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Abstract

In recent years, Homotopy Type Theory (HoTT) has emerged as an alternative formal system
for mathematics, capable of expressing highly classical concepts such as homotopy theory in a type-
theoretical syntax close to those found in computer science. This formal system was based in part on
what is now its most archetypal model, the simplicial model; built in the category of simplicial sets,
this model is topologically avoured: its basic objects can be seen as spaces for instance.

Accordingly, elements of the universe of discourse of HoTT can be understood as abstract spaces,
thus the notion of set can be encoded in the theory as an “abstract discrete space”. The present work
aims to show that properties of classical sets are preserved when those sets are interpreted as discrete
spaces in the simplicial model. While the approach taken is specic to the model at hand, it lays
the foundations for a more general framework which could be used in the future to answer similar
questions for dierent models.

A notable obstruction lies with a notion needed to interpret classical existence in HoTT, proposi-
tional truncation, as it is not part of the original construction of the simplicial model. As a result, this
work comprises an account of the method one can employ to truncate types down to strict propositions
in the simplicial model using image factorisations.
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1 Introduction
Motivation

The recent advent of Homotopy Type Theory (HoTT) as an alternative foundation for mathematics
has raised multiple questions on this new language’s adequacy encoding classical areas of mathematics
such as topology, analysis, and set theory. As the name hints at, the basic objects of HoTT, types, can be
thought of as abstractions of topological spaces seen through the lens of homotopy theory. As such, they
provide excellent models for topology and homotopy theory; classical notions from set theory have also
been formalised in HoTT; as has the bedrock of every analysis textbook, the construction of the real
numbers [Uni13, Part II].

However, one of the logical strengths of this new foundation has also be seen as one of its weaknesses
in regard to the formalisation of classical elds. Namely, bare HoTT assumes fewer axioms than classical
foundations, e.g., the law of excludedmiddle (LEM) can be present in the theory or absent from it according
to one’s needs, similarly to how the axiom of choice (AC) is optional in many Zermelo-Fraenkel-style
foundations of set theory.

This is indeed a logical strength, as being able to prove a theorem with fewer assumptions is always
preferable, think of how constructing an actual basis of a vector space is more useful than merely knowing
one exists by AC. In particular, such a weaker collection of axioms allows HoTT to simultaneously be a
language for classical mathematics and versions of intuitionistic mathematics, and its type-theoretical
syntax is close enough to that of functional programming languages so as to allow the existence of
eective proof checkers and proof assistants.

But there is a downside to these advantages, the problem is that it is not always clear which theorems
of a classical eld can be formalised in HoTT, as it is rarely apparent if all proofs of said theorems rely or
not on axioms such as LEM. One blanket solution would be to add all the classical axioms to HoTT, but
then the advantages described above would be, for the main part, lost.

A better solution to this issue, but one which requires more work, would be to have access to some
sort of dictionary between areas of mathematics and avours of HoTT, variations of the theory in which
various axioms have been added. For example, one might expect, due to the ubiquity of Zorn’s lemma
therein, that many parts of algebra would be most naturally translated in a version of HoTT endowed
with AC. Since it is conjectured that there exists a notion of duality between said variations of the theory
and models of HoTT, the dictionary could equivalently assign models in place of axiom systems. Or,
from the opposite point of view, this translation device could instead pair a model of HoTT with the
mathematical elds which can be satisfactorily interpreted in those models.

Goal

The present work oers to give partial information about the entry of this dictionary corresponding
to the rst univalent model of HoTT, the simplicial model [KL21], pertaining to the theory of sets. In
other words, it aims to provide the basis of a framework making it easier to transfer properties and
constructions of classical sets to the simplicial model; for example, it outlines a general procedure one
can follow to obtain results similar to the recent proof that LEM holds in the simplicial model [KL20].

Precisely, the present work aims to facilitate, in the context of the simplicial model, the comparison
of the notion of sets internal to HoTT, the so-called h-sets, with classical sets. In bare terms, given a
property satised by sets, the goal is to show that its translation in the language of HoTT, restricted to
h-sets, and interpreted in the simplicial model is also satised.
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Setting the stage

Suppose you are interested in a property 𝑃 of sets which can be expressed in type theory, meaning that
you have a specic type theory 𝑇 in mind whose syntactic rules let you derive the type (of proofs) of 𝑃 .
In addition, suppose that 𝑃 holds in the model1 𝑀Set of type theory based on the category of sets; that is,
suppose that the interpretation of the type corresponding to 𝑃 in𝑀Set admits elements, as those elements
model proofs of 𝑃 .

To clarify, interpreting syntactic objects in a specic model such as𝑀Set can be done “manually” by
translating the derivation of said object in the language of the framework at hand or it can be done in a
more category-theoretic manner. Namely, one associates to each type theory 𝑇 a syntactic model 𝑀𝑇 ,
whose constituents all originate from the syntax, sets up the correct category of models Mod(𝑇 ) of 𝑇 , in
which𝑀𝑇 is the initial object, thus obtains for each model𝑀 ∈ Mod(𝑇 ) a unique map J K𝑀

𝑇
: 𝑀𝑇 → 𝑀 ,

and uses it to interpret the syntax.
As an example, one might be interested in the validity of the axiom of choice in simplicial sets,

expressed as follows in type theory

𝐴 type 𝐴 ` 𝐵 type
(Π𝑎:𝐴‖𝐵𝑎 ‖) → ‖Π𝑎:𝐴𝐵𝑎 ‖

where ‖𝐴‖ stands for the propositional truncation of 𝐴.

The naive diagram

The rst step towards proving a version of 𝑃 in the simplicial model consists in choosing a fragment 𝑇
of HoTT expressive enough to formulate the property 𝑃 and that of being an h-set (i.e., it should have
Id-types) but also modest enough so as to be consistent with UIP, uniqueness of identity proofs, an axiom
asserting that all types are h-sets. Indeed, restricting 𝑃 to h-sets involves adding UIP to the type theory𝑇 ,
so one cannot simply take 𝑇 to be HoTT itself and call it a day, as axioms such as univalence contradict
UIP. The precise meaning of being “consistent with UIP” depends on the type and term formers at hand,
but in practice it takes the form of closure properties, e.g., Π-types preserve h-sets. For the case of
𝑃 = AC, such a minimal type theory 𝑇AC needs to comprise Id-types, Π-types, propositional truncation,
and a universe.

Of course, the model based on sets should validate the fragment𝑇 , since the strategy is to interpret 𝑃
in𝑀Set using 𝑇 before doing so in the simplicial model𝑀sSet. As mentioned above, this is carried out via
the interpretation map J KSet

𝑇
: 𝑀𝑇 → 𝑀Set. The result can then be sent in the simplicial model via a map

(of models) 𝐷 : 𝑀Set → 𝑀sSet which takes a set to the corresponding discrete simplicial set. Alternatively,
one can start by sending (the type of proofs of) 𝑃 to𝑀HoTT, the syntactic model of HoTT, along the map
𝑀𝑇 → 𝑀HoTT encoding that𝑇 is a fragment of HoTT; one can then take the result to its interpretation in
the the simplicial model via J KsSetHoTT. Diagrammatically, the process above consists in chasing 𝑃 along the
two paths depicted below.

𝑀𝑇 𝑀HoTT

𝑀Set 𝑀sSet

J K J K

𝐷

However this is still a rather naive process, and an attentive reader could raise some objections. The
following aims to identify and partially answer these obstructions, referring to the relevant sections
along the way.

1The precise notion of models used here are categories with attributes but such specicity is not needed for this explanation.

4



Restricting to h-sets

The rst major issue is that no mention of h-sets is made, even though restricting to h-sets was the main
point. As mentioned above, a possible solution would be to add UIP to 𝑇 , and construct a similar square
with 𝑇 + UIP in place of 𝑇 . This raises another problem: one does not get a map𝑀𝑇+UIP → 𝑀HoTT “for
free” as before since 𝑇 + UIP is not a fragment of HoTT. One possible approach to remedy this would
involve modifying the syntax of HoTT so that the result validates both 𝑇 and UIP, however such an
endeavour can be tricky since working directly at the level of the syntax can prove tedious and requires
great bookkeeping skills. For this reason, it is advantageous to work on the semantic level instead; thus
modifying𝑀HoTT, viewed as a model of 𝑇 , rather than its syntax.

The objective then is to construct a map

𝑀𝑇+UIP → 𝑆𝑀HoTT

in Mod(𝑇 + UIP) from the already given map

𝑀𝑇 → 𝑀HoTT

in Mod(𝑇 ), with 𝑆𝑀HoTT some h-set-based variation of 𝑀HoTT. It turns out that the forgetful functor
𝑈 : Mod(𝑇+UIP) → Mod(𝑇 ) sends𝑀𝑇+UIP to𝑀𝑇 , whichmeans that the above objective can reformulated
so that one now searches for a map

HomMod(𝑇 ) (𝑈𝑀𝑇+UIP, 𝑀HoTT) → HomMod𝑇+UIP (𝑀𝑇+UIP, 𝑆𝑀HoTT).

This suggests that one might just as well directly search for a right adjoint to 𝑈 . Indeed, up to some
technical details, this is essentially the work carried out in Section 2. More precisely, Section 2.1 sets up
the notion of models used throughout this work, Section 2.2 then constructs the desired adjoint for a
minimal 𝑇 , and nally Section 2.3 discusses extensions of said adjunction as well as its consequences.

Simplicial truncation

Another considerable obstruction to the approach sketched above is tied with the constructive nature of
type theory. Indeed, modelling (classical) existence in HoTT involves propositional truncation ‖ ‖, a
collapsing operation which “squashes” types down to mere propositions, which have at most one element
up to homotopy.

For example, if 𝐴 is a type and 𝑥 : 𝐴 ` 𝑃 (𝑥) a family of types over it, seen as a predicate over 𝐴, then
terms of ‖Σ𝑥 :𝐴𝑃 (𝑥)‖ encode that there exist terms of type 𝐴 satisfying 𝑃 . Truncation can also be used
without Σ-types and in that case providing a term of ‖𝐴‖ proves that the type 𝐴 is inhabited (without
actually having to give terms of type 𝐴), it is this version that appears above in the formulation of AC as
the property that a product of non-empty types is itself not empty.

Since many choices of 𝑃 are bound to be properties involving existence, AC to name but one, it
may reasonably be ascertained that propositional truncation will often be among the logical rules of 𝑇 .
However, its case is not treated in the standard account of the simplicial model [KL21], which means
that, for completeness, an interpretation of propositional truncation in simplicial sets ought to appear in
the present work. And indeed it does, it is the topic of Section 3; the chosen approach is based on image
factorisations, which means, on the one hand, that the associated computation rule is only modelled
propositionally but, on the other hand, it does yield strict propositions.

More precisely, Section 3.1 gives a quick and terse introduction to the construction of the simplicial
model and claries how one interprets propositional truncation therein. Because the notion of mere
proposition is an important one when dealing with truncation, Section 3.2 is devoted to exploring and
characterising said notion in the simplicial model. Finally, Section 3.3 introduces image factorisations,
describes how they can model propositional truncation, and assembles them with what has come before
to conclude.

5



Discrete interpretation

Lastly, there remains the matter of the map 𝐷 : 𝑀Set → 𝑀sSet, encoding the fact that sets can be viewed
as discrete simplicial sets (those whose only non-degenerate simplices are in dimension 0). However,
given the nature of the simplicial model, it is not as easy to dene as one might expect; for this reason
the notion of weak maps is introduced. Moreover, one needs 𝐷 to preserve the logical structure, at least
weakly, so that the strategy outlined above can go through.

Once a satisfactory account of 𝐷 has been given, one can go back to the naive diagram and redraw it
in a more rigorous manner. Actually, it is more natural to split it into two diagrams:

𝑀𝑇+UIP 𝑆𝑀HoTT

𝑀Set 𝑆𝑀sSet

J K 𝑆J K

𝐷

𝑈𝑆𝑀HoTT 𝑀HoTT

𝑈𝑆𝑀sSet 𝑀sSet

𝑈𝑆J K J K

The rst one commutes in a weak sense inMod(𝑇 +UIP) while the second does so on the nose inMod(𝑇 ).
One can thus chase the interpretation of (the type of proofs of) 𝑃 along the two paths of the rst square,
and while the two results are not be strictly equal they are closely related enough for a term in one of
the two induces a term in the other. Because 𝑃 was assumed true in Set, this means that 𝑃 is also true in
𝑆𝑀sSet. The strict commutativity of the second square then implies that 𝑃 is also true in𝑀sSet, as desired.

In Section 4, those pieces are put together and it is explained how they can be used to satisfy the
initial goal of interpreting properties of sets in sSet. More precisely, Section 4.1 gives a precise denition
of 𝐷 , while Section 4.2 gives a summary based on the two squares above.
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2 Restricting to h-sets

2.1 Categories with attributes
Variants of categorical semantics for type theories [Hof97] abound in the literature, with varying degree of
generality. Of those, structures known as contextual categories ([Car78, Section 2.2] and [Str91, Denition
1.2]) are among those most closely modelled on the syntax of type theory, and were Voevodsky’s models
of choice, which he called C-systems, when working on the simplicial model of univalence [KL21].

However, the constructions carried out in the present work can be streamlined when relying on
the slightly more general notion of categories with attributes [Car78, Mog91, Pit00]. Since the standard
approach used to equip simplical sets with a contextual structure [KL21, Sections 1 & 2] can easily be
adapted to yield a category with attributes instead, the change of framework does not come at any
consequent cost and is therefore adopted hereafter.

Denition 2.1. A category with attributes, often shortened to CwA, consists of:
(1) an underlying category C with a chosen terminal object 1, called the empty context;
(2) a functor Ty : Cop → Set, whose action on a morphism 𝑓 is written 𝑓 ∗ instead of Ty(𝑓 );
(3) for each 𝐴 ∈ Ty(Γ), an extension Γ.𝐴 ∈ C and a projection 𝑝𝐴 : Γ.𝐴 → Γ;
(4) for each 𝐴 ∈ Ty(Γ) and 𝑓 : Δ → Γ, a connecting map 𝑓 .𝐴 : Δ.𝑓 ∗𝐴 → Γ.𝐴;

such that:
(5) for each 𝐴 ∈ Ty(Γ) and 𝑓 : Δ → Γ, the diagram

Δ.𝑓 ∗𝐴 Γ.𝐴

Δ Γ

𝑓 .𝐴

𝑝𝑓 ∗𝐴
y

𝑝𝐴

𝑓

is a pullback square (the canonical pullback of 𝐴 along 𝑓 );
(6) these canonical pullbacks are functorial: for each 𝐴 and 𝑓 as above and each map 𝑔 : 𝐸 → Δ, the

identities
idΓ .𝐴 = idΓ.𝐴 and (𝑓 ◦ 𝑔).𝐴 = (𝑓 .𝐴) ◦ (𝑔.𝑓 ∗𝐴)

hold.

Remark 2.2. The second clause above, which asks for a presheaf Ty on C, may arguably be the most
important point of the denition. However, its formulation favours conciseness over transparency. It
might therefore be worth, if only to introduce some terminology, to unpack the data of the functor Ty by
giving an equivalent formulation of said clause. One can replace the point (2) of the last denition by:
(a) for each Γ ∈ C, a set Ty(Γ) of types over Γ;
(b) for each 𝐴 ∈ Ty(Γ) and 𝑓 : Δ → Γ, a type 𝑓 ∗𝐴 ∈ Ty(Δ), the reindexing of 𝐴 along 𝑓 ;

such that
(c) the mapping 𝑓 ↦→ 𝑓 ∗ is functorial: for each 𝐴 and 𝑓 as above and each map 𝑔 : 𝐸 → Δ, the

identities
id∗Γ𝐴 = 𝐴 and (𝑓 ◦ 𝑔)∗𝐴 = 𝑔∗ 𝑓 ∗𝐴

hold.
Categories with attributes can easily be viewed as the models of an essentially algebraic theory [AR94,

3.D] with three sorts: one for objects, one for morphisms, and one for types. In general, the canonical
notion of homomorphism between models of an e.a.t. is that of set maps between the corresponding
sorts which commute with all the operations of the theory; the next denition reformulates this for the
case at hand.
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Denition 2.3. An CwA map 𝐹 : C → D between categories with attributes consists of an underlying
functor 𝐹 between the underlying categories and a natural transformation 𝐹Ty : TyC → TyD ◦ 𝐹 op which
strictly preserve the CwA structure, i.e., such that

𝐹 (Γ.𝐴) = 𝐹 (Γ).𝐹Ty (𝐴), 𝐹 (𝑝𝐴) = 𝑝𝐹Ty (𝐴) ,

𝐹 (𝑓 .𝐴) = 𝐹 (𝑓 ).𝐹Ty (𝐴), 𝐹 (1C) = 1D

hold for any choice of variables of the right sorts.

The category of categories with attributes and CwA maps, denoted CwA, is therefore the category of
models of an essentially algebraic theory. Note that if there is no risk of confusion, the supscript Ty of
the natural transformation 𝐹Ty may be omitted.

Much of the intuition and terminology of categories with attributes stems from the following
archetypal example.

Example 2.4 (Syntactic CwA). Let 𝑇 be a type theory as mentioned in the introduction, it induces a
category with attributes C𝑇 in which:
(1) objects are contexts [𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛] of 𝑇 , up to denitional equality and renaming of free

variables;
(2) maps are context morphisms, once again considered up to denitional equality and renaming of

free variables, this means that a map 𝑓 : [𝑦1 : 𝐵1, . . . , 𝑦𝑚 : 𝐵𝑚] → [𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛] in C𝑇 is an
equivalence class [𝑓1, . . . , 𝑓𝑛] of sequences of terms

𝑦1 : 𝐵1, . . . , 𝑦𝑚 : 𝐵𝑚 ` 𝑓1 : 𝐴1,

𝑦1 : 𝐵1, . . . , 𝑦𝑚 : 𝐵𝑚 ` 𝑓2 : 𝐴2 [𝑓1/𝑦1],
...

𝑦1 : 𝐵1, . . . , 𝑦𝑚 : 𝐵𝑚 ` 𝑓𝑛 : 𝐴𝑛 [𝑓1/𝑦1, . . . , 𝑓𝑛−1/𝑦𝑛−1],

where two such sequences 𝑓1, . . . , 𝑓𝑛 and 𝑔1, . . . , 𝑔𝑛 are equivalent precisely when, for each 𝑖 ≤ 𝑛,

𝑦1 : 𝐵1, . . . , 𝑦𝑚 : 𝐵𝑚 ` 𝑓𝑖 ≡ 𝑔𝑖 : 𝐴𝑖 [𝑓1/𝑦1, . . . , 𝑓𝑖−1/𝑦𝑖−1];

(3) the composition 𝑓 ◦ 𝑔 of two maps 𝑓 and 𝑔 is obtained by substituting the terms of 𝑔 for the
variables of the terms of 𝑓 , and the identity map at Γ is given by the sequence consisting of the
variables of Γ, seen as terms in context Γ;

(4) the elements of Ty( [𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛]) are types

𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 ` 𝐴 type,

considered up to denitional equality and renaming of free variables, with substitution as reindex-
ing;

(5) extensions are induced by syntactic context extensions, and the projection 𝑝𝐴 : Γ.𝐴 → 𝐴 corres-
ponding to a type 𝐴 ∈ Ty(Γ) is also given by the variables of Γ, this time viewed as weakened
terms in the context Γ.𝐴;

(6) the connecting map 𝑓 .𝐴 of a map 𝑓 : Δ → Γ and a type 𝐴 ∈ Ty(Γ) results from weakening the
terms of a sequence dening 𝑓 to the context Δ.𝑓 ∗𝐴 and adding the last variable of said context to
that sequence.

The category of sets can also be given the structure of a category with attributes, resulting in a more
concrete example.
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Example 2.5 (CwA of sets). The category with attributes based on Set, written CSet, is dened as follows:
(1) the underlying category is Set, the category of sets, with an arbitrarily chosen one-element set {∗}

as the terminal object;
(2) for each set Γ, a type 𝐴 over Γ is a Γ-indexed family of sets 𝐴 = (𝐴𝛾 )𝛾 ∈Γ , and if 𝑓 : Δ → Γ is a map

of sets then the reindexing of 𝐴 along 𝑓 is the Δ-indexed family

𝑓 ∗𝐴 = (𝐴𝑓 (𝛿) )𝛿 ∈Δ;

(3) for 𝐴 ∈ Ty(Γ), the extension Γ.𝐴 is the disjoint union of the 𝐴𝛾 , with 𝑝𝐴 : Γ.𝐴 → Γ being the
evident projection, that is,

Γ.𝐴 = {(𝛾, 𝑎) : 𝛾 ∈ Γ, 𝑎 ∈ 𝐴𝛾 } and 𝑝𝐴 : (𝛾, 𝑎) ↦→ 𝛾 ;

(4) for 𝐴 ∈ Ty(Γ) and 𝑓 : Δ → Γ, the connecting map 𝑓 .𝐴 is

𝑓 .𝐴 : Δ.(𝑓 ∗𝐴) → Γ.𝐴 : (𝛿, 𝑎) ↦→ (𝑓 (𝛿), 𝑎).

When writing elements of iterated extensions in CSet, it is useful to view nested ordered pairs as ordered
tuples, so that elements of Γ.𝐴.𝐵, say, are of the form (𝛾, 𝑎, 𝑏) and not ((𝛾, 𝑎), 𝑏).

Example 2.6 (Trivial CwA). Every categoryCwith a terminal object 1 can be equipped with the structure
of a trivial category with attributes. Namely, the type presheaf is the initial object in Hom(Cop, Set), i.e.,
the one taking each object of C to the empty set; the choice of extensions, projections, and connecting
maps is then vacuous as there are no types.

The third clause of Denition 2.1 is equivalent to choosing an object in the slice C/Γ for each
𝐴 ∈ Ty(Γ). This suggests that the notion of slice categories is relevant in the study of CwAs. Indeed, the
notion of brant slice [KL18, Sections 2.1 & 4.1] is a useful tool, both a notational and mathematical one,
when dealing with CwAs.

Denition 2.7. A context over an object Γ of a CwA C is a (possibly empty) sequence (𝐴1, . . . , 𝐴𝑛)
with

𝐴1 ∈ Ty(Γ), 𝐴2 ∈ Ty(Γ.𝐴1), . . . , 𝐴𝑛 ∈ Ty(Γ.𝐴1. · · · .𝐴𝑛−1).
The length of such a context is the length of the corresponding sequence, i.e., the number of types in Δ.

Even though such contexts are not strictly speaking types of C, they can be seen as generalisations
thereof; the next denition extends the CwA structure accordingly.

Denition 2.8. Let Δ = (𝐴1, . . . , 𝐴𝑛) be a context over an object Γ of a CwA C. The extension Γ.Δ ∈ C
of Γ by Δ and the corresponding projection 𝑝Δ : Γ.Δ → Γ are

Γ.Δ = Γ.𝐴1. · · · .𝐴𝑛 and 𝑝Δ = 𝑝𝐴𝑛
◦ · · · ◦ 𝑝𝐴1 .

In the presence of a map 𝑓 : Γ′ → Γ of C, the reindexing 𝑓 ∗Δ of Δ along 𝑓 , which is a context over Γ′,
and the corresponding connecting map 𝑓 .Δ : Γ′.𝑓 ∗Δ → Γ.Δ are

𝑓 ∗Δ = (𝑓 ∗𝐴1, (𝑓 .𝐴1)∗𝐴2, . . . , (𝑓 .𝐴1 . · · · .𝐴𝑛−1)∗𝐴𝑛) and 𝑓 .Δ = 𝑓 .𝐴1 . · · · .𝐴𝑛 .

Denition 2.9 ([KL18, Denition 4.13]). Let C be a category with attributes, and Γ an object of C. The
brant slice of C over Γ, written C//Γ, is the category with attributes specied by the following:
(1) objects are contexts over Γ;
(2) maps of C//Γ between Δ and Δ′ are maps 𝑔 : Γ.Δ → Γ.Δ′ of C such that 𝑝Δ′ ◦ 𝑔 = 𝑝Δ, with

composition and identity morphisms inherited from C;
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(3) the chosen terminal object is the empty context over Γ, corresponding to the empty sequence of
types;

(4) the set of types over Δ ∈ C//Γ is TyC (Γ.Δ), and the extension Δ.𝐴 of Δ by such a type 𝐴 is the
result of adding 𝐴 at the end of the sequence dening Δ;

(5) reindexing of types, projections, and connecting maps are all inherited from C in the evident ways;

Proposition 2.10. Let C be a category with attributes, and 𝑓 : Γ′ → Γ a map of C. Sending Δ ∈ C//Γ
to 𝑓 ∗Δ ∈ C//Γ′ denes a CwA map 𝑓 ∗ : C//Γ → C//Γ′, acting on morphisms via the universal property of
pullbacks and on types via reindexing.

Moreover, the mapping 𝑓 ↦→ 𝑓 ∗ is functorial, hence denes a functor C → CwA : Γ ↦→ C//Γ.

Proof. A map 𝑔 : Δ′ → Δ of C//Γ is sent to the unique map 𝑔′ : 𝑓 ∗Δ′ → 𝑓 ∗Δ of C//Γ′ such that 𝑓 .Δ ◦𝑔′ =
𝑔 ◦ 𝑓 .Δ′, this is clearly a functorial assignment. A type 𝐴 ∈ TyC//Γ (Δ) is sent to (𝑓 .Δ)∗𝐴 ∈ TyC//Γ′ (𝑓 ∗Δ),
and the denition of 𝑓 ∗ on morphisms ensures that 𝐴 ↦→ (𝑓 .Δ)∗𝐴 is natural. Showing that 𝑓 ∗ preserves
the remainder of the CwA structure is a straightforward exercise. The last claim is clear. �

So far, both types and contexts have been given semantic counterparts, as well as have various other
syntactic notions such as context extensions. However, one notable omission still remains: terms. In
Example 2.4, the syntactic CwA, maps of the underlying category are context morphisms, i.e., sequences
of terms. In particular, terms of

𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 ` 𝐴 type

correspond, up to denitional equality and renaming of free variables, to maps

[𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛] → [𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛, 𝑥 : 𝐴]

which leave the rst 𝑛 variables unchanged. Bearing this in mind, one should not be surprised by the
denition in a general category with attributes.

Denition 2.11. In a category with attributes C, a term of a type 𝐴 ∈ Ty(Γ) is a section of the
corresponding projection 𝑝𝐴, i.e., a map 𝑎 : Γ → Γ.𝐴 such that 𝑝𝐴 ◦ 𝑎 = idΓ . The set of terms of 𝐴 is
written Tm(Γ, 𝐴), or Tm(𝐴) if no confusion can arise from leaving Γ implicit.

For example, elements of Tm(Γ, 𝐴) in CSet are Γ-indexed families of elements (𝑎𝛾 )𝛾 ∈Γ such that
𝑎𝛾 ∈ 𝐴𝛾 for all 𝛾 ∈ Γ.

As is the case with types, terms can be reindexed. Namely, a term in Tm(Γ, 𝐴) of a CwA C is precisely
a map in the brant slice C//Γ from the empty context to 𝐴, viewed as a context over Γ; hence the
pullback functors of Proposition 2.10 can be applied to terms. Concretely, given a map 𝑓 : Γ′ → Γ of C
and a term 𝑎 ∈ Tm(Γ, 𝐴), the image 𝑓 ∗𝑎 of 𝑎 under 𝑓 ∗ is a map of C//Γ′ from the empty context over Γ′
to 𝑓 ∗𝐴, i.e., a term of the latter, henceforth known as the reindexing of 𝑎 along 𝑓 . It is worth noting
that reindexing of terms is also functorial.

As one might expect, CwA maps play well with terms.

Proposition 2.12. Let 𝐹 : C → D be a CwA map. For each type 𝐴 ∈ TyC (Γ), the CwA map 𝐹 induces
natural maps

Tm(Γ, 𝐴) → Tm(𝐹Γ, 𝐹𝐴) : 𝑎 ↦→ 𝐹𝑎,

natural in the sense that 𝐹 𝑓 ∗𝑎 = (𝐹 𝑓 )∗𝐹𝑎 for each 𝑎 ∈ Tm(Γ, 𝐴) and 𝑓 : Δ → Γ.

Proof. Since 𝐹 preserves projections, the image of a section of 𝑝𝐴 is a section of 𝑝𝐹𝐴, hence the induced
maps are well-dened. The claimed naturality follows from 𝐹 ’s preserving of canonical pullback squares,
as that implies that 𝐹 also preserves pullbacks of morphisms. �
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One of the reasons for introducing brant slices is that they provide a formal setting in which to
extend the reindexing notation 𝑓 ∗, as was already hinted at with the case of terms.

Notation. Let C be a CwA, and 𝑓 : Γ′ → Γ a map of C. In the remainder of the present work, each time
an expression 𝑓 ∗𝑋 is encountered, with 𝑋 a type, map, or object of C, then 𝑋 can be understood as a
type, map, or object of the brant slice C//Γ. Accordingly, the expression 𝑓 ∗𝑋 is to be read in the sense
of Proposition 2.10, as the image of 𝑋 under the reindexing functor 𝑓 ∗. Note that this does not clash
with the previous meaning of 𝑓 ∗𝐴 for types 𝐴 ∈ Ty(Γ).

2.2 Adjunction from h-sets
The previous section laid out the foundations of categories with attributes, the bedrock of all semantic
considerations to follow. Those models encode precisely the basic judgements and structural rules of
type theory. In order to interpret more complex types, such as products types, Π-types, or identity types,
it is necessary to endow CwAs with extra structure, corresponding to said types.

The main types of interest here are identity types. The following is the semantic translation of their
dening properties as laid out in the syntax.

Denition 2.13. An Id-structure on a CwA C consists of:
(1) for each type 𝐴 ∈ Ty(Γ), a type

Id𝐴 ∈ Ty(Γ.𝐴.𝑝∗𝐴𝐴);

(2) for each type 𝐴 ∈ Ty(Γ), a map

𝑟𝐴 : Γ.𝐴 → Γ.𝐴.𝑝∗𝐴𝐴.Id𝐴

such that 𝑝Id𝐴 ◦ 𝑟𝐴 = (idΓ.𝐴, idΓ.𝐴);
(3) for each type 𝐴 ∈ Ty(Γ), type 𝐶 ∈ Ty(Γ.𝐴.𝑝∗

𝐴
𝐴.Id𝐴), and map 𝑑 : Γ.𝐴 → Γ.𝐴.𝑝∗

𝐴
𝐴.Id𝐴 .𝐶 such that

𝑝𝐶 ◦ 𝑑 = 𝑟𝐴, a term
𝐽𝐶,𝑑 ∈ Tm(Γ.𝐴.𝑝∗𝐴𝐴.Id𝐴,𝐶)

such that 𝐽𝐶,𝑑 ◦ 𝑟𝐴 = 𝑑 ;
under the the additional condition that the above data is stable under reindexing, that is, for each map
𝑓 : Δ → Γ and 𝐴,𝐶,𝑑 as above the following identities hold:

𝑓 ∗Id𝐴 = Id𝑓 ∗𝐴, 𝑓 ∗𝑟𝐴 = 𝑟 𝑓 ∗𝐴, 𝑓 ∗ 𝐽𝐶,𝑑 = 𝐽𝑓 ∗𝐶,𝑓 ∗𝑑 .

A CwA with Id-types is one that is equipped with an Id-structure.

As usual, adding structure warrants giving a name to those maps which preserve said structure.

Denition 2.14. A CwA map 𝐹 : C → D between CwAs with Id-types is said to preserve Id-types if,
for any 𝐴,𝐶,𝑑 as above, the following holds:

𝐹 Id𝐴 = Id𝐹𝐴, 𝐹𝑟𝐴 = 𝑟𝐹𝐴, 𝐹 𝐽𝐶,𝑑 = 𝐽𝐹𝐶,𝐹𝑑 .

The category of CwAs with Id-types and CwA maps preserving Id-types is denoted by CwAId.

Example 2.15. The CwA of sets CSet admits a canonical choice of Id-types. Indeed, given an indexed
family of sets (𝐴𝛾 )𝛾 ∈Γ , there is a prevalent choice of family, indexed by the extension

Γ.𝐴.𝑝∗𝐴𝐴 = {(𝛾, 𝑎, 𝑎′) : 𝛾 ∈ Γ, 𝑎, 𝑎′ ∈ 𝐴𝛾 },
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which models equality:

(Id𝐴) (𝛾,𝑎,𝑎′) =
{
{∗} if 𝑎 = 𝑎′,

∅ if 𝑎 ≠ 𝑎′.

In other words, the set (Id𝐴) (𝛾,𝑎,𝑎′) contains at most one element and is inhabited precisely when 𝑎 = 𝑎′.
The extension of Id𝐴 is therefore the set of tuples (𝛾, 𝑎, 𝑎, ∗) with 𝑎 ∈ 𝐴𝛾 , which is isomorphic to Γ.𝐴 via
the map

𝑟𝑎 : Γ.𝐴 → Γ.𝐴.𝑝∗𝐴𝐴.Id𝐴 : (𝛾, 𝑎) ↦→ (𝛾, 𝑎, 𝑎, ∗) .

The above clearly satises 𝑝Id𝐴 ◦ 𝑟𝐴 = (idΓ.𝐴, idΓ.𝐴), so it can be chosen to model reexivity. Lastly, if
𝐶 is a family of sets indexed by the extension of Id𝐴 and 𝑑 : Γ.𝐴 → Γ.𝐴.𝑝∗

𝐴
𝐴.Id𝐴 .𝐶 a map such that

𝑝𝐶 ◦ 𝑑 = 𝑟𝐴 then one can simply let 𝐽𝐶,𝑑 be 𝑑 ◦ 𝑟−1
𝐴
.

Syntactically, an h-set is type 𝐴 together with a proof that, for any two elements 𝑥,𝑦 : 𝐴, any two
equalities between 𝑥 and 𝑦 are themselves equal. CwAs with Id-types provide the right setting for a
semantic translation of this denition.

Denition 2.16. Let C be a CwA with Id-types, and Γ ∈ C. An h-set over Γ is a pair (𝐴,𝑤) with 𝐴 a
type in Ty(Γ) and𝑤 a term in Tm(IdId𝐴 ).2 The set of h-sets over Γ is written Ty≤0 (Γ).3

Stability of Id-types under reindexing ensures that if (𝐴,𝑤) is an h-set over Γ ∈ C, as in the denition
above, and 𝑓 : Δ → Γ is any map of C then (𝑓 ∗𝐴, 𝑓 ∗𝑤) is an h-set over Δ, called the reindexing of
(𝐴,𝑤) along 𝑓 and denoted by 𝑓 ∗ (𝐴,𝑤). This shows that Ty≤0 is actually a presheaf, with which one
can replace the type presheaf Ty and obtain a new CwA as a result.

Denition 2.17. Let C be a CwA with Id-types, its CwA of h-sets 𝑆C is the CwA dened as follows:
(1) it has the same underlying category as C;
(2) types of 𝑆C over Γ are h-sets of C over Γ, meaning that Ty𝑆C (Γ) = (TyC)≤0 (Γ), with reindexing as

dened above;
(3) extensions, projections, and connecting maps are inherited from C by forgetting the second

components of h-sets, signifying that

Γ.(𝐴,𝑤) = Γ.𝐴, 𝑝 (𝐴,𝑤) = 𝑝𝐴, 𝑓 .(𝐴,𝑤) = 𝑓 .𝐴

for each h-set (𝐴,𝑤) ∈ Ty𝑆C (Γ) and map 𝑓 : Δ → Γ.
The stripping map 𝑠C : 𝑆C → C is the CwA map whose underlying functor is the identity and which
acts on types by (𝐴,𝑤) ↦→ 𝐴.

One of the rst facts one proves when learning about h-sets in HoTT is that if 𝐴 is an h-set then so is
the corresponding identity type Id𝐴. Syntactic proofs of this fact translate to particularly stable terms.

Proposition 2.18. There exists a family of terms

ℓC,𝐴,𝑤 ∈ TmC (IdIdId𝐴 ),

indexed by CwAs with Id-types C, types 𝐴 of C, and terms𝑤 in Tm(IdId𝐴 ) such that

𝑓 ∗ℓC,𝐴,𝑤 = ℓC,𝑓 ∗𝐴,𝑓 ∗𝑤 and 𝐹ℓC,𝐴,𝑤 = ℓD,𝐹𝐴,𝐹𝑤

for each map 𝑓 : Δ → Γ of C and CwAId-map 𝐹 : C → D.
2In full, the term 𝑤 belongs to Tm(Γ.𝐴.𝑝∗

𝐴
𝐴.Id𝐴 .𝑝∗Id𝐴 Id𝐴, IdId𝐴 ) .3In the more general context of 𝑛-types, h-sets correspond to 0-types, hence the notation.
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Disclaimer. As currently stated, the above proposition is not exactly true, at least it seems dicult to
prove. This is because the standard syntactic proof (or variants thereof) of the fact that mere propositions
are also h-sets relies on path composition, which itself cannot be dened using only the version of identity
types considered here. Indeed, to set up the double identity elimination used to dene composition one
usually relies on Π-types, which are not available here.

Undoubtedly, the constructions and denitions of this section can be adapted if one were to add
(extensional) Π-types to the picture; however, the present goal is to give a minimal working example of
restriction to h-sets, in which the only assumption on CwAs is that they carry an Id-structure.

This goal can still be achieved if one is willing to adopt a stronger notion of Id-types: Frobenius
identity types, which allow a version of identity elimination with extra assumptions. The only dierence
with Denition 2.13 is that the elimination rule is stronger: for each

• object Γ ∈ C,
• type 𝐴 ∈ Ty(Γ),
• context Δ = (𝐵1, . . . , 𝐵𝑛) over Γ.𝐴.𝑝∗𝐴𝐴.Id𝐴,
• type 𝐶 ∈ Ty(Γ.𝐴.𝑝∗

𝐴
𝐴.Id𝐴 .Δ), and

• map 𝑑 : Γ.𝐴.𝑟 ∗
𝐴
Δ → Γ.𝐴.𝑝∗

𝐴
𝐴.Id𝐴 .Δ.𝐶 such that 𝑝𝐶 ◦ 𝑑 = 𝑟𝐴 .Δ

one obtains a section 𝐽Δ,𝐶,𝑑 of 𝑝𝐶 , stable over Γ, such that 𝐽Δ,𝐶,𝑑 ◦ (𝑟𝐴 .Δ) = 𝑑 . As soon as one works with
more fully edged type theories, as opposed to one with only Id-types, the distinction between plain
identity types and Frobenius identity types is blurred since the latter can be dened from the former and
Π-types, as explained in the start of section 3.4.3 of [LW15].

The proof given below relies on Frobenius identity types, while the remainder of the section stays
ambiguous as to exactly which notion of identity types is used. This seemingly faux-pas in terms of
rigour has the advantage that the section can either be read with Frobenius identity types in mind, thus
providing a minimal working example albeit with a dierent notion of Id-structure; or it can be read
under the hidden assumption that (extensional) Π-types are also considered.

Proof of Proposition 2.18. This is based on the syntactic proof from the HoTT book [Uni13, 3.1.8].
First note that it suces to dene stable (in the sense dened above) terms ℓ ′C,𝐴,𝑤 ∈ Tm(IdId𝐴 )

where𝑤 ∈ Tm(Id𝐴), and to let ℓC,𝐴,𝑤 = ℓ ′C,Id𝐴,𝑤 . Indeed, this corresponds to applying a proof that mere
propositions are h-sets to the type Id𝐴 of an h-set 𝐴.

Using Frobenius identity types, one can dene the semantic counterpart of path composition. Indeed,
let Γ be an object of a CwA C and 𝐴 a type over it, denote by 𝐴′ and 𝐴′′ respectively the weakened types
𝑝∗
𝐴
𝐴 and 𝑝∗

𝐴′𝐴
′. Since Γ.𝐴.𝐴′.𝐴′′ and Γ.𝐴.𝐴′ are respectively isomorphic to 𝐴 ×Γ 𝐴 ×Γ 𝐴 and 𝐴 ×Γ 𝐴,

there is a map 𝑞 : Γ.𝐴.𝐴′.𝐴′′ → Γ.𝐴.𝐴′ corresponding to the projection (𝜋1, 𝜋3) : 𝐴 ×Γ 𝐴 ×Γ 𝐴 → 𝐴 ×Γ 𝐴

which forgets the middle component. Consider the type

𝑝∗
𝑝∗
Id′
𝐴

𝑝∗
𝐴′′ Id𝐴

𝑝∗Id𝐴′𝑞
∗Id𝐴 ∈ Ty(Γ.𝐴.𝐴′.𝐴′′.Id𝐴′ .𝑝∗Id′𝐴

𝑝∗𝐴′′Id𝐴)

One can construct a section of said type using two identity eliminations. This section corresponds to the
operation (𝑝, 𝑞) ↦→ 𝑝 · 𝑞 where 𝑝 : 𝑥 = 𝑦 and 𝑞 : 𝑦 = 𝑧.

Similarly, if 𝑠 : Γ.𝐴.𝐴′ → Γ.𝐴.𝐴′ designs the map which swaps components, then the type

𝑝∗Id𝐴𝑠
∗Id𝐴 ∈ Ty(Γ.𝐴.𝐴′.Id𝐴)

admits the section 𝐽𝑝∗
Id𝐴

𝑠∗Id𝐴,(𝑟𝐴,𝑟𝐴) . This section corresponds to the operation 𝑝 ↦→ 𝑝−1.
The remainder of the proof could also be carried out in the language of CwAs but for the sake of

clarity it is given in a more syntactic language. Using another instance of identity elimination one can
obtain a proof of 𝑝 · 𝑝−1 = refl. Now, given a term 𝑤 such that 𝑤 (𝑥,𝑦) : 𝑥 = 𝑦 for all 𝑥,𝑦 : 𝐴, one can
construct a term𝑤 ′(𝑝) : 𝑝 = 𝑤 (𝑥,𝑦) ·𝑤 (𝑦,𝑦)−1 for each 𝑝 : 𝑥 = 𝑦 by identity elimination; indeed, in the
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case 𝑝 ≡ refl𝑥 the above proof of 𝑝 ·𝑝−1 = refl can be used to dene𝑤 ′. To show that any two 𝑝, 𝑞 : 𝑥 = 𝑦

are themselves equal to one another, it suces to take the term𝑤 ′(𝑝) ·𝑤 ′(𝑞)−1 : 𝑝 = 𝑞.
In the world of CwAs, this last term would have been dened in terms of sections 𝐽Δ,𝐶,𝑑 and would

therefore be stable both under reindexing and under CwA maps which preserve the identity structure.
Hence, the conclusion follows. �

Fix such a family of terms ℓ = (ℓC,𝐴,𝑤) for the remainder of this section. Such a choice induces an
ℓ-canonical h-set structure on identity types of h-sets.

Proposition 2.19. Let C be a CwA with Id-types. For (𝐴,𝑤) ∈ Ty≤0 (Γ), setting

Id(𝐴,𝑤) = (Id𝐴, ℓC,𝐴,𝑤)

and, for each suitable choice of h-set (𝐶,𝑤 ′) and map 𝑑 ,

𝑟 (𝐴,𝑤) = 𝑟𝐴, 𝐽(𝐶,𝑤′),𝑑 = 𝐽𝐶,𝑑

denes an Id-structure on 𝑆C, which is preserved by 𝑠C : 𝑆C → C.

Proof. By denition of ℓ , the pair (Id𝐴, ℓC,𝐴,𝑤) is an h-set over Γ.(𝐴,𝑤).𝑝∗(𝐴,𝑤) (𝐴,𝑤), so it is a suitable
candidate for Id-types. And since the objects, maps, extensions, and projections of 𝑆C are inherited from
C, the proposed 𝑟 (𝐴,𝑤) and 𝐽(𝐶,𝑤′),𝑑 satisfy their respective conditions.

All that remains is to check stability under reindexing, that of 𝑟 and 𝐽 follows directly from them
being part of an Id-structure on C. As for Id(𝐴,𝑤) , it is due in part to the stability properties of ℓ under
reindexing: for any map 𝑓 : Δ → Γ,

𝑓 ∗Id(𝐴,𝑤) = (𝑓 ∗Id𝐴, 𝑓 ∗ℓC,𝐴,𝑤) = (Id𝑓 ∗𝐴, ℓC,𝑓 ∗𝐴,𝑓 ∗𝑤) = Id𝑓 ∗ (𝐴,𝑤) .

Finally, checking that 𝑠C preserves Id-types is straightforward. �

The idea that proofs of equality should be propositionally indistinguishable from each other is known
as uniqueness of identity proofs, UIP for short; this is an equivalent way of saying that all types should be
h-sets. Since the concept of h-sets was translated in CwAs with Id-types, so can that of UIP.

There is a slight complication however. One would expect a UIP-structure to consist of a family
of terms 𝑤𝐴 ∈ Tm(IdId𝐴 ) indexed by types 𝐴 and stable under reindexing, but with such a denition
the following property fails: if C is a CwA with Id-types equipped with such a UIP-structure then the
canonical map C → 𝑆C, which takes objects and maps to themselves but act on types by 𝐴 ↦→ (𝐴,𝑤𝐴),
might fail to respect Id-types, as there is no reason that𝑤Id𝐴 = ℓC,𝐴,𝑤𝐴

should hold.
The x might seem a simple one but it works for the present needs, the missing equation is simply

added to the denition. Of course this depends upon the choice of ℓ , and as to avoid any confusion this
dependence is recorded in the name.

Denition 2.20. Let C be a CwA with Id-types. A UIPℓ-structure on C is a family of terms

𝑤𝐴 ∈ Tm(IdId𝐴 ),

indexed by the types 𝐴 ∈ Ty(Γ) of C, such that
(1) they agree with the canonical h-set structure on identity types: for each type 𝐴 ∈ Ty(Γ),

𝑤Id𝐴 = ℓC,𝐴,𝑤𝐴
;

(2) they are stable under reindexing: for each map 𝑓 : Δ → Γ of C,

𝑓 ∗𝑤𝐴 = 𝑤 𝑓 ∗𝐴 .
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A CwA with UIPℓ is one equipped with a UIPℓ -structure. For C and D two CwAs with UIPℓ , a CwA map
𝐹 : C → D preserving Id-types is said to further preserve UIPℓ if

𝐹𝑤𝐴 = 𝑤𝐹𝐴

for each type 𝐴. The corresponding category is called CwAUIPℓ .

Example 2.21. Since h-sets are meant to model sets, verifying that CSet supports UIP is a good sanity
check, a straightforward one at that. Recall that, for an indexed family of sets (𝐴𝛾 )𝛾 ∈Γ , there is at most one
section of 𝑝Id𝐴 , which exists precisely each 𝐴𝛾 has at most one element.Applying this to the family Id𝐴
directly shows that 𝑝IdId𝐴 has a section since the sets (Id𝐴) (𝛾,𝑎,𝑎′) have at most one element by denition;
call that section𝑤𝐴. Moreover, there being at most one section directly guarantees that the chosen family
of terms is stable under reindexing and respect the ℓ-induced h-set structure on identity types.

Proposition 2.22. Let C be a CwA with Id-types. For (𝐴,𝑤) ∈ Ty≤0 (Γ), letting

𝑤 (𝐴,𝑤) = 𝑤

denes an UIPℓ -structure on 𝑆C.

Proof. By denition, terms of IdId(𝐴,𝑤) in 𝑆C are precisely terms of IdId𝐴 in C, hence𝑤 is a term of the
right sort. Moreover, this choice of terms is compatible with the canonical h-set structure of identity
types: for each h-set (𝐴,𝑤) of C,

𝑤Id(𝐴,𝑤) = 𝑤 (Id𝐴,ℓC,𝐴,𝑤 ) = ℓC,𝐴,𝑤 = ℓC,𝐴,𝑤(𝐴,𝑤) .

Finally, they are also stable under reindexing as

𝑓 ∗𝑤 (𝐴,𝑤) = 𝑓 ∗𝑤 = 𝑤 (𝑓 ∗𝐴,𝑓 ∗𝑤) = 𝑤 𝑓 ∗ (𝐴,𝑤)

for each h-set (𝐴,𝑤) ∈ Ty≤0 (Γ) and map 𝑓 : Δ → Γ. �

In summary, everyC ∈ CwAId induces an object 𝑆C ofCwAUIPℓ together with a CwAmap 𝑠C : 𝑆C → C
preserving Id-types. In other words, if 𝑈 denotes the forgetful functor CwAUIPℓ → CwAId, then 𝑠C is a
map𝑈𝑆C → C in CwAId. This is actually a universal construction, as shown below.

Proposition 2.23. For each C ∈ CwAId, the pair (𝑆C, 𝑠C) is a universal arrow from the forgetful functor
𝑈 : CwAUIPℓ → CwAId to C.

That is, for each D ∈ CwAUIPℓ and map 𝐹 : 𝑈D → C in CwAId there exists a unique map 𝐺 : D → 𝑆C
in CwAUIPℓ such that 𝐹 = 𝑠C ◦𝑈𝐺 .

Proof. Suppose that such a map 𝐺 exists. Since the stripping map 𝑠C acts as the identity on objects and
morphisms, the underlying functor of 𝐺 must coincide with that of 𝐹 . If 𝐴 is a type of D then

𝑠C (𝐺𝐴) = 𝐹𝐴,

hence the rst component of 𝐺𝐴 has to be 𝐹𝐴, meaning that 𝐺𝐴 = (𝐹𝐴,𝑤) for some𝑤 . But 𝐺 preserves
UIPℓ , thus

𝐺𝑤𝐴 = 𝑤𝐺𝐴 = 𝑤 (𝐹𝐴,𝑤) = 𝑤.

This means that 𝑤 must be equal to 𝐹𝑤𝐴, because 𝐺𝑤𝐴 = 𝐹𝑤𝐴, as the underlying functors of 𝐺 and
𝐹 agree. The above shows that if such a CwA map 𝐺 exists then its action on objects and morphisms
coincide with that of 𝐹 and it sends a type 𝐴 of D to the h-set (𝐹𝐴, 𝐹𝑤𝐴). This settles uniqueness.

Conversely, it is easy to check that the actions on objects, morphisms, and types above yield a well
dened CwA map 𝐺 : D → 𝑆C preserving Id-types and UIPℓ , and satisfying the desired equality. �

15



Corollary 2.24. The mapping C ↦→ 𝑆C is the object function of a right adjoint 𝑆 to𝑈 : CwAUIPℓ → CwAId.
The action of 𝑆 on morphisms takes a map 𝐹 : C → D in CwAId to 𝑆𝐹 : 𝑆C → 𝑆D, dened as 𝐹 on the
underlying categories and on types by

(𝐴,𝑤) ∈ Ty𝑆C (Γ) ↦→ (𝐹𝐴, 𝐹𝑤) ∈ Ty𝑆D (𝐹Γ).

Proof. Applied to the last proposition, the characterisation of adjoints by universal arrows [Mac98,
Theorem IV.1.2] directly shows that there exists a right adjoint 𝑆 to 𝑈 whose object function is given
by C ↦→ 𝑆C, and whose action on morphisms is the unique one making the maps 𝑠C : 𝑈𝑆C → C into a
natural transformation𝑈𝑆 → idCwAId .

In other words, the image 𝑆𝐹 of a morphism 𝐹 : C → D of CwAId is the unique map 𝑆C → 𝑆D such
that 𝑠D ◦𝑈𝑆𝐹 = 𝐹 ◦ 𝑠C, which results from the universality of 𝑠D. The proof of the previous proposition
showed that 𝑆𝐹 and 𝐹 ◦ 𝑠C have the same underlying functor, i.e., the same as 𝐹 ; and that 𝑆𝐹 sends a
type (𝐴,𝑤) of 𝑆C to (

(𝐹 ◦ 𝑠C) (𝐴,𝑤), (𝐹 ◦ 𝑠C)𝑤 (𝐴,𝑤)
)
= (𝐹𝐴, 𝐹𝑤).

�

2.3 Extensions and consequences
In the previous section, a right adjoint to the forgetful functor 𝑈 : CwAUIPℓ → CwAId was constructed,
thus answering the problem of “restricting to h-sets” posed in the corresponding paragraph of the
introduction. However, it constitutes a minimal answer, where the type theory at hand comprises
only the structural rules and those governing identity types. Ideally, one would be able to extend said
adjunction to more general type theories 𝑇 , assumed to have Id-types.

The rst half of the present section informally discusses what form could take conditions on a type
theory 𝑇 which ensure that the forgetful functor 𝑈𝑇 : CwA𝑇+UIPℓ → CwA𝑇 admits a similarly dened
right adjoint 𝑆𝑇 . Consequences of such adjunctions are then discussed in the second half of the section.

In the denition below, the notation 𝑤 : isSet𝐴 is shorthand for the syntactic meaning of 𝑤 ∈
Tm(IdId𝐴 ).

Denition 2.25. A type former

Γ1 ` 𝐴1 type . . . Γ𝑛 ` 𝐴𝑛 type Γ𝑛+1 ` 𝑏1 : 𝐵1 . . . Γ𝑛+𝑚 ` 𝑏𝑚 : 𝐵𝑚
Γ ` 𝐻 (𝐴1, . . . , 𝐴𝑛, 𝑏1, . . . , 𝑏𝑚) type

is said to preserves h-sets in a type theory 𝑇 , which has at least Id-types, if the rule below can be
derived in 𝑇 .

Γ1 ` 𝐴1 type
...

Γ𝑛 ` 𝐴𝑛 type

Γ1 ` 𝑤1 : isSet𝐴1
...

Γ𝑛 ` 𝑤𝑛 : isSet𝐴𝑛

Γ𝑛+1 ` 𝑏1 : 𝐵1
...

Γ𝑛+𝑚 ` 𝑏𝑚 : 𝐵𝑚
Γ ` 𝑤 (𝑤1, . . . ,𝑤𝑛) : isSet𝐻 (𝐴1, . . . , 𝐴𝑛, 𝑏1, . . . , 𝑏𝑚)

If all the type formers a given family of rules preserve h-sets in 𝑇 then the family is also said to preserve
h-sets in 𝑇 . If all the type formers of a type theory 𝑇 ′ contained in 𝑇 preserve h-sets in 𝑇 then 𝑇 ′ is said
to preserve h-sets in 𝑇 ; saying that a type theory with Id-types preserves h-sets means that it does so in
itself.

Remark 2.26. If 𝑛 = 0 in the above denition, meaning that 𝐹 does not depend on any type 𝐴𝑖 , then it
preserves h-sets precisely if 𝐻 (𝑏1, . . . , 𝑏𝑛) is an h-set for any choice of 𝑏𝑖 ’s.
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Example 2.27. The family of rules dening identity types preserves h-sets in any type theory with
Id-types or, in slogan form, Id-types preserve h-sets. Indeed, it is precisely upon a proof of that fact that
Proposition 2.18 relies to provide a family of terms ℓC,𝐴,𝑤 .

Example 2.28. Section 7.1 of the HoTT book [Uni13] shows that most of the rule families dening
logical structures preserve h-sets in HoTT, though said proofs could be adapted to work in a smaller type
theory. It is worth noting that function extensionality appears in the proof that Π-types preserve h-sets.

As mentioned in the rst example, preservation of h-sets under identity types was crucial in obtaining
a stable family of terms; Proposition 2.18 can be generalised.

Proposition 2.29. If

Γ1 ` 𝐴1 type . . . Γ𝑛 ` 𝐴𝑛 type Γ𝑛+1 ` 𝑏1 : 𝐵1 . . . Γ𝑛+𝑚 ` 𝑏𝑚 : 𝐵𝑚
Γ ` 𝐻 (𝐴1, . . . , 𝐴𝑛, 𝑏1, . . . , 𝑏𝑚) type

is a type former preserving h-sets in 𝑇 , then there exists a stable family of terms ℓ𝐻C,𝐴𝑖 ,𝑏 𝑗 ,𝑤𝑘
indexed by

� categories with attributes C in CwA𝑇 ,
� types 𝐴1 ∈ Ty(Γ1), . . . , 𝐴𝑛 ∈ Ty(Γ𝑛),
� terms 𝑏1 ∈ Tm(𝐵1), . . . , 𝑏𝑚 ∈ Tm(𝐵𝑚), and
� terms𝑤1 ∈ Tm(IdId𝐴1

), . . . ,𝑤𝑛 ∈ Tm(IdId𝐴𝑛
)

such that
ℓ𝐻C,𝐴𝑖 ,𝑏 𝑗 ,𝑤𝑘

∈ Tm(IdId𝐻 (𝐴1,...,𝐴𝑛,𝑏1,...,𝑏𝑚 ) );

here, the adjective “stable” means that

𝑓 ∗ℓ𝐻C,𝐴𝑖 ,𝑏 𝑗 ,𝑤𝑘
= ℓ𝐻C,𝑓 ∗𝐴𝑖 ,𝑓

∗𝑏 𝑗 ,𝑓
∗𝑤𝑘

and 𝐹ℓ𝐻C,𝐴𝑖 ,𝑏 𝑗 ,𝑤𝑘
= ℓ𝐻D,𝐹𝐴𝑖 ,𝐹𝑏 𝑗 ,𝐹𝑤𝑘

for each map 𝑓 : Δ → Γ of C and CwA𝑇 -map 𝐹 : C → D.
�

Suppose now that𝑇 is a type theory which preserve h-sets. According to the proposition above, each
type former of𝑇 can be given a stable family of terms; if they are bundled together, they can be regarded
as a single family ℓ𝑇 indexed by type formers. Fix such an ℓ for the remainder of the section.

Let C be a model of𝑇 , i.e., an object of CwA𝑇 , one can endow its CwA of h-sets 𝑆C with a𝑇 -structure
preserved by the stripping map. Namely, the missing term part of the interpretation of each type former
in 𝑆C is given by ℓ𝑇 , while the structure corresponding to term formers can be inherited from C since it
and 𝑆C share the same underlying category. Denote the obtained element of CwA𝑇 by 𝑆𝑇C.

As before, the chosen ℓ𝑇 also induces an ℓ𝑇 -canonical notion of UIP. Namely, an UIPℓ𝑇 -structure
on a C ∈ CwA𝐴 consists of a choice of a family of terms𝑤𝐴 ∈ Tm(IdId𝐴 ) which both respects ℓ𝑇 and is
stable under reindexing. As expected, the CwA of h-sets 𝑆𝑇C naturally carries a UIPℓ𝑇 -structure and
Proposition 2.23 can be generalised.

Proposition 2.30. For each C ∈ CwA𝑇 , the pair (𝑆𝑇C, 𝑠C) is a universal arrow from the forgetful functor
𝑈𝑇 : CwA𝑇+UIP

ℓ𝑇
→ CwA𝑇 to C. �

Corollary 2.31. The mapping C ↦→ 𝑆𝑇C is the object function of a right adjoint 𝑆𝑇 to the forgetful functor
𝑈𝑇 : CwA𝑇+UIP

ℓ𝑇
→ CwA𝑇 . �

Before moving to consequences of the above, a word should be said on the notion of universe in type
theory. A universe can be thought of as a “type of types”, and indeed the crudest kind of universe is just
that: a closed type𝑈 with a dependent family of types

𝐴 : 𝑈 ` El(𝐴) type.
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In most cases, one requires of𝑈 a number of closure properties such as asking for a term constructor

Γ ` 𝐴 : 𝑈 Γ, 𝑥 : El(𝐴) ` 𝐵(𝑥) : 𝑈
Γ ` 𝜋 (𝐴, 𝐵) : 𝑈

together with a judgemental equality El(𝜋 (𝐴, 𝐵)) ≡ Π𝑎:El(𝐴) El(𝐵(𝑎)), in which case𝑈 is said to be closed
under Π-types. What, however, is not a standard condition on universes is that they and the types they
index be h-sets. Therefore, universes, as usually encountered in type theory, do not preserve h-sets.

As a result, the above framework applies to a universe𝑈 only if it is explicitly requested that𝑈 and
each 𝐴 : 𝑈 ` El(𝐴) is an h-set. In particular, it seems dicult to adapt the above for a univalent universe.
While a universe of h-sets which is itself an h-set is not commonplace in most descriptions of HoTT,
adding one does not lead to an inconsistent theory, at least in the case of a universe without closure
properties. Indeed, any family of sets indexed by a set induces such a universe in the simplicial model.

In summary, giving a more satisfactory account of universes within this framework requires more
work; fortunately, the method does apply to simple universes, which is sucient to model a limited form
of quantication over h-sets. For example, a set-based universe is enough to interpret the formulation of
AC, as given in the introduction, in the CwA of h-sets of the simplicial model; however, the obtained
interpretation is a weak one in that the types quantied over are required to be strict h-sets, those h-sets
which are isomorphic a set rather than just homotopy equivalent to one.

The rst direct consequence is one that was mentioned in the introduction without justication.

Proposition 2.32. Let 𝑇 be a type theory, with Id-types, preserving h-sets. The forgetful functor 𝑈𝑇 :
CwA𝑇+UIP

ℓ𝑇
→ CwA𝑇 sends the syntactical CwA C𝑇+UIP

ℓ𝑇
of 𝑇 + UIPℓ𝑇 to (an isomorphic copy of) C𝑇 .

Proof. Since 𝑈𝑇 is a left adjoint, it preserves colimits; in particular it preserve initial objects. Both
C𝑇+UIP

ℓ𝑇
and C𝑇 are initial objects in their respective categories, hence the claim holds. �

Another direct consequence of the adjunction can be viewed as a sanity check with regards to the
interpretation of the logic in CwA of h-sets of the simplicial model CsSet.

Proposition 2.33. Let 𝑇 be a type theory, with Id-types and contained in HoTT, preserving h-sets. The
diagram

𝑈𝑇𝑆𝑇CHoTT CHoTT

𝑈𝑇𝑆𝑇CsSet CsSet

𝑈𝑇 𝑆𝑇 J K J K

commutes in CwA𝑇 , where the horizontal maps are stripping maps.

Proof. This is just a naturality square of the counit 𝑠 : 𝑈𝑇𝑆𝑇 → idCwA𝑇 . �

In practice, this means that after restricting a rule of𝑇 via 𝑆𝑇 , whether one rst forgets the restriction
and then interprets in CsSet, or rst interprets the rule in the CwA of h-sets of CsSet then forgets the
restriction, the result is the same. In other words, the functor 𝑆𝑇 fulls its role of restricting to h-set,
though it does so at the cost of relying on a choice of ℓ .

Fortunately, this dependence is not as large an issue as one might rst think. For one, it can be
disregarded in the case of a CwA C with Id-types which model the reection principle, meaning that the
projection Id𝐴 → Γ.𝐴.𝑝∗

𝐴
𝐴 is isomorphic to the diagonal map Γ.𝐴 → (Γ.𝐴) ×Γ (Γ.𝐴) as is the case in CSet.

Indeed, any UIPℓ -structure on such a C, for any choice of ℓ , is precisely what a standard UIP-structure
would be, since the ℓ-dependent condition (1) of Denition 2.20 is vacuously satised.

Even when the CwA at hand does not have reective Id-types, the composite𝑈𝑇𝑆𝑇 : CwA𝑇 → CwA𝑇
remains unchanged for dierent choices of ℓ𝑇 . Which is to say that it is a valid means of restricting to
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h-sets, independently of ℓ𝑇 . Though the intermediate category CwA𝑇+UIP
ℓ𝑇

used in the process might
not be the rst choice of someone solely wanting to study models of UIP.

In conclusion, this approach seems to be a reasonable middle ground between striving for a more
satisfactory semantic notion of UIP and keeping things simple; since it was the strictness of CwA maps
that raised the need for such a “x”, it may be conjectured that switching to the 2-category of CwAs with
weak maps instead of strict ones might yield a more elegant solution but that, indeed, complicates things.
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3 Simplicial truncation

3.1 Coherence and universes
When seen from afar, some categories appear to carry a loose CwA structure, in which the structure
is only dened up to isomorphism for example, but on close inspection it is not always clear how to
translate this intuition to a strict CwA. One of the most recurring obstructions is known as the coherence
problem, which comes in two avours.

The rst stems from the fact that part of the data of a CwA is essentially a functorial choice of
pullbacks, which is quite an unnatural condition in many categories where such a choice can typically
only be made up to isomorphisms. The second avour is also linked to pullbacks, because all the extra
logical structure a CwA might carry is supposed to strictly commute with them; even when the extra
structure is dened by way of category-theoretic notions, e.g., by universal properties, this rarely holds
without some careful and clever choices.

In other words, endowing a category with a CwA structure requires coherent choices of pullbacks
and additional coherent choices of representatives for the logical structure, depending on the previous
selections. While this can be done by hand in simple examples such as CSet, it can quickly turn into a
bookkeeping nightmare for more complex categories.

The solution to the coherence problem used to construct the simplicial model [KL21], due to Voevod-
sky, is based on the following observation: on-the-nose equality of objects is rarely a tractable notion in
category theory, while strict equality of morphisms is much more amenable. Accordingly, one of the
main insight of the solution is to shift one’s view and think of types over Γ not as objects of the slice
C/Γ but as morphisms from Γ into a xed object of C.

Denition 3.1 ([Voe15, Denition 2.1]). A (Voevodsky) universe in a category C is an object 𝑈 together
with a morphism 𝑝 : �̃� → 𝑈 and, for each map 𝑓 : 𝑋 → 𝑈 , an object 𝐸 (𝑓 ) as well as two maps
𝑃 (𝑓 ) : 𝐸 (𝑓 ) → 𝑋 and 𝑄 (𝑓 ) : 𝐸 (𝑓 ) → �̃� such that

𝐸 (𝑓 ) �̃�

𝑋 𝑈

𝑄 (𝑓 )

𝑃 (𝑓 ) 𝑝

𝑓

y

is a pullback square.

Notation. Let 𝑈 be a universe in a category C. If p𝐴q : 𝑋 → 𝑈 is a map of C with 𝐴 a symbol or
expression, then one can simply write 𝐴 for 𝐸 (p𝐴q), and 𝑝𝐴 for 𝑃 (p𝐴q).

Denition 3.2 ([Voe15, Construction 2.12]). Let C be a category,𝑈 a universe in C, and 1 a terminal
object of C. The CwA induced by𝑈 , denoted by C𝑈 , is dened as follows:
(1) the underlying category is C itself, and the chosen terminal object is 1;
(2) the type presheaf is the representable presheaf y𝑈 , i.e., types over an object Γ are maps Γ → 𝑈 ,

with reindexing modelled by precomposition;
(3) extensions and projections are inherited from the universe structure of𝑈 , that is, if 𝑓 : Γ → 𝑈 is a

type over Γ then
Γ.𝑓 = 𝐸 (𝑓 ) and 𝑝 𝑓 = 𝑃 (𝑓 );

(4) in the presence of a type 𝑓 : Γ → 𝑈 and a map 𝑔 : Δ → Γ, the connecting map 𝑔.𝑓 is induced by
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the universal properties of pullbacks:

𝐸 (𝑓 ◦ 𝑔) 𝐸 (𝑓 ) �̃�

Δ Γ 𝑈

𝑔.𝑓

𝑄 (𝑓 ◦𝑔)

𝑃 (𝑓 ◦𝑔)
y

𝑃 (𝑓 )

𝑄 (𝑓 )y
𝑝

𝑔 𝑓

Proposition 3.3 ([Voe15, Construction 2.12, Example 4.9]).
(1) The data above dene a category with attributes C𝑈 .
(2) If 𝑈 and 𝑈 ′ are two universes in C with 𝑝 = 𝑝 ′, then the induced CwAs C𝑈 and C𝑈 ′ are locally

isomorphic, i.e., for each Γ ∈ C the brant slices C𝑈 //Γ and C𝑈 ′//Γ are isomorphic; the brant slices
C𝑈 //1 and C𝑈 ′//1′ are also isomorphic. �

The above oers a method with which to tackle the rst part of the coherence problem. Namely, if
one chooses a universe structure encoding the desired notion of types, then the induced CwA is a strict
model whose notion of type is in accordance with the initial intuition. As an example, consider the case
of the simplicial model.

Denition 3.4. For a regular cardinal 𝛼 , a simplicial map 𝑓 : 𝑌 → 𝑋 is 𝛼-small if, for each simplex 𝑥 of
𝑋 , the bre 𝑓 −1 (𝑥) = 𝑌𝑥 has cardinality strictly less than 𝛼 .

Theorem 3.5 ([KL21, 2.1.10 & 2.1.12]). For each regular cardinal 𝛼 , there exists a weakly universal bration
𝑝𝛼 : 𝑈𝛼 → 𝑈𝛼 among 𝛼-small brations; that is, a simplicial map 𝑝 : 𝐸 → 𝐵 is an 𝛼-small bration if and
only if it can be expressed as a pullback of 𝑝𝛼 .

𝐸 𝑈𝛼

𝐵 𝑈𝛼

𝑝
y

𝑝𝛼

�

Denition 3.6. Fix a choice of pullbacks of 𝑝𝛼 : 𝑈𝛼 → 𝑈𝛼 and a terminal object in sSet, the simplicial
model is then dened as the induced CwA sSet𝑈𝛼

.

The above yields a strict CwA structure on sSet in which types over a simplicial set Γ are (up to
isomorphism) 𝛼-small brations with base Γ. At this point, sSet𝑈𝛼

is a plain CwA without any additional
structure, while the real simplicial model interprets most of Martin-Löf type theory and a univalent
universe. The remainder of this section uses the specic cases of identity types and propositional
truncation to illustrate how to tackle the second avour of the coherence problem, i.e., how to add logical
structures to universe-induced CwAs such as sSet𝑈𝛼

.

First, consider the case of identity types, as dened in Denition 2.13. For each type p𝐴q : Γ → 𝑈

of C𝑈 , parts (1) and (2) of said denition ask for a type pId𝐴q : 𝐴 ×Γ 𝐴 → 𝑈 together with a map
𝑟𝐴 : 𝐴 → Id𝐴 such that

𝐴 Id𝐴

𝐴 ×Γ 𝐴

𝑟𝐴

Δ𝐴 𝑝Id𝐴
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commutes. As for part (3), it assumes a type p𝐶q : Id𝐴 → 𝑈 together with a map 𝑑 : 𝐴 → 𝐶 such that
𝑝𝐶 ◦ 𝑑 = 𝑟𝐴 and asks for 𝐽𝐶,𝑑 , a section of 𝑝𝐶 such that 𝐽𝐶,𝑑 ◦ 𝑟𝐴 = 𝑑 . Since 𝑝𝐶 is a pullback of 𝑝 , one can
view 𝑑 as a map 𝑑 : 𝐴 → �̃� making the solid square displayed below commute, and 𝐽𝐶,𝑑 as a diagonal
ller of said square.

𝐴 �̃�

Id𝐴 𝑈

𝑑

𝑟𝐴 𝑝

p𝐶q

𝐽𝐶,𝑑

In other words, condition (3) precisely asks for llers witnessing that 𝑟𝐴 has the left lifting property
against 𝑝 , as dened below.

Denition 3.7. Let 𝑖 : 𝐴 → 𝐵 and 𝑓 : 𝑌 → 𝑋 be two maps in a category C. The map 𝑓 has the right
lifting property against 𝑖 , or equivalently, the map 𝑖 has the left lifting property against 𝑓 , if any
solid square in C as below admits at least one diagonal ller.

𝐴 𝑌

𝐵 𝑋

𝑖 𝑓

One writes 𝑖 � 𝑓 to signify that 𝑖 and 𝑓 have this property.

Suppose now that the “universal” type id𝑈 : 𝑈 → 𝑈 has been given such a structure. That is, assume
a type pIdq : �̃� ×𝑈 �̃� → 𝑈 , a map 𝑟 : �̃� → Id such that

�̃� Id

�̃� ×𝑈 �̃�

𝑟

Δ
�̃�

𝑝Id

commutes, and llers witnessing that 𝑟 � 𝑝 . These data almost induce an identity structure for each type
of C𝑈 via pullbacks. Namely, since each type p𝐴q : Γ → 𝑈 induces a map 𝐴 ×Γ 𝐴 → �̃� ×𝑈 �̃� , one can
dene pId𝐴q as that map followed by Id. Similarly, the reexivity map 𝑟𝐴 : 𝐴 → Id𝐴 can be obtained
as the pullback of 𝑟 : �̃� → Id, seen as a map in the slice C/𝑈 , along p𝐴q : Γ → 𝑈 . These two satisfy
𝑝Id𝐴 ◦ 𝑟𝐴 = Δ𝐴, hence they are candidates for parts (1) and (2) of Denition 2.13.

What is more, these choices of Id𝐴 and 𝑟𝐴 are strictly stable under reindexing. Indeed, for 𝑟𝐴, e.g.,
this is because

𝑓 ∗𝑟𝐴 = 𝑓 ∗p𝐴q∗𝑟 = (𝑓 ◦ p𝐴q)∗𝑟 = (p𝑓 ∗𝐴q)∗𝑟 = 𝑟 𝑓 ∗𝐴

for any type p𝐴q : Γ → 𝑈 and map 𝑓 : Δ → Γ.
However, it turns out that the condition 𝑟 � 𝑝 on its own is not sucient to model the elimination

rule of identity types in a way that is stable under pullbacks. The correct structure can be expressed in
terms of internal lifting operations, which are themselves related to a stable version of lifting properties.

Denition 3.8 ([KL21, Denition 1.4.5]). Let 𝑖 and 𝑓 be two maps of a category C with products, the
map 𝑖 is said to have the stable left lifting property against 𝑓 if (𝐶 × 𝑖) � 𝑓 for all 𝐶 ∈ C.

Remark 3.9. In the case where C has pullbacks, if 𝑖 can be seen as a map in the slice C/Γ for some Γ ∈ C,
then 𝑖 has the stable left lifting property against 𝑓 × Γ in C/Γ if and only if the pullback of 𝑖 along any
map 𝑔 : Δ → Γ has the left lifting property against 𝑓 in C.
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Denition 3.10 ([KL21, Denition 1.4.6]). Let 𝑖 : 𝐴 → 𝐵 and 𝑓 : 𝑌 → 𝑋 be two maps in a cartesian
closed category. An internal lifting operation for 𝑖 against 𝑓 is a section of the map (𝑌 𝑖 , 𝑓 𝐵) : 𝑌𝐵 →
𝑌𝐴 ×𝑋𝐴 𝑋𝐵 .
Proposition 3.11 ([KL21, Proposition 1.4.7]). Let 𝑖 : 𝐴 → 𝐵 and 𝑓 : 𝑌 → 𝑋 be two maps in a cartesian
closed category. There exists an internal lifting operation for 𝑖 against 𝑓 if and only if 𝑖 has the stable left
lifting property against 𝑓 . �

It is now possible to express the structure a universe𝑈 corresponding to an Id-structure in C𝑈 .
Denition 3.12. A Id-structure on a universe𝑈 in a locally cartesian closed category C consists of two
maps

pIdq : �̃� ×𝑈 �̃� → 𝑈 and 𝑟 : �̃� → Id

such that the triangle
�̃�

Id

𝑈

𝑝

𝑟

𝑝Id

commutes, together with an internal lifting operation for 𝑟 against 𝑝 ×𝑈 in C.
Theorem 3.13 ([KL21, Theorem 1.4.15]). If𝑈 is a universe in a locally cartesian closed category C, then
an Id-structure on𝑈 induces an Id-structure on C𝑈 .

Proof. The idea is to dene the Id-structure of a type p𝐴q : Γ → 𝑈 from the Id-structure of 𝑈 via
precomposition and pullbacks, as was above for Id𝐴 and 𝑟𝐴. The case of 𝐽𝐶,𝑑 demands slightly more work
but goes through as well, for more details see [KL21, Section 1.4]. �

Example 3.14 (Id-structure on𝑈𝛼 ). The idea consists in seeing identities as paths, where the space of
paths in a simplicial set 𝑋 is modelled by the internal hom 𝑋Δ1 . Note that for any simplicial set 𝑋 , the
two vertices of Δ1 induce source and target maps 𝑠𝑋 , 𝑡𝑋 : 𝑋Δ1 → 𝑋Δ0

� 𝑋 , meaning that 𝑋Δ1 can always
be seen as living over 𝑋 × 𝑋 .

Intuitively, the space 𝑃𝐵 (𝐸) of paths in 𝐸 over 𝐵, for a given simplicial map 𝑝 : 𝐸 → 𝐵, consists of
paths in 𝐸 which become constant once projected down to 𝐵. It is dened by the pullback square below,
where the lowest horizontal map is induced by the canonical map 𝐸 ×𝐵 𝐸 → 𝐸 × 𝐸 and the composite
𝐸 ×𝐵 𝐸 → 𝐵 � 𝐵Δ0 𝑐𝐵−−→ 𝐵Δ1 , with 𝑐𝐵 being the “constant path” map 𝐵 → 𝐵Δ1 , the transpose of the
projection 𝐵 × Δ1 → 𝐵.

𝑃𝐵 (𝐸) 𝐸Δ1

𝐸 ×𝐵 𝐸 (𝐸 × 𝐸) ×𝐵×𝐵 𝐵Δ1

(𝑠𝑝 ,𝑡𝑝 )
y

( (𝑠𝐸 ,𝑡𝐸 ),𝑝Δ1 )

The reexivity term 𝑟𝐸 : 𝐸 → 𝑃𝐵 (𝐸) is then induced by 𝑐𝐸 : 𝐸 → 𝐸Δ1 , and indeed gives a factorisation of
Δ𝐸 : 𝐸 → 𝐸 ×𝐵 𝐸, as needed.

Moreover, it can be showed [KL21, Proposition 2.3.3] that if 𝑝 : 𝐸 → 𝐵 is a bration, then so is
(𝑠𝑝 , 𝑡𝑝 ) : 𝑃𝐵 (𝐸) → 𝐸 ×𝐵 𝐸 while 𝑟𝐸 : 𝐸 → 𝑃𝐵 (𝐸) is a trivial cobration, meaning it has the left lifting
property against all brations. Since this construction is stable under pullbacks, up to isomorphism, the
reexivity maps 𝑟𝐸 all have the stable left lifting property against each bration, in particular against 𝑝𝛼 .
By Proposition 3.11, this means that applying the above to the bration 𝑝𝛼 : �̃�𝛼 → �̃� itself yields an
Id-structure on𝑈𝛼 .
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Γ ` 𝐴 type Γ, 𝑥 : 𝐴 ` 𝐵 type

Γ, 𝑎1 : 𝐴, 𝑎2 : 𝐴, 𝑒 : Id𝐴 (𝑎1, 𝑎2), 𝑏1 : 𝐵 [𝑎1/𝑥], 𝑏2 : 𝐵 [𝑎2/𝑥] ` Id𝑒𝐵 (𝑏1, 𝑏2) type
Γ, 𝑎 : 𝐴,𝑏 : 𝐵 [𝑎/𝑥] ` refl′

𝑏
: Idrefl𝑎

𝐵
(𝑏,𝑏)

Γ ` 𝐴 type Γ, 𝑥 : 𝐴 ` 𝐵 type
Γ, 𝑥 : 𝐴,𝑦 : 𝐴, 𝑒 : Id𝐴 (𝑥,𝑦), 𝑢 : 𝐵, 𝑣 : 𝐵 [𝑦/𝑥], 𝑑 : Id𝑒𝐵 (𝑢, 𝑣) ` 𝐶 type

Γ, 𝑥 : 𝐴,𝑢 : 𝐵 ` 𝑐 : 𝐶 [𝑥/𝑦, refl𝑥/𝑒, refl′𝑢/𝑑]
Γ, 𝑎1 : 𝐴, 𝑎2 : 𝐴, 𝑝 : Id𝐴 (𝑎1, 𝑎2), 𝑏1 : 𝐵 [𝑎1/𝑥], 𝑏2 : 𝐵 [𝑎2/𝑥], 𝑞 : Id𝑝

𝐵
(𝑏1, 𝑏2)

` J′(𝑥𝑦𝑒𝑢𝑣𝑑.𝐶, 𝑥𝑢.𝑐, 𝑎1, 𝑎2, 𝑝, 𝑏1, 𝑏2, 𝑞) : 𝐶 [𝑎1/𝑥, 𝑎2/𝑦, 𝑝/𝑒, 𝑏1/𝑢,𝑏2/𝑣, 𝑞/𝑑]
Γ, 𝑎 : 𝐴,𝑏 : 𝐵 [𝑎/𝑥] ` J′(𝑥𝑦𝑒𝑢𝑣𝑑.𝐶, 𝑥𝑢.𝑐, 𝑎, 𝑎, refl𝑎, 𝑏, 𝑏, refl′𝑏) ≡ 𝑐 [𝑎/𝑥, 𝑏/𝑢]

Figure 1: Dependent identity types

Γ ` 𝐴 type
Γ ` ‖𝐴‖ type

Γ ` 𝐴 type
Γ, 𝑥 : 𝐴 ` tr(𝑥) : ‖𝐴‖

Γ ` 𝐴 type
Γ, 𝑥 : ‖𝐴‖, 𝑦 : ‖𝐴‖ ` treq(𝑥,𝑦) : Id‖𝐴 ‖ (𝑥,𝑦)

Γ ` 𝐴 type Γ, 𝑧 : ‖𝐴‖ ` 𝐶 type Γ, 𝑥 : 𝐴 ` 𝑐 : 𝐶 [tr(𝑥)/𝑧]
Γ, 𝑥 : ‖𝐴‖, 𝑦 : ‖𝐴‖, 𝑢 : 𝐶 [𝑥/𝑧], 𝑣 : 𝐶 [𝑦/𝑧] ` 𝑑 : Idtreq(𝑥,𝑦)

𝑧.𝐶
(𝑢, 𝑣)

Γ,𝑤 : ‖𝐴‖ ` trrec(𝑧.𝐶, 𝑥 .𝑐, 𝑥𝑦𝑢𝑣 .𝑑,𝑤) : 𝐶 [𝑤/𝑧]
Γ, 𝑎 : 𝐴 ` trreceq(𝑧.𝐶, 𝑥 .𝑐, 𝑥𝑦𝑢𝑣 .𝑑, 𝑎) : Id𝐶 [tr(𝑎)/𝑧 ] (trrec(𝑧.𝐶, 𝑥 .𝑐, 𝑥𝑦𝑢𝑣 .𝑑, tr(𝑎)), 𝑐 [𝑎/𝑥])

Figure 2: Propositional truncation

A very similar treatment can be given for propositional truncation, albeit after its syntactic rules
have been slightly reworked as to allow for an easier semantic translation.

Recall that Γ ` 𝑄 type is a mere proposition if for each pair of terms 𝑞1, 𝑞2 : 𝑄 there exists an identity
term 𝑤 (𝑞1, 𝑞2) : Id𝑄 (𝑞1, 𝑞2). The intuition behind the propositional truncation of Γ ` 𝐴 type is that it
is supposed to be a mere proposition Γ ` ‖𝐴‖ type generated by the elements of 𝐴; in other words, it
records whether 𝐴 is inhabited or not without actually requiring terms of type 𝐴. More precisely, the
propositional truncation of a type 𝐴 is the higher inductive type ‖𝐴‖ generated by the elements of 𝐴 and
identity terms treq(𝑥,𝑦) between any two terms 𝑥,𝑦 : ‖𝐴‖.

Accordingly, the elimination property of ‖𝐴‖ is most clearly expressed using the notion of dependent
identity types, whose rules are given in Figure 1 [LS20, Figure 2]. The rules dening propositional
truncation induced by its description as a higher inductive type are displayed in Figure 2 [LS20, Figure
7], note that the equality in the computation rule is propositional and not judgemental. As they currently
stand, giving semantic translations of the elimination and computation rules may be somewhat lengthy;
fortunately, there exists a more amenable presentation of propositional truncation.

Lemma 3.15. For types Γ ` 𝐴 type and Γ, 𝑥 : 𝐴 ` 𝐵 type, the judgement

Γ, 𝑎 : 𝐴,𝑢 : 𝐵 [𝑎/𝑥], 𝑣 : 𝐵 [𝑎/𝑥] ` Id𝐵 [𝑎/𝑥 ] (𝑢, 𝑣) � Idrefl𝑎
𝐵

(𝑢, 𝑣)

is derivable.

Proof. One can easily dene a map Id𝐵 [𝑎/𝑥 ] (𝑢, 𝑣) → Idrefl𝑎
𝐵

(𝑢, 𝑣) via J-elimination, by sending refl𝑢 to
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Γ ` 𝐴 type
Γ ` ‖𝐴‖ type

Γ ` 𝐴 type
Γ, 𝑥 : 𝐴 ` tr(𝑥) : ‖𝐴‖

Γ ` 𝐴 type
Γ, 𝑥 : ‖𝐴‖, 𝑦 : ‖𝐴‖ ` treq(𝑥,𝑦) : Id‖𝐴 ‖ (𝑥,𝑦)

Γ ` 𝐴 type Γ, 𝑧 : ‖𝐴‖ ` 𝐶 type
Γ, 𝑥 : 𝐴 ` 𝑐 : 𝐶 [tr(𝑥)/𝑧]

Γ, 𝑥 : ‖𝐴‖, 𝑢 : 𝐶 [𝑥/𝑧], 𝑣 : 𝐶 [𝑥/𝑧] ` 𝑑 ′ : Id𝐶 [𝑥/𝑧 ] (𝑢, 𝑣)
Γ,𝑤 : ‖𝐴‖ ` trrec′(𝑧.𝐶, 𝑥 .𝑐, 𝑥𝑢𝑣 .𝑑 ′,𝑤) : 𝐶 [𝑤/𝑧]

Figure 3: Alternative propositional truncation

refl′𝑢 . Conversely, consider the term

Γ, 𝑎1 : 𝐴, 𝑎2 : 𝐴, 𝑝 : Id𝐴 (𝑎1, 𝑎2), 𝑏1 : 𝐵 [𝑎1/𝑥], 𝑏2 : 𝐵 [𝑎2/𝑥], 𝑞 : Id𝑝
𝐵
(𝑏1, 𝑏2)

` 𝑡 (𝑎1, 𝑎2, 𝑝, 𝑏1, 𝑏2, 𝑞) : Id𝐵 [𝑎2/𝑥 ] (𝑝∗𝑏1, 𝑏2),

where 𝑝∗ is transport along 𝑝 , dened via J′-elimination by

𝑡 (𝑎, 𝑎, refl𝑎, 𝑏, 𝑏, refl′𝑏) ≡ refl𝑏 .

This term then denes a map Idrefl𝑎
𝐵

(𝑢, 𝑣) → Id𝐵 [𝑎/𝑥 ] (𝑢, 𝑣) sending 𝑞 to 𝑡 (𝑎, 𝑎, refl𝑎, 𝑢, 𝑣, 𝑞). Finally,
it is easy to check that those two maps are inverses of one another, thus they induce the desired
equivalence. �

Proposition 3.16. If any of the two sets of rules for propositional truncation displayed in Figure 2 and
Figure 3 is added to the theory then the other becomes admissible.

Proof. Assume rst that the rules of Figure 2 are part of the theory. To derive the alternative elimination
rule displayed in Figure 3, it is actually easier to show that the term 𝑑 ′ induces another term

Γ, 𝑥 : ‖𝐴‖, 𝑦 : ‖𝐴‖, 𝑝 : Id‖𝐴 ‖ (𝑥,𝑦), 𝑢 : 𝐶 [𝑥/𝑧], 𝑣 : [𝑦/𝑧] ` 𝑑 ′′(𝑥,𝑦, 𝑝,𝑢, 𝑣) : Id𝑝
𝑧.𝐶

(𝑢, 𝑣)

and then let trrec′(𝑧.𝐶, 𝑥 .𝑐, 𝑥𝑢𝑣 .𝑑 ′,𝑤) be trrec(𝑧.𝐶, 𝑥 .𝑐, 𝑥𝑦𝑢𝑣 .𝑑 ′′[treq(𝑥,𝑦)/𝑝],𝑤). By J-elimination, it is
enough to dene 𝑑 ′′ in the case 𝑥 ≡ 𝑦 and 𝑝 ≡ refl𝑥 . In other words, it suces to provide a term of
Idrefl𝑥

𝑧.𝐶
(𝑢, 𝑣); by Lemma 3.15, one can instead give a term of Id𝐶 [𝑥/𝑧 ] (𝑢, 𝑣) such as 𝑥𝑢𝑣.𝑑 ′.

Conversely, both trrec and trreceq can be dened in terms of trrec′. Indeed, by denition ‖𝐴‖ is
a mere proposition, so it is also an h-set. Hence, there exists an identity term from treq(𝑥, 𝑥) to refl𝑥 ;
by transporting along it, one obtains a map Idtreq(𝑥,𝑦)

𝑧.𝐶
(𝑢, 𝑣) → Idrefl𝑥

𝑧.𝐶
(𝑢, 𝑣). This map, applied to 𝑑 , and

Lemma 3.15 yield a term 𝑑 ′′′ of the same type as 𝑑 ′. The result of substituting 𝑑 ′′′ for 𝑑 ′ in trrec′ is a
derivation of trrec assuming trrec′, and trreceq is a special case of 𝑑 ′′′. �

The above shows that one can choose any of the two displayed presentations of propositional
truncation. The latter, in Figure 3, has the advantage of being easier to model semantically, and is
therefore chosen for the remainder of the section. The corresponding structure in a CwA is given below,
after a quick piece of terminology used to simplify the denition.

Denition 3.17. Let C be a CwA with Id-types. A mere proposition over Γ ∈ C is a pair (𝑃,𝑤) where
𝑃 is a type over Γ and𝑤 a section of 𝑝Id𝑃 . When𝑤 is not needed for the discussion at hand, one usually
suppresses it and says instead simply that 𝑃 is a mere proposition.
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Denition 3.18. Let C be a CwA with Id-types, an ‖ ‖-structure on C consists of:
(1) for each type 𝐴 ∈ Ty(Γ), a mere proposition ‖𝐴‖ over Γ;
(2) for each type 𝐴 ∈ Ty(Γ), a map tr𝐴 : Γ.𝐴 → Γ.‖𝐴‖ such that 𝑝 ‖𝐴 ‖ ◦ tr𝐴 = 𝑝𝐴;
(3) for each type 𝐴 ∈ type(Γ), mere proposition 𝐶 over ‖𝐴‖, and map 𝑐 : Γ.𝐴 → Γ.‖𝐴‖.𝐶 such that

𝑝𝐶 ◦ 𝑐 = tr𝐴, a section trrec𝐶,𝑐 of 𝑝𝐶 ;
under the additional condition that the above data is stable under reindexing, that is, for each map
𝑓 : Δ → Γ and 𝐴,𝐶, 𝑐 as above the following identities hold:

𝑓 ∗‖𝐴‖ = ‖ 𝑓 ∗𝐴‖, 𝑓 ∗tr𝐴 = tr𝑓 ∗𝐴, 𝑓 ∗trrec𝐶,𝑐 = trrec𝑓 ∗𝐶,𝑓 ∗𝑐 .

Example 3.19. Propositional truncation can also be interpreted in CSet. Namely, the truncation of an
indexed family of sets (𝐴𝛾 )𝛾 ∈Γ is the indexed family (‖𝐴‖𝛾 )𝛾 ∈Γ where

‖𝐴‖𝛾 =

{
{∗} if 𝐴𝛾 ≠ ∅,
∅ if 𝐴𝛾 = ∅.

Mere propositions in CSet are indexed families of sets such that each indexed set has at most one element,
hence (‖𝐴‖𝛾 )𝛾 ∈Γ is a mere proposition. The corresponding map tr𝐴 : Γ.𝐴 → Γ.‖𝐴‖ sends (𝛾, 𝑎) to (𝛾, ∗).
Finally, if 𝐶 is a mere proposition over Γ.‖𝐴‖ and 𝑐 a map Γ.𝐴 → Γ.‖𝐴‖ .𝐶 such that 𝑝𝐶 ◦ 𝑐 = tr𝐴, then
there is a unique section of 𝑝𝐶 , call it trrec𝐶,𝑐 ; indeed, there can be at most one because 𝐶 is a mere
proposition, and there is at least one because 𝑐 guarantees that each𝐶 (𝛾,∗) is inhabited, for (𝛾, ∗) ∈ Γ.‖𝐴‖.
In this case, stability under reindexing is straightforward to check manually.

In a CwA induced by a universe, the notion of mere proposition can be nicely encoded.

Proposition 3.20. Let𝑈 be a universe in a locally cartesian closed category C, together with an Id-structure
for 𝑈 . There exists a map 𝑈−1 → 𝑈 of C such that, for each type p𝐴q : Γ → 𝑈 , the sections of 𝑝Id𝐴
correspond bijectively with factorisations of p𝐴q through𝑈−1 → 𝑈 .

Proof. Let𝑈−1 → 𝑈 be the dependent product Π�̃�×𝑈 �̃�→𝑈 Id in C/𝑈 . For any type p𝐴q : Γ → 𝑈 , one has

HomC/𝑈 (p𝐴q,𝑈−1 → 𝑈 ) � HomC/�̃�×𝑈 �̃� (𝐴 ×Γ 𝐴, Id)
= HomC/�̃�×𝑈 �̃� (Σ𝐴×Γ𝐴→�̃�×𝑈 �̃� id𝐴×Γ𝐴, Id)
� HomC/𝐴×Γ𝐴 (id𝐴×Γ𝐴, Id𝐴).

Hence, the conclusion follows. �

Corollary 3.21. In the same conditions as above, the object 𝑈−1 represents mere propositions, in the sense
that maps Γ → 𝑈−1 are in bijection with mere propositions over Γ. �

Denition 3.22. In the same conditions as above, let 𝑝−1 : �̃�−1 → 𝑈−1 be the pullback (given by the
universe structure) of 𝑝 : �̃� → 𝑈 along the map𝑈−1 → 𝑈 dened above, as displayed below.

�̃�−1 �̃�

𝑈−1 𝑈

𝑝−1
y

𝑝

In the case of a locally cartesian closed category C with a universe𝑈 carrying an Id-structure, one
can use this universe of mere propositions to adapt Denition 3.18 to C𝑈 , a ‖ ‖-structure becomes:
(1) for each type p𝐴q : Γ → 𝑈 , a mere proposition p‖𝐴‖q : Γ → 𝑈−1;
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(2) for each type p𝐴q : Γ → 𝑈 , a map tr𝐴 : 𝐴 → ‖𝐴‖ such that 𝑝 ‖𝐴 ‖ ◦ tr𝐴 = 𝑝𝐴;
(3) for each type p𝐴q : Γ → 𝑈 , mere proposition p𝐶q : ‖𝐴‖ → 𝑈−1, and map 𝑐 : 𝐴 → 𝐶 such that

𝑝𝐶 ◦ 𝑐 = tr𝐴, a section trrec𝐶,𝑐 of 𝑝𝐶 .
As was the case with identity types, clause (3) can be restated in terms of lifting problems. Indeed, the
assumed 𝑐 : 𝐴 → 𝐶 can be viewed as a map 𝐴 → �̃�−1 making the solid square below commute, while
the section trrec𝐶,𝑐 is equivalent to a diagonal ‖𝐴‖ → �̃�−1 such that the lower of the triangles it denes
commutes.

𝐴 �̃�−1

‖𝐴‖ 𝑈−1

𝑐

tr𝐴 𝑝−1

p𝐶q

trrec𝐶,𝑐

	

In other words, condition (3) expresses that tr𝐴 has a very weak left lifting property against 𝑝−1.

Denition 3.23. Let 𝑖 : 𝐴 → 𝐵 and 𝑓 : 𝑌 → 𝑋 be two maps of a category C, the map 𝑖 has the
lower-only left lifting property against 𝑓 , written 𝑖 �𝑙 𝑓 , if any solid commutative square

𝐴 𝑌

𝐵 𝑋

𝑖 𝑓
	

admits a lower ller, i.e., a diagonal map 𝐵 → 𝑌 making the lower triangle commute. Equivalently, it
means that 𝑖 �𝑙 𝑓 holds precisely when there exists a dashed map making

Hom(𝐵,𝑌 )

Hom(𝐴,𝑌 ) ×Hom(𝐴,𝑋 ) Hom(𝐵,𝑋 ) Hom(𝐵,𝑋 )

Hom(𝐵,𝑓 )
𝜋2

commute.

Remark 3.24. If ‖ ‖-structures were directly modelled on the rules of Figure 2, then the term trreceq
would correspond to a homotopy between the two maps of the upper triangle induced by the ller
trrec𝐶,𝑐 . In other words, the lifting property corresponding to those rules would be one where the upper
triangle commutes up to homotopy while the lower one does so on the nose, similar to that considered
in [CMS20, Denition 29].

As before, there are stable and internal variants.

Denition 3.25. Let 𝑖 : 𝐴 → 𝐵 and 𝑓 : 𝑌 → 𝑋 be two maps of a category C with products, the map 𝑖
has the stable lower-only left lifting property against 𝑓 if (𝐶 × 𝑖) �𝑙 𝑓 holds for all 𝐶 ∈ C.

Denition 3.26. Let 𝑖 : 𝐴 → 𝐵 and 𝑓 : 𝑌 → 𝑋 be two maps of a cartesian closed category C, an
internal lower-only lifting operation for 𝑖 against 𝑓 is an arrow 𝑌𝐴 ×𝑋𝐴 𝑋𝐵 → 𝑌𝐵 of C making the
diagram

𝑌𝐵

𝑌𝐴 ×𝑋𝐴 𝑋𝐵 𝑋𝐵

𝑓 𝐵

𝜋2

commute.
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Proposition 3.27. Let 𝑖 : 𝐴 → 𝐵 and 𝑓 : 𝑌 → 𝑋 be two maps in a cartesian closed category. There exists
an internal lower-only lifting operation for 𝑖 against 𝑓 if and only if 𝑖 has the stable lower-only left lifting
property against 𝑓 .

Proof. The proof of Proposition 3.11 is easily adapted to the case at hand. �

As was the case with Id-types, internal lifting operations are the right tools to express the elimination
rules of propositional truncation. Hence, it is nally time for the main denition of the section.

Denition 3.28. A ‖ ‖-structure on a universe 𝑈 in a locally cartesian closed category C consists of
two maps

p‖ ‖q : 𝑈 → 𝑈−1 and tr : �̃� → ‖ ‖
such that the triangle

�̃�

‖ ‖

𝑈

𝑝

tr

𝑝‖ ‖

commutes, together with an internal lower-only lifting operation for tr against 𝑝−1 ×𝑈 in C/𝑈 .

Proposition 3.29. If 𝑈 is a universe in a locally cartesian closed category C, then an ‖ ‖-structure on𝑈
induces an ‖ ‖-structure on C𝑈 .

Proof. The techniques used in the proof of [KL21, Theorem 1.4.15] can be adapted for the case at hand. �

This concludes the present section, the next logical step would be to give such an ‖ ‖-structure on
the universe 𝑈𝛼 inducing the simplicial model. However, this requires some deeper knowledge of the
guise taken by mere propositions in the simplicial model; this is precisely the topic of the following
section, which acts as a stepping stone towards the interpretation of propositional truncation based on
epi-mono factorisations presented in the subsequent section.

3.2 Unwinding mere propositions
Similarly to how h-sets are types in which proofs of equality are propositionally unique,mere propositions,
also known as h-props, are types whose elements are propositionally equal to one another. In other
words, to say that Γ ` 𝐴 type is a a mere proposition is to give a term

Γ, 𝑥1 : 𝐴, 𝑥2 : 𝐴 ` 𝑤 (𝑥1, 𝑥2) : Id𝐴 (𝑥1, 𝑥2).

In a CwA, such terms are sections of the projection 𝑝Id𝐴 ; for a bration 𝑝 : 𝐸 → 𝐵 in the simplicial model,
these correspond to sections of (𝑠𝑝 , 𝑡𝑝 ) : P𝐵 (𝐸) → 𝐸 ×𝐵 𝐸.

Lemma 3.30. Given a bration 𝑝 : 𝐸 → 𝐵, sections of (𝑠𝑝 , 𝑡𝑝 ) : P𝐵 (𝐸) → 𝐸 ×𝐵 𝐸 correspond bijectively to
homotopies between the two projections 𝜋1, 𝜋2 : 𝐸 ×𝐵 𝐸 → 𝐸 over 𝐵.

Proof. From its denition as a pullback, sections of P𝐵 (𝐸) → 𝐸 ×𝐵 𝐸 correspond to maps ℎ making the
diagram

𝐸Δ1

𝐸 ×𝐵 𝐸 (𝐸 × 𝐸) ×𝐵×𝐵 𝐵Δ1

ℎ
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commute. Under the adjunction−×Δ1 a −Δ1 , the transpose of such anℎ is a homotopy𝐻 : (𝐸×𝐵𝐸)×Δ1 →
𝐸 from 𝜋1 to 𝜋2 such that 𝑝 ◦𝐻 factors through the projection (𝐸 ×𝐵 𝐸) ×Δ1 → 𝐸 ×𝐵 𝐸, i.e., an homotopy
over 𝐵. �

The above reformulates the property of being a mere proposition to a more homotopical condition,
but it can be strengthened, as shown below.

Lemma 3.31. Let 𝑝 : 𝐸 → 𝐵 be a bration. The two projections 𝐸 ×𝐵 𝐸 → 𝐸 are homotopic over 𝐵 if and
only if each pair of maps 𝑓 , 𝑔 : 𝑋 → 𝐸 and homotopy 𝐻 from 𝑝 𝑓 to 𝑝𝑔 induce a homotopy 𝐻 ′ from 𝑓 to 𝑔
such that 𝑝 ◦ 𝐻 ′ = 𝐻 .

Proof. Clearly, the second claim implies the rst.
As for the other implication, consider the intermediate claim: if the two projections 𝐸 ×𝐵 𝐸 → 𝐸 are

homotopic over 𝐵, then any two maps 𝑓 , 𝑔 : 𝑋 → 𝐸 satisfying 𝑝 𝑓 = 𝑝𝑔 are homotopic over 𝐵. This is
true because precomposing any homotopy between the two projections with (𝑓 , 𝑔) : 𝑋 → 𝐸 ×𝐵 𝐸 yields
a homotopy between 𝑓 and 𝑔.

Assume now that 𝑓 , 𝑔, and 𝐻 satisfy the conditions of the second claim. Consider the two solid
squares below, they admit llings 𝐻𝑓 and 𝐻𝑔 because 𝑝 is a bration and the maps on the left sides
are anodyne extensions, meaning that they have the left lifting property against all brations [GJ09,
Corollary I.4.6].

𝑋 × {0} 𝐸

𝑋 × Δ1 𝐵

𝑓

𝑝

𝐻

𝐻𝑓

𝑋 × {1} 𝐸

𝑋 × Δ1 𝐵

𝑔

𝑝

𝐻

𝐻𝑔

By denition, the maps 𝐻𝑓 and 𝐻𝑔 satisfy the conditions of the intermediate claim, hence there exists
a homotopy H : (𝑋 × Δ1) × Δ1 → 𝐴 from 𝐻𝑓 to 𝐻𝑔. Finally, one need only choose 𝐻 ′ = H ◦ (𝑋 × 𝑑),
where 𝑑 : Δ1 → Δ1 × Δ1 is the diagonal map. �

The second condition of the lemma above can be reformulated as a lling problem: the two maps 𝑓
and 𝑔 can be bundled into one (𝑓 , 𝑔) : 𝑋 × 𝜕Δ1 → 𝐸 and the desired 𝐻 ′ is then a diagonal ller of the
square below, which commutes precisely because 𝐻 is a homotopy from 𝑝𝑓 to 𝑝𝑔.

𝑋 × 𝜕Δ1 𝐸

𝑋 × Δ1 𝐵

(𝑓 ,𝑔)

𝑋 × 𝑖1 𝑝

𝐻

𝐻 ′

In other words, the two preceding lemmas show that a bration 𝐸 → 𝐵 is a mere proposition if and
only if it has the right lifting property against 𝑋 × 𝑖1 for all simplicial sets 𝑋 , where 𝑖1 is the inclusion
𝜕Δ1 ↩→ Δ1. Informally, this means that lifting the extremities of a prism in 𝐵 to 𝐸 induces a lift of the
whole prism. As shall be seen below, this nearly makes 𝐸 → 𝐵 into a trivial bration.

Notation. For each 𝑛 ≥ 0, let 𝑖𝑛 denote the inclusion of the simplicial circle 𝜕Δ𝑛 in the standard simplex
Δ𝑛 .

Proposition 3.32. Let 𝑝 : 𝐸 → 𝐵 be a bration. If (𝑋 × 𝑖1) � 𝑝 for all 𝑋 ∈ sSet, then 𝑖𝑛 � 𝑝 for all 𝑛 ≥ 1.

Proof. Let 𝑗𝑛 : Δ𝑛 t Δ0 → Δ𝑛+1 be the map induced by the face 𝑑𝑛+1 : Δ𝑛 → Δ𝑛+1 and the map
𝑣𝑛+1 : Δ0 → Δ𝑛+1 singling out the vertex 𝑛 + 1 of Δ𝑛+1. For 𝑛 ≥ 1, the inclusion 𝑖𝑛 is a retract of
𝑗𝑛 ◦ (𝑖𝑛 t Δ0) in the arrow category sSet→, as shown in the diagram below, the map 𝜕Δ𝑛 t Δ0 → 𝜕Δ𝑛 in
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the top-right corner is induced by the identity id𝜕Δ𝑛 and the restriction of 𝑣𝑛 : Δ0 → Δ𝑛 through the
boundary.

𝜕Δ𝑛 𝜕Δ𝑛 t Δ0 𝜕Δ𝑛

Δ𝑛 t Δ0

Δ𝑛 Δ𝑛+1 Δ𝑛

𝑖𝑛

id

𝑖𝑛

𝑗𝑛

𝑑𝑛+1

id

𝑠𝑛+1

Since the set of maps which have the left lifting property against 𝑝 is stable under retracts, it suces to
show that ( 𝑗𝑛 ◦ (𝑖𝑛 t Δ0)) � 𝑝 .

The diagram

0 1 2 . . . 𝑛 − 1 𝑛

𝑛 + 1 𝑛 + 1 𝑛 + 1 . . . 𝑛 + 1 𝑛 + 1

denes a map 𝑞𝑛 : n×1 → n + 1 in the simplex category, and it itself induces another map 𝑞𝑛 : Δ𝑛×Δ1 →
Δ𝑛+1. Geometrically, this map 𝑞𝑛 collapses the lower base Δ𝑛 × {1} of the prism Δ𝑛 ×Δ1 down to a single
vertex. Let 𝑗 ′𝑛 and 𝑞′𝑛 be the restrictions of 𝑗𝑛 and 𝑞𝑛 , dened by the two parallelograms in the diagram
below, where the map 𝑓 is dened on 𝜕Δ𝑛 × {0} as the inclusion 𝜕Δ𝑛 ↩→ 𝜕Δ𝑛 t Δ0, and on 𝜕Δ𝑛 × {1} as
the composite 𝜕Δ𝑛 → Δ0 ↩→ 𝜕Δ𝑛 t Δ0.

𝜕Δ𝑛 × 𝜕Δ1 𝜕Δ𝑛 t Δ0

Δ𝑛 t Δ0

𝜕Δ𝑛 × Δ1 Λ𝑛+1
𝑛+1

Δ𝑛 × Δ1 Δ𝑛+1

𝑓

𝜕Δ𝑛×𝑖1 𝑗 ′𝑛

𝑗𝑛
𝑞′𝑛

𝑞𝑛

Lemma 3.33 below shows that the top-left rectangle of the diagram not only commutes but is also a
pushout square.

It has thus been showed that 𝑗𝑛 ◦ (𝑖𝑛 t Δ0) factors as a pushout of 𝜕Δ𝑛 × 𝑖1 followed by a horn
inclusion. By assumption, both of these maps have the left lifting property with respect to 𝑝 , and the set
of maps with that property is closed under composition hence the conclusion follows. �

Lemma 3.33. The diagram

𝜕Δ𝑛 × 𝜕Δ1 𝜕Δ𝑛 t Δ0

𝜕Δ𝑛 × Δ1 Λ𝑛+1
𝑛+1

𝑓

𝜕Δ𝑛×𝑖1 𝑗 ′𝑛

𝑞′𝑛
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dened in Proposition 3.32 is a pushout square.

Proof. This proof relies on the following two observations: a map m → n belongs to (𝜕Δ𝑛)𝑚 if and only
if it is not surjective, and a mapm → n + 1 belongs to (Λ𝑛+1

𝑛+1)𝑚 if and only if {0, 1, . . . , 𝑛} is not contained
in its image.

Evaluating this square of presheaves at the ordinal m, one obtains the diagram of sets displayed
below, where the right-most vertical map sends ∗ to the constant map of value 𝑛 + 1 and sends 𝑓 : m → n
to 𝑑𝑛+1 ◦ 𝑓 , while the left-most vertical map pairs 𝑓 and 𝑔 into a single map m → n × 1.{(

𝑓 : m → n,
𝑔 : m → 1

) ��� im𝑓 ≠ n,
𝑔 = 0 or 𝑔 = 1

}
{𝑓 : m → n | im𝑓 ≠ n} t {∗}

{ℎ : m → n × 1 | im(𝜋n ◦ ℎ) ≠ n} {𝑘 : m ↦→ n + 1 | n * im𝑓 }

(𝑓 ,0) ↦→ 𝑓 ,

(𝑓 ,1) ↦→ ∗

𝑞𝑛 ◦ −

For each m, the above is is a pushout square; and since colimits can be computed pointwise in sSet, this
is enough. �

It is useful to give a name to maps with such lifting properties against boundary inclusions, for they
will remain important in the rest of this section.

Denition 3.34. A map of simplicial sets is truncated if it has the right lifting property against all the
boundary inclusions 𝑖𝑛 : 𝜕Δ𝑛 ↩→ Δ𝑛 with 𝑛 ≥ 1.

All the above has shown that a bration 𝑝 : 𝐸 → 𝐵 encoding a mere proposition is in particular a
truncated bration. The remainder of the present section builds towards a proof of the converse fact,
that truncated brations are mere propositions.

Denition 3.35. If 𝑢 : 𝐴 → 𝐵 and 𝑣 : 𝑋 → 𝑌 are two simplicial maps, then their pushout-product 𝑢 ×̂ 𝑣

is the map out of the pushout 𝐵 × 𝑋 t𝐴×𝑋 𝐴 × 𝑌 induced by the square below.

𝐴 × 𝑋 𝐴 × 𝑌

𝐵 × 𝑋 𝐵 × 𝑌

𝐴×𝑣

𝑢×𝑋 𝑢×𝑌

𝐵×𝑣

Denition 3.36. If 𝑣 : 𝑋 → 𝑌 and𝑤 : 𝐶 → 𝐷 are two simplicial maps, then their Leibniz exponential
𝑣 B𝑤 is the map into the pullback 𝐶𝑋 ×𝐷𝑋 𝐷𝑌 induced by the square below.

𝐶𝑌 𝐷𝑌

𝐶𝑋 𝐷𝑋

𝐶𝑣

𝑤𝑌

𝐷𝑣

𝑤𝑋

Proposition 3.37. For any simplicial maps 𝑢, 𝑣,𝑤 , the following bi-implication holds:

(𝑢 ×̂ 𝑣) �𝑤 ⇐⇒ 𝑢 � (𝑣 B𝑤).

Proof. See [JT07, Proposition 7.6] for a proof in a more general setting. In any case, a standard diagram
chase suces to show this claim. �
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Why those concepts are relevant to the problem at hand is partly answered by the following proposi-
tion.

Proposition 3.38. If 𝑝 is a truncated bration, then it has the right lifting property against 𝑖𝑛 ×̂ 𝑖1 for all
𝑛 ≥ 0.

The idea of the proof, which is delayed for the moment, is to construct a subcomplex 𝑃 of Δ𝑛 × Δ1

containing the image of 𝑖𝑛 ×̂ 𝑖1, i.e., the boundary of the prism; showing that 𝑃 can be obtained from said
boundary by lling a sequence of horn inclusions; and nally that the whole prism is just one boundary
lling away from 𝑃 . In that regard, it is quite similar to standard proofs which give equivalent generating
sets for anodyne extensions, see [GZ67, IV.2.1] and [GJ09, Proposition I.4.2].

The methods used in those proofs would undoubtedly also work for the case at hand, however
they can be slightly heavy in notational and technical details. For that reason, switching instead to the
approach of [Mos20], which introduces tools able to streamline such arguments, is benecial.

Notation. For an inclusion 𝑚 : 𝐴 ↩→ 𝐵 of simplicial sets, write 𝑁𝑚 for the set of non-degenerate
simplices of 𝐵 not in𝑚(𝐴).

Denition 3.39. Let𝑚 : 𝐴 ↩→ 𝐵 be an inclusion of simplicial sets. A pair (𝑥,𝑦) of 𝑁𝑚 is a lling pair
of𝑚 if 𝑦 is a face of codimension 1 of 𝑥 , i.e., if 𝑦 = 𝑑𝑖 (𝑥) for some (necessarily unique) 𝑖 . If this is the
case, then 𝑥 is the called simplex of type I of the pair, while 𝑦 is the simplex of type II. A partition of
𝑁𝑚 into lling pairs is called a proper pairing of𝑚.

Denition 3.40. Let 𝑃 be a proper pairing of an inclusion𝑚 : 𝐴 ↩→ 𝐵 in sSet. The ancestral relation ≺
of 𝑃 is the relation on lling pairs given by (𝑥,𝑦) ≺ (𝑥 ′, 𝑦 ′) if and only if (𝑥,𝑦) ≠ (𝑥 ′, 𝑦 ′) and 𝑥 is a face
of 𝑦 ′. A proper pairing of𝑚 whose ancestral relation is well-founded is called a regular pairing of𝑚.

Theorem 3.41 ([Mos20, Propositions 2.10 & 2.12]). Let𝑚 : 𝐴 ↩→ 𝐵 be an inclusion in sSet. If𝑚 admits a
regular pairing then𝑚 is an anodyne extension.

More precisely, the map𝑚 is a strong anodyne extension, in the sense of [Mos20, Denition 2.1], if and
only if𝑚 admits a regular pairing.

Proof. The idea is that in the presence of a lling problem for𝑚 against a bration, one can ll the lling
pairs one by one since they encode horn-lling problems, and the well-foundedness condition ensures
that one can carry out those llings in a recursive manner. See the proof of [Mos20, Proposition 2.12] for
more details. �

The next application provides a good example of this tool, and is also a fact that will be needed in a
later section.

Proposition 3.42. For any 0 ≤ 𝑘 ≤ 𝑛, the map Δ0 → Λ𝑛
𝑘
which picks out the vertex labelled 𝑘 is an

anodyne extension.

Proof. Let ℓ be the inclusion Δ0 ↩→ Λ𝑛
𝑘
at hand. By denition, elements of 𝑁ℓ are injective maps

𝑓 : m → n such that im𝑓 does not contain {0, . . . , 𝑛} \ {𝑘}, except for the constant map 𝑥 ∈ m ↦→ 𝑘 ∈ n.
The members of 𝑁ℓ can be separated into two sets, a map 𝑓 ∈ 𝑁ℓ is of type I if 𝑘 appears in the image

of 𝑓 , and of type II if 𝑘 does not. To each map of type I corresponds a unique map of type II, and vice
versa, obtained by removing 𝑘 from, and adding it to, the image of the map. Since the face maps act on
elements of 𝑁ℓ precisely by removing elements from images, the pairs dened by this correspondence
are lling pairs, hence a proper pairing of ℓ was just dened.

Moreover, it is easy to see that the ancestral relation of this pairing is isomorphic to the strict subset
relation on a set of 𝑛 elements, and is therefore well-founded. Hence, the conclusion follows from
Theorem 3.41. �
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Figure 4: The path (1, 0), (2, 2), (3, 2), (3, 3), (5, 4) in 𝐿5,4

To characterise the non-degenerate simplices ofΔ𝑛×Δ1, as is done during the proof of Proposition 3.38,
it is useful to introduce some terminology.

Given two non-negative integers 𝑚 and 𝑛, the integer lattice 𝐿𝑚,𝑛 is the set of pairs (𝑎, 𝑏) in
{0, . . . ,𝑚} × {0, . . . , 𝑛}. A path in 𝐿𝑚,𝑛 is a sequence of pairs (𝑎𝑖 , 𝑏𝑖 ) in the lattice such that 𝑎𝑖 < 𝑎𝑖+1 or
𝑏𝑖 < 𝑏𝑖+1 for each 𝑖 . In Figure 4, an example for𝑚 = 5 and 𝑛 = 4 is displayed.

Equivalently, a path can be dened by its start, the rst pair in the sequence, and itsmoves, where a
move is a pair (+𝑝, +𝑞) which indicates that the path will go 𝑝 units rightwards and 𝑞 unit upwards to
reach the next pair from the current one. For example, the start of the path displayed in Figure 4 is (1, 0),
while the associated sequence of moves is (+1, +2), (+1, 0), (0, +1), and (+2, +1).

Proof of Proposition 3.38. Let ℓ denote the pushout-product 𝑖𝑛 ×̂ 𝑖1. If 𝑛 = 0, then ℓ is isomorphic to 𝑖1 and
thus the claim is satised; assume 𝑛 ≥ 1 in what follows.

By denition, an𝑚-simplex of Δ𝑛 × Δ1 is a pair of order-preserving maps m → n and m → 1; they
correspond to maps 𝑓 : m → n × 1, on which the face and degeneracy maps act by precomposition.
Such an 𝑓 is non-degenerate if and only if it is injective, which is the case precisely when, for all 𝑖 < 𝑚,
the respective images (𝑎, 𝑏) and (𝑎′, 𝑏 ′) of 𝑖 and 𝑖 + 1 under 𝑓 satisfy 𝑎 < 𝑎′ or 𝑏 < 𝑏 ′. Clearly, those are
exactly the paths in the integer lattice 𝐿𝑛,1, on which the 𝑘th face map 𝑑𝑘 acts by removing the (𝑘 + 1)th
pair of the path (so that 𝑑0 removes the rst, 𝑑1 the second, and so on).

By denition, the simplex 𝑓 : m → n × 1 belongs to 𝜕Δ𝑛 × Δ1 if and only if 𝜋n ◦ 𝑓 : m → n × 1 → n
is not surjective; under the identication with paths, this translates to the path ‘missing’ at least one
column. Similarly, the non-degenerate simplices of Δ𝑛 × 𝜕Δ1 may be identied with paths avoiding one
of the two rows. Therefore, the paths representing elements of 𝑁ℓ are precisely those that visit each row
and each column. Here, and displayed in Figure 5 for 𝑛 = 3, are examples of such paths:

• For 0 ≤ 𝑖 ≤ 𝑛, the path starting from (0, 0), ending at (𝑛, 1), and in which every move is (+1, 0)
except for a single move (0, +1) to link (𝑖, 0) and (𝑖, 1) together; call the simplex it represents 𝑥𝑖 .

• For 0 ≤ 𝑖 < 𝑛, the path starting from (0, 0), ending at (𝑛, 1), and in which every move is (+1, 0)
except for a single move (+1, +1) to link (𝑖, 0) and (𝑖 + 1, 1) together; call the simplex it represents
𝑦𝑖 .

One can easily see that, in fact, those are the only paths with that property, i.e.,

𝑁ℓ = {𝑥0, . . . , 𝑥𝑛, 𝑦0, . . . , 𝑦𝑛−1}.

Note that 𝑑𝑖+1 (𝑥𝑖 ) = 𝑦𝑖 for 0 ≤ 𝑖 < 𝑛, and 𝑑𝑖 (𝑥𝑖 ) = 𝑦𝑖−1 for 0 < 𝑖 ≤ 𝑛. Moreover, those are the only face
relations between members of 𝑁ℓ , as indicated in Figure 5 for 𝑛 = 3.
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Figure 5: The paths and face relations of 𝑁ℓ for 𝑛 = 3

In particular, if ℓ ′ is the factorisation of ℓ through 𝑃 , the smallest subcomplex of Δ𝑛 × Δ1 containing
the simplices in 𝑁ℓ \ {𝑥𝑛} and the image of ℓ , then 𝑁ℓ′ = {𝑥0, . . . , 𝑥𝑛−1, 𝑦0, . . . , 𝑦𝑛−1} and Theorem 3.41 can
be used to show that ℓ ′ is an anodyne extension. Indeed, each (𝑥𝑖 , 𝑦𝑖 ) is a lling pair of ℓ and they dene
a proper pairing of ℓ whose ancestral relation is the empty relation, which is a well-founded relation.

Finally, if ]𝑃 is the inclusion 𝑃 ↩→ Δ𝑛 × Δ1, then it is clear that 𝑁]𝑃 = {𝑥𝑛}; this means that ]𝑃 is
a pushout of 𝑖𝑛 , against which 𝑝 has the right lifting property. By stability under composition, the
pushout-product 𝑖𝑛 ×̂ 𝑖1 = ℓ = ℓ ′ ◦ ]𝑃 also has the left lifting property against 𝑝 , as desired. �

A nal observation is needed before proving the main result of this section.

Lemma 3.43. For any simplicial set 𝑋 , the map ∅ ↩→ 𝑋 can be obtained as a countable composition of
pushouts of direct sums of boundary inclusions; in particular, any map which has the right lifting property
against all boundary inclusions also has it against inclusions of the empty simplicial set.

Proof. Each simplicial set 𝑋 is a colimit of the diagram

sk−1𝑋 ↩→ sk0𝑋 ↩→ sk1𝑋 ↩→ sk2 ↩→ . . .

where sk−1𝑋 = ∅. The countable composition of (sk𝑛−1𝑋 ↩→ sk𝑛 𝑋 )𝑛≥0 is therefore precisely the
inclusion of ∅ in 𝑋 . Moreover, for each 𝑛 ≥ 0, the diagram below, in which 𝑁𝑋𝑛 is the set of non-
degenerate simplices of 𝑋 of dimension 𝑛, is a pushout square.∐

𝑥 ∈𝑁𝑋𝑛
𝜕Δ𝑛 sk𝑛−1𝑋

∐
𝑥 ∈𝑁𝑋𝑛

Δ𝑛 sk𝑛 𝑋p
Hence, the conclusion follows. �
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Finally, the result below sums up all the above and can be said to ‘unwind mere propositions’.

Proposition 3.44. Given a bration 𝑝 : 𝐸 → 𝐵 in sSet, the following are equivalent.
(a) The map Id𝐸 → 𝐸 ×𝐵 𝐸 admits a section.
(b) The two projections 𝜋1, 𝜋2 : 𝐸 ×𝐵 𝐸 → 𝐸 are homotopic over 𝐵.
(c) Given any 𝑋 ∈ sSet, maps 𝑓 , 𝑔 : 𝑋 → 𝐸, and homotopy 𝐻 between 𝑝 𝑓 and 𝑝𝑔 over 𝐵, there exists a

lift of 𝐻 along 𝑝 which is a homotopy between 𝑓 and 𝑔.
(d) The bration 𝑝 has the right lifting property against 𝑋 × 𝑖1 : 𝑋 × 𝜕Δ𝑛 ↩→ 𝑋 × Δ𝑛 for all 𝑋 ∈ sSet.
(e) The Leibniz exponential 𝑖1 B 𝑝 is a trivial bration, i.e., it has the right lifting property against all the

boundary inclusions 𝑖𝑛 : 𝜕Δ𝑛 ↩→ Δ𝑛 for 𝑛 ≥ 0.
(f) The bration 𝑝 has the right lifting property against all the pushout products 𝑖𝑛 ×̂ 𝑖1 for 𝑛 ≥ 0.
(g) The bration 𝑝 is truncated, i.e., it has the right lifting property against all the boundary inclusions

𝑖𝑛 : 𝜕Δ𝑛 ↩→ Δ𝑛 for 𝑛 ≥ 1.

Proof. The equivalences (𝑎) ⇔ (𝑏) and (𝑏) ⇔ (𝑐) are Lemmas 3.30 and 3.31, respectively. The paragraph
just below those two lemmas explained how (𝑐) and (𝑑) are reformulations of one another, so (𝑐) ⇔ (𝑑)
as well. Proposition 3.32 showed (𝑑) ⇒ (𝑔), while (𝑔) ⇒ (𝑓 ) is the precise statement of Proposition 3.38.
A simple application of Proposition 3.37 yields (𝑓 ) ⇔ (𝑒), so that it only remains to prove (𝑒) ⇒ (𝑑).

Assume that 𝑖1 B 𝑝 is a trivial bration, by Lemma 3.43 it has the right lifting property against
]𝑋 : ∅ ↩→ 𝑋 for any 𝑋 ∈ sSet. By Proposition 3.37, this means that (]𝑋 ×̂ 𝑖1) � 𝑝 . Finally, one can easily
check that ]𝑋 ×̂ 𝑖1 is isomorphic to 𝑋 × 𝑖1. Hence, the conclusion follows. �

3.3 Image as truncation
As mentioned at the end of Section 3.1, the present section aims to endow the universe𝑈𝛼 inducing the
simplicial model with a ‖ ‖-structure, building on the last section to do so.

The present approach is based on image factorisations, which roughly means that the truncation of a
type 𝑝𝐴 : 𝐴 → Γ will be the inclusion of the image of 𝑝𝐴 into Γ; in particular, the truncation ‖𝐴‖ → Γ is
strict, in the sense that it is a monomorphism, the semantic counterpart of saying that terms of ‖𝐴‖ are
denitionally equal. Actually, most of the following is stated in terms of the the closely related notion of
epi-mono factorisations, but that makes no dierence.

Denition 3.45. An epi-mono factorisation of a map 𝑓 : 𝐴 → 𝐵 in a category C is a factorisation
𝑓 =𝑚𝑒 with𝑚 a monomorphism and 𝑒 an epimorphism.

The archetypal example of such a factorisation for a map of sets 𝑓 : 𝐴 → 𝐵 is the image factorisation
𝐴 � im(𝑓 ) ↩→ 𝐵. The category of simplicial sets shares many properties with that of sets, one of them
is a similar image factorisation.

Example 3.46 (Canonical image factorisation). For a map 𝑓 : 𝐴 → 𝐵 in sSet, let 𝑀𝑛 be the set of
𝑛-vertices of 𝐵 which can be expressed as 𝑓𝑛 (𝑎) for some 𝑎 ∈ 𝐴𝑛 . This family of subsets 𝑀𝑛 ⊂ 𝐵𝑛 is
stable under face and degeneracy maps, in the sense that if 𝑏 is an element of𝑀𝑛 then, for example, its
degeneracy 𝑠𝑖 (𝑏) is an element of𝑀𝑛+1. Indeed, there is some 𝑎 ∈ 𝐴𝑛 such that 𝑓𝑛 (𝑎) = 𝑏 by denition,
and thus

𝑠𝑖 (𝑏) = 𝑠𝑖 (𝑓𝑛 (𝑎)) = 𝑓𝑛+1 (𝑠𝑖 (𝑎))

belongs to𝑀𝑛+1. This ensures that the sequence of sets𝑀𝑛 satisfy the simplicial identities and thence
induces a simplicial set im(𝑓 ), which comes with a canonical inclusion𝑚𝑓 : im(𝑓 ) ↩→ 𝐵. Sending 𝑎 ∈ 𝐴𝑛

to 𝑓𝑛 (𝑎) ∈ 𝑀𝑛 then denes a simplicial map 𝑒𝑓 : 𝐴 → im(𝑓 ) which, being surjective at each dimension,
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is an epimorphism. By denition, the diagram

𝐴

im(𝑓 )

𝐵

𝑓

𝑒𝑓

𝑚𝑓

commutes, it is called the canonical epi-mono factorisation of 𝑓 .

The preceding example shows that each map in sSet admits at least one epi-mono factorisation,
which settles existence considerations. It is then natural to ask if there is some order among the ways to
factorise a xed map, or even a notion of uniqueness. This is best answered via the concept of maps
between such factorisations.

Denition 3.47. A map of epi-mono factorisations from 𝑓 = 𝑚𝑒 to 𝑓 ′ = 𝑚′𝑒 ′ is a triple of maps
(𝑢, 𝑣,𝑤) such that the diagram below commutes.

𝐴 𝑀 𝐵

𝐴′ 𝑀 ′ 𝐵′

𝑢

𝑒

𝑣

𝑚

𝑤

𝑒′ 𝑚′

Recall that the arrow category C→ of a category C has as objects arrows of C while a map from
𝑓 : 𝐴 → 𝐵 to 𝑓 ′ : 𝐴′ → 𝐵′ in C→ is a pair of maps (𝑢,𝑤) with 𝑢 : 𝐴 → 𝐴′ and𝑤 : 𝐵 → 𝐵′ which satisfy
𝑤𝑓 = 𝑓 ′𝑢.

Proposition 3.48. If 𝑓 =𝑚𝑒 and 𝑓 ′ =𝑚′𝑒 ′ are both epi-mono factorisations in sSet, then for each map
(𝑢,𝑤) from 𝑓 to 𝑓 ′ in sSet→ there exists a unique map 𝑣 such that (𝑢, 𝑣,𝑤) is a map from 𝑓 = 𝑚𝑒 to
𝑓 ′ =𝑚′𝑒 ′.

Proof. This is a special case of [MM92, Proposition IV.6.2], where it is shown in arbitrary topos. �

Corollary 3.49. If 𝑓 =𝑚𝑒 and 𝑓 =𝑚′𝑒 ′ are two epi-mono factorisations of the same map 𝑓 : 𝐴 → 𝐵 in
sSet, then there exists a unique isomorphism of the form (id𝐴, 𝑣, id𝐵) between the two factorisations.

𝑀

𝐴 𝐵

𝑀 ′

𝑚

𝑣

𝑒

𝑒′ 𝑚′

Proof. Since (id𝐴, id𝐵) is a map from 𝑓 to itself in sSet→, there exist unique maps 𝑣 : 𝑀 → 𝑀 ′ and
𝑣 ′ : 𝑀 → 𝑀 ′ such that (id𝐴, 𝑣, id𝐵) and (id𝐴, 𝑣 ′, id𝐵) are maps of epi-mono factorisations. As a result, the
triple (id𝐴, 𝑣 ′ ◦𝑣, id𝐵) is a map from 𝑓 =𝑚𝑒 to itself, but that is also the case of (id𝐴, id𝑀 , id𝐵); uniqueness
then implies that 𝑣 ′ ◦𝑣 = id𝑀 . Similarly, the map 𝑣 ◦𝑣 ′ is the identity of𝑀 ′, which means that (id𝐴, 𝑣, id𝐵)
is an isomorphism between the two factorisations, and it is already known to be unique. �

The aim of this section is to model propositional truncation using epi-mono factorisations, it is
therefore important that they be well-behaved with respect to brations.
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Proposition 3.50. If 𝑝 : 𝐸 → 𝐵 is a bration and 𝑝 =𝑚𝑒 is an epi-mono factorisation of 𝑝 , then both𝑚
and 𝑒 are brations.

Proof. Consider a lifting problem for Λ𝑛
𝑘
↩→ Δ𝑛 against 𝑒 , as in the diagram below. As can also be

seen there, composing with 𝑚 yields another lifting problem for the same horn inclusion against 𝑝 .
By assumption, this second problem admits a ller, which turns out to also solve to the rst problem,
because𝑚 is monic. Hence, the map 𝑒 is a bration.

Λ𝑛
𝑘

𝐸

Δ𝑛 𝑀

𝐵

𝑒
𝑝

𝑚

Being an epimorphism, the map 𝑒 has the right lifting property against ∅ ↩→ Δ0. Recall that the
inclusion Δ0 𝑘

↩−→ Λ𝑛
𝑘
is an anodyne extension, as shown by Proposition 3.42. Hence, by the above, this

map Δ0 𝑘
↩−→ Λ𝑛

𝑘
has the left lifting property against 𝑒; as a result, so does the composite ∅ ↩→ Δ0 ↩→ Λ𝑛

𝑘
.

This precisely means that any map Λ𝑛
𝑘
→ 𝑀 admits a lift along 𝑒 .

Consider a lifting problem for Λ𝑛
𝑘
↩→ Δ𝑛 against𝑚 as below. By the above, the map ℎ : Λ𝑛

𝑘
→ 𝑀 of

this problem can be lifted along 𝑒 to a map ℎ′ : Λ𝑛
𝑘
→ 𝐸. Then, replacing ℎ by ℎ′ induces a new lifting

problem for the same horn inclusion against 𝑝 . By assumption, this modied square admits a ller 𝑓 and
a simple diagram chase then shows that 𝑒 ◦ 𝑓 is a solution to the original lifting problem (note that one
uses the monicity of𝑚 once more in this diagram chase). Hence, the map𝑚 is a bration as well.

𝐸

Λ𝑛
𝑘

𝑀

Δ𝑛 𝐵

𝑒

𝑝

ℎ′

ℎ

𝑚
𝑓

�

Proposition 3.51. Let 𝑝 : 𝐸 → 𝐵 and 𝑓 : 𝑋 → 𝐵 be simplicial maps, with 𝑝 truncated. Any vertex lift 𝑔,
as in the diagram below, can be extended to a lift 𝐹 : 𝑋 → 𝐸 of 𝑓 along 𝑝 .

𝐸0

𝑋0 𝐵0,

𝑝0

𝑓0

𝑔

Proof. The nal lift 𝐹 is built up one dimension at the time, via a recursively dened sequence of partial
lifts 𝐹𝑛 : sk𝑛 𝑋 → 𝐸. Here, a map sk𝑛 𝑋 → 𝐸 is called a partial lift if the square

sk𝑛 𝑋 𝐸

𝑋 𝐵

𝑝

𝑓

37



commutes. Since sk0𝑋 is freely generated by the vertices of 𝑋 , the data of 𝑔 is equivalent to that of a
partial lift 𝐹 0 : sk0𝑋 → 𝐸.

Assuming a partial lift 𝐹𝑛 : sk𝑛 𝑋 → 𝐸, one denes the next partial lift 𝐹𝑛+1 by constructing the
commutative diagram displayed below.∐

𝑥 ∈𝑁𝑋𝑛+1 𝜕Δ
𝑛+1 sk𝑛 𝑋 𝐸

∐
𝑥 ∈𝑁𝑋𝑛+1 Δ

𝑛+1 sk𝑛+1𝑋 𝑋 𝐵.

𝐹𝑛

𝑝

p 𝑓

The map 𝑝 being truncated, the outer rectangle admits a ller ℎ :
∐

𝑥 ∈𝑁𝑋𝑛+1 Δ
𝑛+1 → 𝐸. Since sk𝑛+1𝑋 is

obtained by gluing the non-degenerate (𝑛 + 1)-simplices of 𝑋 to sk𝑛 𝑋 , the upper triangle of this lling
induces a putative partial lift 𝐹𝑛+1.∐

𝑥 ∈𝑁𝑋𝑛+1 𝜕Δ
𝑛+1 sk𝑛 𝑋

∐
𝑥 ∈𝑁𝑋𝑛+1 Δ

𝑛+1 sk𝑛+1𝑋

𝐸

𝐹𝑛

ℎ

𝐹𝑛+1

p

As for the lower triangle of the lling, it and the square associated with 𝐹𝑛 help prove that 𝐹𝑛+1 is indeed
a partial lift.

sk𝑛+1𝑋

sk𝑛 𝑋 𝑋

sk𝑛+1𝑋 𝐸 𝐵

∐
𝑥 ∈𝑁𝑋𝑛+1 Δ

𝑛+1 𝑋

sk𝑛+1𝑋

𝐹𝑛 𝑓

𝐹𝑛+1 𝑝

ℎ 𝑓

Indeed, the commutative diagram above shows that 𝑝 ◦ 𝐹𝑛+1 and 𝑓 ◦ (sk𝑛+1𝑋 ↩→ 𝑋 ) are induced, as
maps out of a pushout, by the same pair of maps, hence they are themselves equal.

By denition, the triangle
sk𝑛 𝑋 sk𝑛+1𝑋

𝐸

𝐹𝑛 𝐹𝑛+1

commutes for each 𝑛. As a consequence, the sequence of maps 𝐹𝑛 : sk𝑛 → 𝐸 induces a map 𝐹 : 𝑋 → 𝐸;
and their being partial lifts ensures that 𝐹 is itself a lift (which extends 𝑔 by construction). �
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Corollary 3.52. Let 𝑒 : 𝐴 → 𝐵 and 𝑓 : 𝑌 → 𝑋 be two maps in sSet. If 𝑒 is an epimorphism and 𝑓 is
truncated, then 𝑒 has the lower-only left lifting property against 𝑓 .

Proof. Since 𝑒 is an epimorphism, its vertex map 𝑒0 : 𝐴0 → 𝐵0 is surjective and thus, by AC, admits a
section 𝑠 : 𝐵0 → 𝐴0. Given any square from 𝑒 to 𝑓 , such as the one displayed below, one can precompose
𝑔0 : 𝐴0 → 𝑌0 with 𝑠 and thus obtain a vertex lift of ℎ along 𝑓 .

𝐴 𝑌

𝐵 𝑋

𝑔

𝑒 𝑓

ℎ

Since 𝑓 : 𝑌 → 𝑋 is truncated, the above proposition can be applied and yields a lift of ℎ along 𝑓 , as
required to show that 𝑒 �𝑙 𝑓 . �

Theorem 3.53. Any epi-mono factorisation

�̃�𝛼

𝑀

𝑈𝛼

𝑝𝛼

𝑒

𝑚

induces a ‖ ‖-structure on𝑈𝛼 .

Proof. By Proposition 3.50, the map𝑚 is a bration, and it is clearly 𝛼-small, hence there exists a map
p𝑀q : 𝑈𝛼 → 𝑈𝛼 such that

𝑀 �̃�𝛼

𝑈𝛼 𝑈𝛼

𝑚
y

𝑝𝛼

p𝑀q

is a pullback square. Moreover, the fact that 𝑚 is a monomorphism means that the diagonal map
Δ𝑀 : 𝑀 → 𝑀 ×𝑈𝛼

𝑀 is an isomorphism and therefore that 𝑟𝑀 ◦ Δ−1
𝑀

is a section of 𝑝Id𝑀 . This yields a
factorisation of p𝑀q through (𝑈𝛼 )−1 → 𝑈𝛼 , let p‖ ‖q be the map𝑈𝛼 → (𝑈𝛼 )−1 of said factorisation.

As a result, the projection 𝑝 ‖ ‖ : ‖ ‖ → 𝑈𝛼 is isomorphic to𝑚 : 𝑀 ↩→ 𝑈𝛼 over𝑈𝛼 . Composing this
isomorphism with 𝑒 : �̃�𝛼 � 𝑀 yields the desired map tr : �̃�𝛼 → ‖ ‖, which satises 𝑝 ‖ ‖ ◦ tr = 𝑝𝛼 , as
required.

Finally, it only remains to give an internal lower-only lifting operation for tr against (𝑝𝛼 )−1 ×𝑈𝛼 in
sSet/𝑈𝛼 . By Proposition 3.27, it suces to show that tr has the stable lower-only left lifting property
against (𝑝𝛼 )−1 ×𝑈𝛼 in sSet/𝑈𝛼 . This is equivalent to the claim that, for each 𝑓 : 𝑋 → 𝑈𝛼 , the pullback
𝑓 ∗tr of tr (seen as a map over 𝑈𝛼 ) along 𝑓 has the lower-only left lifting property against (𝑝𝛼 )−1 in sSet.
Corollary 3.52 shows that this is indeed the case since pullbacks of epis in sSet remain epis and that
(𝑝𝛼 )−1 is a truncated map by denition. �

Corollary 3.54. The simplicial model admits a ‖ ‖-structure such that 𝑝𝐴 = 𝑝 ‖𝐴 ‖ ◦ tr𝐴 is an epi-mono
factorisation for each type 𝐴 → Γ; in particular, the truncation of 𝐴 is a strict proposition.

Proof. It suces to apply Proposition 3.29 to the last theorem, with canonical image factorisation of 𝑝𝛼 ,
introduced in Example 3.46, as the chosen epi-mono factorisation; the strictness claim follows directly
because pullbacks of monos are monos as well. �
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4 Discrete interpretation

4.1 Discrete simplicial sets
This section focuses on the map 𝐷 from Set to sSet induced by viewing sets as discrete simplicial sets.
The technical denition of the simplicial model slightly complicates the form that precise denitions of
𝐷 as a CwA map can take. The rst aim of this section is to give a satisfactory account of a denition of
𝐷 .

Properties of 𝐷 are then studied, especially those expressing how and in which sense does 𝐷 preserve
the logical structure of CSet such as Id-types, propositional truncation. It is also explained how to modify
𝐷 so that it takes its values in the CwA of h-sets of the simplicial model, as dened in Section 2, rather
than in the simplicial model itself. Those are the necessary tools needed for the last part of the section.

Denition 4.1. A simplicial set 𝑋 is discrete if its only non-degenerate simplices are of dimension 0. If
𝐴 is a set, then let 𝐷𝐴 be the discrete simplicial set

⊔
𝑎∈𝐴 Δ0, i.e., the simplicial with one vertex for each

element of 𝐴. The assignment 𝐴 ↦→ 𝐷𝐴 extends to a functor 𝐷 : Set → sSet in the evident way. Note
that 𝐷 is injective on objects as well as fully faithful

The rst aim of this section is to upgrade 𝐷 to the rank of CwA map into sSet𝑈𝛼
. However, given how

extensions and projections are not specically chosen in sSet𝑈𝛼
, the best one can hope for is a weaker

notion of CwA map which only preserves part of the structure up to isomorphism.

Denition 4.2. Let C and D be two CwAs, a weak CwA map between them consists of a functor
𝐹 : C → D, a natural transformation 𝐹Ty : TyC◦𝐹 op → TyD, and isomorphisms𝜙Γ,𝐴 : 𝐹 (Γ.𝐴) → 𝐹Γ.𝐹Ty𝐴
for each type 𝐴 ∈ TyC (Γ) such that the diagrams

𝐹 (Γ.𝐴) 𝐹Γ.𝐹𝐴

𝐹Γ

𝜙Γ,𝐴

𝐹𝑝𝐴
𝑝𝐹𝐴

and

𝐹 (Δ.𝑓 ∗𝐴) 𝐹 (Γ.𝐴)

𝐹Δ.𝐹 𝑓 ∗𝐴 𝐹Γ.𝐹𝐴

𝜙Δ,𝑓 ∗𝐴

𝐹 (𝑓 .𝐴)

𝜙Γ,𝐴

𝐹 𝑓 .𝐹𝐴

commute for each type 𝐴 ∈ TyC (Γ) and map 𝑓 : Δ → Γ in C.

Proposition 4.3. Let C and D be two categories with respective universes 𝑈 and 𝑉 . Assume a functor
𝐹 : C → D which sends 𝑈 -canonical pullback squares in C to pullback squares in D (not necessarily the
𝑉 -canonical ones). Further assume that 𝐹 sends 𝑝 : �̃� → 𝑈 to a pullback of 𝑞 : �̃� → 𝑉 in D, as displayed
below.

𝐹�̃� �̃�

𝐹𝑈 𝑉

𝐹𝑝

[̃

y
𝑞

[

In those conditions, the functor 𝐹 together with the natural transformation

𝐴 ∈ HomC (Γ,𝑈 ) ↦→ [ ◦ 𝐹𝐴 ∈ HomD (𝐹Γ,𝑉 )

induce a weak CwA map C𝑈 → D𝑉 , whose isomorphisms 𝜙Γ,𝐴 are induced by the uniqueness of pullbacks
up unique isomorphisms.

Proof. For each condition to check, one has only to draw the corresponding diagram to see that the
condition holds. �
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The strategy therefore consists in choosing a universe in Set to which the above proposition applies
with 𝐹 = 𝐷 . Since𝑈𝛼 classies brations whose bres are of cardinality < 𝛼 , there is an evident choice
of universe in Set.

Denition 4.4. Let Set𝛼 be the CwA induced by the universe

𝜋𝛼 :
⊔
𝛽<𝛼

𝛽 → 𝛼

in Set, with arbitrarily chosen pullbacks.

Remark 4.5. Note that this does not clash with the previous denitions of the CwA structure on Set.
Indeed, the induced CwA Set𝛼 is morally equivalent to the CwA of sets dened in Example 2.5 with the
additional restriction that the cardinality of 𝐴𝛾 is < 𝛼 for each type (𝐴𝛾 )𝛾 ∈Γ over Γ.

In order to apply Proposition 4.3, one has to check that 𝐷 preserves 𝛼-canonical pullbacks; of course,
it enjoys a stronger property.

Denition 4.6. Say that two vertices of a simplicial set 𝑋 are connected if they appear as faces of a
common simplex of 𝑋 . Let the set 𝜋0𝑋 of connected components of 𝑋 be the set 𝑋0 of vertices of
𝑋 modulo the equivalence relation generated by the pairs of connected vertices of 𝑋 . A connected
simplicial set 𝑋 is one that has a single connected components.

Proposition 4.7. The mapping 𝑋 ∈ sSet ↦→ 𝜋0𝑋 ∈ Set extends to a functor sSet → Set which is left
adjoint to 𝐷 , in particular 𝐷 preserves pullbacks.

Proof. Since simplicial maps commute with face maps, they send pairs of connected vertices to pairs of
connected vertices. In particular, the vertex map 𝑓0 induced by a simplicial map 𝑓 induces a map 𝜋0 𝑓
between the sets of connected component, which makes 𝜋0 into a functor.

For 𝑋 ∈ sSet and 𝑌 ∈ Set, a map from 𝑋 to 𝐷𝑌 amounts to a choice of 𝑦 ∈ 𝑌 for each simplex 𝑥 of 𝑋
which commutes with face and degeneracy maps. In the present case, this last restriction is equivalent
to asking that the 𝑦 chosen for a simplex 𝑥 is the same as those chosen for each of the faces of 𝑥 . In
other words, to dene a map 𝑋 → 𝐷𝑌 it is equivalent to give a map 𝑋0 → 𝑌 which agrees on connected
vertices, i.e., a map 𝜋0𝑋 → 𝑌 . This correspondence is of course natural, which shows that 𝜋0 a 𝐷 ; and
the claim about pullbacks follows directly from the fact that right adjoints preserve limits. �

Additionally, one needs to exhibit 𝐷𝜋𝛼 as a pullback of 𝑝𝛼 in sSet. Given the nature of 𝑝𝛼 , this
amounts to showing that 𝐷𝜋𝐴 is an 𝛼-small bration. By denition, it is clear that 𝐷𝜋𝐴 is 𝛼-small; as for
it being a bration, that also follows from a more general fact.

Proposition 4.8. If 𝑓 : 𝐴 → 𝐵 is a map of sets, then 𝐷𝑓 : 𝐷𝐴 → 𝐷𝐵 is a bration in sSet.

Proof. In general, if 𝐿 : C → D and 𝑅 : D → C are a pair of adjoint functors 𝐿 a 𝑅, and that 𝑓 and 𝑔
are maps of C and D respectively, then 𝐿𝑓 � 𝑔 holds if and only if 𝑓 � 𝑅𝑔 does. In the present case,
one wishes to show that (Λ𝑛

𝑘
↩→ Δ𝑛) � 𝐷𝑓 . Hence, one can equivalently check that 𝜋0 (Λ𝑛

𝑘
↩→ Δ𝑛) � 𝑓 ,

which is trivially true as 𝜋0 (Λ𝑛
𝑘
↩→ Δ𝑛) is an isomorphism. �

Corollary 4.9. There exist maps [𝛼 and [̃𝛼 such that

𝐷

(⊔
𝛽<𝛼 𝛽

)
�̃�𝛼

𝐷𝛼 𝑈𝛼

𝐷𝜋𝛼

[̃𝛼

y
𝑝𝛼

[𝛼

is a pullback square in sSet. �
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Denition 4.10. Let 𝐷𝛼 be the weak CwA map Set𝛼 → sSet𝑈𝛼
induced, via Proposition 4.3, by the

functor 𝐷 : Set → sSet and the pullback square of Corollary 4.9.

Since 𝐷𝛼 is a weak CwA map, it is unreasonable to ask that 𝐷𝛼 preserve the logical structure strictly.
An alternative denition, better suited to weak maps, could be one where the structured is preserved
“up to isomorphisms”. In order to give a more precise statement, it is useful to make a detour through
the notion of comma CwA of isomorphisms; this is obtained by combining comma categories with a
simpler version of the concept of CwA of span-equivalences [KL18, Denition 5.5] (where isomorphisms
are used instead of span-equivalences).

Namely, given two (possibly) weak CwA maps 𝐹0 : C0 → D and 𝐹1 : C1 → D, the underlying
category of the comma CwA of isomorphisms 𝐹0 ↓

� 𝐹1 is the full subcategory of the comma category
𝐹0 ↓ 𝐹1 consisting of the triples (Γ0, Γ1, 𝛼) where Γ0 and Γ1 respectively belong to C0 and C1 and 𝛼 is an
isomorphism 𝐹0Γ0

�−→ 𝐹1Γ1 in D. Types over such a context (Γ0, Γ1, 𝛼) are triples (𝐴0, 𝐴1, 𝛼
′) where 𝐴0

and 𝐴1 respectively belong to TyC0 (Γ0) and TyC1 (Γ1) and 𝛼
′ is an isomorphism of D making the diagram

𝐹0 (Γ0.𝐴0) 𝐹1 (Γ1.𝐴1)

𝐹0Γ0 𝐹1Γ1

�
𝛼′

𝐹0𝑝𝐴0 𝐹1𝑝𝐴1

�
𝛼

commute. By relying on the fact that 𝐹0 and 𝐹1 preserve (at least weakly) the CwA structures of C0 and
C1, one can straightforwardly dene reindexing of types, extensions, projections, and connecting maps
so that the projections 𝐹0 ↓

� 𝐹1 → C0 and 𝐹0
↓
� 𝐹1 → C1 become strict CwA maps.

Armed with this additional tool, one can be more specic on the extent to which 𝐷𝛼 preserves logical
structures, such as Id-types. Indeed, if one consider the variant 𝐹0 ↓

= 𝐹1 where both maps are strict CwA
maps and the isomorphisms are identity maps, then it can be seen that a (strict) CwA map 𝐹 : C → D
preserves Id-types if and only if 𝐹 ↓

= idD can be endowed with an Id-structure which is strictly preserved
by the projections 𝐹 ↓

= idD → C and 𝐹 ↓
= idD → D. This justies declaring that the weak map 𝐷𝛼 preserves

a given logical structure up to isomorphism if the CwA 𝐷𝛼
↓
� idsSet𝛼 can be endowed with a such structure

which is strictly preserved under the two projections.
Corollary 4.13 and Proposition 4.14 below showcase what concretely has to be proven in order to

show that 𝐷𝛼 preserve Id-types and propositional truncation up to isomorphism.

Lemma 4.11. If𝑋 is a discrete simplicial set, then the “constant path” map 𝑐𝑋 : 𝑋 → 𝑋Δ1
is an isomorphism.

Proof. Since 𝑋 is discrete, it is of the form 𝑋 = 𝐷𝑌 for some set 𝑌 . It follows that, for any 𝑍 ∈ sSet,

Hom(𝑍,𝑋Δ1 ) � Hom(𝑍 × Δ1, 𝐷𝑌 )
� Hom(𝜋0 (𝑍 × Δ1), 𝑌 )
= Hom(𝜋0𝑍,𝑌 )
� Hom(𝑍,𝑋 ).

Indeed, the connected components of 𝑍 and 𝑍 × Δ1 are identical. Since 𝑐𝑋 is precisely the image of id𝑋
under these isomorphisms, it suces to chase id

𝑋Δ1 in the above to obtain an inverse of 𝑐𝑋 . �

Proposition 4.12. If 𝑓 : 𝑌 → 𝑋 is a simplicial map with 𝑋 and 𝑌 discrete, then the reexivity map
𝑟𝑌 : 𝑌 → 𝑃𝑋 (𝑌 ) is an isomorphism.
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Proof. By denition of 𝑃𝑋 (𝑌 ), one can equivalently show that

𝑌 𝑌Δ1

𝑌 ×𝑋 𝑌 (𝑌 × 𝑌 ) ×𝑋×𝑋 𝑋Δ1

Δ𝑌

𝑐𝑌

is a pullback square, which is certainly the case if both horizontal maps are isomorphisms. By the
previous lemma, the top map is an isomorphism. As for the bottom map, it can be seen to be a pullback
of the isomorphism 𝑐𝑋 : 𝑋 → 𝑋Δ1 along 𝑓 × 𝑓 : 𝑌 × 𝑌 → 𝑋 × 𝑋 , when 𝑐𝑋 is viewed as a map from
Δ𝑋 : 𝑋 → 𝑋 × 𝑋 to (𝑠𝑋 , 𝑡𝑋 ) : 𝑋Δ1 → 𝑋 × 𝑋 in sSet/(𝑋 × 𝑋 ). �

Corollary 4.13. If 𝑓 : 𝑌 → 𝑋 is a map in Set, then 𝐷Δ𝑌 and 𝑃𝐷𝑋 (𝐷𝑌 ) are isomorphic in sSet→, as
witnessed by the square below.

𝐷𝑌 𝑃𝐷𝑋 (𝐷𝑌 )

𝐷 (𝑌 ×𝑋 𝑌 ) 𝐷𝑌 ×𝐷𝑋 𝐷𝑌

𝐷Δ𝑌

�

𝑟𝐷𝑌

�

�

Consider now the case of preservation of propositional truncation. It useful to recall from Example 3.19
that if𝐴 is a type over Γ inCSet then the projection of ‖𝐴‖ togetherwith tr𝐴 form an epi-mono factorisation
of 𝑝𝐴. In this case, the fact that 𝐷 preserves the type former Γ ` ‖𝐴‖ type up to isomorphism takes the
following form.

Proposition 4.14. Let 𝑓 =𝑚𝑒 be an epi-mono factorisation of 𝑓 : 𝑌 → 𝑋 in Set. The image of𝑚 under 𝐷
is isomorphic to𝑚𝐷𝑓 , from Example 3.46, over 𝐷𝑋 .

Proof. Since 𝐷 preserves monos and epis, the image 𝐷𝑓 = 𝐷𝑚𝐷𝑒 of 𝑓 = 𝑚𝑒 under 𝐷 is an epi-mono
factorisation of 𝐷𝑓 . From Corollary 3.49 it then results that those two factorisations are isomorphic,
which implies the stated claim. �

Indeed, the choice of ‖ ‖-structure on 𝑈𝛼 ensures that the projection of ‖𝐷𝛼𝐴‖, for 𝐴 a type in the
set model, is the monomorphism of an epi-mono factorisation of 𝑝𝐷𝛼𝐴. Note that, in particular, it also
the case that the image of the projection of 𝑝 ‖𝐴 ‖ under 𝐷𝛼 admits a section if and only the projection of
the truncation of 𝐷𝛼𝐴 in the simplicial model does so as well.

In the above, the functor 𝐷 : Set → sSet has been promoted to the status of CwA map, albeit a
weak one which preserves the logical structure up to isomorphism, it may therefore be hoped that the
techniques of Section 2 would induce a CwA map Set𝛼 → 𝑆 (sSet𝑈𝛼

), since Set𝛼 is a CwA with UIP.
However, the framework used in said section was that of strict maps, not weak ones. While it could be
conjectured that the constructions and results of that section can be adapted to the case of weak maps, it
is easier for the time being to give a solution for the specic case at hand.

In Section 3.1, it was noted that any universe 𝑈 carrying an Id-structure induced a universe of mere
propositions𝑈−1. The same can be done for h-sets.

Proposition 4.15. Let𝑈 be a universe in a locally cartesian closed category C, together with an Id-structure
for 𝑈 . There exists a map 𝑈0 → 𝑈 of C such that, for each type p𝐴q : Γ → 𝑈 , the sections of 𝑝IdId𝐴
correspond bijectively with factorisations of p𝐴q through𝑈0 → 𝑈 .
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Proof. Let𝑈0 → 𝑈 be the image of

(Id ×�̃�×𝑈 �̃� Id → �̃� ×𝑈 �̃� )∗Id ∈ C/(Id ×�̃�×𝑈 �̃� Id)

under the functor
ΠId×

�̃� ×𝑈 �̃�
Id→𝑈 : C/(Id ×�̃�×𝑈 �̃� Id) → C/𝑈 .

The proof of Proposition 3.20 is easily adapted. �

If one chooses pullbacks of 𝑝0 : �̃�0 → 𝑈0 along maps 𝑋 → 𝑈0 as those chosen by �̃� → 𝑈 along
𝑋 → 𝑈0 → 𝑈 , then 𝑈0 is also a universe in C. Moreover, this canonical choice of pullbacks ensures that
the map C𝑈0 → C𝑈 induced by Proposition 4.3 is actually a strict CwA map, and not only a weak map.
Since𝑈0 encodes h-sets, it may seem that𝑈0 is a dierent way of restricting to h-sets in CwAs induced
by universes than that developed in Section 2, but that is just an impression.

Proposition 4.16. Let𝑈 be a universe in a locally cartesian closed category C, together with an Id-structure
for𝑈 . The CwAs C𝑈0 and 𝑆C𝑈 are isomorphic over C𝑈 .

Proof. The isomorphism of underlying categories is simply the identity functor, since both CwAs have C
as their underlying category. Recall that types over Γ ∈ C in C𝑈0 are maps Γ → 𝑈0, while in 𝑆C𝑈 they
are types over Γ in C𝑈 together with a proof that said type is an h-set. The last proposition shows that
those two sets of types are naturally isomorphic, and one easily checks that these isomorphisms agree
with extensions, projections, and connecting maps. �

Now, Corollary 4.13 above shows in particular that 𝑃𝐷𝑋 (𝐷𝑌 ) → 𝐷𝑌 ×𝐷𝑋 𝐷𝑌 is a monomorph-
ism, since it is isomorphic to a diagonal map. In turn, this implies that its dependent path space
𝑃𝐷𝑌×𝐷𝑋𝐷𝑌 (𝑃𝐷𝑋 (𝐷𝑌 )) has a distinguished section, as was noted more generally in the proof of The-
orem 3.53. In particular, the image of a type 𝐴 : Γ → 𝛼 in Set𝛼 under 𝐷𝛼 carries a canonical h-set
structure and as a result the map 𝐷𝛼𝐴 : 𝐷Γ → 𝑈𝛼 factors through (𝑈𝛼 )0 → 𝑈𝛼 . Applying this to the
case of 𝛼 itself, one obtains the diagram displayed below.

𝐷𝛼 (�̃�𝛼 )0 �̃�𝛼

𝐷𝛼 (𝑈𝛼 )0 𝑈𝛼

𝐷𝜋𝛼

[̃′𝛼

[̃𝛼

y
(𝑝𝛼 )0
y

𝑝𝛼

[′𝛼

[𝛼

The left-most pullback square can be used to dene the desired map into the CwA of h-sets of the
simplicial model.

Denition 4.17. Let 𝐷 ′
𝛼 be the weak CwA map Set𝛼 → sSet(𝑈𝛼 )0 � 𝑆 (sSet𝑈𝛼

) induced, via Proposi-
tion 4.3, by the functor 𝐷 : Set → sSet and the left-most pullback square of the previous diagram.

4.2 Assembling diagrams
Recall the original goal expressed in the introduction, that properties of classical sets are preserved under
𝐷 : Set → sSet. As explained there, if one wishes to show that a property 𝑃 which holds in the set model
also holds in the simplicial model using this approach, then one starts by choosing a fragment𝑇 of HoTT
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whose type formers preserve h-sets and in which (the type of proofs of) 𝑃 can be expressed. Using the
functor 𝑆 dened in Section 2, one can then form the square displayed below.

C𝑇+UIP 𝑆 (CHoTT)

Set𝛼 𝑆 (sSet𝑈𝛼
)

J K 𝑆J K
𝐷′
𝛼

This square is not strictly speaking a square in the category of CwAs since 𝐷 ′
𝛼 is a weak map but it

suces for the current aim. Indeed, if one expresses the type of proofs of 𝑃 in the syntax of 𝑇 , then one
can chase this element of C𝑇+UIP along both paths of the above square.

On the one hand, going along the top-right path, the image of 𝑃 under C𝑇+UIP → 𝑆 (CHoTT) is the
same type now expressed in the language of HoTT, with the additional assumption that all types are
h-sets. If it is further sent down along 𝑆 (CHoTT) → 𝑆 (sSet𝑈𝛼

) then the result is the type of proofs of 𝑃
interpreted in a variant of the simplicial model where types are restricted to h-sets. On the other hand,
for the bottom-left path, rst sending 𝑃 along C𝑇+UIP → Set𝛼 yields its interpretation it in the set model,
where it is assumed to admit a section. Finally, the map 𝐷 ′

𝛼 includes this set-based interpretation as
discrete simplicial sets in the same variant of the simplicial model.

While the two resulting images of 𝑃 are not necessarily equal on the nose, it is the case that if one
of the two admits a section then so does the other one. Indeed, this results from the logical structure
being preserved up to isomorphism (in the sense sketched in the previous section), since the two distinct
projections are isomorphic as arrows; it was checked for identity types and propositional truncation in
the previous section but those results can be extended as to include further type formers such as Π-types
and Σ-types. As mentioned in Section 2.3, if 𝑇 carries one or more universe, one has to interpret them in
HoTT as universes of h-sets which are themselves h-sets for the current approach based on the functor 𝑆
to work. Moreover, if those universes are interpreted in the simplicial model by directly lifting set-based
universes in sSet as discrete simplicial sets, then the same commutativity up to isomorphism holds for
the type formers introduced by those universes. Note that it is also possible to directly add a generic
type former to 𝑇 itself which, if interpreted in the simplicial model by a discrete simplicial set, ts in the
current framework.

All in all, since the set-based interpretation 𝑃 admits a section, so does the interpretation, through
𝑆 (CHoTT), of 𝑃 in the modied simplicial model 𝑆 (sSet𝑈𝛼

). However, one could wonder whether the
obtained type in 𝑆 (sSet𝑈𝛼

) still encodes the property 𝑃 when the restriction to h-sets is stripped away.
This is answered by the stripping map from Section 2.2, or more precisely by Proposition 2.33 which
shows that the square

𝑈𝑆 (CHoTT) CHoTT

𝑈𝑆 (sSet𝑈𝛼
) sSet𝑈𝛼

𝑈𝑆J K J K

commutes. This means that the interpretations one obtains of 𝑃 in the simplicial model by forgetting the
h-set restriction from 𝑆 or by directly interpreting 𝑃 via J K : CHoTT → sSet𝑈𝛼

are the same, as desired.
In conclusion, any property of sets is preserved in the simplicial model when those sets are seen

as discrete simplicial set, as long as this property can be expressed type-theoretically with types that
preserve h-sets whose structure in the set model is compatible with that of the simplicial model up to
isomorphism.
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5 Future directions
The work carried out in Section 2 gave a way to restrict CwAs to their CwAs of h-sets, though the
interpretation of UIP took a slightly unsatisfactory form due to technical issues. Those issues arose
in part from to the strictness of CwA maps, and it might be hoped that reworking said section with
a weaker notion of map could yield a cleaner and more elegant version of the adjunction constructed
there. Moreover, this modication could also simplify Section 4 and give a more concrete meaning to
statements such as “the map 𝐷 preserves Id-types up to isomorphisms”.

In Section 2.3, the notion of type formers which preserve h-sets was tentatively dened. The slightly
informal and imprecise tone of the section was in part due to the author’s lack of knowledge of the recent
frameworks which establish means of rigorously asserting statements of the form “For all type theories
𝑇 , . . . ” or “For a arbitrary type former, . . . ”. It would therefore be fruitful to give a precise denition of
h-set preservation within those paradigms, and carry out the proofs in that generality.

One could also revisit the interpretation of propositional truncation in the simplicial model. The
one given here, based on epi-mono factorisations, has the advantage of providing strict propositions
but the disadvantage of only modelling the computation rule propositionally. A dierent approach,
based on a more homotopical factorisation system than the epi-mono one, might provide an alternative
interpretation in which truncations are not likely to be strict but where the computation rule is modelled
denitionally.

Finally, it may be hoped that the approach presented here applies, at least partly, to dierent models
of HoTT, such as the cubical model.
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