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Abstract

In this essay we investigate cycles of a certain map between polyno-

mials in one variable over �nite �elds using methods from experimental

mathematics. We show that a certain cycle of length 4 exists for all

�elds of prime characteristic, and that all possible cycles must be of

even length. Based on previous results on cycles of length 2, we de-

scribe a theory of critical equations that serves as the basis for an

automated search program to �nd more examples of such cycles. The

results from that automated search are categorized into a taxonomic

hierarchy of cycles of length 2. Finally, we explore the necessary con-

ditions that must hold for cycles of length 2 to occur and propose

hypotheses regarding these conditions.
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1 Introduction

We begin by giving a brief description of experimental mathematics, and
then introduce the mathematical topic under investigation.

1.1 Experimental Mathematics

Mathematics as it is presented in journal articles and textbooks follows a fa-
miliar practice. De�nitions are formulated, from which theorems are proved.
What is almost always omitted from this practice are the intuitions and
exploratory calculations that lead the mathematician to make guesses that
eventually turn into the theorems of the �nal text. While the De�nition-
Theorem-Proof model of mathematical presentation is elegant and compact,
it gives a false impression of the actual mathematical work that produced the
published results. In this section, we will describe an alternative philosophy
of mathematical presentation and research that aims to give a more accurate
description of the mathematician's process.

Experimental Mathematics is a methodology of conducting mathematical
research involving heavy use of computation. Suppose we are interested in
investigating a mathematical object or structure. The experimental math-
ematician begins her inquiry by generating a large number of examples by
computation, either by hand or with digital aid. From this wealth of exam-
ples, the experimental mathematician searches for patterns and peculiarities.
The results of this search motivate the formulation of hypotheses regard-
ing the properties of the mathematical object under consideration. Further
computation serves to test these hypotheses, which might yield conclusive
falsi�cation if the computation reveals counter-examples. If a hypothesis
withstands this computational scrutiny, perhaps a true pattern has been de-
tected, and the experimental mathematician would then proceed to attempt
a formal proof.

This process has many similarities to the scienti�c method. Natural sci-
ence is empirical and employs inductive reasoning (not to be confused with
mathematical induction). The natural scientist makes observations of some
phenomena under investigation. These observations lead the scientist to for-
mulate hypotheses, which are tested against experimental data. In modern
science, statistical analysis is often employed, so as to more rigourously de-
termine the likelihood that a hypothesis is true, given a set of data. Up to
this point, the methodologies of the natural scientist and the experimental
mathematician are exactly the same, the only di�erence being the subject
matter; where the natural scientist observes phenomena in nature, the ex-
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perimental mathematician observes the behaviour of a mathematical object.
The similarities end when the mathematician attempts a formal deductive
proof, a method that is unavailable to the natural scientist.

In this essay we explore the behaviour of a mapping between polynomials
in one variable over �nite �elds. In the spirit of experimental mathematics,
we approach this problem as a scientist would. Accordingly, the essay is
structured as a scienti�c paper, with methods and results sections. The
results then serve as a springboard to further formal analysis with traditional
mathematical tools.

1.2 Cycles of Certain Maps from Zp[x] to Zp[x]

De�nition 1. We de�ne a map Ψ : Zp[x] 7→ Zp[x], such that

Ψ : f 7→
∑

a∈Z(f)
xa

where Z(f) is the set {a ∈ Zp|f(a) = 0}.
This map takes the zero-set of the polynomial equation f = 0 over the
integers modulo p, and maps it to the polynomial Ψ(f) where the exponents
are taken from the zero-set of the previous polynomial.

Remark 1. Since we are working over Zp, a in a ∈ Z(f) is treated as a
residue class of a modulo p. However, in xa, a is treated as the integer
0 ≤ a < p belonging to this residue class. The notation in De�nition 1 is
therefore ambiguous, but is adopted due to convenience.

Remark 2. The map Ψ can take as its argument any polynomial over Zp.
However, Ψ invariably maps to polynomials where all coe�cients are equal to
either 1 or 0. Therefore, we only consider polynomials where the coe�cients
are equal to either 1 or 0.

Remark 3. Consider Fermat's little theorem

ap−1 = 1

where a ∈ Zp, and is not equal to zero. Multiplying by a, we obtain

ap = a.

Since polynomial functions in Zp[x] only take values of x from Zp, any term
with an exponent greater than p−1 can be reduced to a smaller exponent, as
per Fermat's little theorem above. Therefore, we only consider polynomials
of degree at most p− 1.
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De�nition 2. Let Ωp be the set of all polynomials in Zp[x] with coe�cients
equal to either 0 or 1, with degree at most p− 1.

With these restrictions on f established, we turn our attention to the special
case of Ψ that is this essay's main object of study.

De�nition 3. We de�ne a map Φ : Ωp 7→ Ωp, such that

Φ : f 7→
∑

a∈Z(f)
xa

where Z(f) is the set {a ∈ Zp|f(a) = 0}.
Theorem 1. The size of Ωp for a given prime number p is 2p.

Proof. Consider the general case of a polynomial f in Ωp,

f(x) = a0x
0 + a1x

1 + . . .+ ap−1x
p−1

︸ ︷︷ ︸
p terms

where an is equal to either 0 or 1. Therefore, for every term, there are two
possibilities. Since there are p terms, there are 2p possible polynomials in
Ωp. �
Let's see how Φ works with an example.

Example 1. Let p = 7, and

f(x) = 1 + x3 + x5 + x6.

Now we want to �nd for which x ∈ Z7, we have f(x) = 0. Since f(2) = 0
and f(6) = 0, the zero-set of f is Z(f) = {2, 6}. This zero-set is mapped to
a new polynomial

Φ(f) = x2 + x6.

For this new polynomial, x = 0 is the only zero, so when we apply Φ again,
we have

Φ2(f) = x0 = 1.

Now, Φ2(f) = 1 = 0 has no solutions, so its zero-set is empty. Then, applying
Φ again,

Φ3(f) = 0.

Note now that Φ3(f) is always equal to zero; therefore, its zero-set contains
every element of Z7, so Z(Φ3(f)) = {0, 1, 2, 3, 4, 5, 6}. This zero-set maps to

Φ4(f) = 1 + x+ x2 + x3 + x4 + x5 + x6.
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For Φ4(f) = 0, only x = 1 is a solution, which gives us

Φ5(f) = x.

Here, Φ5(f) = 0 only has x = 0 as a solution. But note that x = 0 was also
the only solution to Φ(f) = 0, so Φ6(f) = Φ2(f). Therefore, continuing to
apply Φ will only repeat the cycle

x 7→ 1 7→ 0 7→ 1 + x+ x2 + x3 + x4 + x5 + x6 7→ x 7→ . . .

Let's look at another example, and see if any interesting patterns emerge.

Example 2. Let p = 11, and

f(x) = 1 + x2 + x6 + x7 + x8 + x10.

Iterating Φ as in the previous example, we have

1 + x2 + x6 + x7 + x8 + x10 7→ x6 + x9 7→ 1 + x10 7→

0 7→ 1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 7→ 1 7→ 0 . . .

2 A Cycle of Polynomials For All p

Note that in Example 2, we ended up in a similar cycle consisting of four
polynomials, as in Example 1. We can represent this cycle as a directed
graph (See Figure 1).

x

1

∑p−1
i=0 x

i

0

Figure 1: A cycle of polynomials mapped by Φ.

Now we will proceed to prove that these polynomials map to each other under
Φ, as indicated by Figure 1.
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Theorem 2. When the map Φ acts on polynomials over Zp, we have the
mappings
i) x 7→ 1
ii) 1 7→ 0
iii) 0 7→∑p−1

i=0 x
i

iv)
∑p−1

i=0 x
i 7→ x.

Proof. Cases i, ii, iii, follow trivially from the de�nition of Φ. See Example 1
for generalizable special cases. It remains to prove case iv. The mapping in
case iv corresponds to the equation

∑p−1
i=0 x

i = 0. Let

f(x) =

p−1∑

i=0

xi = 1 + x+ x2 + ...+ xp−1.

We want to prove that the zero-set of f equals {1}. First, we show that
1 ∈ Z(f).

f(1) = 1 + 1 + 1 + ...+ 1︸ ︷︷ ︸
p terms

= 1 · p = p = 0.

So, 1 ∈ Z(f). It remains to demonstrate that there exist no other solutions
to f(x) = 0.

Consider solutions to the polynomial equation

(x− 1) · f(x) = (x− 1)

p−1∑

i=0

xi = 0 (1)

where solutions to f = 0 are also solutions to 1.

Note that x = 1 is clearly a solution. Expanding, we get

(x− 1)(1 + x+ x2 + ...+ xp−1)

x+ x2 + x3 + ...+ xp − 1− x− x2 − ...− xp−1.
Note that every term cancels except 1 and xp, so the polynomial from 1 is
reduced to the following, which we call g:

g(x) = xp − 1.

We have already established that x = 1 solves 1, and therefore also solves
g(x) = 0. It remains to prove that it is the only solution. Now, evaluate
g(a), for some a ∈ Zp.

g(a) = ap − 1.
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By Fermat's little theorem,

g(a) = a− 1.

Clearly, only a = 1 solves g(a) = 0. Therefore, x = 1 is the only solution to
the polynomial equation in 1. �
According to Theorem 2, for all polynomials over Zp, we have a cycle of four
polynomials. If Φ ever maps to any of the polynomials in Theorem 2, we will
end up in this cycle.

3 Towards Other Types of Cycles

Given the �niteness of Ωp, from Theorem 1, iterating Φ must inevitably lead
to a cycle of some type. If a given polynomial in Ωp is not eventually mapped
by Φ to one of the polynomials from Theorem 2, there must exist at least
one other type of cycle.

To explore the possibility of other types of cycles, we will introduce a more
compact notation for polynomials mapped by Φ. In Examples 1 and 2, we
represented Φ as a map between polynomials. Since Φ exclusively maps
to polynomials with coe�cients equal to 0 or 1, these polynomials can be
represented as sets of exponents. For instance, we would have

1 + x2 + x6 + x7 + x8 + x10 = {0, 2, 6, 7, 8, 10}

1 + x2 + x6 + x7 + x8 + x10 7→ x6 + x9 = {0, 2, 6, 7, 8, 10} 7→ {6, 9}.
Now if we look at the action of Φ from Example 1, we have

{0, 3, 5, 6} 7→ {2, 6} 7→ {0} 7→ {} 7→ {0, 1, 2, 3, 4, 5, 6} 7→ {1} 7→ {0} . . .

Observe that we alternate between sets where x = 0 is a solution, and sets
where x = 0 is not a solution. This observation motivates the formulation of
a theorem that must hold for any hypothetical cycle.

Theorem 3. Iterating Φ, we will never end up in a cycle of odd length.

Proof. Let f be a polynomial over Zp. Either x = 0 is a solution to f = 0,
or x = 0 is not solution to f = 0.

Suppose x = 0 is not a solution to f = 0. Now there are two possibilities.
Either we have an empty or non-empty set of solutions to f = 0. If the
zero-set is empty, we end up in the cycle of length 4 from Theorem 2. If we
assume solutions exist, then f maps to g by Φ as follows.
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Φ(f) = g = a1x
1 + · · ·+ ap−1x

p−1

where not all ai are zero.

Since g has no constant term, x = 0 clearly is a solution to g = 0. Observe
that on the assumption that f = 0 is not solved by x = 0, f is mapped to a
polynomial that is solved by x = 0 (or ends up in a 4-length cycle).

Suppose instead x = 0 is a solution to f = 0. Letting Φ act of f , we have

Φ(f) = g = 1 + a1x
1 + · · ·+ ap−1x

p−1.

Now g has a constant term, so x = 0 is not a solution to g = 0. This time,
assuming x = 0 is a solution, Φ maps to a polynomial where x = 0 is not a
solution.

Therefore, under Φ, we alternate between polynomials where x = 0 is a
solution and polynomials where x = 0 it is not a solution.

For a cycle to have odd length, it is necessary that there is some f , so that

Z(f) = Z(Φk(f))

for some odd k.

But this is impossible, since odd iterations of Φ will map to a polynomial
where 0 ∈ Z(Φk(f)) if 0 /∈ Z(f), or 0 /∈ Z(Φk(f)) if 0 ∈ Z(f). �
According to Theorem 3, we need only consider hypothetical cycles of even
length. This puts a useful constraint on the search space for any automated
search algorithm we might want to run.

4 Cycles of Length 2

In this section, we will consider cycles of length 2. Other than the cycle of
length 4 from Theorem 2, variations of which exist for all p, cycles of length
2 seem to be the most frequent, as indicated by preliminary results.

4.1 Preliminary Results

An automated computer search, courtesy of Samuel Lundqvist, turned up
examples of polynomials, for certain prime numbers p, where Φ2(f) = f .
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These are therefore instances where we have cycles of length 2. See Table 1
for a few examples of these cycles.

p Φ(f) f
151 {0, 33, 119, 150} {69, 150}
181 {0, 49, 133, 180} {111, 180}
569 {0, 76, 277, 292, 493} {160, 220}
1021 {0, 226, 250, 374, 384, 486, 535, 637, 647, 771, 795} {381, 731}

Table 1: Examples of cycles of length 2.

Let's look more closely at a few of these cycles.

Example 3. For p = 151, we have

f(x) = x69 + x150

which is mapped to

Φ(f) = 1 + x33 + x119 + x150.

Accordingly, the zero-set of f = 0 is Z(f) = {0, 33, 119, 150}. Factoring f ,
we obtain

f(x) = x69(x81 + 1).

Clearly, x = 0 solves f = 0, which explains why 0 ∈ Z(f). Observe also that
if we sum the remaining three exponents of Φ(f), we have 33+119+150 = 0.

Moreover, consider the set

S = {33, 119, 150}.

Taking 33 ∈ S and raising it to odd powers, we have 331 = 33, 333 = 150,
335 = 119. Since 333 = 150 = −1, we have 336 = 1. Therefore, odd
powers greater than 5 can be reduced by multiples of 6, and we cycle around.
Accordingly, 33 generates S. In a likewise manner, 119 ∈ S also generates S.

Furthermore, from the second factor of f , we have that the equation

x81 = −1

must have exactly three distinct solutions. Finally, note that gcd(81, 150) =
3.
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Example 4. For p = 181, we have

f(x) = x111 + x180 = x111(x69 + 1).

As in Example 3, the exponents of Φ(f) sum to zero. Similarly, for the set
S = {49, 133, 180}, 49, 133 ∈ S generate S, and gcd(69, 180) = 3.

Remark 4. From Table 1, for all Φ(f) we observe that the exponents sum
to zero. Furthermore, the set whose elements are the exponents in Φ(f)
(excluding 0) are generated from the elements in a similar manner as in
Examples 3 and 4. Finally, for the general binomial f(x) = xm + xn, where
m ≤ n, we obtain a factor xn−m + 1, requiring s distinct solutions, where we
have gcd(n −m, p − 1) = s. For p = 151 and p = 181, we have s = 3, and
three solutions (excluding x = 0) for f = 0; for p = 569, s = 4, and four
solutions; and for p = 1021, s = 10, and ten solutions.

In the next section, these observations are put on �rmer formal ground.

4.2 Critical Equations

Consider a cycle of length 2 as a pair of polynomials {f,Φ(f)} where f ∈
Ωp such that Φ2(f) = f . We want to understand why f maps to Φ(f).
By De�nition 3, the zero-set of f determines how f is mapped by Φ. So
the question becomes how the structure of the polynomial f determines its
zero-set. In this section, we will explore this question, in the hope that
understanding this structure will be helpful in the search for more cycles. To
that end, we will work towards and motivate a de�nition of critical equations,
which feature prominently in many di�erent kinds of cycles when we iterate
Φ.

Theorem 4. For p > 2, Φ is not a bijective map.

Proof. For there to be a bijection between two sets, each element of one set
must be paired exactly with one element of the other set, and vice versa,
with there being no unpaired elements. For our purposes, the set is the
collection of polynomials Ωp, which maps to itself. It su�ces to show that
two or more polynomials map onto the same polynomial by Φ to show that
Φ is not bijective.

Let p be a prime number greater than 2. For some integers n,m, consider
the polynomial

f(x) = xn(xm + 1).

The zero-set of f determines which polynomial it is mapped to by Φ. Solu-
tions to the equations xn = 0 and xm = −1 solve f = 0. But if we change
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n to some other integer n′, the equations xn = 0 and xn
′

= 0 have the same
solution: x = 0. Meanwhile, the factor (xm + 1) is unchanged, and therefore
its solutions remain the same. But in changing n, we get a new polynomial,
but with the same zero-set as the previous polynomial. By the de�nition of
Φ, both these polynomials are mapped to the same polynomial. Therefore
there is no one-to-one correspondence and Φ is not bijective. �
This leads us to consider a transformation of f with the interesting feature
that the zero-set of f is invariant under the transformation, and therefore
the mapping by Φ is also invariant under the transformation.

Theorem 5. For polynomials f(x) = xn + 1 in Ωp, where n 6= 0, f = 0 has
the same set of solutions as xp−1−n + 1 = 0.

Proof. Consider f

f(x) = xn + xp−1 = xn(xp−1−n + 1) (2)

where n 6= 0.

Here, x = 0 is a solution to f = 0. Furthermore, if xp−1−n = −1 has some
set of solutions x = {a1, . . . , ak}, where ai ∈ Zp, those values for x also solve
f = 0.

Multiply f with powers of x.

xqf(x) = xq+n(xp−1−n + 1).

Observe that this new polynomial retains the set of solutions to f = 0. We
have that x = 0 still solves xq+n = 0, and x = {a1, . . . , ak} still solves
xp−1−n = −1. However, suppose we let a ∈ Zp be such that an + 1 = 0, and
let q = 1, then we also have, by Fermat's little theorem,

af(a) = an+1 + ap = an+1 + a

af(a) = a(an + 1) = 0.

Since a 6= 0, it follows that f(a) = 0.

Then, from 2, we have

f(a) = an(ap−1−n + 1) = 0

where ap−1−n + 1 = 0.

If we instead begin with the assumption that a ∈ Zp is such that ap−1−n+1 =
0, then from 2 we have
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f(a) = an + ap−1 = an(ap−1−n + 1) = 0.

Multiplying the above with a, we obtain

af(a) = an+1 + ap = a+ an+1 = a(an + 1) = 0.

As a 6= 0, it then follows that an + 1 = 0.

Taken together, we have demonstrated that an + 1 = ap−1−n + 1. Therefore,
xa = −1 must have the exact same set of solutions as xp−1−a = −1. �
Theorem 5 can be generalized to a slightly larger class of polynomials, which
we will be looking at more closely.

Theorem 6. For polynomials in Ωp, the equation x
n−m = −1, where m 6= 0,

has the same set of solutions as xm+q−1 = −1, where q = p− n.
Proof. As Theorem 5, except f(x) = xm + xn, and multiply xq with f . �
To see how xn−m = −1 and xm+q−1 = −1 must share the same set of solu-
tions, we can consider factorizations of n−m and m + q − 1. If n−m and
m+ q − 1 share factors, there would exist a greatest common factor s, such
that gcd(n−m,m+q−1) = s. Then we would be able to rewrite xn−m = −1
and xm+q−1 = −1 as

xn−m = xs·k1 = (xs)k1 = −1

xm+q−1 = xs·k2 = (xs)k2 = −1.

Now, if k1 and k2 both are odd, and if xs = −1 has solutions, then those
solutions would also solve xn−m = −1 and xm+q−1 = −1.

The equation xs = −1 is therefore what ultimately decides how the solutions
to f = 0 look like, for binomials such as in Theorem 6.

De�nition 4. Let f(x) = xm + xn ∈ Zp[x], where m ≤ n. For q = p −
n, let s = gcd(n − m,m + q − 1). The equation xs = −1 is called the
critical equation for f .

An interesting result connected to this de�nition is demonstrated below, us-
ing q = p− n.
Theorem 7. If gcd(n−m,m− n+ p− 1) = s, then s | p− 1.

Lemma 1. For any integer t, gcd(a, b+ ta) = gcd(a, b).
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Proof of Lemma 1. If gcd(a, b) = s, then a = sk1 and b = sk2. Then b+ ta =
sk2 + tsk1 = s(k2 + tk1). Therefore, s divides b+ ta. �
Proof of Theorem 7. By Lemma 1, letting t = −1, we have gcd(n −m, p −
1− (n−m)) = gcd(n−m, p− 1) = s. �
According to Theorem 7, if we are looking for cycles where xs = −1 is a
critical equation, we need only test our proposed polynomials against prime
numbers p where s divides p − 1. A corollary of Theorem 7 is that we
can formulate a de�nition equivalent to De�nition 4, without the language
relating to the transformation.

Theorem 8. For f(x) = xm + xn ∈ Zp[x], where m ≤ n, and let s =
gcd(n−m, p− 1), xs = −1 is the critical equation for f .

Remark 5. Recall Example 3 from the previous section, where f(x) = x69+
x150 = x69(x81+1), and gcd(81, 150) = 3. So, x3 = −1 is the critical equation
for f .

4.2.1 Distinct Solutions to Critical Equations

Let's look again at Example 3 from section 4. For p = 151, we have

f(x) = x69 + x150 = x69(x81 + 1).

For f to be mapped to Φ(f) = 1+x33 +x119 +x150 (see Table 1), the zero-set
of f must be Z(f) = {0, 33, 119, 150}. The x = 0 solution is associated with
the x69 factor. Therefore, the other three solutions must be associated with
the second factor, and the equation

x81 = −1

must have three distinct solutions.

The question becomes why this equation has precisely three distinct so-
lutions. From Theorem 8, the critical equation of f is x3 = −1, since
gcd(81, 150) = 3. So we must demonstrate the connection between critical
equations and the number of distinct solutions.

We are interested in the number of solutions to the equation,

xs = −1

for some integer s, over Zp.

Consider the equation
x2s = 1

15



(xs − 1)(xs + 1) = x2s − 1.

By investigating the solutions to xs = 1 and x2s = 1, we will gain information
about the solutions to xs = −1.

Since we are working over the �eld Zp, we have a multiplicative group Gp. If
g ∈ G is an element of Gp, the order of g is the smallest positive integer n
such that gn = 1.

Theorem 9. For a group G and g ∈ G, where the order of g is n, then

gm = 1

is true if and only if m is a multiple of n.

Proof. Let m = kn, then

gm = gkn = (gn)k = 1k = 1.

Suppose now that gm = 1. Then, by Euclidian division, there exist integers
k, r

m = kn+ r, 0 ≤ r < n

1 = gm = gkn+r = gkngr = (gn)kgr = 1kgr = gr.

However, n is per de�nition the smallest positive integer such that gn = 1 is
true. Therefore r = 0 and m = kn. �
By Theorem 9, if x = a solves xs = 1, then x = a also solves xks.

|G| denotes the order of G, which is the number of elements in G. If x ∈ G,
then a subgroup of G is 〈x〉 = {1, x, x2, . . .}. G is cyclic if there exists
x ∈ G such that all elements y ∈ G kan be written as powers of x. So, G =
{1, x, x2, . . .} = 〈x〉. This can be understood as the group 〈x〉 is generated
by the element x.

Lemma 2. (Lagrange's theorem). [1] If G is a �nite group of order n and
H is a subgroup of order m, then m divides n.

Lemma 3. [2] The multiplicative group Gp is cyclic.

Note that Gp = 〈x〉 = {1, x, x2, . . . xp−1} = {1, 2, . . . , p − 1}. Therefore the
order of Gp is p− 1.

Theorem 10. G is a cyclic group of order n ≥ 2 ⇒ for each divisor d of n
the number of elements x ∈ G which satisfy xd = 1 is d.
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Proof (adapted from [1]). Let G be a cyclic group of order n generated by
the element g ∈ G. If d is a divisor of n, then dk = n for some integer k.
Consider then

1, gk, g2k, . . . , g(d−1)k (3)

which are distinct elements in G. These solve xd = 1 since

(gik)d = (gdk)i = (gn)i = 1i = 1.

So d elements of G satisfy xd = 1. It remains to show that there are no other
solutions. Let y be an element from G such that yd = 1. Since G is cyclic, it
is generated by g, therefore there is some e ≥ 0 such that y = ge. Then

ged = (ge)d = yd = 1.

The order of g is n, so n is the smallest integer for which gn = 1. Therefore
ed must be a multiple of n, such as ln for some integer l. Then

ed = ln = l(dk).

So e = lk and y = ge = glk, but this is already an element in 3. Therefore
these are the only solutions. �
Putting things together, by Lemma 3, Gp is a cyclic group of order p − 1.
Supposing we have some element g ∈ G such that gs = 1 and s ≤ p − 1,
then by Lemma 2, s divides p− 1. By Theorem 10, then there are s distinct
solutions to xs = 1. Further supposing we have g ∈ G such that g2s = 1
and 2s ≤ p − 1, we then have that x2s = 1 must have 2s distinct solutions.
Consequently, xs = −1 must also have s distinct solutions.

Going back to the equation at the beginning of this section, we have for
p = 151

x81 = −1.

Since 81 = 34 and gcd(81, 150) = 3 the equation above has three distinct
solutions.

4.2.2 Critical Equations and Roots of Unity

In Example 3, for p = 151, if we exclude the x = 0 solution from the zero-set
of f = 0, we have the set S = {33, 119, 150}. The sum of these elements is
zero modulo 151, and we have that this set is generated from the elements
33, 119 ∈ S, such that S = {331, 333, 335} = {1191, 1193, 1195}.
This peculiar structure is explicable in light of properties of roots of unity,
as will be demonstrated in this section.
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Theorem 11. For s ∈ Zp, where 2s is a proper divisor of p − 1, supposing
x = α is a solution to the equation xs = −1, then solutions take the form
x = {α, α3, . . . , α2s−1}, where α + α3 + . . .+ α2s−1 = 0.

Proof. Consider the equation
xs = −1.

By squaring both sides, we can explore useful features of roots of unity, which
are solutions to the equation xn = 1.

x2s = 1. (4)

By Theorem 10, we have 2s distinct solutions to 4, of the form

x = {1, α, α2, . . . , α2s} (5)

for some α ∈ Zp.

Consider then, from 4,

0 = x2s − 1 = (xs − 1)(xs + 1). (6)

The question becomes which solutions from 5 belong to which factor from
6. We can see immediately that x = 1 solves xs − 1 = 0. Supposing x = α
solves xs = −1, then

α2s = 1,

which solves xs − 1 = 0. By similar logic, the solutions to xs − 1 = 0
are x = {1, α2, α4, . . . , α2s}. These are the even exponents, and there are s
distinct solutions. The remaining s distinct solutions, with odd exponents,
therefore solve xs + 1 = 0. These solutions are

x = {α, α3, . . . , α2s−1}
as desired.

By the factor theorem, we have

xs + 1 = (x− α)(x− α3) · · · (x− α2s−1) =
s∏

s=1

(x− α2s−1). (7)

Expanding and looking only at the coe�cient for the xs−1 term, we have

(−α− α3 − . . .− α2s−1)xs−1.

Comparing this xs−1 term with the left-hand side of 7, we see that this
coe�cient must be equal to zero. Therefore, solutions to xs = −1 sum to
zero, and solutions take the form x = {α, α3, . . . , α2s−1}. �
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Theorem 12. For a polynomial f = xm + xn, where gcd(n−m, p− 1) = s
such that 2s is a proper divisor of p− 1, and an odd integer k that does not
divide p− 1, f is mapped by Φ to one of two polynomials

Φ(f) = 1 + xα + xα
3

+ ...+ xα
2s−1

(8)

Φ(f) = xα + xα
3

+ ...+ xα
2s−1

. (9)

Proof. Factorizing, we obtain f(x) = xm + xn = xm(xn−m + 1). By assump-
tion, we have that n−m = sk for some integers s and k. Supposing x = α is
a solution to xs = −1, then f(α) = αm((αs)k + 1) = αm((−1)k + 1). Since k
is odd, x = α solves f = 0. Since k does not divide p− 1, we can be assured
that no new solutions are introduced. With the factor xm accounting for the
constant term in 8, the solutions take the form from Theorem 11, with f
mapped to 8 if m 6= 0, or f is mapped to 9 if m = 0. �
Remark 6. With Theorem 12, we have established a connection between
the critical equation of a binomial f and the zero-set of that binomial, and
therefore how f is mapped by Φ. However, recalling that the primary mo-
tivation for critical equations stated in the beginning of Section 4.2 was to
understand the mapping f 7→ Φ(f), an expanded de�nition of critical equa-
tions suggests itself, not limited to binomials. Simply, for f ∈ Ωp and s such
that 2s is a proper divisor of p− 1, if we have either Φ(x+ xs+1) = Φ(f) or
Φ(xs + 1) = Φ(f), then xs = −1 is a critical equation for f .

4.2.3 Methods: Critical Equations and the Search for More Cy-

cles

Since critical equations feature in all previous examples of cycles of length
2, we can restrict our search for more cycles to polynomials associated with
speci�c critical equations, and thereby further constrain our search space.
Using the concept of critical equations from Remark 6, we can generate
polynomials of the form Φ(f) as candidates for a cycle of length 2. See
Appendix 1 for a Mathematica program designed to search for cycles of
length 2, based on the mathematics of critical equations.

4.3 Results

In this section, we analyze the results of the automated search for cycles
of length 2. See Appendix A for the Mathematica code for this this search
program, and Appendix B for all cycles discovered by this search.
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4.3.1 A Taxonomy of Cycles of Length 2

In this section, we propose a taxonomy of cycles of length 2, motivated by
their salient features.

De�nition 5. A taxonomy is a nested set, forming a hierarchy where sets
of lower rank are subsets of sets of higher rank.

Remark 7. Throughout this section, cycles of length 2 are described as
consisting of two polynomials {f,Φ(f)} that map to each other under Φ. Here
Φ(f) refers to polynomials generated from critical equations, as in Remark
6. The polynomial f is described simply as the the polynomial that maps to
Φ(f).

Remark 8. As we go through examples in this section, we will build up to
a de�nition of our taxonomic hierarchy, summarized in Figure 2.

Example 5. In Table 2, the polynomials Φ(f), represented as sets of of ex-
ponents, were generated from the critical equation xs = −1, for some integer
s. And as can be seen from the tally of cycles in Appendix B, examples of
cycles of length 2 have been found for all s ≤ 23.

p Φ(f) f s
3169 {0, 1325, 1844} {1110, 1252} 2
3271 {0, 843, 2429, 3270} {1443, 3270} 3
7793 {0, 2501, 3578, 3609, 3789, 4004, 4184, 4215,

5292} {4473, 5825} 8
17579 {0, 2602, 6197, 7306, 7550, 7948, 8222, 9787,

10266, 12928, 15090, 17578} {6806, 8599} 11

Table 2: Examples of cycles of length 2, for some prime p and critical equation
xs = −1.

Since all polynomials comprising the cycles in Table 2 and Appendix B were
generated from solutions to the critical equation xs = −1, the �rst and
highest rank of taxonomic classi�cation sort cycles of length 2 according to
the value of s for which we have Φ(xs + 1) = Φ(f) or Φ(x + xs+1) = Φ(f),
such that Φ2(f) = f .

Remark 9. As indicated by Appendix B, the �rst examples of cycles asso-
ciated with large values of s tend to occur at larger prime numbers in com-
parison to cycles associated with smaller values of s. Moreover, the search
for cycles for large primes and large values of s becomes progressively more
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computationally demanding, requiring longer time to search through shorter
intervals of prime numbers.

Example 6. Consider the cycles in Table 3.

p Φ(f) f
151 {0, 33, 119, 150} {69, 150}
151 {33, 119, 150} {0, 111}
2341 {0, 1107, 1235, 2340} {1101, 2340}
2341 {1107, 1235, 2340} {0, 2199}

Table 3: Examples of cycles of length 2, comprising polynomials the zero-set
of which either includes x = 0 or not.

For these speci�c prime numbers, there are two versions of each cycle: one
version where x = 0 belongs to the zero-set of f , and one version where x = 0
does not belong to the zero-set of f . This corresponds to the two di�erent
polynomials from Theorem 12.

The second rank of taxonomic classi�cation comprises cycles consisting of
polynomials the zero-set of which either includes or excludes x = 0.

Remark 10. As can be seen from the examples in Tables 2 and 3, as well as
in Appendix B, for the vast majority of all cycles of length 2, the polynomial
f that maps to Φ(f) is a binomial.

Example 7. Consider the cycles in Table 4.

p Φ(f) f
3307 {0, 58, 3250, 3306} {914, 992, 2315, 2393}
3463 {0, 368, 3096, 3462} {1676, 1718, 1745, 1787}
3517 {384, 596, 980, 2537, 2921, 3133} {0, 1650, 2658, 3516}
7237 {0, 1831, 5407, 7236} {369, 5094, 6765, 7236}

Table 4: Exceptional cycles of length 2, where the polynomial f is not a
binomial.

We see exceptions to the general observation in Remark 10. Accordingly, the
third rank of taxonomic classi�cation comprises cycles where the polynomial
f that maps to Φ(f) either is a binomial or is not a binomial.

Remark 11. From Table 4, observe that for p = {3307, 3463, 7237}, the
elements of f sum to zero. However, for p = 3517, the elements of f do not
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sum to zero. From Appendix B, more examples of either situation can be
found.

The fourth and �nal rank of taxonomic classi�cation comprises cycles where
the exponents of the polynomial f either sum to zero or do not sum to zero.

The taxonomic scheme is summarized in De�nition 6 and illustrated as a
polytree graph in Figure 2.

De�nition 6. Let T be the set of all unorderd pairs of polynomials {f,Φ(f)}
where f ∈ Ωp such that Φ2(f) = f .
i) Let T1 ⊆ T be the �rst taxonomic rank, where T1 = ∪s≥2,2s|(p−1)T1,s,
and where T1,s = {{f,Φ(f)} ∈ T1|Φ(xs + 1) ∈ {f,Φ(f)} ∨ Φ(xs+1 + x) ∈
{f,Φ(f)}}.
ii) Let T2 ⊆ T1 be the second taxonomic rank, where T2 = T2,0 ∪ T2,!0, and
where T2,0 are of pairs of polynomials where 0 belongs to the zero-set of f
and T2,!0 are pairs of polynomials where 0 does not belong to the zero-set of
f .
iii) Let T3 ⊆ T2 be the third taxonomic rank, where T3 = T3,b ∪ T3,!b, and
where T3,b are pairs of polynomials where f is a binomial and T3,!b are pairs
of polynomials where f is not a binomial.
iv) Let T4 ⊆ T3 be the fourth taxonomic rank, where T4 = T4,0 ∪ T4,!0, and
where T4,0 are pairs of polynomials where the exponents of f sum to zero and
T4,!0 are pairs of polynomials where the exponents of f do not sum to zero.

Let's categorize a cycle of length 2 according to this taxonomy.

Example 8. For p = 3517, we have the cycle

C = {{0, 1650, 2658, 3516}, {384, 596, 980, 2537, 2921, 3133}} = {f,Φ(f)}.

We know that Φ(f) is generated from s = 6, so C ∈ T1,6; the zero-set of
Φ(f) includes x = 0, so C ∈ T2,0; f is not a binomial, so C ∈ T3,!b; and the
exponents of f do not sum to zero, so C ∈ T4,!0.

22



Φ(xs + 1) = Φ(f)⇒ Φ2(f) = f

0 ∈ Z(f) 0 /∈ Z(f)

f = xm + xn f 6= xm + xn

f =
∑k

i=1 x
ai ⇒∑k

i=1 ai = 0 f =
∑k

i=1 x
ai ⇒∑k

i=1 ai 6= 0

Figure 2: A taxonomy of cycles of length 2, descending from the �rst rank.
For reasons of image formatting, this �gure excludes the tree connected to
the right node at the second rank, which is identical to the tree connected
to the left node at the same rank. Also for reasons of image formatting, the
complete criterion for the �rst rank is not included. See De�nition 6 for the
complete criterion. 23



4.3.2 Prerequisites for Cycles of Length 2

In previous sections, we have used f to denote a polynomial that maps to the
polynomial Φ(f). A cycle of length 2 occurs when Φ2(f) = f . The question
becomes if there are any restrictions on f and Φ(f) that determine whether
a cycle of length 2 occurs for a given prime number p.

Φ(f)f

Figure 3: A cycle of length 2.

First a brief note on the automated search program used to discover the
cycles of length 2 tallied in Appendix B and discussed in section 6.1.

Remark 12. For some s and p, the polynomial xs + 1 over the integers
modulo p has a zero-set. The automated search program in Appendix A uses
this zero-set to create a polynomial, as in Section 4.2.3. Call this polynomial
Φ(f). Then the program maps Φ(f) to a new polynomial f under Φ. Finally,
the program checks whether Φ2(f) = f ; if this is true, a cycle of length 2
exists for this s and p.

From Remark 12, it is clear that for a given s and p, Φ(f) is �xed. There
is one zero-set, mapped to one polynomial Φ(f). For this reason, all polyno-
mials Φ(f) from Tables 2, 3 and 4 exhibit a similar structure, as described
in Section 4.2.2. However, as discussed in the previous section, the polyno-
mials f exhibit greater variety. One reason for this is that several di�erent
polynomials map to Φ(f).
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Example 9. For p = 7793, and f 7→ Φ(f), consider the following cycle.

{4473, 5825} 7→ {0, 2501, 3578, 3609, 3789, 4004, 4184, 4215, 5292}.

Here, Φ(f) is generated from x8 = −1. We can see why f 7→ Φ(f) by
factorizing the polynomial f .

f(x) = x4473 + x5825 = x4473(x1352 + 1)

where gcd(1352, 7792) = 8. From Theorem 8, we know that x8 = −1 is the
critical equation for f , which by Theorem 12 detemines how f is mapped by
Φ. However f is not the only polynomial mapped to Φ(f). Consider

f̂(x) = x+ x9

where f̂(x) = 0 has the exact same zero-set as f(x) = 0, and therefore
Φ(f̂) = Φ(f). This observation is generalized in the following corollary to
Theorem 12.

Theorem 13. Working over Zp, supposing 2s is a proper divisor of p − 1,
let f(x) = xn +xs+2ks+n, for some integer k. Then, if and only if 2k+ 1 does
not divide p− 1, f is mapped by Φ to

Φ(f) = 1 + xα + xα
3

+ . . .+ xα
2s−1

. (10)

Proof. Factorize f .
f(x) = xn(xs+2ks + 1).

The factor xn is zero when x = 0, which accounts for the constant term in 10.
For the rest of the terms in 10, we require that the solution set of f , excepting
the x = 0 solution, is the same the solution set as xs = −1. Suppose x = α is
a solution to xs = −1. Add even multiples of s to the exponent in xs, giving

xs+2ks = xs(2k+1) = (xs)(2k+1) ⇒ (αs)2k+1 = (−1)2k+1 = −1.

So, solutions to xs = −1 are also solutions to xs+2ks = −1; therefore f maps
to 10, with one exception. From the assumption in the theorem, we have
that p − 1 = 2sq, for some factors s and q, where q may be composite or
equal to 1. Now, if 2k + 1 = q 6= 1, then 2(2k + 1) is a proper divisor of
p− 1, and by Theorem 11, for such values of k, xs+2ks = −1 has a di�erent
solution set than xs = −1, and f is not mapped to 10. �
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Example 10. For p = 733, and f 7→ Φ(f), consider the following cycle.

{338, 347, 386, 395} 7→ {0, 308, 426, 732}.

From the automated search, we know that Φ(f) is generated from x3 = −1,
which gives a clue why f maps to Φ(f). For f , divide the exponents by 3,
and rewrite them as quotient and remainder.

f(x) = x338 + x347 + x386 + x395

f(x) = (x3)112x2 + (x3)115x2 + (x3)128x2 + (x3)131x2.

Supposing α3 = −1, then

f(α) = (−1)112α2 + (−1)115α2 + (−1)128α2 + (−1)131α2.

f(α) = α2 − α2 + α2 − α2 = 0.

Observe the pairwise cancellation of terms, suggesting another class of poly-
nomials that also map to 10.

Theorem 14. Working over Zp, supposing 2s is a proper divisor of p − 1,
then

f(x) = xsq1.1+r1 + xsq1.2+r1 + xsq2.1+r2 + xsq2.2+r2 + . . .+ xsqn.1+rn + xsqn.2+rn

maps to 10 from Theorem 13 if the parity of qk.1 and qk.2 is not the same.

Proof. For f to map to 10, we require that f(x) = 0 has the same zero-set as
xs = −1. Rewrite the exponents for each pair of terms as

(xs)qk.1xrk + (xs)qk.2xrk .

Supposing αs = −1, then we have

(αs)qk.1αrk + (αs)qk.2αrk = (−1)qk.1αrk + (−1)qk.2αrk .

By assumption, the parity of qk.1 and qk.2 is not the same, which results in
pairwise cancellation. Therefore solutions to xs = −1 also solve f(x) = 0. �
Remark 13. As can be seen from Theorem 14, critical equations apply to a
larger class of polynomials, not necessarily binomials, as discussed in Remark
6.
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From Theorems 13 and 14, we see that several polynomials map to Φ(f).
Together with Φ(f), these polynomials can be seen as candidate polynomials
for a cycle of length 2. A cycle occurs if Φ(f) is mapped back to f .

The situation is summarized in Figure 4, where for a given s and p, we have
a �xed point represented by the polynomial Φ(f), and several polynomials
that all map to Φ(f).

Φ(f)

f

f4

f3

f2

f1

Figure 4: A cycle of length 2 along with candidate polynomials.

We conclude by formulating two hypotheses regarding cycles of length 2.
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Remark 14. By design, from Remark 12, all polynomials found by the
automated search exhibit the structure in Φ(f) from Theorems 13 and 14.
Moreover, all examples from the previous search, by Samuel Lundqvist, also
exhibit this same structure. This constitutes weak heuristic motivation for
the following hypothesis.

Hypothesis 1. All cycles of length 2 exhibit the structure in Φ(f) from
Theorem 12. Explicitly, for cycles of length 2 of the form {f,Φ(f)}, where
f ∈ Ωp, the exponents of the polynomial Φ(f) are determined by the roots
of unity of the equation x2s = 1 and the critical equation xs = −1, from
Theorem 11.

Remark 15. As can be seen in Appendix B, examples have been found
of cycles of length 2 up to s = 23. Since the search became progressively
more computationally demanding for higher values of s and p, the search was
terminated at s = 23. However, there are no prima facie reasons to believe
there exist no cycles of length 2 for higher values of s.

Hypothesis 2. For each s ∈ Z, there is at least one prime number p for
which there exists a cycle of length 2 where xs = −1 is a critical equation.
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A Appendix A: A Mathematica Program to

Search for Cycles of Length 2

In this appendix, we include the Mathematica code for the automated search
algorithm that searches for cycles of length 2 where xs = −1 is a critical
equation.

f[p_, s_] := Union[Solve[x^s == -1, x, Modulus -> p]];

haslengtheq9[l_, s_] := Length[l[[2]]] == s;

g[n_, s_] :=

Select[Transpose[{Map[Prime, Range[1, 3000]],

Map[f[#, s] &, Map[Prime, Range[1, 3000]]]}],

haslengtheq9[#, s] &][[n]][[2]];

h[n_, s_] :=

Select[Transpose[{Map[Prime, Range[1, 3000]],

Map[f[#, s] &, Map[Prime, Range[1, 3000]]]}],

haslengtheq9[#, s] &][[n]][[1]];

i[n_, s_] := Piecewise[{

{0, g[n, s] == {}},

{Total[y^x /. g[n, s]] + 1 /. y -> x, True}

}];

j[n_, s_] := Union[Solve[i[n, s] == 0, x, Modulus -> h[n, s]]];

xi[n_, s_] := Map[First[#][[2]] &, j[n, s]];

Regel[l_] := Map[{x -> #} &, l];

qhi[l_, p_] :=

Map[First[#][[2]] &,

Union[Solve[(Total[y^x /. Regel[l]] /. y -> x) == 0, x,

Modulus -> p]]];

phi[l_, p_] := If[l == {}, Range[0, p - 1], qhi[l, p]];

nphi[l_, p_, k_] := Nest[phi[#, p] &, l, k];

check2orbit[n_, s_] := nphi[xi[n, s], h[n, s], 2] == xi[n, s];

Search[a_, b_, s_] :=

Select[Transpose[{Map[h[#, s] &, Range[a, b]],

Map[check2orbit[#, s] &, Range[a, b]]}], MemberQ[#, True] &];
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B Appendix B: Cycles of Length 2

p Φ(f) f p Φ(f) f
409 {0, 143, 266} {41, 331} 3457 {0, 708, 2749} {557, 2523}
449 {0, 67, 382} {197, 223} 5333 {0, 2630, 2703} {1621, 1619}
1373 {0, 668, 705} {266, 272} 5441 {0, 2452, 2989} {608, 4354}
1889 {0, 331, 1158} {1158, 1812} 6089 {0, 455, 5634} {2266, 3444}
2473 {0, 567, 1906} {1047, 1649} 6217 {0, 2372, 3845} {2694, 5656}
3169 {0, 1325, 1844} {1110, 1252} 6521 {0, 2364, 4157} {2488, 4530}

Table 5: Cycles of length 2, with x2 = −1 as a critical equation

p Φ(f) f p Φ(f) f
151 {0, 33, 119, 150} {69, 150} 8161 {0, 2904, 5258, 8160} {2675, 5486}
151 {0, 111} {33, 119, 150} 8233 {2613, 5621, 8232} {0, 2865}
181 {0, 49, 133, 180} {111, 180} 8233 {0, 2613, 5621, 8232} {6303, 8232}
367 {0, 84, 284, 366} {26, 341} 8293 {2051, 6243, 8292} {0, 579}
373 {0, 89, 285, 372} {81, 372} 8329 {1053, 7277, 8328} {0, 177}
751 {0, 73, 679, 750} {219, 750} 8353 {1737, 6617, 8352} {0, 4569}
769 {0, 361, 409, 768} {363, 768} 8353 {0, 1737, 6617, 8352} {7095, 8352}
937 {0, 323, 615, 936} {501, 936} 8539 {0, 2553, 5987, 8538} {4599, 8538}

1021 {0, 369, 653, 1020} {549, 1020} 8581 {425, 8157, 8580} {0, 489}
1831 {0, 673, 1159, 1830} {63, 1830} 8641 {0, 3573, 5069, 8640} {699, 8640}
1867 {0, 835, 1033, 1866} {303, 1866} 8923 {0, 3848, 5076, 8922} {953, 7970}
1879 {0, 489, 1391, 1878} {525, 1878} 9883 {0, 2537, 7347, 9882} {483, 9882}
2341 {0, 1107, 1235, 2340} {1101, 2340} 10111 {0, 4282, 5830, 10110} {2114, 7997}
2341 {0, 2199} {1107, 1235, 2340} 10159 {0, 4594, 5566, 10158} {4040, 6119}
3067 {0, 974, 2094, 3066} {18, 346, 2721, 3049} 10531 {0, 5081, 5451, 10530} {831, 10530}
3217 {0, 1707} {205, 3013, 3216} 10723 {0, 1256, 9468, 10722} {5237, 5486}
3271 {0, 843, 2429, 3270} {1443, 3270} 10753 {0, 5151, 5603, 10752} {7953, 10752}
3307 {0, 58, 3250, 3306} {914, 992, 2315, 2393} 10993 {1545, 9449, 10992} {0, 8253}
3463 {0, 368, 3096, 3462} {1676, 1718, 1745, 1787} 11083 {0, 4378, 6706, 11082} {1078, 5173, 5910, 10005}
3691 {0, 475, 3217, 3690} {3351, 3690} 11551 {0, 3980, 7572, 11550} {4937, 6614}
3697 {0, 520, 3178, 3696} {362, 3335} 12289 {6049, 6241, 12288} {0, 6141}
3733 {0, 949, 2785, 3732} {519, 3732} 12517 {0, 6111, 6407, 12516} {8433, 12516}
3847 {0, 639} {1893, 1955, 3846} 12553 {0, 5158, 7396, 12552} {1763, 10790}
4021 {0, 2607} {1813, 2209, 4020} 12577 {0, 2068, 2863, 6345} {4815, 7763, 12576}
4057 {0, 1409, 2649, 4056} {1425, 4056} 12739 {0, 5586, 7154, 12738} {704, 1787, 10952, 12035}
4261 {0, 1648, 2614, 4260} {1625, 2636} 12967 {0, 5718, 7250, 12966} {4070, 8897}
4273 {0, 1611, 2663, 4272} {3435, 4272} 13003 {0, 1688, 11316, 13002} {4635, 5862, 7141, 8368}
4423 {0, 67, 4357, 4422} {3939, 4422} 13999 {0, 4212, 9788, 13998} {3173, 10826}
4483 {0, 506, 3978, 4482} {110, 4373} 14143 {0, 5172, 8972, 14142} {3401, 10742}
4567 {0, 3663} {1113, 3455, 4566} 14503 {0, 4174, 10330, 14502} {2185, 3069, 11434, 12318}
5077 {0, 1630, 3448, 5076} {1388, 3689} 14551 {0, 3836, 10716, 14550} {7112, 7439}
5749 {0, 2019} {331, 5419, 5748} 14557 {0, 6222, 8336, 14556} {6416, 8141}
5827 {0, 3963} {1351, 4477, 5826} 14683 {0, 3299, 11385, 14682} {10965, 14682}
5923 {0, 429, 5495, 5922} {3201, 5922} 15241 {0, 6388, 8854, 15240} {566, 14675}
6367 {0, 770, 5598, 6366} {674, 5693} 15277 {0, 811, 14467, 15276} {11559, 15276}
6547 {0, 2333, 4215, 6546} {5757, 6546} 15349 {0, 6548, 8802, 15348} {1442, 13907}
6547 {0, 1119} {2333, 4215, 6546} 15559 {0, 3635, 11925, 15558} {14397, 15558}
6823 {0, 2686, 4138, 6822} {485, 6338} 16087 {0, 5620, 10468, 16086} {6722, 9365}
6967 {0, 5331} {383, 6585, 6966} 16249 {0, 7517, 8733, 16248} {2349, 16248}
7069 {0, 267} {2041, 5029, 7068} 16333 {0, 1550, 14784, 16332} {1676, 14657}
7177 {0, 2039, 5139, 7176} {3561, 7176} 16411 {0, 2757, 13655, 16410} {2253, 16410}
7237 {0, 1831, 5407, 7236} {369, 5094, 6765, 7236} 16651 {0, 224, 16428, 16650} {8201, 8450}
7393 {0, 1718, 5676, 7392} {143, 7250} 17041 {0, 2698, 14344, 17040} {4862, 12179}
7537 {0, 1963, 5575, 7536} {5115, 7536} 17107 {0, 6798, 10310, 17106} {6134, 10973}
7621 {0, 1683} {3125,4497,7620} 17203 {0, 4388, 12816, 17202} {3686, 13517}

17467 {0, 6892, 10576, 17466} {4220, 13247}

Table 6: Cycles of length 2, with x3 = −1 as a critical equation

p Φ(f) f
569 {0, 76, 277, 292, 493} {190, 220}
1153 {0, 75, 123, 1030, 1078} {190, 378}
2417 {0, 345, 1205, 1212, 2072} {1172, 1992}
6833 {0, 428, 910, 5923, 6405} {1622, 3314}

Table 7: Cycles of length 2, with x4 = −1 as a critical equation
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p Φ(f) f p Φ(f) f
421 {44, 67, 142, 169, 420} {0, 325} 13151 {0, 3719, 3891, 8622, 10071, 13150} {965, 13150}
431 {26, 186, 315, 336, 430} {0, 385} 15451 {325, 1141, 2532, 11454, 15450} {0, 8405}
3631 {0, 523, 1529, 2427, 2784, 3630} {3605, 3630} 17191 {748, 7799, 11288, 14548, 17190} {0, 10585}
5591 {0, 137, 2367, 3595, 5084, 5590} {145, 5590} 18541 {1393, 2103, 6356, 8690, 18540} {0, 6755}
6991 {0, 1085, 3183, 4254, 5461, 6990} {4795, 6990} 19081 {5464, 6469, 10477, 15753, 19080} {0, 515}
7321 {1925, 1960, 4636, 6122, 7320} {0, 4525} 19211 {2524, 7476, 13434, 14989, 19210} {0, 3205}
7331 {458, 2835, 4882, 6488, 7330} {0, 1055} 19751 {8286, 16128, 16431, 18409, 19750} {0, 19095}
8461 {193, 5056, 5668, 6006, 8460} {0, 245} 20981 {1844, 5772, 14780, 19567, 20980} {0, 3685}
8951 {0, 3608, 6041, 8497, 8708, 8950} {8516, 8761} 21341 {1627, 8991, 11569, 20496, 21340} {0, 1195}
9041 {18, 3516, 5832, 8717, 9040} {0, 3995} 23131 {0, 721, 12172, 13768, 19602, 23130} {9356, 11101}
11681 {569, 3307, 8848, 10639, 11680} {0, 3125} 25601 {0, 2404, 6610, 7781, 8807, 25600} {3860, 11265}
12071 {0, 5108, 5838, 6260, 6937, 12070} {3305, 6630} 26821 {581, 7340, 7789, 11112, 26820} {0, 19055}
12941 {1267, 3016, 9264, 12336, 12940} {0, 11105} 26321 {0, 1048, 5262, 7178, 12834, 26320} {1308, 25013}
12941 {0, 1267, 3016, 9264, 12336, 12940} {2789, 8674} 27011 {9728, 12560, 14084, 17651, 27010} {0, 2105}

Table 8: Cycles of length 2, with x5 = −1 as a critical equation

p Φ(f) f
1693 {0, 92, 704, 796, 897, 989, 1601} {638, 968}
2713 {0, 191, 696, 887, 1826, 2017, 2522} {651, 2325}
3517 {384, 596, 980, 2537, 2921, 3133} {0, 1650, 2658, 3516}
5281 {0, 1153, 1673, 2455, 2826, 3608, 4128} {2097, 2619}
5953 {0, 1107, 1296, 2403, 3550, 4657, 4846} {496, 1678}
7057 {0, 84, 1850, 1934, 5123, 5207, 6973} {1549, 4639}
8089 {0, 1387, 2293, 3680, 4409, 5796, 6702} {312, 4554}
10321 {0, 2528, 3151, 4642, 5679, 7170, 7793} {5190, 7908}
10729 {0, 495, 3970, 4465, 6264, 6759, 10234} {7186, 9352}
12517 {0, 902, 3740, 4642, 7875, 8777, 11615} {1980, 2754}
12541 {0, 1141, 1253, 2394, 10147, 11288, 11400} {678, 2640}
12577 {0, 793, 5113, 5906, 6671, 7464, 11784} {2395, 11377}
15289 {2134, 4966, 7100, 8189, 10323, 13155} {0, 2166, 13122, 15288}
15973 {0, 1982, 4844, 6826, 9147, 11129, 13991} {6308, 7838}
21577 {749, 6703, 7452, 14125, 14874, 20828} {0, 6894, 14682, 21576}
22381 {0, 4921, 8275, 9185, 13196, 14106, 17460} {6704, 15158}
22453 {1289, 4306, 5595, 16858, 18147, 21164} {0, 4542, 17910, 22452}
24517 {3804, 7868, 11672, 12845, 16649, 20713} {0, 9414, 19686, 24516}
24781 {0, 352, 5683, 6035, 18746, 19098, 24429} {4658, 24284}
25321 {6347, 9148, 9826, 15495, 16173, 18974} {0, 1302, 24018, 25320}
25873 {0, 894, 7322, 8216, 17657, 18551, 24979} {6082, 22936}
26881 {0, 676, 12212, 12888, 13993, 14669, 26205} {19238, 23036}

Table 9: Cycles of length 2, with x6 = −1 as a critical equation

p Φ(f) f
71 {0, 63} {23, 26, 34, 39, 41, 51, 70 }

421 {0, 7} {36, 51, 174, 269, 346, 388, 420}
1163 {469, 1162} {0, 185, 253, 390, 665, 878, 1119, 1162}
2591 {2219, 2590} {0, 211, 741, 1449, 1556, 1700, 2117, 2590}
3697 {0, 1519} {441, 1400, 1460, 1569, 3107, 3115, 3696}
5419 {0, 4781} {8, 254, 512, 1323, 3387, 5355, 5418}
7127 {0, 6489} {1412, 1528, 1816, 1945, 2872, 4682, 7126}
7253 {5327, 7252} {0, 961, 3264, 3845, 3985, 4842, 4863, 7252}
8289 {1340, 1529} {0, 846, 2006, 3274, 4257, 6719, 7556, 8218}
9227 {7077, 9226} {0, 1340, 2287, 3665, 5488, 6891, 8011, 9226}
9857 {0, 1421} {292, 1798, 3449, 7262, 8163, 8608, 9856}
11173 {0, 1883} {962, 1315, 1915, 2590, 6873, 8692, 11172}
13217 {10638, 10785} {0, 1938, 3346, 4999, 6068, 11001, 12300, 13216}
17627 {0, 17367} {2848, 5405, 5587, 11541, 12558, 14943, 17626}
18341 {0, 16247} {1469, 4610, 5119, 5128, 6277, 14080, 18340}
20231 {0, 14091} {6032, 10545, 12782, 12963, 19055, 19548, 20230}
21799 {0, 12887} {10602, 11101, 14903, 15039, 16207, 19345, 21798}
24697 {0, 16163} {15651, 15742, 19810, 23831, 23927, 24525, 24696}
26153 {24339, 26152} {0, 4239, 5686, 10112, 13615, 20665, 24143, 26152}

Table 10: Cycles of length 2, with x7 = −1 as a critical equation

p Φ(f) f
7793 {0, 2501, 3578, 3609, 3789, 4004, 4184, 4215, 5292} {4473, 5825}
10529 {0, 543, 967, 2831, 4192, 6337, 7698, 9562, 9986} {1445, 1469}
18257 {0, 2541, 6151, 7545, 8507, 9750, 10712, 12106, 15716} {5429, 9581}

Table 11: Cycles of length 2, with x8 = −1 as a critical equation
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p Φ(f) f
397 {35, 85, 93, 111, 201, 318, 363, 383, 396} {0, 81}
1999 {0, 461, 674, 809, 864, 1130, 1191, 1372, 1496, 1998} {13, 490}
2953 {0, 407, 653, 770, 801, 1776, 2153, 2581, 2672, 2952} {2907, 2952}
5563 {0, 712, 1004, 1780, 2510, 2779, 4166, 4450, 4852, 5562} {4413, 5448}
7489 {1613, 2468, 2612, 3151, 3264, 4403, 5022, 7424, 7488} {0, 4509}
13159 {0, 304, 1447, 3947, 4194, 7518, 10740, 11631, 12856, 13158} {6986, 12737}
13249 {0, 3209, 3252, 4544, 5453, 7255, 8796, 10041, 10447, 13248} {5751, 13248}
14779 {6689, 6874, 7411, 8091, 10622, 10781, 11366, 12062, 14778} {0, 5049}
16741 {0, 4821, 5200, 6180, 6720, 8818, 10562, 11208, 13456, 16740} {625, 15916}
20089 {0, 3661, 5934, 8166, 11924, 16531, 16795, 17713, 19722, 20088} {3263, 16826}
20431 {5207, 5927, 8792, 9297, 9352, 11640, 11991, 19519, 20430} {0, 13491}
22159 {0, 3520, 7105, 7143, 7911, 9728, 15254, 18640, 19336, 22158} {922, 3595}
27361 {287, 2429, 9935, 10669, 14263, 21560, 23227, 27075, 27360} {0, 27351}

Table 12: Cycles of length 2, with x9 = −1 as a critical equation

p Φ(f) f
1021 {0, 226, 250, 374, 384, 486, 535, 637, 647, 771, 795} {381, 731}
7561 {0, 1151, 2923, 3071, 3186, 3602, 3959, 4375, 4490, 4638, 6410} {1390, 6540}
26681 {0, 231, 2199, 2915, 8833, 12503, 14178, 17848, 23766, 24482, 26450} {13634, 24004}

Table 13: Cycles of length 2, with x10 = −1 as a critical equation

p Φ(f) f
2311 {41, 592, 630, 808, 1149, 1422, 1537, 1691, 1784, 1902, 2310} {0, 517}
17579 {0, 2602, 6197, 7306, 7550, 7948, 8222, 9787, 10266, 12928, 15090, 17578} {6806, 8599}

Table 14: Cycles of length 2, with x11 = −1 as a critical equation

p Φ(f) f
3217 {452, 633, 762, 1032, 1085, 1423, 1794, 2132, 2185, 2455, 2584, 2765} {0, 204, 3012, 3216}
9049 {0, 413, 747, 1468, 2215, 3513, 3926, 5123, 5536, 6834, 7581, 8302, 8636 } {2817, 8373}
10993 {0, 395, 831, 2286, 3117, 5265, 5333, 5660, 5728, 7876, 8707, 10162, 10598} {884, 10952}
25153 {0, 47, 583, 2628, 3211, 5044, 5091, 20062, 20109, 21942, 22525, 24570, 25106} {164, 10712}

Table 15: Cycles of length 2, with x12 = −1 as a critical equation

p Φ(f) f
6761 {592, 1108, 1534, 2838, 3393, 4100, 4607, 4868, 5091, 6122, 6433, 6642, 6760} {0, 247}
7333 {1774, 1856, 2316, 2638, 3752, 3868, 3900, 5229, 5975, 6114, 6604, 7306, 7332} {0, 559}
7411 {188, 1711, 2720, 3444, 3875, 4416, 4696, 5189, 5853, 6079, 6472, 7235, 7410} {0, 1963}
14821 {0, 664, 2092, 3734, 3805, 4086, 5469, 7871, 8506, 10552, 13638, 13960, 14550, 14820} {265, 11978}
20749 {208, 515, 576, 4512, 4686, 14343, 14595, 15462, 15958, 17283, 17374, 18983, 20748} {0, 12493}

Table 16: Cycles of length 2, with x13 = −1 as a critical equation

p Φ(f) f
78877 {0, 628, 9860, 16176, 21994, 23352, 26295, 34597, 44280, 52582, 55525, 56883, 62701, 69017, 78249} {16105, 27375}

Table 17: Cycles of length 2, with x14 = −1 as a critical equation

p Φ(f) f
23071 {0, 1449, 2238, 3471, 6829, 9814, 10149, 11473, 12771, 13397, 13529, 14321, 18292, 20834, 22931, 23070} {2900, 21305}

Table 18: Cycles of length 2, with x15 = −1 as a critical equation
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p Φ(f) f
15329 {0, 631, 1494, 1525, 2719, 4463, 4640, 6453, 6744, 8585, 8876, 10689, 10866, 12610, 13804, 13835, 14698} {2208, 14640}

Table 19: Cycles of length 2, with x16 = −1 as a critical equation

p Φ(f) f
9181 {0, 347, 585, 635, 739, 2103, 2633, 4449, 4739, 4946, 5021, 6653, 7786, 8125, 8147, 8168, 8373, 9180} {3673, 8960}
14723 {0, 191, 1817, 2303, 3031, 3892, 4181, 6305, 7501, 7688, 9999, 10163, 11186, 11194, 11504, 13032, 13798, 14722} {2975, 14722}

Table 20: Cycles of length 2, with x17 = −1 as a critical equation

p Φ(f) f
7669 {379, 746, 943, 2292, 2642, 2671, 2751, 3497, 3585, 4084, 4172, 4918, 4998, 5027, 5377, 6726, 6923, 7290} {0, 2070, 5598, 7668}
16417 {713, 870, 1453, 3846, 4559, 6180, 6341, 7050, 7794, 8623, 9367, 10076, 10237, 11858, 12571, 14964, 15547,

15704} {0, 558, 15858, 16416}
19477 {0, 2660, 3452, 4542, 4834, 5909, 7562, 7994, 8734, 9255, 10222, 10743, 11483, 11915, 13568, 14643, 14935,

16025, 16817} {11719, 15517}

Table 21: Cycles of length 2, with x18 = −1 as a critical equation

p Φ(f) f
85159 {0, 863, 9617, 10123, 21662, 23002, 25591, 32848, 35228, 40674, 46111, 56307, 58585, 58588, 59985, 60619,

69005, 76480, 81144, 85158} {14611, 85158}

Table 22: Cycles of length 2, with x19 = −1 as a critical equation

p Φ(f) f
20641 {0, 1453, 3803, 3821, 3864, 4295, 6672, 7633, 8353, 9900, 10073, 10568, 10741, 12288, 13008, 13969, 16346,

16777, 16820, 16838, 19188} {14768, 20028}

Table 23: Cycles of length 2, with x20 = −1 as a critical equation

p Φ(f) f
883 {0, 27, 45, 75, 125, 134, 151, 154, 157, 176, 257, 269, 338, 546, 551, 556, 587, 624, 684, 797, 812, 882} {777, 882}
8317 {0, 1032, 1287, 1578, 1636, 2536, 2703, 4434, 4749, 4901, 4979, 5016, 6062, 6717, 6779, 6986, 7031, 7221,

7869, 8012, 8277, 8316} {3885, 8316}
14449 {4, 64, 903, 1024, 1935, 2062, 4094, 6201, 6709, 7708, 7736, 8184, 10353, 10611, 10837, 12403, 12515,

12522, 14193, 14433, 14448} {0, 2625}

Table 24: Cycles of length 2, with x21 = −1 as a critical equation

p Φ(f) f
67189 {0, 3362, 4911, 8073, 10784, 12119, 16486, 17127, 18290, 26123, 27122, 32878, 34311, 40067, 41066,

48899, 50062, 50703, 55070, 56405, 59116, 62278, 63827} {36783, 44857}

Table 25: Cycles of length 2, with x22 = −1 as a critical equation

p Φ(f) f
63803 {3453, 6827, 7165, 7952, 8049, 14819, 16043, 21446, 22245, 24190, 24911, 31401, 32064, 33479,

37447, 40837, 45016, 47663, 48328, 52564, 53860, 58272, 63802} {0, 42205}
68449 {2404, 2434, 4836, 5470, 5956, 6556, 6603, 10586, 13813, 14284, 22662, 30707, 33575, 35278, 36843,

38949, 51095, 55520, 56066, 59762, 60777, 61866, 68448} {0, 63365}
71347 {0, 5016, 6830, 12038, 12698, 16413, 16596, 19302, 19703, 23030, 25235, 30612, 38097, 43551, 44061,

48301, 51496, 56694, 58627, 60299, 62165, 63660, 70394, 71346} {976, 60569}

Table 26: Cycles of length 2, with x23 = −1 as a critical equation
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