
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Integer Partitions

av

Teo Johannesson

2021 - No K47

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

Integer Partitions

Teo Johannesson

Självständigt arbete i matematik 15 högskolepoäng, grundnivå

Handledare: Paul Vaderlind

2021

Integer Partitions

Teo Johannesson

November 10, 2021

Abstract

This thesis looks into some selected elements in the theory of integer par-

titions. The goal of the thesis is to explore methods to select partitions

at random. Before these can be developed some preliminary theory is

introduced. Ferrers diagrams are presented, a graphical representation

for integer partitions. Then the theory of generating functions related to

integer partitions is expanded on, which are useful for proving partition

identities. Euler's pentagonal number theorem is presented and proven

bijectively. This theorem is then used to derive a recurrence relation for

the partition function. Other properties of the partition function p(n)
are explored and the partition function p(n, k) is introduced. Di�erent

ways of ordering partitions are considered. Finally, the problem of select-

ing integer partitions at random is studied and algorithms for generating

random partitions are developed. Di�culties in selecting partitions at

random are tied to the elusive nature of the partition function p(n). A

better understanding of algorithms generating random partitions could

give insight into p(n).

1

Contents

1 Introduction 3

1.1 Integer partitions . 3
1.2 The partition function . 3
1.3 Partition identities . 3

2 Ferrers diagrams 4

3 Generating functions 5

3.1 Generating functions with two variables 7

4 Euler's pentagonal number theorem 7

4.1 Pentagonal numbers . 7
4.2 Relation with partitions . 8
4.3 A bijective proof for the pentagonal number theorem 9

5 Properties of the partition function p(n) 11

5.1 A recurrence relation for p(n) . 11
5.2 Upper bounds for p(n) . 12

5.2.1 p(n) is increasing . 12
5.2.2 An upper bound on p(n) with compositions 13
5.2.3 An upper bound on p(n) with the Fibonacci numbers . . 13

5.3 Asymptotic properties . 14

6 The partition function p(n, k) 14

7 Ordering partitions 15

7.1 Partial orders . 15
7.2 Total orders . 16

8 Random partitions 17

8.1 Methods to generate partitions 17
8.2 Methods to generate random partitions 18

8.2.1 An algorithm that uses p(n, k) 18
8.2.2 An algorithm that avoids using p(n, k) 19
8.2.3 Algorithms that don't use partition functions 21

8.3 Tests . 22

9 Conclusion 23

10 References 23

A Code for tests 25

2

1 Introduction

1.1 Integer partitions

A partition of a positive integer n is a sequence of positive integers p1, p2, ..., pk
whose sum is n.

n = p1 + p2 + ...+ pk.

The summands are often referred to as parts. Two partitions with the same
parts in di�erent order are considered to be the same partition. For example,
3 + 2 is a partition of 5 and is the same partition as 2 + 3. All seven partitions
of 5 are:

5,
4 + 1,
3 + 2,
3 + 1 + 1,
2 + 2 + 1,
2 + 1 + 1 + 1,
1 + 1 + 1 + 1 + 1.

1.2 The partition function

The number of partitions of a positive integer n is given by the partition function
p(n). There is no known simple formula for the partition function but there are
asymptomatic formulas that can accurately compute p(n)[3]. Let p(0) = 1, then
the �rst values of the partition function p(n) are

p(0) = 1,
p(1) = 1,
p(2) = 2,
p(3) = 3,
p(4) = 5,
p(5) = 7,
p(6) = 11,
p(7) = 15.

The number of partitions of n increases rapidly as n increases. For example,
p(100) = 190 569 292. How quickly it grows and other properties of the partition
function will be studied more in-depth in section 5.

1.3 Partition identities

Sometimes it's interesting to consider partitions under various restrictions. A
well know theorem proved by Euler, referred to as Euler's identity, says that the
number of partitions with only odd parts equals the number of partitions with
parts that are all distinct. For example, of the seven partitions of 5 there are
three partitions with odd parts,

5, 3 + 1 + 1, 1 + 1 + 1 + 1 + 1,

3

and three partitions with distinct parts,

5, 4 + 1, 3 + 2.

Statements of this kind are called partition identities and the partition identity
above can be written as

p(n | odd parts) = p(n | distinct parts).

Partition identities can be proved by constructing a bijection between the par-
titions in the di�erent sets. A bijection proving Euler's identity is able to take
a partition with odd parts and transform it into a unique partition with dis-
tinct parts, and the reverse. They can also be proved with generating functions,
which will be introduced in section 3.

To create a bijection proving Euler's identity, let π be a partition with only
odd parts, not necessarily distinct. For parts that occur more than once, merge
these two by two. Repeat this process until all parts are distinct. The process
will terminate at latest when only one part remains. For example, the partition
5 + 3 + 3 + 3 + 1 + 1 + 1 + 1 would undergo the transformation

5 + 3 + 3 + 3 + 1 + 1 + 1 + 1 → 6 + 5 + 3 + 2 + 2 → 6 + 5 + 4 + 3.

New parts created in this process by merging parts of odd size Oi in π take
the form 2kOi, k ≥ 0. Hence, new parts created from distinct odd parts in
π don't merge. It follows that parts in the new partition corresponding to
Oi in π can be split in half successively to retrieve the same number of Oi that
occurred in π. This proves that every partition with odd parts transforms into a
unique partition with distinct parts. With the reverse process, and by a similar
argument, it can be proved that any partition with distinct parts transforms
into a unique partition with odd parts. This shows that it is a bijection.

2 Ferrers diagrams

A common way to represent partitions is with Ferrers diagrams (or Ferrers
boards, sometimes also called Young diagrams). Many properties of partitions
are more easily understood with the use of Ferrers diagrams. The partition
7 + 4 + 3 can be represented with the diagram:

(7)

(4)

(3)

Sometimes using dots in the diagram is more convenient.

(7)

(4)

(3)

The rules for constructing Ferrers diagrams are intuitive, but can be put con-
cretely. For each part in the partition, put an amount of squares (or dots) equal

4

to the size of the part on each row, left-justi�ed. Then order the rows descending
by size.

Conjugation is a transformation where rows in a Ferrers diagram are exchanged
for columns:

The partition obtained is called the conjugate of the partition. This trans-
formation is a bijection, so it immediately provides a proof for the partition
identity

p(n | m parts) = p(n | largest part is m).

In words it can be stated as: The number of partitions with m parts is equal to
the number of partitions whose largest part is m.

3 Generating functions

The fundamental properties of multiplying powers together can be used to an-
swer questions about integer partitions. Suppose we want to �nd the number
of partitions of 7 with one odd part and one even part. It is possible to �nd the
answer by enumerating all partitions of 7 and then select those satisfying the
condition. Another way is to make use of the equation

(q1 + q3 + q5)(q2 + q4 + q6).

A partition of 7 with one odd part and one even part has to take one part from
{1, 3, 5} and the other from {2, 4, 6}. So the answer can be found by evaluating
the product above and examining the coe�cient of q7.

The idea can be extended further. Let S = {r1, r2, ..., rm} be some �nite
set of integers. Then all partitions with distinct parts from S are present as
exponents when evaluating the expression

(1 + qr1)(1 + qr2) ... (1 + qrm) =
∏

r∈S

(1 + qr). (1)

To see this, consider any integer ri in S. A partition with distinct parts from S
either includes ri or it does not, which corresponds to selecting either 1 or qri

from the factor (1 + qri).
The number of partitions for any positive integer n with distinct parts from

S is determined by the coe�cient of qn. This can be expressed with

∑

n≥0

p(n | distinct parts in S)qn =
∏

r∈S

(1 + qr),

and is called the generating function for partitions into distinct parts in S.

Suppose d copies of any part r from S is allowed. Then each factor in (1) take
the form (1+qr+q2r+ ...+qdr). This can be simpli�ed by using the formula for

5

�nite geometric series. For x ̸= 1, the sum of the �rst n+1 terms of a geometric
series is

1 + x+ x2 + ...+ xn =

n∑

k=0

xk =
1− xn+1

1− x
. (2)

The generating function for partitions into parts from S with at most d copies
of any part then becomes

∑

n≥0

p(n | parts in S, at most d copies of any part)qn

=
∏

r∈S

(1 + qr + q2r + ...+ qdr)

=
∏

r∈S

1− q(d+1)r

1− qr
.

For partitions with parts in S, where parts are allowed to occur any number
of times, each factor in (1) then take the form (1 + qr + q2r + ...). If the limit
n → ∞ in (2) is considered, then for |x| < 1 the sum becomes

1 + x+ x2 + ... =

∞∑

k=0

xk =
1

1− x
.

With this, the generating function for partitions with parts in S becomes

∑

n≥0

p(n | parts in S)qn

=
∏

r∈S

(1 + qr + q2r + ...)

=
∏

r∈S

1

1− qr
.

In deriving these functions, some restrictions where made on q to enable the use
of formulas for geometric series. Since q is used only to provide the machinery
of exponents, this poses no problem.

Also important to note is that the set S considered above is �nite. In deriving
the formulas no reference is made to the amount of elements in S, so it's plausible
that the formulas hold for in�nite sets. This will be assumed to be true without
proof. Thus, for any set of positive integers S, we have

∑

n≥0

p(n | distinct parts in S)qn =
∏

r∈S

(1 + qr), (3)

∑

n≥0

p(n | parts in S, at most d copies of any part)qn =
∏

r∈S

1− q(d+1)r

1− qr
, (4)

∑

n≥0

p(n | parts in S)qn =
∏

r∈S

1

1− qr
. (5)

6

3.1 Generating functions with two variables

Suppose an additional variable z is added to (1) such that

(1 + zqr1)(1 + zqr2) ... (1 + zqrm) =
∏

r∈S

(1 + zqr).

When evaluating the above expression, the exponent of z will track the number
of parts in the partition. For example, with m = 3 it evaluates to

(1+zqr1)(1+zqr2)(1+zqr3) = 1+zqr1+zqr2+zqr3+z2qr1+r2+z2qr1+r3+z2qr2+r3+z3qr1+r2+r3 .

From this, an analog to (3) with two variables is

∑

n≥0

∑

m≥0

p(n | m distinct parts in S)zmqn =
∏

r∈S

(1 + zqr). (6)

Similarly, (4) and (5) becomes

∑

n≥0

∑

m≥0

p(n | m parts in S, at most d copies of any part)zmqn =
∏

r∈S

1− zd+1q(d+1)r

1− zqr
,

∑

n≥0

∑

m≥0

p(n | m parts in S)zmqn =
∏

r∈S

1

1− zqr
.

4 Euler's pentagonal number theorem

Consider the in�nite product (1 − x)(1 − x2)(1 − x3)... . Expanding it for the
�rst few terms gives

(1− x)(1− x2)(1− x3)... = 1− x− x2 + x5 + x7 − x12 − x15 + ...

Euler deduced that the terms follow the law

∞∏

n=1

(1− xn) =
∞∑

k=−∞
(−1)kxk(3k−1)/2, (7)

and is known as the pentagonal number theorem[1].

4.1 Pentagonal numbers

The exponents of x on the right side in (7) are generalized pentagonal numbers.
Pentagonal numbers are �gurative numbers related to the number of dots in
regular pentagons. The n'th pentagonal number pn is the number of distinct
dots in an array of n pentagons with sides ranging from 0 to n−1. Starting at a
vertex, a dot is placed at each unit distance. The pentagons are overlaid so that
they share one dot. Pentagons representing the �rst four pentagonal numbers
are illustrated in Figure 1.

7

p1 = 1 p2 = 5 p3 = 12 p4 = 22

Figure 1: A visual representation of the �rst four pentagonal numbers.

The pentagonal numbers are given by the formula

pn =
3n2 − n

2
, (8)

for n ≥ 1. The �rst pentagonal numbers are then

1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247.

Generalized pentagonal numbers are obtained from (8) when n is any integer.
Equivalently, they are given by the formula

pn =
3n2 ± n

2
,

for n ≥ 0. The �rst generalized pentagonal numbers are then

0, 1, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, 57, 70, 77.

4.2 Relation with partitions

The left side of (7) can be obtained from (6) by setting z = −1. This then
establishes the identity

∞∏

n=1

(1− xn) =
∑

n≥0

∑

m≥0

p(n | m distinct parts)(−1)mqn

=
∑

n≥0

(p(n | even number of distinct parts)− p(n | odd number of distinct parts))qn.

For n �xed it means that

p(n | even number of distinct parts)− p(n | odd number of distinct parts)

=

{
(−1)k if n = k(3k ± 1)/2

0 otherwise.

This can then be proved by �rst attempting to construct a bijection between

8

partitions of n with an even number of distinct parts, and partitions of n with
an odd number of distinct parts. Then show that one partition is left over when
n is equal to a generalized pentagonal number.

Euler provided a proof for the theorem, but did so using generating func-
tions. It was only later that Legendre put the theorem in the context of integer
partitions. Thereafter Fabian Franklin discovered a bijective proof[3] which is
presented in the next section.

4.3 A bijective proof for the pentagonal number theorem

A bijection between partitions counted by p(n | even number of distinct parts)
and p(n | odd number of distinct parts) could be constructed by de�ning an
invertible transformation that takes a partition of n with an even number of
distinct parts and transforms it into a partition of n with an odd number of
distinct parts.

For any partition of n with distinct parts, de�ne s to be the number of
parts that di�er by 1, starting with the largest part. De�ne m to be the size
of the smallest part. For example, in the partition of n = 23 de�ned by 23 =
7 + 6 + 5 + 3 + 2 we have s = 3 and m = 2. The number s can also be seen as
the longest diagonal that can be drawn in a Ferrers diagram, starting from the
top, illustrated in Figure 2.

Figure 2: Ferrers diagram for the partition of 23 de�ned by 23 = 7+6+5+3+2
with the diagonal corresponding to s in red.

De�ne a transformation for partitions of n with distinct parts by: If m ≤ s, then
put the smallest part of the partition on the diagonal. Otherwise, if m > s, then
create a new smallest part with the diagonal. Figure 3 and Figure 4 illustrates
the transformation.

→

Figure 3: If m ≤ s, then the transformation puts the smallest part on the
diagonal.

9

→

Figure 4: If m > s, then the transformation creates a new smallest part from
the diagonal.

Transforming a partition this way either removes a part, or creates a new part,
and therefore changes the parity of the number of parts. The parts in the
new partition are distinct and the transformation is reversible; performing the
transformation twice brings back the original partition. This means that every
partition with an odd number of distinct parts is paired with a partition with
an even number of distinct parts.

This holds true except for two special cases. When the diagonal intersects
the smallest part, and the smallest part is equal to the diagonal or one dot
larger, then the transformation is no longer reversible. For example, with the
partition of n = 12 de�ned by 12 = 5+4+3, the transformation fails to change
the parity of the partition, illustrated in Figure 5.

→

Figure 5: If the diagonal intersects the smallest part, and s = m, then the
transformation fails to change the parity of the partition.

In the case when the smallest part and the diagonal intersect, and the smallest
part is one dot larger than the diagonal, the transformation fails to create a
partition with distinct parts, illustrated in Figure 6.

→

Figure 6: When the diagonal intersects the smallest part, and s+ 1 = m, then
the transformation fails to create a partition with distinct parts.

These special partitions can only be created for certain n. First, consider the
case when s = m. Then

n = m+(m+1)+ ...+(2m− 1) = m2 +
m(m− 1)

2
=

m(3m− 1)

2
=

s(3s− 1)

2
.

In the case s+1 = m, when the smallest part is one dot larger than the diagonal,
then

n = m+ (m+1)+ ...+ (2m− 2) =
m(3m− 1)

2
− (2m− 1) =

(3m− 2)(m− 1)

2
.

10

Replacing m with s, we get

(3m− 2)(m− 1)

2
=

(3(s+ 1)− 2)((s+ 1)− 1)

2
=

s(3s+ 1)

2
.

For these n, where n = k(3k±1)
2 with k ≥ 0, there's exactly one partition that

can't be transformed, and this partition has k parts. For other n, every partition
with an odd number of distinct parts can be paired with a partition with an
even number of distinct parts. This proves that for any positive integer n we
have

p(n | even number of distinct parts)− p(n | odd number of distinct parts)

=

{
(−1)k if n = k(3k ± 1)/2

0 otherwise.

5 Properties of the partition function p(n)

5.1 A recurrence relation for p(n)

While there's no simple formula for the partition function its values can be
computed using recurrence relations. A recurrence relation for p(n) can be
obtained from the pentagonal number theorem.

For k = 0 the term on the right side in (7) is (−1)0x0(3·0−1)/2 = 1. The terms
for negative k can be rewritten with

−1∑

k=−∞
(−1)kxk(3k−1)/2 =

∞∑

k=1

(−1)−kx−k(3(−k)−1)/2 =
∞∑

k=1

(−1)kxk(3k+1)/2.

This shows the equality

∞∑

k=−∞
(−1)kxk(3k−1)/2 = 1 +

∞∑

k=1

(−1)kxk(3k−1)/2(1 + xk). (9)

In (5), let S be the set of positive integers, then

∞∑

n=0

p(n)qn =

∞∏

r=1

1

1− qr
,

or equivalently,
∞∏

r=1

(1− qr)

∞∑

n=0

p(n)qn = 1.

Together with (7) and (9) we have

(1 +
∞∑

k=1

(−1)kqk(3k−1)/2(1 + qk))
∞∑

n=0

p(n)qn = 1.

11

By comparing coe�cients of qn a recurrence formula for p(n) can be obtained.
First observe that p(0)q0 = 1. Subtracting 1 from both sides and expanding the
product gives

∞∑

n=1

p(n)qn +
∞∑

m=0

p(m)qm
∞∑

k=1

(−1)kqk(3k−1)/2(1 + qk) = 0.

This shows that for a given qn, the factor p(n) in the series to the left must
equal the negative sum of the coe�cients of qn in the series to the right. The
terms can be reordered to better reveal the coe�cients.

∞∑

m=0

p(m)qm
∞∑

k=1

(−1)kqk(3k−1)/2(1 + qk)

=
∞∑

m=0

∞∑

k=1

(−1)kp(m)qm+k(3k−1)/2 +
∞∑

m=0

∞∑

k=1

(−1)kp(m)qm+k(3k+1)/2

=

∞∑

n=1

∞∑

k=1

(−1)kp(n− k(3k − 1)/2)qn +

∞∑

n=1

∞∑

k=1

(−1)kp(n− k(3k + 1)/2)qn.

In the last step m is replaced with n by setting n = m+ k(3k ± 1)/2.

So for a �xed n, we have the recurrence relation

p(n) = −
∞∑

k=1

(−1)kp(n− k(3k − 1)/2)−
∞∑

k=1

(−1)kp(n− k(3k + 1)/2)

= p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + ...

5.2 Upper bounds for p(n)

It was mentioned in the beginning that the partition function p(n) is increasing
and grows rapidly. This section proves that p(n) is strictly increasing for n ≥
1. It also puts an upper bound on p(n) by proving that both the number of
compositions and the sequence of Fibonacci numbers grows faster than p(n).

5.2.1 p(n) is increasing

For any positive integer n, a partition of n−1 can be transformed into a unique
partition of n by adding a 1-part to it. The transformation can be reversed for
any partition of n with at least one 1-part. This shows that

p(n | at least one 1-part) = p(n− 1).

Every partition of n either has a 1-part or it doesn't, and for n ≥ 2 there's at
least one partition of n with no 1-part. For n ≥ 2, then

p(n) = p(n | at least one 1-part) + p(n | no 1-part) > p(n− 1). (10)

By induction, this shows that p(n) is strictly increasing for n ≥ 1.

12

5.2.2 An upper bound on p(n) with compositions

An upper bound for the partition function p(n) can be obtained from the cor-
responding function counting compositions.

A composition of a positive integer n is a sequence of positive integers
p1, p2, ..., pk whose sum is n. In contrast to partitions, di�erent orderings of
the integers yields di�erent compositions. Denote the number of compositions
of n by c(n). Then, since every partition corresponds to a unique composition,
we have p(n) ≤ c(n). For any integer n ≥ 3 there's always at least one partition
that corresponds to a composition with parts that can be ordered di�erently to
obtain other compositions, so for n ≥ 3 the relation is strict

p(n) < c(n).

The number of compositions c(n) is much easier to compute than the number
of partitions p(n). Every composition can uniquely be written as sums of 1's
separated by commas. For example, the composition 2 + 3 of 5 can be written
as

1 + 1, 1 + 1 + 1.

Between each 1 there's either a plus sign or a comma. So to determine a com-
position of n is equivalent to selecting ',' or '+', n− 1 times. This can be done
in 2n−1 ways, hence c(n) = 2n−1. An upper bound on p(n) is then

p(n) < 2n−1,

for n ≥ 3.

5.2.3 An upper bound on p(n) with the Fibonacci numbers

Another upper bound for the partition function is given by the set of Fibonacci
numbers. The Fibonacci numbers is the famous number sequence de�ned by:

F0 = 0,

F1 = 1,

and for n ≥ 2,

Fn = Fn−1 + Fn−2.

An expression for how p(n) relates to p(n − 1) and p(n − 2) would enable a
comparison with the Fibonacci numbers. From (10), we have

p(n) = p(n− 1) + p(n | no 1-part). (11)

How does p(n | no 1-part) relate to p(n− 2)?
A partition π counted by p(n | no 1-part) can be transformed into a unique
partition of n− 2 by taking the smallest part of size k of π and split it into one
2-part and (k− 2) 1-parts, and then remove the 2-part. Note that k ≥ 2 always
holds. This shows that for n ≥ 2

p(n− 2) ≥ p(n | no 1-part).

Together with (11) we have

p(n) ≤ p(n− 1) + p(n− 2).

13

Now suppose p(k − 1) ≤ Fk and p(k − 2) ≤ Fk−1 for some integer k ≥ 2. Then

p(k) ≤ p(k − 1) + p(n− 2) ≤ Fk + Fk−1 = Fk+1.

Since p(0) ≤ F1 and p(1) ≤ F2, this proves by induction that

p(n) ≤ Fn+1,

for any n ≥ 0.

5.3 Asymptotic properties

How p(n) behaves as n increases has been studied extensively. One of the
greatest developments in the theory of integer partitions during the twentieth
century was the development of the formula

p(n) =
1

π
√
2

∞∑

k=1

Ak(n)
√
k

[
d

dx

sinh(πk

√
2
3 (x− 1

24))√
x− 1

24

]

x=n

It is presented here because it's interesting in itself and has no direct bearing
on later parts. A more complete account of this formula can be found here[2].

Algorithms for generating partitions behave di�erently for di�erent orders
of n. The impact of the asymptotic properties of p(n) and other functions on
these is not obvious.

6 The partition function p(n, k)

De�ne p(n, k) to be the number of partitions of n whose largest part is k. With
k = n, p(n, k) counts the number of partitions of n that has a part of size n,
so p(n, n) = 1. With k = 1, p(n, k) counts the number of partitions of n whose
largest part is 1. There's only one way to partition an integer n into parts of
1's, so p(n, 1) = 1.

A partition of n with only 1's is the conjugate of a partition of n with a
single part, so the partition identity related to conjugate partitions also shows
that

p(n, n) = p(n, 1).

To �nd the number p(n, k) for any positive integers n and k it would be ideal to
have a formula for the function. It turns out that formulas for small k are pos-
sible to derive, but as k increases the formulas become increasingly complex[3].

Another way of computing p(n, k) is to �nd a recurrence relation. Consider a
partition counted by p(n, k). It has at least one part of size k, and this is the
largest part. Either it has exactly one part of size k, or it has more than one
part of size k. All partitions of n with exactly one part of size k are counted
by p(n − 1, k − 1). This can be seen by observing that a partition counted by
p(n − 1, k − 1) has at least one part of size k − 1. Adding 1 to one of these
parts results in a partition of n with exactly one part of size k. Partitions of n

14

with more than one part of size k are counted by p(n− k, k). This leads to the
recurrence relation

p(n, k) = p(n | exactly one part of size k) +

p(n | more than one part of size k)

= p(n− 1, k − 1) + p(n− k, k).

(12)

7 Ordering partitions

A set can be ordered by a binary relation that indicates if one element precedes
another. The set of positive integers are ordered by the relation 'less than'

1 < 2 < 3 < ...

Since for any two di�erent integers one is less than the other, and the relation is
transitive, the set of positive integers with the relation 'less than' form a totally
ordered set. The relation is called a total order.

A set and a relation where not all the elements in the set are ordered by the
relation is called a partially ordered set. The relation is then called a partial
order.

7.1 Partial orders

There are many di�erent partial orderings of integer partitions. A relation
called the usual order can be de�ned using Ferrers boards. A partition is said
to precede another, denoted by '<', if its Ferrers board can be contained in the
Ferrers board of the other. For example, the partition 3 + 1 of 4 precedes the
partition 4 + 2 of 6 under the usual order, illustrated below.

<

The usual order is a partial order. In particular, no two di�erent partitions of
the same integer n are related.

A partial order can be visualized with its Hasse diagram. The Hasse diagram
of a partially ordered set is constructed by placing the elements of the set in
a plane, with greater elements above smaller elements. Then lines are drawn
between elements that are directly related. That is, for a set S with elements
x, y ∈ S, a line is drawn between them if x < y and there's no element z ∈ S
such that x < z < y. This means that there's a path, going either up or down,
from any element to all comparable elements. The Hasse diagram of the usual
order for all partitions of integers less than or equal to four is depicted in Figure
7.

15

Figure 7: The Hasse diagram of the usual order for partitions of integers less
than or equal to four.

7.2 Total orders

The total ordering of integers de�ned by 'less than' is intuitive. Not all sets can
be ordered as easily. Are there total orders for integer partitions?

De�ne a relation as follows. Let π and λ be any two di�erent integer partitions.
If π is a partition of n and λ is a partition of m and n < m, then de�ne π < λ.
Otherwise, if n = m, compare the largest part in π with the largest part in λ.
If they are equal, proceed to compare the next largest part and further, until
the parts di�er. Then if the part in λ is larger than the part being compared to
in π, de�ne π < λ. Otherwise de�ne λ < π.

To show that the relation is a total order, let π and λ be two di�erent integer
partitions. If they are partitions of di�erent integers, they are ordered as the
corresponding integers under 'less than', which is a total order.

Otherwise, if they are partitions of the same integer, then they di�er at least
for some part. This guarantees that all di�ering partitions are related, but the
relation must also be transitive.

Ordering the parts descending by size, let i be the index of the �rst part
where they di�er. Let µ be another integer partition and assume π < λ, λ < µ.
Further, let j be the index of the �rst part where λ and µ di�er. There are
three cases to consider. Either (1) j < i, (2) j = i or (3) j > i. Denote part i
of a partition π by πi.

1. j < i. For all k < i, we have πk = λk. Then πj = λj < µj =⇒ π < µ.

2. j = i. Since πi < λi, we have πj < λj < µj =⇒ π < µ.

3. j > i. Then πi < λi = µi =⇒ π < µ.

This shows that the relation is transitive. The total order de�ned above is called
lexicographic order, sometimes also called dictionary order.

With a total order for a set, each element has a position, or an index, according

16

to the ordering. For the set of partitions and the lexicographic order, the index
for a partition can be computed by counting the number of partitions with
smaller parts. If partitions of smaller integers are not considered in the ordering,
then the index of a partition π of n with parts {r1, r2, ..., rm} in descending
order can be computed with the formula

iπ = f(n, r1−1)+f(n−r1, r2−1)+f(n− (r1+r2), r3−1)+ ...+f(rm, rm−1),

where f(n, k) is the number of partitions of n with parts less than or equal to k.
Here, the partition of n with only 1's receives the index 0, and the partition of
n with a single part receives the index f(n, n− 1) = p(n)− 1. This works since
partitions that precede π in the order have parts that are less than or equal to
corresponding parts in {r1, r2, ..., rm}. For example, the term f(n, r1 − 1)
counts all partitions of n that precede π by having a smaller part at the �rst
position.

8 Random partitions

Is it possible to generate partitions so that each partition has an equal chance
of being generated? That is, for a given n ≥ 1, is there a method to select
a partition of n so that each partition has a priori probability 1

p(n) of being

selected? One suggestion is to generate all partitions of n and then select one at
random. However, considering how rapidly the partition function p(n) grows,
this is impractical for larger n.

8.1 Methods to generate partitions

There are many ways of generating partitions by random processes. One simple
method is to "slice" n into smaller pieces.

Algorithm 1.

1. Starting with n, take a part 1 ≤ m ≤ n of n where m is selected uniformly
at random from the interval [1, n].

2. If n−m > 1, set n = n−m and go to (1), otherwise stop.

Another method is to make use of Ferrers boards.

Algorithm 2.

Starting with an empty board, adding squares at inner corners will always re-
sult in a new Ferrers board. A Ferrers board for any integer n can then be
constructed by adding n squares successively at randomly chosen inner corners.

An example for how a partition might be generated by algorithm 2 is illustrated
below.

→ → → →

Are these methods selecting partitions at random?

The methods just suggested are able to generate all partitions for any integer

17

n, and do so unpredictably. Unfortunately, they do not generate all partitions
with equal probability. To see this, we need only to consider any particular type
of partition. For example, consider those partitions consisting of a single part.

In algorithm 1, the probability of generating a partition of n with a single
part is easy to compute. The only way to end up with only one part is to choose
m = n in the �rst loop, and the process immediately stops. The probability of
this occurring is 1

n , which for n > 3 is greater than 1
p(n) .

In algorithm 2, the probability of generating a partition of n with a single
part can be computed as follows. The only way to end up with only one part
is to add squares at the top row at every step. The number of positions to add
squares to determines the probability of this occurring. The �rst square must
always be placed at the top row. Subsequent squares have two positions where
they can be added: the top row, or the second row. The probability of adding
all squares on the top row is then 1

2n−1 .
In the section that looked into upper bounds for the partition function p(n)

it was concluded that p(n) < 2n−1, for n ≥ 3. For those n, partitions with a
single part are generated with smaller probability than 1

p(n) using algorithm 2.

A proof says that something is but doesn't always say why that is. It isn't obvi-
ous why algorithm 2 doesn't generate di�erent partitions with equal probability.
To better see why, consider the Hasse diagram of the usual order, in Figure 7.
Generating a partition of n with algorithm 2 is equivalent to taking a random
path from the bottom node in the diagram to a node n− 1 steps up. The path
is selected at random but, since some nodes have more paths leading to them
than others, the resulting partition is not.

Whether there's a simple algorithm to generate random partitions that doesn't
require computationally expensive functions such as the partition function p(n)
or the related function p(n, k) is an open question. Using these functions, the
problem of generating random partitions becomes much easier to solve.

8.2 Methods to generate random partitions

8.2.1 An algorithm that uses p(n, k)

One way to select a partition of n uniformly at random is by �rst determining
the largest part k of the partition and then select a partition of n−k, with parts
less than or equal to k.

Let p(n, k) denote the number of partitions of n with largest part equal to k.
Then for any k ∈ [1, n], the probability of selecting a partition of n with largest

part k must equal p(n,k)
p(n) . For subsequent parts, only partitions with parts less

than or equal to k are to be considered. So for example, having selected the
largest part r, the next part k ∈ [1, r] is selected according to the probabilities

Prob(k) =
p(n, k)∑r
i=1 p(n, i)

.

It is possible to compute the denominator in an alternative way. Any partition
counted by p(n, k) can be transformed to a unique partition of n−k by removing
a part of size k. The partition obtained has parts less than or equal to k which

18

shows that

p(n, k) = p(n− k | parts less than or equal to k).

This leads to the identity

k∑

i=1

p(n, i) = p(n | parts less than or equal to k) = p(n+ k, k).

With this an algorithm to generate random partitions can be constructed.

Algorithm 3.

1. Set r = n.

2. For k ∈ [1, r], choose k with probability p(n,k)
p(n+r,r) .

3. If n− k > 1, set n = n− k and r = k and go to (2), otherwise stop.

In each loop, the selected k is added as a part to the partition being generated.
The function p(n, k) can be computed using the recurrence formula (12).

While the algorithm above works, it has the downside of requiring the com-
putation of p(n, k) for a variety of values of n and k. It is also cumbersome to
store these values in a large matrix or in some other data structure, to prevent
the same values from being evaluated multiple times. Next a more e�cient
algorithm is described that avoids using p(n, k), developed by Nijenhuis and
Wilf[6].

8.2.2 An algorithm that avoids using p(n, k)

Let σ(n) denote the sum of the divisors of n. An identity of Euler asserts that

np(n) =
∑

m<n

σ(n−m)p(m). (13)

It can be derived from the generating function

∞∑

j=1

(1− xj)−1 =

∞∏

n=0

p(n)xn

by �rst taking the logarithm on both sides and then di�erentiate with respect to
x. Understanding the identity (2.1) combinatorially is useful when developing
algorithms so a combinatorial proof is presented.

Let π denote a partition of some integer m < n and let d be a divisor of n−m.
With each pair (π, d) there's a corresponding partition of n. By appending n−m

d
copies of d to the partition π of m, a partition π′ of n is obtained.

Suppose d copies of π′ is made and that this is done for all partitions of m,
for all m ∈ [0, n[and all divisors d of n−m. If we can show that each partition
of n is created n times during this process, this proves (2.1).
Consider any particular partition π′ of n:

π′ : n = µ1r1 + µ2r2 + ...+ µkrk

19

where ri are the distinct parts of π′ and µi are their multiplicities. For any
t, 1 ≤ t ≤ µi, 1 ≤ i ≤ k, π′ can be constructed by appending t copies of ri to
a partition of n− tri. Here ri corresponds to d, and n− tri to m above. Each
value of t yields one copy of π′ and doing this for all t in the range and copying
each constructed partition ri times we get:

k∑

i=1

ri

µi∑

1

1 =
k∑

i=1

riµi = n,

copies of π′, as required.

The identity (2.1) can be interpreted as a probability mass function of m. Since
(2.1) can be rewritten as

1 =

∑
m<n σ(n−m)p(m)

np(n)
,

we have

Prob(m) =
σ(n−m)p(m)

np(n)
.

Once m is selected, d is selected according to the probabilities

Prob(d) =
d

σ(n−m)
.

This is su�cient to construct an algorithm but can be further simpli�ed as
follows. Let p(k) = 0 for k < 0, then

np(n) =
∞∑

m=1

σ(n−m)p(m)

=
∞∑

m=1

∑

d|m
dp(n−m)

=
∞∑

j=1

∞∑

d=1

dp(n− jd).

From this, a function for selecting d and j is obtained.

Prob(d, j) =
dp(n− jd)

np(n)
.

Now for the algorithm.

Algorithm 4.

1. Set P = empty partition and m = n.

2. For each d and j, d ≥ 1, j ≥ 1, jd ≤ m, choose d and j with probability
dp(m−jd)
mp(m) .

3. Append j copies of d to P .

4. Set m = m− jd.

5. If m > 0, go to (2), otherwise stop.

20

8.2.3 Algorithms that don't use partition functions

One of the goals of this thesis is to �nd a simple and e�cient algorithm for
generating random partitions. However, algorithms capable of generating ran-
dom partitions seems to almost inevitably require values of partition functions
to compute the necessary probabilities. This isn't the case if some implicit as-
sumptions are alleviated. One assumption that has been made is that every run
of the algorithm must predictably generate a partition. Allowing for runs to fail
may decrease worst case performance but possibly increase performance in the
average case.

A secondary goal is to explore di�erent algorithms to learn more about
integer partitions. Therefore, any algorithm capable of generating partitions at
random is of interest. While we were unable to �nd an e�cient algorithm of
the sort described above, we did �nd a simple algorithm that doesn't rely on
expensive functions. A brief interlude is made before describing the algorithm,
that considers a way to select partitions at random.

In interpreting the problems associated with algorithm 2, we saw that it gen-
erates some partitions with greater frequency than others because there are
varying number of paths to di�erent partitions. Selecting a path at random
would work if there were an equal number of paths to each partition. A solution
to this is to consider only a single path to each partition. For example, in the
Hasse diagram in Figure 7, one could consider only the leftmost path leading to
each partition.

In generating partitions, this can be done by constructing a partition with
greater parts �rst, or equivalently, from top to bottom in a Ferrers board. How-
ever, doing this one square at a time, the probabilities to either add a square to
the current part or to a new part depends on the number of leftmost paths from
the resulting partitions, which is obtained from the partition function p(n, k).

While the above argument doesn't provide a way to avoid partition functions,
it does present a viewpoint for selection at random. In section 5 we saw that
a composition of a positive integer n can be determined by selecting ',' or '+',
n− 1 times. In a Hasse diagram for compositions under the usual order, there
are a varying number of paths to di�erent compositions. Selecting '+' or ','
successively corresponds to selecting a path at random when only a single path
to each composition is considered.

Constructing a composition this way can be described with the steps: Set
current row to the top row and add a square to the current row. At each step
either add a square to the current row ('+' is selected) or set the current row
to the row below (',' is selected).

This algorithm can then be used to generate partitions. If a valid Ferrers
board is generated, then a partition has been selected at random. Otherwise
if an invalid Ferrers board is generated, start over. For generating partitions it
isn't e�cient, but can be improved upon and also shows that there are simple
methods for generating random partitions. The algorithm can be summarized
concretely.

21

Algorithm 5.

1. Start with an empty partition P and set the current row to the top row.

2. Add a square to the current row.

3. If the current row has more squares than the row above, then go to (1).

4. With probability 1/2, increase current row by 1.

5. If n squares have been added, then stop, otherwise go to (2).

For small n the average performance is similar to algorithms 3 and 4. Then
for larger n the performance decreases, since the number of compositions grows
more rapidly than p(n).

There are two possibilities for improving the algorithm. First, the proba-
bilities can be assigned di�erently to prevent invalid Ferrers boards from being
generated. Using the partition function p(n, k) this can be done exactly, but is
costly. There might be approximate methods for doing this. A second possibility
is to transform invalid Ferrers boards to valid partitions. However, this seems
di�cult, since it depends on the di�erence between the number of partitions
p(n) and the number of compositions.

8.3 Tests

Running a test for the algorithms described above, generating integer partitions
of n = 6, the results in Table 1 were obtained. Each algorithm was executed 106

times and the relative frequency of each partition was recorded. With p(6) = 11,
the expected frequency is approximately 0.0909 for selection that is uniform at
random. The code is written in C++ and is available in appendix A.

Partition Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Algorithm 5
1+1+1+1+1+1 0.0014 0.0311 0.0908 0.0910 0.0907
2+1+1+1+1 0.0209 0.0845 0.0907 0.0910 0.0912
2+2+1+1 0.0626 0.1134 0.0909 0.0909 0.0907
2+2+2 0.0209 0.0602 0.0908 0.0909 0.0911
3+1+1+1 0.0556 0.1181 0.0909 0.0909 0.0911
3+2+1 0.1666 0.1851 0.0909 0.0909 0.0913
3+3 0.0555 0.0603 0.0909 0.0909 0.0905
4+1+1 0.1250 0.1180 0.0910 0.0907 0.0902
4+2 0.1249 0.1136 0.0909 0.0909 0.0908
5+1 0.2002 0.0846 0.0911 0.0911 0.0909
6 0.1666 0.0311 0.0910 0.0909 0.0916

Table 1: Relative frequencies of integer partitions of 6.

The relative frequencies for algorithm 3, 4 and 5 conform well to the expected
frequency. The relative frequency for partitions of a single part, here a single
part of 6, for algorithm 1 and algorithm 2 also agree with their expected values.
For algorithm 1 the expected value is 1

n = 1
6 ≈ 0.1667 and for algorithm 2 it

is 1
2n−1 = 1

25 ≈ 0.313. The results also suggest that algorithm 2 generates the
conjugate of a partition with equal probability.

22

In doing the tests, once a partition has been generated its frequency needs to
be updated. It is practical to have these frequencies in an array, and to index
them with the partition. This can be achieved using the lexicographic order.
Since it is a total order, it is a bijection between the indices and the partitions,
meaning there's an inverse. After selecting a random index in the range [1, p(n)],
a partition can then be constructed using the inverse of the lexicographic order,
and this would select a partition uniform at random. Unfortunately, since the
lexicographic order uses p(n, k) to generate indices, this wouldn't yield a more
e�cient algorithm. However, any total order would work so it could be a way
to �nd a better algorithm.

9 Conclusion

We saw that the simple intuitive methods for generating partitions, in algorithm
1 and algorithm 2, fails to generate partitions at random. The methods that rely
on partition functions to compute probabilities, in algorithm 3 and algorithm
4, successfully generates random partitions but are more costly to run. In
algorithm 5 we saw that if algorithms are allowed to be unreliable in generating
partitions, then there are simple solutions.

It is di�cult to �nd simple algorithms that predictably generates partitions
at random and that doesn't rely on partition functions. It might be possible
to prove that there are no algorithms of this sort. Considering how closely the
problem of selecting random partitions is tied to the number of partitions, this
di�culty could be related to the problem of �nding a simple formula to the
partition function p(n).

There are many directions left to explore. An interesting area that hasn't
been studied in depth here is the distribution of partitions generated by algo-
rithms that don't generate partitions with equal probability. It should also be
noted that more e�cient algorithms for generating random partitions have been
developed, but have not been included here due to their complexity[4][5].

10 References

[1] George E. Andrews. Euler's pentagonal number theorem. Mathematics

Magazine, 56(5):279�284, 1983.

[2] George E. Andrews. The Theory of Partitions. Cambridge University Press,
2003.

[3] George E. Andrews and Kimmo Eriksson. Integer Partitions. Cambridge
University Press, 2004.

[4] Richard Arratia and Stephen Desalvo. Probabilistic divide-and-conquer: A
new exact simulation method, with integer partitions as an example. Com-

binatorics Probability and Computing, 24(3):324�351, 2016.

[5] Bert Fristedt. The structure of random partitions of large integers. Trans-

actions of the American Mathematical Society, 337(2):703�735, 1993.

23

[6] Albert Nijenhuis and Herbert S. Wilf. Combinatorial Algorithms. University
of Pennsylvania, 1978.

[7] Herbert S. Wilf. Lectures on Integer Partitions. University of Pennsylvania,
2000.

24

A Code for tests

1 #include <iostream >

2 #include <vector >

3 #include <string >

4

5 int pentagonal(int n) {

6 return (3 * n * n - n) / 2;

7 }

8

9 int generalized_pentagonal(int n) {

10 int n2 = n / 2;

11 return (3 * n2 * n2 + ((n%2)? 1: -1) * n2) / 2;

12 }

13

14 std::vector <int > generate_pn(int n) {

15 std::vector <int > p(n + 1);

16 p[0] = 1;

17

18 if (n == 0)

19 return p;

20

21 p[1] = 1;

22

23 for (int i = 2; i < n+1; i++) {

24 p[i] = 0;

25 for (int j = 0; j < n; j++) {

26 int pent = generalized_pentagonal(j+2);

27 if (i - pent < 0)

28 break;

29 p[i] += (((j / 2) % 2) ? -1 : 1) * p[i - pent];

30 }

31 }

32 return p;

33 }

34

35 int pnk(int n, int k) {

36 if (n < k || n < 0 || (n > 0 && k == 0))

37 return 0;

38 if (n == k || (n > 0 && k == 1) || (n == 0 && k == 0))

39 return 1;

40 return pnk(n - 1, k - 1) + pnk(n - k, k);

41 }

42

43 int pn_leqk(int n, int k) {

44 if (k <= 0) return 0;

45 return pnk(n, k) + pn_leqk(n, k - 1);

46 }

47

48 int index_mul(int n, const std::vector <int >& P) {

49 int rank = 0, prev_parts = 0;

50 for (int ri = P.size() - 1; ri >= 0; ri --) {

51 for (int k = 0; k < P[ri]; k++) {

52 rank += pn_leqk(n - prev_parts , ri - 1);

53 prev_parts += ri;

54 }

55 }

56 return rank;

57 }

58

59 const std::vector <int > partition_from_index(int n, int index) {

60 std::vector <int > P(n + 1, 0);

25

61 int N = n;

62 n = pn_leqk(N, N) - index - 1;

63

64 int k, p;

65 while (N > 0) {

66 for (k = 0; k < N; ++k) {

67 p = pn_leqk(N, k);

68 if (p > n) break;

69 }

70 P[k]++;

71 N -= k;

72 n -= pn_leqk(N, k - 1);

73 }

74

75 return P;

76 }

77

78 std::vector <int > algorithm1(int n) {

79 std::vector <int > P(n + 1, 0);

80 if (n == 0)

81 return P;

82

83 int r = n;

84 while (r > 0) {

85 int part = 1 + rand() % r;

86 P[part]++;

87 r -= part;

88 }

89

90 return P;

91 }

92

93 std::vector <int > algorithm2(int n) {

94 std::vector <int > P(n + 1, 0);

95 if (n == 0)

96 return P;

97

98 std::vector <int > parts(n,0);

99 parts [0]++;

100 std::vector <int > valid_rows;

101 for (int i = 0; i < n-1; i++) {

102 valid_rows.clear();

103 valid_rows.emplace_back (0);

104 for (unsigned int row = 1; row < parts.size(); row ++) {

105 if (parts[row] < parts[row - 1]) {

106 valid_rows.emplace_back(row);

107 }

108 }

109 int add_to = rand() % valid_rows.size();

110 parts[valid_rows[add_to]]++;

111 }

112

113 for (int part : parts)

114 P[part]++;

115 return P;

116 }

117

118 std::vector <int > algorithm3(int n, int r) {

119 std::vector <int > P(n + 1, 0);

120 if (n == 0)

121 return P;

122

26

123 double sum = 0;

124 double roll = (double)rand() / (double)RAND_MAX;

125 int k = 1;

126 for (; k <= r; k++) {

127 //sum += (double)pnk(n, k) / (double)pn_leqk(n, r);

128 sum += (double)pnk(n, k) / (double)pnk(n + r, r);

129 if (sum >= roll)

130 break;

131 }

132 P[k]++;

133

134 std::vector <int > sub = algorithm3(n - k, std::min(n, k));

135 for (unsigned int i = 0; i < sub.size(); i++) {

136 P[i] += sub[i];

137 }

138

139 return P;

140 }

141

142 std::vector <int > algorithm4(int n, const std::vector <int >& p) {

143 std::vector <int > P(n + 1, 0);

144 int m = n;

145 do {

146 double r = (double)rand() / (double)RAND_MAX;

147 double sum = 0;

148 int j, d;

149 for (j = 1;; j++) {

150 for (d = 1; j * d <= m; d++) {

151 sum += ((double)d * (double)p[m - j * d]) / ((double)m * (

double)p[m]);

152 if (sum >= r) {

153 break;

154 }

155 }

156 if (sum >= r) {

157 break;

158 }

159 }

160 P[d] += j;

161 m -= j * d;

162

163 } while (m > 0);

164

165 return P;

166 }

167

168 std::vector <int > algorithm5(int n) {

169 std::vector <int > parts(n, 0);

170 if (n == 0)

171 return std::vector <int >(1, 0);

172

173 int row = 0;

174 parts[row] = 1;

175 for (int i = 1, j = 0; i < n; i++, j++) {

176 double r = (double)rand() / (double)RAND_MAX;

177 if (r > 0.5)

178 row ++;

179

180 if (row && parts[row] >= parts[row - 1]) {

181 return std::vector <int >(0);

182 }

183 parts[row]++;

27

184 }

185 std::vector <int > P(n + 1, 0);

186 for (int part : parts)

187 P[part]++;

188 return P;

189 }

190

191 int main() {

192 srand(time(NULL));

193

194 int n = 6;

195 std::vector <int > p = generate_pn(n);

196

197 bool print_pn = false;

198 if (print_pn) {

199 for (int i = 0; i < n; i++) {

200 std::cout << "p(" << i << ") = " << p[i] << std::endl;

201 }

202 std::cout << std::endl;

203 }

204 std::vector <int > frequencies(p[n]);

205 //int runs = 10;

206 int runs = 1000000;

207 //int runs = 10000000;

208

209 int failed_runs = 0;

210 for (int k = 0; k < runs; k++) {

211 //std::vector <int > P = algorithm1(n);

212 //std::vector <int > P = algorithm2(n);

213 std::vector <int > P = algorithm3(n, n);

214 //std::vector <int > P = algorithm4(n, p);

215 //std::vector <int > P = algorithm5(n);

216

217 if (P.size()) {

218 int sum = 0;

219 for (unsigned int i = 0; i < P.size(); i++) {

220 sum += i * P[i];

221 }

222 if (sum != n)

223 std::cerr << "invalid partition !\n";

224

225 frequencies[index_mul(n, P)]++;

226 }

227 else {

228 k--;

229 failed_runs ++;

230 }

231 }

232

233 std::cout << "runs: " << runs << ", failed runs:" << failed_runs

<< std::endl;

234 std::cout << std::endl;

235 std::cout << "frequencies :\n";

236 for (unsigned int i = 0; i < frequencies.size(); i++) {

237 std::cout << i << ", " << (double)frequencies[i] / (double)runs

<< std::endl;

238 }

239 std::cout << std::endl;

240 std::cout << "1/p(n) = " << 1.0 / (double)p[n] << std::endl;

241

242 bool print_samples = false;

243 if (print_samples) {

28

244 std::cout << std::endl;

245 std::cout << "samples :\n";

246 for (int k = 0; k < 10; k++) {

247 std::vector <int > P = algorithm4(n, p);

248 std::vector <int > parts;

249 for (unsigned int i = 1; i < P.size(); i++) {

250 for (int j = 0; j < P[i]; j++)

251 parts.push_back(i);

252 }

253 std::cout << n << " = ";

254 for (unsigned int i = 0; i < parts.size(); i++) {

255 std::cout << parts[parts.size() - 1 - i] << (i + 1 < parts.

size() ? " + " : "");

256 }

257 std::cout << std::endl << "rank:" << index_mul(n, P) << std::

endl;

258 std::cout << std::endl;

259 }

260 }

261 return 0;

262 }

29

