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Abstract

Latin squares are n × n arrays where the elements in each row and column
do not repeat; mutually orthogonal Latin squares (MOLS) are sets of Latin
squares such that, when their elements are superimposed on top of each other,
all element combinations are unique. This thesis explains the relationship
between MOLS and finite projective plane geometry by detailing how one
might construct a finite projective plane from a finite field as well as how
a finite projective plane may be used to construct a set of MOLS and vice-
versa. With the link between MOLS and finite geometries established, some
examples of proofs showing the non-existence of a finite projective plane of
certain orders are discussed.
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1
Introduction

A Latin square is an n × n array whose entries consist of a set of n numbers, which
are arranged in such a way that each number appears exactly once in each row
and each column. Readers may be familiar with the relatively modern number-
placement puzzle Sudoku, which provides some easy-to-understand examples of
Latin squares—each solution to a Sudoku puzzle is a Latin square.

1 2 3
2 3 1
3 1 2

Figure 1: An example of a Latin square of order 3.

More formally, we may define a Latin square as follows:

Definition 1.1. A Latin square L ∈ Mn(Z) of order n is an n × n array such that
Li,j ∈ {1, . . . , n} for all i, j and such that each of the numbers 1, . . . , n appear exactly
once in each row and column of L.

Note that while we may wish to represent the numbers in a Latin square with various
symbols (such as letters, which has been done traditionally), for the purposes of the
paper, the entries in a Latin square are defined as numbers.

An orthogonal pair of Latin squares, meanwhile, is a pair of Latin squares such that
when they are superimposed, each element of each square occurs only once with the
other. Formally, they are defined as such:

Definition 1.2. Let L1 = (ai,j) and L2 = (bi,j) be two n × n Latin squares where
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each ai,j, bi,j ∈ 1, 2, 3, ..., n. If the n2 ordered pairs (ai,j, bi,j) are distinct, then L1

and L2 are a pair of orthogonal Latin squares.

It is often convenient to speak in terms of mutually orthogonal Latin squares, and
so they will henceforth be referred to as MOLS.

While a seemingly simplistic combinatorial design, the search for MOLS of certain
orders has proven difficult, and solutions have been linked to areas of mathematics
as unexpected as finite geometry.

(1, 1) (2, 2) (3, 3)
(2, 3) (3, 1) (1, 2)
(3, 2) (1, 3) (2, 1)

Figure 2: An example of an orthogonal pair of Latin squares of order 3, superim-
posed.

1.1 History

In ancient times, constructions which were equivalent to Latin squares were thought
to have magical qualities. However, they were not defined with mathematical termi-
nology until Leonhard Euler started investigating their properties in the late 18th
century.

In the famous problem of the 36 officers, Euler asks the following question: given a
collection of 36 officers, of 6 different ranks and 6 different regiments, is it possible
for the officers to line up in such a way that in each line (horizontal and vertical)
there are six officers of both different ranks and regiments? In modern terminology,
we would say that Euler was attempting to find a pair of orthogonal Latin squares
of order 6.

In his attempts to find a solution, Euler chose to denote the regiments with the
Latin letters a, b, c, d, e, f and the ranks with the Greek letters α, β, γ, δ, ε, ζ.
Indeed, the name Latin square stems from Euler’s decision to have the elements of
the square be represented by Latin letters, and the name Graeco-Latin square is
used interchangeably with a superimposed pair of orthogonal Latin squares.
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(a, α) (b, β) (c, γ) (d, δ)
(b, δ) (a, γ) (d, β) (c, α)
(c, β) (d, α) (a, δ) (b, γ)
(d, γ) (c, δ) (b, α) (a, β)

Figure 3: A Graeco-Latin square of order 4.

Euler was not able to find a Graeco-Latin square of order 6, and suggested that the
problem of the 36 officers may have no solutions, but was unable to prove it. Yet he
continued to study Latin squares, and came to define another key concept: that of
a transversal.

Definition 1.3. Let L = (ai,j) be a Latin square of order n. A transversal of L is a
choice of pairs (i1, j1), . . . , (in, jn) ∈ {1, . . . , n} × {1, . . . , n} such that {i1, . . . , in} =
{j1, . . . , jn} = {ai1,j1 , . . . , ain,jn} = {1, . . . , n}.

Informally, one can think of a transversal as a set of n distinct entries occurring in
distinct rows and columns in a Latin square of order n.

Euler noted that, for a Latin square of order n to have an orthogonal mate, it must
have n mutually disjoint transversals. He then chose to study transversals of cyclic
Latin squares: that is, Latin squares where each successive row contains elements
equivalent to those of the previous row but shifted one step to the left. More formally,
they may be defined as follows:

Definition 1.4. A cyclic Latin square of order n is a Latin square L = (ai,j) such
that its entries are determined according to ai+1,j = ai,j+1 = ai,j + 1 mod n.

Euler proposed and proved the following:

Theorem 1.5. Let L be a cyclic Latin square of order n. For even n, L lacks a
transversal.

Proof. Reenumerating rows and columns, we may assume that the entries of the
first column of L are 1, 2, . . . , n (that is, that Li,1 = i for all i). Since L is cyclic,
this implies that Li,j = i + j − 1 mod n for all i and j. Now assume that

(1, j1), (2, j2), . . . , (n, jn)
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is a transversal of L. Then, we find that

(n + 1)n
2 = 1 + 2 + . . . + n

= L1,j1 + L2,j2 + . . . + Ln,jn

= (1 + j1 − 1) + (2 + j2 − 1) + . . . + (n + jn − 1)
= (j1 + j2 + . . . + jn) + (0 + 1 + . . . + n − 1)

= (1 + . . . + n) + (1 + . . . + n − 1)

= (n + 1)n
2 + (n − 1)n

2 mod n.

Hence it follows that (n−1)n
2 ≡ 0 mod n, which means that L can not have even

order (that is, it has odd order).

We now know that cyclic Latin squares of even order do not have orthogonal mates.
For odd n, conversely, the main diagonal is a transversal, and so one can find a set of
n disjoint transversals. Therefore, cyclic Latin squares of odd order have orthogonal
mates (and, more generally, so do Latin squares of odd orders).

In his paper, Euler proceeded to investigate transversals of cyclic Latin squares of
orders 2, 3, and 4. During his investigation of these transversals, he proved that
there are orthogonal Latin squares of all sidesn divisible by 4. This proof led Euler
to his now-famous conjecture on orthogonal Latin squares:

Conjecture 1.6. If n ≡ 2 mod 4, then there are no MOLS of order n.

He knew this was the case for n = 2, but could not prove it in the general case. It was
not until the year 1901 that Tarry was able to prove the conjecture held for n = 6 by
examining squares relatively case-by-case (thereby also proving Euler’s 36 officers
indeed had no solution, as he had suspected). However, it would later be shown
that Graeco-Latin squares of order 10, 14, 18, . . . and so on exist. Euler’s conjecture,
though long accepted as a reasonable theory, would turn out to be incorrect.
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2
Finite planes and finite fields

We now aim to turn our attention to a field of mathematics which would come to
be of great importance to the search for orthogonal Latin squares: finite projective
planes. Before delving into these, let us briefly recall the definition of an affine plane.
Affine planes are a system of points and lines that satisfy the following axioms:

• Any two distinct points lie on a unique line,
• Lines have at least two points,
• Given a line and a point not on said line, there is a unique, separate line that

contains the given point and is parallel to (never meeting) the given line,
• There exist three points not on any single line at once.

The familiar-to-most Euclidean plane, with lines given as solution sets to linear
equations, is merely one example of an affine plane.

Now let us study the related concept of projective plane geometry. The axioms for
projective plane geometry are defined as such:

• Any two distinct points lie on a unique line,
• Any two distinct lines have in common exactly one point,
• Every line contains at least three points,
• There are at least two lines.

As lines must intersect in one point, these axioms tell us that parallel lines do not
exist in projective plane geometry, a contrast to (for instance) Euclidean geometry.
Nevertheless, an affine plane can be constructed from a projective plane by removing
a line and its contained points, and a projective plane can be constructed from an
affine plane by adding a line at infinity, as we shall see later.
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2.1 Finite projective plane geometry

Let us examine the mathematical field of finite projective plane geometry: in other
words, projective plane geometries with a finite number of points. The figure below
is an example of a finite projective plane geometry:

1

2

3

4

56

7

Figure 4: A finite projective plane with seven points, also known as a Fano plane.

We may wish to briefly ensure that the axioms are satisfied. We can trivially see
that any two lines we choose will share just one point in common. It is further
possible to intuit that any two points we choose will lie on a unique line: with the
exception of the line that draws a circle, each line in the figure can be thought of
as having two extreme points and a third point in-between. Hence if we choose the
two extremes as our points, then our distinct line is completed by the in-between
point; if we choose an extreme and an in-between point, then it is completed by
the remaining extreme. If we select any two of the points (2, 4, 6), then we have
instead chosen the line which draws a circle enclosed in the triangle. It is further
clear that each line in the Fano plane contains exactly three points—the minimum
amount required to satisfy the third axiom. There are seven lines in total, and so
we can conclude all axioms hold.

Incidence matrices provide an alternative way to represent a finite projective plane.

Definition 2.1. An incidence matrix is a matrix whose entries lie in {0, 1}.

An incidence matrix is typically used to show a relation between two classes of
objects—in this case, points and lines. We may represent the above finite projective
plane with a 7 × 7 incidence matrix as follows:
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Line \ Point 1 2 3 4 5 6 7
(1, 2, 3) 1 1 1 0 0 0 0
(3, 4, 5) 0 0 1 1 1 0 0
(1, 5, 6) 1 0 0 0 1 1 0
(1, 4, 7) 1 0 0 1 0 0 1
(3, 6, 7) 0 0 1 0 0 1 1
(2, 5, 7) 0 1 0 0 1 0 1
(2, 4, 6) 0 1 0 1 0 1 0

If a line contains a certain point, we enter a 1 in the corresponding row and column;
otherwise, we enter a 0. As has been mentioned previously, each line contains three
points, but we can also note from the incidence matrix that each point appears on
exactly three lines. These observations lead us to the following theorem:

Theorem 2.2. For every finite projective plane P, there is a positive integer n
(known as the order of P) such that each line of P contains exactly n + 1 points
and each point of P is contained in exactly n + 1 lines. Furthermore, P has exactly
n2 + n + 1 points and exactly n2 + n + 1 lines.

In this instance, we have a seven-point projective plane of order 2: each line contains
2 + 1 points and is contained in 2 + 1 lines, and there are exactly 22 + 2 + 1 points
and exactly 22 + 2 + 1 lines.

A method to prove whether a finite projective plane for an arbitrary order n exists
has not yet been found. However, in 1906, Veblen and Bussey proved that there
exists a projective plane of order n if n is a power of a prime number. It follows
that there are infinitely many n which are orders of finite projective planes. One
known n for which there is no order of a finite projective plane, however, is n = 6,
a fact which followed from Tarry’s laborious 1901 proof that there are no pairs of
orthogonal Latin squares of order 6; another example of such an order is n = 10.
These proofs are touched upon in section 4.
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2.2 Finite fields

How do we go about constructing finite projective planes? To do this, we must first
consider fields. We will explain them through the related concept of rings:

Definition 2.3. A set of elements R is said to form a ring when there exist two
binary operators +, for addition, and ·, for multiplication, such that the following
axioms are satisfied for all a, b, c ∈ R:

• Associativity of addition and multiplication: a + (b + c) = (a + b) + c

and a · (b · c) = (a · b) · c.
• Commutativity of addition: a + b = b + a.
• Distributivity of multiplication over addition: a · (b+c) = (a ·b)+(a ·c).
• Existence of an additive identity: there exists an element 0 in R such that

a + 0 = a.
• Existence of an additive inverse: for every a in R, there exists an element

−a such that a + (−a) = 0.

A field, then, is defined as such:

Definition 2.4. A ring F is said to form a field when it satisfies the following
additional axioms for all a, b ∈ R:

• Commutativity of multiplication: a · b = b · a.
• Existence of a multiplicative identity: there exists an element 1 in F such

that a · 1 = a.
• Existence of a multiplicative inverse: for every a ̸= 0 in F, there exists

an element 1
a

∈ F such that a · 1
a

= 1.

It is easy to see that these rules are upheld by the infinite set of elements containing
all rational numbers or the infinite set of elements containing all real numbers, hence
they provide examples of fields.

More relevant to the topic of finite projective planes are finite fields, also known as
Galois fields, which are defined as fields containing only a finite number of elements.
A classic example of a finite field is the field provided by the numbers which are
remnants modulo p, where p is a positive prime integer, that is 0, 1, 2, . . . , (p − 1).
For this field, addition and multiplication are defined as in modular arithmetic.
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For instance, if p = 5, we have the elements {0, 1, 2, 3, 4}. It is quite trivial to
note that associativity, commutativity, and distributivity hold, and the existence of
an additive and multiplicative identity is equally obvious. For our inverses, we have
(all modulo 5):

1 + 4 ≡ 0, 2 + 3 ≡ 0;
1 · 1 ≡ 1, 2 · 3 = 6 ≡ 1, 4 · 4 = 16 ≡ 0.

Hence the set of elements {0, 1, 2, 3, 4} with addition and multiplication mod 5 is a
finite field.

Let us examine a method by which one may construct finite fields of orders which
are prime powers, rather than merely primes (and, indeed, all finite fields are of
prime power order):

Theorem 2.5. a) Taking all polynomials of degree lesser than deg s(x), where s(x)
belongs to the ring F, the operations of polynomial addition and polynomial multi-
plication modulo s(x) defines a commutative ring with multiplicative identity, which
is denoted by F [x]/(s(x)).

b) If s(x) is not a product of two polynomials of positive degree (i.e. it is irreducible
in F[x]), then F [x]/(s(x)) has multiplicative inverses and is hence a field.

c) If |F | = q, then |F [x]/(s(x))| = qdeg(s(x)).

For instance, we may choose the polynomial s(x) = x2 + x + 1 belonging to the ring
Z2[x] and use it to construct a field of order 4 (that is, |Z2|deg(x2+x+1)). We know
s(x) = x2 + x + 1 is irreducible as s(0) = 1, s(1) = 1, and s(2) = 1 (modulo 2).
The elements of the field are then [0], [1], [x], [x + 1]. Now we have the following
multiplicative inverses modulo x2 + x + 1:

1 · 1 ≡ 1, x · (x + 1) = x2 + x ≡ 1.

And so we see Z2[x]/(x2 + x + 1) is a finite field.
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2.3 Constructing finite projective planes from finite
fields

Henceforth Fn will refer to a field of order n. Given a finite field Fn, we may now
use it to construct a projective plane:

Theorem 2.6. a) Consider F 2
n as a set of points with the solution sets to ax + by

+ c = 0 in Fn, (a, b, c) ̸= (0, 0, 0), as lines.

b) Add points parameterized by the slopes of the lines, that is, −a
b

(b ̸= 0), and add
one more for when b = 0. Extend these lines to contain their point at infinity.

c) Add a line at infinity connecting all (n + 1) points at infinity.

Then this defines a projective plane.

Let us consider an example. We may represent the set of points associated with the
finite field F3 as follows:

0 1 2
0

1

2

According to the above theorem, we see that, for instance, {(0, 1), (1, 0), (2, 2)} is
a line in the projective plane, because its equation is x + y + 2, and:

0 + 1 + 2 = 3 ≡ 0 mod 3,

1 + 0 + 2 = 3 ≡ 0 mod 3,

2 + 2 + 2 = 6 ≡ 0 mod 3,

and so the points on the line are a solution set to the equation described by ax +
by + c = 0 in F3.

Intuitively, we can think of the line from (0, 1) to (1, 0) as wrapping around to its
third point (2, 2) due to the properties of modulo arithmetic, as the "expected" point
(2, -1) is equivalent to (2, 2) in F 2

3 . Conversely, {(0, 1), (1, 0), (1, 2)} would not be
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a line in the plane, because through every pair of points there is a unique line, and
we already have the line {(0, 1), (1, 0), (2, 2)}.

Continuing in this manner, we will find n2 + n of the n2 + n + 1 lines in the desired
finite projective plane of order n. We have now constructed an affine plane. To
produce the projective plane, we must add the aforementioned points at infinity and
line at infinity: the addition of the line at infinity fulfills the axiom for a projective
plane stating that "any two distinct lines have in common exactly one point", which
would otherwise not hold true.

Note that parallel lines share the same points at infinity, and so there are only (n +
1) points at infinity to add. For instance, in the above coordinate system, the lines
containing the points {(0, 0), (0, 1), (0, 2)}, {(1, 0), (1, 1), (1, 2)}, {(2, 0), (2, 1),
(2, 2)} are all parallel and share a point at infinity, because they are all vertical and
so have the same slope.
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3
Connecting finite geometries to
orthogonal Latin squares

Let us recall that each finite projective plane has an order n. We will now show that
the existence of such a finite projective plane is directly equivalent to the existence
of n − 1 MOLS.

3.1 From a finite projective plane to a set of MOLS

Given any prime number p and a positive integer m, the corresponding finite field
allows us to construct a projective plane with order n = pm, as well as its corre-
sponding n-sided n − 1 MOLS. The construction is done as follows:

Take any of the n2+n+1 lines in the plane and call it the line at infinity (l). Through
each of the n + 1 points on (l), exactly n lines pass through. Other than (l) itself,
these n(n + 1) lines make up, together with (l), the total amount of n2 + n + 1 lines
in the finite plane. Now choose any two points X and Y on (l). The intersections
of the n lines passing through X and the n lines passing through Y yield n2 points
(which, together with the n + 1 points on (l), make up the total n2 + n + 1 points).
Let us call the n2 points not on the line at infinity finite points, and let us call the
n2 + n lines other than the line at infinity finite lines.

Now let U1, U2, . . . , Un−1 be the points other than X and Y on (l). The set of fi-
nite lines passing through the points on (l) may be denoted (X), (Y), (Ui) (i =
1, 2, . . . , n − 1). For the n lines in (X) and (Y), we may attach the numbers
1, 2, . . . , n—one for each line. Now let us consider a finite point P. Let x be the
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number of a line of (X) passing through P and let y be the number of a line of (Y)
passing through P. Then (x, y) are the coordinates of P. There are only n2 ordered
pairs (x, y) corresponding to the n2 finite points. If we think of the x-coordinates as
row numbers and the y-coordinates as the column numbers, then the finite points
correspond to the n2 elements in an n-sided square.

Let us consider the finite lines passing through (U1). As before, we may attach
the numbers 1, 2, . . . , n to these. Through every finite point, one and only one line
of (U1) passes through. Let ℓu1

k be a line of (U1) passing through (x, y) with k as
its assigned number. For each coordinate (x, y) in our n-sided square, we put the
corresponding element k. This gives us a Latin square, because each row of the
square corresponds to a line of (X), each column of the square corresponds to a line
of (Y), and, further, through the n finite points of each of these lines there pass n
different lines of (U1). We may call the unique Latin square associated with (U1)
[L1], and we may construct further Latin squares [L2], [L3], . . ., [L(n−1)] associated
with the lines (U2), (U3), . . ., (U(n−1)).

Theorem 3.1. The n − 1 Latin squares constructed above are mutually orthogonal.

Proof. Let ℓui
k denote a line of Ui with k = 1, 2, . . . , n as the element of the n × n

Latin square [Li] in row x and column y. This line intersects with the n different
lines of (Uj), i ̸= j, in the n finite points on it. Hence a given element of [Li] occurs
only once with every element of [Lj]. Further, these elements are not the same,
for in a finite projective plane, two lines have in common exactly one point. The
element pair (a, b) appears in [Li] and [Lj] respectively only if line a from (U1) and
line b from (U2) intersect—but there is at most one such intersection point, and so
each element pair may appear only once.

By superimposing the n − 1 MOLS obtained, we may create a Hyper-Graeco-Latin
square (or, for n = 3, a Graeco-Latin square).
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3.2 Constructing a set of MOLS from a finite projec-
tive plane

Let us consider an example for the case where n = 3; that is, let us construct a
Graeco-Latin square from the finite projective plane of order 3.

7

4

1

8

5

2

9

6

3

10

11

12

13

Figure 5: The finite projective plane of order 3.

We may select any line as our line at infinity (l), so let us choose {10, 11, 12, 13}.
We must now select two points X and Y on the line. Let us choose point 10 for X
and point 11 for Y. We see that the set of finite points is {1, 2, 3, 4, 5, 6, 7, 8, 9},
and the set of finite lines is

{{1, 6, 8, 10}, {2, 4, 9, 10}, {3, 5, 7, 10},

{1, 2, 3, 11}, {4, 5, 6, 11}, {7, 8, 9, 11},

{1, 5, 9, 12}, {2, 6, 7, 12}, {3, 4, 8, 12},

{1, 4, 7, 13}, {2, 5, 8, 13}, {3, 6, 9, 13}}.

Now U1, U2, . . . , U(n−1) are the points other than X and Y on (l); that is, 12 and 13.
Let us choose point 12 for U1 and point 13 for U2. The finite lines passing through
X, denoted (X), are ℓx

1 = {1, 6, 8, 10}, ℓx
2 = {2, 4, 9, 10}, ℓx

3 = {3, 5, 7, 10}; the
finite lines passing through Y, denoted (Y), are ℓy

1= {1, 2, 3, 11}, ℓy
2 = {4, 5, 6, 11},
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ℓy
3 = {7, 8, 9, 11}; the finite lines passing through U1, denoted (U1), are ℓu1

1 = {1, 5,
9, 12}, ℓu1

2 = {2, 6, 7, 12}, ℓu1
3 = {3, 4, 8, 12}; and the finite lines passing through

U2, denoted (U2), are ℓu2
1 = {1, 4, 7, 13}, ℓu2

2 = {2, 5, 8, 13}, ℓu2
3 = {3, 6, 9, 13}.

Recall that for a finite point P, its coordinate (x, y) is defined by letting x be the
number of a line of (X) passing through P and letting y be the number of a line of
(Y) passing through P. We see that our finite points have the following coordinates:
(1, 1) for 1, (2, 1) for 2, (3, 1) for 3, (2, 2) for 4, (3, 2) for 5, (1, 2) for 6, (3, 3) for
7, (1, 3) for 8, and (2, 3) for 9.

If ℓu1
k is the line in the set (U1) passing through a coordinate (x, y), we insert the

element k in row x, column y. For instance, the line ℓu1
1 passes through point 1, and

so we insert the element 1 at coordinate (1, 1). Continuing in this manner with all
32 coordinates (x, y), we obtain the Latin square [L1]:

1 2 3
2 3 1
3 1 2

Figure 6: The Latin square associated with (U1), denoted [L1].

The Latin square [L2], which is associated with the set of lines (U2), is constructed
equivalently, but now we instead look at the lines of (U2) passing through each
coordinate:

1 2 3
3 1 2
2 3 1

Figure 7: The Latin square associated with (U2), denoted [L2].

By superimposing the elements of these Latin squares onto each other, we obtain
the desired Graeco-Latin square of order 3:
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(1, 1) (2, 2) (3, 3)
(2, 3) (3, 1) (1, 2)
(3, 2) (1, 3) (2, 1)

Figure 8: A Graeco-Latin square of order 3. Compare Figure 2.

3.3 From a set of MOLS to a finite projective plane

Let us now assume we have the n − 1 Latin squares L1, L2, . . . , Ln−1 which are
mutually orthogonal. From these Latin squares, we may construct a finite projective
plane of order n.

The set of points in the finite projective plane will be P = {x, y, 1, . . . , n−1} ∪ n×n,
where n × n is the Cartesian product of the set {1, . . . , n} with itself and where x,
y are formal symbols. The lines L of the plane will be

l∞ = {x, y, 1, . . . , n − 1},

lx,i = {x, (i, 1), ..., (i, n)} for i ∈ {1, . . . , n},

ly,j = {y, (1, j), ..., (n, j)} for j ∈ {1, . . . , n},

lk,b = {k} ∪ {(i, j), ∈ n × n | (Lk)ij = b} for k ∈ {1, . . . , n − 1}, b ∈ {1, . . . , n}.

Then (P, L) is a finite projective plane. Note that we have n2 + n + 1 points and
n(n − 1) + 2n + 1 = n2 + n + 1 lines, and so we would be constructing a finite
projective plane of order n, in accordance with Theorem 2.2.

Proof. It is trivial to see that every line contains at least three points and that there
is more than one line, fulfilling two of the axioms for a projective plane. To prove
that the axiom stating that every pair of points lies on a unique line is also fulfilled,
consider the following:

If one of the points is x or y, it is clear from the above construction of the lines
in the plane that, given a second point, the pair of points will lie on a unique line.
If the pair of points are from {1, . . . , n − 1} ⊆ P , it is also clear they lie on a
unique line. In the case where k ∈ {1, . . . , n − 1} and (i, j) ∈ n × n, the entry
(Lk)ij = b ∈ {1, . . . , n} is uniquely determined by the choice of the Latin square Lk
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and its entry (i, j). Hence k and (i, j) lie on the line lk,b, and this is the unique line
in the plane containing these two points.

It remains to prove that the last remaining axiom, stating that any two lines have
in common exactly one point, is fulfilled. If one of the lines is l∞, this is obvious.
For all other cases, let us consider the intersections

lx,i ∩ lk,b

ly,j ∩ lk,b

lk,b ∩ lk′,b′ .

For b, i ∈ {1, . . . , n} and k ∈ {1, . . . , n − 1}, there is only one entry labeled b in
the i-th row of Lk. This tells us that | lx,i ∩ lk,b | = 1; that is, lx,i and lk,b share in
common only one point. Similarly, | ly,j ∩ lk,b | = 1 for all j, b ∈ {1, . . . , n} and all
k ∈ {1, . . . , n − 1}, because there is only one entry labeled b in the j-th column of
Lk.

Let us consider the intersection lk,b ∩ lk′,b′ for b, b′ ∈ {1, . . . , n} and k, k′ ∈ {1, . . . , n−
1} such that (k, b) ̸= (k′, b′). Assume that k = k′. Then we know that b ̸= b′, and we
have lk,b ∩ lk,b′ = {k}, since (i, j) ∈ lk,b ∩ lk,b′ implies that b = (Lk)i,j and b′ = (Lk)i,j,
which is a contradiction.

Now assume that k ̸= k′. Since Lk and Lk′ are orthogonal Latin squares, there
is only one entry (i, j) such that ((Lki,j), (Lk′ i,j)) = (b, b′). Thus, we have that
lk,b ∩ lk′,b′ = {(i, j)}, verifying the final axiom of a finite projective plane.

3.4 Constructing a finite projective plane from a set
of MOLS

Let us construct a finite projective plane from the two earlier 3 × 3 MOLS [L1] and
[L2], as seen in section 3.2. We have the set of points P = {x, y, 1, 2} ∪ 3 × 3, where
3 × 3 symbolizes the set {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}.
This gives us n2 + n + 1 = 13 points in P, as expected. Now, in accordance with the
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construction above, the set of lines L in the plane are

l∞ = {x, y, 1, 2},

lx,1 = {x, (1, 1), (1, 2), (1, 3)}, lx,2 = {x, (2, 1), (2, 2), (2, 3)}, lx,3 = {x, (3, 1), (3, 2), (3, 3)},

ly,1 = {y, (1, 1), (2, 1), (3, 1)}, ly,2 = {y, (1, 2), (2, 2), (3, 2)}, ly,3 = {y, (1, 3), (2, 3), (3, 3)},

l1,1 = {1, (1, 1), (2, 3), (3, 2)}, l1,2 = {1, (1, 2), (2, 1), (3, 3)}, l1,3 = {1, (1, 3), (2, 2), (3, 1)},

l2,1 = {2, (1, 1), (2, 2), (3, 3)}, l2,2 = {1, (1, 2), (2, 3), (3, 1)}, l2,3 = {1, (1, 3), (2, 1), (3, 2)}.

We can easily verify that there are n2 + n + 1 = 13 lines, that each line contains
n + 1 = 4 points, and that each point is contained in n + 1 = 4 lines. (P, L) is our
desired finite projective plane.

Referring back to Figure 5, we see that the points {10, 11, 12, 13} correspond to
the points {1, y, 2, x}, respectively, in (P, L) (these points represent the lines at
infinity); 1 corresponds to (1, 1), 2 corresponds to (2, 1), 3 corresponds to (3, 1), 4
corresponds to (1, 2), 5 corresponds to (2, 2), 6 corresponds to (3, 2), 7 corresponds
to (1, 3), 8 corresponds to (2, 3), and, finally, 9 corresponds to (3, 3). Note here how
the lines lx,1, lx,2, and lx,3 correspond to the "vertical" lines in the original figure,
which connect to the point at infinity drawn at the bottom (labeled 13), whereas the
lines ly,1, ly,2, and ly,3 correspond to the "horizontal" lines connecting to the point at
infinity directly to the right of points 1 through 9 in the original figure (labeled 11).
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4
Proving the nonexistence of some
finite projective planes

The search for orthogonal Latin squares is equally concerned with proving the nonex-
istence of certain orthogonal Latin squares. In this section, we will examine some
such proofs.

4.1 The Bruck-Ryser theorem

In 1948, Bruck and Ryser published a paper stating the following:

Theorem 4.1. If n ≡ 1 mod 4 or n ≡ 2 mod 4, then a necessary condition for
the existence of a finite projective plane of order n is that there exist integers x and
y such that n = x2 + y2.

Since from a complete set of MOLS of order n we can construct a finite projective
plane of the same order, the above theorem tells us that we will not find a complete
set for any such n. (However, it may still be possible to find an incomplete set of
MOLS for the given order.)

To sketch a proof of the theorem, let us recall that finite projective planes may be
represented by an incidence matrix, where we enter a 1 in the corresponding row
and column if a line contains a certain point and enter a 0 otherwise.

Theorem 4.2. Given a finite projective plane geometry P with n + 1 points on
a line, there exists an incidence matrix A of order n2 + n + 1. If AT denotes the
transpose of the matrix A, then A · AT = AT · A is a matrix with n + 1 down the
main diagonal and ones elsewhere.
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Proof. Let the n2 + n + 1 points of P be ordered 1, 2, . . . , n2 + n + 1 and listed in a
row. Let the lines be equivalently ordered and listed in a column. Now let a table of
size (n2 + n + 1)2 be formed by inserting a 1 in position (i, j) if line i contains point
j and a 0 otherwise. It follows that the table yields an incidence matrix A which
satisfies A · AT = AT · A.

We may wish to consider an example to illustrate the above. Recall the incidence
matrix associated with the Fano plane, here referred to as A. Indeed, we see the
theorem holds, as

A =




1 1 1 0 0 0 0
0 0 1 1 1 0 0
1 0 0 0 1 1 0
1 0 0 1 0 0 1
0 0 1 0 0 1 1
0 1 0 0 1 0 1
0 1 0 1 0 1 0




, AT =




1 0 1 1 0 0 0
1 0 0 0 0 1 1
1 1 0 0 1 0 0
0 1 0 1 0 0 1
0 1 1 0 0 1 0
0 0 1 0 1 0 1
0 0 0 1 1 1 0




,

and therefore (with n + 1 = 3):

A · AT = AT · A =




3 1 1 1 1 1 1
1 3 1 1 1 1 1
1 1 3 1 1 1 1
1 1 1 3 1 1 1
1 1 1 1 3 1 1
1 1 1 1 1 3 1
1 1 1 1 1 1 3




.

Given such an incidence matrix, we may also use it to arrive at its corresponding
projective plane:

Theorem 4.3. If a matrix A with non-negative integer elements of order n2 + n + 1, n ≥ 2,
satisfies A · AT = AT · A, which is constant along the diagonal and has ones else-
where, then A is an incidence matrix that defines a projective plane geometry with
n + 1 points on a line.
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Proof. A must be composed entirely of ones and zeroes; if an element of A, ai,j,
were to be greater than 1, then given A · AT = AT · A, all elements in column j of
A except ai,j would be zero and all elements in row i of A except ai,j would also be
zero. This would mean A · AT contains an element zero, which is impossible since
A · AT = AT · A. From the conditions given in the theorem, it follows that A is an
incidence matrix which can be used to define a finite projective plane.

We now outline the strategy of Bruck-Ryser. Let us first briefly recall the definition
of matrix congruence.

Definition 4.4. If A and B are symmetric matrices of order n with elements in R,
then A and B are congruent (written A ∼ B) if there exists a non-singular matrix
C with elements in R such that A = CT BC.

Suppose that A is a symmetric matrix with elements in N of order and rank n.
Then we can construct a diagonal matrix D = [d1, d2, . . . , dn] where di ̸= 0 for
i = 1, 2, . . . , n such that D ∼ A. The number of negative terms ι in the diagonal
is called the index of A, and it is an invariant of A according to Sylvester’s law of
inertia.

Let d = (−1)ιδ, where δ is the determinant |A| of A with the square factors removed.
From B = CT AC, it follows that |B| = |C|2|A|, and so d is the second invariant of
A.

Now let us consider the third invariant cp, which completes the system alongside ι

and d. The Hilbert norm-residue symbol (m, n)p is defined for every prime p and
arbitrary m and n, m, n ̸= 0, m, n ∈ Z. While it is outside the scope of this paper,
it is provable that cp = −1 for only a finite number of p, and is defined for every
odd prime p by the equation

cp = cp(A) = (−1, −Dn)p

n−1∏

i=1
(Di′ , −Di+1)p. (1)

Let us now state, without proof, another theorem: the Minkowski-Hasse theorem.

Theorem 4.5. Let A and B be two symmetric matrices of order and rank n with
integer elements. Suppose the principal minor determinants of A and B are not zero.

25



Then A ∼ B iff A and B have the same invariants ι, d, and cp for every odd prime
p.

With this information, we may proceed to sketch the proof for the Bruck-Ryser
theorem.

Proof. Let N be a positive integer and let Bn be a matrix of order n with N + 1
down the main diagonal and with ones in all other positions. By subtracting the
first column of Bn from all other columns and adding the first row to all other rows,
we get

|Bn| = Nn−1(N + n). (2)

Note that if n = N2 + N + 1, then Bn is equivalent to the matrix referred to as
A · AT in Theorem 4.3 and its determinant is the square of an integer.

If instead row n of Bn is subtracted from all other rows and column n is subtracted
from all other columns, we receive a matrix Qn with 2N down the main diagonal
save for in position (n, n), where we have N + 1. Further, all other elements in the
matrix are N save for the elements in row and column n, which are −N .

The matrix Qn is congruent to Bn, and so for every odd prime p, we have that
cp(Bn) = cp(Qn). If Ei denotes the determinant of order i with 2N down the main
diagonal and N in all other positions, then Ei = N i(i + 1).

If n = N2 + N + 1 and if p is an odd prime, then the invariant cp(B) = cp(Qn) of
the matrix B is given by

cp(B) = (En−1, −1)p

n−2∏

i=1
(Ei, −Ei+1)p.

We state now, without proof, that

cp(B) = (−1, N)
N(N+1)

2
p .

Now let π be a finite projective plane with N + 1 points on a line. Then according
to Theorem 4.2, the matrix B is congruent to the identity matrix I. Given that
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cp(I) = +1 for every odd prime p, it follows that if π exists, then for all odd primes
p,

cp(B) = (−1, N)
N(N+1)

2 = +1.

If n ≡ 1 mod 4 or n ≡ 2 mod 4, then N(N+1)
2 is odd. Further, if a prime p of the

form 4k + 3 divides the squarefree part of n, then (−1, N)p = −1. This contradicts
the above equation, and so the sketch of the proof is complete.

4.2 The non-existence of a finite projective plane of
order 6

Recall Theorem 4.1 (the Bruck-Ryser theorem). From this, it is clear that no pro-
jective plane of order 6 exists, because 6 ≡ 2 mod 4, and there are no integers x
and y for which x2 + y2 = 6.

It is worth nothing that the Bruck-Ryser theorem was not used in the first proof to
show there is no finite projective plane of order 6, and it also does not help solve
Euler’s problem of the 36 officers. For this reason, we may wish to briefly expound
on the previously-mentioned proof provided by Gaston Tarry, which stated that a
Graeco-Latin square of order 6 does not exist.

There are over 800 million unique Latin squares of order 6, and so it was not fea-
sible to compare them all by hand; instead, Tarry considers only reduced Latin
squares—that is, Latin squares of order n whose entries in the first row and column
are the integers 1, 2, . . . , n—as any Latin square can be transformed into such a re-
duced form by permuting the rows and columns without affecting whether or not it
has an orthogonal mate. This narrowed down the amount of unique Latin squares
to study to 9408.

Tarry then further narrowed down the problem by defining 17 families of Latin
squares and proving that any reduced Latin square of order 6 is in one of these
families. Finally, he proved that any reduced Latin square that belongs to one of
the 17 families can not be mutually orthogonal. Curious readers may wish to refer
to [Hor16] for a more detailed recount of the proof.
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4.3 The non-existence of a finite projective plane of
order 10

It was not until 1989 that Lam, Thiel, and Swiercz showed, with the aid of a com-
puter, that finite projective planes of order 10 do not exist. Much as Bruck and
Ryser had previously, they came to study incidence matrices, as well as codewords.

Definition 4.6. Let A be an incidence matrix of size (n2 + n + 1)2 representing a
projective plane of order n and let S be the vector space generated by the rows of A
over F2. A vector in S is called a codeword.

The weight of a codeword is the number of 1s in the codeword, and the weight
enumerator of S is

n2+n+1∑

i=0
wix

i,

where wi is the number of codewords of weight i.

Previous research had shown that the weight enumerator of S is uniquely determined
once w12, w15, and w16 are known. w15 proved unusually quick to find by way of a
computer search, requiring a mere 3 hours of computer time, and was found to be
0.

Finding the number codewords of weight 12, on the other hand, was an arduous task:
the associated search tree had an estimated 4 × 1011 nodes, and with the program’s
creators expecting to process 105 nodes per second, the required computing time
would be around 50 days. However, in actuality, the search took 183 days, as the
computer was only able to process 3 × 104 nodes per second. w12 also turned out to
be 0. By the time they searched for w16, the programs were more carefully optimized,
resulting in a computing time of 80 days. Yet again, the result was 0.

Hence, for a projective plane of order 10, w12 = 0, w15 = 0, and w16 = 0, and
so the weight enumerator is indeed computable. It was further determined that
w19 = 24 675: that is to say, for a projective plane of order 10 to exist, it must
contain 24 675 codewords of weight 19. If these 19-point configurations could be
proven to not exist, then neither would a projective plane of order 10, and so this
was the method used to prove the plane’s non-existence.
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It was expected that this would take considerably longer than finding w12 and w16.
Initially, the researchers were only able to proceed at 60 nodes per second, meaning
a full search at the same pace would have required around 100 years of computing
time.

Evidently, the program needed to be drastically sped-up, and so the CRAY super-
computer was used to ensure faster calculation. The search required around 80 days
of computing time, and nodes were processed at a rate of 2 × 104 per second. The
slower computing time compared to the earlier codeword searches is explained by
the fact that it is simply more difficult to find codewords of weight 19—part of the
issue lies in 19 being an odd number, which complicated calculations.

The data from the search performed by the CRAY supercomputer was compiled
into two tables. While the full contents of these tables are outside the scope of the
paper, they show that, even after trying every possible case, a completion to a full
incidence matrix could not be found. Therefore, a finite projective plane of order 10
does not exist.

4.4 The open case of finding a finite projective plane
of order 12

While it is in theory possible to extend the methods used by Lam, Thiel, and Swiercz
to find a projective plane of order 10 in order to find planes of higher orders, such
as 12, this has not yet been done. As the search space for a finite projective plane
of order 12 would be considerably larger than the search space for a plane of order
10, one might surmise that such a computer search is simply not feasible, even with
the technology available today.

There has nevertheless been some research done into the topic. Most intriguingly,
in 2011, Bashir and Rajah stated the following conjecture, which investigates the
matter through the link between finite projective planes and MOLS:

Conjecture 4.7. Let n be an integer and let σ(n) denote the sum of all positive
divisors of n (including itself). If σ(n) > 2n, then there is no complete set of n - 1
MOLS that corresponds to a finite projective plane. From this, it follows that there
is no finite projective plane of order n.
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Here we note that σ(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28, and indeed, 28 > 24—hence
the conjecture implies there is no finite projective plane of order 12. Could this
conjecture be proven, it would effect a great step forward in the search for finite
projective planes.
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