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Abstract

This thesis explores the deep connections of measure theory and proba-
bility theory. We introduce fundamental results of measure theory. We
then use these results to rigorously develop probability theory. Special
attention is given to independence and conditional expectation of random
variables. The thesis aims to be self-contained to a high degree and most
results are given detailed proofs.
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1 Introduction

There are many motivations for letting measure theory provide the foundation
for probability theory which the ardent student almost surely would discover
on his or her own. But as a concrete example, conditional expectation is more
easily treated. This is indispensable for the development of martingales. These
are important in the theory of stochastic process and useful, for example, in
financial modelling. Martingales are also interesting in their own right and can
be used to prove some important theorems in real analysis. See, in particular,
[5] and [7] for that kind of development.

However, we do without martingales in this thesis and instead focus on more
fundamental concepts. In Section 2, we cover σ-algebras, measures, measurable
functions, the Lebesgue integral and the main convergence theorems. In Sec-
tion 3, we explore connections between real analysis and probability theory. We
prove Weierstrass approximation theorem and Jensen’s inequality in the pro-
cess. In Section 4, we thoroughly develop the notion of independence between
σ-algebras. The section ends with proofs of fundamental theorems, namely,
Kolmogorov’s 0-1 law and the two versions of Borel-Cantelli’s lemma. Section
5 is largely devoted to proving useful properties of the conditional expectation
with regards to a σ-algebra. In the concluding section suggestions for further
reading are given.

The prerequisites are a basic understanding of probability theory and real
analysis. Some familiarity with measure theory is helpful too but not necessary.



2 Measure Theory Preliminaries

For a quick probabilistic motivation of our first concept, consider an experiment
consisting of flipping a coin until we get heads. Let An denote the event of
getting heads after n throws. Then A := ∪∞n=1A2n is the event of getting heads
after an even number of throws. From undergraduate theory, we would expect
the probabilities P(An), P(A), P(Ac), and P(A∪Ac) to all be well-defined. These
well-defined sets are in a sense what makes up a σ-algebra.

Definition 2.1. Let S be a set. A collection F of subsets of S is a σ-algebra if

(i) S ∈ F ,
(ii) A ∈ F =⇒ S \A ∈ F ,

(iii) A1, A2, · · · ∈ F =⇒
∞⋃

n=1

An ∈ F .

Since ∅ = Sc, the σ-algebra contains the empty set. Furthermore, by De
Morgan’s laws, we have

A1, A2, · · · ∈ F =⇒
∞⋂

n=1

An =

( ∞⋃

n=1

Acn

)c
∈ F .

The sets of F are called measurable. From the definition, it is evident that both
{∅, S} and 2S are σ-algebras on S. The second example shows that for any
collection of sets, there exists a σ-algebra containing the collection.

It is also straightforward to verify that any intersection of σ-algebras on S
is a σ-algebra. Thus the smallest σ-algebra containing a collection of sets A
coincides with intersection of all σ-algebras containing A. This σ-algebra is
said to be generated by A. It is denoted by σ(A).

The Borel σ-algebra B(S) is the σ-algebra on a topological space S generated
by the open sets of S. We often work with the Borel σ-algebra on the extended
real line R := R ∪ {−∞,+∞} equipped with the topological basis consisting of
all open intervals (a, b) along with (a,∞] and [−∞, b) where a, b ∈ R. We will
refer to this particular Borel set by B.

Definition 2.2. Let F be a σ-algebra. A function µ : F → [0,∞] is a measure
if µ(∅) = 0 and

A1, A2, · · · ∈ F , and Ai ∩Aj = ∅ for i 6= j =⇒ µ

( ∞⋃

n=1

An

)
=

∞∑

n=1

µ(An).

Remark. The first condition is merely to avoid the trivial case when µ = ∞.
Otherwise, it is implied by the second condition. Also, using the notation above,
if we let An = ∅ for n ≥ 3, then µ(A1 ∪A2) = µ(A1) + µ(A2).



Consider the function µ : 2S → N0 ∪ {∞} which for A ⊂ S,

µ(A) =

{
|A|, if A finite,

∞, if A infinite,

where |A| denotes the number of elements in A. This functions is a measure. It
is called the counting measure. Another example of a measure is the Lebesgue
measure which is defined on a σ-algebra larger than the Borel set of R. It
essentially maps intervals [a, b) to b− a. Consult the literature, notably [1], [2]
or [7], for elaboration on the Lebesgue measure.

Proposition 2.3. If A1 ⊂ A2 ⊂ . . .F and A := lim
n→∞

∪∞n=1An, then for any

measure µ we have
lim
n→∞

µ(An) = µ(A).

Remark. Other notations for A are lim
n→∞

An = A and An ↑ A as n→∞.

Proof. LetBn = ∪nk=1Ak\∪n−1
k=1Ak, thenBi∩Bj = ∅ for i 6= j andAn = ∪nk=1Bk,

thus

µ(A) = µ

( ∞⋃

n=1

Bn

)
=
∞∑

n=1

µ(Bn) = lim
n→∞

µ(An).

Definition 2.4. If F is a σ-algebra on S and µ is a measure on F then the
triple (S,F , µ) is a measure space. If we do not specify the measure, we say
that (S,F) is measurable space. If f is a function from one measurable space to
another and the inverse image of every measurable set is also measurable, then
f is a measurable function.

We will for the most part restrict ourselves to extended real-valued mea-
surable functions. These will thus take the form of f : (S,F) → (R,B) where
B ∈ B implies f−1(B) ∈ F .

Lemma 2.5. Suppose f : X → Y is a measurable function and g : Y → Z is
continuous, where Y and Z are both topological spaces equipped with their Borel
σ-algebra. Then the composition g ◦ f : X → Z is measurable.

Proof. Let B be open in Z, then (g◦f)−1(B) = f−1(g−1(B)). By the definition
of a continuous function, g−1(B) is open in Y . Since g−1(B) is a Borel set of Y ,
by the measurability of f , we have that f−1(g−1(B)) belongs to the σ-algebra
of X. If B is a Borel set of Z which is not open, then it is still in the σ-
algebra generated by open sets and is thus equal to a combination of countable
intersections and unions of open sets. Now, the inverse image is closed w.r.t.
those operations in the sense that for a countable sequence of Borel sets (Bn)∞n=1,
we have ∪∞n=1f

−1(Bn) = f−1(∪∞n=1Bn) and likewise for intersections. Thus the
initial argument holds for non-open B too.
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The last argument of the proof above yields the next lemma.

Lemma 2.6. A function f on (S,F) is measurable if and only if
f−1((a, b)), f−1((a,+∞]), f−1([−∞, b)) ∈ F for all a, b ∈ R.

Lemma 2.7. A function f on (S,F) is measurable if and only if
f−1([−∞, b)) ∈ F , for every b ∈ R.

Proof. For the ”if”-part, fix a, b ∈ R such that a < b. Then

f−1((a,+∞]) =
∞⋃

n=1

f−1([a+
1

n
,+∞]) =

∞⋃

n=1

f−1([−∞, a+
1

n
))c,

f−1((a, b)) = f−1([−∞, b)) ∩ f−1((a,+∞]).

Since a, b were arbitrarily chosen, this is sufficient.

Theorem 2.8. Let u and v be measurable functions on (S,F), let
Φ : R×R→ R be continuous, and define h(x) := Φ(u(x), v(x)) for x ∈ S. Then
h : S → R is measurable.

Remark. As usual, R×R is assigned the product topology. See [3] for more on
topology. We let ∞−∞ be undefined but ∞ · 0 := 0. Thus this result implies
the measurability of (well-defined) sums and products of measurable functions.

Proof. Define f(x) := (u(x), v(x)), then h(x) = (Φ ◦ f)(x). Thus by Lemma 2.5
it suffices to prove the measurability of f . For an open rectangle I = I1 × I2 ∈
R×R, we have f−1(I) = u−1(I1)∩v−1(I2) ∈ F . We are now done since any open
subset of R× R can be written as the countable union of open rectangles.

Proposition 2.9. Suppose (fn)∞n=1 is a sequence of measurable functions, then
sup
n≥1

fn, inf
n≥1

fn, lim sup
n→∞

fn and lim inf
n→∞

fn are measurable.

Proof. Denote inf
n≥1

fn by f . Note that for every b ∈ R, f(x) < b implies

fn(x) < b for some n. By using the previous lemma, it is sufficient to note that

f−1([−∞, b)) =
∞⋃

n=1

f−1
n ([−∞, b)).

Consequently,

sup
n≥1

fn =− inf
n≥1

(−fn),

lim sup
n→∞

fn = inf
m≥1

(
sup
n≥m

fn

)
,

lim inf
n→∞

fn = sup
m≥1

(
inf
n≥m

fn

)
,

all follow.
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Remark. In particular, for a measurable function f we have that f+(x) :=
max {f(x), 0} and f−(x) := max {−f(x), 0} are measurable.

The indicator function of a subset E ⊂ S is defined as

IE(x) =

{
1, if x ∈ E,
0, if x /∈ E.

Proposition 2.10. The indicator function IE is measurable if and only if E is
measurable.

Proof. We have

I−1
E ((a, b)) =





∅, if a ≥ 1 or b ≤ 0,

Ec, if a < 0 < b ≤ 1,

E, if 0 ≤ a < 1 < b,

S, if a < 0 < 1 < b.

Hence the function is measurable if and only if these four sets are measurable.
Since σ(E) = {∅, E,Ec, S}, we are done.

A simple function is a real function with finite range. An indicator function
is trivially a simple function, but f : R → R given by f(x) = x is not, because
the range is an uncountable set. In general, a simple function s can be written
as

s(x) =

n∑

i=1

αiIAi(x),

where each αi is distinct, and {A1, . . . An} is a partition of the domain. It is
evident that s is measurable only if each Ai is measurable.

The next proposition gives a good characterization of the relationship be-
tween simple functions and measurable functions.

Proposition 2.11. Let f : S → [0,∞] be a measurable function. Then there
exists a nondecreasing sequence of nonnegative measurable simple functions,
(sn)∞n=1, that converges pointwise to f .

Proof. Let

sn(x) :=
n2n∑

i=0

i2−nIAn,i
(x),

where An,i := {x : i2−n ≤ f(x) < (i+ 1)2−n} = An+1,2i ∪An+1,2i+1.

Definition 2.12. Let E be a measurable subset and

s(x) =

n∑

i=1

αiIAi(x),
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a nonnegative measurable simple function. Then we define

∫

E

s dµ :=
n∑

i=1

αiµ(Ai ∩ E),

where 0 · ∞ := 0 as noted before. If f a nonnegative measurable function, then
the Lebesgue integral of f over E µ of f is defined as

∫

E

f dµ := sup

∫

E

s dµ.

where supremum is taken over all measurable simple functions 0 ≤ s ≤ f .
If f is allowed to be negative and

∫
S
|f | dµ < ∞, then it is integrable, or

µ-integrable. Its integral is defined as
∫

E

f dµ :=

∫

E

f+ dµ−
∫

E

f− dµ.

We denote it by f ∈ L1(S,F , µ), or just f ∈ L1. More generally, f ∈ Lp for
p ∈ [0,∞) if and only if

‖f‖p :=

(∫

S

|f |p dµ
)p

<∞.

Here are some elementary properties of the Lebesgue integral. We omit a
proof.

Proposition 2.13. If f, g, h ∈ L1(S,F , µ) with f ≤ h and a, b ∈ R, then
af + bg ∈ L1 and

(a)

∫

S

(af + bg) dµ = a

∫

S

f dµ+ b

∫

S

g dµ,

(b)

∫

S

f dµ ≤
∫

S

h dµ,

(c)

∣∣∣∣
∫

S

f dµ

∣∣∣∣ ≤
∫

S

|f | dµ.

We have now arrived to one of our main results in this section.

Theorem 2.14 (Monotone convergence theorem). Suppose (fn)∞n=1 is an non-
decreasing sequence of nonnegative measurable functions on S which converges
pointwise to a function f , then f is measurable and

lim
n→∞

∫

S

fn dµ =

∫

S

f dµ.

Proof. Since f = sup
n≥1

fn, it follows that f is measurable. Thus the integral

makes sense and we have
∫

S

fn dµ ≤
∫

S

f dµ, ∀n. (1)
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The limit of the left side of (1) exists because of monotonicity. If the limit is
infinite the equality is trivially true. We can thus assume that

lim
n→∞

∫

S

fn = α ∈ R.

Now, (1) implies, by taking the limit of the left side,

α ≤
∫

S

f dµ. (2)

For the reverse inequality, take any measurable simple function 0 ≤ s ≤ f ,
and any c ∈ (0, 1). Consider the set En = {x ∈ S : fn(x) ≥ cs(x)}. Clearly

En ⊂ En+1, hence
⋃N
n=1En = EN . Furthermore, En ↑ S as n → ∞. The

latter assertion needs a clarification. Take x ∈ S. If s(x) = 0, then x ∈ E1. If
s(x) > 0, then f(x)−cs(x) = ε > 0. By pointwise convergence f(x)−fn(x) < ε
for n ≥ N for some N . This implies x ∈ EN . Further,

∫

S

fn dµ ≥
∫

En

fn dµ ≥ c
∫

En

s dµ.

This implies

α ≥ c
∫

En

s dµ,

and by letting n→∞, we get

α ≥ c
∫

S

s dµ.

Since the inequality holds for any c ∈ (0, 1), it must also hold for c = 1, resulting
in

α ≥
∫

S

s dµ.

Finally, since s is arbitrary we can invoke the definition of the Lebesgue integral,
and thus

α ≥
∫

S

f dµ,

which coupled with (2) yields the desired equality.

Remark. The condition f1 ≥ 0 can be replaced by
∫
S
f−1 < ∞, i.e. finite

integral of the negative part of f1. This is seen by applying the theorem on
fn + f−1 , which is nonnegative, and then subtract.

Theorem 2.15 (Fatou’s lemma). Suppose (fn)∞n=1 is a sequence of nonnegative
measurable functions, then

∫

S

lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫

S

fn dµ.
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Proof. We have lim inf
n→∞

fn(x) = sup
m→∞

(
inf
n≥m

fn(x)

)
, for every x ∈ S, that is,

inf
n≥m

fn(x) ↑ lim inf
n→∞

fn(x) as m→∞. Now,

∫

S

inf
n≥m

fn dµ ≤
∫

S

fk dµ

holds for any k ≥ m. Thus
∫

S

inf
n≥m

fn dµ ≤ lim inf
n→∞

∫

S

fn dµ

holds for any m. We are therefore allowed to take the limit of the left side,
which is given by the Monotone convergence theorem.

Corollary 2.16 (Reverse Fatou’s lemma). Suppose (fn)∞n=1 is a sequence of
nonnegative measurable functions, and there exists an integrable function g such
that fn ≤ g for all n. Then

∫

S

lim sup
n→∞

fn dµ ≥ lim sup
n→∞

∫

S

fn dµ.

Proof. By Fatou’s lemma we have
∫

S

lim inf
n→∞

(g − fn) dµ =

∫

S

g dµ−
∫

S

lim sup
n→∞

fn dµ

≤ lim inf
n→∞

∫

S

(g − fn) dµ =

∫

S

g dµ− lim sup
n→∞

∫

S

fn dµ,

and since
∫
S
g dµ is finite we can subtract it from both sides.

Remark. There are set versions of Fatou’s lemma as well. For a sequence
(En)∞n=1 of measurable sets, we define

lim inf
n→∞

En :=
∞⋂

m=1

∞⋃

n=m

En,

lim sup
n→∞

En :=

∞⋃

m=1

∞⋂

n=m

En.

We omit a proof, but we nonetheless have that lim inf
n→∞

En and lim sup
n→∞

En are

measurable. Further,

µ(lim inf
n→∞

En) ≤ lim inf
n→∞

µ(En),

and if µ(E1) <∞, then

µ(lim sup
n→∞

En) ≥ lim sup
n→∞

µ(En).
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Theorem 2.17 (Dominated convergence theorem). Suppose that g, (fn)∞n=1 ∈
L1, |fn| ≤ g for all n and fn converges pointwise to function f . Then

lim
n→∞

∫

S

|fn − f | dµ = 0.

Proof. We first note that f = lim sup
n→∞

fn and is thus measurable. Since 0 ≤
|fn − f | ≤ 2g, we can apply the previous corollary,

lim sup
n→∞

∫

S

|fn − f | dµ ≤
∫

S

lim sup
n→∞

|fn − f | dµ = 0 ≤ lim inf
n→∞

∫

S

|fn − f | dµ.

Remark. The conclusion implies lim
n→∞

∫
S
fn dµ =

∫
S
f dµ since |

∫
S
fn dµ −∫

S
f dµ| ≤

∫
S
|fn − f | dµ by Proposition 2.13c.

A property p is said to hold almost everywhere, abbreviated a.e., if µ({x ∈
S : p does not hold}) = 0. Since the integral over subsets with measure 0 always
equals 0, we may replace the condition of pointwise convergence in the Monotone
convergence theorem and the Dominated convergence theorem with pointwise
convergence a.e. This extra flexibility will be useful later when dealing with
conditional expectation.
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3 Probability Theory

We begin by introducing the basic measure-theoretic definitions in probability
theory. A probability space is a measure space, (Ω,F ,P), where the elements
of Ω, are called outcomes, usually denoted by ω, the elements of F are called
events, and P(Ω) = 1. A random variable X is a measurable function, with
the notational convention that P(X ∈ B) := P({ω : X(ω) ∈ B}). The expected
value of an integrable random variable is defined as E[X] :=

∫
Ω
X dP.

A property is said to hold almost surely, abbreviated a.s., if said property
has probability 1 of occurring.

Fubini’s theorem, see [5] for a concise proof, gives a nontrivial representation
of the expected value. Let µ denote the Lebesgue measure, then we have

X+(ω) =

∫ X+(ω)

0

dµ(x) =

∫ ∞

0

I{X+(ω)>x} dµ(x),

hence

E[X+] =

∫

Ω

(∫ ∞

0

I{X+(ω)>x} dµ(x)

)
dP(ω)

=

∫ ∞

0

(∫

Ω

I{X+(ω)>x} dP(ω)

)
dµ(x) =

∫ ∞

0

P(X > x)dµ(x).

Similarly,

X−(ω) =

∫ 0

−X−(ω)

dµ(x) =

∫ 0

−∞
I{X−(ω)≥−x} dµ(x) =

∫ 0

−∞
I{−X−(ω)≤x} dµ(x),

hence

E[X−] =

∫

Ω

(∫ 0

−∞
I{−X−(ω)≤x} dµ(x)

)
dP(ω)

=

∫ 0

−∞

(∫

Ω

I{−X−(ω)≤x} dP(ω)

)
dµ(x) =

∫ 0

−∞
P(X ≤ x)dµ(x).

In total, given that X is integrable,

E[X] = E[X+]− E[X−] =

∫ ∞

0

P(X > x)dµ(x)−
∫ 0

−∞
P(X ≤ x)dµ(x).

The constructive version of the proof of the next theorem shows that probability
theory is helpful for mathematical analysis.

Theorem 3.1 (Weierstrass approximation theorem). For any continuous real-
valued function, f , on an interval [a, b] ⊂ R, there exists a sequence of polyno-
mials which converges uniformly to f on that interval.



Proof. Without loss of generality, we let the interval be [0, 1]. Indeed, if the
theorem holds for this specific case, and f satisfies the original conditions, then
g, defined as g(x) := f(a+ (b− a)x) on [0, 1], satisfies the new conditions.

Let Xn ∼ Bin(n, p) be binomially distributed, that is,

P(Xn = k) =

(
n

k

)
pk(1− p)n−k.

Then

E[f(n−1Xn)] =

n∑

k=0

(
n

k

)
f(n−1k)pk(1− p)n−k,

which is the polynomial we will use for approximation with p as independent
variable. As we know from the undergraduate theory, E[n−1Xn] = p and
Var(n−1Xn) = n−1p(1− p). Hence by Chebyshev’s inequality,

P(|n−1Xn − p| ≥ ε) ≤
p(1− p)
nε2

<
1

nε2
.

Since f is continuous and [0, 1] is compact, f is bounded, that is, |f(x)| ≤ K for
every x ∈ [0, 1] and some K ∈ R. Furthermore, f is uniformly continuous. Thus
for a fixed ε > 0, there exists some δ such that |f(x)− f(y)| < ε

2 if |x− y| < δ.
Using that δ, we let An,δ := {ω : |n−1Xn(ω) − p| < δ} and h(n, p) :=

|f(n−1Xn)− f(p)|. We then have

|E[f(n−1Xn)]− f(p)| ≤ E[|f(n−1Xn)− f(p)|]
= E[h(n, p)]

= E[h(n, p)|An,δ]P(An,δ) + E[h(n, p)|Acn,δ]P(Acn,δ)

≤ ε

2
P(|n−1Xn − p| < δ) + 2KP(|n−1Xn − p| ≥ δ)

≤ ε

2
+
ε

2
= ε,

whenever n > 4K
εδ2 . The choices of δ and n are independent of p. Uniform

convergence has thereby been proved.

A real function ϕ is convex on an open interval (a, b) if for every x, y ∈ (a, b)
and λ ∈ (0, 1) we have

ϕ(λx+ (1− λ)y) ≤ λϕ(x) + (1− λ)ϕ(y).

By reorganizing, this is seen to be equivalent to

ϕ(t)− ϕ(s)

t− s ≤ ϕ(u)− ϕ(t)

u− t ,

where a < s < t < u < b. Indeed, this yields

ϕ(t) ≤ t− s
u− sϕ(u) +

u− t
u− sϕ(s),
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and if λ = t−s
u−s , then 1 − λ = u−t

u−s and t = λu + (1 − λ)s. We now show that
convexity implies continuity. Let a < r < s < t < u < b, then

ϕ(s)− ϕ(r)

s− r ≤ ϕ(t)− ϕ(s)

t− s ≤ ϕ(u)− ϕ(t)

u− t .

Thus the middle fraction seen as a function of s, t ∈ (r, u) is bounded. As the
denominator becomes arbitrarily close to zero, so must also the numerator.

Theorem 3.2 (Jensen’s inequality). Suppose ϕ : O → R is convex on an open
interval O ⊂ R, and X is an integrable random variable such that X(ω) ∈ O
for all ω ∈ Ω. If ϕ(X) ∈ L1, then

ϕ(E[X]) ≤ E[ϕ(X)].

Proof. For any t ∈ O, let (sn)∞n=1 and (un)∞n=1 be sequences in O such that
sn < t < un for every n ∈ N, and lim

n→∞
sn = lim

n→∞
un = t. By convexity and

continuity,

(D−ϕ)(t) := lim
n→∞

ϕ(t)− ϕ(sn)

t− sn
, and (D+ϕ)(t) := lim

n→∞
ϕ(un)− ϕ(t)

un − t
both exist, and (D−ϕ)(t) ≤ (D+ϕ)(t) for every t ∈ O. Let x, t ∈ O, then, if
x > t,

(D−ϕ)(t) ≤ (D+ϕ)(t) ≤ ϕ(x)− ϕ(t)

x− t
and so

(D−ϕ)(t)(x− t) ≤ (D+ϕ)(t)(x− t) ≤ ϕ(x)− ϕ(t).

If x < t,

(D+ϕ)(t) ≥ (D−ϕ)(t) ≥ ϕ(x)− ϕ(t)

x− t ,

and since the denominator is negative,

(D+ϕ)(t)(x− t) ≤ (D−ϕ)(t)(x− t) ≤ ϕ(x)− ϕ(t).

Hence for any k ∈ [(D−ϕ)(t), (D+ϕ)(t)] and any x, t ∈ O,

ϕ(x) ≥ k(x− t) + ϕ(t).

Thus we have almost surely,

ϕ(X) ≥ k(X − E[X]) + ϕ(E[X]),

and by taking expectations,

E[ϕ(X)] ≥ E[k(X − E[X]) + ϕ(E[X])] = ϕ(E[X]).

14



Remark. Using the notation of the proof above, we have by continuity

ϕ(x) = sup
t∈O

[(D+ϕ)(t)(x− t) + ϕ(t)] = sup
n

(anx+ bn) for all x ∈ O,

where (an)∞n=1 and (bn)∞n=1 are sequences in R. This will be needed later for
the proof of the conditional expectation version of Jensen’s inequality.

We also have a few other important inequalities. For simple and effective
proofs via Young’s inequality of the next two theorems, see [7].

Theorem 3.3 (Hölder’s inequality). Suppose p, q ≥ 1 such that 1
p + 1

q = 1.

Then for any two measurable functions f, g on (S,F , µ), we have

∫

S

|fg| dµ ≤
(∫

S

|f |p dµ
) 1

p
(∫

S

|g|q dµ
) 1

q

,

or more concisely put,

‖fg‖1 ≤ ‖f‖p‖g‖q.

Theorem 3.4 (Minkowski’s inequality). If the conditions of the previous theo-
rem hold and f, g ∈ Lp, then

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Remark. Minkowski’s inequality is the triangle inequality in Lp-spaces. As a
side note, ‖ · ‖p defines a norm of equivalence classes of Lp where f and g are
equivalent if and only if f = g almost everywhere. Furthermore, these normed
vector spaces are complete, i.e. they are Banach spaces. For p = 2 the norm
defines an inner product and is thus a Hilbert space.

Proposition 3.5 (Lyapunov’s inequality). Let 0 < p < r < ∞, then X ∈
Lp(Ω,F ,P) whenever X ∈ Lr(Ω,F ,P). Furthermore,

E[|X|p] 1
p ≤ E[|X|r] 1

r .

Proof. We give two proofs. Since r/p > 1, the function ϕ(x) = x
r
p has a

nondecreasing derivative on [0,∞) and is thus convex. Since min{|X|, n}p ∈ L1

for every n ∈ N, we can can apply Jensen’s inequality,

E[min{|X|, n}p] r
p = ϕ(E[min{|X|, n}p])
≤ E[ϕ(min{|X|, n}p)] = E[min{|X|, n}r] ≤ E[|X|r].

Applying the Monotone convergence theorem completes the proof.
Alternatively, let q := (1 − p

r )−1, then r
p , q > 1 and p

r + 1
q = 1. If Y ∈

L r
p , Z ∈ Lq, then by Hölder’s inequality,

E[|Y Z|] ≤ E[|Y | rp ]
p
r E[|Z|q] 1

q .

Set Y = |X|p and Z = IΩ to yield the desired inequality.
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4 Independence

We now attempt to put independence of random variables on a rigorous footing.
For this we introduce the concepts of π-systems and d-systems. These will help
us define independence more generally and then recover familiar results from
undergraduate theory.

Definition 4.1. A nonempty collection I of subsets of S is a π-system if it is
closed with respect to finite intersection.

Definition 4.2. A collection D of subsets of S is a d-system, or Dynkin system,
if

(i) S ∈ D,
(ii) A,B ∈ D and B ⊂ A =⇒ A \B ∈ D,

(iii) A1 ⊂ A2 ⊂ · · · ∈ D, lim
n→∞

An = A =⇒ A ∈ D.

Lemma 4.3. A collection F is a σ-algebra if and only if F is both a π-system
and a d-system.

Proof. The ”only if”-part is clear. Now suppose F is π-system and a d-system.
The first two conditions of our definition of a σ-algebra clearly hold. Further-
more, F being closed with respect to finite intersection and with respect to
complements implies it being closed with respect to finite unions by De Mor-
gan’s laws. Let A1, A2 · · · ∈ F and Bn :=

⋃n
i=1Ai, then B1 ⊂ B2 ⊂ · · · ∈ F ,

hence by the third property of d-systems,
⋃∞
i=1Ai = lim

n→∞
Bn ∈ F .

Theorem 4.4 (Dynkin’s lemma). Let d(I) be the d-system generated by all the
sets belonging to the π-system I. Then d(I) = σ(I).

Proof. Clearly d(I) ⊂ σ(I). Thus by the previous lemma it suffices to show
that d(I) is a π-system. Let D1 = {A ∈ d(I) : A ∩ B ∈ d(I), ∀B ∈ I}, then
I ⊂ D1 ⊂ d(I). Also, D1 is a d-system.

Indeed, take any B ∈ I, then S ∩ B = B ∈ d(I), thus S ∈ D1. Also, if
A1, A2 ∈ D1 and A2 ⊂ A1, then A1 ∩B,A2 ∩B ∈ d(I) and so (A1 \A2) ∩B =
(A1∩B)\ (A2∩B) ∈ d(I). For the third and last property, let A1 ⊂ A2 ⊂ · · · ∈
D1, then A1 ∩B ⊂ A2 ∩B ⊂ · · · ∈ d(I). Thus ( lim

n→∞
An) ∩B = lim

n→∞
An ∩B ∈

d(I). This establishes that D1 = d(I).
Now, let D2 = {A ∈ d(I) : A ∩ B ∈ d(I), ∀B ∈ d(I)}, then by considering

the preceding result we have I ⊂ D2. We show that D2 is a d-system too. It
follows in almost identical fashion as previously.

Take any B ∈ d(I), then S∩B = B ∈ d(I), thus S ∈ D2. If A1, A2 ∈ D2 and
A2 ⊂ A1, then A1∩B,A2∩B ∈ d(I) and so (A1\A2)∩B = (A1∩B)\(A2∩B) ∈
d(I). Finally, let A1 ⊂ A2 ⊂ · · · ∈ D2, then A1 ∩ B ⊂ A2 ∩ B ⊂ · · · ∈ d(I).
Thus ( lim

n→∞
An) ∩ B = lim

n→∞
An ∩ B ∈ d(I). This establishes that D2 = d(I).

And it is now easily seen that D2, and so d(I), are π-systems as were to be
proved.



Theorem 4.5. Suppose µ1 and µ2 are two measures on (S,F) such that µ1(S) =
µ2(S) < ∞ and σ(I) = F for some π-system I. If µ1(I) = µ2(I) for every
I ∈ I, then µ1 = µ2.

Proof. Let D = {F ∈ F : µ1(F ) = µ2(F )}, then I ⊂ D ⊂ F . It suffices to show
that D is a d-system since by the previous theorem we then have F = d(I) ⊂ D.

By the definitions of µ1, µ2, we have S ∈ D. If F1, F2 ∈ D and F2 ⊂ F1,
then µ1(F1 \ F2) = µ1(F1) − µ1(F2) = µ2(F1) − µ2(F2) = µ2(F1 \ F2), and so
F1 \ F2 ∈ D. Lastly, suppose F1 ⊂ F2 ⊂ · · · ∈ D and Fn ↑ F as n → ∞, then
by Proposition 2.3 we have µ1(F ) = lim

n→∞
µ1(Fn) = lim

n→∞
µ2(Fn) = µ2(F ), and

so F ∈ D. Thus D is a d-system by the previous lemma and we are done.

A subset G of a σ-algebra F on S is a sub-σ-algebra if G is itself a σ-algebra
on S. We now introduce the main concept of this section.

Definition 4.6. Sub-σ-algebras G1,G2, · · · ⊂ F are independent if whenever
Gi ∈ Gi, i ∈ N, and i1, . . . in are distinct, we have

P(Gi1 ∩ · · · ∩Gin) =
n∏

k=1

P(Gik).

Random variables X1, X2, . . . are independent if σ(X1), σ(X2), . . . are inde-
pendent, where σ(X) is the smallest σ-algebra making X measurable. Events
E1, E2, . . . are independent if their corresponding indicator functions IE1

, IE2
, . . .

are independent.

Remark. As we will see with conditional expectation, σ(X) can informally be
seen as the information of the random variable X. This motivates this general
definition of independence.

Proposition 4.7. Suppose G,H are sub-σ-algebras of F and for two π-systems
I,J we have σ(I) = G, σ(J ) = H. Then G,H are independent if and only if
I,J are independent, that is, P(I ∩ J) = P(I)P(J) for every I ∈ I, J ∈ J .

Proof. The ”only if”-part is clear. Suppose I,J are independent. Fix I ∈ I
and define two measures µ1, µ2 on H by H 7→ P(I ∩ H) and H 7→ P(I)P(H),
respectively. These are measures. Indeed if H1, H2, · · · ∈ H and are pairwise
disjoint, then

µ1(
∞⋃

n=1

Hn) = P(I ∩
∞⋃

n=1

Hn) = P(
∞⋃

n=1

(I ∩Hn))

=

∞∑

n=1

P(I ∩Hn) =

∞∑

n=1

µ1(Hn),
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also

µ2(
∞⋃

n=1

Hn) = P(I)P(
∞⋃

n=1

Hn) = P(I)
∞∑

n=1

P(Hn)

=
∞∑

n=1

P(I)P(Hn) =
∞∑

n=1

µ2(Hn).

Moreover, µ1, µ2 agree on J , thus by the previous theorem they agree on σ(J ) =
H. Now fix H ∈ H and define new measures µ3, µ4 on G by G 7→ P(H ∩ G)
and G 7→ P(H)P(G), respectively. By comparison with the previously defined
measures, we see that µ3, µ4 agree on I, and therefore also on σ(I) = H. Thus
P(G ∩H) = P(G)P(H) for any pair of G ∈ G, H ∈ H.

Corollary 4.8. Suppose X and Y are two (finite) random variables on (Ω,F ,P).
Then X and Y are independent if and only if P(X ≤ x, Y ≤ y) = P(X ≤
x)P(Y ≤ y) for every x, y ∈ R.

Proof. It suffices to note that the collection of sets (−∞, x], where x ∈ R,
constitute a π-system.

Proposition 4.9. If X,Y ∈ L1 and are independent, then XY ∈ L1 and
E[XY ] = E[X]E[Y ].

Proof. By linearity, we only need to treat the case when X,Y ≥ 0. Suppose
X,Y are simple, or more precisely, X =

∑n
i=1 aiIAi

, Y =
∑m
i=1 biIBi

then

E[XY ] =

n∑

i=1

m∑

j=1

aibjP(Ai ∩Bj) =

n∑

i=1

m∑

j=1

aibjP(Ai)P(Bj)

=

n∑

i=1

aiP(Ai)

m∑

j=1

bjP(Bj) = E[X]E[Y ].

Suppose now that X,Y are not simple. By Proposition 2.11 there are sequences
(Xn)∞n=1, (Yn)∞n=1 of nonnegative simple random variables such that Xn ↑ X and
Yn ↑ Y . From their construction Xn and Yn are easily seen to be independent.
By the Monotone convergence theorem,

E[XY ] = lim
n→∞

E[XnYn] = lim
n→∞

E[Xn]E[Yn] = E[X]E[Y ].

Our excursion into the intricacies of independence yields an impressive the-
orem, namely Kolmogorov’s 0-1 theorem. But we need to first introduce the
concept of a tail σ-algebra.

Definition 4.10. Let (Xn)∞n=1 be a sequence of random variables, and define
Tn := σ(Xn+1, Xn+2, . . . ) and T :=

⋂∞
n=1 Tn, where σ(Xn+1, Xn+2, . . . ) is the

smallest σ-algebra making Xn+1, Xn+2, . . . all measurable. Then T is the tail
σ-algebra.

18



Proposition 4.11. The following events belong to T :

F1 := {ω : lim
n→∞

Xn(ω) exists},

F2 := {ω :

∞∑

n=1

Xn(ω) converges},

F3 := {ω : lim
n→∞

1

n

n∑

k=1

Xk(ω) exists}.

Proof. For any n ∈ N we have

lim sup
k→∞

Xk = inf
m≥0

(
sup
k≥m

Xk

)
= inf
m≥n+1

(
sup
k≥m

Xk

)
,

thus Tn makes lim sup
k→∞

Xk measurable. A similar argument shows that the same

property holds for lim inf
k→∞

Xk. Now,

F1 = {lim sup
k→∞

Xk <∞} ∩ {lim inf
k→∞

Xk > −∞} ∩ {lim sup
k→∞

Xk − lim inf
k→∞

Xk = 0},

thus F1 ∈ Tn. Since n was arbitrary this holds for every n, hence F1 ∈⋂∞
n=1 Tn = T . For the second case, let n ∈ N be fixed. Define Sm :=

∑m
k=n+1Xk

for m > n, then Tn makes Sm measurable for m > n, thus

F2 = {ω :

∞∑

k=1

Xk(ω) converges} = {ω : lim
m→∞

Sm(ω) exists} ∈ Tn,

by the previous case. Since n was arbitrary, F2 belongs to T . Lastly, let n
be fixed again. Define S′m := 1

m

∑n+1+m
k=n+1 Xk for m > n, then Tn makes S′m

measurable for m > n, thus once again

F3 = {ω : lim
n→∞

1

n

n∑

k=1

Xk(ω) exists} = {ω : lim
m→∞

S′m(ω) exists} ∈ Tn,

hence F3 ∈ T .

Theorem 4.12 (Kolmogorov’s 0-1 law). Let T be the tail σ-algebra correspond-
ing to the sequence (Xn)∞n=1 of independent random variables. Then P(F ) equals
0 or 1 for every F ∈ T . Moreover, if f is a T -measurable function, then there
exists c ∈ R such that P(f = c) = 1, that is, f is a.s. constant.

Proof. Let Xn := σ(X1, . . . , Xn) and Tn be defined as before. Consider the two
π-systems given by sets of the form {ω : Xi(ω) ≤ xi for 1 ≤ i ≤ n} and sets of
the form {ω : Xi(ω) ≤ xi for n+ 1 ≤ i ≤ n+ r} where xi ∈ R and r ∈ N. These
π-systems generate Xn and Tn, respectively, thus Xn and Tn are independent.
Since T ⊂ Tn for every n, we have that Xn and T are independent for every
n. This in turn implies that the π-system X∞ :=

⋃∞
n=1 Xn is independent of T .
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Now, T ⊂ σ(X∞), hence T is independent of itself. Thus for every F ∈ T , we
have P(F ) = P(F ∩ F ) = P(F )P(F ), hence P(F ) equals either 0 or 1.

For the second assertion, let f be T -measurable. Since {ω : f(ω) ≤ α} ∈ T
for every α ∈ R, we have P(f ≤ α) = 0 or 1. Let c = inf{α ∈ R : P(f ≤ α) = 1},
then P(f = c) = 1, that is, f = c a.s.

We end this section with two well-known theorems

Theorem 4.13 (First Borel-Cantelli lemma). Let (En)∞n=1 be a sequence of
events. If

∑∞
n=1 P(En) <∞, then P(lim sup

n→∞
En) = 0.

Proof. For ε > 0, there exists some N ∈ N such that
∑∞
n=N P(En) < ε. By

definition

lim sup
n→∞

En =
∞⋂

m=1

∞⋃

n=m

En ⊂
∞⋃

n=N

En,

thus

P(lim sup
n→∞

En) ≤ P(

∞⋃

n=N

En) ≤
∞∑

n=N

P(En) < ε.

Since ε is arbitrary, the proof follows.

Theorem 4.14 (Second Borel-Cantelli lemma). Let (En)∞n=1 be a sequence of
independent events. If

∑∞
n=1 P(En) =∞, then P(lim sup

n→∞
En) = 1.

Remark. Since lim sup
n→∞

En is in the tail σ-algebra and by assuming indepen-

dence, Kolmogorov’s 0-1 applies here. However, it will not be needed for the
proof.

Proof. First note that

(lim sup
n→∞

En)c =

( ∞⋂

m=1

∞⋃

n=m

En

)c
=

∞⋃

m=1

∞⋂

n=m

Ecn.

Hence it is enough to show P(∩∞n=mE
c
n) = 0 for every m ∈ N since then

P(lim sup
n→∞

En)c) ≤
∞∑

m=1

P(
∞⋂

n=m

Ecn) = 0.

By independence, we have

P

(
N⋂

n=m

Ecn

)
=

N∏

n=m

P(Ecn),
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for every N ≥ m. Hence by first taking the limit of the left and then the right
side, we get

P

( ∞⋂

n=m

Ecn

)
≤
∞∏

n=m

P(Ecn).

and, reversing the order,

P

( ∞⋂

n=m

Ecn

)
≥
∞∏

n=m

P(Ecn).

Using that 1− x ≤ e−x for x ∈ [0,∞), we finally get

P

( ∞⋂

n=m

Ecn

)
=

∞∏

n=m

P(Ecn) =

∞∏

n=m

(1− P(En)) ≤ exp

{
−
∞∑

n=m

P(En)

}
= 0.
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5 Conditional Expectation

We first need a few auxiliary results before defining the the expected value
conditioned on a σ-algebra.

Lemma 5.1. Let f ∈ L1(S,F , µ), if for every F ∈ F we have
∫
F
f dµ = 0,

then f = 0 a.e.

Proof. For any ε > 0, we have

0 ≤ εµ({x : f(x) ≥ ε}) =

∫

{x:f(x)≥ε}
ε dµ ≤

∫

{x:f(x)≥ε}
f dµ = 0,

thus µ({x : f(x) ≥ ε}) = 0. A similar argument shows that µ({x : f(x) ≤
−ε}) = 0. Together we have

µ({x : f(x) 6= 0}) = µ(
∞⋃

n=1

{x : f(x) ≥ 1

n
} ∪ {x : f(x) ≤ − 1

n
}) = 0.

Remark. The result and proof are similar when
∫
F
f dµ ≥ 0.

Lemma 5.2. Let f be a nonnegative measurable function on (S,F , µ), then the
function v : F → [0,∞] defined by v(F ) =

∫
F
f dµ is a measure.

Proof. Let F1, F2, · · · ∈ F and Fi ∩Fj = ∅ for i 6= j. Define En :=
⋃n
k=1 Fk and

E := lim
n→∞

En. Hence 0 ≤ IEn
f ≤ IEn+1

f and IEn
f(x) → IEf(x) as n → ∞,

for every x ∈ S. Using the Monotone convergence theorem, we have

v(

∞⋃

n=1

Fn) = v(E) =

∫

E

f dµ =

∫

S

IEf dµ = lim
n→∞

∫

S

IEnf dµ

= lim
n→∞

∫
⋃n

k=1 Fk

f dµ = lim
n→∞

n∑

k=1

∫

Fk

f dµ =
∞∑

k=1

v(Fk).

Let µ be a measure on (S,F). If µ(S) < ∞ then µ is finite. If there exists
a sequence E1 ⊂ E2 ⊂ · · · ∈ F such that µ(En) < ∞ for all n ∈ N and En ↑ S
as n → ∞, then µ is σ-finite. Thus all finite measures, including probability
measures, are also σ-finite. The Lebesgue measure on R is an example of a
σ-finite measure which is not finite.

Let Nµ denote the collection of zero sets of µ, that is, Nµ = {E ∈ F : µ(E) =
0}. Let ν be another measure, then ν is absolutely continuous with respect to
µ, if Nµ ⊂ Nν . It is denoted by ν � µ.

We can now state an important result in measure theory. We refer the
reader to [7] for a constructive proof. Let M+(F) denote the set nonnegative
F-measurable functions.

Theorem 5.3 (Radon-Nikodým). Suppose µ and ν are σ-finite measures on
(S,F). Then the following are equivalent:

(i) ν � µ,

(ii) ν(E) =

∫

E

f dµ, for some f ∈M+(F) and all E ∈ F .



Remark. By Lemma 5.2 the second condition of the theorem makes sense. The
function f is referred to as the Radon-Nikodým derivative and is denoted by dν

dµ .

Theorem 5.4 (Definition and existence of conditional expectation.). Let X ∈
L1(Ω,F ,P) be a random variable and G be a sub-σ-algebra of F . Then there
exists a random variable Y ∈ L1(Ω,G,P) which satisfies

∫

G

Y dP =

∫

G

X dP,

for every G ∈ G. This random variable Y is a version of the conditional expec-
tation of X given G. It is denoted by E[X|G].

Proof. We assume that X ≥ 0. Let P0 be the restriction of P to G. Let ν be the
measure on (Ω,G) for which G 7→

∫
G
X dP. Since X is integrable, ν is finite.

We also have ν � P0, hence by the Radon-Nikodým theorem,
∫

G

X dP = ν(G) =

∫

G

dν

dP0
dP0 =

∫

G

dν

dP0
dP.

Since dν
dP0

is G-measurable, it is a version of the conditional expectation. The

general case follows by decomposing, X = X+ −X−, and linearity.

Proposition 5.5 (Uniqueness of conditional expectation). If Y ′ is another
random variable with the properties of Y in Definition 5.4, then Y ′ = Y a.s.

Proof. This is an immediate consequence of Lemma 5.1.

Remark. It is usually more convenient to refer to Y or E[X|G] as the condi-
tional expectation of X given G, even though most results involving it only hold
a.s.

Proposition 5.6. Let X ∈ L1(Ω,F ,P) and Y ∈ L1(Ω,G,P) where G is a sub-
σ-algebra of F . If Y satisfies

∫

G

Y dP =

∫

G

X dP, (1)

for every G ∈ I, where I is a π-system which contains Ω and generates G, then
Y = E[X|G] a.s.

Proof. We will show that the collection D of sets satisfying (1) form a d-system.
We have Ω ∈ D by the definition of I. If A,B ∈ D and B ⊂ A, then

∫

A\B
Y dP =

∫

A

Y dP−
∫

B

Y dP =

∫

A

X dP−
∫

B

X dP =

∫

A\B
X dP,

thus A \B ∈ D. If A1 ⊂ A2 ⊂ · · · ∈ D, lim
n→∞

An = A, then for any ε > 0 there

exists some N such that n ≥ N implies P(A \An) < ε. Thus
∫

A

Y dP−
∫

An

Y dP < εE[|Y |] <∞
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since ε was arbitrary, lim
n→∞

∫
An

Y dP =
∫
A
Y dP. The same argument holds for

X too. Hence
∫

A

Y dP = lim
n→∞

∫

An

Y dP = lim
n→∞

∫

An

X dP =

∫

A

X dP,

thus A ∈ D. Dynkin’s lemma, Theorem 4.4, completes the proof.

Proposition 5.7. Consider L2(Ω,F ,P) as a Hilbert space with norm (X,Y ) 7→
E[XY ]. Let X ∈ L2(Ω,F ,P) and G be a sub-σ-algebra of F . Then the orthog-
onal projection of X onto L2(Ω,G,P) is given by E[X|G].

Proof. The orthogonal projection Z satisfies E[(X−Z)Y ] = 0 for every bounded
Y ∈ L2(Ω,G,P). In particular, for Y = IG, where G ∈ G, we have

∫

Ω

(X − Z)IG dP =

∫

G

(X − Z) dP = 0.

Put another way, for every G ∈ G, we have
∫

G

Z dP =

∫

G

X dP,

which is the definition of E[X|G].

We can find a useful expression for E[X|Y ] given that the joint density fX,Y
is known. We first need a lemma.

Lemma 5.8. Let X,Y be random variables. Then X is σ(Y )-measurable if and
only if X = F (Y ) for some measurable function F : R→ R.

Proof. The ”if” part is clear. For the ”only-if” part, if X = IA for some A ∈
σ(Y ), then X = IF−1(A) ◦ Y . Similarly, if X = aIA + bIB for a, b ∈ R and
A,B ∈ σ(Y ), then (aIF−1(A) + bIF−1(B)) ◦ Y . Thus it holds if X is simple. If
X is not simple, then assume X ≥ 0 and take an increasing sequence of simple
random variables (Xn)∞n=1 given by Proposition 2.11. Let Xn := Fn ◦ Y , and
F := lim inf

n→∞
Fn, then

F ◦ Y = (lim inf
n→∞

Fn) ◦ Y = lim
n→∞

Fn ◦ Y = lim
n→∞

Xn = X.

The general case follows by decomposing: X = X+ −X−.

Now, by Lemma 5.8, we let F (Y ) := E[X|Y ], then for any G ∈ σ(Y ),

∫

Y ∈G
X dP =

∫

G

(∫

R
xfX,Y (x, y) dx

)
dy.

Meanwhile,
∫

Y ∈G
X dP =

∫

Y ∈G
F (Y ) dP =

∫

G

(
F (y)

∫

R
fX,Y (x, y) dx

)
dy.
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Combining these, we have almost surely

F (Y )

∫

R
fX,Y (x, Y ) dx =

∫

R
xfX,Y (x, Y ) dx,

or

E[X|Y ] =

∫
R xfX,Y (x, Y ) dx∫
R fX,Y (x, Y ) dx

.

The expectation conditioned on another random variable E[X|Z] is defined
as E[X|σ(Z)]. The expectation conditioned on an event is not as straightfor-
ward because we want it to be constant. Therefore it is defined as E[X|A] :=

1
P(A)

∫
A
X dP, where P(A) 6= 0.

Next we will prove some interesting properties of the conditional expectation.
We assume for the remaining part of this text that X,Y, (Xn)∞n=1, (Yn)∞n=1 ∈
L1(Ω,F ,P) and G,H are sub-σ-algebras of F . All the equalities, inequalities
and convergences hold almost surely.

We begin with linearity.

Proposition 5.9. E[aX + bY |G] = aE[X|G] + bE[Y |G], for a, b ∈ R.

Proof. For any G ∈ G, we have

∫

G

E[aX + bY |G] dP =

∫

G

(aX + bY ) dP = a

∫

G

X dP + b

∫

G

Y dP

= a

∫

G

E[X|G] dP + b

∫

G

E[Y |G] dP,

which conforms with Definition 5.4.

Proposition 5.10. E[E[X|G]] = E[X].

Proof. E[E[X|G]] =
∫

Ω
E[X|G] dP =

∫
Ω
X dP = E[X].

Next we prove the conditional expectation versions of the main convergence
theorems in Section 1; the Monotone convergence theorem, Fatou’s lemma and
the Dominated convergence theorem. One reason the proofs are different are
that we demand integrability for the conditional expectation to be well-defined.

Proposition 5.11.

(a) Xn ↑ X =⇒ E[Xn|G] ↑ E[X|G].

(b) Xn ↓ X =⇒ E[Xn|G] ↓ E[X|G].

(c) |Xn| ≤ Y =⇒ E[lim inf
n→∞

Xn|G] ≤ lim inf
n→∞

E[Xn|G].

(d) |Xn| ≤ Y =⇒ E[lim sup
n→∞

Xn|G] ≥ lim sup
n→∞

E[Xn|G].

(e) |Xn| ≤ Y and Xn → X a.s. =⇒ E[Xn|G]→ E[X|G].
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Proof. For (a), by the remark to Lemma 5.1, we have E[Xn|G] ≤ E[Xn+1|G]
for n ≥ 1. By taking limits, we get lim

n→∞
E[Xn|G] ≤ E[X|G]. For the reverse

inequality, take any G ∈ G, then

∫

G

lim
n→∞

E[Xn|G] dP ≥
∫

G

E[Xn|G] dP,

for all n ≥ 1. By the remark to the Monotone convergence theorem and the
fact that 0 ≤ E[X−1 ] ≤ E[|X1|] <∞, we have for any G ∈ G,

∫

G

lim
n→∞

E[Xn|G] dP ≥ lim
n→∞

∫

G

E[Xn|G] dP

= lim
n→∞

∫

G

Xn dP =

∫

G

X dP =

∫

G

E[X|G] dP.

Applying the remark to Lemma 5.1 again gives lim
n→∞

E[Xn|G] ≥ E[X|G] a.s.

For (b), apply (a) to −Xn. For (c), we have that inf
m≥n

Xm ↑ lim inf
n→∞

Xn as

n → ∞. Because of the added condition, the random variables lim inf
n→∞

Xn and

inf
m≥n

Xm are all integrable for all n ≥ 1. Thus their conditional expectations are

well-defined. We have by (a),

lim inf
n→∞

E[Xn|G] = lim
n→∞

E[ inf
m≥n

Xm|G] = lim inf
n→∞

E[ inf
m≥n

Xm|G] ≤ lim inf
n→∞

E[Xn|G],

where the last inequality is given by the fact that inf
m≥n

Xm ≤ Xn.

For (d), it suffices to note that lim sup
n→∞

Xn = − lim inf
n→∞

−Xn. The last result

(e) follows by combining (c) and (d).

We now state the conditional expectation version of Jensen’s inequality.

Proposition 5.12. If ϕ : R → R is convex and ϕ(X) ∈ L1(Ω,F ,P), then
ϕ(E[X|G]) ≤ E[ϕ(X)|G].

Proof. From the remark to Jensen’s inequality there are sequences (an)∞n=1 and
(bn)∞n=1 such that ϕ(x) = supn(anx+bn) for every x ∈ R. Thus anX+bn ≤ ϕ(X)
and so anE[X|G]+bn ≤ E[ϕ(X)|G] a.s. for every n ∈ N. As demonstrated before,
the countable union of sets with measure 0 has measure 0, hence we may neglect
the instance were the inequality fails to hold. Consequently,

sup
n

(anE[X|G] + bn) = ϕ(E[X|G]) ≤ E[ϕ(X)|G]

holds almost surely.

Proposition 5.13. If Y is G-measurable and XY ∈ L1(Ω,F ,P), then
E[XY |G] = Y E[X|G].
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Proof. If Y = IA, then A ∈ G, thus, for any G ∈ G,
∫

G

E[XIA|G] dP =

∫

G

XIA dP =

∫

G∩A
X dP

=

∫

G∩A
E[X|G] dP =

∫

G

IAE[X|G] dP.

By linearity, the conclusion holds if Y is simple, and we only need to consider
the case when X,Y ≥ 0. For simple nondecreasing Xn ↑ X,Yn ↑ Y as n →∞,
and any G ∈ G, we have

∫

G

E[XY |G] dP =

∫

G

XY dP = lim
n→∞

∫

G

XnYn dP

= lim
n→∞

∫

G

YnE[Xn|G] dP =

∫

G

Y E[X|G] dP.

Proposition 5.14. If H ⊂ G, then E[E[X|G]|H] = E[E[X|H]|G] = E[X|H].

Proof. For any H ∈ H, we have H ∈ G, and the conclusion follows immediately
from Definition 5.4, as

∫

H

E[E[X|G]|H] dP =

∫

H

E[X|G] dP =

∫

H

X dP

=

∫

H

E[X|H] =

∫

H

E[E[X|H]|G] dP.

Proposition 5.15. If H and σ(σ(X),G) are independent, then
E[X|σ(G,H)] = E[X|G].

Proof. By linearity, we can assume X ≥ 0. Note that sets of the form G ∩ H
where G ∈ G, H ∈ H form a π-system I such that σ(I) = σ(G,H). Now, for
any G ∈ G, H ∈ H, we have

∫

G∩H
E[X|σ(G,H)] dP =

∫

G∩H
X dP = E[XIGIH ]

= E[XIG]E[IH ] = P(H)

∫

G

X dP.

Similarly,
∫

G∩H
E[X|G] dP =

∫

Ω

E[X|G]IGIH dP = E[E[X|G]IGIH ] = E[E[X|G]IG]E[IH ]

= P(H)

∫

G

E[X|G] dP = P(H)

∫

G

X dP.

Thus the absolutely continuous measures defined by F 7→
∫
F

E[X|σ(G,H)] dP
and F 7→

∫
F

E[X|G] dP agree on I, and so on σ(G,H) too.

Corollary 5.16. If σ(X) and H are independent, then E[X|H] = E[X].
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Proof. Set G := {∅,Ω}. Then σ(σ(X),G) and H are independent. By Proposi-
tion 5.15,

E[X|G] = E[X|σ(G,H)] = E[X|H].

Evidently, E[X] satisfies the conditions of Definition 5.4.
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6 Suggestions for Further Reading

For a similar introduction to measure theory, see chapter 1 in [1]. For a quick but
still rigorous introduction to martingales, see [5]. As an opposite, [8] develops
more concepts but slower. Most suitable for self-studying are [6], [7] and [9]. The
first lacks rigor but has many problems with solutions making it good exercise.
The second is highly rigorous. It develops probability theory while real analysis
is the main focus. A complete solution manual can be found online. The third
book strikes a balance between the other two. It reads like a graduate course
in probability theory. Half of the given problems have solutions online.
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