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Abstract

The topic of this thesis is the stack of G-Zips and what we can say
about the geometry of G-Zip schemes, that is, schemes with a nice map
into this stack. In particular, it treats the cone conjecture of Goldring and
Koskivirta. The cone conjecture states that the global sections of certain
vector bundles on a G-Zip scheme are determined by the global sections
of a related bundle over the stack of G-Zips. An exposition of a basic
strategy of proof is given, followed by an application of this strategy to
the case where G is of Dynkin type C2. We conclude with a discussion of
applications to good reductions of Shimura varieties.
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Introduction

The idea to write this thesis surfaced during a talk held by my supervisor Wushi
Goldring. The theme of the talk was using group theory as a tool in geometry, a
theme aptly named geometry-by-groups in [1]. A classical example of this theme
is the description of Grassmanian manifolds/varieties and more generally flag
spaces as a quotient of a reductive algebraic group by a parabolic subgroup.
The Grassmanian Gr(n, r) ∼= GL(n)/H over a field k where H is the stabilizer
in GL(n) of some r-dimensional subspace of kn, can also be viewed as a moduli
space. Namely, giving a map X → Gr(n, r), where X is a k-scheme, is the same
as giving quotient bundle of rank r of the vector bundle kn ×k X. Equivalently
it corresponds to choosing a rank n− r subbundle of kn×kX (the kernel of the
natural projection to the quotient), which we can view as choosing a filtration
of kn ×k X. As we will see in section 2.1.1, this can be re-interpreted as giving
a pair of torsors on X, with one contained in the other.

Two influential papers using geometry-by-groups are Deligne’s [2] and in Griffiths
and Schmid’s [3]. A further unifying theme of these is that the central geometric
objects are defined in terms of a cocharacter datum, namely a pair (G,µ) where
G is a reductive group and µ is a cocharacter. Another is that these objects
both parametrize families of Hodge structures, that is, they are period domains.
The stack of G-zips is also constructed from a cocharacter datum (G,µ), and as
is shown in [4], when the Hodge-de Rahm spectral sequence of a map X → S
of schemes in positive characteristic degenerates at page E1, the Hodge and
conjugate filtrations on the relative cohomology gives rise to a G-Zip. Hence,
we can view the stack of G-Zip as a characteristic p period domain. In [5],
Zhang redefines the Ekedahl-Oort stratification of Shimura varieties of PEL
type, and generalizes it to Shimura varieties of Hodge type. He does this by
giving a smooth map to the stack of G-Zips, and then apply the combinatorial
description of the stack of G-Zips in [6]. Further establishing the connection
between G-Zips and Shimura varieties.

Similarily to the Grassmanians, the stack of G-Zips can be described both as
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a quotient and as a moduli space for certain tuples of torsors. When G =
GL(n), these torsors can be viewed as giving a vector bundle over the scheme
mapping into the stack of G-Zips together with a pair of filtrations with some
compatibility requirements.

Just like flag varieties can be used to compute the cohomology of other varieties,
the cone conjecture, when true, gives us a way to compute cohomology of other
schemes when they carry a nice map to the stack of G-zips. Specifically, it allows
us to compute the global sections of certain vector bundles pulled back from the
stack of G-Zips, the automorphic vector bundles. When we have a map from
the reduction of a Shimura variety to the stack of G-Zips, these bundles are the
usual automorphic vector bundles (see [7] and [8]).

The original intent with this project was to, in addition to this thesis, write a
program implementing the basic strategy given in [7], then apply it to the case
where G is of type C2 × C2, with non-trivial Galois action.1 However, time
ran out and I decided to instead include a road-map of the algorithm implicit
in [7] to make its implementation easier for any interested party, see section 4.5.
Anyone interested in implementing this algorithm after reading this thesis or
just this introduction is welcome to contact me2 if any questions come up.

Outline

In section 1 we fix some notation and discuss the basic tools that are used in
the thesis. Some familiarity with schemes and algebraic groups is assumed.

In section 2 we discuss quotient stacks, first introducing torsors and then using
these to give the basic definitions of the quotient stacks of a group scheme
acting on a scheme. We then look at some properties of quotient stacks with
finite underlying topological spaces, in particular the properties that can be
used to define stratifications on schemes mapping into these quotient stacks.

In section 3 we give the definition of the stacks ofG-Zips andG-Zip flags together
with a proof that the stack of G-Zips is a quotient stack, due to Pink-Wedhorn-
Ziegler [9]. Then we give the definition of the Schubert stack of G, which under
one presentation can be viewed as having Schubert cells of G as points, hence
the name. We describe a smooth map from the stack of Zip flags to the Schubert
stack, thus getting a stratification on the stack of Zip flags using the results of
section 2.

In section 4, we discuss automorphic vector bundles on the three stacks intro-
duced in section 3 and review the cone conjecture (Conjecture C in [7]). We
then discuss a strategy for proving this conjecture for G of a given Dynkin type,
together with a cocharacter. This is the basic strategy given in [7], with some
small modifications and additions.

In section 5, we give a proof (due to Goldring & Koskivirta, [7]) of the conjecture
in the case when G is of Dynkin type C2.

1This would, if the conjecture was proven in that case, compute the cone of characters
with non-trivial automorphic forms defined on the reduction of Shimura varieties associated
to the Weil restriction of GSp(4) from a quadratic extension of Q back to Q.

2E-mail: ludvig.modin@gmail.com.
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Section 6 is dedicated to an introduction to Shimura varieties and their reduction
modulo p (for Shimura varieties of Hodge type), and a construction of a G-Zip
on this reduction, giving a map to the stack of G-Zips which is smooth by [5].
It ends with a discussion on the implications of the existence of this map, in
particular on what the cone conjecture tells us about the cohomology of these
varieties. This concludes the thesis.
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1 Notations and conventions

1.1 Commutative Algebra

Throughout this thesis, k will denote an algebraic closure of Fp if nothing else
is mentioned.

Given a commutative ring R, an R-algebra A and a R-module M , we use the
notation MA := M ⊗R A.

We denote by Af the ring of finite adeles of Q, that is Af ⊂
∏
l prime Ql with all

but finitely many components lying in the l-adic integers (l varying), and Apf
denotes the subring with trivial p-adic component.

1.2 Algebraic Geometry

Given a scheme f : X → S over S and a morphism g : T → S, we denote
analogously to the algebra situation XT := X ×S T . If g : T → S comes from
a morphism of rings g# : A→ B where T = Spec B and S = Spec A, we write
both XT and XB for the scheme X ×S T .

For any scheme X, Xred denotes the associated reduced subscheme (see lemma
26.12.4 in [10] for a construction).

1.2.1 Frobenius morphims

If R is a commutative ring of characteristic p > 0, then it follows from the
binomial theorem that the map x 7→ xp is a homomorphism, this is called the
Frobenius morphism of the ring and is denoted by Fr.

Lemma 1.2.1. The Frobenius morphism commutes with localization.
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Given a Fp-scheme S and an open cover S =
⋃
i Spec Ri the absolute Frobenius

morphism of S is defined by Frob : (S,OS) → (S,OS), locally as Spec(Fr) on
each Spec Ri. As Fr commute with localization, this is a well defined endomor-
phism of S.

If X is a scheme over S, where S is a characteristic p scheme as above, we get
diagram

X

X(p) X

S S

FrobX

p

FrX/S

p

FrobS

where p is the structure morphism of X and X(p) is the pullback of the absolute
Frobenius of S along p. FrX/S is called the relative Frobenius of X over S.

Similarly, given an OS-module F , denote by F (p) the pullback of F along the
absolute Frobenius of S.

When we only mention the Frobenius morphism it is assumed that it is clear
from the context which one we mean.

1.3 Sections of line bundles

Given a line bundle L on a schemeX and a section s ∈ H0(X,L ) = Hom(OX ,L ),
let div(s)3 denote the associated Cartier divisor, Z(s) the subscheme of X de-
fined by the exact sequence

L ∨
s∨ // OX // OZ(s)

// 0

with L ∨ = hom(L ,OX) the dual of L and s∨(φ) = φ ◦ s. This is called the
scheme of zeroes of s. Let nonvanish(s) := X − Z(s).4

1.4 Algebraic Groups and Root Data

Let G be an algebraic group over k, then X∗(G) := Homk−groups(G,Gm) and
X∗(G) := Homk−groups(Gm, G) denotes the group of characters and cocharac-
ters of G. When G = T is a torus5 let 〈·, ·〉 : X∗(T ) ×X∗(T ) → Z denote the
perfect pairing defined by λ(µ(t)) = t〈λ,µ〉.

If G is a connected reductive group over k, and T ⊂ G a maximal torus, let
Φ := Φ(G,T ) denote the set of T -roots in G and Φ∨ := Φ∨(G,T ) the T -coroots
in G. The root datum of (G,T ) is denoted RD(G,T ) := (X∗(T ),Φ, X∗(T ),Φ∨).
For a Levi subgroup L ⊂ G containing T , let ΦL := Φ(L, T ) ⊂ Φ denote the
T -roots in L (similarly for the coroots).

Given a Borel subgroup B of G with T ⊂ B, let

Φ+ := {α ∈ Φ
∣∣U−α ⊂ B}

3In most cases below X will be normal and thus we consider these divisors as Weil divisors.
4We will use ”−” for set difference as ”\” will be reserved for quotients of left actions.
5Isomorphic to a product of multiplicative groups as k is algebraically closed.
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where Uβ ∼= Ga is the root group of β in G (see Theorem 8.1 in [11]), let also
Φ− := −Φ+. The (unique, see Theorem 8.2.8 in [11]) set of simple roots of Φ+

is denoted ∆ and the set of simple coroots by ∆∨. We write

X∗+(T ) := {χ ∈ X∗(T )
∣∣〈χ, α∨〉 ≥ 0 for all α ∈ ∆}

for the cone of ∆-dominant characters.

The quadruple (X∗(T ),∆, X∗(T ),∆∨) is the based root datum associated to B.
Similarly, for a Levi subgroup L containing T , we denote by ∆L := ∆ ∩ ΦL
and ∆∨L := ∆∨ ∩Φ∨, and X∗+,L for the cone of ∆L-dominant characters, Φ+

L :=

Φ+(L, T ) and Φ−L := Φ−(L, T ).

We denote by W := W (G,T ) the Weyl group of T in G, that is the normalizer
of T modulo its center or equivalently the group of automorphisms of X∗(T )
generated by simple reflections sα(x) = x − 〈x, α∨〉α where α ranges over Φ.
Given w ∈W , ẇ ∈ NG(T ) denotes a representative, i.e. an element in the fiber
of w under the natural projection NG(T )→W .

The Weyl group is a finite Coxeter group described by the Coxeter system
(W, {sα}α∈∆), and thus comes equipped with a length function l : W → Z≥0

mapping w to the length of a minimal word in the generators {sα}α∈∆ equalling
w in W . Thus we also have a longest element w0 ∈ W . For a Levi subgroup
L ⊂ G containing T , let WL be the Weyl group of L, and w0,L ∈WL the longest
element (with respect to simple root reflections of roots contained in ∆L). Given
a parabolic subgroup P ⊂ G containing B, with Levi subgroup L, its type is
∆L, which we also denote by type(P ) = ∆L. We call P op := ẇ0Pẇ0

−1 the
opposite parabolic of P . If P = {g ∈ G

∣∣ limt→0 µ(t−1)gµ(t−1)−1 exist},6 then

P op = {g ∈ G
∣∣ limt→0 µ(t)gµ(t)−1 exist}.

For J ⊂ ∆, WJ ⊂ W denotes the subgroup generated by {sα}α∈J , and its
longest element (with respect to J) is denoted w0,J . Similarly, W I denotes the
set of coset representatives of W/WJ with minimal length (with respect to ∆).
The longest element of W J is w0w0,J . We have the following inclusions for a
Levi subgroup of type J (containing T )

w0,LΦ+
L ⊂ Φ−

and
w(Φ+ \ Φ+

L) ⊂ Φ+ for all w ∈WL

to see the second formula, notice that w0,J is a product of simple reflections sα
with α ∈ J , so it is enough to prove it for these, which follows directly from
lemma 8.2.7 (i) in [11].

If G and T are defined over κ ⊂ k a subfield, the root datum and Weyl group
of G,T are then the corresponding gadgets of Gk and Tk. The group Gal(k/κ)
naturally acts on both W and the root datum of G,T . On the root datum
through Dynkin diagram automorphisms and on W by conjugation (viewing W
as automorphisms of the root datum). The actions are related by the formula

σ(wλ) =σ wσλ

6The limit is taken in the sense of [11]. Precisely, the limit exist if the morphism Gm → G
given by t 7→ µ(t−1)gµ(t−1)−1 extends to A1.
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for all w ∈ W , λ ∈ X∗(T ) and σ ∈ Gal(k/κ). Similarly as for the root datum,
given a Borel subgroup T ⊂ B ⊂ G defined over some finite extension of κ, the
associated based root datum is the one defined by (Gk, Bk, Tk).

1.4.1 Some useful notions

Definition 1.4.1. Let G be an affine algebraic group G defined over a field k

• G is quasi-split if there is a Borel subgroup B ⊂ G, also defined over k

• G is split if it contains a maximal torus T which is isomorphic to Gnm over
k for some n ≥ 1.

Definition 1.4.2. Let G be a connected reductive algebraic group defined over
a global field K (number field or function field), given a prime v of the ring
of integers, we say that G is unramified at v if GKv (the base change to the
v-adic completion of K) is quasi-split over Kv and split over some unramified
extension of Kv (see e.g [12] for an introduction to extensions of local fields).

Definition 1.4.3. A cocharacter µ ∈ X∗(T ) is miniscule if for every α ∈ Φ

〈α, µ〉 ∈ {1,−1, 0}.

2 Quotient Stacks

This section is devoted to describe the basic properties of quotient stacks. The
description of the stack of G-Zips as a quotient stack, see section 3.2, is essential
to deduce facts about a G-Zip scheme from the root system of G.

2.1 Torsors

Given a group scheme G → S, a G-torsor is a scheme I → S with an action
α : I ×G→ I7 such that whenever I(U) 6= ∅,

αU : I(U)×S G(U)→ I(U)

is simply transitive, and such that there is a covering {Ui → S}8 with I(Ui) 6= ∅
for all i. A morphism of G torsors is a G-equivariant morphism of schemes. It
follows from the first axiom that if I(U) 6= ∅, then IU ∼= GU , since we can pick
f ∈ I(U) and define a morphism G×S U → I ×S U by

GU (U ′) 3 g → f.g ∈ IU (U ′)

for any scheme U ′ → U , which is an isomorphism as it is objectwise by the
torsor axioms. If we have an equivariant morphism φ : I → I ′ of torsors, choose
a covering {Ui → S} such that I(Ui) 6= ∅ 6= I ′(Ui). Then by the above there
exist equvariant α : IUi

∼= GUi and β : I ′Ui → GUi , each of these pairs induce
a equivariant morphism β ◦ φUi ◦ α−1 : GUi → GUi , which must be given by
left multiplication of some element of G(Ui),

9 in particular the pullback of φ to
this cover is an isomorphism and hence f itself is an isomorphism. Thus the
category of torsors with equivariant maps as morphisms over S is a groupoid.

7Alternatively α : G× I → I.
8in the fpqc site, that is; fatihfully flat, quasi-compact morphisms are covers.
9since φ(g′g) = φ(g′).g for all g, g′ and the action is simply transitive so φ(g) = φ(e)g
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2.1.1 The torsor related to a vector bundle with tensors and a fil-
tration

Given a vector bundle V of rank n over S, we define an associated GL(n)-torsor.
This is done in the following way. Let Λ denote the constant sheaf associated
to a free abelian group of rank n and define

I := IsomS(V ,Λ)

which as a pre-sheaf on Sch/S takes U → S to the set of OU -module iso-
morphisms from VU to Λ ⊗ OU . This is a GL(n) torsor under the action
θ.g(x) = g−1 ◦ θ(x) where θ ∈ I(U), x ∈ VU (U ′) for any open U ′ ⊂ U and
g ∈ GL(n)(U ′).

To see that this is a torsor, first note that a local trivialization of V over U ′

yields an isomorphism VU ′ ∼= OnU ′ ∼= Λ ⊗ OU ′ , so there is a covering with the
I(U ′) 6= ∅ for each U ′ in the covering. Also, if φ, ψ ∈ I(U), we may choose
bases of VU and ΛU such that φ is represented by the identity matrix and ψ by
some invertible matrix and we may take g to be this matrix, so GL(n)(U) acts
transativly. Furthermore, if φ.g = φ.h, the same choice of basis as above yields
g = h so the action is simple and transitive, i.e. I is a torsor.

If G is an algebraic group embedded into GL(n) given as the stabilizer of a
collection of tensors {sα} ⊂ Λ⊗, then if there are associated tensors {sα,V } ⊂
V ⊗ we can form the sheaf

IsomS((V , {sα,V }), (Λ, {sα}))

of isomorphisms mapping sα,V to sα, which by identical considerations as above
are G torsors.

If we have filtrations Fil1 of V and Fil2 of Λ, with the same jumps in rank, we
can get torsors for the subgroup of G stabilizing the filtration of Λ. To define
these torsors, let

IsomS((V , {sα,V },Fil1), (Λ, {sα,Fil2}))

be the subsheaf of the torsors above consisting of isomorphisms preserving the
filtrations.

2.2 The quotient of an action

Given a group scheme G → S acting on a scheme X → S on the left, we
define a category fibered in groupoids [G \ X], over Sch/S by the following.
The objects in [G \ X](U)10 consist of pairs (I, f). Here I → U is a left GU -
torsor over U and f : I → X is a G-equivariant morphism over S. Given two
objects (I, f), (I ′, f ′) ∈ [G \X], a morphism is a morphism of G-torsors over S,
α : I → I ′ such that f = f ′ ◦ α. As this is a subcategory of torsors over U , it
is indeed a groupoid by section 2.1. If g : U → V is a morphism of S-schemes,

10the fiber over U
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then a morphism over g is a commutative diagram

I

π

��

f // I ′

π

��
U

g // V

with (I, α) ∈ [G \ X](U), (I ′, β) ∈ [G \ X](V ) where π is the projection map
i.e. the functor mapping an object in [G \X] to the S-scheme it is defined over,
and f is G-equivariant and the diagram

I

α

��

f // I ′

β

��
X

id // X

commutes. Note that the morphisms in [G \X](U) are the morphisms defined
above lying over the identity of U .

This stack also carries a natural projection p : X → [G\X], which to x ∈ X(U)
assigns the trivial torsor GU with the map GU → X defined by mapping g ∈
GU (U ′) to g.xU ′ .

If G is separated, flat and of finite presentation over S, then it follows from
proposition 10.13.1 in [13] that [G \X] is an algebraic stack. This will always
be the case in the examples of this thesis.

2.3 The topological space underlying a quotient stack

Given an algebraic stack X , the underlying topological space |X | is defined as
the set of equivalence classes of morphisms Spec(K) → X for fields K. Here
two morphisms Spec(K1) → X and Spec(K2) → X are equivalent if there
is a common field extension K of K1 and K2 such that the two morphisms
Spec(K) → Spec(Ki) → X are isomorphic in the groupoid X (K). A subset
|U| ⊂ |X| is open if there is an open immersion of algebraic stacks11 U ↪→ X with
|U| the set defined above. If X is a scheme, then |X | is naturally homeomorphic
to the topological space underlying X as a locally ringed space.

2.3.1 Finite T0-spaces

A topological space is T0 if for each pair of points, there is an open set containing
one but not the other. Equivalently X is T0 if for all x, y ∈ X, x = y if and only
if x ∈ {y} and y ∈ {x}. If X is a finite T0 space, we say that x ≤ y if and only if
x ∈ {y}, which by the above is a partial order. On the other hand, if (X,≤) is
a finite partially ordered set, we say a subset of X is closed if it is the union of
sets of the form {x|x ≤ y} for some y ∈ X, this defines a topology on X. The
open sets of this space has a basis consisting of the sets of the form {x|y ≤ x}.
A map between topological spaces is continuous if and only if pre-images of
closed sets are closed. This happens precisely when the map preserves the

11see 98.3 in [10] for a precise definition of open immersions of stacks
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orders given above, when the spaces are finite and T0. So the categories of finite
T0 spaces and finite partially ordered sets are isomorphic.

Suppose G is an algebraic group over a field K12, with absolute Galois group
Γ = Gal(K/K), acting on the left on a scheme X of finite type over K. Each
G(K) orbit O is a locally closed subset of X(K), as it is open in its closure by
lemma 2.3.3 in [11]. The closure of O is stable under G(K),13 so O is a union
of orbits. It follows that if O′ is another orbit with O′ ∩ O 6= ∅, then O′ ⊂ O
and dimO′ < dimO.

Hence the orbit set Θ := G(K) \X(K), is T0 under the quotient topology. To
see this, suppose O1 6= O2 and O2 ⊂ O1. Then dimO2 < dimO1 and hence
two points are equal if and only if each point is contained in the others closure.

Assume Θ is finite, then Θ is a partially ordered set under the order induced by
its topology defined by O ≤ O′ :⇔ O ⊂ O′. The Galois group of K/K, Γ, acts
continuously on X(K)14, which descends to a continuous action on Θ. Taking
the quotient, we obtain another finite T0 space Γ \Θ.

By II 3.2(ii) in [14] together with proposition 11.2.8 in [11], there is a natural
bijection between Γ\Θ and the set of locally closed reduced G-stable subschemes
of X that contain no nontrivial locally closed G-stable subschemes. In other
words, Γ \Θ corresponds to the set of algebraic orbits of G in X.

We have the following

Proposition 2.3.1. In the set up as above, if Θ is finite, then |[G \X]| is
homeomorphic to Γ \Θ.

Proof. A point p ∈ |G \X| is represented by a map xp : Spec L → [G \ X]
for some field L/K. This map corresponds to a torsor Ip over Spec L and a
G-equivariant map fp : Ip → X. A torsor over an algebraically closed field is
trivial, and by the definition of the underlying topological space of a stack we
can allways assume the field defining our point is algebraically closed. Hence p
is determined by fp : GL → X. Two such maps, f and h, comes from the same
point precisely when their scheme theoretic image are the same locally closed
G-stable subschemes of X, since then there is a g ∈ G(L) with f = g.h. Hence
|G \X| corresponds bijectively with the set of algebraic orbits of G in X. By
the discussion above this defines a bijection θ : |[G \X]| → Γ \Θ.

By Corollary 5.6.1(i) in [13], the topology on |[G \X]| is the quotient topology
induced by the map |p| : |X| → |[G \X]|. Let U be a subset of Γ \ Θ such

that V = |p|−1
(θ(U)) is open in X. There is an induced G-action on V , as

it is stable under the action on X by definition. Let S be the set of closed G
orbits in V . By II 3.3 in [14], S 6= ∅ and U is the union of all sets of the form
{ξ ∈ Γ \Θ|ξ ≥ s} for s ∈ S. Hence U is open.

On the other hand, if U ⊂ Γ \Θ is open, then V := |p|−1
(θ(U)) is the union of

finitely many locally closed subsets, i.e. it is constructible. As U is open, it is

12in particular it is separated, flat and of finite presentation over K, see 39.8.2 in [10]
13Otherwise, there is a y ∈ O such that g.y ∈ U = X \ O. Then g−1U ∩ g−1O = ∅ as

U ∩ O = ∅. However, g−1O = O is dense in O and g−1U ∩ O 6= ∅ as it contains y and it is
open in O, by the definition of the subspace topology. Hence, g−1U∩g−1O 6= ∅, contradiction

14By pulling back σ : Spec(K)→ Spec(K) by the structure morphism of XK for all σ ∈ Γ.
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a union of sets of the form {ξ ∈ Γ \ Θ|ξ ≥ s}, and therefore V is stable under
generization, and therefore it is open.15 So θ is a homeomorphism.

2.3.2 Stratification induced by an action

Using the above, we can get a nice decomposition of [G\X] into disjoint locally
closed reduced substacks. Namely, if Y is an algebraic G-orbit of X, then [G\Y ]
is a locally closed reduced substack of [G \X]. Thus we get a jointly surjective
family of substacks [G \ Y ] ↪→ [G \X], where Y ranges over Γ \Θ such that for
any scheme S and morphism S → [G \ X], S decomposes into disjoint locally
closed subschemes S ×[G\X] [G \ Y ].

If we assume that K is perfect, with X,Y,G as above, then YK is reduced. Pick
any y ∈ Y (K), as YK is reduced, it is the disjoint union of Γ-conjugates of G.y.
Furthermore, G.y is smooth over K as it is a reduced orbit by theorem 4.3.7
in [11]. Hence YK is smooth as well. Thus [G \ Y ] is a smooth algebraic stack
over K16. As X → [G \X] is smooth too, it preserves codimension and

codim ([G \ Y ], [G \X]) = codim(Y,X) = codim(G.y,XK).

2.3.3 Automorphisms

Let again G be a group scheme over K and X a scheme over K with G acting
on the left on X. Let S be a scheme over K, x ∈ X(S) and x ∈ [G \ X] the
image of x under the natural projection p : X → [G \X]. Define Aut(x) as the
sheaf of groups on the category of schemes over S with

Aut(x)(S′) = Aut[G\X](S′)(xS′)

and let StabGS (x) denote the closed subgroup scheme of GS with

StabGS (x)(S′) = {g ∈ GS(S′)|g.xS′ = xS′}.

Proposition 2.3.2. There is a natural isomorphism Aut(x) ∼= StabGS (x).

Proof. The S-point x of [G \X] is represented by the trivial G-torsor S ×k G
together with the map GS(S′) 3 g 7→ g.xS′ , as x = p ◦ x.

If φ ∈ Aut(x)(S′), it is G(S′) equivariant, and φ(g) = g.φ(e) for all g ∈ GS(S′)
with φ(e) ∈ GS(S′). But we also have that φ(g).xS′ = g.(φ(e).xS′) = g.xS′ ,
which implies that φ(e) lies in StabGS (x)(S′). Hence the φ 7→ φ(e) defines a
natural isomorphism (with inverse g 7→ (h 7→ h.g)).

2.4 Bundles associated to representations

Given an algebraic group G over K acting on a K-scheme X and a n-dimensional
algebraic representation over K ρ : G → GLn,K of G, there is an associated

15Constructible and stable under generization implies open by 5.19.10 in [10], as finite T0

spaces are Noetherian and sober.
16see definition 4.14 in [13] for defining properties of stacks
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vectorbundle V (ρ) on the quotient stack [G \X]. As a sheaf it is defined by

V (ρ)(s : U → [G \X]) := { U ×[G\X],s,π X
f // An

∣∣f(g.x) = ρ(g)f(x)

for all x ∈ U ×[G\X],s,π X(A) all g ∈ G(A) and all affine schemes A}

for any algebraic stack s : U → [G \X], so in particular, the global sections are
given by

H0([X \G],V (ρ)) = {f : X → A1
∣∣f(g.x) = ρ(g)f(x),

∀g ∈ G(A), x ∈ X(A) and all A}.

This is the associated sheaf construction17 adapted to the situation when the
quotient, [G\X], isn’t necessarily a scheme. Namely, if s : U → X/G is an open
immersion of schemes, then U ×X/G,s,π X = π−1(U).

2.5 Maps between quotient stacks

One way to produce representable maps between quotient stacks is by giving
maps between the schemes involved in the definition of the stacks. Namely,
let G,H be group schemes acting on schemes X,Y respectively and a pair of
morphisms

f : X → Y

and
α : G×X → H

such that
f(g.x) = α(g, x).f(x)

for all (g, x) ∈ G×X and the cocycle condition

α(gg′, x) = α(g, g′.x)α(g′, x)

is satisfied for all g, g′ ∈ G and all x ∈ X. Then (f, α) induces a morphism
between the groupoids associated the actions (3.4.3 in [13]) which then induce
a morphism f̃ : [G \X]→ [H \ Y ] (76.20.1, [10]) such that the diagram

X
f //

p

��

Y

p

��
[G \X]

f̃ // [H \ Y ]

commutes.18

A particularly useful α is the following: Given a homomorphism φ : G→ H let
α(g, x) = φ(g), which trivially satisfy the cocycle condition. In these cases we
will use the identification α = φ.

17See I.5.8 in [15].
18As above, p denotes the natural projection to the quotient.

12



3 The stacks of G-zips and G-zip flags

3.1 Cocharacter data and G-Zips

Let G be a reductive algebraic group over Fp and µ ∈ X∗(Gk)19 a cocharacter.
Define a parabolic subgroup P ⊂ Gk by

P (S) := {g ∈ G(S)
∣∣ lim
t→0

µ(t−1)gµ(t−1)−1 exist}

for any k-scheme S, Q as the Frobenius pullback of the opposite parabolic20,
L := CentG(µ) and M := L(p), the associated Levi subgroups of P and Q
respectively.

Cocharacter data as the pair (G,µ) above form a category, with morphisms
f : (G1, µ1)→ (G2, µ2) being homomorphisms of algebraic groups f : G1 → G2

such that f ◦ µ1 = µ2.

Let ϕ : Gk → Gk denote the Frobenius morphism, given a cocharacter and the
groups defined above, the Zip datum of type µ is the following

Definition 3.1.1 (Zip-data). The Frobenius Zip datum associated to (G,µ) is
the tuple Zµ := (G,P, L,Q,M,ϕ)

Letting U and V be the unipotent radicals of P and Q respectively, we get
through the Levi projections that P (p)/U (p) ∼= L(p) = M ∼= Q/V .

Fix a G-Zip datum and let U, V denote the unipotent radicals of P and Q
respectively.

Definition 3.1.2. A G-zip of type µ over a k-scheme S is a tuple I = (I, IP , IQ, ι)
of torsors over S. Here I is a right Gk-torsor, IP ⊂ I a P -torsor, IQ ⊂ I a
Q-torsor, and ι : (IP )(p)/U (p) → IQ/V an isomorphism of M -torsors.

The category, G-Zipµ of G-zips over S, with morphisms being compatible iso-
morphisms of torsors is a groupoid, and hence this gives rise to a category
fibered in groupoids, G-Zipµ over the category of k-schemes. It is in fact a
smooth algebraic stack of dimension 0, which we will see below.

If T ⊂ B ⊂ P are a maximal torus and a Borel subgroup, we define:

Definition 3.1.3. A G-zip flag of type µ is a tuple (I, J) where J is a G-zip of
type µ and J ⊂ IP is a B-torsor.

The terminology of Zip flags can be motivated in the following way, suppose G =
GL(n) and P ⊂ G a parabolic given as the stabiliser of some flag V0 ⊂ . . . ⊂ kn,
which is not full. Then, fixing a Borel subgroup contained in P corresponds
to refining the flag that P is the stabiliser of to a full flag, which has B as its
stabilizer.

Just like G-zips form an algebraic stack over k-schemes, so does the category of
G-zip flags, which we denote G-ZipFlagµ.

19Recall that k is an algebraic closure of Fp.
20The opposite parabolic is defined by the existence of limt→0 µ(t)gµ(t)−1.

13



3.2 Quotient stack description of G-Zipµ

The first step to show that we have a quotient stack is to construct a local model
of G-Zips, allowing us to work with them more concretely.

Construction 3.2.1. Let S ∈ Sch/Spec k. Given g ∈ G(S), the following defines
a G-zip Ig = (Ig, Ig,−, Ig,+, ιg) of type µ: Let

Ig := S ×k Gk
Ig,− := S ×k P ⊂ Ig

which are trivial torsors for Gk and P respectively. The Frobenius morphism
on S induces the commutative diagram

S ×k Gk
IdS×kGk

))##
π1

��

I
(p)
g

//

��

S ×k Gk

��
S

Fr // S

which shows that I
(p)
g
∼= S ×k Gk canonically. Using this, define Ig,+ as the

image of S ×k Q ⊂ S ×k Gk under left multiplication by g. Left multiplication
by g then induces an isomorphism of M -torsors

ιg : I
(p)
g,−/U

(p) = S ×k P (p)/U (p) ∼= S ×k Q/V → g(S ×k Q)/V = Ig,+/V

so Ig = (Ig, Ig,−, Ig,+, ιg) is indeed a G-zip of type µ.

Similarly for G-Zip flags

Definition 3.2.1. The standard zip-flag of type µ associated to (g, r) ∈ (G ×
P )(S) is a tuple Ig,r = (Ig, J(g,r)) where Ig is the standard G-zip of type µ
associated to g ∈ G(S) and J(g,r) is the image of B × S ⊂ P × S under left
multiplication by r.

These are indeed local models of G-Zips in the sense of the following lemma.

Lemma 3.2.1. Every G-zip of type µ is étale locally isomorphic to a standard
G-zip Ig.

Proof. Let I = (I, I−, I+, ι) be a G-zip of type µ. We first note that taking
fpqc-local trivialisations of I, I is fqpc locally affine and faithfully flat over S
(as G×kS is), and hence I is affine and faithfully flat, by faithfully flat descent21.
As k is perfect, G is smooth over k, by [10] 39.8.4. Hence any G-torsor I is fpqc-
locally smooth, therefore I is smooth over S by 35.20.27 in [10]. By Corrollarie
17.16.3 in [16], there is a surjective étale morphism S′ → S such that I(S) 6= ∅,
and not only a fpqc one. Similarly for I− and I+.

Hence, after replacing S by an étale covering, we have sections i± ∈ I±. These

induces sections i+V and ι(i
(p)
− U (p)) in I+/V (S). As I+/V is aM -torsor, there is

21Combining 35.20.18, 36.20.15 and 30.20.7 in [10]
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a unique section l ∈M(S) such that i+V.l = ι(i
(p)
− U (p)). Hence we may replace

i+ with i+l, and assume that i− and i+ induce the same section of I+/V . By
composing with the embeddings I± ⊂ I, i− and i+ induce two sections of I. As
I is a G-torsor, there is a unique g ∈ G(S) such that i+ = g.i−.

Now, we have a trivialisation of I and I− over S in i−. As these trivialisations
yields I ∼= Ig, and I− ∼= Ig,− we may assume that I− = Ig,− ⊂ I = Ig and that
i− is the identity section. Then i+ = i−g = g ∈ Ig(S), so I+ = g(P (p)) = Ig,+.

Since the M -equivariant isomorphism ι satisfies ι(U (p)) = ι(i
(p)
− U (p)) = i+V =

gV , it follows that ι = ιg. So Ig = I.

A similar proof, given in [1], shows

Lemma 3.2.2. Every G-zip flag of type µ is étale locally isomorphic to a stan-
dard G-zip flag Ig,r.

For a ∈ P and b ∈ Q, let a ∈ L and b ∈ M denote their image under the Levi
projection.

Definition 3.2.2. The zip group, E22, of (G,µ) is defined by

E(S) = {(a, b) ∈ (P ×Q)(S)|ϕ(a) = b}

for all k-schemes S.

Let E act on G by
(a, b).g = agb−1

for (a, b) ∈ E and g ∈ G.

Lemma 3.2.3. For all pairs of sections g, g′ ∈ G(S) there is a natural bijection
between the transporter

TranspE(S)(g, g
′) :=

{
(a, b) ∈ E(S)

∣∣agb−1 = g′
}

and the set of morphisms of G-zips Ig → Ig′ over S, in which (a, b) ∈ E(S) cor-
responds to the morphism of G-Zips given by Ig → Ig′ and Ig,− → Ig,− defined
by left multiplication with a, and Ig,+ → Ig′,+ defined by left multiplication with
g′bg−1.

Proof. A morphism f : Ig → Ig′ is given by equivariant isomorphisms f : Ig →
Ig′ and f± : Ig,± → Ig′,±. By definition, Ig,− = S×kP = Ig′,−, so f− is given by
left multiplication by a unique a ∈ P (S). Together with Ig = S×kG = Ig′ , this
implies that f is given by left multiplication with a as well, since i′ ◦ f− = f ◦ i.
Here i and i′ are the respective inclusions Ig,− ⊂ Ig and Ig′,− ⊂ Ig′ .
Similarly, we have that Ig,+ = g(S×k Q) and Ig′,+ = g′(S×k Q), so f+ is given
by left multiplication with g′bg−1 for a unique b ∈ Q(S). As j′ ◦ f+ = f ◦ j,
with j and j′ the respective inclusions Ig,+ ⊂ Ig and Ig′,+ ⊂ Ig′ , we must have

22Eµ if we want to emphasize which cocharacter it is associated to.
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g′bg−1 = a. These isomorphisms also need to be compatible with ιg and ιg′ ,
that is the diagram

I
(p)
g,−/U

(p) a //

g

��

I
(p)
g′,−/U

(p)

g′

��
Ig,+/V

g′bg−1

// Ig,+/V

is commutative, where an arrow labeled h is left multiplication with h ∈ G(S).
In other words g′ϕ(a) = g′b ∈M , equivalently ϕ(a) = b, so (a, b) ∈ E(S). Thus
(a, b) ∈ TranspE(S)(g, g

′). Conversely, all the compatibilities above are satisfied
for any (a, b) ∈ TranspE(S)(g, g

′), which proves the lemma.

We are now ready to prove that G-Zipµ is a quotient stack.

Proposition 3.2.1. The fibered category G-Zipµ is equivalent to [Eµ \ G] =
[E \ G]. In particular, the isomorphism classes of G-Zips of type µ over an
algebraically closed field K are in bijection with the E(K) orbits in G.

Proof. Let X denote the category fibered in groupoids with objects of X (S) be-
ing elements ofG(S), and morphisms between g and g′ given by TranspE(S)(g, g

′)
where composition is given by multiplication in E(S). Given a morphism
f : S′ → S over k, the pullback in X is defined by G(f) : G(S) → G(S′)
for objects and E(f) : E(S) → E(S′) for morphisms. As E is a scheme, it is
in particular a sheaf, so X satisfies effective descent for morphisms and X is a
pre-stack. The stackification 23 of X is [E \G] by 3.4.3 in [13].

A diagram chase shows that the bijection TranspE(S)(g, g
′)↔ HomG-Zipµ(Ig, Ig′)

given in the lemma above is compatible with pullbacks. As composition on both
sides is given by multiplication in E, the bijection is compatible with composi-
tion as well and 1 ∈ TranspE(g, g) corresponds to 1Ig ∈ HomG−Zip(Ig, Ig).

Hence we can define a morphism of fibered categories X → G-Zipµ mapping
g ∈ X (S) = G(S) to Ig acting by the correspondence TranspE(S)(g, g

′) ↔
Hom-Zipµ(Ig, Ig′) on morphisms. Since the action on morphisms is a bijection,
this morphism is fully faithfull on fibers. We saw above that every G-zip of
type µ étale locally is isomorphic to one of the form Ig. This implies that
the induced map morphism from the stackification of X , [E \ G] → G-Zipµ is
essentially surjective on fibers, hence an equivalence, and by Proposition 3.1.10
in [17], it is an equivalence of fibered categories, so the proposition follows.

The second part follows from the earlier discussion of the underlying topological
space of an algebraic stack.

Corollary 3.2.1. The stack G-Zipµ is a smooth algebraic stack of dimension
0.

Proof. The quotient stack [E \ G] is algebraic by Proposition 10.13.1 in [13].
It is smooth as k is perfect so the action of E and its orbits are smooth. We
have dimE = dimG, which can be seen by the following way, the subgroups

23See 3.2 in [13] or 8.8 in [10]
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Uα × {e} , {e} × Uβ and {(l, ϕ(l))|l ∈ L} where α ranges over roots of P which
are not roots of Q and the other way around for β are disjoint and generate E.
Similarly Uα, Uβ and L generate G by proposition 8.1.1 in [11].

The natural projection G → [EZ \ G] is an E-torsor, so given a geometric
point x : Spec K → [E \ G], the fiber Gx is isomorphic to E. Hence the
relative dimension of the projection is dimE = dimG and thus dim[E \G]x =
dimG− dimG = 0 for all geometric points x24. By the proposition above, the
corollary follows.

3.2.1 Conjugation

Given two Frobenius zip data

Z = (G,P,Q,L,M,ϕ)

and
Zg = (G, gPg−1, ϕ(g)Qϕ(g−1), gLg−1, ϕ(g)Mϕ(g−1), ϕ)

where g ∈ G(k), we can define a morphism [EZ \ G] → [EZg \ G] by the
maps f : G → G defined by x 7→ gxϕ(g)−1 and α : EZ → EZg defined by
(a, b) 7→ (gag−1, ϕ(g)bϕ(g)−1) which is an isomorphism, as both f and α are
isomorphisms. We conclude that conjugate Zip data yields isomorphic stacks.
This together with the corollary of Langs theorem that every smooth, connected
algebraic group over a finite field is quasi-split justifies the following

Assumption 3.2.1. From now on we assume that B ⊂ P is a Borel subgroup
of G, defined over Fp containing T .

3.2.2 The stack of Zip flags as a quotient

Let E ×B act on G× P by

((a, b), c).(g, r) = (agb−1, arc−1)

for ((a, b), c) ∈ E ×B and (g, r) ∈ G× P .

A very similar argument to the one for G-Zips yields

Proposition 3.2.2. The the fibered category G-ZipFlagµ is equivalent to [(E×
B) \ (G× P )].

There is a natural morphism π : G-ZipFlagµ → G-Zipµ given by forgetting the
B-torsor. We also have πquot[(E × B) \ (G × P )] → [E \ G] defined by the
projections onto the first coordinates in E × B and G × P . These fit into the
commutative diagram

G-ZipFlagµ
π //

∼=
��

G-Zipµ

∼=
��

[(E(G,µ) ×B) \ (G× P )]
πquot // [E(G,µ)]

So we may work solely with the quotient stack description and from now on we
use the identification πquot = π.

24See 98.12 in [10] for a definition and discussion of dimension of algebraic stacks.
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3.2.3 Alternate quotient descriptions of G-ZipFlagµ

Define the Weyl group element z := w0w0,J ∈ W , where J is the type of the
parabolic Q.

Lemma 3.2.4.
zB ⊂ Q

and
ϕ(B ∩ L) = B ∩M =z B ∩M.

Proof. By the discussion in section 1.4

zB = 〈−z.∆〉 = 〈−z.(J ∪ (∆ \ J))〉
= 〈−w0(w0,JJ) ∪ −w0w0,J(∆ \ J))〉 ⊂ 〈−w0J ∪∆〉

= 〈−σI ∪∆〉 ⊂ Q
proving the first statement.

For the second statement, recall that the type of a parabolic not containing our
chosen Borel subgroup B, such as P op, is the type of gP opg−1 containing B for
some g ∈ Gk25. The roots of P op are the negatives of the roots of P , due to
the limits defining these groups. So one way to get B ⊂ gP opg−1 is to choose
g = ẇ0, which takes positive roots to negative ones and vice versa. Let S be the
set of roots of P , then −S is the roots of P op and −w0S the roots of w0P

opw−1
0 .

Hence type(P op) = −w0S ∩ ∆ 26. As −w0∆ = ∆, type(P op) = −w0(S ∩ ∆)
and S ∩∆ = type(P ) we have type(P op) = −w0.type(P ).

Given a subset S ⊂ Φ of roots let 〈S〉 denote the subgroup of G generated by
our maximal torus T and the root groups Uα.

With our conventions, B = 〈−∆〉, P = 〈−∆, I〉, L = 〈±I〉. We get

Q = (P op)(p) = 〈∆,−w0.I〉(p) = 〈σ∆,−σw0I〉 = 〈σ∆,−w0σI〉,
where the last equality follows from σ(wλ) =σ wσλ and w0 being fixed by any
Galois action as is the unique element of W of its length. As B is assumed
split, we get that ∆ is Galois invariant. So Q = 〈∆,−w0σI〉. We have, using
∆ = J ∪ (∆ \ J)27 and w0,JJ = −J that

zB = 〈−z.∆〉 = 〈−z.(J ∪ (∆ \ J))〉 = 〈−z.J ∪ −z.(∆ \ J))〉
= 〈w0.J ∪ −z.(∆ \ J))〉 = 〈−σ.I ∪ −z.(∆ \ J))〉.

As
M = 〈±σI〉

we get
zB ∩M = 〈−σI〉

since if −z.α ∈ ±σI for α ∈ ∆ \ J , w0z.α = w0,Jα ∈ ± − w0σI = ±J . This is
a contradiction as w0z.α = w2

0w0,J .α = w0,J .α which lie in ±J if and only if α
does. As B is split ϕ(B ∩ L) = B ∩M = 〈−σI〉, proving the second statement.

25The definition is independent of which g we choose.
26Recall our convention that ∆ is the set of roots with U−α ⊂ B.
27Here we make an exception to our convention and use \ for set difference to avoid confusion
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Let E′ = E ∩ (B ×G) = {(a, b) ∈ E
∣∣a ∈ B}. Then we claim that E ⊂ B ×z B.

The unipotent radical V of Q is generated by Uα where α ranges over positive
roots with respect to zB which are not roots of M28 since zB ⊂ Q is a Borel
subgroup, so the preimage of ϕ(l) under the Levi projection Q → M is ϕ(l)V
where V ⊂z B, and as ϕ(B ∩ L) =z B ∩M the lemma above, ϕ(l)V ⊂z B if
l ∈ B ∩ L which proves the claim.

Lemma 3.2.5. The morphism [E′ \ G] → [(E × B) \ (G × P )] induced by the
maps E′ → E × B defined by (a, b) 7→ ((a, b), a) and G → G × P defined by
g 7→ (g, e) is an isomorphism of stacks.

Proof. By the universal property of stackifickation, and 3.4.3 in [13], it is enough
to show that the quotient prestacks of the respective actions are equivalent, we
denote these as well (abusing notation) by [H \ X] for a group H acting on a
scheme X.

By Proposition 3.1.10 in [17],it is enough to show that the categories [E′ \G](S)
and [(E×B) \ (G×P )](S) are equivalent for any k-scheme S. These categories
have objects G(S) and G× P (S) respectively and morphisms

TranspE′(S)(g, g
′)

and
Transp(E×B)(S)((g, p), (g

′, p′))

respectively.

Two objects in the image of this map will be pairs (g, e), (g′, e) and by definition

Transp(E×B)(S)((g, e), (g
′, e)) = {((a, b), c) ∈ E×B

∣∣agb−1 = g′ and aec−1 = e}.
This implies that a = c ∈ B(S), so (a, b) ∈ E ∩ B × E = E′ and ((a, b), c) =
((a, b), a) is the image of (a, b) ∈ TranspE′(S)(g, g

′), so the map is fully faithful.

For any (g, p) ∈ (G× P )(S), ((p−1, ϕ(p−1)), 1) ∈ (E ×B)(S) and

((p−1, ϕ(p−1)), 1).(g, p) = (p−1gϕ(p), 1) ∈ (G× 1)(S).

So the map is also essentially surjective, which proves that the two stacks are
isomorphic.

Another useful way to describe the stack of Zip-flags is as

[E \ (G× P/B)]

where E acts on G× P/B by

(a, b).(g, rB) := (agb−1, arB)

for all (a, b) ∈ E and (g, rB) ∈ G×P/B. Under this description, the morphism
G-ZipFlagµ → G-Zipµ is given by mapping an object f : I → G × P/B of
[E \ (G×P/B)](S) to π1 ◦f where π1 is projection to the first coordinate. Thus
the fiber of this morphism is P/B, so the stack of ZipFlags can be viewed as
P/B-bundle over the stack of Zips. 29

28This follows by proposition 8.4.3(ii) in [11]
29An equivariant morphism into P/B is determined by where it maps one point, that is

given s ∈ I(S), f is determined by f(s) which is equivalent to choosing a section of P/B(S)
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3.3 The flag stratification of G-ZipFlagµ

3.3.1 The Schubert stack

Let B ×B act on G by
(a, b).g = agb−1

for (a, b) ∈ B and g ∈ G.

Definition 3.3.1. The Schubert stack of G is defined by

Sbt := [(B ×B) \G].

Its points corresponds to Schubert cells of G/B, i.e. to the Bruhat decomposi-
tion of G(k)30, which in particular implies that the number of points is finite.
This implies that |Sbt| ∼= W = W (Gk, Tk) where the topology on the Weyl
group is the one induced by the Bruhat order31, see section 2.3.1. Hence, by
section 2.3.2, Sbt carries a stratification indexed by W . The strata and their
closures are the substacks

Sbtw := [(B ×B) \ Cw]

and
Sbtw := [(B ×B) \ Cw]

where Cw = BẇB, and ẇ ∈ G is a representative of w ∈W .

3.4 The flag stratification

Define β : [E′ \ G] → [B ×z B \ G] as the morphism induced by the inclusion
of E′ into B ×z B and the identity on G. Let α : [(B ×z B) \ G] be the
isomorphism induced by the map G → G defined by g 7→ gż and the map
B ×z B → B ×B defined by (a, b) 7→ (a, ż−1bż). Composing these two gives us
a smooth morphism

ψ := αz ◦ β : G-ZipFlagµ → Sbt.

Using this we define the flag stratification on G-ZipFlagµ. Given w ∈ W let
Yw := ψ−1(Sbtw), and Yw := ψ−1(Sbtw) endowed with the reduced structure.
We call these the flag strata and closed flag strata associated to w respectively.
As ψ is smooth, the flag strata Yw are smooth and locally closed.

Let ψ̃ : G×P → G be defined by (g, h) 7→ h−1gϕ(h)ż and define for w ∈W the
locally closed subvariety of G× P/B

Hw := {(g, hB) ∈ G× P/B
∣∣ψ̃(g, h) ∈ Cw}.

The action of E on G × P/B restricts to an action on Hw
32. We can identify

Yw = [E \Hw].

30See chapter 8.3 in [11]
31See [11], in particular a ≤ b implies l(a) ≤ l(b)
32Essentially as raising the entries of a matrix to the p’th power commutes with matrix

multiplication over Fp together with the defining relation for E and theorem 8.4.3 in [11]
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Lemma 3.4.1. 1. The closed flag strata are normal and irreducible.

2. The closed flag strata coincide with the closures of the flag strata.

3. For all w ∈W , one has dim(Hw) = l(w) + dim(P ).

Proof. As Cw is normal and ψ is smooth, Yw is normal by lemma 10.164.3
in [10]. The morphism ψ̃ : G × P → G is smooth with fibers isomorphic to P ,
in particular its fibers are irreducible. As CW is irreducible and ψ̃ is open with
irreducible fibers, if ψ̃−1(Cw) wasn’t irreducible, ψ̃−1(Cw) = U ∪ V for some
distinct non-empty open subsets, then the same holds for Cw, so ψ̃−1(Cw) = Hw

is irreducible. Hence [E \Hw] is irreducible as well. The closure the flag strata
coincide with the closed flag strata, as ψ is smooth. The last statement follows
from ψ being smooth of relative dimension dimP/B = dimP − dimB and
dimCw = l(w) + dimB by lemma 8.3.6 in [11] so dimHw = l(w) + dimP .

3.5 The automorphic vector bundles

Given a character λ : T → Gm, we get a P -equivariant line bundle on P/B by
8.5.7 in [11]. Pulling back the global sections of this bundle via the projection
E → P yields an E−module. Using the construction of bundles on quotient
stacks in section 2.4 yields a vector bundle V (λ) on [E \G] ∼= G-Zipµ. Similarly,
the first projection E′ → B yields a line bundle L (λ) on [E′ \G] ∼= G-ZipFlagµ.

Given a point x : Spec K → [E \G],

H0(Spec K,x∗V (λ)[E\G]) = H0(P/B,LP/B(λ))

and as the fiber of x in [E′ \G] is P/B,

H0(Spec K ×[E\G] [E′ \G],L[E′\G](λ) = H0(P/B,LP/B(λ))

as well. Hence we have the following direct image formula

(πY/X)∗L (λ) = V (λ).

3.6 G-Zips of Hodge type

Let (W,ψ) be a non-degenerate symplectic space over Fp and GSp(W,ψ) the
associated group of symplectic similitudes i.e.

GSp(W,ψ)(A) = {g ∈ GL(W )(A)
∣∣ψ(gv, gw) = λψ(v, w) for some λ ∈ Gm(A)}

for all v, w ∈W ⊗Fp A. We have the following decomposition

D : W ⊗ k = W+ ⊕W−

where W+ and W− are maximal isotropic subspaces.33

Define µD : Gm,k → GSp(W,ψ) by letting x ∈ Gm,k act trivially on W− and
by scalar multiplication by x on W+. Then (GSp(W,ψ), µD) is a cocharacter

33This means that they are maximal with respect to the property ψ(x, y) = 0 for all x, y ∈
W+ and x, y ∈W− respectively.
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datum. Cocharacter datum arising in this way are called Siegel-type cocharacter
data. Given a Siegel-type cocharacter datum GSp(W,ψ), we define the groups

P+
D := StabGSp(W,ψ)(W+), PD = P−D := StabGSp(W,ψ)(W−),

QD :=
(
P+
D
)(p)

, LD := P+
D ∩ P−D , MD := (LD)

(p)
.

These together with the Frobenius morphism gives us a zip datum. As GSp(W,ψ)
acts transitively on the set of decompositions like D above,34, all cocharac-
ters defined from such decompositions are conjugate, and thus the stacks of
GSp(W,ψ)-zips we get from them are all isomorphic.

The adjoint group, that is G/Z(G), of GSp(W,ψ) ∼= GSp(2g) for some g ≥ 1, is
isomorphic to PGSp(2g), and the composition of µD with the natural projection
yields a miniscule cocharacter µg of PGSp(2g)35. Similarly as for GSp(W,ψ),
we can associate a Zip datum.

Definition 3.6.1. Let (G,µ) be a cocharacter datum.

1. We say that (G,µ) is of Hodge-type if there is a Siegel-type cocharacter
datum (GSp(W,ψ), µD) and an embedding ι : (G,µ)→ (GSp(W,ψ), µD

2. We say that (G,µ) is of connected Hodge-type if there is a g ∈ Z≥1 and
a morphism of cocharacter data ρ : (G,µ) → (PGSp(2g), µg) such that
ρ : G→ PGSp(2g) has central kernel.

Hodge-type implies connected Hodge type, as we can take ρ = π ◦ ι where π
denotes the natural projection GSp(2, g) → PGSp(2g). This morphism has
central kernel as ι is an embedding and π is defined by having the center of
GSp(2g) as kernel. Working with the more general notion of connected Hodge
type in the context of the cone conjecture can be motivated, for example, by the
change of center lemma for the global sections cones (see below). A zip datum
Z is of Hodge type or connected Hodge type if there is a cocharacter datum
(G,µ) of Hodge type or connected Hodge type such that Z is isomorphic to the
G-zip datum associated to (G,µ).

4 The Cone Conjecture

Throughout this chapter X = G-ZipZ and Y = G-ZipFlagZ for some Zip datum
Z.

A G-zip scheme is a morphism

X
ζ // X

where X is a scheme. We call the product Y = X ×X Y the flag space of X. It

34By conjugating the standard symplectic form J =

(
0 Ig
−Ig 0

)
.

35The unique one, corresponding to the root 2eg in the notation of [18]
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is a P/B-bundle over X as Y is a P/B-bundle over X . We have the diagram

Y
ζY //

πY/X

��

Y

π

��

ψ // Sbt

X
ζ // X

Define the saturated36 global sections cones of X and X respectively by

CX = {λ ∈ X∗(T )|H0(X ,V (Nλ)) 6= 0 for some N ∈ Z≥1},

CX = {λ ∈ X∗(T )|H0(X, ζ∗V (Nλ)) 6= 0 for some N ∈ Z≥1}.
We will drop the adjective saturated in the following.

One could hope that given a sufficiently nice ζ, these two cones are the same.
This is indeed what is expected. Goldring and Koskivirta put forward the
following conjecture in [7]

Conjecture 4.0.1 (The Cone Conjecture). Assume that

1. The zip datum Z is of connected Hodge type.

2. For all connected components X◦ ⊂ X, the map ζ : X◦ → X is smooth
and surjective

3. All length one strata closures in Y are pseudo-complete.37

Then CX = CX .

Fix the notation
Yw = ψ−1(Sbtw)

Yw = ψ−1(Sbtw)

Yw = ζ−1
Y (Yw)

Y ∗w = ζ−1
Y (Yw)

all endowed with the reduced structure as subschemes/substacks.

By lemma 3.4.1 above, all Yw are normal, and hence the same holds for Y ∗w if ζ
satisfy the conditions of the conjecture. The following definitions are crucial in
the basic strategy of proof.

Definition 4.0.1. Let w ∈W and λ ∈ X∗(T )

1. CY,w := {λ ∈ X∗(T )|H0(Yw,LY(Nλ)) 6= 0 for some N ∈ Z≥1}
2. CY,w := {λ ∈ X∗(T )|H0(Y ∗w , ζ

∗LY(Nλ)) 6= 0 for some N ∈ Z≥1}
36Many of the good properties of the saturated cones are due to the possibility of taking

positive multiples as you will see in the proofs below. So the unsaturated variant where we
don’t allow multiples are not as stable.

37This is a weaker assumption than in the original paper, but it is all that is needed to
prove the relations of the cones in the same paper.
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3. A partial Hasse invariant of LY(λ) on Yw is a section s ∈ H0(Yw,LY(λ))
which is pulled back from the Schubert stratum Sbtw.

4. The Schubert cone CSbt,w ⊂ CY,w of w ∈ W is the cone of λ ∈ X∗(T )
such that LY(nλ) admits a partial Hasse invariant for some N ≥ 1.

4.1 Partial Hasse invariants

To start the investigation on line bundles related to characters, we notice that
the presentation G → Sbt factors through the flag space G/B. This allows us
to use the rich classical theory of Schubert cells in our study of automorphic
bundles. Specifically, we have

Proposition 4.1.1. Let w ∈W . The following is true

1. H0(Sbtw,LSbt(λ, µ)) 6= 0⇔ µ = −w−1λ.

2. dimkH
0(Sbtw,LSbt(λ,−w−1λ)) = 1.

3. For any nonzero f ∈ H0(Sbtw,LSbt(λ,−w−1λ)) viewed as a rational func-
tion on Cw, one has

div(f) = −
∑

α∈Ew
〈λ,wα∨〉Cwsα

Proof. Suppose f ∈ H0(Sbtw,LSbt(λ, µ)) − {0}. Identify f with a rational
function f : Cw → A1 descending to f under the presentation morphism. This
has to be non-vanishing since Cw is irreducible and we assumed it descends to
a nonzero section. This function satisfy the relation

f(bxb′) = λ(b)µ(b′)−1f(x)

for all (b, b′) ∈ B ×B and all x ∈ Cw. It follows that, for t ∈ T

f(ẇt) = µ(t)−1f(ẇ) = λ(ẇtẇ−1)f(ẇ)

as ẇt = ẇtẇ−1ẇ. Since this holds for all t ∈ T , we get that µ(t)−1 = λ(ẇtẇ−1),
equivalently µ = −w−1λ proving (1).

As Cw/B is an open B orbit in Cw/B, which is an irreducible B-variety, (2)
follows from (1) together with proposition 1.18 in the second version of [19].

Part (3) is Chevalley’s formula. For the original proof, see proposition 10 in [20]
or [21] for an approach using K-theory in the complex case. Note that there is
a sign difference due to our convention on positive roots. Given this formula for
G/B the same follows for quotient stacks by the definition of the line-bundles.
Namely that global sections are the B-invariants of the corresponding global
sections over G/B.

Lemma 4.1.1. For λ, ν ∈ X∗(T ), we have

ψ∗LSbt(λ, ν) = L (λ+ pσ(zν)),

where σ : k → k denotes the inverse of the map x 7→ xp.
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Proof. Recall that ψ : Y → Sbt was defined as the composition of the natural
projection [E′\G]→ [B×zB\G] follows by the isomorphism αz : [B×zB\G]→
[B × B \ G]. Thus LSbt(λ, ν) is given by the restriction38 of (λ, ν) along the
composition

E′ ⊂ B ×z B ∼= B ×B
defined by β : (a, b) 7→ (a, z−1bz) for (a, b) ∈ E′. Hence β∗(λ, ν)(a, b) =
λ(a)ν(z−1bz) = λ(a)(zν)(b) 39. Furthermore, since (a, b) ∈ E′ ⊂ E, we have
that ϕ(a) = b. Hence, using that σν(t) = σ(ν(σ−1(t))) = σ(ν(tp)) for all
t ∈ T 40, we have

λ(a)(zν)(b) = λ(a)σ(zν)p(a)

which proves the lemma41.

By the above, we get that ψ∗LSbt(λ,−w−1λ) = L (λ − pσ(zw−1λ)). We are
really interested in the sections of L (λ − pσ(zw−1λ)) but have a formula for
the vanishing of sections of LSbt(λ,−w−1λ). Thus we consider the map

Dw : X∗(T )→ X∗(T )

defined by
λ 7→ λ− pσ(zw−1λ).

In order to study this map, we need the following operation on the Weyl group
of G. Namely for w ∈ W , define w(0) := e and w(r) :=σ (w(r−1)w), for all
r ∈ Z≥1.

Lemma 4.1.2. 1. For r, s ≥ 1 and w ∈W , we have σs(w(r))w(s) = w(r+s)

2. The set R := {r ≥ 0|w(r) = e} forms a non-trivial submonoid of Z≥0

(with addition as operation).

3. If w(r) = e for r ≥ 1, then w(r−1) = w−1.

Proof. For s = 1, w(r+1) =σ (w(r)w) =σ (wr)σ(w) =σ (wr)w(1). If (1) holds for
s = k − 1, then

w(r+k) =σ (w(r+k−1)w) =σ (σ
k−1

(wr)w(k−1))w(1)

=σk (w(r))σ(w(k−1))w(1) =σk (w(r))w(k)

by induction, proving (1). It follows that R is stable under addition. As W is
finite, there are (by the pigeonhole principle) r > s ≥ 0 such that w(r) = w(s),
and therefore w(r−s) = e and r − s ∈ R, proving (2). The last part follows by
combining (1) and (2), as

e = w(r) = w(r−1+1) =σ (w(r−1))w(1) =σ (w(r−1)w)

using that w(1) =σ w and that the Galois action commute with multiplication
and inverses.

38See Jantzen I.3.1 for the relation between restriction and pullback.
39w ∈ W acts on λ ∈ X∗(T ) by wλ(t) = λ(w−1tw) where w acts on T through some

representative in N(T )
40see 13.1.3 in [11]
41σ(zν)p(a) = σ(zν(σ−1(a)))p = (zv)(ap) = (zv)(ap) as σ is defined as the inverse of

Frobenius on k
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Lemma 4.1.3. Let w ∈W
1. The map Dw is a Q-linear automorphism of X∗(T )Q

2. The inverse of Dw is given as follows: Let χ ∈ X∗(T ). Fix r ≥ 1 such
that (zw−1)(r) = e and m ≥ 1 such that χ is defined over Fpm . Then

D−1
w (χ) = − 1

prm − 1

rm−1∑

i=0

pi(zw−1)(i)(σ
i

χ).

Proof. As Dw is the identity modulo p, it must preserve the rank of X∗(T ),
hence it is a Q-linear isomorphism.

For the second statement, suppose Dw(λ) = χ. Then, use induction on j
together with Lemma 5.1.2(1) to prove

j−1∑

i=1

pi(zw−1)(i)(σ
i

χ) = λ− pj(zw−1)(j)(σ
j

λ).

For j = rm, (zw−1)(j) = e by assumption and Lemma 5.1.2(2), and σjλ = λ as
λ is defined over Fpm and thus fixed by the m’th power of Frobenius (and thus
also its inverse). Hence

rm−1∑

i=1

pi(zw−1)(i)(σ
i

χ) = λ− prmλ

proving the formula.

Combining the above with the Chevalley formula of proposition 4.1.1 gives us a
way to compute which characters admit non-trivial partial Hasse-invariants on
a given flag stratum.

4.2 Reduction to semisimple groups

Here we show that to prove the conjecture for a cocharacter pair (G,µ), it is
enough to prove it for the pair (G/Z(G), π ◦ µ) with π : G → G/Z(G) the
natural projection.

Lemma 4.2.1 (Descent Lemma). Let f : X → Y be a proper surjective mor-
phism of integral schemes of finite type over k. Let L be a line bundle on Y .
Let U ⊂ Y be a normal open subset and h ∈ L (U) a non-vanishing section
over U . Assume that the section f∗(h) ∈ H0(f−1(U), f∗L ) extends to X with
non-vanishing locus f−1(U). Then there exists d ≥ 1 such that hd extends to
Y , with non-vanishing locus U .

Proof. Let ν : X̃ → X and π : Ỹ → Y denote the normalization of X and Y
respectively. As (f ◦ ν)∗(h) = h ◦ f ◦ ν is non-vanishing on exactly (f ◦ ν)−1(U),
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we may assume X = X̃ and f = f ◦ ν. We get the commutative diagram

X
f ′ //

f ��

Ỹ

π

��
Y

where f ′ : X → Ỹ is the unique morphism yielded by the universal property of
normalizations,42 as ν is dominating and f is surjective.

Consider i∗ : R→ K, the inclusion of a local ring R into its field of fractions K
and a commutative diagram

Spec K

i

��

φ // X

f ′

��
Spec R

ψ // Ỹ

.

As f is proper, we get by the valuative criteria of properness the commutative
diagram

Spec K

i

��

φ // X
f

��
Spec R

ψ //

g

<<

Ỹ
π // Y

where g is uniquely determined. Let Ui = Spec Ai be an affine open cover of X.
Then g is determined by g∗i : Ai → R such that φ∗ = i∗ ◦ g∗i on OX(Ui) = Ai.
The diagrams above yield that

i∗ ◦ ψ∗ = φ∗ ◦ f ′∗ = i ◦ g∗i ◦ f ′∗

and since i∗ is injective, g∗i ◦ f ′∗ = ψ∗43. Thus we can fill the diagram in to

Spec K

i

��

φ // X
f

��
f ′

��
Spec R

ψ //

g

<<

Ỹ
π // Y

locally in a unique way, and by gluing also globally. Thus f ′ is proper, again by
the valuative criterion.

Let η be the generic point of Y and η̃ = π−1(η) the generic point of Ỹ . As

normalization maps are surjective, f ◦ ν is surjective and hence η ∈ ν ◦ f((̃X)).
As ν ◦ f = π ◦ f̃ , we get that η̃ ∈ f̃(X̃), but then f̃(X̃) is dense in Ỹ , and thus
all of Ỹ as f ′ is proper. It follows that f ′ is surjective,

42See lemma 29.54.5 (4) in [10]
43Here we have implicitly restricted to an affine cover of Ỹ .
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Let div(π∗(h)) =
∑r
i=1 niZi where ni ∈ Z and Zi ⊂ Ỹ \π−1(U) are codimension

one irreducible subvarieties. If ni < 0 for some i, then by surjectivity of f
′
, f∗(h)

would have a pole which it can’t have by assumption. Hence π∗(h) extends
to Ỹ with non-vanishing locus π−1(U). Thus we may assume without loss of
generality that X = Ỹ .

As we can cover Y with affines we can use lemma 29.54.3 in [10] to reduce to Y =
Spec A and X = Spec B. Here B is the integral closure of the integral domain A
in its field of fractions and π∗ the inclusion. After potentially localizing further,
we may also assume that L = OY , so h ∈ B as it extends to X by assumption.
Denote by I the ideal sheaf of Z := Y \U with the reduced structure. It follows
that U = D(I) = {p ∈ Spec A|I 6⊂ p}. By assumption, IB is the ideal sheaf
defined by vanishing of h, hence h has finite order in B/IB. Thus, after taking
powers we may assume h ∈ IB.

We get that h =
∑l
i=1 gixi where gi ∈ I and xi ∈ B. Since U is normal,

f : f−1(U)→ U is an isomorphism, so for every g ∈ I, the map Ag → Bg is an
isomorphism, as D(g) ⊂ D(I) = U . So there is a m ≥ 1 such that gmi xi ∈ A.
We have that A[x1, . . . , xl] is generated as an A-module by a finite set S of
monomials in the xi. Hence we may increase m so that gmi s ∈ A for all s ∈ S,
in particular gmi x

d
i ∈ A for all d ≥ 0. We may increase m further so that m = pn,

and we get that

hp
n

=

(
l∑

i=1

gixi

)pn
=

l∑

i=1

gp
n

i xp
n

i ∈ A

as the pn-power map is additive in characteristic p. If V ⊂ Y = Spec A is the
non-vanishing locus of hp

n

, then f−1(V ) = f−1(U), so U = V . This finishes
the proof.

Let G̃ denote the product of the simply connected cover of the derived subgroup
of G with the center of G and ι : G̃ → G the induced isogeny.44 This induces
a morphism of zip data, which gives a homeomorphism of stacks, also denoted
ι : X̃ → X . Thus if we have a G-zip stack ζ : X → X we get a cartesian diagram

X̃ X̃

X X
ιX

ζX̃

ι

ζ

Proposition 4.2.1 (Change of center lemma). If ζ : X → X is a smooth
surjective morphism of stacks, then for all w ∈ W , one has ι∗CY,w = CỸ ,w. In
particular, CY,w = CY,w ⇔ CỸ,w = CỸ ,w.

Proof. By pullback of sections, we have ι∗CY,w ⊃ CỸ ,w for all w ∈W .

For the converse, ι induces an inclusion of the character group X∗(T ) of maximal
torus of G into the corresponding character group of the maximal torus, T̃ , of

44That this morphism is an isogeny follows from Gder × Z(G)→ G defined by multiplying
the arguments being one.
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G̃. So we may view X∗(T ) as a submodule of X∗(T̃ ), which has finite index as
ι is an isogeny.

The induced morphisms between the groups in the Zip-data of G̃ to the data of
G will also be isogenies. Hence the all induced morphisms of stacks are proper
and surjective as well.45

We have by definition, presentations BwB/B → Sbtw and BwB/B → Sbtw,
where BwB/B. It is shown in II.13.3 [15], that BwB/B ∼= Al(w), which in
particular shows that it is a normal subscheme in BwB/B. Using that the
morphism from zip-flag stacks into the Schubert stack is smooth, we get the
same properties for the induced presentations of Yw and Ỹw.

Suppose χ ∈ CỸ,w, then as X∗(T ) ⊂ X∗(T̃ ) with finite index, there is a n ≥ 0
such that nχ ∈ X∗(T ). The vanishing of sections for nχ is completely deter-
mined by the Chevalley formula, which is only dependent on the root system,
which is the same for G and G̃. Hence nχ admits a section over Yw, and by
the Descent Lemma, there is a power,m, of this section which extends to Y∗w.
This power is a section for nmχ, and hence χ ∈ CY,w proving the reverse inclu-
sion.

Since ι restricted to the simply connected cover followed by the projection to
the adjoint group of G is an isogeny, we are reduced to prove the conjecture for
adjoint groups.

4.3 Relations between the strata cones

Proposition 4.3.1. Suppose ζ : X → X satisfies the assumptions of the con-
jecture, then if w ∈W with l(w) = 1, CY,w = CY,w.

Proof. If λ ∈ CY,w −CY,w, then −λ ∈ CY,w, as l(w) = 1.46 So there is a N ≥ 1
such that H0(Yw,L (−Nλ)) 6= 0 and H0(Y ∗w ,L (Nλ)) 6= 0.

Pick h ∈ H0(Yw,L (−Nλ)) and f ∈ H0(Y ∗w ,L (Nλ), both not identically 0.
Since ζ is smooth, Y ∗w is reduced.47 Hence there is an irreducible component
Y ′w ⊂ Yw with f |Y ′w 6= 0.48

As h nontrivial and Yw irreducible, it is non-zero on Yw. So ζ∗Y (h) is non-zero
on Yw. Hence ζ∗Y (h)f ∈ H0(Y ′w,OY ′w) is non-zero too. As we have assumed
all length one strata closures are pseudo-complete and Y ′w is irreducible, this
means that ζ∗Y (h)f is nowhere vanishing on Y ′w. But then as ζ|Y ′w is surjective by

assumption, we must have h ∈ H0(Yw,L (−Nλ)) nowhere vanishing and thus
1/h ∈ H0(Y,L (Nλ)) a well defined non-zero section, contradicting λ /∈ CY,w.

45See 76.20 and 99.37 in [10].
46This follows from Chevally’s formula as w only has one lower neighbour.
47Since Yw is smooth over k, so is Y ∗w hence it is reduced by lemma 33.25.3 in [10].
48Otherwise f would be 0 on all of Y ∗w , contrary to our assumption.
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Definition 4.3.1. Suppose w ∈ W , let ≤ denote the Bruhat-Chevalley order
on W .The set of lower neighbours of w is defined as

Ew = {s ∈W |s ≤ w and l(s) = l(w)− 1}.

Definition 4.3.2. A separating system of Yw is a set {(sv, λv)}v∈Ew where
λv ∈ X∗(T ) and

1. sv ∈ H0(Yw,LY(λv)) is a partial Hasse invariant

2. div(sv) = Yv
Proposition 4.3.2. Let w ∈W with lower neighbours {wi}ni=1. Assume that:

1. There exists a separating system of partial Hasse invariants for Yw.

2.
⋂n
i=1 CY,wi ⊂ CY,w

3. For all i ∈ 1, . . . , n, one has CY,wi = CY,wi .

Then w satisfies CY,w = CY,w.

Proof. Suppose λ ∈ CY,w−CY,w. Pick a nontrivial section f ∈ H0(Y ∗w ,LY (Nλ))
for some N ≥ 1. Let {si ∈ H0(Y∗w,L (λi))}ni=1 be a separating system of
partial Hasse invariants for Yw. As we assumed

⋂n
i=1 CY,wi ⊂ CY,w, there

is a i0 ∈ {1, . . . , n} with λ /∈ CY,wi0 . By (c), λ /∈ CY,wi0 , so by definition,

H0(Y ∗wi0 ,L (Nλ)) = 0.

We have for all i ∈ {1, . . . , n} that multiplication by ζ∗Y (si) induces an exact
sequence

0 // H0(Yw,L (Nλ− λi)) // H0(Y ∗w ,L (Nλ)) // H0(Y ∗wi ,L (Nλ))

as given a section f ∈ H0(Yw,L (Nλ− λi)), we get that for any g ∈ G,

g.(ζ∗(si)f) = (λi(g)ζ∗(si))(λ(g)Nλi(g)−1f) = λ(g)Nζ∗(si)f.

The cokernel of this morphism is H0(Y ∗wi ,L (Nλ)) since si is a partial Hasse
invariant of Y ∗wi , and therefore vanishes exactly on Y ∗wi . Letting i = i0, we get
that H0(Yw,L (Nλ− λi0)) ∼= H0(Y ∗w ,L (Nλ)), and thus Nλ− λi0 ∈ CY,w. As
λi ∈ CY,w, so would Nλ = (Nλ−λi)+λi if Nλ−λi ∈ CY,w, so Nλ−λi /∈ CY,w.
Hence we may repeat the procedure above for Nλ− λi, replacing λi with some
i1 ∈ {1, . . . , n}49, to get Nλ − λ0 − λ1 ∈ CY,w. Iterating we get a sequence
(id)d≥0 with values in {1, . . . , n} such that Nλ −∑m

d=0 ∈ CY,w for all m ≥ 0
and multiplication by

∏m
d=0 ζ

∗
Y (sid) produces an isomorphism

H0(Y ∗w ,L (Nλ−
m∑

d=0

λid))→ H0(Y ∗w ,L (Nλ)).

As {1, . . . , n} is finite, there is a j in this set such that id = j for infinitely many
d. Hence by the ismorphism above, f is divisible by ζ∗(sj) infinitely many
times, but then ζ∗(sj) must be non-vanishing, contradicting that si is a partial
Hasse invariant for Ywj . In particular it contradicts that div(si) = Ywi . Hence
CY,w = CY,w.

49Possibly i1 = i0.
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Corollary 4.3.1. If the assumptions of the above proposition holds for all w ∈
W , then CY,w = CY,w for all w ∈W . In particular, CY = CY .

Proposition 4.3.3. Let w ∈W be a lower neighbour of w0. Assume that:

1. The Picard group of G is trivial.

2. X+,I(T ) ∩ CY,w ⊂ CY
3. CY,w = CY,w

then CY = CY .

Proof. Suppose λ ∈ CY \ CY and f ∈ H0(Y,LY (Nλ)) for some N ≥ 1. If
λ /∈ X∗+,I(T ), H0(P/B,Lλ) = 0, so LY (λ) = 0, hence λ ∈ X∗+,I(T ). By
assumption, this implies that λ /∈ Cw,Y = Cw,Y . As Pic(G) = 0, each line
bundle on [E′ \ G] pulls back to OG under the presentation morphism. Hence
there is a µ ∈ X∗(T ) and a partial Hasse invariant s ∈ H0(Y,LY(µ)) with
div(s) = Y∗w50. Since λ /∈ CY,w, H0(Y ∗w ,LY (Nλ)) = 0, so f restricts to 0
on Y ∗w . Hence f is divisible by ζ∗(s), i.e. there is a g ∈ H0(Y,LY (Nλ − µ))
such that f = ζ∗(s)g. But this shows that Nλ − µ ∈ CY , and therefore the
same holds for λ − µ

N . As µ ∈ CY , λ − µ
N /∈ CY . So the argument can be

repeated indefinitely, implying that f is divisible by ζ∗(s)m for all m ≥ 1, a
contradiction.

Using the change of center lemma, we get.

Corollary 4.3.2. Let w ∈W be a lower neighbour of w0. Assume that:

1. X+,I(T ) ∩ CY,w ⊂ CY
2. CY,w = CY,w

then CY = CY .

Proof. By the change of center lemma, we may assume that G is semisimple
and simply connected. By proposition 4.6 in [22], Pic(G) = 0 and the corollary
follows.

4.4 Q-separating systems

As we will see in the C2-case in section 5, it is not necessarily true that each
strata of G-ZipFlagµ admits a separating system of partial Hasse invariants.
To remedy this, my advisor has in private communications with me given a
generalization, which weakens the demand on the divisors of the partial Hasse-
invariants. He further proved that the key proposition 4.3.2 on equality of strata
cones still holds for this weakened notion. We will reproduce his argument in
this section.

Definition 4.4.1. A Q-separating system of Yw is a set {(sv, λv)}v∈Ew where
λv ∈ X∗(T ) and

1. sv ∈ H0(Yw,LY(λv)) is a partial Hasse invariant

50This follows from Y∗w being a closed substack of codimension 1, so its pullback under the
presentation is a closed subvariety of G of codimension 1.
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2. div(sv) = NYv for some N ≥ 1, equivalently [Z(sv)]red = Yv
If there is such a system, we say that Y admits a Q-separating system.

We assume again that ζ : X → X satisfy the assumptions of the conjecture.

Proposition 4.4.1. Let w ∈W with lower neighbours {wi}ni=1. Assume that:

1. Yw admits a Q-separating system.

2.
⋂n
i=1 CY,wi ⊂ CY,w

3. for all i ∈ 1, . . . , n, one has CY,wi = CY,wi

Then w satisfies equality of cones, i.e. CY,w = CY,w.

Proof. As Yw is normal it is smooth in codimension 1. Hence the order of vanish-
ing, ordY f , of f ∈ H0(Y w,L (λ)) along an integral codimension 1 subscheme,
Z, is the valuation of f in the 1-dimensional local ring OY w,Z .

For each v ∈ Ew, Yv has finitely many irreducible components.51 Assume
f ∈ H0(Y w, λ) and λ /∈ CYw . For v ∈ Ew define

jv := min
Z⊂Y w, Z irreducible

ordZf.

If {(sv, λv)}v∈Ew is a Q-separating system, let

nv := ordY wζ
∗
Y sv := ordYwsv = −〈λv, wα∨〉

where the first equality (after the defining one) comes from the smoothness of
ζy together with lemma 15.108.5 [10]. These imply that the order is the same
on each irreducible component of Yv and hence that the order on all of Yv is well
defined. The second equality follows from Chevalley’s formula, with v = wsα.

Let N :=
∏
v∈Ew nv, Nv := N/nv and f ′ := fN∏

v∈Ew ζ
∗
Y s

jvNv
v

∈ H0(Y w, λ
′) where

λ′ = Nλ−∑v∈Ew jvNvλv.

For Z ∈ Y w irreducible, we have

ordZf
′ = NordZf − jvNvnv = N (ordZf − jv) ≥ 0

with equality being equivalent to Z ⊂ Yw realizing the minimum defining jv.
As the number of irreducible components is finite, this is realized for some
component of each Y ∗v .

If λ′ ∈ CYw , then so is λ since Nλ = λ′ +
∑
v∈Ew jvNvλv and λv ∈ CYw by

assumption. Hence λ′ /∈ CYw . However, we have assumed CY,v = CY,v for all
v ∈ Ew, so there is a v0 ∈ Ew with λ′ /∈ CY,v0 as

⋂
v∈Ew CY,v ⊂ CYw . Hence

f ′
∣∣
Y ∗v0

= 0, but this contradicts the existence of a component Z of Y ∗v0 realizing

ordZf = jv0 .

51As G × P and the E × P orbits are Noetherian and ζY : Y → [(E × P ) \ (G × P )] is
smooth.
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4.5 The basic strategy

Putting together the results above, we get the following inductive strategy for
proving the conjecture

4.5.1 The strategy

First step; we can pass to the associated adjoint cocharacter datum without loss
of generality by the change of center lemma.

Second step; calculate the Schubert cones at each Schubert stratum of G-
ZipFlagµ. This is done by applying Chevalleys formula, looking at which weights
admits sections without poles52 at the boundary of the strata. This allow us
to extend the section to the strata closure in Sbt. Then apply D−1

w , to get the
Schubert cone over the stratum in G-ZipFlagµ.

Third step; note that the conjecture is true for all Schubert strata corresponding
to elements of length one of W by proposition 4.3.1.

Fourth step; look at strata of length 2, check if the intersections of the cones
of lower neighbours is contained in the cone of this stratum. If this is true,
we try finding a (Q-)separating system for the stratum. Then we apply either
proposition 4.3.2 if the separating system is integral, or proposition 4.4.1 if you
only have a Q-separating system.

Fifth step; repeat for higher strata until we can’t, or the theorem is proven. An
alternative way to finish is to prove the equality of cones for one w of length
l(w0) − 1 and then, the Picard group of the reductive group in the datum is
trivial apply 4.3.3.

4.5.2 Remarks

It should be noted that the conjecture isn’t necessarily false if the basic strategy
fails. This is a consequence of us only using Schubert cones. It could very well
happen that CY,w 6= CSbt,w for some w ∈W . As we will see in the next section
however, there are cases where the strategy work. Hence, if we are interested in
a specific case, applying the strategy is a reasonable way to start the attempted
proof.

5 Proof in the C2 case

The original proof of this case is contained in section 5 of [7]. Below we follow
the ideas presented there but using the slightly generalized Q-separating systems
of Goldring instead of proposition 4.3.3 to deal with the fact that one of the
strata doesn’t admit an integral separating system.

Let G be a reductive group of Dynkin type C2 over Fp with a cocharacter µ
such that (G,µ) is of connected Hodge type. Let Z = (G,P,Q,L,M, ι) be the
induced zip datum. Fix a maximal torus T ⊃ µ(Gm), lying in a split Borel
subgroup B ⊂ P .

52Here a pole is a term in the divisor of the section with negative coefficient
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Let e1, e2 be the standard basis vectors of R2. We follow Bourbaki and put
e1 − e2 and 2e2 as the simple roots of G. That is ∆ = {e1 − e2, 2e2}. Thus the
Weyl group, W , of G is the subgroup of GL2(R) generated by

x :=

(
0 1
1 0

)

and

y =

(
1 0
0 −1

)

the simple reflections in the hyperplanes orthogonal to e1 − e2 and 2e2 respec-
tively.

The flag stratification of G-ZipFlagµ can be represented by the lattice

yxyx

yxy xyx

xy yx

y x

e

given by the elements of W under the Bruhat-Chevalley order. We note that

the longest element in the Weyl group is w0 = yxyx =

(
−1 0
0 −1

)
=: −e.

As µ is of connected Hodge type, µad ∈ X∗(Gad) is minuscule. The only minis-
cule, ∆-dominant cocharacter of Gad is the fundamental coweight corresponding
to 2e2, that is µ = e∗1 + e∗2 where e∗i (ej) = δij .

As a Dynkin diagram of type C2 doesn’t admit any non-trivial automorphisms,
there cannot be a non-trivial Galois action on the roots of G. Hence Q = P op

and Dw(λ) = λ− p(zw−1λ).

The set of simple roots in J , the type of Q is determined by the inequality
〈λ, µ〉 ≤ 0.53 It follows that J = I = {e1− e2}, thus WJ thus is cyclic of order 2

generated by its longest element w0,J = x, so z = w0w0,J = yxy =

(
0 −1
−1 0

)
.

We compute the cone at the stratum corresponding to w0 as an example. As
the Galois action is trivial, w(r) = wr. Hence

Dw0
(λ) = λ− p(zw−1

0 λ) = λ− p(xλ)

and

D−1
w0

(χ) = − 1

p2 − 1
(χ+ p(x(χ))

53This is because limt→0 µ(t)u−α(x)µ(t)−1 exists precisely when this inequality holds.
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using the formula for the inverse of Dw in proposition 4.1.3. Acting on the
standard basis, D−1

w0
is represented by the matrix

−1

p2 − 1

(
1 p
p 1

)
.

As we see in the lattice of W above, the lower neighbours of w0 are

Ew0
= {xyx, yxy} = {w0y, w0x} = {

(
−1 0
0 1

)
,

(
0 −1
−1 0

)
}54.

As the fundamental weights of (G,T ) span X∗(T ) (over Z) it is, by Chevalley’s
formula enough to compute the divisors of sections of these weights to determine
the cones. The fundamental weights are

η1 =

(
1
0

)

and

η2 =

(
1
1

)
.

Let si ∈ H0(Sbtw0
,LSbt(ηi,−w−1ηi)). By Chevalleys formula

div(s1) = −〈η1, w
−1
0 α∨2 〉Cw0y − 〈η1, w

−1
0 α1〉Cw0x

= −(e1,−e2)Cw0y − (e1,−e1 + e2)Cw0x = Cw0x = Cyxy

and
div(s2) = −〈η2, w

−1
0 α∨2 〉Cw0y − 〈η2, w

−1
0 α1〉Cw0x

= −(e1 + e2,−e2)Cw0y − (e1 + e2,−e1 + e2)Cw0x = Cw0y = Cxyx

where α1 = e1 − e2 and α2 = 2e2, i.e. the simple roots corresponding to x and
y respectively.55

Thus if χ = λ1η1+λ2η2, we must have that λ1 ≥ 0 and λ2 ≥ 0 forH0(Sbt,LSbt(χ,−w−1
0 χ))56

to be non-trivial. Otherwise, any section has singularities on some of the lower
neighbours by the above.

Let χ = a1e1 + a2e2 ∈ X∗(T ), then

D−1
w0
χ =

−1

p2 − 1
((a1 + pa2)e1 + (a2 + pa1)e2)

=
−1

p2 − 1
((a1 + pa2)η1 + (a2 + pa1)(η2 − η1))

=
−1

p2 − 1
((p− 1)(−a1 + a2)η1 + (a2 + pa1)η2) .

54keeping the same order in each presentation of the set
55We are also using that the pairing agrees with the Euclidean scalar product (·, ·) of R2 if

we embed X∗(T ) into X∗(T ) via the pairing
56Here we use that Sbtw0 is dense in Sbt.
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Hence, for L (χ) to admit a nontrivial section pulled back from Sbt, we must
have a1 − a2 ≥ 0 and −a2 − pa1 ≥ 0. We conclude that

CY,w0
= CX = {χ = a1e1 + a2e2 ∈ X∗(T )|a1 − a2 ≥ 0 and − pa1 − a2 ≥ 0}.

To compute (partial) Hasse invariants vanishing at the lower strata, we use

D−1
w0

(a1e1 + a2e2) =
−1

p2 − 1
((p− 1)(−a1 + a2)η1 + (a2 + pa1)η2)

and the fact that sections s1 and s2 of weight η1 and η2 respectively have divisors

div(s1) = Cyxy

and
div(s2) = Cxyx.

Thus to find a Hasse invariant with vanishing locus Cyxy we need to solve the
equation

−1

p2 − 1
((p− 1)(−a1 + a2)η1 + (a2 + pa1)η2) = η1.

This is achieved by letting a1 = 1 and a2 = −p. Similarly, to find a Hasse
invariant with vanishing locus Cxyx, we need to solve

−1

p2 − 1
((p− 1)(−a1 + a2)η1 + (a2 + pa1)η2)) = η2.

Which is achieved by a1 = a2 = 1− p.
One computes the cones and partial Hasse invariants at the other strata analo-
gously, which results in the cone diagram in Figure 1.

Figure 1: Strata cones and partial Hasse invariants for type C2

w0 :

{
a1 − a2 ≥ 0

−pa1 − a2 ≥ 0

(1,−p) (1−p,1−p)

yxy :

{
−a1 ≥ 0
−a2 ≥ 0 (1−p,0)

(0,1−p)

xyx :

{
(p+ 1)a1 − (p− 1)a2 ≥ 0
−(p− 1)a1 − (p+ 1)a2 ≥ 0

( p2+1
2(p+1)

,−p p2+1
2(p+1)

)

(p p
2+1
p+1 ,

p2+1
p+1 )

xy :

{
−a1 ≥ 0
−(p+ 1)a1 − (p− 1)a2 ≥ 0 (0,−p−1)

(−(p−1),p+1)

yx :

{
−a2 ≥ 0

(p− 1)a1 − (p+ 1)a2 ≥ 0(−p−1,1−p)

(p+1,0)

x : a1 − a2 ≥ 0

(0,−p−1)

y : −pa1 + a2 ≥ 0

(−p,1)

e : ∅

The diagram is read in the following way: Each box corresponds to a stratum
in the Schubert stratifictation of G-ZipFlagµ. The name of the strata is the
leftmost text, so the top one corresponds to w0. The inequalities to the right in
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each box is the cone of characters which admits non-zero partial hasse invariants
on that strata closure. A line from a stratum down to another corresponds to
a partial hasse invariant with the lower stratum as vanishing locus, so the lines
going down from a stratum represents a (Q-)separating system.

We note that an integral separating system of xyx is not obtainable, but we can
use a Q-separating system, as shown in the diagram, for that strata. However,
due to CY,xy ∩ CY,yx 6⊂ Cxyx, we won’t use that strata in the proof.

By proposition 4.3.1, we have that CY,x = CY,x and CY,y = CY,y, as x, y both
have length 1. We have CY,x ∩ CY,y ⊂ CY,xy ∩ CY,yx. Hence proposition 4.3.2
implies equality of cones at xy and yx as well, since there is a separating system
as displayed in the diagram. Similarly, CY,xy ∩ CY,yx ⊂ CY,yxy so proposition
4.4.1 implies CY,yxy = CY,yxy as well.

Lastly, X+,I(T ) ∩ CY,yxy ⊂ CY,w0
, so by corollary 4.3.2, we have equality of

cones at w0 as well, which proves the theorem.

6 Shimura Varieties

One of the main applications of G-Zips is to study good reductions of Shimura
varieties at primes p. In particular, the good reduction of a Shimura variety of
Hodge type admits a smooth map to the stack ofG-Zips, so if the cone conjecture
is proven for this stack, we can use it to see which automorphic bundles on the
Shimura variety admits global sections.

In this chapter, we give an introduction to Shimura varieties and their reduc-
tions. We conclude with some remarks on how to apply the cone conjecture to
them.

6.1 Hodge Structures

We begin by defining the Deligne torus, which in a sentence is the group scheme

S := ResC/RGm.

That is, given an R-algebra A, S(A) = Gm(C ⊗R A). In particular S(R) = C∗
and S(C) = C∗ × C∗. The character group

X∗(S) = Hom(SC,Gm) = Hom(S,Gm)(C)

is generated by z, z, inducing the identity and complex conjugation respectively
in the composition

C∗ = S(R) S(C) Gm(C) = C∗i∗

where the first arrow is the map induced by the inclusion i : R → C and the
second is z and z respectively.

There is an inclusion
w : Gm → S
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defined by

(f : t 7→ a) 7→
(
w(f) : t 7→ 1

a
⊗ 1

)

which is well defined, as f : R[t, t−1]→ A must map t to a unit to be an algebra
morphism. Note that zw = zw = ι, where ι is the inverse map of Gm.

Definition 6.1.1. A real Hodge structure is a homomorphism of real algebraic
groups

h : S→ GL(V )

where V is finite dimensional real vector space.

We say that a Hodge structure is of weight n if for all x ∈ Gm(A) and all
v ∈ V ⊗R A

h ◦ w(x).v = xnv

for any R-algebra A.

Given a subring k ⊂ R, a k-Hodge structure is a free k-module V , together with
a real Hodge structure h : S→ GL(VR).57

By our characterization of X∗(S) and our definition of w, it follows that for any
Hodge structure V , there is a decomposition

VC = V ⊗R C =
⊕

p+q=n

V pq

where S(C) acts on V pq by z−pz−q58.

Definition 6.1.2. We call the set {(p, q)|V pq 6= 0} the type of the Hodge struc-
ture (V, h).

As z−pz−qv = z−pz−qv, get that V pq = V qp. Consequently, if (p, q) is in the
type of a Hodge structure, so is (q, p), and the corresponding weight spaces has
the same dimension.

A morphism of Hodge structures (V, h) → (W,h′) is a linear map f : V → W
with such that fR : (VR, h)→ (WR, h′) is a morphism of S-representations.

6.1.1 Polarizations

Let Q(m) denote the rational Hodge structure defined by the morphism hm :
S→ Gm,R which on real points is given by h(z) = (zzm), and let R(m) denote
the corresponding real Hodge structure.

Given a real Hodge structure (V, h) of weight n, a polarisation of (V, h) is given
by a morphism of S-representations ψ : V ⊗V → R(−n) such that ψh(i)(v, w) :=
ψ(v, h(i)w) is positive definite.

For k ⊂ R a subring, a polarisation of a k-Hodge structure (V, h) is a bilinear
form ψ : V × V → k such that ψR is a polarisation of the real Hodge structure
(VR, h).

A Hodge structure admitting a polarization is said to be polarizable.

57We will only use k ∈ {Z,Q}
58We are required to have p+ q = n as h ◦w(x).v = z−p(x−1)z−q(x−1).v = xp+q .v = xn.v
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6.2 Shimura data and varieties

Definition 6.2.1 (Cartan Involutions). For a reductive real algebraic group G,
an involution θ : G→ G is a Cartan involution if the set

G(θ)(R) := {g ∈ G(C)|g = θ(g)}

is compact, where (−) denotes the morphism induced by complex conjugation of
C.

Definition 6.2.2 (Shimura data). A Shimura datum is pair (G,X) where G
is a reductive group over Q, X a G(R)-conjugacy class of homomorphisms h :
S→ GR satisfying the following:

• For all h ∈ X, the Hodge structure on Lie GR defined by Ad ◦ h is of type

{(1,−1), (0, 0), (−1, 1)}

• For all h ∈ X, ad(h(i)) is a Cartan involution of GadR

• For h ∈ X, Gad has no Q-factor on which the projection of h is trivial

Just like the stack of G-zips, the set X can be viewed as a parameter space of
vector bundles, namely

Proposition 6.2.1 (5.9 [23]). Let (G,X) be a Shimura datum. Then X has
a unique structure as a complex manifold such that for every representation
ρ : GR → GL(V ), (V, ρ ◦ h)h∈X is a holomorphic family of Hodge structures.
For this complex structure (V, ρ ◦ h)h∈X is a variation of Hodge structures and
X is a disjoint union of Hermitian symmetric domains.

For the definitions of Hermitian symmetric domains and variations of Hodge
structure, see [23]. The main reason we are interested in this proposition is that
it, together with what follows allow us to assign a system of quasi-projective
varieties to the Shimura datum (G,X).

Let G be an algebraic group over Q. A subgroup Γ ⊂ G(Q) is arithmetic if it has
the following property. For any faithful algebraic representation G ↪→ GL(n),
Γ ∩ G(Q) ∩ GL(n)(Z) has finite index in both Γ and in G(Q) ∩ GL(n)(Z).
By proposition 1.7 [23], the identity component of the group of holomorphic
automorphisms of any connected component of X+ of X, Hol(X+)+, is the real
points of some algebraic group. Thus there is a natural notion of actions of
arithmetic groups on X+.

Theorem 6.2.1 (Baily, Borel). Let D(Γ) = Γ\D be the quotient of a symmetric
Hermitian domain D by a torsion free arithmetic subgroup Γ of Hol(D)+. Then
D(Γ) has a canonical realization as a Zariski open subset of a projective variety,
i.e. D(Γ) is canonically a quasi-projective variety.

To relate this to the Shimura datum (G,X), we consider compact open sub-
groups K ⊂ G(Af ), where Af denotes the finite adeles and the following double
quotient

G(Q)+ \G(Af )/K.

Here G(Q)+ = G(R)+ ∩ G(Q) and G(R)+ is the pre-image of the identity
component of Gad(R). Also, (a, b) ∈ G(Q)+ × K acts on g ∈ G(Af ) by left
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respectively right multiplication.59 The quotient of this action is finite by lemma
5.12 in [23]. Consider the similar quotient,

G(Q)+ \X ×G(Af )/K

where g.[a, b].k = [ga, gbk].

Lemma 6.2.1 (Lemma 5.13 in [23]). Let C denote a set of representatives of
G(Q)+ \ G(Af )/K and X+ a connected component of X. There is a homeo-
morphism

G(Q)+ \X ×G(Af )/K ∼=
∐

g∈C
Γg \X+

where Γg := gKg−1 ∩G(Q)+, which is an arithmetic subgroup.

Thus, if we choose K small enough so that Γg is torsion free, we get that
G(Q)+ \ X × G(Af )/K is a disjoint union of a finite set of quasi-projective
varities by Baily and Borels theorem. Such K are usually called sufficiently
small. 60

Definition 6.2.3. A Shimura variety relative to (G,X) is a quotient

ShK(G,X) := G(Q)+ \X ×G(Af )/K

where K is a sufficiently small compact open subgroup of G(Af .

Given K ′ ⊂ K, both sufficiently small compact open subgroups of G(Af ). The
inclusion map i : K ′ → K induces a regular map of varieties i∗ : ShK′(G,X)→
ShK(G,X). This gives us an inverse system of varieties

{ShK(G,X), i∗ : ShK′(G,X)→ ShK(G,X)}

with K ′ ⊂ K ranging over inclusions of sufficiently small compact open sub-
groups of G(Af ). There is a natural right action of G(Af ) on this inverse system,
namely for g ∈ G(Af ), [a, b] ∈ G(Q)+ \X ×G(Af )/K

[a, b].g = [a, bg] ∈ G(Q)+ \X ×G(Af )/gKg−1.

Definition 6.2.4 (Shimura varieties). The Shimura variety associated to a
Shimura datum (G,X) is the inverse system of varieties

{ShK(G,X), i∗ : ShK′(G,X)→ ShK(G,X)}

endowed with the action of G(Af ) described above.

For each Shimura datum (G,X), there is a minimal number field E ⊂ C and an
inverse system ShE(G,X) of varieties defined over E such that when we base
change to C, the system is isomorphic to Sh(G,X), ShE(G,X) is called the
canonical model of Sh(G,X), for a detailed treatment, see [2].

59G(Q) is embedded into G(Af ) through the diagonal embedding Q ↪→ Af .
60If we don’t choose K sufficiently small, the quotient will in general be a Deligne-Mumford

stack.
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6.3 Siegel Moduar Varieties

Let (W,ψ) be a symplectic space over Q of dimension 2g and (GSp(W,ψ) the
group of symplectic similitudes. A morphism of algebraic groups h : S →
GSp(W,ψ)R satisfying the first axiom of a Shimura datum61 is one such that
composing with the inclusion of GSp(W,ψ)R into GL(WR) gives a Hodge struc-
ture of weight (−1, 0), (0,−1) on WR. To give such an h is equivalent to giv-
ing a complex structure J ∈ End(WR), that is an endomorphism J such that
J2 = −id. To see this, given a complex structure J , define h(R) : C× → GL(WR)
by h(a+ bi) = a+ Ji.

A complex structure is called positive if the bilinear form

ψJ(u, v) = ψ(u, Jv)

is positive definite, and negative if it is negative definite. As ψ is non-degenerate,
these conditions partitions the set of complex structures. Let X+ be the
set of positive complex structures and X− the set of negative structures and
Xg := X+ ∪ X− the set of all complex structures. Let GSp(W,ψ)(R) act on
X by conjugation. For g ∈ GSp(W,ψ), ghJ(a + bi)g−1 = a + gJg−1b, so the
correspondence between Hodge structures satisfying the Shimura datum axioms
and complex structures on W is equivariant with respect to conjugation. The
action of GSp(W,ψ) on X is transitive.62 Thus the unique Shimura datum for
GSp(W,ψ) is given by (GSp(W,ψ), X).63 We can recover an analogous cochar-
acter as discussed in the Siegel-type cocharacter datum for a given h by defining
µh : Gm,R → GSp(W,ψ) by letting x ∈ R× act my multiplication on W−1,0 and
trivially on W 0,−1 in the Hodge decomposition of W defined by h.

Just like for G-Zips, a Shimura datum (G,X) is of Hodge type if there is an
embedding (G,X)→ (GSp(W,ψ), Xg) for some symplectic space (W,ψ).

The Siegel Shimura varietes has a nice modular description, which is crucial for
defining integral models of Shimura varieties of Hodge type.

6.3.1 Complex abelian varieties

An abelian variety over a field k is a projective group variety over k, with group
laws given by regular maps. Abelian varieties are always commutative as group
schemes, so the name is fitting in the group context as well.

When k = C, there is a nice description of these in terms of lattices. Namely,
each abelian variety over C is a complex torus. Its complex points are given by
Cg/Λ where Λ is a lattice of R2g. The group law on the complex points is given
by addition in Cg descended through the natural projection Cg → Cg/Λ. This
projection is a universal covering, and by considering covering transformations,
which are given by addition of elements of Λ, we get that H1(Cg/Λ,Z) ∼= Λ.

The isomorphism Λ⊗Z R ∼= Cg defines a complex structure on Λ⊗Z R, equiva-
lently a Hodge structure of type {(−1, 0), (0,−1)}. The complex torus Cg/Λ is
an Abelian variety if and only if the Hodge structure H1(Cg/Λ,Z) is polarizable,
see [23].

61The weight condition on Ad ◦ h.
62See [23] for an argument using symplectic bases
63to see why the other axioms are satisfied, see Milne chapter 6
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Let AV denote the category of abelian varietes over C with regular maps, equiv-
alently groups scheme homomorphisms 64, as morphisms.

Theorem 6.3.1 (Riemann’s theorem). The functor A 7→ H1(A,Z) from the
category of complex abelian varieties, AV, to the category of integral polarizable
Hodge structures of type {(−1, 0), (0,−1)} is an equivalence of categories.

Proof. See Theorem 6.8 in [23].

The category of isogeny classes of abelian varieties AV0 can be defined as the
category with Abelian varieties as objects and with HomAV0

(A,B) = HomAV(A,B)⊗
Q. Tensoring with Q makes every morphism with finite kernel in AV into an
isomorphism in AV0 as all torsion is killed.

Corollary 6.3.1. The functor A 7→ H1(A,Q) from AV0 to the category of
rational polarizable Hodge structures of type {(−1, 0), (0,−1)} is an equivalence
of categories.

6.3.2 The Shimura varieties

Let K ⊂ G(Af ) and consider the small groupoid HK with triples ((V, h), s, ηK)
as objects. Here

• (V, h) is a rational Hodge structure of type {(−1, 0), (0,−1)}
• s or −s is a polarisation of (V, h)

• ηK is a K-orbit of Af -linear isomorphisms η : W ⊗ Af → V ⊗ Af under
which ψ corresponds to an A×f -multiple of s.

Morphisms ((V, h), s, ηK) → ((V ′, h′), s′, ηK) are given by isomorphisms b :
(V, h)→ (V ′, h′) of rational Hodge structures such that

• the induced map b′ : Hom(V ⊗ V,Q)→ Hom(V ′ ⊗ V ′,Q) satisfies b′(s) =
cs′ for some c ∈ Q×.

• b ◦ ηK = η′K.

The fact that there are isomorphisms η : W ⊗ Af → V ⊗ Af implies that for
any ((V, h), s, ηK) ∈ HK , dimW = dimV . As s corresponds to a multiple of
ψ under this morphism, we have that (V, s) is a symplectic space over Q and h
gives a complex structure on V .

For any isomorphism a : V → W under which ψ corresponds to cs, where
c ∈ Q×

ah :=
(
z 7→ ah(x)a−1

)

lies in X and a ◦ η ∈ End(W ⊗ Af ) lies in (GSp)(W,ψ). For any other iso-
morphism a′ : V → W with the same property, there is a g ∈ G(Q) such that
a′ = g ◦ a. Hence replacing a with a′ replaces (ah, a ◦ η) with (ga, g ◦ a ◦ η), and
similarly replacing η with ηk (for k ∈ K), replaces (ah, a ◦ η) with (ah, a ◦ ηk).

If we identify all objects corresponding to each other under these relations we
get a map

ObHK → ShK(GSp(W,ψ), X).

64See Milne Proposition 6.5 and Aside 6.6.
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Proposition 6.3.1. The map above makes precisely the same identifications
as the natural map from HK to the set of isomorphism classes HK/ ∼=, and it
induces a bijection HK/ ∼=↔ ShK(GSp(W,ψ), X).

Proof. See proposition 6.3 in [23].

Combining this proposition with Riemann’s theorem implies that ShK(GSp(W,ψ), Xg)
is the moduli space for the classification of triples (A, s, ηK), where

• A is a complex abelian variety of dimension dimW

• s or −s is a polarization of H1(A,Z)

• ηK is a K-orbit of isomorphisms η : W ⊗ Af → H1(A,Z) ⊗ Af under
which ψ corresponds to an A×f -multiple of s.

Given a Z-lattice Λ ⊂ W consider ShK(GSp(W,ψ), Xg) into locally symmetric
spaces for K of the form

K(N) := {g ∈ G(Af )
∣∣g.Λ⊗Ẑ ⊂ λ⊗Ẑ and g acts as the identity on (Λ⊗ Ẑ)/(NΛ⊗ Ẑ)}.

Using the decomposition of ShK(GSp(W,ψ), Xg) into locally symmetric spaces,
we have that ShK(GSp(W,ψ), X) parametrizes triples (A, λ, ηN ) where (A, λ)
is a principally polarised variety of dimension 1

2 dimW and ηN : W ⊗ Z/NZ→
H1(A,Z/NZ) is an isomorphism under which ψ corresponds to a (Z/NZ)×-
multiple of the bilinear form on H1(A,Z/NZ) induced by λ.65

The Shimura varieties of Hodge type also have an interpretation as a moduli of
Abelian varieties, however this is much more involved to describe. The interested
reader can consult [23] or [2].

6.4 Canonical Integral Models and special fibers

Let (G,X) a Shimura datum of Hodge type with a fixed embedding φ : (G,X) ↪→
(GSp(W,ψ), Xg) and reflex field E. Let p ≥ 3 be a prime with G unramified at
p. Let GZp be a reductive group over Zp with generic fiber GQp .

Suppose K = KpK
p where Kp = G(Qp) and Kp ⊂ G(Apf ) is a compact open

subgroup, which is sufficiently small. Let v be a prime in OE lying over p and
denote by OE,v its v-adic completion and Ev the v-adic completion of E.

Theorem 1 in [24] implies that the subsystem of Sh(G,X) with sufficiently small
K as above has a G(Apf )-equivariant model, in the following sense:

There is a projective system of OE,v-varieties SK(G,X), with K ranging over
sufficiently small compact open subgroups KpK

p ⊂ G(Af ). There is a K such
that SK′(G,X) smooth over OE,v for all K ′ ⊂ K and SK′′(G,X) étale over
SK′(G,X) for all K ′′ ⊂ K ′ ⊂ K. The generic fiber of these are ShK(G,X)Ev ,
and similarly for K ′ and K ′′. The maps i∗ : S ′K(G,X) → SK(G,X) are the
ones induced by the inclusions i : K ′ → K.

65See [23] for details.
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Just like for the original Shimura varieties, there is a right action of G(Apf )66

on this inverse system. Namely for g ∈ G(Apf ), there is a map g : SK(G,X)→
SgKg−1(G,X) which commutes with the projection maps of the system.

These models also satisfy the following extension property, which is the criterion
Milne gave in [25]: Let S := lim←−K SK . For every regular scheme Y over OE,v
with YEv dense in Y , any morphism YEv → SEv extends uniquely to a morphism
Y → S .

By section 4.1.4 in [1], there is a Zp-lattice Λ ⊂ W ⊗ Qp such ψ restricts to a
perfect pairing ψ : Λ×Λ→ Z(p), and that φ : GQp ↪→ GSp(W⊗Qp, ψ) is induced
by an embedding of Z(p)-group schemes φ : GZp ↪→ GSp(Λ, ψ). Given such a

pair (Λ, φ), K̃p := GSp(Λ, ψ)(Zp) and K̃p ⊂ GSp(W,ψ)(Apf ) a compact open,

let K̃ := K̃pK̃
p and Sg,K̃ the integral canonical model of ShK̃(GSp(2g,Xg))

over Z(p). Then for Kp ⊂ G(Apf ) small enough, there is a compact open K̃p ⊂
GSp(2g,Apf ) such that φ(Kp) ⊂ K̃p and a finite morphism of OE,(v)-schemes

φSh : SK → Sg,K̃ ×Z(p) Spec OE,(v).

6.4.1 The G-zip over the special fiber

Pick any h ∈ X and let µ := hC ◦ µ0 ∈ X∗(G). Here µ0 : Gm,C → SC is the
cocharacter induced by x 7→ (x, 1) ∈ Gm × Gm followed by the isomorphism
Gm ×Gm ∼= SC discussed in section 6.1.

The reflex field, E, is the field of definition of the G(C)-conjugacy class [µ] of
µ, see [2] for details. Base changing to an algebraic closure Ev of Ev gives a
unique conjugacy class [µ]Ev of cocharacters of GEv , which has a representative

µ ∈ X∗(GEv ) defined over Ev.
67

Let hg := φ ◦ h ∈ Xg and µg := φ ◦ µ ∈ X∗(GSp(2g)). The cocharacters µ and
µg determine the following groups

1. A pair of opposite parabolic subgroups (P−, P+) in GEv defined by µEv
and a common Levi subgroup L := P− ∩ P+ = Cent(µEv ). Let P := P−

2. A pair of opposite parabolic subgroups (P−g , P
+
g ) in GSp(2g)Ev defined by

µg,Ev and a common Levi subgroup Lg := P−g ∩ P+
g = Cent(µg,Ev ). Let

Pg := P−g .

Using the embedding φ to identify G with a subgroup of GSp(2g), it follows
that P± = P±g ∩G and Lg ∩G = L.

Fix a Borel pair (B, T ) in GQp such that BEp ⊂ P . Let I ⊂ ∆(B, T ) denote
the type of P and define BL := B ∩ L. By section 4.1.7 of [1], we may assume
that all of the above is defined integrally, i.e. over OE,v, with the cocharacter
µg defining a Z-grading Λ⊗OE,v = Λ0 ⊕ Λ−1.68

Using the interpretation of the Siegel modular variety as a moduli of abelian
varieties, which still holds for the integral model,69 we get a universal abelian

66Notice the restriction to the p-adicaly trivail adelic points however.
67This is a consequence of G being unramified over p and therefore GQp is quasi-split, see [1].
68Where Gm acts by x 7→ x−i on Λi.
69See [24] for details

44



scheme f : Ag,K → Sg,K̃ .

By proposition 1.3.2 [24], GZp is defined as the pointwize stabilizer of a set of
tensors {sα} ⊂ Λ⊗, and by 2.3.9 in [24], there are associated tensors {sα,dR} ⊂
H0(SK , φ

∗H1
dR(Ag,K̃/Sg,K̃)⊗). 70

Let SK := (SK)κ, with κ = Ov/(v), be the special fiber of SK , set G = GZp⊗Fp
and A = (SK ×Sg,K̃

Ag)κ. Write µ : Gm,κ → Gκ for the reduction of µ. Define
P,Q ⊂ Gκ as the stabilizers of FilP := Λ0,κ and FilQ :=σ Λ−1,κ respectively.
Both of which are parabolic subgroups.

Let sα and sα,dR be the reduction of sα and sα,dR respectively.

By section 1.11 in [4], there are two filtrations of the de Rahm cohomology
sheaf H1(A/SK) := H1

dR(Ag,K/Sg,K̃) ⊗ κ. The Hodge filtration FilH and the

conjugate filtration Filconj
71 related by Cartier isomorphisms

ι0 : Fil
(p)
H
∼= H1

dR(A/SK)/Filconj ι1 : (H1
dR(A/SK)/FilH)(p) ∼= Filconj.

Let
I := IsomSK ((H1

dR(A/SK), sdR), (Λ, s)⊗OSK )

IP := IsomSK ((H1
dR(A/SK), sdR,FilH), (Λ, s,FilP )⊗OSK )

IQ := IsomSK ((H1
dR(A/SK), sdR,Filconj), (Λ, s,FilQ)⊗OSK )

which are respectively G,P and Q torsors. See section 2.1.1.

The isomorphisms ι0 and ι1 induces an isomorphism between the Frobenius
pullback of the associated graded of the de Rahm cohomology with the Hodge
filtration and the associated graded of the de Rahm cohomology with the con-
jugate filtration. The subgroup of G stabilizing the associated graded of FilH
is L and L(p) is the stabilizer of the associated graded of Filconj. Thus ι0 and ι1
induces an isomorphism of L(p)-torsors ι : (IP )(p)/U (p) → IQ/V with U, V the
unipotent radicals of P and Q respectively.72

This data precisely gives a G-zip of type µ over SK , and consequently a mor-
phism

ζK : SK → G-Zipµ.

Zhang showed, in [5], that ζK is smooth.

This morphism is compatible with the projections between different levels73 and
with the G(Apf )-action.74 For K ′ ⊂ K and g ∈ G(Apf ), this is summarised by

70Here H1
dR(Ag,K̃/Sg,K̃) is the first de Rahm cohomology. See [4] for details

71Both with one non-trivial step, denoted by the name of the filtration.
72Recall that L ∼= P/U .
73That between different K so we can view it as a morphism ζ from the inverse system of

reductions of Shimura varieties
74For more details on this, see 4.1.10 and 4.2 in [1].
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the commutative diagrams

SK′

ζK′

((
πK′/K

��

SK
ζK

((
g

��

G-Zipµ and G-Zipµ

SK

ζK

77

SgKg−1

ζgKg−1

66

.

6.5 Implications of the cone conjecture for Shimura vari-
eties

The previous section shows that SK is a G-zip scheme which satisfies condition
(1) of the cone conjecture as the Shimura datum is of Hodge type, and condition
(2) as ζK is smooth.

In the Siegel case, SK is the moduli of principally polarised abelian varieties
with level K structure. The flag strata corresponding to w ∈W of length 1 are
pseudo complete, so SK satisfies condition condition (3). Here is an argument,
due to W.Goldring, showing this.

By lemma 2.4.1 in [1], the image of a flag stratum corresponding to sα with
α ∈ type(P ) is the unique closed Ekedahl-Oort stratum of SK . By lemma 6.4.1
in [1], this stratum doesn’t intersect the boundary in a toroidal compactification,
SΣ
K , of SK . So it is a closed set of a proper scheme and hence proper, which is

stronger than being pseudo-complete.

For sα with α ∈ ∆ \ type(P ),75 proposition 2.4.3 in [1] implies that the im-
age of the Bruhat strata is precisely the Ekedahl Oort stratum correspond-
ing to the same Weyl group element.76 Then, using [26], one gets that an
abelian variety A, corresponding to a point of this stratum, SK,α, has p-rank 0.
That is dim Homk−Groups(Z/pZ, A[p]) = 077. Then, using the proof of lemma
6.4.1 in [1], one gets that the multiplicative rank of a semi-abelian variety ly-
ing in the strata SΣ

K,sα
78 is constant. The multiplicative rank of A is defined

as mult rk(A) := dim Homk−Groups(µp, A). By duality of principally polarized
abelian varieties, see §15 in [27], the p-rank and the multiplicative rank of an
abelian variety A corresponding to a point in SK,sα , are the same. Hence the
multiplicative rank of any semi-abelian variety corresponding to a point of SΣ

K,sα
is 0. If A is a semi-abelian variety with a non-trivial torus part, then there is an
embedding µp ↪→ Gm ↪→ A, so the multiplicative rank of A is non-zero. Hence
one concludes that SK,sα = SΣ

K,sα
, with closure SΣ

K,sα
∪ SΣ

K,e = SK,sα ∪ SK,e,
which is proper as a closed subscheme of a proper scheme.

Hence for every g ≥ 2, a proof of the cone conjecture for G of type C2 yields
a vanishing result on the automorphic vector bundles of the reduction of the

75This implies α∨ = µ in our case.
76sα corresponds to an Ekedahl-Oort stratum as it is minimal and cominimal, see [1].
77A[p] := ker(A 3 x 7→ px ∈ A)
78Where we’re using that the extension of σ to SΣ

K defined in chapter 6 of [1] induces an

Ekedahl-Oort stratification of SΣ
K as well.
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Shimura variety Sh(GSp(2g), Xg). Moreover, as the ζK are booth G(Af ) equiv-
ariant and compatible with the projections πK/K′ , this result is independent of
the level structure.

For example, the proof in the C2 case implies that the saturated global sections
cone of the reduction of the Siegel modular threefold, of any level, is given by

a1 − a2 ≥ 0
−pa1 − a2 ≥ 0

with the same conventions as in section 5.

Similar arguments using the relations of the different stratifications are pos-
sible to use to show that other Shimura varieties of Hodge type satisfy the
pseudo-completeness in the length one strata as well. Currently there is, to my
knowledge, no argument showing this for all Shimura varieties of Hodge type.

In [28], Andreatta showed that the extension of ζK to a toroidal compactifica-
tion, SΣ

K , of SK is smooth as well. As this compactification is proper, all strata
closures are proper as well. Hence a proof of the cone conjecture in any case
where G is of a type admitting a Hodge-type Shimura datum, we get a vanishing
result on the cohomology of the toroidal compactifications of the varieties SK .
This is again independent of the level by theorem 6.2.1 in [1].
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Classics. Birkhäuser Boston, Inc., Boston, MA, 2009.

[12] J.-P. Serre and translated by M.J. Greenberg, Local Fields, 1st ed., S. Axler,
F. Gehring, and K. Ribet, Eds. New York, US: Springer Science+Business
Media New York, 1979.

[13] G. Laumon and L. Moret-Bailly, Champs algébriques, ser. Ergebnisse der
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de racines, ser. Actualités Scientifiques et Industrielles [Current Scientific
and Industrial Topics], No. 1337. Hermann, Paris, 1968.

[19] J.-S. Koskivirta and T. Wedhorn, “Generalized µ-ordinary Hasse
invariants,” J. Algebra, vol. 502, pp. 98–119, 2018. [Online]. Available:
https://doi-org.ezp.sub.su.se/10.1016/j.jalgebra.2018.01.011
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