
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Extracting Computational Content From Proofs

av

Alice Brolin

2021 - No K49

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

Extracting Computational Content From Proofs

Alice Brolin

Självständigt arbete i matematik 15 högskolepoäng, grundnivå

Handledare: Peter LeFanu Lumsdaine

2021

Abstract
Kurt Gödel developed a translation, called the Dialectica translation, from Heyting
Arithmetic into a type system called T. This type system can be described by a
lambda calculus. I present Gödel’s translation and then, to get a sense of how it
functions in practice, I apply it to two theorems in Heyting Arithmetic. The first
theorem is about ≤ being a total order on the natural numbers. When I apply the
Dialectica translation I get lambda terms for subtraction and for the characteristic
function of ≤. The second theorem is about there being arbitrarily large prime
numbers. This gives me under the translation a lambda term for a function that
from any natural number can produce a prime number bigger than that number.
I also implement these lambda terms as functions in the programming language
Haskell.

1

Contents
1 Introduction 3

2 Gödel’s Dialectica Translation 4
2.1 Heyting Arithmetic . 4
2.2 System T . 4
2.3 The Translation . 5
2.4 Proofs in T . 6

3 Example 1: Inequality 10
3.1 Proof of example 1 . 10

3.1.1 Lemma: Equality . 10
3.1.2 Proof of proposition . 10

3.2 Translation . 11
3.2.1 Lemma: Equality . 11
3.2.2 Proposition . 11

4 Example 2: Existence of infinite primes 12
4.1 Proof of example 2 . 12

4.1.1 Lemma 1: Bounded quantification 12
4.1.2 Lemma 2: Divisors . 13
4.1.3 Lemma 3: Prime divisors . 13
4.1.4 Proof of theorem . 14

4.2 Translation . 14
4.2.1 Lemma 1: Bounded quantification 14
4.2.2 Lemma 2: Divisors . 16
4.2.3 Lemma 3: Prime divisors . 16
4.2.4 Theorem: Infinite primes . 17

A Appendix: Some basic rules in HA 19
A.1 Addition . 19
A.2 Multiplication . 19

B Appendix: Haskell implementations 20

References 22

2

1 Introduction
Intuitionistic logic is a form of logic that uses the same language as classical logic.
However, in intuitionistic logic we do not have the law of the excluded middle φ ∨
¬φ. This means that our normal interpretation used for classical logic, where each
formula is given a truth value of true or false and formulas can be checked with
truth tables, is not sufficient for intuitionistic logic. Instead, we can use the BHK-
interpretation where formulas are interpreted by their construction so e.g. φ∧ψ is a
construction of φ and a construction of ψ whereas φ → ψ is a method of turning a
construction of φ into a construction of ψ. We see that this gives a more algorithmic
interpretation of proofs. [SU06, p.28-29]

We will look at an intuitionistic theory of the natural numbers called Heyting
Arithmetic (HA). HA is a first order theory; that is we are allowed to quantify over
numbers but not over anything else (like sets or functions). It is an analogue of
Peano Arithmetic (PA) in intuitionistic logic. PA and HA use the same axioms
but the difference is that for PA the underlying logic is classical first order logic
whereas for HA the underlying logic is intuitionistic first order logic, so the law of
the excluded middle can be used in PA but not in HA.[AF95, p.5]

Gödel developed a system called T and a translation from HA to T called the
Dialectica translation. This allowed him to prove the consistency of HA using T.
[AF95, p.2] The main benefit of formulas in T compared to HA is that they are
essentially quantifier free. To do this he used a many-sorted system, that is whereas
HA only allows talking about one type of object (numbers), T allows talking about
different types of objects. [AF95, p.6] These can be numbers, functions between
numbers and also functions between functions. These functions can be described by
a version of typed lambda calculus[AF95, p.8-9]. This lambda calculus can be seen
as a sort of limited programming language.

In this paper I will present the translation and translate some theorems in HA
to T using the Dialectica translation. Using the algorithmic content in the proofs
I will find the related functions arising from the translation. I will also implement
these functions in the programming language Haskell.

3

2 Gödel’s Dialectica Translation
2.1 Heyting Arithmetic
Heyting Arithmetic can be described as a theory with one constant 0, one unitary
function S (the successor function) and two binary functions +, ·. To describe HA
we can use the following axioms (from [SU06, p.233-234]):

1. ∀a, b : S(a) = S(b)→ a = b

2. ∀a : ¬S(a) = 0

3. ∀a : a+ 0 = a

4. ∀a, b : a+ S(b) = S(a+ b)

5. ∀a : a · 0 = 0

6. ∀a, b : a · S(b) = a · b+ a

7. For any proposition φ the axiom φ(0)→ ∀n : (φ(n)→ φ(S(n)))→ ∀n : φ(n)

Here the last item in the list is the induction scheme.
As shown in appendix A one can easily derive the basic rules of arithmetic, e.g.

commutativity and associativity, in HA.

2.2 System T
The Dialectica translation uses a type system called system T. This description
of T as a typed lambda calculus is from [AF95, p.6-7]. T has one primitive type
Nat representing natural numbers and further types that are defined inductively
by saying that if σ,τ are types then we have a function type σ → τ (representing
functions from σ to τ) .

All terms in system T have a unique type. If τ is the type of a term t we write
t : τ . The terms are:

1. Infinite sets of variables for each type.

2. 0 : Nat representing the natural number 0.

3. S : Nat→ Nat representing the successor function.

4. For any term t of type τ and type σ we can form the term λxσ.t : σ → τ
representing abstraction.

5. If t is a term of type σ → τ and s is a term of type σ then ts (or t(s)) is a
term of type τ representing the value of t applied to s.

4

6. For every type σ we get a term Rσ : σ → (Nat → σ → σ) → Nat → σ
representing recursion.

I will write t(s1, s2, ..., sn) for (((ts1)s2)...)sn, and λxσ1
1 ...x

σn
n .t for λxσ1

1 .(λxσ2
2 .(...λxσn

n .t)).
Also I will write t[s/x] for the term t with all occurrences of x swapped for s (and
if necessary a renaming of bound variables in t to avoid capture).

Computation in system T is carried out by substituting occurrences of (λxσ.t)s
with t[s/x] , Rσ(s, t, 0) with s and Rσ(s, t, S(n)) with t(n,Rσ(s, t, n)) [AF95, p.9].
The strong normalization theorem for system T says that for any term t this process
will always result in a unique normal term (i.e. a term where no more substitutions
can be done)[SU06, p.256].

Basic operators in T
We see from the axioms that addition and multiplication are defined recursively.

Thus we can in system T define:

a+ b := RNat(a, λnNatxNat.S(x), b)

ab := RNat(0, λnNatxNat.x+ a, b)

It will also be useful to define some Boolean operators. For that I identify 0 with
“True” and 1 with “False”. Then I can define the operators “and”, “not” as well as
“or” by a&b = ab, !a = RNat(1, λnNatxNat.0, a) and a|b =!(!a&!b) Finally I can define
a “if then else” operator as a?s : t = RNat(t, λnNatxNat.s, a).

2.3 The Translation
The Dialectica translation (as given in [G94, p.249]) works as follows. For any
formula φ = φ(z) in HA we get a formula φ′ = ∃x∀y α(x, y, z) in system T where
x, y and z are lists of variables and α does not have any quantifiers and only contains
the variables x, y, z. The translation is defined inductively by first taking φ′ = φ if
φ contains no logical operators. Then if we have formulas φ, ψ such that we have
already defined φ′ = ∃x∀y α(x, y, z), ψ′ = ∃u∀v β(u, v, w), we define:

1. (φ ∧ ψ)′ = ∃x, u∀y, v (α(x, y, z) ∧ β(u, v, w))

2. (φ ∨ ψ)′ = ∃c, x, u∀y, v ((c = 1 ∧ α(x, y, z)) ∨ (c = 0 ∧ β(u, v, w)))

3. (∀n : φ(z))′ = ∃X∀y, n α(X(n), y, z)

4. (∃n : φ(z))′ = ∃n, x∀y α(x, y, z)

5. (φ→ ψ)′ = ∃U, Y ∀x, v (α(x, Y (x, v), z)→ β(U(x), v, w))

6. (¬φ)′ = ∃Y ∀x ¬α(x, Y (x), z)

5

In the base case we need to translate the numbers and S,+,× in to their coun-
terparts in system T.[AF95, p.10] We see that in the case of disjunction we add a
constant that describes which case we are in. For universal quantification we need
to swap the place of a “for all” and an “exists”. If for all n there exists some x
satisfying some proposition then there should be a function X(n) that maps an n
to such a x, which is the idea behind that rule.

In the case of implication we use that ∃xφ(x)→ ∃uψ(u) means that if there exists
a witness of φ we should be able to find a witness of ψ and ∀yφ(y)→ ∀vψ(v) means
that if there is a v such that ψ is false then we need a y such that φ is false[G94, p.249].
This is because ∀yφ(y) → ∀vψ(v) implies it’s contrapositive ¬∀vψ(v) → ¬∀yφ(y).
Combining these we get that with φ′, ψ′ as above we can transform φ → ψ into
∃U∀x∃Y ∀v(α(x, Y (v), z) → β(U(x), v, w)) and then use the translation rules for
quantification to get 5. The rule for negation comes from the rule for implication
and the fact that ¬φ is equivalent to φ→ ⊥[G94, p.249].

2.4 Proofs in T
Proofs in T use the inference rules of propositional logic and for equality. The
axioms in HA are replaced with quantifier free axiom schemes. For example the
axiom ∀a : ¬S(a) = 0 is replaced with the axiom scheme, that for any a : Nat we
have ¬S(a) = 0. Instead of the the normal induction scheme we have the rule that
for any formula α(xNat) and term t : Nat that we from α(0) and α(x) → α(S(x))
can deduce α(t).[AF95, p.9]

Gödel’s main result about the Dialectica translation was that for any formula φ,
where φ′ = ∃x∀yα(x, y, z), if φ is provable in HA then there is a term t such that
α(t, y, z) is provable in T.[AF95, p.13]

To prove that result we can show by induction on the size of a proof, that if
HA proves σ1, ..., σn ` φ, where σ′k = ∃xk, ∀ykγk(xk, yk, wk) then there are terms
t1, ..., tn, s such that T proves

(γ1(x1, t1(x1, ..., xn, y), w1) ∧ ... ∧ γn(xn, tn(x1, ..., xn, y), wn))→ α(s(x1, ..., xn), y, z),

for arbitrary x1,, xn, y and for choice of w1, ..., wk, z (being mindful of the fact
that these variables may overlap).

Most of the axioms follow immediately from their counterpart in HA. For the
induction scheme one uses the fact that T has a term for recursion[AF95, p.13].

For the inductive step we assume that the translation works for all shorter proofs
and then verify that it still works when we apply each inference rule.

For →-introduction we have a proof of σ1, ..., σn, φ ` ψ and get a proof of φ `
φ→ ψ. Here we say ψ′ = ∃x∀y : β(x, y, z2). Thus we need to show that if there are
t′1, ..., t

′
n+1, s

′, such that for all x′1, ..., x′n+1, y
′ T proves

(γ1(x′1, t′1(x′1, ..., x′n+1, y
′), w1) ∧ ... ∧ γn(x′n, t′n(x′1, ..., x′n+1, y

′), wn)
∧ α(x′n+1, s(x′1, ..., x′n+1, y

′), z1))→ β(s′(x′1, ..., x′n+1, y
′
1), y′, z2),

6

then there are t1, ..., tn, t, s1, s2 such that for all x1, ..., xn, y1, y2 one can prove

(γ1(x1, t1(x1, ..., xn, y1, y2), w1) ∧ ... ∧ γn(xn, tn(x1, ..., xn, y1, y2), wn))
→ (α(y1, s1(x1, ..., xn, y1, y2), z1)→ β(s2(x1, ..., xn, y1), y2, z2)).

Clearly one can simply take x′1 = x1, ..., x
′
n = xn, x

′
n+1 = y1, y

′ = y2 and define
t1 = t′1, ..., tn = t′n, s1 = t′n+1, s2 = s′.

For inference rules with multiple premises we use the following lemmas:

Lemma 2.1. Assume I have formulas γ1, ..., γn and terms t′1, ..., t′n, t′′1, ..., t′′n. Define
x = x1, ..., xn,

γ′(x, y) = γ1(x1, t
′
1(x, y)) ∧ ... ∧ γn(xn, t′n(x, y′))

and
γ′′(x, y) = γ1(x1, t

′′
1(x, y′′)) ∧ ... ∧ γn(xn, t′′n(x, y′′)).

Then there are terms t1, ..., tn such that T proves γ(x, y)→ γ′(x, y)∧γ′′(x, y), where
γ(x, y) = γ1(x1, t1(x, y)) ∧ ... ∧ γn(xn, tn(x, y)).

Proof. One can show that for any formula γ∗(x, y) there is a term tγ∗(x, y) such that
T proves tγ∗(x, y) = 0↔ γ∗(x, y) [AF95, p.12]. Let

tk(x, y) = tγ′(x, y)?t′k(x, y) : t′′k(x, y).

Now assume γ(x, y). Next either tγ′(x, y) = 0 or not.

• If tγ′(x, y) = 0 then since tγ′(x) → γ′(x) we get γ′(x, y). Also if tγ′(x, y) = 0
then tk(x, y) = t′′k(x, y) so γ(x, y) becomes γ′′(x, y). Hence we get γ′(x, y) ∧
γ′′(x, y)

• If tγ′(x, y) 6= 0 then since γ′(x) → tγ′(x) = 0 we get ¬γ′(x). However since
tγ′(x, y) 6= 0 we also get that tk(x, y) = t′k(x, y) so γ(x, y) becomes γ′(x, y) and
we get a contradiction.

Thus T proves γ(x, y)→ γ′(x, y) ∧ γ′′(x, y).

Lemma 2.2. Assume there are terms t′1, ..., t′n, s′, t′′1, ..., t′′n, s′′ and t̃1, t̃2, s̃ such that
for any x′1, ..., x′n, y′, x′′1, ..., x′′n, y′′ and x̃1, x̃2, ỹ, T proves

γ1(x′1, t′1(x′1, ..., x′n, y′), w1)∧...∧γn(x′n, t′n(x′1, ..., x′n, y′), wn)→ α1(s′(x′1, ..., x′n), y′, w, z1),

γ1(x′′1, t′′1(x′′1, ..., x′′n, y′′), w1)∧...∧γn(x′′n, t′′n(x′′1, ..., x′′n, y′′), wn)→ α2(s′′(x′′1, ..., x′′n), y′′, w, z2)
and

α1(x̃1, t̃1(x̃1, x̃2, ỹ), z1) ∧ α2(x̃2, t̃2(x̃1, x̃2, ỹ), z2)→ β(s̃(x̃1, x̃2), ỹ, z3).

Then there are terms t1, ..., tn, s such that for any x, y

γ(x1, t1(x, y), w1) ∧ ... ∧ γ(xn, tn(x, y), wn)→ β(s(x), y, z3).

7

Proof. Let x′1 = x′′1 = x1, ..., x
′
n = x′′n = xn, ỹ = y, let x̃1 = s′(x), x̃2 = s′′(x) and let

y′ = t̃1(s′(x), s′′(x), y), y′′ = t̃2(s′(x), s′′(x), y). Define s(x) = s̃(s′(x), s′′(x)) and use
the previous lemma to get t1, ..., tk such that T proves

γ1(x1, t1(x, y), w1) ∧ ... ∧ γn(xn, tn(x, y), wn)
→ γ1(x1, t

′
1(x, t̃1(s′(x), s′′(x), y)), w1) ∧ ... ∧ γn(xn, t′n(x, t̃1(s′(x), s′′(x), y)), wn)

∧ γ1(x1, t
′′
1(x, t̃2(s′(x), s′′(x), y)), w1) ∧ ... ∧ γn(xn, t′′n(x, t̃2(s′(x), s′′(x), y)), wn).

Using lemma 2.2 we can easily verify the induction step for most inference rules
that do not discharge assumptions. For example to verify it for ∧-introduction we
only need to show that there are t1, t2, s1, s2 such that

α(x1, t1(x1, x2, y1, y2), z1) ∧ β(x1, t1(x1, x2, y1, y2), z2)
→ α(s1(x1, x2), y1, z1) ∧ β(s2(x1, x2), y2, z2)

so we just take t1(x1, x2, y1, y2) = y1, t2(x1, x2, y1, y2) = y2, s1(x1, x2) = x1 and
s2(x1, x2) = x2.

For →-elimination the condition φ→ ψ corresponds with

∃X1, X2∀y1, y2 : α(y1, X1(y1, y2), z1)→ β(X2(y1), y2, z2)

so we need to show that there are t1, t2, t3, s such that

(α(t1(X1, X2, x3, y), X1(t1, t2), z1)→ β(X2(t1), t2(X1, X2, x3, y), z2))
∧ α(x3, t3(X1, X2, x3, y), z1)→ β(s(X1, X2, x3), y, z2).

Thus we take t1(X1, X2, x3, y) = x3, t2(X1, X2, x3, y) = y, t3(X1, X2, x3, y) = X1(t1, t2) =
X1(x3, y) and s(X1, X2, x3) = X2(t1) = X2(x3).

Finally for the rules ∨-elimination and ∃-elimination which do discharge assump-
tions one needs to directly apply lemma 2.1. So e.g. if we use ∃-elimination to prove
ψ from ∃z : φ we need to show that there are t1, ..., tn, s such that T proves

(γ1(x1, t1(x1, ..., xn, y), w1)∧ ...∧ γn(xn, tn(x1, ..., xn, y), wn))→ β(s(x1, ..., xn), y, z2).

Say φ′ = ∃x : ∀y : α(x, y, z, z1) and (∃z : φ(z))′ = ∃z, x∀y : α(x, y, z, z1) then the
induction hypothesis gives that we have t′, s′1, s′2, t′′2, t′′2, ssuch that

(γ1(x′1, t′1(x′1, ..., x′n, y′), w1) ∧ ... ∧ γn(x′n, t′n(x′1, ..., x′n, y′), wn)
→ α(s′1(x′1, ..., x′n), y′, s′2(x′1, ..., x′n), z1),

and

(γ1(x′′1, t′′1(x′′1, ..., x′′n+1, y
′′), w1) ∧ ... ∧ γn(x′′n, t′′n(x′′1, ..., x′′n+1, y

′′), wn)
∧ α(x′′n+1, t

′′
n+1(x′′1, ..., x′′n+1, y

′′), z, z1)→ β(s′′(x′′1, ..., x′′n+1), y′′, z2).

8

By assumption for the ∃-elimination rule z is not a free variable in σ1, ..., σn or
ψ so it is independent of w1, ..., wn and z2. Hence we can freely pick z. Thus
we take x′1 = x′′1 = x1, ..., x

′
n = x′′n and x′′n+1 = s′(x1, ..., xn). Then we take

y′′ = y, y′ = t′′n+1(x1, ..., xn, s
′(x1, ..., xn), y) and z = s2(x1, ..., xn). Finally we de-

fine s(x1, ..., xn) = s′′(x1, ..., xn, s
′
1(x1, ..., xn)) and use lemma 2.1 to get t1, ..., tn.

This ends the proof, so we can conclude the presentation of Gödel’s Dialectica
translation with:

Theorem 2.3. If HA proves φ where φ′ = ∃x∀y : α(x, y, z) then there is a term t
such that T proves α(t, y, z).

9

3 Example 1: Inequality
In HA we can define the normal ordering of natural numbers by saying that n ≤ m
means that ∃d : n + d = m. To test the Dialectica translation I want to start
by looking at a useful proposition relating to this ordering. To be able to use the
translation on the proposition I first need to formulate it within HA. Then I need
to have the constructive proof of the proposition, where the proof is directly from
the axioms of HA.

The proposition I look at is that either n ≤ m or not, in which case m < n, i.e.
∀n,m : n ≤ m ∨ (¬n ≤ m ∧m < n). Here m < n is defined as m ≤ n ∧ ¬m = n.
Thus the statement is formally given by

∀n,m : (∃a : n+ a = m) ∨ (¬(∃b : n+ b = m) ∧ (∃c : m+ c = n ∧ ¬m = n)).

3.1 Proof of example 1

3.1.1 Lemma: Equality

For all n,m either n = m or not. Formally ∀n,m : n = m ∨ ¬n = m. The proof is
by induction on a.

First I need to show that ∀b : 0 = b ∨ ¬0 = b which I do by induction on b. We
immediately have 0 = 0 and ¬S(b) = 0.

Now I assume ∀b : a = b∨¬a = b and I need to show ∀b : S(a) = b∨¬S(a) = b.
For this we again use induction on b. We have immediately that ¬S(a) = 0. In the
case of S(b) we have that S(a) = S(b) if and only if a = b, which is either true or
false by the induction hypothesis.

3.1.2 Proof of proposition

First note that a < b if and only if a + S(d) = b for some d. This is since if a < b
then a + d = b and if d = 0 then a = b. This gives a contradiction so d 6= 0 which
means d = S(e) for some e. On the other hand if a + S(d) = b then a ≤ b. Also if
a = b then we get b+ S(d) = b so S(d) = 0. This gives a contradiction so ¬a = b.

Next note that if m < n then ¬n ≤ m, because if m < n and n ≤ m then there
is d, e such that m + S(d) = n and n + e = m. This give us that n + e + S(d) =
m+ S(d) = n so S(e+ d) = e+ S(d) = 0 which is impossible.

Now to prove the proposition I use induction on n. First 0 +m = m so ∀m : 0 ≤
m.

Next assume that for all m either n ≤ m or the negation holds and m < n. If
m < n then m+ d = n for some d and m+ S(d) = S(m+ d) = S(n) so m < S(n).
Otherwise if n ≤ m then by the lemma n = m or ¬n = m i.e. n < m. If n < m then
n + S(d) = m for some d. Thus S(n) + d = n + S(d) = m so S(n) ≤ m. If n = m
let d = 0 so m+ S(d) = S(m) = S(n) and m < S(n).

10

3.2 Translation
3.2.1 Lemma: Equality

The translation of ∀n,m : n = m ∨ ¬n = m becomes

∃Eq : Nat2 → Nat ∀n,m : Nat (Eq(n,m) = 1∧ n = m)∨ (Eq(n,m) = 0∧¬n = m).

We see that Eq is the characteristic function for equality. From the proof we see
that Eq is defined by multiple recursions. In the first case we get a recursion that
starts with “True” and is “False” in all other steps. For the recursion step we have a
recursive function that starts with “False” and for later steps it applies the previous
result to b. So

Eq = RNat→Nat(RNat(1, λbNatyNat.0,), λaNatXNat→Nat.RNat(0, λbNatyNat.X(b),),).

3.2.2 Proposition

The translation of

∀n,m : (∃a : n+ a = m) ∨ (¬(∃b : n+ b = m) ∧ (∃c : m+ c = n ∧ ¬m = n))

is

∃Dif ,Dif 2,Leq : Nat2 → Nat∀n,m, b : Nat
(Leq(n,m) = 1 ∧ n+ Dif (n,m) = m)

∨ (Leq(n,m) = 0 ∧ ¬n+ b = m ∧ (m+ Dif 2(n,m) = n ∧ ¬m = n)).

Here we see that Leq is the characteristic function of ≤. Dif is the difference of
n and m if n ≤ m and Dif 2 is the difference of m and n if m < n.

In the proof n ≤ m held in the base case and S(n) ≤ m held in the induction
case when it held for n and n 6= m. Thus we can write Leq as

Leq = λnNatmNat.RNat(1, λkNatxNat.x&!Eq(k,m), n).

The difference between n and m was m at first and then increased by one each step
so

Dif = λnNatmNat.RNat(m,λkNatxNat.S(k), n).
The difference between m and S(n) was 1 when m = n and then increased by one
when m < n so

Dif 2 = λnNatmNat.RNat(0, λkNatxNat.Eq(m, k)?1 : [Eq(x, 0)?0 : S(x)], n).

11

4 Example 2: Existence of infi-
nite primes

For a look at how the Dialectica translation works on a more complex statement, I
look at the famous theorem stating that there are infinite primes. As in example 1
I need to formulate and prove this in HA.

To formulate the theorem I start with the definition that n divides m (n|m) if
∃b : nb = m. Then we can define the statement “p is a prime number” (Prime(p))
as:

(∀a : a|p→ (a = 1 ∨ a = p)) ∧ ¬p = 1

Now our theorem becomes

∀n : ∃p : Prime(p) ∧ n ≤ p,

which is the same as

∀n∃p : [∀a : (∃b : ab = p)→ (a = 1 ∨ a = p) ∧ ¬p = 1] ∧ [∃d : n+ d = p].

4.1 Proof of example 2

4.1.1 Lemma 1: Bounded quantification

We need to prove that if a formula φ(·) either holds or does not hold for any given
number, then the same is true for the statement that for a given n there is a number
m ≤ n satisfying φ. This we can write as

[∀n : φ(n) ∨ ¬φ(n)]→ ∀n : [(∃m : m ≤ n ∧ φ(m)) ∨ ¬(∃m : m ≤ n ∧ φ(m))].

For this proof first note that if m ≤ 0 then m = 0. This follows since from Example
1 we have that if m ≤ 0 then either m = 0 or m < 0. If m < 0 then m + S(d) = 0
for some d. However if m+ S(d) = 0 then S(m+ d) = m+ S(d) = 0 which gives a
contradiction.

Now we assume that we have a formula φ that is either true or false for any given
number, and then work by induction on n. If n = 0 we know that if m ≤ n then
m = 0 so we only need to check if φ(0) is true or false.

Next we assume that for a specific n we have that there either is or is not an
m ≤ n such that φ(m) is true. If there is such an m then we also have m ≤ S(n).
If there is no m ≤ n such that φ(m) is satisfied we use our fist assumption to get
that φ(S(n)) is true or false. If φ(S(n)) is true then m = S(n) satisfies m ≤ S(n)
and φ(m). If φ(S(n)) is false then there is no m ≤ n satisfying S(m) and m = S(n)
does not satisfy φ(S(m)) so there is no m ≤ S(n) satisfying φ(m).

12

4.1.2 Lemma 2: Divisors

Next I show that it is either true or not that m divides n, i.e. ∀m,n : m|n ∨ ¬m|n.
We start by noting that for any b either mb = n is true or not. By Lemma 1 we get
that either there is b ≤ n such that mb = n or not. If there is b such that mb = n
then m|n. If there is no such b ≤ n then assume there is b such that mb = n. Either
b ≤ n or n < b, but we have assumed that we do not have b ≤ n so n < b i.e. there
is d such that n+ S(d) = b. Now I show that mb 6= n by induction on m. If m = 0
we get n = mb = 0 but then 0 ≤ n and m0 = n which gives a contradiction. For
S(m) we get S(m)b = mb+ b = mb+ n+ S(d) = n+ S(mb+ d) 6= n.

4.1.3 Lemma 3: Prime divisors

Finally I need to show that every number (except 1) has a prime divisor i.e. ∀n :
∃p : ¬n = 1→ Prime(p) ∧ p|n.

For this I use strong induction on n, that is I want to prove by induction on n
that for all n and for all m ≤ n, if m 6= 1 then Prime(p) ∧ p|m. If I can show this
then the lemma follows since n+ 0 = n so n ≤ n.

For the base case we have m ≤ 0 so m = 0. If there exists any prime number p
then p0 = 0 so p is a prime divisor of 0. Thus I only need to prove the existence of
a prime number. Assume a|2 so ab = 2 for some b. Since 0b = 0, we get that a 6= 0.
Now either a = 1 or not and either a = 2 or not, so start by assuming that a 6= 1
and a 6= 2. Since a 6= 0 we get a = S(α) for some α. If α = 0 we would get that
a = 1 so α = S(β) for some β. Similarly β 6= 0 because a 6= 2 so β = S(γ). Next if
b = 0 I get ab = 0 so b 6= 0 and I can write it as S(c) for some c. Then

S(S(0)) = ab = S(S(S(γ)))S(c) = S(S(S(γ)))c+ S(S(S(γ)))
= S(S(S(S(S(S(γ)))c+ γ))),

so 0 = S(S(S(S(γ)))c+ γ) which is impossible. Hence a = 1 or a = 2 so 2 is prime.
For the induction step, assume that all m ≤ n where m 6= 1 have prime divisors.

We use Lemma 1 and Lemma 2 to get that either there is m ≤ n such that m|S(n)
and m 6= 1 or there is not. If there is such an m then there is b such that mb = S(n)
and by our induction hypothesis there is a prime number p such that p|m i.e. there
is c such that pc = m. Then p(cb) = S(n) so p is a prime divisor of S(n).

Now assume that there is no such m. If S(n) = 1 then clearly S(n) satisfies that
if S(n) 6= 1 then it has a prime divisor. Otherwise assume a|S(n) so ab = S(n) for
some b. Then a ≤ n or n < a. If a ≤ n then a = 1 or a 6= 1, but if a 6= 1 we get a
contradiction with our assumption so a = 1. If n < a then n+ S(d) = a for some d
so S(n) + d = n + S(d) = a i.e. S(n) ≤ a. Now S(n) = a or S(n) < a. If S(n) < a
then S(n) + S(d) = a for some a. Next if b = 0 then ab = 0 6= S(n) and if b 6= 0
then b = S(c) for some c so

13

ab = (S(n) + S(d))S(c) = S(n)S(c) + S(d)S(c)
= S(n)c+ S(n) + S(d)c+ S(d) = S(n) + S(S(n)c+ S(dc) + d) 6= S(n).

This means that a = S(n). Thus a = 1 or a = S(n) so S(n) is prime. Then since
S(n)1 = S(n) we have that S(n) divides S(n). If m ≤ S(n) then m = S(n) or
m < S(n). If m = S(n) we have shown that we can find a prime divisor of p.
Otherwise if m < S(n) then m + S(d) = S(n) for some n so S(m + d) = S(n) and
m + d = n, which means that m ≤ n so we can find a prime divisor of m by the
induction hypothesis.

4.1.4 Proof of theorem

I start by showing by induction that for any n there is a number k 6= 0 such that for
all m ≤ n if m 6= 0 then m|k. Since there are no numbers m ≤ 0 such that m 6= 0
this case is satisfied by showing that there is some k 6= 0. k = 1 satisfies this. Now
assume that there is k 6= 0 such that for all m ≤ n if m 6= 0 then m|k i.e. there is
bm such that mbm = k. Then m(bmS(n)) = kS(n) so any m ≤ n such that m 6= 0
divides kS(n). Also S(n)k = kS(n) so S(n)|kS(n). This completes the induction.

Now take any n and take k 6= 0 such that for all m ≤ S(n) if m 6= 0 then m|k.
Since k 6= 0 we have that S(k) 6= 1 so by Lemma 3 there exists a prime number p
such that p|S(k). Now either p ≤ n or n < p but since 2|0, 0 is not prime so if p ≤ n
then p|k. Thus pa = S(k) for some a and pb = k for some b. Also since p 6= 1 we get
p = S(S(q)) for some q. Now a ≤ b or b < a. If a ≤ b then a+ d = b for some d so

S(k) = S(pb) = S(p(a + d)) = S(pa + pd) = pa + S(pd) = S(k) + S(pd)

this is impossible. Thus b < a so b+ S(d) = a for some d. Then

S(k) = pa = p(b+ S(d)) = pb+ pS(d) = k + S(S(q))S(d)
= k + S(S(q))d+ S(S(q)) = S(k) + S(S(S(q)d+ q)

This is again impossible so n < p.

4.2 Translation
4.2.1 Lemma 1: Bounded quantification

The statement of the theorem was

[∀n : φ(n) ∨ ¬φ(n)]→ ∀n : [(∃m : m ≤ n ∧ φ(m)) ∨ ¬(∃m : m ≤ n ∧ φ(m))],

which is the same as

[∀n′ : φ(n′)∨¬φ(n′)]→ ∀n : [(∃m : (∃d : m+d = n)∧φ(m))∨¬(∃k : (∃e : k+e = n)∧φ(k))].

14

The first part ∀n : φ(n) ∨ ¬φ(n) translates into

∃Z : Nat→ Nat, x : Nat ∀n′, y : Nat (Z(n′) = 1 ∧ φ(n′)) ∨ (Z(n′) = 0 ∧ ¬φ(n′))

whereas

∀n : [(∃m : (∃d : m+ d = n) ∧ φ(m)) ∨ ¬(∃k : (∃e : k + e = n) ∧ φ(k))]

translates into

∃M,D,W : Nat→ Nat ∀n, k, e : Nat
(W (n) = 1 ∧M(n) +D(n) = n ∧ φ(m)) ∨ (W (n) = 0 ∧ ¬(k + e = n ∧ φ(k))),

so the statement translates into

∃N : (Nat→ Nat)→ Nat3 → Nat,M,D,W : (Nat→ Nat)→ Nat→ Nat
∀Z : Nat→ Nat, n, k, e : Nat

[(Z(N(Z, n, k, e)) = 1∧φ(N(Z, n, k, e)))∨(Z(N(Z, n, k, e)) = 0∧¬φ(N(Z, n, k, e)))]
→ [(W (Z, n) = 1 ∧M(Z, n) +D(Z, n) = n ∧ φ(M(Z, n)))

∨ (W (Z, n) = 0 ∧ ¬(k + e = n ∧ φ(k)))].

Here Z is supposed to be characteristic of φ(n), and W characteristic for ∃m : m ≤
n∧φ(m). In the proof ∃m : m ≤ n∧φ(m) was decided by induction. For n = 0 this
was the same as φ(n) and for S(n) it was true if ∃m : m ≤ n∧ φ(m) held for n or if
φ(S(n)) was true. Thus W can be given by the term

W1 = λZNat→Nat.RNat(Z(0), λxNatnNat.x?1 : Z(S(n)),).

M is the witness for ∃m : m ≤ n∧φ(m) (if such exists) and so has to be zero in the
first step of the induction. If there has already been a witness for ∃m : m ≤ n∧φ(m)
then that was used as a witness for ∃m : m ≤ S(n)∧φ(m), and otherwise the witness
would have to be S(n), so M can be given by

M1 = λZNat→Nat.RNat(0, λxNatnNat.W1(n)?x : S(n),).

Similarly D, the difference between M and n becomes

D1 = λZNat→Nat.RNat(0, λxNatnNat.W1(n)?S(x) : 0,).

Finally N needs to come in to make sure that the statement still holds if Z is
not characteristic for φ(n) and the conclusion fails. Then N need to be a witness to
the fact that Z is not characteristic for φ. The conclusion can fail if:

• W1(Z, n) 6∈ {0, 1} so Z(n) 6∈ {0, 1} and Z is not a characteristic function at
all.

15

• W1(Z, n) = 1 so Z(M1(Z, n)) 6= 0 but φ(M1(Z, n)) is false i.e. Z produces a
false positive.

• W1(Z, n) = 0 and k + e = n so k ≤ n and Z(n) = 0 but φ(k) is true. That is
Z produces a false negative.

Thus we can take N to be

N1 = λZNat→Nat, eNatkNat, nNat.Eq(W1(Z, n), 0)?k : (Eq(W1(Z, n), 1)?M1(Z, n) : n).

4.2.2 Lemma 2: Divisors

Here the statement was simply ∀m,n : m|n∨¬m|n i.e. ∀m,n(∃a : ma = n)∨¬(∃b :
mb = n). This translates into

∃Z,A : Nat2 → Nat ∀m,n, b : Nat
(Z(m,n) = 1 ∧mA(m,n) = n) ∨ (Z(m,n) = 0 ∧ ¬mb = n).

Here Z is the characteristic function for m|n and A is the witness i.e. A gives the
quotient of two numbers if it exists. The proof relied on the fact thatmb = n∨¬mb =
n for given values of m, b, n. Then I used Lemma 1 and checked number b up to n.
Thus using W1,M1 from Lemma 1 I get

Z2 = λmNatnNat.W1(λbNat.Eq(mb, n), n),

A2 = λmNatnNat.M1(λbNat.Eq(mb, n), n).

4.2.3 Lemma 3: Prime divisors

The statement of lemma 3 was ∀n : ∃p : ¬n = 1 → Prime(p) ∧ p|n which is the
same as

∀n : ∃p : ¬n = 1→ [∀a : (∃b : ab = p)→ (a = 1 ∨ a = p) ∧ ¬p = 1] ∧ ∃c : pc = n.

The condition of being prime ∀a : (∃b : ab = p)→ (a = 1∨a = p)∧¬p = 1 translates
into

∃Z : Nat2 → Nat ∀a, b : Nat
ab = p→ ((Z(a, b) = 1 ∧ a = 1) ∨ (Z(a, b) = 0 ∧ a = p)) ∧ ¬p = 1,

so the entire statement becomes

∃P,C : Nat→ Nat, Z : Nat3 → Nat ∀a, b, n : Nat ¬n = 1→
[ab = P (n)→ ((Z(a, b, n) = 1 ∧ a = 1) ∨ (Z(a, b, n) = 0 ∧ a = P (n))) ∧ ¬P (n) = 1]

∧ P (n)C(n) = n.

16

Here Z(a, b, n) should be 1 if a = 1 and 0 otherwise.
P (n) should be the function that gives a prime divisor of n. In the proof it was

given by inductively showing that a prime exists for all numbers below a certain
number and then applying n. Thus we want to recursively define a function that
for a given n gives a function that gives a function that for m ≤ n returns a prime
that divides m. We saw that in the first step this could be the constant function 2.
For later numbers if m = S(n) we took p = m if m had no nontrivial divisor and
otherwise we applied the induction hypothesis to the nontrivial divisor whereas if
m 6= S(n) we simply applied the induction hypothesis to m. To get the nontrivial
divisor we used Lemma 1 and 2 so the characteristic function for S(n) having non-
trivial divisors is w(n) = W1(λkNat.Z2(k, S(n))&!Eq(k, 1), n) whereas the divisor is
given by a(n) = M1(λkNat.Z2(k, S(n))&!Eq(k, 1), n). This gives

P3 = RNat→Nat(λmNat.2, λnNatXNat→NatmNat.Eq(m,S(n))?
[w(n)?X(a(n)) : S(n)] : X(m), n)(n).

C(n) is the quotient between the prime divisor and n. This was found in a similar
way in the proof as the prime. But in the base case it is 0. If S(n) was prime it
was 1 and if S(n) was not prime then after we used the induction hypothesis to get
a prime divisor of m|S(n) I needed to multiply the quotient of the prime number
dividing m and the quotient of m and S(n).

C3 = RNat→Nat(λmNat.2, λnNatXNat→NatmNat.Eq(m,S(n))?
[w(n)?(X(a(n))A2(a(n), S(n))) : S(n)] : X(m), n)(n)

4.2.4 Theorem: Infinite primes

The statement of the theorem was

∀n∃p : [∀a : (∃b : ab = p)→ (a = 1 ∨ a = p) ∧ ¬p = 1] ∧ [∃d : n+ d = p].

This translates into

∃Z, P,D : Nat→ Nat ∀a, b, n : Nat
[ab = P (n)→ ((Z(a, b, n) = 1 ∧ a = 1) ∨ (Z(a, b, n) = 0 ∧ a = P (n))) ∧ ¬P (n) = 1]

∧ [n+D(n) = P (n)].

Here Z(a, b, n) should be 1 if a = 1 and 0 otherwise.
P (n) should be the function that gives a prime number larger than n. In the

proof such a prime was found by first finding a number k and then applying Lemma
3 to S(k). k was found by induction on n. It was one in the first step and then
multiplied by S(n) in each step (so k = n!). Thus

P = λnNat.P3(S(RNat(1, λmNatxNat : xS(m), n))).

17

D(n) is the witness of n < P (n). In the proof that inequality was shown by proving
that P (n) was not less than or equal to n. Thus D is simply

D = λnNat.Dif 2(P (n), n).

18

A Appendix: Some basic rules in
HA

These are some useful results for proving things in HA. However the statements
are of the form ∀x : φ(x) where φ does not contain any quantifiers or disjunctions.
Therefore the Dialectica translation does not affect these statements and so there is
no computational content we can extract that way.

A.1 Addition
Associativity: (a+b)+0=a+b=a+(b+0). Assume (a + b) + c = a + (b + c) then
(a+ b) + S(c) = S((a+ b) + c) = S(a+ (b+ c)) = a+ S(b+ c) = a+ (b+ S(c)).

Commutativity: Since 0 + 0 = 0 + 0 and if a + 0 = 0 + a we get S(a) + 0 =
S(a) = S(a+ 0) = S(0 + a) = 0 + S(a). So ∀a : a+ 0 = 0 + a.

Assume ∀a : a+ b = b+ a. Then 0 + S(b) = S(b) + 0 and if a+ S(b) = S(b) + a
we get S(a) + S(b) = S(S(a) + b) = S(b + S(a)) = S(S(b + a)) = S(S(a + b)) =
S(a+ S(b)) = S(S(b) + a) = S(b) + S(a) so ∀a : a+ S(b) = S(b) + a.

Cancellation: a + 0 = b + 0 → a = b. Assume a + c = b + c → a = c then if
a+ S(c) = b+ S(c) I get S(a+ c) = a+ S(c) = b+ S(c) = S(b+ c) so a+ c = b+ c
and a = b. Thus a+ S(c) = b+ S(c)→ a = b.

A.2 Multiplication
Distributivity (a+ b)0 = 0 = 0 + 0 = a0 + b0 so assume (a+ b)c = ac+ bc. Then
(a+ b)S(c) = (a+ b)c+ a+ b = ac+ bc+ a+ b = ac+ a+ bc+ b = aS(c) + bS(c).

Identity We have S(0)0 = 0 and if S(0)a = a we get S(0)S(a) = S(0)a+S(0) =
a+ S(0) = S(a).

Commutativity We have 0 · 0 = 0 · 0. Assume a0 = 0a then S(a)0 = 0 = a0 =
0a = 0a+ 0 = 0S(a). Thus ∀a : a0 = 0a.

Assume ∀a : ab = ba, then aS(b) = ab+a = ba+a = ba+S(0)a = (b+S(0))a =
S(b)a.

Associativity We have (ab)0 = 0 = a0 = a(b0). Assume (ab)c = a(bc), then
(ab)S(c) = (ab)c + ab = a(bc) + ab = a(bc + b) = a(bc + bS(0)) = a(b(c + S(0))) =
a(bS(c)).

19

B Appendix: Haskell implementa-
tions

The code is also available at https://pastebin.com/8dB1JGtW

s : : Int−>Int
s x=x+1

r : : a −> (Int −> a −> a) −> Int −> a
r x f n = i f n==0 then x else (f (n−1) (r x f (n−1)))

−−−−−−−−−EXAMPLE 1−−−−−−−−−
−−Lemma
eq : : Int−>Int−>Bool
eq a b = r (r True (\n x−>False)) (\n x −> r False (\m y−> x m)) a b

−−Propos i t i on
l e q : : Int−>Int−>Bool
l e q n m=r True (\k x −>x && (not (eq k m))) n

d i f : : Int−>Int−>Int
d i f n m = r m (\k x−>(s k)) n

d i f 2 : : Int−>Int−>Int
d i f 2 n m = r 0 (\k x −> i f (eq m k)
then 1
else (i f (eq x 0) then 0 else (s x))) n

−−−−−−−−−EXAMPLE 2−−−−−−−−−
−−Lemma 1
−−W1
boundedZ : : (Int−>Bool)−>Int−>Bool
boundedZ f n = r (f 0) (\n x−> i f x then True else f (s n)) n

−−M1
boundedX : : (Int−>Bool)−>Int−>Int
boundedX f n = r 0 (\n x−> i f (boundedZ f n) then x else (s n)) n

−−D1

20

boundedD : : (Int−>Bool)−>Int−>Int
boundedD f n = r 0 (\n x−> i f (boundedZ f n) then (s x) else 0) n

−−Lemma 2
−−Z2
d i v i d e s : : Int−>Int−>Bool
d i v i d e s a b= boundedZ (\d −> a∗d==b) b

−−A2
quot i ent : : Int−>Int−>Int
quot i ent a b= boundedX (\d −> a∗d==b) b

−−Lemma 3
−−P3
pr imed iv i s o r : : Int−>Int
pr imed iv i s o r n = (r (\m−> 2) (\n x m−> i f m==s n
then (i f (boundedZ (\k−> (d i v i d e s k (s n)) && (not (k==1))) n)

then x (boundedX (\k−> (d i v i d e s k (s n)) && (not (k==1))) n)
else s n)

else (x m))) n n

−−C3
s e c ondd i v i s o r : : Int−>Int
s e c ondd i v i s o r n = (r (\m−> 2) (\n x m−> i f m==s n
then (i f (boundedZ (\k−> (d i v i d e s k (s n)) && (not (k==1))) n)

then ((\m−> (x m)∗ (quot i ent m (s n)))
(boundedX (\k−> (d i v i d e s k (s n)) && (not (k==1))) n))

else 1)
else (x m))) n n

−−Theorem
l a r ge rp r ime : : Int−>Int
l a r ge rp r ime n=pr imed iv i s o r (s (r 1 (\m x−> x∗(s m)) n))

21

References
[AF95] J. Avigad, S.Feferman Gödel’s Functional (“Dialectica”) Translation. Else-

vier Science B.V, 1995.

[SU06] H. Sørenson, P.Urzyczyn Lectures on the Curry-Howard isomorphism. Else-
vier Science B.V, 2006.

[G94] K. Gödel On an extension of finitary methods which has not yet been used
In: Collected Works, vol. III, Oxford University Press, 1994. Solomon Feferman
et al.eds. pp. 271–280

22

