Wn) = 1 for all n ≥ 4.
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Proof. Since wheel graph Wn = K1 +Cn−1, let V (Wn) = {u, vi | 1 ≤ i ≤ n− 1}, and
E(Wn) = {uvi | 1 ≤ i ≤ n− 1} ∪ {vivi+1 | 1 ≤ i ≤ n− 2} ∪ {vn−1v1}.
Also, ∆(Wn) = n− 1.
By lemma 3.6, {u} is a dominating set. Thus, γ(Wn) = 1 for all n ≥ 4.

Example 3.12. In the Figure 24, {u} is a dominating set of W5 and ∆(W5) = 4. Hence γ(W5) = 1.

v1 v2

u

v3v4

Figure 24

Corollary 3.13. γ(Fn) = 1 for all n ≥ 3.

Proof. Since fan Fn = K1 + Pn−1, let V (Fn) = {u, vi | 1 ≤ i ≤ n− 1}, E(Fn) = {uvi | 1 ≤ i ≤
n− 1} ∪ {vivi+1 | 1 ≤ i ≤ n− 2}.

Since {u} is a dominating set, ∆(Fn) = n− 1 by lemma 3.6. Thus, γ(Fn) = 1 for all n ≥ 3.

u

v1 v2 v3 v4 v5

Figure 25

Example 3.14. In Figure 25, {u} is a dominating set of F6 and ∆(F6) = 5. Thus, γ(F6) = 1.

Theorem 3.15. γ(Pn) = dn/3e for n ≥ 2.

Proof. Let V (Pn) = {v1, v2, v3, ....., vn}, E(Pn) = {vivi+1 | 1 ≤ i ≤ n− 1}.
Maximum degree of path graph is 2, i.e. ∆(Pn) = 2. By Theorem 4.6, which is proved that
γ (Pn) ≥ d n

1+∆(Pn)
e. Hence, γ (Pn) ≥ dn

3 e.

Also, if we starting with the second vertex of the path graph and selecting every third vertex then
gives a dominating set of size dn

3 e. It means, we starting with v2, v5, v8, v11, ....... (the last vertex
depends on the value of n, i.e. when n 6≡ 0 (mod 3)).
So it can be concluded that, γ (Pn) = dn

3 e.

For instance, let n = 8, then P8 :
u1 u2 u3 u4 u5 u6 u7 u8

Figure 26
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From the above Figure 26, {u2,u5,u8} is a dominating set of P8 and γ(P8) = 3, which is satisfied
our theorem, i.e. γ(P8) = d8

3e = 3.

Theorem 3.16. γ(Cn) = dn/3e for n ≥ 3.

The theorem is proved similarly to Theorem 3.15.

Remark. (Sugumaran [9]) The floor function for a real number k is the largest integer less than
or equal to k and it is denoted by bkc while the ceiling function for a real number k is the lowest
integer greater than or equal to k and it is denoted by dke.

3.2 A minimal dominating set and an independent set

Definition 3.17. A dominating set S is considered as a minimal dominating set if no proper
subset of S is a dominating set.

Example 3.18. In the Figure 27 below, {u2,u5}, {u1,u4,u5}, {u1,u3,u5}, {u1,u3,u6,u7}, and{u1,u4,u6,u7}
are minimal dominating sets.

u1

u2

u3 u4 u5

u6 u7

u1

u2

u3 u4 u5

u6 u7

u1

u2

u3 u4 u5

u6 u7

u1

u2

u3 u4 u5

u6 u7

u1

u2

u3 u4 u5

u6 u7

Figure 27

Theorem 3.19. (Theorem 1.1, [4]) A dominating set S is a minimal dominating set if and only
if for each vertex v in S, one of the following two conditions holds.
(i) v is an isolated vertex of the subgraph induced by S.
(ii) there exists a vertex u in V \ S such that N(u) ∩ S = {v}.

Proof. Assuming that S is a minimal dominating set of G, it leads to the fact that for every vertex
v in S, S \ {v} not a dominating set. Consequently, there is a vertex u ∈ (V \ S) ∪ {v} that is not
adjacent to any vertex in S \ {v}. So, now either u = v or u ∈ V \ S. But if u = v, then v is an
isolated vertex of S. Much similar to this, supposing that u ∈ V \ S, and u is not dominated by

19



S \ {v} , but is dominated by S, then it is clear that u is adjacent only to vertex v ∈ S, that is
N(u) ∩ S = {v}.

Conversely, suppose S is a non-minimal dominating set. Then there exists a vertex v in S in such
that S \ {v} is a dominating set. Therefore, v is adjacent to at least one vertex in S \ {v}. Thus,
condition (i) does not hold for this assertion. Further, in case of S \ {v} being a dominating set,
then every vertex in V \ S will be adjacent to at least one vertex in S \ {v}. As a result, for v,
condition (ii) does not hold, thereby implying that neither of the conditions holds.

v2

v1

v3 v4

v5 v7

v6

v8

Figure 28

Example 3.20. If we consider a dominating set S1 = {v3, v4, v8} in Figure 28, then V \ S1 =

{v1, v2, v5, v6, v7}.

It can be seen that vertices v3 and v4 do not satisfy the condition (i), but vertex v8 satisfy the
condition (i). Likewise, vertices v3 and v4 satisfy the condition (ii), but vertex v8 does not satisfy
the condition (ii). So, S1 is a minimal dominating set since each vertex in 〈S1〉 satisfies either
condition (i) or condition (ii).

u1

u2
u3 u4

u5

u9u6u7

u8

Figure 29

Example 3.21. In this example, we can see that both conditions holds.
In Figure 29, a dominating set is taken for consideration.
S′ = {u3,u6} then V \ S′ = {u1,u2,u4,u5,u7,u8,u9}. Also, every vertex in 〈S′〉 is an isolated
vertex, i.e. there is no edge connectivity between them. Therefore, condition (i) holds.
Hence, S′ is a minimal dominating set in a graph G.
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Example 3.22. Now, as seen in the Figure 29, a dominating set S′′ = {u3,u6,u9} be considered.
Then V \ S′′ = {u1,u2,u4,u5,u7,u8}. Also, 〈S′′〉 is,

u3

u6 u9

It can be seen that vertices u6,u9 are connected, justifying that every vertex in 〈S′′〉 is not an
isolated vertex. Hence, condition (i) does not hold.
In addition, vertex u5 ∈ V \ S′′ has two neighbours u6 and u9. Therefore, condition (ii) also does
not hold. So, S′′ is not a minimal dominating set of G.

Theorem 3.23. (Theorem 1.3, [4]) If G is a graph with no isolated vertices, and if S is a minimal
dominating set, then the complement V \ S is a dominating set.

Proof. Consider that S is a minimal dominating set of G and assume that vertex u in S is not
adjacent to any vertex in V \ S. So, u must be adjacent to at least one vertex in S \ {u} since G
has no isolated vertices. It follows that, S \ {u} is a dominating set, which is contradicting to the
minimality of S.

For instance, consider the graph in Figure 30, where V = {a, b, c, d, e, f}. Let S′ = {a, c} be one
of the minimal dominating sets of G, then V \ S′ = {b, d, e, f} also is a dominating set.

a b

cd

ef

Figure 30

Conversely, a dominating sets S1 = {u2,u3,u4} and S2 = {u2,u3,u4,u7} are taken for considera-
tion in Example 3 below.
But, S2 is not a minimal dominating set since S1 ⊂ S2. Also, V \ S2 = {u1,u5,u6}. The vertex
{u7} is not dominated by any of the vertices in V \ S2. Therefore, V \ S2 is not a dominating
set.
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Example 3

Definition 3.24. A set S of vertices in a graph G is called an independent set if no two vertices
in S are adjacent in G.

Definition 3.25. An independent set S is called a maximal independent set when no proper
superset of S is independent.

Definition 3.26. The independence number β0(G) is the maximum cardinality of an independent
set in G.

Definition 3.27. An independent set S of a graph G such that |S| = β0(G) is called a maximum
independent set of G.

u1 u2

u3

u4

u5

u6u7

u8

u9

u10

u1 u2
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u6u7

u8

u9
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Figure 31

Example 3.28. In the cycle C10 of Figure 31,
(i) the sets {u3,u7,u10}, {u1,u4,u6,u9}, {u1,u3,u5,u7,u9} are independent sets.
(ii) the sets {u1,u3,u5,u7,u9},{u2,u4,u6,u8,u10} are maximal independent sets.
For the cycle C10, β0(C10) = 5.

Theorem 3.29. (Proposition 3.5, [4]) An independent set S is maximal independent set if and
only if it is independent and dominating.

Proof. Let an independent set S be maximal. This means that the set S ∪ {u} for every vertex u
in V \ S can not be independent. This means that there is a vertex v in S for every vertex u in
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V \ S in such a way that u is adjacent to v. Therefore, it can be asserted that S is a dominating
and independent set.

Now suppose S is both independent and dominating. We want to prove that S is maximal inde-
pendent. Conversely, suppose S is not maximal independent, there is a vertex u in V \ S exists in
such a way that S ∪ {u} is independent, then S will be dominating set. But when no vertex exists
adjacent to u in S, even S ∪ {u} is independent. Hence S cannot be a dominating set, which is a
contradiction. Therefore S is a maximal independent set.

Example 3.30. From the above Figure 31, an independent set S = {u1,u3,u5,u7,u9} is maximum
independent. Then, V \ S = {u2,u4,u6,u8,u10}. Now, let v in V \ S. Thus, the set S ∪ {v} is not
independent sets since every vertex v in V \ S adjacent to at least one vertex in S. By definition
3.1, S is a dominating set. Thus, S is both independent and dominating set.

Theorem 3.31. (Proposition 3.6, [4]) Every maximal independent set in a graph G is a minimal
dominating set of G.

Proof. Let S be a maximal independent set in a graph G, then S is dominating set by Theorem
3.29. Assuming that S is not a minimal dominating set, there is an obvious existence of at least
one vertex v in S in such a way that S \ {v} is a dominating set. Similarly, at least one vertex
in S \ {v} is adjacent to v, when S \ {v} dominates V \ (S \ {v}). This is a contradiction to the
assertion that S is an independent set in G, whereby it can be determined that S will be a minimal
dominating set. Therefore, every maximal independent set in a graph G is a minimal dominating
set of G.

For instance, in the above Figure 31, let S1 = {u2,u5,u8,u10} is a maximal independent set.
Then, every vertex in V \ S1 is adjacent to at least one vertex in S1. Thus, S1 is a dominating
set. But, S1 \ {u2} = {u5,u8,u10} = S2 is not a dominating set since at least one vertex in V \ S2

is not adjacent to vertex in S2. Therefore, S1 is both a maximal independent set and a minimal
dominating set of graph G.

Theorem 3.32. For any graph G, γ(G) ≤ β0(G).

Proof. By definition 3.27, |S| = β0(G) if S a maximum independent set of vertices in G, which
leads to G having no larger independent set. Then, every vertex v ∈ V \ S is adjacent to at least
one vertex of S. Thus γ(G) ≤ |S|, since S is a dominating set. Therefore, γ(G) ≤ β0(G).

For instance, in the Figure 32 below: let S = {u1,u4,u6}, then V \ S = {u2,u3,u5}. Thus, S is
a dominating set since every vertex of V \ S is adjacent to at least one vertex of S. So, S is an
independent set since induced subgraph 〈S〉 contains isolated vertices. Also, |S| is maximum and
|S| = β0(G) = 3. Thus, γ(G) ≤ β0(G).
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4
Bounds of domination number
In this chapter, we are now going to discuss upper and lower bounds for γ(G).

e da

b c f

Figure 33

From the above Figure 33: V = {a, b, c, d, e, f} and let v′ = {e}, vertex of maximum degree ∆(G).
Then N(v′) = {a, b, c, d, }, so v′ dominates the set N(v′) ∪ {e}.
And V \N(v′) = {e, f}, it is clearly that V \N(v′) is a dominating set. Also, |N(v′)| = ∆(G).
Similarly, if we let v′′ = {d} then we have N(v′′) = {e, c} and V \N(v′′) = {a, b, d, f}. Thus, v′′

dominates the set N(v′′) and complement of V \N(v′′) is a dominating set. Also, ∆(G) > |N(v′′)|.
These assertions lead to the following observations:

Observation 1: Every vertex v in V (G) dominates N(v) vertices in G.
Observation 2: Let v be any vertex in G, then V \N(v) is a dominating set of G.
Observation 3: ∆(G) ≥ |N(v)| for every vertex v ∈ V (G).

Theorem 4.1. (Theorem 2.1, [4])(Ore’s Theorem)
If G is a graph with no isolated vertices, then

γ(G) ≤ n/2.

Proof. Let S be a minimal dominating set of graph G. Graph G is a connected graph of order
n ≥ 2 since it has no isolated vertices. On the contrary, suppose that γ(G) > n/2. By Theorem
3.23, V \ S is a dominating set of G. So, |V \ S| < n− n/2. Hence, we conclude that γ(G) ≤
min{|S|, |V \ S|} ≤ n/2.
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Example 4.2. In the above Figure 34 it can be seen that graph G1 has n = 4 and γ(G1) = 2, and
also γ(G1) = n/2.
Similarly, it is true for γ(G2) and γ(G3).

Theorem 4.3. (Theorem 2.11, [4]) For any graph G,

γ (G) ≤ n− ∆ (G) .

Proof. Let S be a dominating set of G. Then by Observation 2, V \N(v) is a dominating set
of G for any vertex v in V (G). Therefore, γ(G) ≤ |V \N(v)| = |V | − |N(v)| = n− ∆(G) by
Observation 3. Thus, γ (G) ≤ n− ∆ (G) .

u1 u2 u3 u4

Figure 35

Example 4.4. In the above Figure 35,
n = 4, ∆(G) = 2, γ(G) = 2 and n− ∆(G) = 2, so γ(G) = n− ∆(G).

Example 4.5. In the Figure 36 below, n = 5, ∆(G) = 2, γ(G) = 2 and n− ∆(G) = 3, so
γ(G) < n− ∆(G). w
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Figure 36

26



Theorem 4.6. (Theorem 2.11, [4]) For any graph G,

γ (G) ≥ d n

1 + ∆ (G)
e.

Proof. Let S be a dominating set of G. Then, every vertex v in V (G) can dominate at most itself
and N(v) vertices in G by Observation 1. Since |N [v]| ≤ ∆(G), this necessitates at least d n

1+∆(G)
e

closed neighbourhood, to cover every vertex of graph G. Hence the result, d n
1+∆(G)

e ≤ γ (G) .

4.1 Bounds in term of number of vertices and edges

The following theorem establishes a bound on the number of edges in terms of the domination
number.

Theorem 4.7. (Theorem 2.20, [4]) If a graph G has domination number γ(G), then

m ≤ b12 (n− γ (G)) (n− γ (G) + 2)c,

wherein m represents the number of edges in G, and n refers the number of vertices.

Proof. If γ(G) = 1, then we get the inequality

m ≤ b12 (n− 1) (n− 1 + 2)c = 1
2 (n− 1)(n+ 1).

This inequality always holds, because m ≤ 1
2n(n+ 1) in every graph.

Suppose first that γ(G) = 2 (it is not logically necessary to include the case γ(G) = 2, but we do
it to illustrate the idea). In this case, we want to prove the following inequality

m ≤ b12 (n− γ (G)) (n− γ (G) + 2)c = 1
2n(n− 2).

By Theorem 4.3, we have 2 ≤ n− ∆(G) ⇐⇒ ∆(G) < n− 2 which means that the degree of each
vertex is at most n− 2. And by Theorem 2.12, m ≤ 1

2n(n− 2).

Now suppose G be a graph of order n, size m. We use induction on the order n. The basic case
n = 1 is obvious. We assume that the inequality holds for all graphs having order less than n. Let
v be a vertex of maximum degree ∆(G). By Theorem 4.3 we know that |N(v)| = ∆(G) ≤ n− γ(G).
Thus, |N(v)| = ∆(G) = n− γ(G)− r, where 0 ≤ r ≤ n− γ(G).

Let S = V \N [v]. If S is empty, then γ(G) = 1, a case that we discussed already. We will assume
that S is not empty, then (notice that in this case S is not a dominating set, but S ∪ {v} is a
dominating set)

|S| = |V | − (|N (v)|+ |{v}|) = n− ∆ (G)− 1 = γ(G) + r− 1. (1)
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Then, the m (size of G) can be divided into three parts such as,

m = m1 +m2 +m3, where

m1 is the number of edges in induced graph 〈S〉
m2 is the number of edges between N(v) and S and
m3 is the number of edges in induced graph 〈N [v]〉.

Also, suppose D is a minimum dominating set of 〈S〉, then it follows that D ∪ {v} is a dominating
set of G. Therefore, γ(G) ≤ |D ∪ {v}|, by which it is implies that γ(S) ≥ γ(G)− 1.

u1 u2

u3 u4

u5 u6

Figure 37

For instance, if a graph in Figure 37 is taken for consideration, S = V \N [u3] and N [u3] =

{u2,u3,u4,u5}. Then, S = {u1,u6}.

So, subgraph induced by S and N [u3]:

〈S〉: u1 u6 〈N [u3]〉: u2

u3 u4

u5

Furthermore, D = {u1,u6} is a minimum dominating set of 〈S〉, i.e. it dominates itself, then
D ∪ {u3} = {u1,u3,u6} is a dominating set of G. Hence γ(G) ≤ |D ∪ {u3}|, that is

γ(G) ≤ |D|+ 1. (2)

By the inductive hypothesis which implies that by substitution of equation (1) and inequality (2)
that (the number of edges in 〈S〉, say m1 is ),

m1 ≤ b
1
2 (|S| − |D|) (|S| − |D|+ 2)c

≤ b12 (γ (G) + r− 1− (γ (G)− 1)) (γ (G) + r− 1− (γ (G)− 1) + 2)c

=
1
2r(r+ 2).

m1 ≤
1
2r(r+ 2). (3)

It is not hard to see that if u in N(v), then (S \N(u)) ∪ {u, v} is a dominating set of G.
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For example, if the graph G (Figure 39) is considered that u3 in V (G), and S = V \N [u3] =

{u1,u6}, it leads that N(u4) = {u3} and N(u3) = {u2,u4,u5}. Therefore,

(S \N(u3)) ∪ {u3,u4} = {u1,u6} ∪ {u3,u4} = {u1,u3,u4,u6}

is a dominating set of G.

Therefore,
γ(G) ≤ |S \N(u)|+ |{u, v}| = |S| − |S ∩N(u)|+ 2

Then, by substitution of equations (1)

γ(G) ≤ ((γ(G) + r− 1)− |S ∩N(u)|+ 2.

It implies that |S ∩N(u)| ≤ r+ 1, for each vertex u in N(v).

From this,
m2 ≤ |N(v)| · (r+ 1) = ∆(G) · (r+ 1). (4)

As we mentioned above, m3 = |E(〈N [v]〉)|.

So, our next goal is to estimate m2 +m3. m2 +m3 is the number edges that are adjacent to a
vertex in N(v). For every vertex u of N(v), let i(u) be the number of edges connecting u to other
vertices of N(v), and let e(u) be the number edges from u to S. We think of i(u) and e(u) as
the internal and external degree of u respectively. There also is an edge from u to v, so the total
degree of u is 1 + i(u) + e(u).

We know that i(u) + e(u) ≤ ∆(G)− 1, because ∆(G) is the maximal degree of a vertex.

It is easy to see that
m3 = ∆(G) +

1
2
∑

u∈N(v)

i(u).

The first summand counts the edges from v to N(v), and the second summand counts the internal
edges of N(v).

Similarly, we have
m2 =

∑

u∈N(v)

e(u).

Then,
m2 +m3 = ∆(G) +

∑

u∈N(v)

1
2 i(u) + e(u).

We can write this,
2(m2 +m3) = 2∆(G) +

∑

u∈N(v)

i(u) + 2e(u). (5)
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We know that for each u, i(u) + e(u) ≤ ∆(G)− 1. It follows that

∑

u∈N(v)

i(u) + e(u) ≤ ∆(G)(∆(G)− 1). (6)

On the other hand, we saw above that e(u) ≤ r+ 1 for all u. Therefore

∑

u∈N(v)

e(u) ≤ ∆(G)(r+ 1). (7)

Add the two inequalities (6) and (7) we obtain

∑

u∈N(v)

i(u) + 2e(u) ≤ ∆(G)(∆(G) + r). (8)

If we substitute this inequality (8) in inequality (5), we get

2(m2 +m3) ≤ 2∆(G) + ∆(G)(∆(G) + r).

It follows that
m2 +m3 ≤

1
2 ∆(G)(∆(G) + r+ 2).

Now we substitute r = n− γ(G)− ∆(G), to obtain inequalities of m2 and m3

m2 +m3 ≤
1
2 ∆(G)(n− γ(G) + 2). (9)

If we substitute r = n− γ(G)− ∆(G) in inequality (3), we get

m1 ≤
1
2 (n− γ(G)− ∆(G))(n− γ(G)− ∆(G) + 2)

m1 ≤
1
2 [(n− γ(G))(n− γ(G) + 2) + ∆(G)(∆(G) + 2γ(G)− 2n− 2)]. (10)

Consequently, the size of G is
m = m1 +m2 +m3.

By substitution of inequalities (9) and (10),

m ≤ 1
2 [(n− γ(G))(n− γ(G) + 2)− ∆(G)(n− γ(G)− ∆(G))]

The right hand side equals to

1
2 [(n− γ(G))(n− γ(G) + 2)−∆(G) (n− γ(G)− ∆(G))︸ ︷︷ ︸] =

1
2 [(n− γ(G))(n− γ(G) + 2)−∆(G)r]
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We know that 0 ≥ −∆(G) = γ(G) + r− n, so we finally conclude that

m ≤ b12 (n− γ (G)) (n− γ (G) + 2)c.

Remark. If we like to know more about Theorem 4.7, and the results that come afterward, we can
find it in Theorem 2.20 in Haynes [4], and also in Vizing [10].

Furthermore, we can find in Appendix A an alternative way to get m3.

Corollary 4.8. (Theorem 2.22, [4]) For any graph G, γ(G) ≤ n+ 1−
√

1 + 2m.

Proof. From Theorem 4.7, we have

2m ≤ (n− γ(G))(n− γ(G) + 2) = n2 + γ(G)2 − 2nγ(G)− 2γ(G) + 2n.

If number 1 is added on both sides and simplify in the right side of the equation, it results with

1 + 2m ≤ (n− γ(G) + 1)2.

Since n− γ(G) ≥ 0, it ends up with

√
1 + 2m ≤ n− γ(G) + 1.

Thus, γ(G) ≤ n+ 1−
√

1 + 2m.

Theorem 4.9. (Theorem 2.24, [4]) If G is a connected graph, then

ddiam (G) + 1
3 e ≤ γ (G) .

Proof. Let S be a dominating set of G. Let P = v1, v2, . . . , vn be a shortest path from v1 to vn in
G. We want to show that n ≤ 3|S|. Since S is a dominating set, the closed stars of elements of
S cover G. Since the diameter of a star is 2, we can assume that P never leaves a star and then
comes back to it. Therefore, we can assume that P consists of at most |S| chunks corresponding to
stars it goes through, and that each chunk consists of at most 3 vertices. It follows that n ≤ 3|S|.
Remember that the length of an open path is n− 1 (see def 2.28). So, we prove that for any
dominating set S, and any shortest path of length l = n− 1 ⇒ n = l + 1 ≤ 3|S|. But, if we
take the longest possible shortest path in G, its length is l = diam, and we have proved that
diam+ 1 ≤ 3|S|. Thus, ddiam(G)+1

3 e ≤ γ (G) .
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Figure 38

Example 4.10. For instance, let S = {u2,u5} is a dominating set of a connected graph G in Figure
38 since every complement of set V \ S is adjacent to at least one vertex in S. Then, it gives
diam(G) = 4 if an arbitrary path of length, i.e. u1 → u2 → u3 → u5 → u6 is considered.

This diametrical path includes a maximum of two edges from the induced subgraph 〈N [v]〉 for
each v ∈ S. This can be seen in the below Figure 39, wherein the induced graph 〈N [u2]〉 consists
of u1u2 , u2u3 edges and the induced graph 〈N [u5]〉 contains u3u5 , u5u6 edges, which includes in
the diametrical path.

〈N [u2]〉 :

u1 u2

u3

u4 〈N [u5]〉 :

u3 u5

u6

u7

Figure 39

In addition, since S is a minimum dominating set, the diametral path comprises at most γ(G)− 1
edges joining the neighbourhoods of the vertices in S.

Further, diam(G) ≤ 2γ(G) because every vertex contributes two edges to this diametral path.
Hence, diam(G) ≤ 2γ(G) + γ(G)− 1 = 3γ(G)− 1 and the result is ddiam(G)+1

3 e ≤ γ (G) .

For example, in the graph (Figure 38), diam(G) = 4 and γ(G) = 2 is observed. Then,

ddiam (G) + 1
3 e = d4 + 1

3 e = d1.67e,

which is equal to 2. So, the desired result is true.

Definition 4.11. The length of a shortest cycle in a graph G which contains cycles is the girth
g(G). If a cycle has length g(G) then it is called a g-cycle.
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Theorem 4.12. (Theorem 2.28, [4]) If a graph G has g(G) ≥ 5, then

δ(G) ≤ γ(G).

Proof. Let S be considered as a γ-set of a graph G. Then, the result will be true for δ(G) = 1.
Suppose δ(G) ≥ 2. By recalling Theorem 4.3, γ(G) ≤ n− ∆(G) ≤ n− δ(G) ≤ n− 2, it is proved
that |V \ S| ≥ 2.

Let u in V \S. A cycle C3 or C4 is formed if a vertex of S dominates one or more vertices in N(u).
Hence, there arises a contradiction with g(G) ≥ 5. So, it can be presumed that at most one vertex
in N(u) is dominated by each vertex of S. Therefore, γ(G) ≥ |N(u)| ≥ δ(G).

a

b

c d

e

f g

h i

Figure 40

Example 4.13. Let S = {b, e, i} be a dominating set of a graph G as seen in Figure 40. Then, the
result is true for δ(G) < γ(G). That is, we have δ(G) = 1, γ(G) = 3 and g(G) = 5.

If a cycle graph C6 is considered, then it ends up with δ(G) = 2, γ(G) = 2 and g(G) = 6. Thus,
it is true for δ(G) = γ(G). Therefore γ(G) ≥ δ(G).

Theorem 4.14. (Theorem 2.28, [4]) For any graph G if g(G) ≥ 6, then γ(G) ≥ 2(δ(G)− 1).

Proof. Let it be assumed that g(G) ≥ 6. If V \ S is found to have adjacent vertices u and v, it
implies that each vertex of S is prone to dominate at most one vertex in N(u) ∪N(v) \ {u, v}.
This leads to the conclusion that γ (G) ≥ |N (u)|+ |N (v)| − 2 ≥ 2 (δ (G)− 1).

Similarly, when V \ S is an independent set while {u, v} ⊆ V \ S , it paves the way for N(u) ⊆ S

and N(v) ⊆ S. Furthermore, in terms of fact g(G) ≥ 6, |N(u) ∩N(v)| ≤ 1 and again γ(G) ≥
|N(u)|+ |N(v)| − 1 ≥ 2δ(G)− 1.

Example 4.15. For instance, if the cycle graph C10 in the below Figure 41 is considered, it results
with a minimal dominating set S1 = {u2,u5,u7,u9}. Also, g(G) = 10, δ(G) = 2 and γ(G) = 4.
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So, it is true for γ(G) > 2(δ(G)− 1).

Similarly, when the cycle graph C6 is considered, it results with g(G) = 6, δ(G) = 2 and γ(G) = 2.
So, it is true for γ(G) = 2(δ(G)− 1).
Therefore, γ(G) ≥ 2(δ(G)− 1).

u1 u2

u3

u4

u5

u6u7

u8

u9

u10

Figure 41

Remark. If we are interesting to know elementary of bounds on domination number (i.e. in chapter
4), we can look it particular of Theorem 2.11, Theorem 2.22, Theorem 2.24 and Theorem 2.28 in
Haynes [4] (pp.41-57).
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5
Final remarks
Graph theory is one of the thriving branches of mathematics and applications. Its growth is due
to broad applications for discrete optimization problems and applications in various areas such as
communication networks, coding theory, social networks, software design and computation.

Domination in graphs is an extensively researched branch of Graph Theory. In our project, we
have studied domination in graphs together with bounds for γ(G).

The idea of the domination number γ(G) for standard graphs was written from On the domination
number of knödel graph W3,n written by Xueliang et al. [12].

This thesis was written primarily from Fundamentals of domination in graphs written by Haynes
et al. [4], pp.1-106. It may be without a comprehensive and clear overview. However, those who
wish to gain knowledge in this field may be interested in exploring a more dominating set of this
thesis. Even in [3], [4], [8] and [9] we can find several different types of dominating sets if someone
is interesting to know about it.
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A
Proof of Theorem 4.7
Alternative way to getm3: As we mentioned before,m3 = |E(〈N [v]〉)|. By Theorem 2.12,

∑

u∈〈N [v]〉
deg(u) = 2m3.

Let v be a vertex of maximum degree in G. Then, ∆(G) + 1 vertices are dominated by v since v
dominates itself and N(v). So, the sum of the degrees of the vertices of N [v] ≤ ∆(G)(∆(G) + 1).
As there m2 edges between S and N(v), we get

∑

u∈〈N [v]〉
deg(u) =

∑

u∈N [v]

deg(u)−m2.

Illustration:
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Therefore,
m3 ≤

1
2 [∆(G)(∆(G) + 1)−m2].

. It follows that by adding the inequalities m2 and m3,

m2 +m3 ≤
1
2 ∆(G)(∆(G) + r+ 2).

If we add this inequality together with inequality m1 and if we substitute r = n− γ(G)− ∆(G),
then we get the result finally.
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