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Abstract

Coxeter groups arise in many different areas of mathematics and are extensively studied
in algebra, geometry, and combinatorics. One of their important areas of applications is
by means of their associated Hecke algebras, which are certain deformations of the group
algebras of Coxeter groups that play an important role in representation theory. A turning
point in the study of representations of Hecke algebras was the celebrated paper “Represen-
tations of Cozeter groups and Hecke algebras” by Kazhdan and Lusztig where the notions
of left, right and two-sided cells of an arbitrary Coxeter group, now called Kazhdan-Lusztig
cells, were first introduced. Their definition incorporates a new canonical basis of the Hecke
algebra, the Kazhdan-Lusztig basis, and they give rise to representations of both the Coxeter
group itself and the associated Hecke algebra.

In this thesis we start with an introduction of Coxeter groups, focusing on some structural
aspects of its rich theory that are of combinatorial, algebraic and geometric interest. We then
move on to study their associated Hecke algebras, starting from a more general construction
of associative algebras over a commutative ring, leading towards the construction of the
Kazhdan-Lusztig basis and the study of the action of the canonical basis of the Hecke algebra
on the Kazhdan-Lusztig basis, which turns out to be key in the determination of the partition
of the Coxeter group into Kazhdan-Lusztig cells as well as the properties of the partition. We
then focus on the study of Kazhdan-Lusztig cells and discuss several tools that allow us to
deduce deep properties about Kazhdan-Lusztig cells as well as a series of related conjectures
by Lusztig.
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1 Introduction

This thesis is divided into three main parts, and each part builds on the previous ones. We now
give a brief outline of the content of this thesis.

Chapter 2 is intended as an introduction to the rich theory of Coxeter systems so that the
reader gets a feeling of the different areas where one encounters these. In particular, we define
it as a group defined by generators and relations, introduce the length function and the Bruhat
ordering. We also present a characterization of Coxeter systems as discrete reflection groups
and establish the relation between Coxeter systems, Coxeter graphs and Coxeter matrices. We
also study a special class of subgroups, and give a brief introduction to the classification of the
finitely generated Coxeter groups.

In Chapter 3, we start by constructing general associative algebras over a commutative ring
with unity, which we then use to obtain the Hecke algebra associated to a Coxeter system together
with its canonical basis, by choosing a particular set of parameters. We also study the relation
between the Hecke algebra and the Bruhat ordering, which requires the study of ‘R-polynomials
as well as the inverse of the canonical basis elements of the Hecke Algebra. We then introduce
the bar involution which is used to define Kazhdan-Lusztig basis of the Hecke algebra together
with a set of polynomials, called the Kazhdan-Lusztig polynomials, which we compute explicitly
from scratch. We also study the action of the canonical basis on the Kazhdan-Lusztig basis
which allows us to derive a crucial property about the Kazhdan-Lusztig polynomials. We then
introduce a ‘dual’ basis for the Kazhdan-Lusztig basis.

Finally, in Chapter 4, we get to my favourite part of the thesis. We introduce the original
setting for Kazhdan-Lusztig cells and explain their relevance in that they give rise to representa-
tions of both the Coxeter system and its associated Hecke algebra and explore some of its most
important properties. We then explore a series of tools such as Lusztig’s a-function and the set
of distinguished involutions, which turn out to be key in the proof of many of the results known
today about the partition of the group into Kazhdan-Lusztig cells. We also consider the Weyl
group of type Ao and the affine Weyl group of type As to illustrate some of the results we present.
We end with a thorough account of a series of 15 conjectures by Lusztig’ which seem to control
the behaviour of the a-function, as well as a detailed discussion about the relations between
these. We also present a quick survey on the cases for which the partition into Kazhdan-Lusztig
cells is known.



2 Coxeter Systems

In this section, we introduce the theory of Coxeter groups following [5] and [21]. We fix a group
W, written multiplicatively and with identity element 1, together with a generating subset S of
W consisting of elements of order 2. If s, s’ are elements of S, we denote by mgy the order of
the ss’ in . Note that S is not assumed to be finite and that m,y might be infinite.

2.1 Coxeter systems

In this section we define what does it mean for the pair (W, S) to be a Coxeter system.

Definition 2.1.1. We say that the pair (W, S) is a Cozeter system if W admits a presentation
of the form
W = (S| (ss)™s' =1 for all pairs (s,s') € Sg), (2.1.1)

where Sg is the set of all pairs (s,s") € S xS such that mgy is finite. The group W is called the
Cozeter group and S is the set of Cozxeter generators. The cardinality of S is called the rank of

(W, S).

Remark 2.1.1. The fact that the group W admits a presentation of the form in (2.1.1), means
that (W, S) satisfies the following universal property: if G is a group and x : S — G is a map
from S to G satisfying

(k(s)r(s)™" =1 for all (s,s') € Sp,

there exists a unique homomorphism & : W — G from W to G that is an extension of .

S —— W

The uniqueness of the homomorphism s : W — G follows from the fact that S generates W.
Equivalently, if G’ is a group, m : G’ — W a homomorphism from G’ to W and & : S — G’ a
map from S to G’ such that

(mok)(s)=s and (&(s)i(s'))™ =1forall (s,s') € 5 xS,

and such that the &(s) for s € S generate G', then 7 is injective and hence an isomorphism from
G toW.

S—— W
G/
Definition 2.1.2. If s, s’ are two elements of S and r > 0 is an integer, we may define an element

prod(r; s, s’) of W inductively as follows:

prod(0; s,s") = 1,
prod(r + 1;s,8') = prod(r; §’,s) - ¢/,

with the convention that prod(oco;s,s’) = 1. With this notation in mind, we may write a
presentation of W as follows:

W = < S ‘ s> =1for all s € S, prod(mg;s,s’) = prod(mgy; s, s) for all 5,5 € S >

3



2.2 The length function

Note that since every element of S is of order 2, every element of S is in particular its own
inverse, and thus, since S generates W, every non-identity element w € W can be written as
a product w = s189- -8, of elements s1,...,s. € S. In this section we define the length of a
typical element w € W and the concept of reduced decomposition of w. We also prove some
elementary properties about the length function.

Definition 2.2.1. Let w € W be an element of W. The length of w with respect to S, denoted
by ¢(w), is the smallest integer > 0 such that w can be written as the product of a sequence of
r elements of S. The map w — [(w) defines a function ¢ : W — Ny, called the length function of
W with respect to S.

Remark 2.2.1. Clearly, 1 is the unique element of length 0 in W, and S is precisely the set of
elements of length 1.

Definition 2.2.2. Let w € W. A reduced decomposition of w with respect to S is any sequence
(s1,82,...,8r) of elements of S such that w = s1s2--- s, and r = I(w). We say that w = s1--- s,
is a reduced expression of w.

Remark 2.2.2. Since the elements of S are involutions, if w = s1 - s, is a reduced expression of
w, then clearly

fws,) = I

=1 51"‘Sr—1)=7”—1,
U(syws,) =(sg - 8p_1) =T —2,

and so on. However, since an element of W may have more than one reduced decomposition
with respect to S, the length function has its subtleties. Nevertheless, we can still derive some
elementary properties of the length function.

Proposition 2.2.1. Let w,w’ € W be arbitrary. Then

Y(ww') < (w) + £(w'), (2.2.1)
L(w™h) = l(w), (2.2.2)
[t(w) — 4(w")] < ((ww'™1). (2.2.3)

Proof. Let w = s1...8 and w' = s} ...s; be reduced expressions of w and w’, respectively.
Then ((w) = r, £(w') = g and ww' = s1--- 5,57 - -+ 5. Hence ww' can be writen as the product
of a sequence of r + ¢ elements of S, and thus ¢(ww’) < r + ¢, which proves (2.2.1). Also, since
sz-_1 =s; foreach i =1,...,r, it follows that

w :(51”.81”)71:5;1”'51_1:ST”‘SJJ

and thus /(w™!) < r = I(w). Moreover, since w = (wil)fl, the same argument shows that
{(w) < £(w™1), which proves (2.2.2). Finally, replacing w by ww'~! in (2.2.1) and (2.2.2) yields
the relations

U(w) — L(w') < £ b, (2.2.4)

ww'™
Cww' ™) = f(w'w™h). (2.2.5)
Exchanging w and w’ in (2.2.4) and using (2.2.5) gives also
(w') — l(w) < L(ww'™h),

which proves (2.2.3). O



Corollary 2.2.1. Let s = (s1,...,5;) and 8’ = (s,...,s;) be two sequences of elements of S
such that w = s1---s, and w' = sy ---s,. If the sequence (s1,...,5.,5],...,8;) is a reduced
decomposition of ww', then s is a reduced decomposition of w and s’ is a reduced decomposition
of w'.

Proof. Since w = s1---s, and w’ = 57 ---s;, we have that {(w) < r and /(w’) < ¢, and since
ww' = 518,87 -+ 5, is a reduced expression of ww', we have that £(ww') = r + q. Combining
these with (2.2.1), we must have l[(w) = r and l(w’) = ¢, showing that s and s’ are reduced
decompositions of w and w’, respectively. O

Remark 2.2.3. If (W, S) is a Coxeter system, we may define a homomorphism ¢ : F(S) — {1, -1}
from the free group F(S) on the set S onto the multiplicative group {1, —1} by sending each
element of S to —1. By the universal property, this induces an epimorphism & : W — {1, -1}
sending each s € S to —1. Moreover note that if w = s1--- s, is any reduced expression of the
element w € W, then

E(w) =&(s1---8,) =&(s1)---&(sp) = (=1)" = (=1)"®), (2.2.6)

which shows that the epimorphism & : W — {1,—1} in Remark 2.2.3 is given in terms of the
length function by
E(w) = (=1)"™)  for any w € W.

This is very useful to prove the following result.

Lemma 2.2.1. Let w,w’ € W be arbitrary elements of W and let s € S be an arbitrary element
of S. We have:

(a) L(ws) = l(w) +
(b) l(sw) =L(w) £
(c) L(ww') = l(w) + L(w") mod 2.

1.
1

Proof. Since
—1)) = E(ws) = E(w)é(s) = —&(w) = ~(~1)™)

(
it follows that ¢(ws) # ¢(w). The inequalities in (2.2.1) and (2.2.3) then give
lw) —1 < fl(ws) < l(w)+1
This together with ¢(ws) # ¢(w) gives (a). The proof of (b) is similar. Finally, since
(1)) = Swnf) = Sw)a(uf) = (~1) ),

the equivalence in (c) follows. O

2.3 Characterization of Coxeter systems

In this section, our aim is to characterize Coxeter systems as discrete reflection groups. In order
to do this, we first need to study the relation between the set T' of conjugates in W of elements
of S and the reduced decompositions of elements of W with respect to S.

Definition 2.3.1. Define
T := U wSw L. (2.3.1)
weW
The elements of S are called the simple reflections of W and the elements of T' are called the
reflections of W. Moreover, define
o= {1,-1} xT.

The elements of ® are called the roots of W.



Definition 2.3.2. For any finite sequence s = (s1,...,s,) of elements of S, denote by ¥(s) the
sequence (t1,...,t,) of elements of T" defined by

t] — (81 e Sj—l)sj(sl e Sj_l)il for 1 SJ S r. (232)

Remark 2.3.1. Note that t; = s; and s1---8, = t,tp—1---t1.

Definition 2.3.3. For any element t € T, let n(s,t) denote the number of integers 1 < j < r
such that ¢; = t.

Definition 2.3.4. For each s € S, define a map Us : & — & by
Usle, t) = (e : (—1)5&:3%*1) for all (¢, ) € @, (2.3.3)

where d,; is the Kronecker symbol.

Lemma 2.3.1. We have U2 = idg. In particular, Us is a permutation of ®, i.e., Us € Perm(®).
Proof. For any (e,t) € ®, we have that
Uf(e,t) = U, (e . (—1)5‘”, sts_l)
- (e (=1)%t (= 1) et s(sts_l)s_l) (2.3.4)
— (6 (=18 (_1)5S,St571’t) .
Since the elements of S are of order 2, we have that s = ¢ if and only if s = sts™!, and thus
dst + 05 5051 =0 mod 2.
Combining this with (2.3.4) yields
U2(e,t) = (e,t) = idg(e, 1),
which shows that U2 = idg. O
Lemma 2.3.2. (UyUs)™ss' =idg for all s,s' € S.

Proof. Lets:= (s1,...,S,)beasequence of elements of S. Set w := s, -+ s; and Ug := Uy, - - - U, .
We show, by induction on r > 0, that

Us(e, t) = (6 : (—1)”(S’t),wtw_1) for any (e,t) € ®. (2.3.5)
For r = 0, the claim is clear, and for » = 1 we have that d5; = n(s,t) and the claim follows from
the definition of Uy in (2.3.3). If r > 1, set s’ := (s1,...,8—1) and w' := 8,1 ---s1. By the
induction hypothesis, we have that for any (e,t) € @,
Ug (e,t) = (6. (—1)"(5"t),w'tw”1) .
We thus obtain

Us(e,t) = U, Ug (€, t)

Us

T

(e . (—1)"(8/"5) , w’tw'_1>

Us, (e (=)D L (21) st srw/tw/_lsr_1> (2.3.6)

/
€. (_1)n(s ’t)+6sr7w’tw’_1 ’ wtw_l) )



But

U(s) = (V(s),t) = <\Il(s’),w sqw’_1>
and

TL(S, t) = n(sla t) + 6w’*1srw’,t = n(sl7 t) + 5sr,w’tw’*1a
so (2.3.6) becomes
Us(et) = (e (=10, wtw ™)),
which proves the claim.
Now, take any s,s’ € S and let s := (s1,..., sam,,) be the sequence of elements of S defined
by s; = s for j odd and s; = &’ for j even. Then
81 32m55, — (Ssl)mss/ — 1

and (2.3.2) implies that ‘

ti=(ss')7's forall1<j<2,,.

Since mgy is the order of ss’, the elements ¢1, . .. stm,,, are all distinct and, for each 1 < j < myy,
we have t;y,, = t;. Therefore, for any given ¢ € T, the number of integers j such that t; = ¢ is
equal to 0 or 2, i.e. n(s,t) =0 or n(s,t) = 2. Combining this with (2.3.5), we obtain

(Ug U)o (e,) = (6,1) = ida(e,t) for any (1) € &,
which shows that (UgUs)™ss' = idg. O

Remark 2.3.2. In view of Lemmas 2.3.1 and 2.3.2, it follows, by the definition of Coxeter systems,
that the map s — U, extends uniquely to a homomorphism from W to the group of permutations
of ® given by

U:W — Perm(®)

(2.3.7)

w — Uy,
where U,, = Uy for every sequence s = (s1,...,5,) such that w = s, ---s1. In particular, it
follows from (2.3.5) that (—1)™®% has the same value for all sequences s = (s1, ..., s,) such that

w = 81+ 8. For each w in W and each ¢ in T, we denote such a value by n(w;t). Moreover,
note that defining the homomorphism U in (2.3.7) is equivalent to having defined an action of
W on the set of roots ®.

Lemma 2.3.3. Let s = (s1,...,8;), U(s) = (t1,...,t,) and w = s1---s,. Let T™ be the set of
elements t in T such that n(w;t) = —1, and let card (T") denote the cardinality of T*. Then
s s a reduced decomposition of w if and only if the t; are all distinct. In that case we have

T = {t1,...,t,} and card (T") = L(w).

Proof. First assume that the ¢; are not all distinct. Then there exists a pair of indices ¢, 7 with
1 <i < j <rsuch that t; = t;, which implies that s; = (sj11---5j-1)8;(si41 - sj_l)_l. Hence,
since w = s - - - S, we have

w:81...8i_18i+1...Sj_18j+1...3T’

which shows that s is not a reduced decomposition of w.

Conversely, assume that the ¢; are all distinct. First note that if ¢ belongs to T, then
1= plwst) = (~1)"E

for any sequence s’ = (s, ..., sy) such that w = s - - s;. It follows that n(s’,£) > 1 and thus, by

definition, we have that ¢ = ¢; for an odd number of j’s with 1 <4 < g, where W(s') = (#},...,1;).

7



This shows that ¢ € {t},... ¢ }. Hence T% C {t},...,t;} and card (T") < ¢. In particular, if
we chose s’ such s’ is a reduced decomposition of w, it follows that

card (T) < l(w). (2.3.8)

Now, since the ¢; are all distinct, we have n(s,t;) = 1 for each 1 < j < r, which gives
n(w;t;) = —1. This shows that t; € T" and thus {t1,...,t,} C T". Then, by the previous
paragraph T% = {t1,...,t,} and ¢(w) < r = card (T"). This together with the inequality in
(2.3.8) implies that r = ¢(w), which shows that s is a reduced decomposition of w. O

Lemma 2.3.4. Let w € W and s € S be elements such that {(sw) < ¢(w). For any sequence
s = (S1,...,57) of elements of S with w = s1---s,, there exists an integer i such that 1 <i <r
and

8§81 8;—1=81"""5-1S;. (2.3.9)

Proof. Let ¢ = £(w) and set w’ = sw. By (¢) in Lemma 2.2.1, we have that
l(w')=q+1 mod 2.
Thus, combining the hypothesis £(w’) < ¢(w) with the relation

lq — £(w')| < w1y = £(s) =1

/

yields £(w’) = ¢ — 1. Now, if (s},...,s; ;) is any reduced decomposition of w', set

s’ = (s,s'l,...,s;_l) and  U(s) := (t],...,1).

Then s’ is a reduced decomposition of w and ¢} = s, so by Lemma 2.3.3, the t; are all distinct,
and we have n(s’,s) = 1. Since w is the product of the elements in the sequence s, we have
n(s,s) = n(s’, s) mod 2, which implies that n(s, s) # 0. Therefore s must be one of the elements
t; in the sequence ¥(s). Multiplying both sides of the equality s = ¢; by s1---s;_1 gives the
equality in (2.3.9). O

Remark 2.3.3. For the rest of Section 2.3, let (W, .S) be a pair with the properties described in
the introduction of Section 2. Note that at this point we are no longer requiring that (W, S)
is a Coxeter system. The following statement about the pair (W, .S) is known as the Ezchange
condition.

Exchange condition. Let w € W and s € S be elements such that {(sw) < {(w). For any
reduced decomposition s = (s1,...,S;) of w, there exists an integer i such that 1 <i <r and

881+ 851 = 81~ Si_18;. (2.3.10)

From now until the end of Section 2.3 we only assume that the pair (W, S) satisfies the Exchange
condition. Note that by Lemma 2.3.4, if the pair (W, .5) is a Coxeter system, then (W, S) satisfies
the Exchange condition. Therefore, all the following results apply to Coxeter systems.

Proposition 2.3.1. Let (W, S) be a pair satisfying the Exchange condition. Let w € W and
s € S be any elements and let s = (s1,...,5,) be a reduced decomposition of w. Then either
(a) l(sw) =Ll(w)+ 1 and (s,s) is a reduced decomposition of sw; or
(b) £(sw) = £(w) — 1 and there exists an integer i € Z such that 1 < i < r, the sequence
(S1y.++y8im1, Sitl,--.Sr) 1S a reduced decomposition of sw and (S,S1,...,Si—1,Si+1,-- - Sr)
1 a reduced decomposition of w.



1

Proof. Set w' := sw. Then ww'~" = s, so by (2.2.3), we have

[6(w) — tw')] < £(s) = 1,

and we distinguish two cases: either £(w’) > (w) or (w") < l(w).
So suppose that ¢(w') > ¢(w). Then w' = ss1---s, and £(w’) = r + 1, which shows that

(s,81,...,8) is a reduced decomposition of w’ and proves (a).

On the other hand, if /(w") < ¢(w), then, by the Exchange condition, there exists an integer
j € Z such that 1 < ¢ < r and (2.3.10) holds. Then w = ss1 -+ 81, Si+1 - - - S and thus

/

W =81 8—-18i+1" " Sr-

Therefore, since r — 1 < ¢(w') < r, we have that f(w') = r — 1 and (s1,...,8-18i41---,Sr)
is a reduced decomposition of w’. Finally, by (a) just proven, it follows that the sequence
(SyS1y-++y8i1,8i+1.-.,5r) is a reduced decomposition of w. O]

Lemma 2.3.5. Let (W, S) be a pair satisfying the Exchange condition. Let w € W be an element
of length r > 1, let Red(w) be the set of reduced decompositions of w, and let F' : Red(w) — X be
a map from Red(w) to a set X. Assume that F(s) = F(s') if the elements s = (s1,...,8,) and
!/ /

s’ = (s],...,5.) of Red(w) satisfy one of the following hypothesis:

»ETr
(A) s1 =5} ors, =s..
(B) There ezist s,s" in S such that s; = s = s and s; = s; = s for alli odd and all j even.

Then F' is constant on Red(w).

Proof. Let s,s' € Red(w) and F : Red(w) — X be as in the statement of the lemma. Set
u = (s9,s1,...,8-1). We first show that if F(s) # F(s'), then u is an element of Red(w)
and F(u) # F(s). Indeed, since w = s} ---s}, we have that sjw = s,---s., so we see that
shw is of length strictly less that . Hence, by Proposition 2.3.1(b), since w = s1--- s, is also
a reduced expression of w, there exists an integer ¢ such that 1 < ¢ < r and the sequence
u' = (s],81,...,8i—1,8i+1, ... Sr) is a reduced decomposition of w, and thus belongs to Red(w).
In particular, s’ and u’ satisfy the condition in Hypothesis (4), so we have F(u’) = F(s’). Now,
if 7 # r, the last term of the sequence s and the last term of the sequence u’ are the same, so s

and u’ satisfy the condition in Hypothesis (4) and thus F(u') = F(s’). But then,

which contradicts our assumption F(s) # F(s'). It thus follows that ¢ = r and hence u = u’
belongs to Red(w) and F(u) = F(s') # F(s), as claimed.

Now, for any integer ¢ with 0 < ¢ < r + 1, define a sequence s; of r elements of S as follows:

/ /
So = (517 ,87,),
S1 = (81 Sr)
L , , (2.3.11)
Sr+1—j = (51,51,...,51,81,51,52,...,5;) forr—jevenand 0<j <,
/ / . ,
Sr41—j = (81, 81,...,51,81,51,52,...,5;) forr—joddand 0<j<r.

For any given 0 < ¢ < r+1, denote by (4;) the assertion “s;,s;+1 € Red(w) and F(s;) # F(si+1)”.
By the previous paragraph, (A;) implies (A4;41) for ¢ with 0 < ¢ < r — 1. Moreover, by the
condition in Hypothesis (B), (A;) does not hold. Hence (Ap) is not satisfied. Since sy = s’ and
s1 = s, it follows that F(s) = F(s'). O



Proposition 2.3.2. Let M be a monoid with unit element 13y and ¢ : S — M a map from S
to M. For any s,s’ € S, let mgy be the order of ss' and put

(¢(5)¢(5/))m if Mgy = 2m, m finite
a(s,s') = < (p(s)y(s) ™ p(s) if msg =2m + 1, m finite (2.3.12)
1 if Mgy = 00.

If a(s,s") = a(s',s) whenever s # s' are distinct elements in S, there exists a map VW =M
from W to M such that

p(w) = (s1) - (s) (2.3.13)

for all w in W and any reduced decomposition (s1,...,S,) of w.
Proof. For any w € W, let F,, : Red(w) — M be the map defined by

Fu(s1y...y8r) =(s1) - (sy).

We show, by induction ¢(w), that F,, is constant. The case {(w) = 0 is trivial. The case {(w) =1
is also trivial because in this case, we have Red(w) = {s} for some s € S. So let w € W be
an element such that ¢(w) = r > 2 and assume that the assertion is true for all the elements
w' € W such that {(w’) < r. Now let s,8' € Red(w). By Lemma 2.3.5, it suffices to show that
F(s) = F(s') in the cases in Hypothesis (A) and (B) of the lemma. So assume that we are in
the case in Hypothesis (A). We then have

Fu(s1y...y8:) =(s1)Fyr(s2,...,8:) = Fur (81, -+, 8r—1)0(sy)

for w’' := sy ---s,_1 and w” := s9---s,.. Moreover, by the induction hypothesis, F,,» and F,, are
both constant. Since by hypothesis we have s; = s} or s, = s/, it follows that F,,(s) = F,(s’).

On the other hand, suppose that we are in the case in Hypothesis (B), so that there exist
two elements s, s' € S such that s; = s; = s and s; = s; = s’ for i odd and j even. Note that it
s =5, then w = sy - - - 5, is not a reduced expression of w, so it suffices to consider the case when
s # s are distinct. Now, when s # s’ are distinct, the sequences s and s’ are two distinct reduced
decompositions of w and both belong to the dihedral group generated by s and s’. Moreover,
the order mgy of ss’ must be necessarily finite, since otherwise, if mgy = oo, every element
of of the subgroup Wy, sy of W generated by s and s’ has a unique reduced decomposition as
prod(r; s, s’) and prod(r; s, s) are distinct for every integer r > 0. Consequently, F,,(s) = a(s, s’)
and F,(s') = a(s, s), and hence F,(s) = Fy(s'), since by assumption, a(s,s’) = a(s’,s). This
shows that F, is constant. The claim in Proposition 2.3.2 then follows. O

Remark 2.3.4. We are now in possession of all the necessary tools to prove the following charac-
terization of Coxeter systems:
Theorem 2.3.1. The pair (W, S) is a Coxeter system if and only if it satisfies the Exchange
condition.
Proof. 1f (W, S) is a Coxeter system, then Lemma 2.3.4 shows that (W, .S) satisfies the Exchange
condition.

Conversely, assume that the pair (W, S) satisfies the Exchange condition. Let G be a group
and let ¥ : S — G be a map from S to G satisfying

((s)¥(s) ™" =1 for every (s,s') € Sp.

By Proposition 2.3.2, there exists a map ¢ : W — G from W to G such that

(w) = o(s1) - U(sr)

10



whenever w = s1 - - - s, is a reduced expression of w. Therefore, to prove that (W, .S) is a Coxeter
system, it suffices to prove that 15 is a homomorphism. In order to do this, we use the fact that
S generates W. So take any s € S and any w be in W, and let s = (s1,...,s;) be a reduced
decomposition of w. By Proposition 2.3.1, only two cases are possible: either ¢(sw) = l[(w) 4+ 1
or {(sw) = l(w) — 1. If {(sw) = ¢(w) + 1, then (s,s1,...,s,) is a reduced decomposition of sw,
and hence

P(sw) = p(s)tb(s1) - Y(sy) = P(s)h(w).

If on the contrary, £(sw) = ¢(w) — 1, we set w’ := sw, so that sw’ = w and {(sw’) = £(w') + 1.
Notice that we are back to the first case, where we have already shown that

d(sw') = U(s)(w) = v (s)d(sw).

Since 9(s)y(s) = 1, it follows that ¢ (s)y(w) = Y(sw). In both cases multiplication is preserved
by 1, proving that ) : W — G is indeed a homomorphism. O

2.4 Families of partitions

In this section we continue to assume the pair (W, S) only has the properties in the introduction
of Section 2. In this section, we are interested in studying the elements w € W such that
{(sw) > l(w) for a fixed given s € S.

Proposition 2.4.1. Let (W, S) be a Coxeter system. For any element s € S, let PT be the set
of elements w € W such that ¢(sw) > £(w), that is,

Pl ={weW|{(sw) > l(w)}. (2.4.1)

The collection of sets (P*)ses has the following properties:

() (P ={1}.

seS
(b) For any element s € S, the sets PY and sPt form a partition of W.

(c) Let s,s" € S and let w € W. If w € P} and ws' € sP}, then sw = ws'.

Proof. (a) First, recall that if w € W is a non-identity element and s = (s1,...,s,) is a reduced
decomposition of w, then r > 1 and (s2,...,s,) is a reduced decomposition of sjw, so ¢(w) =r
and {(syw) = r — 1. Hence w ¢ P, which shows that

(P c{1}

sES

Conversely, since £(s - 1) > £(1) for any s € S, we have that 1 € P} for any s € S, and thus

{1y ¢ (P!

seSs

The equality in (a) follows.

(b) Now, let w € W and s € S. By Proposition 2.3.1, we have two possibilities: either
{(sw) = L(w) + 1, in which case w € P, or {(sw) = (w) — 1. In the latter case, if we set

w’ := sw so that sw’ = w, then ¢(w') < ¢(sw'), which implies that w’ € P, and thus w € sP.
This proves (b).

(c) Finally, take any s,s” € S and any w € W such that /(w) = r and w € P and ws’ € sP].
The fact that w € P} implies that (sw) = r + 1, and the fact that ws'P} implies that
l(sws’) = l(ws') — 1 < r. Therefore, since £(sws’) = ¢(sw) £+ 1, we conclude that ¢(ws') =r +1
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and ¢(sws’) = r. Now, let (s1,...,s,) be a reduced decomposition of w. Then (s1,...,s,,s)isa
reduced decomposition of ws’, which is an element of length r + 1. By the Exchange condition,
there exists an integer ¢ such that 1 <7 <7+ 1 and

381 oo Si—l = 81 . e Si—lsi' (242)

Note that if 1 < ¢ <7, then sw = s1---8;-18i+1 " - Sy, contradicting the fact that ¢(sw) = r + 1.
Thus i = r+ 1 and (2.4.2) reads sw = ws'. O

Proposition 2.4.2. Let (P;), g be a family of subsets of W satisfying Property (c) in Proposition
2.4.1 together with the following conditions:

(a’) The identity element 1 in W belongs to Py for all s in S.
(b’) The sets Ps and sPs are disjoint for all s in S.

Then (W, S) is a Cozeter system and Py consists of the elements w € W such that {(sw) > £(w),
i.e., Ps =Pt for every s € S, where PY is defined as in (2.4.1).

Proof. Take any s € S and any w € W, and let (s1,...,s,) be a reduced decomposition of w.
Also, for each integer i with 1 < i < r, let w; := s1---s;, and set wy := 1. First, if w ¢ PJ,
then w, = w ¢ PY. Also note that wg = 1 € PJ by (a’). Therefore, there exists an integer j
with 1 < j < such that w;—_1 € P} but w; = wj_1s; € P¥. Then, by (c¢) in Proposition 2.4.1
swj_1 = w;_18;, which proves the formula

581 “e Sj*l = 31 .. Sj*lsj'
Such formula implies that sw = s1---sj_15j41 -5, and £(sw) < £(w).

On the other hand, if w € P}, set w’ := sw so that w’ ¢ PY by (V/). From the previous

s

paragraph, we then have ¢(sw’) < f(w'), which is equivalent to (w) < ¢(sw). Since the first
paragraph of the proof proves that if £(sw) > ¢(w), then w € P, it follows that w € P if and
only if ¢(sw) > ¢(w). Finally, as we have seen in the first paragraph, the Exchange condition
follows from this, and thus, by Theorem 2.3.1, the pair (W, S) is a Coxeter system. 0

Remark 2.4.1. Note that in Proposition 2.4.2, we are not assuming that the pair (W, S) is a
Coxeter system. In particular, Proposition 2.4.2 is the converse of Proposition 2.4.1.

2.5 Parabolic Subgroups

In this section, we continue to assume that (W, .S) is a Coxeter system, and we study a class of
special subgroups of W generated by subsets of S. We show that the set of letters appearing in a
reduced decomposition of w € W is independent of the particular choice of reduced decomposition
of w.

Definition 2.5.1. Let X C S be any subset of S, and denote by Wx the subgroup of W
generated by the the elements in X. Then Wy is called a standard parabolic subgroup of W, and
for any w € W, the subgroup wWxw ™" of W is called a parabolic subgroup of W.

Example 2.5.1. If X = (), then Wy = {1}, and if X = S, then Wg = W.
Proposition 2.5.1. Let w € W. There exists a subset Sy, C S such that {s1,...,8:} = Sy for
any reduced decomposition (s1,...,s;) of w.
Proof. Denote by Z2(S) the set of all subsets of S. Recall that Z?(S) is a monoid with binary
operation given by
P(S) x P(S) — Z(S)
(A,B) — AU B,
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and identity element (). Now, let ¢ : S — Z2(S) be the map defined by 1(s) = {s} for s in S.
Using (2.3.13), note that if s, s’ in S are such that mgy is finite, then a(s, s’) = a(s, s). Hence,
by Proposition 2.3.2, there exists a map ¢ : W — 22(S) from W to 2(S) that maps w to S,
such that 3

P(w) = ¢(s1) U+ Uth(sr).

In other words, S, = {s1,..., 8.} for any w in W and any reduced decomposition (si,...,s,) of
w. O

Remark 2.5.1. Note that we have just shown that for any w € W, the set S,, does not depend
on the choice of reduced decomposition of W.

Corollary 2.5.1. For any subset X C S, the subgroup Wx of W consists of the elements w € W
such that Sy, C X.

Proof. Let
Uxi:{ZEW|SZ§X},

that is, Ux is the set of elements z € W such that S, C X, and let w,w’ € W be arbitrary
elements in W. We first prove, by induction on the length of w, the containment

Sww T Sy U S, . (2.5.1)

If the length of w is 0, then w = 1 and Sy, = Sy, so the containment in (2.5.1) is clear. If the
length of w is 1, then w = s for some s in S. By Proposition 2.3.1, we know that S, is a subset
of {s}U Sy, so the containment in (2.5.1) holds too. Now, suppose that the length of w is equal
to r > 1, and assume that the containment in (2.5.1) holds for any y in W with ¢(y) < r. Now,
if w=s1---5;is a reduced expression of w, then sy ---s, is a reduced expression of sjw which
is of length r — 1, so by the induction hypothesis, we have

Ssrww S Serw U S (2.5.2)

But Ss, . is a subset of {s1} U Sy, and, by Proposition 2.5.1, we have Sy, = {s1,...,s,}. Hence
{s1} USy = Sy and (2.5.2) becomes S,y C Sw U Syr. Then, since ww’ = s1 - syww’, it follows
that

Sww C {51} U Sslww’ - {51} USw U Sy =Sy U Sy,

completing the proof of the containment in (2.5.1). Moreover, since w™! = s, - - - s1, it follows,

by Proposition 2.5.1, that
Sw = Syp-1. (2.5.3)

Combining (2.5.1) and (2.5.3), wee see that the set Ux is a subgroup of W. Moreover, we have
X CUx € Wx. Therefore, as X generates Wy, it follows that Ux = Wx, and it is, in particular
the smallest subgroup of W containing X. O

Corollary 2.5.2. For any subset X C S, we have Wx NS = X.

Proof. The containment of X in Wyx NS is clear. Conversely, if s € Wx NS, then, by Corollary
2.5.1, we have that S; C X. But s € S, so we have S5 = {s}, and thus s € X. This shows that
Wx NS C X, completing the proof. O

Corollary 2.5.3. The set S is a minimal generating set of W.

Proof. If X C S is a subset of S generating W, then W = Wx, and hence, by Corollary 2.5.2,
we have

X=WxnsS=-5.

13



Corollary 2.5.4. For any subset X and any w € Wx, the length {x(w) of w with respect to the
generating set X of the subgroup Wx of W is equal to £g(w).

Proof. Let w € Wx and let (s1,...,s,) be a reduced decomposition of w with respect to S
considered as an element of W. We have w = s1---s, and, by Corollary 2.5.1, we know that
s; € X for each 1 <14 < r. Moreover, the element w cannot be a product of less than r elements
of X, which is a subset of S, as {g(w) =r. O

Theorem 2.5.1. Let (W, S) be a Coxeter system. Then:
(a) For any subset X, the pair (Wx, X) is a Cozxeter system.
(b) Let (X;)ier be a family of subsets of S. If

X =[x,

el

then
Wx = Wx,.
iel

(c) Let X, X' C S be two subsets of S. Then Wx C Wx if and only if X C X'.
(d) Let X, X' C S be two subsets of S. Then Wx = W if and only if X = X'.

Proof. (a) First, every element of X is an element of S, so it is of order 2. Moreover, X generates
Wx. Now, let x € X and w € Wx be elements such that {x(zw) < {x(w) = r. By Corollary
2.5.4, we have lg(zw) < lg(w) = r. Let x1,...,z, be elements of X such that w = z1---x,.
Since (W, S) is a Coxeter system, it satisfies, by Theorem 2.3.1, the Exchange condition, so there
exists an integer j € Z such that 1 < j <r and

xTxy - 'xj—l =x1- wj—lxj-

But this shows that (Wx, X) satisfies the Exchange condition too, and thus, by Theorem 2.3.1
again, it is a Coxeter system. This proves (a).

(b) Let (X;)ier be a family of subsets of S satisfying

X=X, (2.5.4)
el
and let w € Wx. By Corollary 2.5.1, we know that S,, C X, and thus, from the equality in

(2.5.4), we see that S,, C X; for each i € I. Another application of Corollary 2.5.1 then gives
that w € Wy, for each i € I, which shows that

Wx C ﬂ Wx,

el

Conversely, if
w e ﬂ WXi?
el
then, by Corollary 2.5.1 again, S,y C X; for each i € I, and thus, from the equality in (2.5.4),
we see that S,y C X. One last application of Corollary 2.5.1 then gives that w’ € Wy, which
shows that

(Wx, € Wx.
iel
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We have hence shown that
Wx = ﬂ Wx;,
el
proving (b).

(c) Now, let X, X" C S be two subsets of S. If Wx C Wx/, then Wx NS C Wx, N S. But, by
Corollary 2.5.2, we now that X = Wx NS and X’ = Wx, NS, so we have hence shown that
XCX.

Conversely, suppose that X C X’, and let w € Wx. Then, by Corollary 2.5.1, we know that
Sw C X, so in particular S,, € X’, and thus, by Corollary 2.5.1 again, w € Wx/. This shows
that Wx C Wy and completes the proof of ().

(d) Finally, we have Wx = Wy if and only if Wx C Wxs and Wx» C Wy, and by (c) just
proven, this is the case if and only if X C X’ and X’ C X, which in turn is the case if and only
if X = X. This proves (d) and completes the proof. O

2.6 Coxeter matrices and Coxeter graphs

Let I be a set. In this section we define Coxeter matrices and Coxeter graphs and study how
they are related. We also start our discussion of their relation with Coxeter systems.

Definition 2.6.1. A Cozeter matriz of type I is a symmetric square matrix M = (m;;); jer whose
entries are integers m;; € Z or m;; = 400 satisfying

my =1 forall i€ I;
- L (2.6.1)
my; > 2 fori,j € I with i # j.

Definition 2.6.2. A Coxeter graph of type 1 is a pair consisting of a graph G having I as its set
of vertices and a map v : E(G) — Z>3 U {oo} from the set of edges E(G) of the graph G to the
set Z>3 U {00}, where Z<3 is the set of integers greater or equal to 3. In particular, G is called
the underlying graph of the Cozeter graph (G,1).

Remark 2.6.1. Note that we may associate, to any Coxeter matrix M of type I, a Coxeter graph
(G, ), since the graph G has I as set of vertices and the set pairs {7, j} of elements of I such
that m;; > 3 as edges, and the map 1) associates to the edge {7,j} the corresponding entry m;;
of M. This gives a bijection between the set of Coxeter matrices of type I and the set of Coxeter
graphs of type L.

Remark 2.6.2. We represent a Coxeter graph (G, 1) of type I by the diagram used to represent
its underlying graph G, and write above each edge {7,j} the number ¢ ({i,7}), omitting these
numbers if they are equal to 3.

Remark 2.6.3. Now, if (W, S) is a Coxeter system, the matrix M := (mgy)s secs is a Coxeter
matrix of type S, since mg, = 1 as s> = 1 for all s in S and mey = mgs > 2 if s # s as
ss' = (s's)~! # 1. Such a matrix is called the Coxeter matriz of (W,S), and the Coxeter graph
(G, 1) associated to M is called the Cozeter graph of (W,S), and is denoted by Cox(W,.S). Note
that any two vertices s, s’ of I are linked if and only if s and s’ do not commute.

Example 2.6.1. The Coxeter matrix of a dihedral group D,, of order 2m is

(o T)

and its Coxeter graph Cox (D,y,, S), where S = {s1, s2}, is represented by:
m

O——O (when m > 3)

S1 52
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O—=©O (when m = 3)

S1 S9
O O (when m = 2)
S1 S9

Example 2.6.2. The S, is generated by the the set of adjacent transpositions s; := (7,7 + 1),
where i € Z such that 1 <i < n — 1. Therefore, the Coxeter graph Cox(S,,S) of the symmetric

groups S, with respect to the generation set S = {s1, s2,...,S,—1} is represented by:
O O O O O e}
S1 52 S3 Sn—3 Sp—2 Spn—1

Definition 2.6.3. A Coxeter system (W, S) is said to be irreducible if the underlying graph G
of its Coxeter graph Cox(W,S) is non-empty and connected in the graph-theoretic sense.

Remark 2.6.4. Note that the Coxeter system (W, .S) is irreducible if the generating set S is non-
empty and there exists no partition of S into two distinct subsets S,.5” C S of S such that every
element of S’ commutes with every element of S’. More generally, let (G;);c; be the family of
connected components of G in the graph-theoretic sense, let V(G;) be the set of vertices of G;
and let Wy, (g,) be the subgroup of W' generated by V(G;). Then, by Theorem 2.5.1(a), the pairs
(Wy(g,)» V(Gi)) are all irreducible Coxeter systems called the irreducible components of (W, S).

Proposition 2.6.1. Let (X;)ier be a partition of S such that every element of X; commutes
with every element of X; if © # j. Then, for any finite subset J C I, the subgroup Wy of W
generated by the Wx, for j € J is the direct product of the Wx; for j € J and

W = U W;.

JCI
J finite

Proof. For every i € I, the subgroup W)’Q generated by the union of the all the W, for j # i is
also generated by
X=X

J€eI
1#]
and thus, by (@) in Theorem 2.5.1,
Wx, N Wy, =Wy = {1}.
Since W is generated by the union of the Wy,, the proposition is proved. O

Remark 2.6.5. From Proposition 2.6.1, we see that every element of w € W can be written
uniquely as a product
w = H ws

el

with w; € Wy, and w; = 1 for all but finately many indices ¢ € I.

2.7 Geometric representation of W

Let S be a set and M = (mssl)&s,es be a Coxeter matrix of type S. So far we have established
the following relations:

Coxeter Coxeter matrices Coxeter graphs
systems (W, .S) of type S of type S

16



In Section 2.7, we show that, conversely, any Coxeter matrix is the matrix of a Coxeter system,
and we are thus able to close the circle and conclude that up to isomorphism, there is a one-to-
one correspondence between Coxeter graphs, Coxeter matrices and Coxeter systems. In order to
do this, let E := R be a real vector space and let (es)ses be the canonical basis of E indexed by
S. We first associate a symmetric bilinear form By; on E to the Coxeter matrix M, and use this
to define, for each s € S, a linear automorphism o, of the vector space E that fixes a hyperplane
in E pointwise and sends some non-zero vector to its negative. We then study the restriction of
the bilinear form By to plane Eg o := Res @ Rey where s,s" € S are two distinct elements of
S, as well as the group generated by the two automorphisms o and oy, and use this to prove
the existence a uniqueness of a particular representation of the group W (M) associated to the
Coxeter matrix M of type S, called the geometric representation of W(M), and show that the
pair (W(M), 5) is in fact a Coxeter system.

Definition 2.7.1. Let By : E X E — R be the bilinear for defined by

Bu(es, esr) == —cos for all s,5" € S. (2.7.1)

Meg
The bilinear form By is called the associated bilinear form of the Coxeter matriz M of type S.

Remark 2.7.1. Recall, from Definition 2.6.1, that the Coxeter matrix M = (mgss)sses is a
square symmetric matrix, and so we have that m,y = my, for every s,s’ € S. We then see from
Definition 2.7.1, that the associated bilinear form of the Coxeter matrix M is in fact a symmetric
bilinear form, that is,

Bum(z,y) = Bm(y,z) for any z,y € E.

Remark 2.7.2. Note that since mgs = 1 and mgy > 2 for any s,s’ € S such that s # s’, we have

that
T

cos—— =—1 and 0 < cos <lifs#s, (2.7.2)

Mgs Mg
and thus
Bum(es,es) =1 and By(es,eq) <0 if s # 8,

Definition 2.7.2. Let s € S, and let e} be the linear form on E given by

e::E—=R
(2.7.3)

x — 2By(es,z) (z € E),
and let (-,-) be the pairing given by
(,y:ExEY - E
(m,f\/) = fY(x) (m €E, fVe Ev),

where EV denotes the algebraic dual of E. We then denote by o4 be the automorphism o, : E — E
of E given by

(2.7.4)

os(x) =x — (z,ei)es (v €E). (2.7.5)
Remark 2.7.3. Note that for any x € E, we have that
os(z) =x — €i(x) = ey — 2By (€5, x)es.

In particular, for any s, s’ € S, we have that

os(es) = ey — ei(es) = ey — 2By (es, €))es = ey + 2 cos €s,

ss’

and thus

os(es) = ey

! /

02 = (0s005)(ey) = 05 <es/ + 2 cos es> = 0s(es) + 2 cos

Ss Ss

Since (ey)seg is a basis of E, it follows that o2 = 1.
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Remark 2.7.4. Let idg : E — E denote the identity automorphism on E. Then for any = € E
and any s € .S, we have that

(05 —idg) (z) = 05(z) —x =2 — (z,€5) 65 — x = — (z,¢}) €,

which shows that the image of o5 — idg on E is generated by e;. Moreover, since e is a non-zero
vector in E, we have that € E belongs to ker (05 — idg) if and only if (z,e¥) = 0. Also note
that for any x € E and any s € S, we have that

(05 +idg) (x) = os(x) + 2— =2 — (x,€}) €5 + . = 20 — (x,€}) es,

and thus z € ker (0s+idg) if and only if 2z = (z, €) e;. Therefore, if z € ker (o0,—idg)Nker (0s+idg),
it follows that = 0. Now, for any vector v € E, let v/ := 05(v) + v and v” := o4(v) — v. Then,
since 02 = idg, we have that

(05 —idg) (V') = 02(v) + 05(v) — 05(v) —v = v+ 05(v) —os(v) —v =10
and
(05 +idg) (V") = 02(v) — 05(v) + 05(v) —v = v — 04(v) + o5(v) —v = 0,

which show that v" € ker (05 — idg) and v” € ker (o5 + idg), respectively. Since we 2v = v' — "]
it follows that E is the direct sum of ker (05 — idg) and ker (o +idg). Moreover, since 02 = idg,
we have that ker (o5 — idg) is a hyperplane in E, and thus ker (o5 + idg) must necessarily be of
dimension 1. More precisely, we have ker (o5 + idg) = Res.

Remark 2.7.5. For any fixed s € S, let Z; := ker (05 — idg), so that E is the direct sum of the
line Re, and the hyperplane Zs. Now, take any z,y € E, and write x = v; +u; and y = vy + uy
where v, v, € Res and u,,uy € Zs. Since we have that

0s(Vg) = —Vz, 0s(vy) = —vy, 0s(Ug) =up and os(uy) = uy,
it follows that o, preserves Bys.

Remark 2.7.6. When S is finite and By is non-degenerate, then o4 is in fact an orthogonal
reflection.

Proposition 2.7.1. The restriction of By to Eg ¢ is positive, and it is non-degenerate if and
only if mgg = mg g is finite.
Proof. Let x = A\ses + Agey € Eg ¢ where Ag, Ay € R. Using the bilinearity and the symmetry
of By together with the fact that Byi(es, es) = Bum(es, es) = 1, we have

BM(m, $) = )\i + 2)\s>\s’BM(657 es/) + )\g/

Then, substituting (2.7.1) into the above, completing the square and using the trigonometric
identity cos? @ + sin? @ = 1 where 6 € R is a real number with 0 < 6 < 27, gives

2
i ) + A% sin? U , (2.7.6)

ss’ Mgs!

Bu(z,z) = <)\S — Ay COS

which shows that Byi(x, ) > 0. Since z is an arbitrary element of E; ¢, it follows that By is
positive on E y. Moreover, suppose that mgy = 0o, then Byi(z,z) = (As — )\S/)Q. Therefore, if
As, Ay € R are non-zero real numbers with Ay = Ay, we have that x is a non-zero element of
E, ¢ with By(z, ) = 0, which shows that By is degenerate.

Conversely, suppose that By is degenerate, so that, since E, , is finite dimensional, there
exists a non-zero element x = Ases + Ages € Eg o, with Ag, Ay € R real numbers, such that
Bum(z,y) =0 for all y € Eg 5. In particular Byi(z, ) = 0, so by (2.7.6) we must have

2
> = A sin? ——. (2.7.7)

Mg

(/\S — Mg/ COS

Mgg!
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But for # € E; ¢ to be non-zero, at least one of As or Ay must be non-zero, so the left hand
side of (2.7.7) is at least zero and the right hand side of (2.7.7) is at most zero. Therefore, the
only way we can have equality is if both sides are equal to zero. Now note that if Ay = 0, we
must have \g # 0, since otherwise = 0 contradicting the fact that x # 0. But then the left
hand side of (2.7.7) is equal to A2 > 0 which is not possible. Hence Ay must be non-zero, and

thus —\2 sin? —— = 0 implies that sin? —i— = (), which is the case of and only if sin *— = 0.

Since mgy > 2, this implies that mgy = osé, since otherwise, 0 < sin -*— < 1. We have hence
proven that By is non-degenerate on Eg ¢ if and only if m,y is finite, completing the proof of
the proposition. O

Remark 2.7.7. Proposition 2.7.1 describes how precisely how By behaves on Eg . In particular
note that if we take any element x € E; ¢ and write it as in the proof of Proposition 2.7.1, we
get

os(x) =z — 2XsBum(es, es)es — 2AgBu(es, esr)es = —(As + 2AgBui(es, es))es + Agreg,

which shows that E, o is stable under o5. The same is true for oy. It thus seems reasonable to
determine the order of the restriction of o404 to Eg . In order to do this we must distinguish
two cases: the case mgy = 0o and the case mgy is finite.

Proposition 2.7.2. The order of the restriction of o054 to Eg g is:
(a) infinite, if mgy = 00;

(b) msg, if mgg is finite.

Proof. (a) Suppose that myy = oo, so that cos -~ =1 and

BM(68765’) == BM(€S/768) == _17

and let u € E; 5 be the element of E, ¢ given by u = e; + ey . For such an element u we see, using
the linearity in the first argument and the symmetry of By, that Byi(u, es) = 0 = Bym(u, ey), so
that

os(u) = u — 2By(es,u)es = u = u — 2Bp(ey, u)ey = oy (u),
which shows that w is fixed by both o5 and oy. Moreover, using the linearity of os and the fact
that o5(es) = ey + 2e5 and oy (e5) = e5 + 2ey for mgy = 0o, we see that

050y (es) = 0s(es +2ey) = 05(u) + os(es) = u+ ey + 2e5 = 2u + e,
and thus, by induction,
(0s0¢)"(es) = 2nu+es for all integers n.
It thus follows that the restriction of o404 to Eg ¢ has infinite order.

(b) On the other hand, suppose that mgy is finite, and let RT™ and R~ denote the set of non-
negative and non-positive real numbers, respectively. By Proposition 2.7.1, the restriction of the
symmetric By to Eg ¢ is positive and non-degenerate, so it provides E; o with the structure of a
Euclidean plane and represents the scalar product on Eg s. In particular, since mgy finite implies

that 0 < " < 7, the scalar product of the basis vectors es and ey is given by

!
T m
=cos 7 — ,
Mgs! Mss!

and we can orient E,; ¢ so that the angle between the half lines RTe, and Rtey, is equal to

T — I (see Figure 2.1a). Then, if Ly and Ly denote the lines orthogonal to es; and ey,

Bum(es, esr) = — cos

respectively, and 6 ¢ denotes the angle between the lines Ly and Ly (see Figure 2.1c), we have

™

95’,8 =T = ‘9575’ = .
Mgt
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(a) Angle between eg and ey (b) Angle between Ly and Ly (c¢) Angle between Ly and Ly

Figure 2.1: E, ¢ as a euclidean plane

This is depicted in Figure 2.1 above.

Now, the restrictions of o5 and oy to Eg ¢ are orthogonal symmetries with respect to Ly and
Ly, respectively. Moreover, since E, » is finite dimensional and the restrictions of o5 and o
to B, ¢ are reflections, they both have determinant —1, so the determinant of the restriction of
0504 to Eg ¢ is 1, showing that the restriction of o404 to E, o is a rotation. Moreover, since o
is linear and oy (ey) = —ey, the angle between the half-line RTey and the half-line 0,04 (RTey)
is equal to the angle between the half-line RTey and the half-line oy (RTey) = R™ ey, which is
7, plus the angle between the half-line R™ey and the half-line o5 (R™ey ), which is equal to the
angle between the half-line RTey and the half-line o5 (R ey) and thus equal to 27 —2 (5 — 0 ).
Hence, the angle between the half-line RTey and the half-line o504 (RTey) is equal to

2

™+ 2m — 2% 42y =20y, = mod 27,

ss’

and thus the restriction of 0,04 to Eg ¢ is a rotation with angle 73—“/ In particular we see that
it is of order mgy . O

Remark 2.7.8. Having determined the order of o404 viewed as an operator on E, o/, we return
to E, and use this to determine the order of o504 viewed as an operator on E.

Proposition 2.7.3. The subgroup of GL(E) generated by o5 and oy is a dihedral group of order
2Mmyggr .

Proof. Since o, and oy are distinct reflections, they are in particular distinct involutions, so it
suffices to show that their product os04 is of order mgy on E. Again, we must the distinguish
between the case when mgy = 0o and the case when mgy finite.

So suppose that mgy = co. By (a) in Proposition 2.7.2, we know that o504 has infinite order
on Eg o, and therefore also on E.

On the other hand, if mgy is finite, it follows, by Proposition 2.7.1, that E is the direct sum
of Eg ¢ and its orthogonal complement ESLS,. Since both o4 and oy fix ESLS,, that is, both oy
and oy are the identity on Ej‘s,, and since 040 has finite order m,y on E; o, it follows that the

order of os04 on E is equal to mg. O

Definition 2.7.3. Let W(M) be the group defined by the family of generators (gs)scs and the
relations
(gsgs)™s =1 for (s,s') € Sp. (2.7.8)

The group W (M) is called the Cozeter group associated to M.
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Remark 2.7.9. Note that Definition 2.7.3 just means that W(M) is the quotient of the free
group F(S) on S by the smallest normal subgroup of F(S) containing the elements (ss")™ss' for
(s,8") € Sp.

Proposition 2.7.4. There ezists a unique homomorphism o : W — GL(E) such that o(gs) = o
for all s in S. Moreover, the elements of o(W') preserve the bilinear form Byy.

Proof. To prove the existence and the uniqueness of o, it suffices to show that (os0)™ss = 1
if mgy is finite. But if s = s, this follows from the fact that o, is an involution, and if s # s/,
this follows from the proof of Proposition 2.7.3. Finally, since we showed that the reflections o
preserve By, so do the elements of o (). O

Definition 2.7.4. The homomorphism in Proposition 2.7.4 is called the geometric representation
of W(M).

Remark 2.7.10. We note that this is not the only way we may represent W as a group generated
by reflections (see Vinberg [37], [38], [39] and [40]).

Proposition 2.7.5. Let k : S — W(M) denote the map from S to W that maps s — g5 for each
s € S. Then:

(a) The map k: S — W is injective.
(b) For each s € S, the generator gs of W(M) is of order 2 in W(M).
(c) If s,s" € S, then gsgy is of order mggy in W (M).

Proof. (a) Since for every pair of distinct elements s, s’ € S we have that o4 and oy are distinct
in GL(E), it follows that the map s +— o, is injective. Hence, the composite map

cok:S—W — GLE)
St gs +— Os

from S to GL(E) is injective, and thus x : S — W must also be injective, as required.

(b) Since for each s € S we have g2 = 1, we know that the order of g5 is at most 2. Since we
have that the order of o4 in GL(E) is exactly 2, we conclude that the order of g5 in W is exactly
2 and (b) follows.

(¢) Similarly, since for any distinct elements s, s’ € S, we have that the order of gsgy is at most
mgg and the order of 0,04 is exactly mgy, we conclude that the order of gsgy in W is exactly
mss and (c) follows. O

Remark 2.7.11. Note that (a) in Proposition 2.7.5 implies that S can be identified with a subset
of W by means of the map k : s — gs. Then (b) and (¢) in Proposition 2.7.5 together with the
definition of W (M) give the following result.

Corollary 2.7.1. The pair (W (M), S) is a Cozeter system with matriz M.

Remark 2.7.12. Note that we have in fact shown that to every Coxeter matrix M one can associate
a Coxeter group, namely W (M).

2.8 Contragradient representation of W

In this section we keep the notation of Section 2.7. The aim of this section is to show that the
geometric representation o : W(M) — GL(E) is a faithful representation of the group W (M) as
a group generated by reflections. In order to prove this we use some sort of “chamber geometry”.
Since the bilinear form By; may well be degenerate, we do not have an euclidean inner product
to work with, so there is no such thing as positive and negative half-spaces defined by a reflecting
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hyperplane as in the case when mgy is finite in Proposition 2.7.2. The natural place to look for
is thus the algebraic dual EV of the vector space E. We start by describing a representation of
the group W(M) in EV as well as a collection of subsets in EY that play the role of positive
half-spaces defined by a reflecting hyperplane. Next we state the main result of this section, a
result by Tits, and before proving it, we give some relevant consequences if it. Next, we focus
on the proof of Tits’ Theorem, for which we first need to prove some lemmas. This will provide
some intuition for the choice of term “chamber geometry”, so we end this section by formalizing
what its components.

Remark 2.8.1. Since W(M) acts on E via o : W(M) — GL(E), by transport of structure, W (M)
also acts on EY via the representation 0¥ : W(M) — GL(EV), called the contragradient represen-
tation of o, and is given by

oV(w)="o (w™')  for all w € W(M). (2.8.1)

To ease notation, if f¥ € EY is an element of EY and w € W (M), we denote by w (f") the
transform of f¥ by o¥(w), i.e.,

w (fY) =o(w) (fY) ="o (w™) (@)
Therefore, for any x € E, we have that
w(f¥) () = o¥(w) (f¥(2) = ‘o (w™) (f(2)) = f* (o(w)(2)).

Definition 2.8.1. For any s € S, let Ag denote the set of all f¥ € EY such that fY(es) > 0,
that is,
Ag:={f" €E"| fY(es) >0} .

Also, let A, be the intersection of the A; where s runs through S, that is

AO;:ﬂAsz{fVeEV\fv(es)>0forauses}.
SES

Remark 2.8.2. When S is finite, A, is a simplicial cone in EV.
Theorem 2.8.1 (Tits). If w € W(M) is an element of W(M) and Ao Nw(As) # 0, then w = 1.

Corollary 2.8.1. The group W (M) acts simply transitively on the set of w(As) where w runs
through W (M).

Proof. This follows immediately from Theorem 2.8.1. O
Corollary 2.8.2. The representations o and oV are faithful.

Proof. Let w € W (M) be an element of W (M) contained in the kernel of the representation oV.
Then, by definition of the kernel of a homomorphism, we have o¥(w) = 1gv, where Tgv denotes
the identity in GL(EY), which implies that w(A4,) = Ao, and thus, by Theorem 2.8.1, w = 1.
This shows that

keroV C {1} (2.8.2)

Since the 1 € W/(M) is trivially an element of the kernel of o, it follows that

{1} C kera". (2.8.3)
The inclusions in (2.8.2) and (2.8.2) imply that kero = {1} proving that ¢" : W(M) — GL(EY)
is faithful. Now, let w € W(M) be instead an element of W (M) belonging to the kernel of the
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geometric representation o of W (M), so that o (w™') = o(w)™' = 1g, where 1y denotes the
identity in GL(E). Then, for any f¥ € EV, we have

o (w) (£¥(2)) = £ (o(w ")) = f¥(2) for any z € E,

which shows that kero C kero¥ = {1}. Hence since 1 € W(M) is trivially an element of the
kernel of o, it follows that
kero = kero" = {1},

proving the injectivity of o. O

Corollary 2.8.3. If S is finite, then O‘(W(M)) is a discrete subgroup of GL(E), and similarly,
oV (W(M)) is a discrete subgroup of GL(EY).

Proof. Assume that S is finite, let f¥ € EY be an element such that f¥ € A,. Note that the
orbit map
GL(EY) —» EY

Bes B (2.8.4)

is continuous since it is given, in coordinate form, by linear polynomials. Then, the set C, of
elements B € GL(EY) such that B - fV € A, is an open neighbourhood of the identity element
1gv in GL(EY). Note that the openness is due to the continuity of the orbit map and Remark
2.8.2. Then, by Theorem 2.8.1,

oV (W(M)) N Cy = {Tpv}.

This shows that ¥ (W (M)) is a discrete subgroup of GL(EY). Moreover, by transport of struc-
ture, it follows that o(W(M)) is a discrete subgroup of GL(E). O

Lemma 2.8.1. Let s,5' € S be distinct elements of S, and let v € Wy o, where W ¢ denotes
the subgroup of W (M) generated by s and s'. Then the set u' (As N Ay) is contained in either
As orin s(As), and in the latter case, {(su') = £(u') — 1.

Proof. Let EY , denote the algebraic dual of the plane E; ¢ = Re; & Rey. The transpose of the
injection ¢ : E5 < E given by inclusion is a surjection

V.V \%
v E _>E8,8’

fre frou (fY €EY)
that commutes with the action of the group W . Now, for s and ¢, let

A= {g" €EJ,

g'(es) >0} and Al :={g" €E/,

9" (es) > 0}.
Then, if gV € A, the inverse image of gV under ¢V is equal to the set
{f\/GE\/|f\/OL:g\/}’

that is, the set of f¥ € EY such that the restriction of fV to E,s is equal to g", and thus
fV(es) > 0, which implies that f¥ € A,. Conversely, for any element p¥ € Ag we have pY(es) > 0,
and thus

Y (pY) (es) = (p¥ 0 1)(es) = p”(es) > 0,

which shows that ¢V (pY) € AL. We have hence shown that A; is the inverse image of the set A’
under ¢¥. By the same argument, Ay and As N Ay are the inverse image of A/, and A, N A,
respectively. Moreover, since by Corollary 2.5.4, the length of any element of W ¢ is the same
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with respect to {s,s'} and with respect to S, we are reduced to the case S = {s,s'}, where
E = E;y. Recall that in this case, W(M) is a dihedral group of order 2m,y. As usual, we
distinguish two cases: the case mg,y = 0o and the case myy is finite.

Suppose msy = 00, and let (ey,eY) be the dual basis of the basis (e, es) of E. Recall that
the two dual basis elements ey and e, are the two linear maps on E defined by the relations
el (Ases + Agey) =As and e (Ases + Agey) = Ay

for any choices of real numbers \;, Ay € R. Then, since s = s~!

s(es) =0 (s7) (e) = "os (e) = € 00,

, we have

and so, since e : Eg ¢ — R is a linear map, and Byi(es, e5) = —1, it follows that

s (e!) (es) = (e! o 08) (es) = eg (Us(es)) = e;/ (—ey) =—1
and
s(e)) (es) = (&) 0 0s) (es) =€) (ey + 2e5) =€) (es) + 2¢)(e5) =0+ 2 =2.
Hence
s(e)) = —ey +2ey. (2.8.5)
Similarly, we have

VY _ LV 1 (VY — oV /
J)=eboos, §(ef)=elooy and §(e

\

s (e N =el ooy,

and so, as we have just done, since

os(es) = —es, os(es) = ey +2es and og(es) = es + 2ey,
we have
s(ey)(es) =e)(—es) =0 and s(e))(es) =€) (es + 2e5) =1,
s'(e]) (es) =€) (es+2ey) =1 and & (e))(ey) =€) (—ey) =0,
s’ (el)(es) =€) (es+2ey) =2 and &' (e)) (ey) =€) (—ey) = —1,
and thus

s(ey)=ey, s (ef)=¢€l, and & (e))=2e/ —e). (2.8.6)

From (2.8.5) and (2.8.6), if L is an affine line of EV containing both e} and e}, we see that L is
stable under s and s’ and that the restriction of s and s’ to L is the reflection with respect to
the point e, and e, of EV, respectively. Let

9:R—L
A= Aey + (1= Ne)

s’

let 9(n,n + 1) denote the image of the open interval (n,n + 1) in R, where n € Z, under ¢, and
let

O(nnt1) = U a-¥(n,n+1)

acRt

Then (0, 1) is the convex open set containing all the f¥ € L such that that f¥ = ae/+(1—a)e),
for some o € R with 0 < o < 1, and thus, any element gV € O(0,1) is of the form

g =AY = dae! + A1 —a)e)

s
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for some A\, a € R with 0 < a < 1. Then
g"(es) = AaeY (es) + A(1 — a)el(es) = da >0

and
g"(esr) = Aae! (es) + M1 — a)eli(es) = A1 —a) > 0,

which shows that g € A; N Ay. Conversely, if ¢¥ & © g 1), then ¢" is of the form

¢\ =Y =Ndel + N(1—d)el

S

for some X, o’ € R with @ > 1. In this case we have
q’(es) = Na'e!(es) + N(1 —a)el(es) =Na' >0

and
q’(es) = Nd'e!(es) + N(1 —a)el(es) = N(1 — ') <0,

which shows that ¢ € Ay, and in particular ¢V € A, = As N Ay. We have hence shown that
O(0,1) = Ao. Moreover, since

s's(e]) =5 (—ey +2ey) =3e] —2e;, and s's(e)) =s(ey) =2e) —e),
we have, for any p¥ = ABey + A(1 — B)e), € L, with A\, 8 € R and X > 0, that
s's (pv) =AB+2)el +A(-B-Del=AB+2)el +A(1—(B+2))el,
so we see that p¥ € Ao = 0 gy if and only if s's (p¥) € O(y,3), which implies that
s's(4.) = 5's (©(0,1)) = Or2,3)-
Hence, by induction on n > 1, we obtain
(s'5)"(Ao) = (s5)" (B0,1)) = s (O2(n-1)2(n-1)+1)) = O@n,2n+1)-
Also, since
s (p') = A8 (—ef +2¢f) + M1 = ey = —ABel + (1= (=) ey,
we see that p¥ € A, = ©(q 1y if and only if 5 (p¥) € ©(_; ), which implies that
5(4o) = 5 (O1) = O-10)
Hence, again by induction on n > 1, we obtain
(s's)"s(Ao) = (5'5)"s (O(0,1)) = ('8)" (O(=1,0)) = O(2n—1,2n)-

It thus follows that the dihedral group W (M) generated by s and s’ permutes the O, ;,4.1) (n € Z)
simply-transitively. Note that, by taking A = 1 in the argument for p¥ above, we have also shown
that W (M) permutes the ¥(n,n + 1) (n € Z) simply-transitively. Therefore, if v’ € W (M), we
have that u'(Ao) = Oy, 541y for some n € Z, and thus

, Ay ifn>0
u'(Ao) C .
s(4s) ifn<0.

In the latter case, ¥(0,1) and ¥(n,n + 1) are on opposite sides of the point ey, € EY, and hence
l(su’) =L(u') — 1, as claimed.

25



e
\
'
Oy s,
\
9 '
!
N

€s

Figure 2.2: The half-lines L} and L:, of E as a euclidean plane with basis (e, e4)

On the other hand, suppose now that my is finite. Then, by Proposition 2.7.1, the symmetric
bilinear form By is non-degenerate, so we may identify EV with E. Recall from the proof of
Proposition 2.7.1, that E can be oriented so that the angle between the half-lines RTe; and Rt ey
is equal to ™ — m’;/. Now, for any # € R with 0 < 6 < 27, let pg denote a rotation of # and let
L} and L:, be the half-lines corresponding to A5 N Lg and Ay N Ly, respectively. Then LT and
L:, are the the half-lines obtained from R¥e,; and R*ey by a rotation of 5 and a rotation of —7,

respectively (see Figure 2.2), i.e.,

L = Pz (R+es) and L:Z =p-z (R+€8/) .

Now let ©, 1) be the set of open half-lines L’ such that the angle ¢ I between L:, and

L’ satisfies
n@sgs < QL:C,L’ < (n + 1)95’,5-

Note that the O, ,41) for n € Z with —m,y < n < mgy are connected open subsets forming a
partition of the complement of
U e (L2)

—mgg<n<mg

in E. Since A, = A; N Ay is the set of x in E whose scalar product with e; and ey is greater
than zero, it is the open angular sector with origin L;C and extremity L} (see Figure 2.2). But
this is of course the set ©(g 1), so Ao = O(g1). Since for any half-line L' and any n € Z such
that 1 < n < mgy, the angle between the half-line L;r, and the half-line pn@s,s/(L/) is equal to
the angle between L;'C and L' plus nfy s, it follows that L' belongs to A, if and only if Pno, (L")
belongs to the open angular sector with origin Pné, | (L;'C) and extremity Pn+1)0, (LY), that
i8, Onnt1) = Pno (A). In particular, we have that

Oak2kt1) = P2k, (Ao) and  Oar_19k) = parg,, 5" (Ao)

for any k € Z, and O, 1) = Ao if and only if n € 2m,yZ. This shows that the group W (M)
permutes the sets O, ,41) (n € Z) simply-transitively, and thus every element v’ € W(M)
transforms A, into an open angular sector that is either on the same side of the line Ly as Ao,
in which case u’ € Ag, or on the opposite side of the line Lg as Ao, in which case v’ € s(4y). In
the latter case, we have that u/(A,) = O (n,nt1) for some n € Z with 0 < n < mgy. If n =2k for
some k € N, we have
u' = (ss')* and su' = §'(ss)F7L,
and thus
l(u') =2k and f(su') =2k —1=/((u)—1.

If n =2k — 1 for some k € N, we have

u' = (ss)ks' and  su' = s(ss')ks’ = (s's)F !
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and thus
l(u)y=2k—-1 and {(su')=2k—-2=/((u)—1,

completing the proof of the lemma. O

Lemma 2.8.2. Let w € W, and let r € Ny, where N{0,1,2,3,4,...}. Then the following
statements are true:

(Pr) If bl(w) =7 and s € S, then either w(As) C As or w(As) C s(As) and (sw) = £(w) — 1.

(Qr) If L(w) =7 and s,s" € S are such that s # s, then there exists an element u € Wy g,
such that
w(Ao) Cu(AsNAy) and ((w)=L(u)+ (v w).

Proof. First consider the case when r = 0. In this case, (Py) holds since ¢(w) = 0 if and only if
w = 1, and thus w(A,) = A, is, by definition of A,, a subset of Ag. Similarly, if we take u = 1,
which is an element of W o, we see that

w(Ao) - Ao g U(As N As’) = AS N As’-
Also, £(u) = 0 and £(u~'w) = £(1) = 0, so we have
f(w) =0 = (u) + L(u" w),

showing that (Qy) also holds. To prove the lemma, we will by induction on r > 0, that (P,) and
(@) imply (P,.1), and that (P,.;) and (@) imply (Qr;1).

We start buy showing that (P,) and (Q,) imply (Q,,1). So let w € W(M) such that
l(w)=r+1,let s € S and assume that (P,) and (@Q,) hold. Recall that we may write w = s'w’
with ¢ € S and w’ € W such that £(w’) = r. If ' = s, then w'(A4,) C As by (P;), and thus

w(Ao) = s'w'(Ao) = sw'(As) C s(As).

Moreover, we have sw = ss'w’ = s?w’ = w’', and thus {(sw) = (w') = r = {(w) — 1. On the
contrary, if s’ # s, there exists, by (Qr), u € Wy ¢ such that

w'(Ao) Cu(AsNAy) and L(w') = L(u) + L(u '), (2.8.7)
and thus
w(As) = s'w'(Ao) C s'u(AsN.Ay)
Lets now apply Lemma 2.8.1 to the element v := s'u. Note that we have two possibilities:

either v/ (As N Ay) C As, in which case w(A4,) C As, or v/ (A;N Ay) C s(As), in which case
w(As) C s(Ag). Moreover, in the latter case, we have £(su’) = £(u’) — 1, and hence, since

1 1

sw=ss'w = ss'uutw = su'u” w’,

we have
((sw) = £(su'u ') < L(su)) + L(u ') = 0(u) — 1 + L(u" ), (2.8.8)

where the first inequality follows from (2.2.1) in Proposition 2.2.1. Then, since multiplying «’ on
the left by s reduces the length by one and u € Wy ¢, multiplying ' on the left by s’ increases
the length by one so that £(u) = £(s'u") = £(u') + 1, and (2.8.8) becomes

((sw) < L(u) — 14 L(u"tw). (2.8.9)
Then, substituting into (2.8.9) the equality in (2.8.7), yields

l(sw) < l(w') —1 < l(w) — 1,
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which implies that ¢(sw) = ¢(w) — 1, and the first part of the proof is complete.

We now show that (P, ;) and (Q,) imply (Q;). Again, let w € W(M) such that £(w) = r+1,
let s # s’ be distinct elements of S and assume that (P,,;) and (@;) hold. If w(A,) C AsN Ay,
then (Qr, ;) holds with u = 1. If on the contrary w(A,) € AsN Ay, then w(As) is not contained
in at least one of A; and Ay. So suppose, for example that w(As) € As. Then w(As) C s(Ay)
by (Prs1), and ¢(sw) = £(w) — 1 = r. Then, since (@) holds, there exists v € Wy ¢ such that

sw(A,) Cv(AsNAy) and L(sw) = L(v) + £(v  sw).
Then w(A,) = ssw(As) C sv(As N Ay) and,
O(w) = L(sw) + 1 = £(v) + (v sw) + 1 > L(sv) + £ ((sv) " tw) > L(w), (2.8.10)

where the last inequality follows from (2.2.1) in Proposition 2.2.1. We thus see that the inequal-
ities in (2.8.10) are all in fact equalities. It follows that (Qr.;) holds with u = sv. A similar
argument shows that (Q,,;) holds in the case that w(A,) ¢ Ay, and the second part of the
proof is now complete. O

Proof of Theorem 2.8.1. Let w € W such that w # 1. Recall that we may write w in the form
w = sw' with s € S and w' € W such that n := ¢(w') = ¢(w) — 1. By (P,) applied to w’,
we must have that w'(A,) C A since £(sw’) = £(w) = £(w') + 1 excludes the possibility that
w(As) C s(Ay). Hence

w(As) = sw'(As) C s(As),

and thus, since As and s(A;y) are disjoint, it follows that A, Nw(A,) = 0, as required. O
Definition 2.8.2. Let H; be defined by
Hy:={f" €E" [ f'(es) =0} = {f" € EV| (es, f") = O},

that is, Hy is the hyperplane of EV orthogonal to es with respect to the pairing (-,-) : EXEY — E
in (2.7.4). Then the hyperplanes w(H,) (w € W, s € S) are called walls, and the convex cones
w(As) in EY are called chambers and in particular A, is called the fundamental chamber. Let
W and C denote the collection of walls and chambers, respectively.

Remark 2.8.3. It is important to note that the walls and chambers are in EV, and, by Theorem
2.8.1, W acts simply transitively on C. Moreover, if S is finite, by Remark 2.8.2, the chambers
are actually simplicial cones in EV.

Remark 2.8.4. From Lemmas 2.8.1 and 2.8.2 we see that every chamber w(A,) (w € W(M)) lies
on one side of each wall.

Remark 2.8.5. Note that if we set

A= {fY €EY | {es, 1V > 0)},

Ao = () A

SES

and

then, for the weak topology on E with respect to the canonical pairing (-,-) : E x EY — E in
(2.7.4), the sets A5 (s € S) are closed half-spaces, and A, is a closed convex cone. In particular,
since for any fV € A, and any g¥ € Ao, we have f¥ + \g¥ € A, and any X\ € R with A > 0 and

v . v v
fr=1lm f"+Ag7,
we see that fio is in fact the closure of A,.
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Definition 2.8.3. For any subset X C 5, let

AX::<ﬂHS>ﬂ M A4

seX seS\X

Remark 2.8.6. Note that Ax C fio for any X C S, and in particular, we have Ay = A, and
Ag = {0V} C EV. Also note that for any w € Wx in the standard parabolic subgroup Wx and
any f¥Y € Ax, we have that w (f¥) = fV, since for the restriction of ¥ to the Coxeter system
(Wx, X) we have s (fV) = fV for every f" contained in the intersection of the walls H (s € S).

Proposition 2.8.1. Let X,Y C S and let w,w’' € W(M). If w(Ax) Nw'(Ay) # 0, then
X=Y, wWx=uwWy and w(Ax)=w'(Ay).

Proof. Note that by Remark 2.8.6 and Tits’ Theorem (Theorem 2.8.1), the proof reduces to the
case when w’ = 1. We thus proceed by induction on the length ¢(w) > 0. If /(w) = 0, then

w = 1 and the statement is clear. So suppose that {(w) > 0, and assume that for any z € W(M)
such that £(z) < £(w) and z(Ax) N Ay # 0, then

X=Y, z2Wx=Wy and z(Ax)= Ay.

holds. Recall that there exists some s € S such that ¢(sw) = ¢(w) — 1, so that, by Lemma 2.8.2,
we have w(As) C s(As), and thus w(/io) - S(/is). In particular, since A, C A, it follows that
A, Nw(As) C H,. Hence s(fY) = fV for all f¥ € A, Nw(A,), and in particular, s (f¥) = fV
holds for all fV € w(Ax)NAy. As aresult, the relation w(Ax)NAy # () implies that HsNAy # ()
and Ay Nsw(Ax) # 0, and the former in turn implies that s € Y. By the induction hypothesis

and (d) in Proposition 2.5.1, it then follows that
X =Y, swuWx=Wy=Wy,

which implies, since s € Wx, that sw € Wx and w € Wx. This in turn implies that wWx = Wy
and w(Ax) = Ax = Ay, as required. a

Corollary 2.8.4. Let X C S and f¥ € Ax be arbitrary. Then staby ) (fY) = Wx, where
stabyy i) denotes the stabilizer of f¥ in W(M).

Definition 2.8.4. The subset Tits(W (M), S) C EV defined as

Tits(W (M), 8) == | J w(A.),

ses

is called the Tits” cone of (W(M),S).

Remark 2.8.7. Note that by Remark 2.8.5, the set Tits(WW (M), .S) is convex, and in particular,
if S is finite, it is actually a simplicial cone. Moreover, by Corollary 2.8.4, the subsets w(Ax)
where X runs through the subsets of S form a partition of Tits(W (M), ).

Proposition 2.8.2. The cone fio is a fundamental domain for the action of W (M) on the convex
set Tits(W(M), S).

Proof. Since by definition A, C Tits(W(M), S), and we know A, is convex, to show that A,
is actually a fundamental domain for the action of W (M) on Tits(W (M), S), we just need to
show that for any fV,g" € A, such that w(fY) =g, we have f¥ = ¢g¥. Since f",g" € Ao, we
know that there exist X, Y C S such that fV € Ay and g¥ € Ay. Now, since by assumption
w(fY) = g¥, we have that w(Ax) N Cy # 0, and thus, by Proposition 2.8.1, we obtain that
X =Y and w € Wx. Hence f¥V = gV, as required. O
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2.9 Classification

The results in Section 2.6 and Section 2.7 show that Coxeter systems are classified by the equiv-
alence classes of Coxeter matrices. In this section we present some important results about the
classification of Coxeter systems so that the reader is familiar whenever we refer to a specific
type of Coxeter system in later sections. We do not prove these results, but rather give some
examples and provide exact references to the literature where the interested reader can find the
corresponding proofs. Good sources to read more about the material presented in this section
are [1], [5], [9] and [21]. We continue to use the notation of Sections 2.6-2.7. Since we have
already established that the Coxeter systems are classified by the equivalence classes of Coxeter
matrices, we let (W, S) be an irreducible Coxeter system with Coxeter matrix M of type S and
associated symmetric bilinear form By as in (2.7.1). In this section, and only in this section, we
assume that S finite. Also, for any = € E, let w(x) denote the action of w € W via the geometric
representation o : W — GL(E), i.e. w(z) := o(w)(x).

Theorem 2.9.1. The following are equivalent:
(a) The group W is finite.
(b) The bilinear form By is positive definite.
(¢c) The Coxeter graph Cox(W,S) is of type Ap(n > 1), By(n > 2), Dy(n > 4), Eg, E7, Es,

Fy4, Go, H3, Hy or Ia(m) (m =5 or m > 7), as given in Figure 2.3, where the index in
the name of the types corresponds to the number of vertices.

Proof. See [5], Chapter V, §4.8, Theorem 2 and Chapter VI, §4.1, Theorems 1 and 2, or see [21],
Chapter 6, §Theorem 6.4. O

Remark 2.9.1. In this case, (W,S) is a finite Coxeter system that is finitely generated. The
symmetric bilinear form By is a scalar product on E and we identify W via o : W — GL(E)
with a discrete subgroup of the orthogonal group O(E) of the finite-dimensional vector space
E. In particular, W is the subgroup of O(E) generated by the reflections with respect to the
hyperplanes in the family Z of hyperplanes w(Zs) = w (ker(os —idg)) (s € S,w € W) in E,
where the Z, are as defined in Remark 2.7.5. Moreover, there is no non-zero x € E that is fixed
by the action of W, since any fixed element would be Byj-orthogonal to all es (s € S), and this
is only possible if it is 0. Finally, the isomorphism E — EV defined by By transforms the set

Cs = {z € E|Bum(z,e5) >0 for all s € S}

of E to the fundamental chamber A, of EV and Property (P,) in Lemma 2.8.2 shows that for
every w € W and every s € S, the sets w(Cs) of E does not intersect Zg, and thus

C, CE— UZ,
7eZ

that is, C, is contained in the complement of the union of the hyperplanes of Z. Since, recall
Ao a connected convex subset of F, it is a chamber of E. All the properties proved in Section
2.8 for the fundamental chamber A, apply to W and A, and in particular, C, is a fundamental
domain for the action of W on E, which is equivalent to saying that the inverse image of the
Tits’ cone Tits(W, S) under the isomorphism E — EY defined by By is the whole of E.

Example 2.9.1. (Type Ag) If (W, S) is of type Ag, then S = {s1, s2} with mgs,s, = 3, and in
particular, the generators s; and sy are conjugate in W since

—1
89 = 5152518281 = 8182 * S92 (8182) .
Moreover, W has a presentation

W = <81,82 | s% = s% = (8182)3 = 1>,
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A, O——O——O s oO—o0 (n > 1 vertices)

B, O——O——O e Oio (n > 2 vertices)
D), O——O——O - eeeeeeees O_O<z (n > 4 vertices)
Es O—=O I o—oO
Er O0—=O I o—0—=O0
Es O—O I oO—O0—0—=0
F, O—O 1 o——oO
6
G2 O—O
H3 OLO—O
H 0-20—0—0
m
I»(m) O—oO (m=5orm>T7)

Figure 2.3: Coxeter graphs of irreducible Coxeter systems of finite type

so that
W = {1, s1, 2, 5152, 5251, 515251 },

and we see that W is indeed finite with longest element w, = 15251 = S25152. In the reflection
representation E of (W, S), with basis (es,, es,), the matrices of s; and sy are given by

(-1 1 d*lo
si={gy 1 and s2=(, |-

Recall from Example 2.6.2 that W is isomorphic to the symmetric group Ss via the isomorphism
mapping s; — (12) and s2 — (23), and note that Z(W) = {1}.

Definition 2.9.1. We say that the Coxeter system (W, S) is tame if the associated bilinear form
Bu(e,e) > 0 for every e € E. If (W,5) is tame and infinite, we day that W is an affine Weyl
group.

Definition 2.9.2. We say that the Coxeter system (W, S) is integral if mgy € {2,3,4,6, 00} for
all s,s" € S. We sometimes also use the term crystallographic in what follows.

Example 2.9.2. If (W, S) is of finite type, then (W,S) is tame, and by Theorem 2.9.1 and
Figure 2.3, we see that those for which Cox(W,S) is of type A, (n > 1), By(n > 2), D,(n > 4),
Eg, E7, Eg, F4, G2 and Is(00) are integral and those those for which Cox(W, S) is of type Hs, Hy
and Ia(m) with m =5 or 7 < m < oo are non-integral.
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. (b) Identifying the elements of W
(a) Basis (es,, e, ) of B, the with the chambers via
hyperplanes in Z w e w(Ay)

Figure 2.4: Euclidean plane E and Tits(W, S) for (W, S) of type Asy

Theorem 2.9.2. If (W, S) is an infinite Coxeter system, then (W,S) is tame if and only if
QOX(VVa S) is Of type Al; An(n > 2)’ B2y Bn(n > 3); Cn(n > 3)’ Dn(n > 4)7 E67 E77 ES, Fy or
Go, as given in Figure 2.5, where the index in the name of the types is exactly one less than the
number of vertices of the corresponding Cozeter graph.

Proof. See [5], Chapter VI, §4.3, Theorem 4, Chapter VI, §2.5, Proposition 8 and Chapter V,
§4.9, Proposition 10. O

Remark 2.9.2. In this case (W, S) is an infinite Coxeter system that is finitely generated. The
symmetric bilinear form By is positive and degenerate. A technical result, but not difficult result
in linear algebra (see, for example [5|, Chapter V, §3.5 Lemma 4, or [21], Chapter 2, Proposition
2.6) tells us that the radical of the bilinear form By coincides with the null space of the matrix
indexed by S whose entries are equal to By(es, es) for s,s" € S, and moreover, this null space
is one-dimensional and is spanned by a vector vy € E of the form

vy = Z Ases  with 0 < Ay € R for every s € S. (2.9.1)
seS

Such vector spans the radical E+ of By, i.e.
El ={z € E|By(z,y) =0 for all y € E}.

The quotient space E / E+ becomes a euclidean plane of dimension card (S) — 1 relative to the
positive definite bilinear form induced from By;. Since Et is in fact the intersection of the
hyperplanes Zs where s runs through S and is therefore fixed pointwise by W, it follows that W
also stabilizes the dual hyperplane

EHY ={fYeEY | (v, f¥) =0}

of EX, and E+V identifies naturally with the dual space (E / El)v of the quotient space E / EL,
giving it also the structure of a euclidean plane. Notice also that W also stabilizes the translated
hyperplane

Ho:={fY €EY | (vo, f¥) =1},

to which we can naturally transfer the euclidean structure of E+V so that it becomes an affine
euclidean space with translation group E+V. It is such structure that allows us to deduce, as in
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(n+1 > 3 vertices)

Es O—O0—0O0—0—o0
E‘ﬂoooIooo
EsooIooooo
- ﬁﬁ4f\
F4Ouuuo

& o—o-Lo

Figure 2.5: Coxeter graphs of irreducible Coxeter systems of affine type

the case of finite Coxeter groups, that the stabilizer staby (¢gV) of any point gV € Hy acts on
Hj as an orthogonal group. Also notice that since card (S) > 1 and the coefficients A\s > 0 in
the expression of vy in (2.9.1) in terms of the basis (es)ses of E, vy does not lie in the linear
span of any of the e, (s € S) and thus EYY # Z, forcing Hy N Zs # 0. Such intersection is
an affine hyperplane Hy s in Hy that is fixed pointwise by s, and since s acts as a reflection, it
acts, in particular, as an orthogonal reflection relative to Hy . This gives a realization of W as
a subgroup of GL(Hj) generated by affine reflections.

Example 2.9.3. (Type Kz) If (W, S) is of type Kg, then W admits a presentation of the form

W = <51,82,33 | s% = 53 = 5% = (5152)3 = (5253)3 = (8183)3 = 1>.
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In particular, all the elements of S are conjugate in W as
81 = 8981828189 = (8281)82(8281)71

S92 — 83898385283 = (8382)83(8352)_1

83 = 51853518381 — (8183)81(8183)_1.

The basis elements e, , €5, and eg, are linearly independent (see Figure 2.6a), but the bilinear
form is such that the three hyperplanes Z, , Zs, and Z, intersect in a common line in E spanned
by the vector (1,1,1) € E. Thus the corresponding elements in the dual space lie on a plane,
giving a tiling of equilateral triangles (see Figure 2.6b). We call such triangles alcoves to distin-
guish these from the chambers of the action of W in EY. In particular, the fundamental alcove
is Hy N Ao (see Figure 2.6b).

e AV VAN V AR V AR V /
S1 (& |
A
—Csy €s3
—C€sg 52
Y
—es,
(a) Basis ey, e5,, €5, of E corresponding to (b) Tiling of the plane and fundamental
positive roots, and their negatives. chamber H, N A, shaded in gray

Figure 2.6: Geometric presentation of (W, .S) of affine type As

We now look at the orbit of the facets of HyN A, under the orthogonal reflections. The orbits for
each particular facet is given in Figure 2.7, and the complete set of orbits in the set of codimension
1 facets of alcoves is given in Figure 2.8. Notice that there is a nice correspondence between the

A NDERUY 4 NN A Y A NJENRYA \UEUYA Y AW ) \UENEUYANDENEY AN W
(a) Orbit of the blue facet (b) Orbit of the red facet (c) Orbit of the green facet

Figure 2.7: Orbits of facets of the alcove Hy N A, under the action of W

geometry of the triangulated plane and the decompositions of the elements of W as products of
the generators in S. We can get from the fundamental alcove to any other alcove by a series of
crossings of walls of alcoves. The same is true for any two random alcoves. Since the orbits of
the facets of the fundamental alcove has assigned a fixed type, represented by one of the colours
red, blue or green in Figure 2.8, to each of the walls of the alcoves, any sequence of wall crosses
corresponds to a sequence of elements of S. Therefore to such a sequence of wall crosses starting
from the fundamental alcove, say s = (x1,...,2,) where x1,...,2, € S, one may associate the
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element w = x1 - --x, € W. Such a decomposition is said to be reduced if r is minimal, in which
case 7 = {(w). In fact, the minimal sequences of wall crosses from the fundamental alcove to
any other alcove corresponds exactly to reduced decompositions of w € W. Therefore, for any
w € W with reduced expression w = x,---x1, the alcove wflo, where flo := Hg N A, is the
alcove of the unique sequence of wall crosses from A, and of type (z1,...,2,). Various example
for elements of smaller length in (W, S) are given in Figure 2.8, where we have indicated on each
alcove the element w = x, ...z corresponding to the sequence of wall crosses s = (z1,...,x,).

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

ST
AR

Figure 2.8: Orbits of the facets of flo = HyN A, where each orbit corresponds to
one of the colours red blue or green, and some elements of w = z, ... 21
corresponding to sequences of wall crosses (z1,...,%,).

Remark 2.9.3. Notice that we have found all three possible kinds of tame irreducible Coxeter
groups that are finitely-generated:

1. Finite and integral, called Weyl groups.
2. Finite and non-integral.
3. Infinite and automatically integral, called affine Weyl groups.

Remark 2.9.4. We are still left to consider the case when By is non-degenerate but not positive
definite, allowing us to identify E with its dual EV.

Definition 2.9.3. The Coxeter system (W, .S) is called hyperbolic if the symmetric bilinear form
Bwm has signature (n — 1,n) and By(z,2z) < 0 for all x € C,, where C, is the fundamental
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chamber
Co ={z € E|Bum(z,e5) >0 forall s € S}.

Remark 2.9.5. Note that Byi(z,z) <0 for all z € (070 and recall that the closure C, (weW)is
a fundamental domain for the action of W on the union of all chambers w(C,). The following
allows us to identify hyperbolic Coxeter systems via the bilinear form By and certain subgraphs
of Cox(W,5).

Proposition 2.9.1. The irreducible Cozeter system (W, S) is hyperbolic if and only if the fol-
lowing conditions hold:

(a) The bilinear form By is non-degenerate but not positive definite.

(b) For each s € S, the subgraph of Cox(W,S) obtained by removing s from Cox(W,S) is of

positive type, i.e., tame.

Proof. See |21], Chapter 6, Proposition 6.8. O

2.10 The Bruhat order

Having focused on algebraic and geometric aspects of Coxeter systems for the last few sections, we
now focus on a certain partial order structure on (W, .S) with deep combinatorial and geometric
properties. In this section we mainly focus on the combinatorial properties and in certain results
that are crucial for the coming sections. The aim is to partially order W in a way compatible
with the length function [ : W — N. For this, we use the Bruhat ordering, which define in raw
terms at the start of the discussion and work towards a characterization in terms of reduced
expressions, which then allows us to prove several properties of the ordering and answer some
natural questions about it. We finish by considering the case of dihedral groups. The main
references for this section are [4] and [21].

Definition 2.10.1. Let T be the set of reflections of W defined in (2.3.1). For any w,v in W,
write v — w if w = vt for some ¢ in T with ¢(w) > ¢(v). Then define v < w if there is a sequence
v=wy — wy — = wg =w. If {(v) <L w) and v"w =: ¢ belongs to T, we will write v L w.
Proposition 2.10.1. The relation “ <7 resulting from Definition 2.10.1 is a partial ordering of

W with the identity element 1 of W as the unique minimal element. The partial ordering “ <7
of W is called the Bruhat ordering.

Proof. The relation “ <7 is reflexive since for any w in W, w = w and thus w < w.

Now, suppose that w and w’ are two elements of W such that v’ < w and w < w’. By
definition, there exist two sequences

w=wy—>w = —sw,=w and w=w)—>wy = - —w,=w.
In particular, we have that w;11 = w;t;+1 with ¢;41 in T and ¢(w;+1) > ¢(w;) for each integer i
with 0 < < ¢ — 1, and similarly, wj,; = wjt’ ; with ¢}, ; in T and £(w; ;) > ¢(w]) for each
integer j with 0 < ¢ < r — 1. But this implies that /(w) < ¢(w) and ¢(w) < £(w’). We hence
conclude that ¢(w) = £(w') and thus w = w’, proving that “ < ” is anti-symmetric.
Next, let w,w’ and w” be elements of W such that w” < w’ and w’ < w. By definition, there
exists two sequences

w"zwé—)w’l—%--—)w;:w’ and w =wg— w — - = w, = w.

Since w; = w' = wy and wy, = wopt; for some t; in T, we have that w; = wot; = w(’ltl. Moreover,
we have that £(w;) > £(w') = £(wy,). This shows that
W' =wy = wy =S wy = w o= W = w,
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and thus w” < w, proving that the relation “ <” is transitive.
Finally, it remains to show that 1 in W is the unique minimal element. First, 1 satisfies
1 < w for all w in W since any reduced decomposition (si,...,s,) of w induces the sequence
1 — 51— s1859 — 18283 — - -+ — §18283 * - §p = W.

By the anti-symmetry of “ < 7, it follows that 1 is the unique minimal element. O

Remark 2.10.1. Even though the definition has a one-sided appearance since we have defined
the arrow relation “ — ” by multiplying by ¢ on the right, it can also be replaced by a left-
sided version: say w = w't for some t € T with £(w) > £(w'). Setting ¢ := w'tw'™!, we get
w = w't = t'w’. Using this construction, we prove the following:

Proposition 2.10.2. (Exercise 5.9 in [21]) Let x,y € W. Then x < y if and only if =1 <y~ L.
Proof. First note that if w and v are two elements of W such that v — w, then, by definition,
we have that w = vt for some t in T with ¢(w) > £(v). Since t' := vtv~! belongs to T and is

thus of order 2, and w = t'v, we have that w™ = v™1¢' with ¢ (w™!) = f(w) > £(v) = £(v7!).

Hence, by definition of the relation “ — ”, we have that v=' — w™!. It thus follows that = < y

if and only if 27! < ¢y~ 1.

1 1 -1 -1

which shows that z71 < y~1. O

Remark 2.10.2. We now prove some results concerning how various elements of W are related in
the Bruhat ordering, that will become useful later.

Lemma 2.10.1. Let s € S and let w,w' € W be elements such that w' < w. Then either
w's < w or else w's < ws (or both).

Proof. Note that the claim clearly holds if w’ = w. So assume this is not the case. Since w’ < w,
there exists, by definition of “ <7, reflections t1,...,t, € T such that

/ t1 t2 t3 tg—1 tq
W =Wy — W1 —> W2 —> " —> Wg—1 — Wg =W

with
L(w') = l(wp) < U(wr) < l(wa) < -+ < Lwg—1) < L(wy) = L(w).

In particular, we have that
w' =wy <w; Sw, =w and L(w') = L(wp) < £(wr) < £(wg) = L(w).
So assume that the lemma holds for the pair w’ = wy < wy, that is either
wos < wy, or wes < wys (or both). (2.10.1)
If the second relation in (2.10.1) holds, then
weS K WS S Wy =w Oor wps < wys < wgs = ws,
so the claim in the lemma holds. If the the first relation in (2.10.1) holds, then

wps < wy < wy = w,

so the claim in the lemma holds too. We are thus reduced to proving that the the lemma holds

in the case when w' % w and l(w') < l(w). Now, if t = s, then w’'s = w and there us nothing
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to prove. So suppose that ¢t # s. Note that we have two possibilities: either ¢(w's) = ¢(w') — 1,
or L(w's) = L(w') + 1.

If ¢(w's) = £(w')—1, then w's — w’ — w forces w's < w. If on the contrary £(w's) = £(w')+1,
then using the technique in Remark 2.10.1, we obtain that w's - ¢ = ws, where t’ := sts € T,
so it suffices to show that ¢(w's) < ¢(ws). So suppose, for a contradiction, that this is not the
case. Then, for any reduced expression w’ = sq---s, of w', the expression w's = s1---5,.5 is
reduced for w’s. Then ws = w’s-t' is obtained from w’s by eliminating one factor in this reduced
expression. But note that such factor cannot be s, as s # t. Thus

WS = 81+ 8_18i4+1--- S5 for some i € N with 1 <1 <r,

which gives £(w) < £(w’), which contradicts the hypothesis ¢(w’) < ¢(w). The proof is now
complete. ]

Remark 2.10.3. Recall from (a) in Theorem 2.5.1 that if X C S, then (W, X) is a Coxeter
system, and so it has a Bruhat ordering of its own. A natural question to ask is thus whether
the Bruhat ordering of (Wx, X) agrees or not with the restriction of the Bruhat ordering of W
to Wx. In order to answer this question, we describe a useful characterization of the Bruhat
ordering of a Coxeter system (W, .S) in terms of reduced expressions.

Definition 2.10.2. Let w be an element of W. A subexpression of a given reduced expression
w = s1--- 8 for wis a product of the form s;, ---s;, with 1 <y <ip <--- <y <.

Remark 2.10.4. Note that the product s;, - - - s;, in the Definition 2.10.2 is not necessarily reduced
and may be empty.

Theorem 2.10.1. Let w = s1--- 8, be a fized, but arbitrary, reduced expression of w € W. Then
w' < w if and only if w' € W can be obtained as a subexpression of this reduced expression.

Proof. First suppose that v’ < w. If w’ = w, then w’ = s1---s,, so w’ can be trivially obtained
as a subexpression of the given reduced expression of w. If w’ < w, lets start by considering the
case w' — w, so that £(w') < {(w) and there exists ¢ € T such that w = w't. Let n(w;t) denote

the equal value (—1)"") for all sequences s’ = (s},..., s.) such that w = s’ - - - s/, as introduced

) O
in Section 2.3. We claim that n(w=';¢t) = —1. Indeed, if n(w~';t) = 1, then, using equation
(2.3.5) and the fact that U,, = Uy for every sequence s = (s1,..., ;) such that w = s.--- s, we

obtain, for ¢ in {1, -1},
Uwi(e,t) = UpUs(e, t) = Up(—¢,ty) = (—en(w™;t), wtw™) = (—, wtw™?),

which implies that 7 ((wt)_l;t) = —1. Then, if 8" = (s],...,s;) is a sequence of elements such

that wt = ¢} - sfl is a reduced expression for wt, there exists, by Lemma 2.3.3, an integer ¢ € Z
such that 1 <i<gandt=s}---s}_;sis,_;---s}. Hence

U(w) = Lw™") =€ (Hw') ™) = Usi - si_ysi41 - 5) < q) < L(wt),

which contradicts the fact that ¢(wt) = ¢(w") < (w). This establishes the desired claim. Now,
since n(w™1;t) = —1 and w = s1 -+ s, is a reduced expression of w, we know, by Lemma 2.3.3,
that there exists an integer k such that 1 < k < r such that ¢t = s, - - Sp4+15kSk+1 - - - Sr, and thus

/
w :wt:sl"'STST"'SIC+18]€S’€+1"'ST‘:81“'Sk718k‘+1”'87"

Tterating this process we see that if w” is some other element of W with w” s w’, by the same
argument as above, we obtain

W — it — 81" 8k—15k+1"""Sp—1Sp+1 """ Sr fl1<k<p<r
81" Sp—1Sp4+1 " Sk—15k+1" " Sr fl<p<k<r
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We therefore see that if w’ < w with

/ 1 t2 tg—1 lq
W =Wy —> Wy —> " — Wg—1 — Wqg = W,
iterating the above process, gives an expression for w’ that is a subexpression of sy - - - s, with ¢
deleted letters.

Conversely, suppose that w’ is obtained as a subexpression s;, - - - i With 1 <4y < -+ <idg <7
of the given reduced expression si---s, of w. To show that we must hence have v’ < w, we
use induction on the length (w) = r of w, the case r = 0 being trivial. If i; < r, then s;, --- 54,
is a subexpression of the reduced expression s; ---s,_1, whose length is length than r. By the
induction hypothesis,

Siy tctSig S St Sp—1 = WSy < W.

If ig = r, then s;, - -+ s;,_, is a subexpression of the reduced expression sy - - - s,—1, whose length
is length than r. By the induction hypothesis,

Siy iy < St Sp—1,
to which we can apply Lemma 2.10.1 to obtain either

Siytt Sig 1 Sig K Sq v Sp—1 <w, Or else s, - Sig_1Sig < Sy Sp—1Sp = W.
In both cases we have w’ < w, completing the proof of the theorem. O

Remark 2.10.5. Notice that the characterization in Theorem 2.10.1 in terms of subexpressions of
the Bruhat ordering of a Coxeter system (W, S) answers the question about the Bruhat ordering
of (Wx,X) with X C S posed in Remark 2.10.3.

Corollary 2.10.1. If X C S, the Bruhat ordering of W agrees on Wx with the Bruhat ordering
of the Coxeter system (Wx, X).

Lemma 2.10.2. Let s € S, w € W be such that sw < w. Suppose x € W with x < w.
(a) If sz < z, then sz < sw.
(b) If x < sx, then sz < w and z < sw.

Thus, in either case, sx < w.

Proof. First of all, by the Exchange condition, sw < w implies that there exists some reduced
expression w = s1 - -+ S, of w with s; = s. Now, since x < w, we know, by Theorem 2.10.1, that
x is a subexpression of w, so either x is a subexpression of the reduced expression sw = s - - - s,
or there is some reduced expression of z that is also a subexpression of w = s1---s, starting
with s, in which case sz occurs as a subexpression of the reduced expression sw = so - - - s,., and
thus sz < sw. In either case, (a) follows. Similarly, in either case, (a) follows too. (a) O

Remark 2.10.6. Now, notice that when v — w, the precise length difference between w and v
is not given, and it is not clear at first, what this should be. Since any ¢ € T is of the form
t = usu~! for some u € W and some s € S, we see that the length of ¢+ must be odd. But
without further study, predicting what the length difference between adjacent elements in the
Bruhat ordering is seems far from reach. In order to answer this question, we need to prove the
following.

Lemma 2.10.3. Let w',w € W such that w' < w and {(w) = £(w') + 1. If there exists s € S
such that w' < w's and ws' # w, then both w < ws and w's < ws.
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Proof. If w',w € W are as in the statement of the lemma and there exists s € S such that
w' < w's and ws’ # w, then, by Lemma 2.10.2, we either have w’s < w or w's < ws (or both).
But notice that the first relation is not possible since by assumption we have ¢(w) = ¢(w') + 1
and f(w'") = £(w's) — 1, and thus £(w) = ¢(w's). Since w # w’, we must have that w’'s < ws, and
thus ¢(w) = £(w's) < l(ws), forcing w < ws. O

Proposition 2.10.3. Let w',w € W such that w' < w. Then there exists wo,wi, ..., w, € W
such that w' = wy < wy < -+ < wy, = w and £(w;) = L(w;—1) + 1 for each integer i with 1 < n.

Proof. The proof is done by induction on £(w)+£(w’), and makes use of the Exchange condition as
well as the characterization in Theorem 2.10.1 of the Bruhat ordering in term of subexpressions.
As usual, two cases must be considered: the case when w’ < w's and the case when w's < w'.
For a complete proof see [21], Chapter 5, Proposition 5.11. O

Remark 2.10.7. Note that Proposition 2.10.3 tells us that any two adjacent elements in the
Bruhat ordering must differ in length by exactly 1.

Example 2.10.1. (Dihedral D,,) Let W be a dihedral group, finite or infinite, with S = {s, s’}
where 5,5’ € W, and let z,w € W be arbitrary elements. We show that x < w if and only if
l(x) < l(w). First, if z < w, then by definition of “ < ”, the inequality ¢(z) < ¢(w) follows.
Conversely, suppose that x,w € W are such that {(w) — {(x) = n > 1. We show, by induction
on {(w) — f(x) that < w. First recall that every element of W is either of the form

prod(r;s,s’) =---s'ss’ or prod(r;s’,s)=---ss's,
where the products consist of r terms, where r for any integer r < mgy € Z U {0}, so we may
assume, without loss of generality that w = prod(r; s, s’). Now, if £(w) — ¢(x) = 1, we have two
possibilities: either x = prod(r — 1; ', s) or x = prod(r — 1; s, s’). In the first case we have

xs’ = prod(r — 1;5',5) - s’ = prod(r; s, s’) = w,

which shows, since S C T, that z < w, and thus < w. In the second case, we must distinguish
between the case when r is even and the case when r is odd. When r is even, we have

w™ = prod(r;s,s') "t = prod(r;s’,s) and x!=prod(r —1;s,5') 7! = prod(r — 1;s, 5),

so we see that
1

z7 s =prod(r — 1;s,5") - s = prod(r; s’, s) = w™ !,
which shows that z=' 2 w™!, and thus 2~! < w~!. By Proposition 2.10.2, it follows that z < w.
On the other hand, when r is odd, we have

w™t = prod(r; s, s') "t = prod(r; s, ') and x 7! =prod(r —1;s,5') 7! = prod(r — 1; ¢, 5),

so we see that

7 1s' = prod(r — 1;s,5') - s’ = prod(r; s,s') = w™?,

which shows that 2=! 25 w1, and thus z—! < w~!. By Proposition 2.10.2 again, it follows that

x < w. This completes the proof.
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3 Iwahori-Hecke Algebras

Throughout this section, let (W, .S) be a Coxeter system.

3.1 Generic algebras

We start by constructing general associative algebras over a commutative ring R with unity.
These will have a free R-basis parametrized by the elements of S with a multiplication law
which reflects in a particular way the multiplication in W, and will depend on some parameters
as,bs € R where s runs through S, subject only to the requirement that a; = ay and by = by
whenever s and s’ are conjugate in W. We proceed following the steps in Exercise 23 in Chapter
IV of [5]. The starting point is a free R-module £ on the set W, and we let (&y,)wew be its
canonical basis elements.

Theorem 3.1.1. Suppose we are given, for all s € S, two elements ag,bs € R such that as = ag
and bs = by whenever s and s' are conjugate in W. There exists a unique structure of associative
R-algebra on the free R-module £, with €1 acting as the identity, such that, for oll s € S and all
wew

(3.1.1)

{esw if (sw) > (w)
Es€pw =
as€y + bs€sw  if L(sw) < L(w).

Definition 3.1.1. The algebra described in Theorem 3.1.1 is called a generic algebra, and is
denoted by Eg(as, bs).

Remark 3.1.1. Before proving the theorem, we give some consequences of it. First, one may ask
about the existence of a ‘right-hand’ version of (3.1.1). The following gives this.

Corollary 3.1.1. The following conditions holds for all s in s and w in W:

{ews if L(ws) > (w)
EwEs =

As€qyy + bssws ’Lf E(ws> < g(w) (312)

Proof. Let s € S and w € W be arbitrary. We proceed by induction on ¢(w). If £(ws) > ¢(w),
we may find some s’ € S such that ¢(s'w) < ¢(w). Then we have

((sw) +1=Ll(w) =Ll(ws) — 1,

which gives £(s'ws) > ¢(s'w), and thus, by induction
Es'wEs = Egws- (3.1.3)
But by the first relation in (3.1.1),
€5/ €5l = Es/s'w = Ew;
and thus, multiplying both sides by €5 and using (3.1.3) yields
EwEs = Eg/Eg/€s = Eg/Egps = Ews-
If on the contrary ¢(ws) < £(w), the first relation in (3.1.2) just proved gives
Ews€s = Ewss = Ew-

Multiplying both sides and using the second relation in (3.1.1) to compute &2, we obtain

Ewls = Ews€ss = Sws(asss + b3£1) = Qs€qys€s + bssws = Qs€qy + bsaws-
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Remark 3.1.2. Tt is also handy to express the relations in (4.1.3) in a way that will become handy
later.

Corollary 3.1.2. The following set of relations is equivalent to (3.1.1):

€s€w = €sw  if L(sw) > L(w) (3.1.4)
e2 = ases + boey (3.1.5)

Proof. Suppose that both relations in (3.1.1) hold. The first condition is the same as (3.1.4).
Moreover, using the second relation in (3.1.1), we obtain

2
€5 = as€s + bs€ss = as€s + bsey.

Conversely, suppose that the R-algebra structure on £ satisfies the relations (3.1.4) and (3.1.5).
Since (3.1.4) is exactly the same as the first relation in (3.1.1), we only need to check the second
relation in (3.1.1), which applies to the case when ¢(sw) < ¢(w). Note that we have

L(ssw) = L(w) > L(sw),
so by (3.1.4), we obtain

Es€sw = Essw = Ew-

Then, by (3.1.5), we get
Es€w = Egssw = (asas + bsal)ssw = Gs€ssw + VsEsw = AsEw + DsEsw,

as required. O

Remark 3.1.3. In order to prove the existence part of Theorem 3.1.1, we need to somehow
introduce into the R-module £ the additional structure required. It is not clear how to this
directly, but if £ does have an algebra structure, the left multiplication operators corresponding
to elements of £ will generate an isomorphic copy of such algebra inside the algebra End £ of all
R-module endomorphisms of £ of which we can exploit its ring structure. Therefore, our aim
is to locate the correct subalgebra of End€ by choosing suitable left multiplication operators
As, corresponding to the elements e, with s € S, that behave according to the relations in
(3.1.1). Similarly, given the symmetric relations in (3.1.2), we should also be able to give right
multiplication operators p;, corresponding to the elements ¢, with s € S, that behave according
to such relations.

Proof of Theorem 3.1.1. First, taking account the discussion in Remark 3.1.3, we define, for
each s € S, the left and right endomorphisms As and ps, respectively, by their action of the basis
(€w)wew, which can then be extended by linearity to the whole of €. To agree with the relations
in (3.1.1), the left and right multiplication operators A\s and ps corresponding to the element ¢
for s € S, must be given by

e if £(sw) > L(w)
)\S(Ew) - {asﬁw + bsﬁsw if e(SU}) < E(w)7 (316)
and
e if £(ws) > £(w) 3.1.7
ps(iw) o As€w + DsEws if E(UJS) < g(w) ( N )

For now, assume that the operators A\s and py commute for every s,s’ € S, and let £ be the
subalgebra of End £ generated by (\s)ses, which is a ring with 1. Our next aim is transfer the
algebra structure of £ to £. For this, define a map
T:L=>E
A )\(81),

42



that is, T maps 1z to €1 and As to A\s(e1) = €5 for each s in S, and the map is well-defined.
Moreover, since any element of £ is an endomorphism of the free module £, we have that for any
p1,p2 € R and any Ay, Ay € L,

T (p1 A1+ p2A2) = (piA1 +p2A2) (€1) = p1Ai(er) + p2Aa(er)

which shows that T : £ — £ is an R-module map. Also note that for any free basis element ¢,
of & with win W, if w=s;...,s, is a reduced expression of w, then

0(s1-+-8i—1) < L(s1---8;—18;) for each integer ¢ with 2 <i <,
and thus, by the definition of As for s in S in (3.1.6), we have
T (Asy - As) = Asy oo As,(€1) = Asp - As, 1 (€6,) =+ = Egpsps, = Eu

This shows that ¢, lies in the image Y(£) of Y. Since e, is an arbitrary free basis element of
&, it follows that T : £ — £ is a surjective R-module map. Now, let A € £ be such that A lies
in the kernel ker Y of the map Y : £ — €. Then A(e;) = 0, and we show, by induction on the
length ¢(w) of w in W, that A(ey) = 0 for all w in W, which then implies that A is the zero
map. If {(w) = 1, then w = s for some s in S and ¢(ws) < ¢(w). Therefore, by (3.1.7), we have
that ps(e1) = €5 and so

A(es) = A (pale1) = Apy(e1). (3.1.8)
Since by assumption ps; commutes with the generators Ay with s in S of the subalgebra £ of &,
it commutes, in particular, with A, so (3.1.8) becomes

A(es) = paA(er) = ps(0) = 0.

So assume that A(e,s) = 0 for all w in W such that ¢(w) > ¢(w’) > 1, and choose s € S such
that ¢(ws) < f(w) = €(wss). Then, by (3.1.7), we have that ps(ews) = €, and so

Aew) = A (ps(Ews)) = Aps(Ews). (3.1.9)

Again by the commutativity of ps and A, equation (3.1.8) becomes
Aew) = psA(ews) = ps(0) =0,

where the second to last equality follows by the induction hypothesis as ¢(ws) < ¢(w), and the
induction is complete. We hence have that A is the zero endomorphism, and the injectivity of
T: L — & follows.

Now, in order to conclude that T : £L — £ is indeed an R-module isomorphism, we still need
to prove our assumption that the operators \s; and py commute for every s, s’ € S, and in order
to do this, we will compare, for any s,s’ € S and any w € W, the actions of Aspy and psAy on
€w. Since multiplying by s and s’ changes the length by 1, note that it is not possible for the
length of the four elements w, sw, ws’ and sws’ to be equal. In particular, we have the following
possibilities:

l(sw) < l(w) < l(ws'); (3.1.10)
{(sw) = l(ws") < L(w); (3.1.11)
{(sw) = l(ws") > L(w); (3.1.12)
{(sw) > l(w) > L(ws) (3.1.13)
Now, the cases in (3.1.10) and in (3.1.13) both force ¢(w) = ¢(sws’). In the case in (3.1.11)

we have two possibilities: either forces ¢(sws’) < ¢(sw) or {(sws’) = ¢(w). Similarly, in the
the case in (3.1.12), we have two possibilities: either forces £(sws’) > £(sw) or £(sws’) = £(w).
We therefore have six different possibilities for the relative lengths of w, sw, ws” and sws’. We
consider each of them individually, using the definitions of the operators As and py in (3.1.6)
and (3.1.7), respectively.
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(1)

(2)

(3)

(4)

()

L(sw) < b(w) = L(sws") < L(ws).

In this case we have
)\sps’(ew) = /\S(Ews’) = Qg€qs! + bsesws’ = Pg’ (assw + bsssw) = ps’)\s(sw)-

l(ws') < l(w) = L(sws’) < L(sw).

In this case we have
Asps (Ew) = As(as € + by €us) = QsEsws + bsEsuws = Pst (Esw) = P As(Ew).
l(w) < l(ws') = L(sw) < L(sws’). In this case we have
Asps (Ew) = As(Ews') = Esws = Ps(Esw) = porAs(€w)-
l(w) = L(sws") < l(sw) = L(ws’). In this case we have
Asps (Ew) = As(Ews') = AsEws + bsEous, (3.1.14)

and
Ps’/\s(gw) = psl(Esw) = Qg Esy + g/ Egus’ - (3.1.15)

Note that since £(w) = £(sws’) < £(sw), the Exchange condition applied to the pair sw, s’
implies that there exists some integer i such that 1 <1i < ¢(sw) =r + 1 and

Sit1-" 88 = 8;8i41- "5 (3.1.16)
for any reduced expression sw = ssp - - - s, of sw or
S1-- 8.8 =851 5p. (3.1.17)
But the case in (3.1.16) is not possible since this would imply
wt=s-5w-5 =581 818418 =81 Si_18i41 ST,

which contradicts the hypothesis ¢(w) < ¢(ws’). Therefore (3.1.17) must hold and we
have sw = ws’' and, moreover, as = ay and by = by. This together with the equalities
(3.1.14) and (3.1.15) gives Aspss = pg'As.

Usws') < l(ws') = L(sw) < L(w).
In this case we have

)\sps’(ﬁw) = As(as’sw + bs’sws’) = AsQs/ € + bsUsr €51y + Ashg Epgr + bsbgr€sups
and

ps’)\s(sw) = )\s(asew + bsesw) = Qg Qs€Eqyy + bs’asgws’ + as’bsgsw + bs’bsgsws’v
so we see that indeed Aspy = pgrAs.
U(ws'") = L(sw) < l(sws") = L(w).
In this case we have

Asps’<5w) = )\s(as’ew + bs’ews’) = AsQs € T DsQsr €5y + by Egps! (3118)

and
Ps'As(Ew) = Psr(As€y + bs€sry) = A€y + by AsErysr + DsEgppsr- (3.1.19)

Since {(sw) < ¢(w) = {(ssw), the same argument as in Case (4) with sw in place of w
gives w = ssw = sws’ and, moreover, a; = ay and by = by. This together with the
equalities (3.1.18) and (3.1.19) gives Aspsy = pg'As.
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Since Aspy = pgAs in all six possible cases and s, s” are arbitrary elements of S, the proof of the
commutativity of Ag and py is now complete.

Now, as we have shown that T : £ — £ is an R-module ismorphism, it follows that (Ay)wew
is a free basis of £, where
Aw 1= Agy - Asys

for any reduced expression w = s1 ---s,. Note that the endomorphism A is independent of the
choice of reduced expression of w, and A; denotes the endomorphism of £ that is the identity on
E. Moreover, T : L — & transfers the algebra structure of £ to £, so to complete the existence
part of the proof of the theorem, it only remains for us to prove that such structure satisfies
the relations in (3.1.1). Given the set of equivalent relations (3.1.4) and (3.1.5), we will actually
show that these are satisfied.

So suppose that s € S and w € W are such that ¢(sw) > ¢(w), and let w = s1---s, be any
reduced expression of w. Given the assumption on the lengths, ss;1 - - - s, is a reduced expression
of sw. Hence, by definition of A4, and A, we obtain

)\sw = )\s)\sl e Asr = )\8)\11]7

which verifies the relation in (3.1.4). To verify the remaining relation, we study how each side
of (3.1.5) acts on some arbitrary free basis element ¢,, of £. If (sw) > ¢(w), we have

M (ew) = As(Esw) = GsEsw + bsew = ashs(€w) + bsA1(ew) = (ashs + bsA1)(Ew).
If on the contrary, {(sw) < ¢(w), we have
M2 (ew) = As(as€w + bsEsw) = ashs(w) + bsew = ashs(ew) + bsA1(€w) = (ashs + bsA1)(ew),
which completes the verification of the relation in (3.1.4), and the existence part of the proof is

now complete.

Now, if we iterate the first relation in (3.1.1), we see that €,, = €5, - - - €5, whenever w = s1--- s,
is a reduced expression of w, which shows that {1} U (e5)ses generates £ as an R-algebra. As a
consequence, iteration of the relations in (3.1.1) yields the complete multiplication table for the
free basis elements €,, of £ and the uniqueness of the algebra structure follows. O

Example 3.1.1. Let R be any commutative ring with unity. Then group algebra R[W] is a
generic algebra. It corresponds to the generic algebra Eg(0,1), that is, a; = 0 and bs = 1 for all
seS.

Definition 3.1.2. Let b be the R-module automorphims of £ defined
b: &= &

(3.1.20)
Ew = &1,

and extended linearly.

Proposition 3.1.1. (Exercise 1 in 7.3 of [21]) The R-module automorphism of £ described in
(3.1.20) is an anti-automorphism of any generic algebra Eg(as,bs) based on E.

Proof. We have to show that, for any free basis elements ¢, €, € £ of £, we have
b(ewen) = b(ey) - b(ew). (3.1.21)

We show this by induction on ¢(w) + £(v).

If {(w) + ¢(v) =0, then w =v =1, and (3.1.21) trivially holds. If £(w) + ¢(v) = 1, then one
of w or v must be an element s of S and the other must be 1. If w = s and v = 1, then

b(eser) =b(es) = €5 = €165 =b(e1) - b(es),
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and if w =1 and v = s, then
b(eres) =b(es) = €5 = €561 = b(es) - €1,

which shows that (3.1.21) holds in this case. If {(w) + ¢(v) = 2, then either one of w or v is the
identity and the other is of length 2 or w = s and w = s’ for some elements s and s’ of S. In
the first case (3.1.21) clearly holds since we are multiplying either on the left or on the right by
the identity. So suppose we are on the second case. If £(ss’) > £(s'), then by the first relation in
(3.1.1), we have that

b(eses) = b(€ss) = €55 = €565 = b(€g) - D(e€s).
If ¢(ss") < £(s), then by the second relation in (3.1.1), we have that, we have that
b(eses) = b(ases + bsessr) = asey + bsegs = €565 = b(es) - b(es),

which shows that (3.1.21) holds in the case £(w) + ¢(v) = 2.

Now, let w =s1---s, and v =} - s; be reduced expressions for w and v respectively with
r 4 ¢q > 2, and assume that (3.1.21) holds for any x,y € W such that ¢(z) + {(y) < £(w) + £(v).
Again, since the case when one of w or v is the identity and the other is of length strictly greater
than two (3.1.21) clearly holds since we are multiplying either on the left or on the right by the
identity, we assume that ¢(w) > 1 and ¢(v) > 1. By (2.2.1) of Proposition 2.2.1, the length of the
product wv is at most r + ¢, and so we may distinguish between two cases: either {(wv) =r+¢q
or {(wv) < r+q.

/

q 1s a reduced expression of wv, so, iterating the

Ifﬁ(wv) =r+gq, then wv :51...5r5’1...8
first relation in (3.1.1), we see that

Cuwv = Esyospsynsl = Es1osp sl = Ewlo,

and thus
b(ewen) = P(Ewn) = €)1 = Ep-1p-1 = b(&y) - D(€w)-

On the other hand, if {(wv) < r + ¢, write w = us, where u := s1---s,_1. Since £(us,) > {(u),
the second relation in (3.1.2) gives ew = gy ¢€5,. Now, if £(s,v) < £(v), then by the second relation
in (3.1.1), we have that

€5, €0 = Us,. &y + b5, €50,

and thus
b(ewer) = b(as, euey + bs, Eu€sn) = as,b(€y€y) + bs iNV(Ey€s.4)- (3.1.22)

Then, by the induction hypothesis, since
lu) +£4(v) < l(w)+L(v) and L(u)+ L(spv) < L(w) + £(v),
the equation in (3.1.22) becomes
D(Ewen) = s, Ey—1€y—1 + by €—15 €1 = (Ag, €—1 + bg €14 )Ey-1. (3.1.23)

But
(v ts,) = L(sv) < L(v) = (v 1),

so by the second relation in (3.1.2), we have
Ey-18€s, = Qg Ey-1 + by €15,
and thus (3.1.23) becomes

D(ewen) = €y-184,Ey—1 = Ey—1€5 -1 = D(&y) - D(Ew),
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as required. On the other hand, if ¢(s,v) > ¢(v), then, since {(wv) < ¢(w) + £(v), there exists
some integer j € Z such that 1 <j7<r—1

Usjp1---sv)=r—(j+1)+q and £(sjsjy1---5:0) < L(Sjy1---5rv),
and thus, by the relations in (3.1.1) and (3.1.2), we have
EwEy = E€syos;_1 €5, €sj 150 €0 = Esyonnsj_1 €55 €55 41800 = € (A€ot + s €500,
v =sj41---s.v and ' = s1---s;_1, and thus
b(ewey) = as;h(ewey) + bs,D(ewsjor)- (3.1.24)
Then, by the induction hypothesis, since
L)+ (sjv) < (W) + L) =j—14+r—(G+1) +qg=r+q—2<Ll(lw)+{(v),

the equality in (3.1.24) becomes

D(Ewey) = as;E—1€y—1 + bssj Eyr—1g;€y—1 = (@s; €1 + bssj Evr—1g;) €1 (3.1.25)

But
f(v/_lsj) = {(s;0") < (V) = ('Y,

so by the second relation in (3.1.2), we have
Qs Eyr—1 bssj Ey—lg; = Ey-18s;,
and thus, (3.1.25) becomes
b(ewey) = Ep-185,8p-1 = €u—1spmms g €55 Es1omsy 1 = Ep—1E€ssj iy €58 1onsy = b(ey) - b(ew),
an the proof is now complete. O

Proposition 3.1.2. The family of generators (e5)scs and the relations

a? = as€s + bsey forse S
(eses)™ = (eg€s)™ for s,s' € S such that ss' is finite of order 2m

(eses)Mes = (egres) ey for s, s €S such that ss' is finite of order 2m + 1

form a presentation of the generic algebra Eg(as,bs).

3.2 Iwahori-Hecke algebras

Let & .= 7Z [ql/Z,q_lﬂ] denote the ring of Laurent polynomials in the indeterminate ¢'/2. In

this section we will define an algebra H, called the [wahori-Hecke algebra of (W, S). Our first
aim is to show that H is a free o/-module with a canonical basis indexed by the elements w € W
using the results in Section 3.1. In particular, we will use the generic algebra £.(q — 1,¢q) of
Theorem 3.1.1 with R = & and parameters a; = ¢ — 1 and by = g for any s € S. Note that in
this case, the values of as are the same for all s € S, and the same is true for the values of bs.

Definition 3.2.1. Let H be the o/-algebra defined by the generators Ts (s € S) and the relations

(Ts+1)(Ts—q)=0 forsesS (3.2.1)
prod(myg; Ts, Tyr) = prod(myg; Ty, Ts) for any (s,s’) € Sp with s # . (3.2.2)

For w in W, define T;, € ‘H by

Ty =T, - T, (3.2.3)

T

where w = s - s, is a reduced expression of w.
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Proposition 3.2.1. For each w € W, the element T,, € H given in (3.2.3) is well-defined and
independent of the choice of reduced expression. In particular, we have Ty = 1y4.

Proof. Consider the set M given by
M :={T ---T;, | s1,...,s €S for some integer r > 0},

which is a monoid with operation given by multiplication, and let ¢ be the map from S to M
defined by

v:S—>M
s+ Ts.

By the relation in (3.2.2), we have that for any s,s’ € S, the map ¢ : S — M satisfies
prOd (mss’; ¢(5)a Q;Z)(S/» = prOd (mss’; ¢(S/)7 1/}(8)) )
and thus, by Proposition 2.3.2, there exists a map zﬂ : W — M from W to M such that

1/;(7”) =(s1) - (sp) =T, - T,

for all w € W. Hence the element T, is well-defined and independent of the choice of reduced
expression of w. O

Proposition 3.2.2. For any s € S and w € W, we have

o {Tsw if U(sw) > 0(w)

(= 1)Tw+qTsw  if £(sw) < L(w). (3.2.4)

Proof. Take any s € S and any w € W, and let w = s1--- s, be a reduced expression of w with
s; € S. By Proposition 3.2.1,
Tw pu— Sl . e TS,,.'

If /(sw) > l(w), then sw = ss1---s, is a reduced expression os sw, and hence, again by
Proposition 3.2.1, we obtain

Tsw = Lggyes, — TsTsl e TST = TSTuM

which proves the first relation in (3.2.4). If on the contrary ¢(sw) < ¢(w), then we may assume
that our reduced expression of w is chosen so that s; = s. Then using the defining relations

(3.2.1) and (3.2.2) for H, we obtain
TTy=Ts,Ts, - Ts, = ((qg— 1)Ts, +qT1) Ts, -+ Ts,.. (3.2.5)

But sw = sg--- s, is a reduced expression of sw, and so, by Proposition 3.2.1, the equality in
(3.2.5) becomes
TsTw = (q - 1)Tw + quun

which proves the second relation in (3.2.4) and completes the proof. O
Proposition 3.2.3. The <7 -algebra H is generated by (Ty)wew as an <7 -module.

Proof. Let H' C H be the o/-submodule of H generated by (Ts),ecw. First, note that by the
relations (3.2.4) in Proposition 3.2.2, we see that TsT,, € H' for any s € S and any w € W,
which shows that the «7-submodule H' of H is stable under left multiplication by all the Ts such
that s € S, which shows that H’ is a left ideal in H. Moreover, the identity element 13y = T} of
‘H belongs to the collection (Ty)wew, and thus belongs to H’. Therefore, since we have shown
that 15y = T} € H' and H' is a left ideal in H, we conclude that H’ = H, and thus H is generated
by (Tw)wew as an &7-module. a
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Proposition 3.2.4. (Ty)wew is a </ -basis of H.

Proof. Take any -w € W. In the uniqueness part of the proof of Theorem 3.1.1, we showed that
Ew = €, -+ €5, Whenever w = s1--- 5, is a reduced expression of w. Moreover, by Proposition
3.1.2, £,(q — 1,q) has a presentation as an o/-algebra given by the generators (es)scs and the
relations

e2=(g—1Des+qe; forsesS (3.2.6)

prod(mgy; €5, €5) = prod(mgy; ey, €5) for any (s,s’) € Sp with s # s (3.2.7
Note that the relation in (3.2.6) can be rewritten as
(58 + 1)(58 - Q) =0.

We therefore see that there is a unique algebra homomorphism ¢ : H — &£ between the <7-
modules H and £ such that

p:H—>E
T1'—>£1
Ts — s,

and in particular, it maps T, + €&, for any w € W. Now, if ¢,, € & are such that ¢,, = 0 for all
but finitely many w € W and

> cwTy=0 (3.2.8)

weW

in H, then, applying the algebra homomorphism ¢ : H — £ on both sides of (3.2.8), gives

D cwtw =Y cwd(Tw) = $(0) = 0.

weW weW

But then, since £ is a free @/-module with canonical basis (& )wew, it follows, by the linear
independence of the &, (w € W), that ¢, = 0 for all w € W, and thus the T, are linearly
independent generators of the .«7-module #H, which shows that (T3,)wew is an o/-basis of H. [

3.3 Hecke algebras and the Bruhat ordering

From now on, H will be the Hecke algebra over &7 = Z[q~/2, ¢*/?] of Section 3.2, which is a free
o/-module with basis (Ty)wew and the multiplication is defined by (3.2.4), or equivalently, by

Ty = T it Llww’) = 0(w) + () (33.1)
(Ts+1)(Ts—q)=0 if s € S.

Also, let &/t :=7Z [ql/ 2]. In this section we consider the invertibility of the elements T, for
w € W. Once we have established the invertibility of such elements of H, our aim is to express
the inverse T, ! of the element T, for any w in W as a linear combination of the canonical basis
elements T, (x € W). In order to achieve this, we introduce a family of polynomials, called the
‘R-polynomials’ which enable us to express 75!, for any w € W, as a combination of those basis
elements T, such that x < w in the Bruhat ordering, described in Section 2.10. We then give
some basic properties of the R-polynomials. The main reference for this section is [21].

Proposition 3.3.1. For each s € S, the generator Ts € H is invertible, with inverse given by

T =¢ ' Ty — (1 - ¢ HTy. (3.3.3)

49



Proof. Note that
T(q ' Ts—(1—q¢ ) =¢ 'T2 = (1 - ¢ )T (3.3.4)

Hence, substituting into (3.3.4) the value of T? given by the defining relation (3.2.1) of H, yields
T 'To— (=g D) =q (= DT +q ¢l — (1 - ¢ W =T,
which proves the proposition. O

Corollary 3.3.1. For each w € W, the basis element Ty, of H is invertible, with inverse given

by
T, =1, T, (3.3.5)

whenever w = 81+ -+ Sy 18 a reduced expression of w.

Proof. Let w = s1---s, be any reduced expression of w. By Proposition 3.2.1,
T =T, - T,

and so, by Proposition 3.3.1, we see that

TwTszl"'T;ll =T, ---T. Tt =1,

Sr—Sp S1

and the proof is complete. O

Remark 3.3.1. As f(w) increases, it becomes increasingly difficult to compute the inverse explic-
itly as a linear combination of the canonical basis (T)wew of H. To ease the notation, we define
£w = (1)) and ¢, := ¢“™) and we write F instead of F(q) whenever F(q) is a polynomial
in Z[q] or a polynomial in .

Proposition 3.3.2. For allw e W,

Sl = ewqyt S euRewTe, (3.3.6)

zeW
r<w

where Ry € Z[q] is a polynomial of degree {(w) — £(z) in q, and where Ry, = 1.
Proof. We proceed by induction on the length ¢(w) of w. If £(w) = 0, then w = 1 and we have
Ty Ty =TTy =T, (3.3.7)

so (3.3.6) trivially holds. If £(w) = 1, then w = s for some s € S, and thus, in view of (3.3.3), if
we set
Rl,s =q— 17

and noting that
e1=1, e =-land ¢ =g,

we obtain
Th =T, = egq; tesRe s Ty + €505 te1 R T

So let w € W be such that £(w) > 1 and assume that (3.3.6) holds for any v’ € W such that
the length of w’ is less than the length of w. For convenience, set R, ,, = 0 whenever z € W is
such that z € w. Note that since £(w) > 1, there exists some s € S such that w = sv for some
v e W with

(™) = L(v) = L(w) — 1 < L(w) = L(w™t) = L(v™Ls).

50



We therefore have
Ew = (—1)4(“’) = (—1)4(1’)+1 = —g, and qu = ¢ = ¢ = ¢q,, (3.3.8)
so using Proposition 3.1.1 and the relation (3.3.1) defining multiplication in #, we obtain

Tl =0 (Tw) " =0 (LL) " = 0(T) b (L) =T, T,

o
and thus, substituting into (3.3.3), we obtain

T h=('"T—(1—¢ ") T, =¢ " (Ts— (¢— DT T, . (3.3.9)
Moreover, by the induction hypothesis, we know that

T1;11 = 51}‘];1 Z 51Rx,vaa
zeW
r<v
where R, € Z[qg] is a polynomial of degree {(w) — ¢(z) in ¢ and R, , = 1, and so substituting
this into (3.3.9) yields

h=egy | D R T — (g —1) Y exRan Ty | - (3.3.10)
zeW zeW
r<v r<v

In view of (3.3.8), we can further simplify (3.3.10) to obtain

Tl =cugy | =Y eeRenTiTe+(q—1) Y eaReoTs |- (3.3.11)
zeW zeW
r<v r<v

Now, if x € W is involved in the first sum in (3.3.11), we have two possibilities: either sx < x or
x < sz. In the first case, by the first relation in (3.2.4), the term corresponding to z is equal to

5xRx,UTSTx = (q - 1)5xRx,vTa: + QSxR:IJ,st:I:, (3.3.12)
and in the latter case, the term corresponding to z is equal to
5:1:Rac,stTx = Esz,’UTsz- (3313)

We therefore see that if sz < x, the first term in (3.3.12) cancels a term in the second sum in
(3.3.11), which can thus be rewritten as

le_ll = swq;1 —q E exRy v Tsy — E exRy v Tsx + (g —1) g exRe Ty | - (3.3.14)
zeW zeW zeW
z<v z<v <V
sr<lx r<sx r<sx

Also note that if < v then, by the transitivity of “ <7, we have x < w, and thus, by Lemma
2.10.2, we also have sx < w. Also notice that if y € W is such that y < w, then, by Theorem
2.10.1, y occurs either as an x with = < v or as an sz with x < v or both, so we just need to
check the coefficient of T}, for each y € W with y < w. So let y € W be any element such that
y < w.
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If sy <y, then T}, appears only in the second sum in (3.3.14) with y = sz and coefficient
_5:1:Rz,'u = _5syRsy,v = EyRsy,SUM

with

deg, (ey Rey,sw) = L(sw) — £(sy) = L(w) — 1 = L(y) + 1 = L(w) — L(y).
Note that if y = w, then x = v and we have R, , = 1, by the induction hypothesis. Hence the
polynomial R, ,, can be defined, in this case, as

Ryw = Rey s, (3.3.15)

which we have shown satisfies the requirements in the proposition.

If on the contrary y < sy, then we automatically have y < w, and we have two possibilities:
either sy < v or sy v. In the first case T}, appears in the first sum in (3.3.14) with y = sz and
coefficient

_qfa:Rx,v = _qgsyRsy,v = _qgsyRsy,swv
with
deg,(—qesy Rsy,sw) = L(sw) — L(sy) + 1 =L(w) =1 —L(y) + 1+ 1 =L(w) - L(y) + 1,

as well as in the third sum (3.3.14) with y = x and coefficient

(q - 1)590Rx,v = (q - 1)5yRy,sw

with
deg,((q — ey Ry sw) = L(sw) = L(y) + 1 = L(w) — 1 —£(y) +1 = L(w) — £(y).

Therefore, the coefficient in (3.3.14) of T, in this case is equal to

—qgsyRsy,sw + (q - 1)5yRy,Sw

and

We can thus define, in this case, the polynomial R, ,, as
Ry w = qRsysw+ (¢ — 1) Ry sw, (3.3.16)

which satisfies the requirements in the proposition. In the latter case T; appears only in the
third sum in (3.3.14) with y = = and coefficient

(q - 1)590Rx,v = (q - 1)5yRy,sw

with
degq ((q - 1)€yRy,sw) = €<w) - E(y)

Hence, since by convention Ry, = 0 as sy £ v, the polynomial R, ,, can be defined, in this case,
as in (3.3.16), which we have shown satisfies the requirements in the proposition. The proof is
now complete. O

Remark 3.3.2. Even though we defined, in Section 2.10, the Bruhat ordering for (W, S) without
reference to the Hecke algebra H of (W, .S), Proposition 3.3.2 shows that R, ,, # 0 if and only
if y < w, which shows that the Bruhat ordering of (W, S) is actually forced on us by the way
inversion works in H.
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Remark 3.3.3. Note that the proof of Proposition 3.3.2 actually produces an algorithm for the
computation of R-polynomials. More explicitly, given the fact that

0 if
Ry = { 1 ysw (3.3.17)
1 ify=w

for any y,w € W, we use induction on ¢(w) > 1 to compute R, ,, assuming that the R, , are
known for all € W with ¢(x) < ¢{(w). In particular, if we fix any s € S such that sw < w, then
we can compute R, ,, according to

Ry sw ify<wand sy <y
Ryw =14 qReysw+ (¢ —1)Ry sw if y<<wand y < sy < sw (3.3.18)
(¢ —1)Ry.sw if y<w and y < sy sw.

Moreover, the formula in (3.3.6) can be rewritten as

Tl =gy § eyRsy swTy + § (eyqRsy.sw + (@ — DRy suw) Ty |, (3.3.19)
yew yeW
ygw y<w
sy<y y<sy

with the convention that R, , = 0 whenever z ¢ .
Proposition 3.3.3. (Exercise 1 in Chapter 7.5 in [21]|) If z,w € W are elements such that

r < w, then Ry, 15 a monic polynomial with constant term €,€5.

Proof. We proceed by induction on the length ¢(w) of w € W. First note that if £/(w) = 0, then
there is nothing to prove. So suppose that £(w) > 1, and assume that R, , is a monic polynomial
with constant term eye, whenever y € W such that {(y) < ¢(w). Now choose any s € S such
that sw < w. If sz < z, then, by (3.3.18), we have Ry, = Rsz 5. Since in this case we have

lw) —L(z) =L(sw) + 1 —L(sx) — 1 = l(sw) — {(sx),

the claim holds for w in this case. If on the contrary x < sz, then, by (3.3.18) again, we have
that
Rx,w = qux,sw + (q - 1)Rx,sw-

Since in this case we have that
U(sw) —Ll(sz) =L(w) =1 —L(x) — 1 =Ll(w) — l(x) — 2,

and
l(sw) —Ll(x) =L(w) — 1 —Ll(x) =b(w) — () — 1,

by the induction hypothesis, R s and R s, are both monic polynomials of constant term
€sz€sw and €€, respectively. Note that even if sz € sw, in which case Ry 5y = 0, the result in
the lemma would still hold in this case, and the proof is now complete. O

Proposition 3.3.4. If x,w € W are elements such that v < w and {(w) — {(x) < 2, then
Ry = (q — 1)1~

Proof. Let xz,w € W be such that z < w and ¢(w) — ¢(x) < 2. If {(w) — ¢(x) = 0, then the
result trivially holds and there is nothing to prove. So suppose that ¢(w) — ¢(x) = 1, and let
w = s1---8 be a reduced expression of w. Since the length difference between x and w is 1,
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we can obtain z from w be removing a single s; in the reduced expression w = s1---s, of w.
Repeatedly using the relations in (3.3.18), we are reduced to the case when x = 1 and w = s;.
As we saw in the proof of Proposition 3.3.2, we obtain Ry 4, directly from T, 8:1, and in particular,
from (3.3.3), we obtain Ry s, =q— 1.

Now, suppose that {(w) — ¢(z) = 2, and let w = s1 - - - s, be a reduced expression of w. Since
the length difference is two, we can obtain x from w be removing exactly two s;, s; in the reduced
expression w = s1 -+ - 8 of w. Assume, without loss of generality that ¢ < j. Again, repeatedly
using the relations in (3.3.18), we are reduced to the case w = s;---s; and = s;41---sj-1. If
we then take s = s;, we have sw < w and = < sz, and thus the second relation in (3.3.18) gives

Rm,w = qux,sw + (q - 1)R:p,sw-

Since ¢(sw) — £(z) = 1, we know from the previous case that Ry s, = ¢ — 1. Moreover,
{(sz) = l(w) but szsw, and thus Ry 5. We thus obtain R, ., = (¢ — 1)?, as required. O

Remark 3.3.4. Carrying out the explicit calculations for R, ,, whenever x,w € W are such that
x < w and f(w) — £(x) > 3 becomes increasingly difficult due to the existence of a wider range
of subexpressions whenever we omit some s; in some reduced expression sj - - - s, of w.

3.4 The bar involution

In this section we introduce a ring automorphism of H, called the the bar involution of H. Such
an involution has an important role in the definition of the Kazhdan-Lusztig polynomials in
Section 3.5. Our first aim is to prove the existence of such involution of H. We then study
some of its properties by analysing the role it plays in the proofs of further properties of the
R-polynomials and its relations to other morphisms of the algebra H. The main reference for
this section is [24].

Lemma 3.4.1. Let ~: of — o be the ring involution of &/ mapping ¢*/? to ¢~Y/2, that is,

@2=q'2 (3.4.1)

There exists a unique Ting homomorphism ~ : H — H which is o7 -semilinear with respect to
T — & and satisfies

T,=T," (3.4.2)

Moreover, such ring homomorphsim is an involution of H and takes Ty, to T;,ll, that is,
To=T,,. (3.4.3)

Proof. First, let ~ : H — H be an </-semilinear map such that Ty = T;"!. Since it must be an
o/ -semilinear map, by definition ~ : H — H must satisfy

h+h =h+1 forany h,h' €¢ H
ch =¢h for any c € &/ and any h € H.

Given such a semilinear map, note that for any s € S, we have

(T +1)(Ts —q) = (T, +1) (T, —¢7 1),

and so substituting (3.3.3) into the above yields

T+ D)(Ts—q)= (¢ ' Ts—(1—g H+1) (¢ Ts—(1—¢g ) —q 1),
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which then simplifies to

T+ D)(To—q)=q¢ " (Ts+ 1) ¢ (Ts—q)=q > (Ts + 1) (Ts — q).-

Hence, using the defining relation (3.2.1) of H, the above becomes

(Ts + 1)(Ts — q) = 0.
Also, for any s,s’ € S such that s # s’ and (s,s’) € Sp, we have
prod(mg; Ts, T's) = prod (mss/;Tgl,T;l) = prod (myy; TS/,TS)_1 )
Hence, using the relation defining relation (3.2.2) of #H, the above gives
prod(msy; T, Tsr) = prod (me; Ty, Ty) ™" = prod (mye; Ty, Ti ) = prod(miy; Ty, T).

Since we have shown that the .&7-semilinear map ~ : H — H preserves the relations (3.2.1) and
(3.2.2) defining H as an o7-algebra, it follows that the map has a unique extension to a ring
homomorphism ~ : H — H which is &/-semilinear with respect to a = : & — .

Now, let s € S. By (3.4.2) and (3.3.3), we have that

Ty =T =q¢ T, —(1—q 0T, =qT7" — (1 - ¢)Th.

Substituting (3.3.3) again into the right-hand side of the above equation, we obtain

Ty =qq 'Ts—ql—q¢g "1 —(1— )Tt =T+ (1 — )Ty — (1 — ¢)Ty = T,

which shows, since (Ts)ses generates H as an of-algebra that, that = : H — H is an involution
of H.

Finally, let w € W be any element of W. By Proposition 3.2.1, we know that
Tw = 7_'51 e TST and Tw71 = TST e T51

for any reduced expression w = s - - - s, of W and T}, and T,,~1 are independent of the choice of
reduced expression of w. We then have that

Ty=Ts Ty = T;ll .. .TS:1 = (T, - .T51)—1 = le_ll,
and the proof is now complete. O

Remark 3.4.1. Since H is generated as an ./-module by (T3, )wew the unique o7-semilinear ring
homomorphism ~ : H — H with respect to ~ : & — & from Lemma 3.4.1 is given by

Z cwTyw = Z 6wT1;,11 for any ¢, € <. (3.4.4)
weWw wew

Proposition 3.4.1. Let y,w € W be any elements of W.

(a) We have
Ryw = eyeutydy Ryw.

(b) Let 6., denote the Kronecker delta function. We have

zeW
y<T<w
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Proof. (a) We prove the equality inductively using the rules in (3.3.17) and (3.3.18). First, note

that if y = w or y £ w, the equality trivially holds since we have R, , = R, in both cases.
So suppose now that we are in the case y < w, sy < y and sw < w, so that Ry, = Rgy s and
Ry = Rgy sw. By induction, we have

_ _ _ -1 _
Rsysw = ESygsquyqsszsy,sw = (—&y)(—¢cuw)q 1‘1y (q lqﬂ)) Ry sw = 5y5w(1qu1Ry,wa (3.4.5)

as required. Suppose on the contrary that we are in the casey < w, y < sy and sw < w, so that
Ry,w = (q - 1)Ry,sw + quy,sw

which, after applying = : H — H yields

Ry,w = (q_l - 1)Ry,sw + q_lﬁsy,sw = _q_l(q - 1)Ey,sw + q_lﬁsy,sw- (346)

By induction, we have

—1 —1
Ry,sw = EyE€swyQsw Ry,sw = —E&yEwqyy qRy,sw
and
D -1 -1 -1 2
Rsy,sw = 53y£stsyqszsy,sw = EyEwlqyqy, qRy,sw = EyEwQyQy 4 Rsy,sw-

Substituting these two equalities into (3.4.6) then yields

Ry,w = qil(q - 1)EyEwaq1;1qRy,sw + qilgyngyqulq2Rsy,sw'

Hence, cancelling the corresponding terms and substituting in (3.4.5), we obtain

Ry,w = 5y5waq1;1 ((q - 1)Ry,sw + quy,sw) = SyeryQ;lRy,wa

as required. This completes the proof of (a).

(b) We first apply the bar involution ~ : H — H to both sides of the equality (3.3.6) in Proposition
3.3.2 to obtain 7
Ty =cuwlw »_ calowT, . (3.4.7)
zeW

rw

Substituting the result we have just proven for Ry, in (a) into (3.4.7) with x instead of y gives

Tw = €wuw § 5x5x5waQz;1Rx,me_—l1 = E QzRa:,wa_—ll- (348)
zeW zeW
z<w T<w

Then, substituting into (3.4.8) the expression in (3.3.6) for Tx__ll, yields

—1
Ty = E Gz Rewezq; E eyRy Ty = E Ry weq E eyRy 2Ty (3.4.9)
zeW yew zeW yew
T<W y<z LW y<z

Note that the coefficient of T}, on the left-hand side of (3.4.9) is 0 if y # w and 1 if y = w, that
is, dy.4. Moreover, the coefficient of T}, on the right-hand side of (3.4.9) is

E Ex€yRy z Ra -

zeW
ysT<w

Equating these two coefficients gives the result in (b), and the proof is now complete. O
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Corollary 3.4.1. For any element w € W we have

T =Y ¢ ' RyuTy (3.4.10)
yeW
y<w

Proof. If we substitute the result in (a) of Proposition 3.4.1 into the right-hand side of the
equality (3.3.6) in Proposition 3.3.2 with y instead of x we obtain

-1 _ _ 1 11 -1, P _ Z -1p
Tw—l = Ewly § Eyy Ew Uy QwRy,wTy = ay Ry,wTy7
yeWw yeWw
ysw y<w

as required. O

Remark 3.4.2. The proof of (b) of Proposition 3.4.1 provides a method for computing the inverse
of the matrix of R-polynomials. In particular, in view of the equalities in (3.4.8) and (3.4.10), we
conclude that the matrices (R, ,q,) and (Ezywq; 1) are inverses of each other and, in view of the
equality in (a) of Proposition 3.4.1, we deduce that the matrices (Rywqy) and (eyewRawdy")
are inverses of each other too.

Proposition 3.4.2. Let b : H — H be the anti-automorphism of the algebra H in Proposition
8.1.1, that s,

b:H—H
Ty Ty (’LUEW).

The bar involution ~ : H — H of H and b : H — H commute.

Proof. First note that
b (Tw) =Ty =T, =b(T,2) =b(Tw) (3.4.11)

for any element w € W. Therefore, since for any element

Z cwlyw € H where ¢, € & for all w e W,
weW

we have, by the «7-linearity of b : H — H, the o/-semilinearity of = : H — H and the addition
preserving property of both, that

(X en)- ¥ a5 - X aim)

weWw weW weW

and

b(M) _b<z chw> =3 e (Tu),

weW weW weWw
it follows, by (3.4.11), that

(5] ()

which shows the commutativity of = : H — H of H and b : H — H. O
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3.5 Kazhdan-Lusztig basis

In this section we present a new basis (Cy)wew of the &/-module H, called the Kazhdan-Lusztig
basis of H, which was introduced for the first time by Kazhdan and Lusztig in [24]. An im-
portant feature of such basis is the fact that each basis element is fixed under the bar invo-
lution = : ‘H — H, and this property is one of the properties that uniquely determine the
Kazhdan-Lusztig polynomials. First we state the basic theorem of Kazhdan and Lusztig [24]
about the existence a uniqueness of the elements (Cy,)y,ew fixed under the bar involution of H.
Then we make some remarks about the statement of the theorem and give a proof for it. We
also prove the fact that (Cy)wew forms a basis of H as an o/-module. Finally, we conclude this
section by proving some key properties of the Kazhdan-Lusztig polynomials and giving some
examples.

Theorem 3.5.1. For any w € W, there is a unique element Cy, € H such that

Cuw=Cy (3.5.1)
Cuw=cuqy/® Y eyay ' PyuT (3.5.2)
yeW
ysw

where Py, € Z[q] is a polynomial in q satisfying Py, =1 and

deg, Py < % (U(w) —L(y) — 1) fory < w. (3.5.3)

The polynomials Py ., are called the Kazdan-Lusztig polynomials. For short, we refer to them as
KL-polynomials.

Remark 3.5.1. First, the image of 17 under the bar involution of H is 77, so if we define C7 := 17,
we see that C7 = C; and (3.5.2) trivially hold. Moreover, if we consider the image of the element
(Ts — ¢T) € H under the bar involution, then, using (3.3.3), we get

Ts—qh =T, ' —q¢ 'y =q¢ ' (Ts — qT1) .

Therefore, if we define

C, = q—l/2 (Ts — qTy) , (3.5.4)
we see that Cy = Cj, and C, can be written in the form
Cs = 7q1/2 (*q_lTs + Tl)

as in (3.5.2) with Py s = 1 = P 4, so that (3.5.3) also holds.

Remark 3.5.2. Given the way canonical basis (Ty)wew of H is constructed from (7s)ses, we
could consider building up the new basis (Cy)wes consisting of elements fixed under the bar
involution from (Cs)ses in the same way, where Cs is as in (3.5.4). So let s,s" € S be distinct.
Then, using our definition for Cs and Cy in (3.5.4) we compute

CS’CS = qil (Ts’ - qu) (Ts - qu) = qil(Ts’Ts - qu’ - qu + QQTI)- (355)
But recall that, since s # s', we have TyTys = Ty, so (3.5.4) becomes
CyCs = qil(Ts’s —qTy — qTs + q2T1)7

and we could label this Cys. Note that the only other possible length two reduced expression
consisting of s and s’ is ss’, so if ss’ = s’s, then we would have obtained the same element from
the product CsCy . Unfortunately, for reduced expressions consisting of several s and s’ of length
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greater that two, such construction does not work as well. For example, suppose £(ss’s) = 3.
Proceeding as before we would have

CSCS’CS = q73/2 (Ts - qu) (Ts’s - qu’ - qu + q2T1) )

which, after expanding out the brackets, substituting the relation (3.3.2) for T2 and collecting
equal terms, becomes

CsCyCs = 3% (Tyyrs — qTs — qTsy + Ty + 1+ ¢ DTy — (1 + ¢ 1)) .

Now note that if we want to label the element in (3.5.2) as Cyy s, we would face a problem in the
case when ss’s = s'ss’, as

CyCsCy = q_3/2 (Ts’ss’ —qTse — qTss + q2Ts + q2(1 + q_l)Ts’ - q3(1 + q_l)Tl) >
and thus C;CyCy # CyCsCyr. But,
CsCuCs = Cy = % (Tows — qTos — qTaw + @ Tw + ¢°Ts — ¢°T1)

is another element of H that is fixed under the bar involution, the coefficients of the T, for
x < ss's are simpler than those of the T, for z < ss’s in the expression for CsCyCs, and in the
case when ss’'s = s'ss’ we have

CsCs’Cs - Cs = Cs’CsCs’ - Cs’a

eliminating our earlier problem. We thus see that building up the new basis in the same way the
canonical basis (T},)wew is constructed from the Ts (s € S) is not entirely a good idea, but this
can be solved by introducing some correction term. In particular, note that the only correction
term needed in our example was C, which is the element C'; corresponding to the unique x € W
such that x < ss’s and

12 _ 1
deg, (qsg,sqx 1Qx’ss/s> > B (6(33’3) —l(z) — 1) ,
where @), 555 denotes the coefficient of T}, in the expression for CsCyCs. Moreover, note that
such z is the unique z € W such that x < ss’s and = < s's and sz < x. It thus make sense to
define the following, which will be explored in the proof of Theorem 3.5.1.

Definition 3.5.1. Given z,w € W we say that z < w if x < w, €, = —¢&,, and

1
degq Prw=_

5 (U(w) —L(x) —1).

In this case, the non-zero integer coefficient of the highest power of ¢ in P, ,, is denoted by
p(z,w). If w <z we set p(w,z) = p(z,w).

Remark 3.5.3. As for R-polynomials, it is useful to make the convention that P, ,, = 0 whenever
x ¢ w. Nevertheless, the statement of Theorem 3.5.1 already shows a way in which the KL-
polynomials are significantly more subtle than the R-polynomials as it shows that the precise de-
grees of the KL-polynomials are not predictable, whereas the precise degree for the R-polynomials
are known, by Proposition 3.3.2.

Proof of Theorem 3.5.1. We first assume that, for each w € W, the element

Cw = Z 9, w) Py where j(z,w) = epepqt/2q; " (3.5.6)
zeW
r<w
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satisfying properties (3.5.1) and (3.5.3) exists, and prove its uniqueness. Now, note that given
(3.5.6), the equality C',, = Cy, can be written as

Z swsyqal/quPy,ng;ll = Z 9 (2, w) Py T (3.5.7)
yew zeW
y<w TLW

Then substituting for Ty__l1 the expression in (3.3.6) with y in place of w, the equality in (3.5.7)
can also be written as

Z 5w5yq'l;1/2QyPy,w Z 5yQy_15xRx,yTx = Z ](wi)Px,sza

yeWw zeW zeW
y<w Ty T<w

which, after the appropriate cancellations becomes

f-:wqwl/2 Z Z e2TuPywRay = Z 9 (2, W) Py T (3.5.8)

yeW zeW zEW

y<w TLY r<w
Hence, proving the uniqueness of the element C,, amounts to showing that the polynomials P, ,,
can be chosen in exactly one way for all z € W. We show this by induction on ¢(w)—£(z), starting
with the condition P, ,, = 1 for the case the lenght difference is zero. So let {(w) — f(z) > 1
and assume that P, is uniquely determined for each y € W such that z < y < w. Comparing
coefficients on both sides of the equality in (3.5.8) of a fixed T}, for each = < w, gives

ey Z exPywRyy = 3(w,w)Py,y for all z < w, (3.5.9)
yeW
T{Yy<w

which is equivalent to

_1/2 Z PRy = ql/qulpr — q;1/2Pz7wa’m for all x < w.

yeW
T<ysw
Multiplying both sides by q;/ % and using the fact that R, , = 1, the above becomes
g ?q? Z PywRey = a2 Py — gV /%qY /Py, for all z < w. (3.5.10)
yeWw
T<y<w

Now, by the degree assumption on (b) of the theorem, we know that
K(I) — E(w) S degq1/2 ( ~1/2 1/2PJ: w) S _17

so since z < w, it follows that qwl/ 2q;/ 2Px7w is a polynomial in ¢~'/2 without constant term.

Similarly, we know that

1< degue (0l Pow) < lw) — U(a),

so since x < w, it follows that ql/ 20V 2me is a polynomial in ¢*/? without constant term.
Hence, there cannot be any cancellatlons between these two terms, and there is at most one
choice for Py, satisfying (3.5.10). The uniqueness part of the proof has now been dealt with.

We now deal with the existence of the elements Cy, (w € W) satisfying the properties in the
theorem. We proceed by induction en the length of £(w) of W, and the base case is dealt with in
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Remark 3.5.1. So suppose {(w) > 1 and assume that the existence of C, satisfying (3.5.1) and
(3.5.2) has already been proved for w’ € W such that ¢(w") < £(w). Now, since £(w) > 1, there
is some s € S such that w = sv and ¢(v) = {(w) — 1, and so by the induction hypothesis, C, has
already been constructed and we may thus apply Definition 3.5.1 to C, so that z < v and the
corresponding integer u(z,v) have a meaning. Now define

Cuw = CsCy = > pu(z,0)C-. (3.5.11)
zeW

z=<v
sz<z

Note that C,, is fixed by the bar involution since from Remark 3.5.1 we know that Cy = C and
by the induction hypothesis we know that C,, = C, and C, = C, for all z € W such that z < v.
Moreover, substituting (3.5.4) for Cy into (3.5.11) gives

Cw=qV*(Ty —qT1) C, — Z wu(z,v)C,, (3.5.12)
zeW

z=<v
sz<z

so we see that C, is an .&7-linear combination of element T, such that z < w. At this point, we
are only left to prove that C,, as defined in (3.5.11) can be written as in (3.5.2) with the P,,,
satisfying the degree property in (3.5.3). We prove this by analyzing the coefficient of T}, for
each fixed y in (3.5.12). First, if y = w, then since v < sv = w, the element T3, can only occur
in the product TsC,, and it will appear with coefficient

q71/2]("U,’U)pv,v — q71/2q11)/2q;1 — q(71/2)(€(v)+1) — (];1/27

which agrees with (3.5.2), with P, ,, = 1. Next, take any y < w. In this case T}, can occur in
C,C, either directly in C, or indirectly in T5C, when T} is multiplied by Ts,. The former occurs
if y < v and the latter occurs if sy < v, and we should distinguish between the two possibilities
y < sy and sy < y.

If y < sy, then s-sy =y < sy < v and so, by the second relation in (3.2.4) of Proposition
3.2.2, we have
TsTsy = (q - 1)Tsy + qu'

Hence T, appears in g Y2T,C, with coefficient
q_l/QQJ(SZ/vU)Psy,v = _q_l/2j(yav)psy,v =q (v, W) Py,p- (3.5.13)

In this case T}, also appears in ¢'/?T,C, with coefficient

- q1/2](y7 U)Py,v = ](y, w)Pyﬂw (3.5.14)

Combining (3.5.13) and (3.5.14), we see that the coefficient of T}, in CsC,, is
¢ ' 9(y, w)Poyw + 5(y, w) Py o

If on the contrary sy < y, then sy < y = s-sy and so, by the relations in (3.2.4) of Proposition
3.2.2, we have
TTyy =T, and T,T,=(q—1)Ty+ qT1.

Hence T, appears twice in —q V2T, C,, each of the times with coefficient

q_1/2j(5y, U)Psy,v = _q1/2](yav)Psy,v = ](va)Psy,m (3515)

and

q2(q— 1)5(y,v) Py = (" — 1)5(y, w) Py, (3.5.16)
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In this case T}, also appears in —¢/*T,C, with coefficient

—¢"5(y,v) Py = 3(y, w) Py (3.5.17)
Combining (3.5.15), (3.5.16) and (3.5.17), we see that the coefficient of T}, in C,C, is
9y, w)Payo + 079y, w) Py

Finally, since ¢,&,, = 1 whenever z € W is such that z < v, it follows that the coefficient of
T, in the last sum in (3.5.12) is always of the form

- Z w(z,v)9(y, Z)p%z == Z M(z7v)q;1/2q;/2j(y7w)py,z'

zeW zeW
z=<v z=<v
sz<z sz<z

We now combine these calculations to express C,, as in (3.5.2), where

Py :=q" " Psyy +q°Pyy — Z u(z,v)qlllj/Qq;l/?Py,z (3.5.18)
zeW
z=<v
sz<z

and
0 ify<sy
CcC =
1 if sy <y,

with the convention that P, . = 0 whenever y £ z. Now, in the case when y < sy and thus ¢ = 0,
we obtain, by the induction hypothesis, that

(b(w) = £(y) = 1).

| =

1
degq Py,w <1+ 5 (E(U) - E(Sy) - 1) =

On the other hand, in the case when sy < y and thus ¢ = 1, we obtain, by the induction
hypothesis, that

1 1
degy Poyw < 5 (0(v) = £sy) — 1) = 5 (£(w) = Ly) = 1),
1 1
—-1/2 1/2 - _ _ N _ _
maxde, ((z,0)a,"/2qY/ 2P0 ) < max S (£w) — 0ly) = 1) = 5 (Ew) — €(y) — 1).
S h
Moreover, we have
1 1
degy (aPy) <145 ((v) = Uy) = 1) = 5 (Uw) — L(y)) - (3.5.19)

But note that if the bound in (3.5.19) is tight, then, since in this case we have y < z as sy < v,
there is a term for z = y in the last sum in (3.5.18), namely

u(y.0)al 2, 2P, = u(y. v)al2a, V2,

which is equal to the highest degree term of ¢, ,, and thus cancels it. Since the the last sum in
(3.5.18) involves P, , only there, there are no further powers of ¢ equal to the bound in (3.5.19)
terms in the sum, it follows that

deg, Py < 3 (€(w) = {(y) ~ 1)

as required. The proof is now complete. O
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Remark 3.5.4. The the proof of Theorem 3.5.1 gives very explicit information about the KL-
polynomials and the formula in (3.5.18) as well as that in (3.5.9) can be used to compute them.
Applying such formula repeatedly by hand for rank greater than three can become unmanageable
rapidly. However, such formula is well suited for computers, and the only limit on computing
KL-polynomials is that for large rank, the number of polynomials becomes too large, exceeding
the storage capacity of computers.

Remark 3.5.5. The proof of Theorem 3.5.1 also gives explicit information about how multiplica-
tion of the elements Cy, (w € W) works. We say more of this in Section 3.6.

Remark 3.5.6. The proof of Theorem 3.5.1 we gave follows the original proof of Kazhdan and
Lusztig in [24], making some of the steps there more explicit. However, Lusztig outlines a more
elegant proof later in [28]. The idea is to reverse the steps of the uniqueness part of the proof
of Theorem 3.5.1 by showing, inductively on ¢(w) — £(z), that the equation in (3.5.10) can be
solved for P, ,. Since applying the bar involution = : X — H of H to the right-hand side of
the equation in (3.5.10) just changes the sign, the key of the proof lies in showing that the
same is true for the left-hand side. He applies the bar involution to the left-hand side, then, by
induction, substitutes for P, ,, the already known formula of the type in (3.5.9), and finishes by
using the inversion formula for R-polynomials in (b) of Proposition 3.4.1. Once this is shown, the
bound of the degree of P, ,, follows and the elements C, fixed under the bar involution can be
defined as in (3.5.6). In his proof in [28], Lusztig actually uses a different basis (T)wew which
he conveniently introduces at the beginning of his paper as

fw = qgl/QTw for each w € W,

for which the conditions in (3.3.1) and (3.3.2) give

TwTw = Ty if L(ww') = £(w) + (') (3.5.20)
(Ts + q;1/2) (Ts - qi/z) —0  ifseS (3.5.21)

The steps of the are essentially the same which ever basis is used, as every formula used in terms
of (Ty)wew can be easily written in terms of (Ty)wew. Moreover, the elements of (Ty,),ew are
also invertible, with

T =T, + <q_1/2 - q1/2> : (3.5.22)

and such that -
= -1

Ty = qu /2Tw = CJ}U/QTJI = Tuj—ll

With respect to this basis, we can write the elements C, in Theorem 3.5.1 using (3.5.2) as

Cow = wqi/? Z sngl/zpy,wfy = Ty + c0ql/? Z Eyqzjl/zp%wfy, (3.5.23)
yew yew
y<Sw y<w

and thus, using the degree property in (3.5.3) of Theorem 3.5.1, we see that

Cuw€Tw+q"?y o™ 1T, (3.5.24)

yew
y<w

Proposition 3.5.1. The collection (Cy)wew forms a basis of H as an </ -module, called the
K L-basis of H.

Proof. They collection (Cy)wew is a generating set as each Cy, is a o7-linear combination of the
standard basis elements T,. The linear independence also follows from this. O
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Proposition 3.5.2. (Exercise 7.11 in [21]) If z,w € W are elements such that © < w, then
P, .(0)=1.

Proof. To prove this we use the formula in (3.5.18) together with induction on ¢(w). First, if
l(w) = 0 then w = 1 and thus z < 1 implies that x = w = 1. In this case Py, (0) = P;,1(0)
trivially holds. If {(w) = 1, the w = s’ for some s’ € S and thus, the unique s € S such that
ss’ < s’ is s = & itself. In this case we have z < w = s implies that z = 1 or x = 5. If x = s,
then P, ,,(0) = Ps5(0) = 1 trivially holds, and if x = 1, then 1 = = < s’z implies that ¢ = 0 in
(3.5.18) and we have

Pyu(0) = Pio(0) = Pro(0) = Y plz s'w)ay*a- /> P1,.(0). (3.5.25)
zeW
zﬁs/w
s'z<z
But s'w = 1, so there is no z € W such that z < s'w, the last sum in (3.5.25) is zero and
P;1(0) =1, and thus Py ,,(0) =1 also holds in this case.

Now, let x,w € W be such that ¢(w) > 1 and z < w, and assume that if y,w’ € W are such
that y < w’ then P, ,/(0) = 1 holds for all y,w’ € W with ¢(w’) < £(w). Since £(w) > 1, there
is some s € S such that w = sv where v € W such that ¢(v) = ¢(w) — 1. Then, according to
(3.5.18), we have

Prw(0) = 0" CPayy + 0°Poy — > pu(z,0)0/2HE2E P, (0), (3.5.26)
zeW

z=<v
sz<z

where ¢ =0 is < sz and ¢ = 1 if sz < z. First note that since {(w) — ¢(z) > 1 for any z € W

such that z < v, we have that
0(1/2)e(w) (o (=1/2)(z) — 0,

and moreover, since ¢(z) < {(w), it follows, by induction, that P, .(0) = 1 for all z € W such
that z < v, sz < z and = < z. We thus see that the last sum in (3.5.26) is zero, and thus the

equality becomes
Py(0) = 01 Pyy (0) 4+ 0°P ,,(0). (3.5.27)

Now, if sz < z and thus ¢ = 0, the equality in (3.5.27) becomes P, ,,(0) = P,,(0). Since
l(v) < f(w), it follows, by induction, that Py, (0) = 1, as required. If on the contrary z < sz
and thus ¢ = 1, the equality in (3.5.27) becomes Py ,(0) = Psz,(0). Again, since £(v) < (w), it
follows, by induction, that P, ,,(0) = 1, as required. This completes the proof. O

Remark 3.5.7. Proposition 3.5.2 shows that the constant term of the KL-polynomial P, ,, is
precisely 1 whenever x,w € W are such that x < w. The proof of Proposition 3.5.2 serves
as another example of a way in which the KL-polynomials are significantly more subtle than
the R-polynomials. In particular, in the proof of Proposition 3.3.3 we were able to compute in
a straightforward way the constant term for R-polynomials, but the proof of Proposition 3.5.2
required more involved tools, such as the recursive formula in (3.5.18).

Corollary 3.5.1. (Exercise 7.11 in [21]) If x,w € W are elements such that x < w and l(w)—I(z) < 2,
then Py .,(q) = 1.

Proof. By Theorem 3.5.1, we know that

_

1
deg, Pegy < 5 () — 0(x) ~1) < .
where the last inequality follows from the hypothesis £(w)—¢(x) < 2. Therefore, since P, , € Zlq],

it follows that P, , must be a constant polynomial. Hence since by Proposition 3.5.2 the constant
term of any KL-polynomial is 1, we deduce that P, ,, = 1, as required. O
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Example 3.5.1. Suppose W is a dihedral group with S = {s,s’}. We show, by induction on
l(w) >0, that P, ,, = 1 for all z,w € W such that x < w. We also use Example 2.10.1 where
we showed that z < w if and only if ¢(x) < ¢(w). First, if /(w) = 0 this is trivial since w = 1
and thus if x € W is such that z < w =1 then = 1. Next, if {(w) = 1, then w = s or w = §'.
In either case, if x € W is such that x < w then = € {1,w}, and thus ¢(w) — ¢(z) < 1. Hence,
by Corollary 3.5.1, it follows that P, ,, = 0, as required.

So suppose x,w € W are such that » = /(w) > 1 and 2 < w, and assume that P, ,» = 1
holds for any elements y,w’ € W such that ¢(w') < £(w) and y < w'. If x = w, we already have
P, ., =1, so suppose that x < w. Now, since any reduced expression of w is of the form

w = prod(r; s,s’) or w = prod(r;s’,s),

we may assume, without loss of generality, that w = prod(r; s, s’), and let s” € S be an element
of S such that
w=3s"prod(r —1;s,5),

with ¢(s"w) =r — 1, and let u := prod(r — 1; s, s’). Note that if W is infinite, then such element
" € S would be unique, and if W is finite, such element s” € S would also be unique unless
r = Mg, in which case we would have w = w, is the longest element of W. We therefore let
" the be the leftmost element of the reduced expression w = prod(r; s, s’) of w. The formula in

(3.5.18) then gives

Px,w = qlicps”w,u + qch,u - Z /L(Z, u)qr/z 1/2Px 2 (3528)

zeW
z=<u
s z<z

with ¢ = 0is z < §”x and ¢ = 1 if s”"2 < z. Now, by Definition 3.5.1, we have that s € W is
such that z < v if z < wu, ¢, = —¢, and

dengZ,uz%(z(u)—az)—l):%@«-1—5(;2)—1):%(r—z(z)—z).

But since ¢(u) < ¢(w), the induction hypothesis tells us that P,, = 1 for all z € W such that
z < u and thus z < w only if ¢(z) = r —2 = ¢(u) — 1. In particular we have u(z,u) = 1.
Therefore, since the are exactly two elements of W of length r — 2, one whose unique reduced
expression starts with s and the other whose unique reduced expression starts with s, it follows
that there is a unique z € W such that £(z) = r — 2 and "z < z, namely z = prod(r — 2; s, s),
and the formula in (3.5.28) becomes

Pz,w = ql_cPs”:p,u + qCmeu - q(l/Q)(T_T+2)Pa:,prod(r—2;s,s’)' (3529)

Now, if sz < x so that ¢ =1 in (3.5.29), then ¢(s"z) < ¢(z) < ¢(w), and thus
0(s"z) < l(z) < l(u),

which implies that s”z < x < u. But u < s”u so x # u and we actually have s”z < x < u and
thus x < z. Hence, by the induction hypothesis, the formula in (3.5.29) gives

Pz,w:1+q_q:17

as required.

If on the contrary z < s”z so that ¢ = 0 in (3.5.29), then 4(z) < ¢(s"x) < {(w), and
we have two possibilities: either ¢(s"z) = l(w) or ((s"z) < l(w). If {(s"x) = {(w), then
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<r—2</(u) =4(x) < £(w), which implies, since also u < s"u, that prod(r—2;s,s') <u =z < s"z.
Hence, by convention, we have

Ps”m,u =0= Px,prod(er;s,s’)a

so the formula in (3.5.29) becomes P,,, = 1. On the other hand, if ¢(s"z) < f(w), then
l(z) < £(s"x) < £(u), which implies that z < s’z < u. But v < s"u and " - s"v =z < "z
so 8"z # u and we actually have x < " < u and thus ¢(z) < r — 3. Hence, by the induction
hypothesis, since 7 — 2 < {(u) < ¢(w), the formula in (3.5.29) gives

Px,w:q+1_q:1a

as required. This completes the proof.

Remark 3.5.8. Example 3.5.1 shows, in particular, that for every rank 2 Coxeter group the
KL-polynomials are either equal to 1 or equal to 0.

Example 3.5.2. In rank 3, the Coxeter group Sy does give KL-polynomials different from 1.
Recall that in this case, if we let S = {s1, 52, s3}, with s1 = (12), so = (23) and s3 = (34), then
S4 has a presentation given by

Sy = <81782,83 ‘ s% = s% = Sg = (5152)3 = (3233)3 = (8381)2 = 1>.

These are

Poy 351538 = 4+ 1 = Pyysy 515308381
Note that in both cases we have z < w but ¢(w) — ¢(x) > 1.

Remark 3.5.9. Kazhdan and Lusztig conjectured in [24] that the KL-polynomials have non-
negative coefficients. The conjecture was proved in [25] in the case when the underlying Coxeter
group is a Weyl group or an affine Weyl group. It was proved in the general case in [11].

3.6 Action of the canonical basis on the Kazhdan-Lusztig basis

In this section we use the results obtained in Section 3.5 to study how the elements Ty (s € 5)
act on the KL-basis of 4. From this, we then derive a crucial property of the KL-polynomials.
We proceed as in [24].

Proposition 3.6.1. Let s € .S and w € W. Then

—Cy if sw < w, (3.6.1)

T,C, = qCw + ¢"*Cy + ¢'/? Z w(z,w)Cy  if w < sw. (3.6.2)
zeW
z=<w
sz<z

Proof. First, we prove (3.6.2). Note that if s,w € W are such that w < sw, then rearranging
(3.5.11) with w in place of v and sw in place of w, we obtain

q_1/2Tst =Cop + q1/2Cw + Z M(va)czv
zeW

z=<w
sz<z

so multiplying both sides by ¢'/2 gives

Tst - ql/zcsw + qu + q1/2 Z /U’(Zv w)027
zeW

zZ=<w
sz<z
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which is exactly (3.6.2).

We now prove (3.6.1). In this case, since sw < w, we know that ¢(w) > 1, and we proceed by
induction on £(w). If /(w) = 1, then w = s since the only element of S whose length is reduced
after left multiplication by s is s itself. We can then directly compute T5Cs using the definition
of Cy in (3.5.4) to get

T,Cs = ¢~ Y272 — ¢'/?T.

Then, substituting the relation in (3.3.2) for T2 and collecting equal terms we get
TsCs = q71/2 (q - 1) Ts + q1/2T1 - ql/sz = _q71/2 (Ts - qu) =—C,,

as required.

Now, suppose that ¢(w) > 1 and assume that (3.6.1) holds for any s,w’ € W such that
s'w' < w' and f(w') < f(w). Since sw < w = s - sw, we are in the case just proven and (3.6.2)
applies with s and sw. We therefore have

zeW

z=<sw
sz<z

and we can rearrange and multiply both sides by ¢~ /2T to get

T.Cp =T | ¢ V*TyCh — ¢"/*Clp — Z p(z, sw)Cy | . (3.6.3)
zeW

z<sw
sz<z

Then substituting into (3.6.3) the relation in (3.3.2) for T2 and collecting equal terms we get

T.Cp = —q_l/QTsCsw + ql/QCsw — Z w(z, sw)TsC.. (3.6.4)
zeW
zZ<sw
sz<z
Since sz < z < w, then, by the induction hypothesis, we have that TsC, = —C, for all z €¢ W

contributing a term in the last sum in (3.6.4), and thus

Tscw == q71/2T503w - ql/zcsw - Z /"L(Z7 Sw)TsCz - _Cw,
zeW
z<sw
sz<z
as required. This completes the proof. O

Remark 3.6.1. Since (Ts)ses generates H as an o/-algebra, the formulas in Proposition 3.6.1
describe the action of H on itself in the left regular representation of H, relative to the KL-basis.
We say more about this in Section 4.1.

Remark 3.6.2. An identical proof interchanging left an right shows that

—Cly if ws < w, (3.6.5)

O, T, = 4Cw+7Cls + ¢ Y p(z,w)C. if w < ws. (3.6.6)
zeW
z=<w
zs8<z

As in Remark 3.6.1, the formulas in (3.6.5) and (3.6.6) describe the action of H on itself in the
right regular representation of H, relative to the KL-basis.
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Remark 3.6.3. Following Remark 3.5.5, we are now able to fully describe multiplication between
the KL-basis elements. In particular, (3.5.11) tells us that if w € W and s € S such that w < sw,
then
CyCuw = Cow + Y, pi(z,w)C:. (3.6.7)
zeW

zZ=<w
sz<z

On the other hand, if w € W and s € S such that sw < w, then we can directly use the definition
of Cy in (3.5.4) and (3.6.1) in Proposition 3.6.1 to obtain

CsCyp = q V2 (T — q11) Cy = ¢ V2T,C — ¢*C = — (q_1/2 + q1/2) Clo. (3.6.8)

Similarly, from the formulas Remark 3.6.3 corresponding to the ‘right-hand’ version the formulas
in Proposition 3.6.1, we also obtain

—~ (q*”2 + q1/2) Cp if ws < w, (3.6.9)

CwCs =< Cus + Z p(z,w)C,  if w < ws. (3.6.10)
zeW
z<w
zs<z

Corollary 3.6.1. Ifx,w € W are elements of W such that sw < w and x < sz for some s € S,
then Py = Pag .

Proof. Let x,w € W be elements of W such that sw < w and x < sz for some s € S. By (3.6.1)
in Proposition 3.6.1 we have T5C,, = —C,,. Using the expression in (3.5.2) of Theorem 3.5.1 for
Cly, this equality can be written as

5wq111;/2 Z 2":yq;1py,wjjsjjy = _qully/Q Z €zq;1132,sz,

yeW zeW
r<w z<w

which, after multiplying both sides by &4,qw Y 2, becomes

D ey, ' PyuTiTy ==Y c.q;' Py (3.6.11)
yew zeW
ysw z<w

Note that, by Lemma 2.10.2, we have that sx < w, so Ty, appears on the right-hand side of
(3.6.11), with coefficient
_5st;p1Psx,w = 5xq71qmilpsx,w7

where we have used the facts that e5, = —¢, and ¢sz = qq,. Since x < sz, by the relation in
(3.2.4) in Proposition 3.2.2, the element T, appears on the left-hand side of (3.6.11) directly in
the product TsT,, with coeflicient ,q, 113”0, and indirectly in the product TT,., with coefficient
(g — 1)5555(]8_961?595@. Therefore, the coefficient of T, on the left-hand side of (3.6.11) is equal to

5:tqcc_lpx,w + (C] - 1)5sxqs_zlpsx,w = qum_lpx,w - 5:1:(];1 (1 - q_l) st,wa

where we have again used the facts that e,, = —¢, and g5 = qq.. Hence equating the coeflicients
of Ts; on both sides of (3.6.11) yields

5xQ;1px,w - 5qu_1 (1 - q_1> psx,w = 51‘.7;1(]_1?596,107
which then implies that
px,w = q_lpsx,w + (1 - q_l) psaj,w = pSLU,IU7

which is equivalent to Py, = Py, as required. O
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Remark 3.6.4. As in Remark 3.6.2, an identical proof interchanging left and write shows the
‘right-hand’ version of Corollary 3.6.1, that is, if ,w € W are elements of W such that ws < w
and x < s for some s € S, then P, , = Prs -

3.7 Inversion

In this section we introduce ‘inverse KL-polynomials’ Q) ., following [25], or [29] where Lusztig
defined them only for Weyl groups, and prove two properties of these that are mentioned in both
[25] and [30] without proof. We also try to compute the polynomials @1, for any w € W. We
then use these polynomials @, 4 to define a ‘basis’ (D)wew dual to the KL-basis following [30]
and introduce a -linear map 7 : H — &7 together with some of its properties. These three tools
will be of great importance in Section ??. The main references for this section are [25], [29]
and [30].
Definition 3.7.1. For each y,w € W with y < w, define a polynomial @, ., € Z[q] by the
identities

> eyeQy P = Sy (3.7.1)

zeW
y<zsw

Lemma 3.7.1. Let y,w € W be elements such that y < w.

(a) If y = w, then Qyw = 1.
(b) If y < w, then Qyw € Z[q] is a polynomial in q with

degy Qyuw < (U(w) — £(y) — 1) (3.7.2)
Proof. First, choosing y = w in (3.7.1), we see that Q. = 1 an (a) is proved.

To prove (b), we proceed by induction on f(w) — (y) > 1. If {(w) — £(y) = 1, then y < w
implies that sy = w for some s € S and thus, using the facts that ¢, = —¢,, and 52 =1, the
identity in (3.7.1) reads

QyyPyw — QyuwPuww = 0. (3.7.3)
Since ¢(w) — £(y) = 1, we know, by Corollary 3.5.1, that P,,, = 1. Moreover P, = 1.
Substituting these and the result in (a) into (3.7.3), we obtain @y, = P,,. Hence, by Theorem
3.5.1, the degree bound in (3.7.2) of (b) follows in this case.

Now, suppose that £(w) — £(y) > 1, and assume that for any z, 2’ € W such that 2 < 2’ and
0 < 4(z) — l(x) < l(w) — £(y) the degree bound in (3.7.2) of (b) holds. Now note that since
P, =1, identity in (3.7.1) can be written as

Qw:_ 882@ szw-
y7 y y7 b

zeEW
y<z<w

Since for every z € W with y < z < w we have that 0 < £(z) — {(y) < (w) — {(y), it follows, by
the induction hypothesis and the degree bound of the KL-polynomials in Theorem 3.5.1, that

1 1 1
degq Qy,zpz,w < 5 (5(2’) - E(y) - 1) + 5 (E(U)) - e(z) - 1) - 5 (e(w) - E(y) - 1)
for each z € W contributing a term to the right-hand side of the equality in (3.7), proving the
degree bound in (3.7.2) in (b). O

Example 3.7.1. Let w € W be any non-identity element, and take y = 1 in (3.7.1) of Definition
3.7.1, which gives
Z 5le,ZPz,w =0. (374)

zeW
1<z<w
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Note that if £(w) = 1, then w = s for some s € S and (3.7.4) yields

0= 81621,1-P1,s + 8SQl,SPS,8)

so by (a) of Lemma 3.7.1, Corollary 3.5.1 and the fact that Py, = 1, to obtain Q1 s = 1. Now,
suppose that ¢(w) > 1 and pick s € S such that sw < w. By induction, @y, =1 for all z €¢ W
such that 1 < z < w, so by definition,

ewQiw = — E €:P; 0w — E €:P; 1. (3.7.5)
zeW zeW
1<z<w 1<z<w
82<z z2<8z

But, by definition, €5, = —¢, and, by Corollary 3.6.1, P, ,, = Ps. ., for every z € W in the second
sum in (3.7.5), which becomes

Ele,w = - E Esz,w + g Eszpsz,w- (376)
zeW zeW
1<z<w 1<z<w
52<z z<8z

Moreover, since for every z € W such that z < sz, we have that s - sz = z < sz, setting y = sz
for such z € W, the equality in (3.7.6) becomes

cwQiw = — E e:P, 0+ E eyPyw- (3.7.7)
zeW yew
1<z<w 1<y<w
sz<z sy<y

Every term in the second sum in the right-hand side of (3.7.7) except €y Pyw = € is cancelled
by a term in the first sum in the right-hand side of (3.7.7), which gives

5wQ1,w = Ew,

which in turn implies, since £(w) > 1, that @1, = 1. Since w € W was arbitrary, it follows that
Qi =1forallweW.

Definition 3.7.2. For any y € W, define

D, := E ij,mqy_l/QTz = E Qy,xqglc/zqz;lmfm. (3.7.8)
zeW zeW
y<z ysx

Remark 3.7.1. The object D, in Definition 3.7.2 is in fact an element of the set # of formal sums
> ey
weW

with coefficients a,, € & for each w € W. In particular, using (a) and (b) in Lemma 3.7.1, we
see that

Dy = Ty + Z @y’mqi/qu—uzfx S Ty + ql/2 Z ot Tx, (3.7.9)
zeW zeW
y<z y<z

where the sum could be infinite. Since H is the set of formal sums such that a,, = 0 for all
but finitely many w € W, we have that % C H and the left #-module structure on # extends
naturally to a left H-module structure on #. For example, for any s € S and any «,, € o/ for
each w € W, we have

T, <Z awfw> =Y alwt Y au (iw + (g2 - q—l/Q)Tw) , (3.7.10)

weW weW weW
w<sw sw<w
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where we have used the relations (3.5.20) and (3.5.21) defining multiplication with respect to the
basis (Tw)w cw Since a sum of terms au, Ty, for w < sw plus a sum of terms o, Ty, for sw < w

with w exhausting W is equal to a sum of terms ozswfw for sw < w plus a sum of terms aszVw
for w < sw with w exhausting W, the equality in (3.7.10) can be written as

Ts <Z awfw> Z asz + Z (asw—i— 1/2 1/2) )fw (3.7.11)

weWw weW weW
w<sw sw<w

Similarly, # has a right H-module structure.
Definition 3.7.3. Define an «/-linear map 7 : H — < by

T (aw > fw> = ay. (3.7.12)

weWw

Lemma 3.7.2. The < -linear map 7 : H — o in Definition 3.7.3 has the following properties:
(a) For any y,w € W, we have T(fyfw) = Oyuw,1-
(b) For any h € H and h € H, we have T(hh) = 7(hh).

Remark 3.7.2. The statement in (a) Lemma 3.7.2 can be directly checked by applying the defi-
nition of 7 and the multiplication relations in (3.5.20) and (3.5.21). A similar technique is used
in the following corollary. The statement in (b) follows from the fact that the left and right
H-module structures on H commute with each other.

Corollary 3.7.1. For any y,w € W, we have 7(CyD,) = T(Dwa) = Ouwy,1-

Proof. For any y,w € W, we know, by (3.5.24) and (3.7.9) that

T7(DyCy) = T(Tyfw) + cwql/? Z Ezq;1/2psz7(fyfz) + q;1/2 Z Qi/Qnyg;T(fxTw)
zeW xeW

i e o e v (3.7.13)
+€wa/ qy / E § q gqu / anﬁ Z?_UT(T T)
zeW zeW
y<z z<w

Now, if yw = 1, we have, by (a) in Lemma 3.7.2, that T(fyfw) =1 and
7(T,T,) = 7(TyT,) = 7(TT.) = 0

for all z,z € W such that z < w and y < x, which shows that 7(D,Cy) = 1. On the other
hand, if yw # 1, then T(Tyﬁu) = 0 and either y < w™! or w™! < y. In the latter case, we
have, by Proposition 2.10.2, that w < ™!, so T(Tvyfz) = 0 for all z € W such that z < w, and
similarly, the fact that w™! < y implies T(fxf w) = 0 for all z € W such that y < z. Moreover,
for any fixed x € W such that y < x in the third sum in (3.7.13), we have that if z € W is
going to contribute a term for such a given z, then z = 27! But w < y~! < 27! = 2, so the
last sum in (3.7.13) is actually zero too. Hence 7(D,C\) = 0 in this case, as required. Now, in
the first case, by Proposition 2.10.2 again, we have that y~! < w, and thus if £ € W such that
y < x, then x = w™! is the only element contributing a term two the second sum in (3.7.13)
since otherwise T(Txfw) = 0, and similarly, if z € W such that z < w, then z = y~! is the only
element contributing a term two the first sum in (3.7.13) since otherwise T(fyfz) = 0. Moreover,
for any given € W such that y < x in the third sum in (3.7.13), we have that if z € W is an
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element that is going to contribute a term for such a given z, then z = 27! and z < w, which is
compatible with y < x < w™!. The equality in (3.7.13) thus becomes

T(DyCw) = 020y Pewey | Pyt +eweyQuu + Y ey2aQyalPrw |, (3.7.14)
cew
y£i<w*1

where we have used the facts that e, = ,-1 and ¢, = ¢,-1 for all v € W. But (3.7.1) with w™!
instead of w gives

Py -1+ eyew@y -1 + Z £y€eQyaP -1 =0, (3.7.15)

y<z<w~1!

and thus, combining (3.7.14) and (3.7.15) and using the fact that P,-1,, = P, -1, we obtain
7(D,Cy) = 0, as required. Finally, the fact that 7(D,C,,) = 7(CyD,) follows by (b) of Lemma
3.7.2. a
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4 Kazhdan-Lusztig Cells

4.1 Left, right and two-sided KL-cells

The notion of Kazhdan-Lusztig-cells (KL-cells) first appeared in [24] as a result of the desire
of Kazhdan and Lusztig to explicitly construct representations of the Hecke algebra H. In
this section we start with some definitions, together with a combinatorial description and some
general properties of KL-cells. These turn out to partition W. We consider the case when W is
dihedral. We then see how KL-cells relate to the left regular representation of H relative to the
KL-basis and present a result in [30] relating the products C,,D, and D,C,, with the preorder
“ <7 constructed in this section and used to define KL-cells. We also give some examples
of KL-cells. For the rest of Chapter 4, whenever we give examples in rank 2 and ranks 3, we
describe explicitly the KL-cell decomposition of W viewing W as a set of chambers/alcoves in a
Euclidean plane, where each alcove is coloured according to the left /two-cell KL-cell it belongs
to. We end this section by presenting a series of conjectures by Lusztig about the partition of W
into KL-cells as well as the relations between these. The main references for this section are [24]
and [28], and the conjectures can be found, either explicitly or implicitly in [32].

Definition 4.1.1. We say that y,w are joined if we have y < w or w < y and we denote this
by y — w; we then set

wy,w) ify<w
ww,y) ifw =<y

/l(yv ’LU) = {

Definition 4.1.2. For any w € W, set
L(w):={seS|sw<w} and Z(w):={seS|ws<w}

Then Z(w) is called the left descent set of w and Z the right descent set of w.
Example 4.1.1. For any Coxeter system (W, .S) we have £(1) =0 = Z(1).
Example 4.1.2. For any finite Coxeter system (W, S) we have Z(w,) = S = Z(w,).

Remark 4.1.1. Note that if we call elements w,w’ € W equivalent if £ (w) = Z(w'), we get a
partition of W. The same is true if we use right descent sets.

Definition 4.1.3. Given elements w,w’ € W, we say that w <y w' if there exists a sequence

w = wy, w1, ..., w, = w of elements of W such that for each i = 1,...,n, we have w;_; — w;
and Z(w;—1) ¢ Z(w;). We say that w <prw' if there exists a sequence w = wo, wy, . .., wy = 2’
of elements of W such that for each i = 1,...,n, we either have w;_1 <pw, or wi:ll < wi_l.

Remark 4.1.2. Note that the relations “ <;” and “ <pgr” are transitive and reflexive, so they
are preorders. However, these preorders are not anti-symmetric, so they are not order relations.

Definition 4.1.4. Let “ ~1” be the equivalence relation associated to the preorder “ <;”; thus
w ~pw means that w <y w’ and w’ <pw. The corresponding equivalence classes are called left
cells of W. A right cell of W is a set of the form

{weW |w!eTl, T'is aleft cell}.

Let “ ~1r” be the equivalence relation associated to the preorder “ <;r”;: thus w ~7pw means

that w <y pw’ and w’ <prw. The corresponding equivalence classes are called two-sided cells.

Remark 4.1.3. From Definition 4.1.3 and Definition 4.1.4, it follows that each two-sided cell is a
union of left cells, respectively, right cells.
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Remark 4.1.4. If ‘H is commutative, then the relations “ <;” and “ <pr” coincide. Hence the
relations “~p” and “ ~pp” coincide, and thus the sets of left cells, right cells and two-sided
cells all coincide too.

Proposition 4.1.1. Let (W, S) be a Cozeter system. Then:

) )

(a) The identity element of W lies in a left cell by itself. Hence lies in a unique two-sided
cell.

(b) If W is finite, then the unique longest element we of W lies in a left cell by itself.

Proof. Assume that w € W is any non-identity element belonging to the same left cell as the
identity 1. Then, be definition, there must exist a sequence of elements

l=wy—w; — —w, =w (4.1.1)

such that .2 (w;—1) € Z(w;) for each i = 1,---n. But £(1) = 0, which is contained in £ (z) for
any x € W. This contradicts the existence of a sequence as in (4.1.1). We hence conclude that
there is no non-identity element of W belonging to the same left cell as 1, and part (a) follows.

Now, assume that W is finite and let w’ € W be any element such that w # w, and w’ lies
in the same left cell as wy. Then, be definition, there must exist a sequence of elements

=W (4.1.2)

/ / /
W =wy ——wy — - —— W),

such that .Z(w]_,) € Z(w}) for each i = 1,---n. But .Z(w,) = S, which contains £ (z) for any
x € W. This contradicts the existence of a sequence as in (4.1.2). We hence conclude that there
is no element element of W different from w, belonging to the same left cell as w,, and part (b)
follows. O

Example 4.1.3. Let W = D,, be a dihedral group of order m < oo, with generating set
S = {s,s'} € W. From Example 3.5.1 we know that P, ,, = 1 whenever x < w, which we know,
by Example 2.10.1, is the case if and only if ¢(x) < ¢(w). All this together implies that x < w if
and only if ¢(w) — ¢(z) = 1, and thus x — w if and only if the ¢(w) — ¢(x) = 1. Now, recall that
every element of W, except the longest element w, if m < oo, has a unique reduced expression,
and thus .Z(w) = {s} if such expression begins with s and % (w) = {s'} if such expression begins
with s’. Hence, for non-identity elements z,w, the condition . (z) ¢ .Z(w) is equivalent to the
condition that the unique reduced expressions of z and w have a different leftmost element. We
can therefore construct two different chains

S— S,S e SS/S e S,SS/S — SS,SS,S —_—

S, i SS, i S/SS, i SS,SS/ e 8,88/85/ —_—

and this will exhaust all elements of W. This shows that x <rw if z, w € W such that ¢(x) < £(w)
and the rightmost element in their reduced expressions is the same for both. If z <y w with chain

T=wWy—— WL — " —— Wp—] — Wy = W,

then the reverse chain also meets the required conditions for w <r . Hence, by definition z ~p w.
Conversely, if two elements 2/, w’ € W have reduced expressions whose rightmost element is
different, then any chain between these two elements has to contain only elements sharing their
leftmost element in their reduced expression. In this case we have Z(w}_;) C Z(w!) for each
pair of adjacent elements w,_;,w; in the chain, and thus 2’ # w’. This shows that if m = oo,
then W has three left cells, and if m < oo, then W has four left cells. Using the same argument,
but this time working with elements sharing their leftmost element in their reduced expression,
we can get the right cells of W. In then, follows by definition that every element of W, except the
identity and w, in the case where W is finite, lie in the same two-sided cell of W. For example,
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if W is of type Ao, with presentation as in Example 2.9.1, then the above discussion shows that
the the partition of W into left KL-cells is given by

{1}, {s, s}, {s', 55}, {wo},

and depicted in Figure 4.1a, and the partition of W into two-sided KL-cells is given by

{1}, {s, 55,5, 55"}, {wo}.

wo wO

~ ~
~ - ~

(a) Left KL-cells (b) Two-sided KL-cells

Figure 4.1: KL-cells when (W, S) is of type A

Proposition 4.1.2. If x,w € W are elements such that x <pw, then Z(w) C % (x).

Proof. Let x,w € W be elements such that = <pw. First note that, by the transitivity of the
preorder “ <", it is enough to prove this for the case when z — w with £ (z) ¢ £ (w), and
recall that we have two possibilities: either z < w or w < z.

Consider the case w < x and let s € Z(z)\ £ (w). In particular we have w < sw and sz < z
and so, by Corollary 3.6.1, we obtain Py, ; = Pj, . This implies that z = sw, since otherwise

degq Pw,x = degq Psw,m < % (E(J") - E(sw) - 1) < % (Z(J") - f(’w) - 1)7

which contradicts the fact that w < x. Then, in view of the facts that z = sw and w < x, we
deduce that Z(w) C Z(x).

Now, consider the case * < w and assume, for a contradiction, that there exists some
s e Z(w)\ Z(z). Then ws' < w and = < zs’, so by the ‘right-hand’ version of Corollary
3.6.1 (see Remark 3.6.4), we obtain Py, = P,y ,. Note that this implies that w = xs', since
otherwise

(6(w) — £(xs') — 1) < % (Clw) — £x) — 1),

| =

deg, Prw = degy Pry 1 <
which contradicts the the fact that x < w. Then, in view of the facts that w = zs’ and z < w,

we deduce that £ (z) C Z(w), which contradicts our initial assumption that £ (z) ¢ £ (w).
The proof is now complete. O

Corollary 4.1.1. If x,w € W are elements such that x ~pw, then Z(w) = Z%(x).
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Proof. If x,w € W are elements such that x ~pw, then, by definition of “ ~;”, we have that

z <rw and w < z. Hence, by Proposition 4.1.2, the equality Z(w) = Z(x) follows. O

Remark 4.1.5. Corollary 4.1.1 shows that decomposition of W into left KL-cells refines the
decomposition into sets with a common right descent set in Remark 4.1.1.

Remark 4.1.6. Having described Kl-cells combinatorially, we return to the formulas for the
action of the canonical basis on the KL-basis in Proposition 3.6.1 and consider what these tell
us about the left regular representation of H. First, if w € W is an element such that w < sw,
then P, s, # 0 and

deg, < 5 ({(sw) — f(w) ~ 1) =0,

which shows that w < sw, and in particular sw w. Moreover, s € Z(sw) but s € Z(w),
so Z(sw) € £ (w). It follows, by definition of “ <z”, that sw <pw. Also, for the given s such
that w < sw, any element z < w in the final sum of (3.6.2) satisfies sz < z, and thus s € Z(z)
but s € .Z(w), which shows that .Z(z) € £ (w). This shows that z <y w. We therefore see that
for any w € W, left multiplication by Ty takes C, into an o7-linear combination of itself and
some C,, for which z <jw, and thus

H-CoC Y o Co (4.1.3)

zeW

r <pw
We can do the same thing for the formulas in Remark 3.6.2 and consider what these tell us
about the right regular representation of H. If w € W is an element such that w < ws,
then, by Proposition 2.10.2, we have w™! < sw™', so the same argument as above shows that
swl < w L Similarly, for the given s such that w < ws, any element z < w in the final sum of
(3.6.6) satisfies zs < z, and so it satisfies sz71 < 271, The same argument as above then gives
21 < w™t. We therefore see that for any w € W, right multiplication by T takes ', into an

of-linear combination of itself and come C, for which z~1 <, w_l, and thus
Co-HC > o-Ch (4.1.4)
zeW
x~ 1< w!

Hence, combining (4.1.3) and (4.1.4) and using the definition of “ <pr”, it follows that

H-Co HC Y o-C, (4.1.5)

zeW
T SLRW

Remark 4.1.7. Each left KL-cell gives rise to a representation of H. Let T' C W be a left cell
and define
Ir :=spany (Cp | x € T or x <pw for some w € T'),

that is, Zr is the .&7-span of all (', such that w € I" and all C,, such that z <; w for some w € T".
Also define
Jr :=span,, (Cy | x <pw for some w € T and z ¢ T'),

that is, Jr is the &7-span of all C, such that x <y w for some w € T but ¢ I". From (4.1.3) in
Remark 4.1.6, it follows that Zy is a left ideal of H. Moreover, the transitivity of the preorder
“ <" together with the definition of a left cell, it follows that Jr is also a left ideal of H.
Hence the quotient Zp/Jr is an H-module. In particular, it is a free o/-module with basis
(Cw + Jr) e, and a left H-module satisfying

Ts(Cw + jI‘) = Z ql/Q,Us,w,mCa: + \71"1
zel\{w}
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where
-1 Hsw<w=zx

1/2

Uswaz = § q ifx=w < sw

plr,w) if sz <z <w< sw.

Such module is called a left cell module of H and has rank equal to the to the number of elements
in the left cell. The representation afforded by the left cell module is then a cell representation
of H. Similarly, we can define right ideals giving rise to right H-modules associated with the
different right KL-cells of W, as well as two-sided ideals giving rise to right H-modules associated
with the different two-sided KL-cells of W.

Example 4.1.4. In [24] showed that if W is a Weyl group of type A, then the left cell repre-
sentations are irreducible. Furthermore, any irreducible representation can be realized as a left
cell representation.

Remark 4.1.8. The reader interested in representations associated with KL-cells should turn to
the discussions in [41], [18], [15], [19] or [26] about the topic.

Lemma 4.1.1. Let w,y € W. If CyDy # 0, then y~' <pw. If D,Cy, # 0, then y <pw

Proof. First, assume that C,,D, # 0. Using the definitions of D, and C, in (3.7.9) and (3.5.23),

respectively, as an &7-linear combinations of the elements in the basis (Tw)w cw We see that the
d

product Cy, D, can be written as a 27-linear combination of elements in the basis (fw)
so in particular, as

weWw? an

CwDy= > a.D. witha, € .
zeW

Moreover, the fact C,, D, # 0 implies that a, # 0 for at least one z € W. For such an element
z, say z = x, we have

T(C’x—leDy) =T (Cx—l Z aZDZ> = Z OéZT(Cx—lDZ) =, # 0.
zeW zeW

Recall that we may also write the product C,-1C,, as

CoiCuw =Y Ty, .Cs, (4.1.6)
zeW

and thus, using the result in Corollary 3.7.1, we also get another expression for T(Cm—l CwDy) as

7(Cp1CyDy) =7 (Z hzl,w,zcsz> = pm1,4.7(CaDy) = g1 gy 1,
zeW zeW

which shows that the coefficient h,-1,,,-1 of Cy-1 in the expansion of C,-1Cy, in (4.1.6) is equal
to

hy -1 = az # 0.

Hence, using (4.1.3), we deduce that y~! <y w, as required. The other assertion of the lemma is
proved in exactly the same way but interchanging left and right. O

Example 4.1.5. (Type :&2) Let (W, S) is an affine Weyl group of type Ay so that S = {s1, 52,53}
and W has a presentation

W = <81,32,83 | 3% = s% = sg = (3132)3 = (8283)3 = (8183)3 = 1>.
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as in Example 2.9.3. Now, let W;; denote the standard parabolic subgroup generated by s; and
s; for each pair 1 <4, j < 3, and define, for each pair 1 <1i,j < 3, the set

W9 ={weW|Zw)={si,s;}}.

The sets W12, W13 and W23 correspond to the green, pink and brown shaded areas in Figure
4.2. Similarly, for each 1 <4 < 3, define the set

Wi={weW | Zw)={s}}.

”é

5
S

Figure 4.2: Sets W2, W13 and W23 for W affine Weyl group of type As

First, by Corollary 4.1.1, the map w — Z(w) is constant on the left KL-cells. Since the sets
W12, W' and W2 are three different particular fibres of this map, it follows that each of the
sets W12, W' and W23 is a union of left cells. Now, notice that

53828182 — S28182  and  ZL(s3s25182) = {s3} € {51, 82} = ZL(s28152),

SO 53525152 <[, 895152, and the reverse chain gives 525153 <r 553525152. Now, if w € W12 with
l(w) = £(s3528182) + 1 has either Z(w) = {s2, s3} or Z(w) = Z(s1). In either case we have

w— 83528180 — 25152 and  L(w) € L (s3s2s152) = {s3} € {51,582} = L(s28152),
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S0 W <[, 54525152 <L S95152. Moreover, if Z(w) = {s1}, then the reverse chain gives the relations
525152 <[, 83525152 <pw, and if Z(w) = {s2,s3}, then the chain sys159 — w — s3525182
satisfies

ZL(s28182) = {s1,82} € L(w) € {s3} = ZL(s25152),

which gives the relations sys152 < w <[ 83525152. It thus follows that w ~ 553595152 ~ [, 595152.
Since for every element in W'? we can proceed in this way, we see that W12 is in fact a single
left cell. By the symmetry between the three sets W12, W13 and W23, the same is also true for
the sets W13 and W23,

No take the set W'2s3. This is the yellow set in Figure 4.3. Note that the shortest element of
this set is the element sys1s953, and if w € W is any element of W12s3, then w is of the form
w = 159515953 for some x € W with xsas150 € W12 and £(w) = £(x) + £(s25152). In particular
note that as we know that xsosise ~ wss

w— 82515283 and ZL(w) € ZL(s2515283),

which gives w <y, 55515253, and the reverse sequence gives s2515253 <z, w, and thus w ~, s,515253.
Hence W'2s3 is a left cell too. Again, by the symmetry with the sets W13sy and W23s; are left
KL-cells too and these correspond to the regions shaded purple and orange, respectively, in
Figure 4.3.

Finally consider the set W3\ W'2s3. This corresponds to the dark blue region in Figure 4.3.
Again, by Corollary 4.1.1, since the map w — Z(w) is constant on the left KL-cells and the set
W3\ W2s3 is a particular fibre of this map, it follows that it is a union of left cells. But note
that the elements of W3\ W'2s3 are exactly

53,5283, 515253, 53515253, 5253515253, 515253515253, 535152535152S53, ...,

5153, 525153, 53525153, 5153525153, 525153525153, 53525153525153, ...,

all which have singled-element left descent sets, and we can choose a chain containing all the
elements of elements of the set such that each pair of adjacent elements in the chain is joined
and the chain has alternating left descent sets, and the same is true for the reverse sequence.
We therefore see that W3 \ W'2s3 is another left cell of W, and by the symmetry, so are the
sets W1\ W23s; and W2\ W'2sy, which correspond to the regions shaded light blue and red,
respectively, in Figure 4.3. Since we have exhausted all the elements of W, we have shown that
W is partitioned into 10 left cells and the partition is given by:

A13 = W13, A2 = A1382 B1 = Wl \ Al, CQ) = WQ)
A12 = W12, A3 = A12$3, B2 = W2 \ AQ,
A23 = W23, A1 = A2381 B3 = W3 \ A3

The left KL-cell decomposition of W is described in Figure 4.3, where the different cells have
been given different colours.

Now, consider the union of all the left KL-cells of W whose name contains a fixed capital letter,
so that we obtain the following partition of W:

A=A 3UAUA»33UAA3UA;
B :=B; UBy UBsg3,
C .= C@.

1

Notice that under the automorphism w — w™", we have

A—-A B—B and C~ Cy,

which implies that each of A, B and C is contained in a two-sided cell of W. Since C is a
two-sided KL-cell, by (a) in Proposition 4.1.1. It remains for us check whether or not A and B
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Remark 4.1.9. In Example 4.1.5, we have used a slightly different approach to the one Lusztig
presents in [30],~where he also presents explicit decompositions of KL-cells for the affine Weyl
groups of type By and Ga.

Definition 4.1.5. A subset X C W is said to be left-connected if, for all z,y € X, there exists
a sequence $i, S92, ..., of elements of S such that y = s,---s9s12 and s; - - ses1x € X for all
integers i € Z such that 1 < i < r. A subset X is said to be right-connected if X! is left-

connected. The maximal left-connected subsets of X are called the left-connected components of
X.

Remark 4.1.10. Note that every subset of W' is the disjoint union of its left-connected components.
Conjectures 4.1.1. (Lusztig)

(L1) Ewvery left KL-cell contains an involution.
(L2) Ifwe W, then w ~prw ™"
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Figure 4.4: Two-sided cells of W of type gg

(L3) The equivalence relation “ ~pr” is generated by “ ~r” and “ ~g”.

(L4) If x,y € W are such that x <py and  ~pRry, then x ~ry.

(L5) Every left KL-cell is left-connected.

(L6) If T is a left KL-cell, then the left-connected components of ' are the left cells of W

contained in I.
(L7) Every two-sided KL-cell meets a finite standard parabolic subgroup of W.
(L8) If S is finite, then the number of two-sided cells is finite.

Remark 4.1.11. Conjectures (L7) and (L8) can be found in [32] and [20]. The remaining are
implied by a series of conjectures in [32].

Remark 4.1.12. (L7) has been proved by Geck in [17] whenever W is finite.
Proposition 4.1.3. The conjectures (L1)-(L8) are related in the following way:
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(a) (L1) implies (L2).
(b) (L7) implies (L8).

Proof. First, assume that (L1) holds. Let T' be a left KL-cell of W and let w € I". Then, there
exists an involution d € W such that w ~d. But, then, by definition of a right KL-cell, we
also have w1 NRdfl = d, and so in particular, have w™! <gd and d <Rw71. So we have a
sequence w, d, w™ ! such that w <rd and d <, w_l, which implies that w <pgr w_l, and we have
a sequence w™ ', d, w, such that (w‘l)_1 <1 d and d <j,w, which implies that w™! <;pw. Hence
w~prw " and (L2) holds, which proves (a).

Now, assume that (L7) holds, and suppose that S is finite. Since S is finite, the number of
elements of W contained in a standard parabolic subgroup is finite. Hence, since by (L7), the
number of distinct two-sided KL-cells is bounded above by the number of distinct elements in
the standard parabolic subgroups of W, it follows by the fact that such number is finite, that
the number of two-sided KL-cells is finite and (L8) holds, which proves (b). O

Remark 4.1.13. We see from the collection (L1)-(L8) in Conjectures 4.1.1 that involutions play
an important role in the number of KL-cells as well as that the particular choice for the set S of
simple reflections.

4.2 The a-function

Lusztig’s a-function is the most subtle invariant of cells that has been introduced so far. It was
first introduced in [30] for Weyl groups and affine Weyl groups, where Lusztig defined a(w) as
the order of the worst pole of the coefficient of C,, in a product T,,T,, of two basis elements T}, T},
of the Hecke Algebra H. The definition of the a-function is Lusztig’s main contribution in [30],
where he develops various techniques for computing the left and two-sided cells of Weyl groups
or affine Weyl groups. It was later extended to arbitrary Coxeter groups in [16]. In this section
we formally define Lusztig’s a and study its connections with the decomposition of W into left,
right, and two-sided KL-cells. We present some properties of the a-function that apply to general
Coxeter systems (W, S), including a lower bound. The main references for this section are [25]

and [30].
Definition 4.2.1. Given w € W, consider the set

S = {z € Ny ‘ qi/QT(fxfwa) € o/ tforall z,y € W} . (4.2.1)

If .7, is non-empty, we denote by a(w) the smallest integer in .#,. If ., is empty, we set
a(w) = co. This defines a function

a: W — NU{oo},

called the a-function.

Remark 4.2.1. Recall that Cy =Ty = Tl. Moreover, for any s € S, we see, from the definitions
of Cs and Tj, that _ N

Cs = Ts - q1/2T1a
which shows that B

T, =Cs+ q1/201.

Now suppose that w € W is an element such that £(w) > 1, and assume that for any x € W
with ¢(x) < ¢(w), the following holds:

ToeCot gyt C..

z<x

82



Now, the relation in (3.5.23) can be written as

fw =Cy — 5wqgu/2 Z 5yqy_1/2]3y’wfy e Cy + ql/2 Z T fy,

yeWw yew
y<w y<w

where the containment as an element follows from the degree property (3.5.3) of the KL-
polynomials. Since for any y € W such that y < w we have that {(y) < ¢(w), it follows,
by the induction hypothesis, that

Ty €Cu+q/?Y @t C (4.2.2)

yew
y<w

From the relations (3.5.24) and (4.2.2), it then follows that the set .#, is actually equal to

Iy = {’L e Ny ‘ qi/zT(CnyDw) € o/ for all z,y € W} ) (4.2.3)

Remark 4.2.2. In the introduction of this section, we described the a-function in a seemingly
different way, but in fact the two definitions are equivalent. Let

fxfy = Z Ogy.C, with oy, . € & for all z,y,z € W. (4.2.4)
zeW

Consider the coefficient o, , ,—1 of C,,-1 when Tzfy is written as an .o/-combination of the KL-
basis as in (4.2.4) and consider the order of the pole at 0 of such coefficient. Then, as z,y € W
vary, the order of such pole may be bounded, and in this case a(w) is the largest such order, or
it may be unbounded, in which case a(w) = occ.

Proposition 4.2.1. Let (W, S) be any Coxeter system. We have a(w) = a(w™!) for any w € W.

Proof. Recall the anti-homormorphism b : H — H of H in 3.1.2. Applying it to the equality in
(4.2.4), we get
Ty—l -1 = Z gy, -Ch-1,
zeW

which shows that for any z,y,2 € W, we have a1 ,-1,-1 = azy.. By the definition of
a: W — Ny, a(w) = a(w™!) follows. O

Proposition 4.2.2. Let (W, S) be any Cozeter system. Then a(w) = 0 if and only if w = 1.

Proof. By definition of D; and by the result in Example 3.7.1, it follows that

D= q*Tu. (4.2.5)
weW

We no show, by induction on ¢(z) > 1 that T;Dl = qgl/2D1. First, for any s € S, we have, by
(3.7.11)

D= Y ¢ T+ Y ¢V (1 + (¢~ 1) T = ¢"/?D1.

weW weW
w<sw sw<w

Now suppose x € W is an element such that ¢(x) > 1 and assume that TyDl = q;/ Dy for any
y € W such that ¢(y) < ¢(z). Pick s’ € S such that x = sy with £(y) < ¢(z), so that T,, = T,T,,.
Then, by the induction hypothesis, it follows that

T.Dy = T.T,Dy = Tuqy/*D1q"* Dy = ¢}* D1 = q}/* Dy,
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as required. Hence

T(T,TyD1) = ¢)/*1(TuD1) = q)/*qY/*r (D),
and since, by (3.7.9) and by definition of 7, we have
7(Dy) _T( 3 4T )
weW
it follows that o
(T, TyD1) = q)/%q}/* € &
for all z,y € W. It follows that a(1) = 0.

On the other hand, assume that w € W' is a non-identity element an let s € S be such that
sw < w. Then, using the relation for multiplication with respect to to the basis (T)w cw in
(3.5.20) and (3.5.21), we get

Tsfw = Nsw + (q1/2 - q_1/2)j:w
which by (3.5.24) we know is of the form
Tsfw = (ql/2 — q_l/Q)Cw + o/-linear combination of elements C,, for w’ < w.

Since T(C’ 1D, - 1) = 0 for any w’ < w, we have that
T(TsTyDy1) = T((q1/2 _ q_1/2)Cwa—l> Mg

which implies that 0 € .#,—1. This implies that a(w~!) > 1, and thus, by Proposition 4.2.1, we
conclude that a(w) > 1. The proof is now complete. O

Proposition 4.2.3. Let J be a subset of S which generates a finite subgroup of W, and let
wy be the longest element in this subgroup. Let w,w',w” € W such that w = w'wyw” and

l(w)=1lw)+lwy) + L(w"). Then a(w) > l(wy).

Proof. First note that since every time we multiply w; by an element s € J we get sw; < wy,
so the coefficient of T},, in the product Tr, , Tw, will be of the form

(q1/2 - q_l/Q)K(wJ) + smaller powers of (ql/2 — q_1/2),

T, = (5quw1/ + higher powers of ¢ 1/2 ) vaJ + Z wa,wJ,yfy»

yew
y<wyg

where vy, w,,y € & for all y € W such that y < w;. Then, since

Tw’wJTwa” = Tw’TwJTwJTw”’

it follows that

fw wJTwau = (equw}/2 + higher powers of q1/2) /TwJT "+ Z Jwswsy /T T ",
yeW
y<wy
But_since l(w) = I(w') + I(wy) + l(w"”), the multiplication formula in (3.5.20) tells us that
TwTw,; Ty =Ty, so the above becomes

Tww, Tw, uw = (equw}/2 + higher powers of ql/2 w+ Z Jwrwy,z
zeW
z<w
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Then, using (4.2.2), we obtain

Tw/wawau = (gqu;;/z + higher powers of q1/2)C'w + Z oy w,,2C2. (4.2.6)

zeW
z<w

Since T(C’Zqu) = 0 for all z € W such that z < w and T(Cwa—l) = 1, multiplying the
equality in (4.2.6) by D,,-1 then applying 7 to it gives

T(Tw/wawa//Dw—l) = (squ;}ﬂ + higher powers of q1/2),
which shows that a(w™!) > ¢(wy), and thus, by Proposition 4.2.1, a(w) > ¢(w). O

Remark 4.2.3. Proposition 4.2.3 gives a lower bound for a(w), where w € W and W is any
Coxeter group. At the moment, there is no known description of a general upper bound for the
a-function. The closest we are to a bound is given by the following:

Lemma 4.2.1. Let (W, S) be any Coxeter system and for any x,y,z € W, define polynomials
fzy,> € & so that
LTy = fry:T. (4.2.7)
zeEW
Then, for any x,y,z € W we have that fy, . is a polynomial in § = @72 — q7Y2 of degree
bounded by the smallest of £(x),{(y) and £(z).

Proof. See Lemma 7.4 in [30]. O

Remark 4.2.4. Note that the bound in Lemma 4.2.1 does not necessarily mean that dege fz .-
is actually finite, since it may well be the case that z,y and z are all of infinite length. However,
Lusztig conjectures the following in [32]:

Conjecture 4.2.1. There exists an integer N > 0 such that qN/zfx,y,z €.t forall z,y,z € W.

In particular

N = max {{(ws)},
[W|<oo

where |Wj| denotes the order of the the subgroup Wy of W generated by the elements in J C S.
Of course, Conjecture 4.2.1 is known to hold whenever W is finite, by Lemma 4.2.1, since in this
case the lengths of all elements of W are finite. In [30], Lusztig also shows that it holds if W

is an affine crystallographic Coxeter group. In particular he first proves the following slightly
stronger version of Lemma 4.2.1:

Lemma 4.2.2. Let (W, S) be an affine crystallographic Coxeter system. Then for any x,y,z € W,
Ja,y,2—1 18 a polynomial in § = ¢*/? — ¢~ Y2 with integral, non-negative coefficients, whose degree
satisfies

degg fy,y,.-1 < min {l(z), £(y), £(2)} . (4.2.8)

Proof. See Lemma 7.4 in [30]. The idea is to first use induction on £(x) to show that f,, .1
in a polynomial in £ with integral non-negative coefficients of degree at most ¢(x). Then, do a
induction on £(y) to conclude that f,, .-1 has degree as a polynomial in £ at most £(y). Then
use these results together with the equalities

fogor =T(LL,T) = 1(T,0.T0) = fyat.
to deduce that deg; f, .-1, < {(z), hence degg f,,, .-1 < £(2). O

He then uses Lemma 4.2.2 and the realization of W in terms of alcoves in Section 2.9 together
with the free-module M with basis corresponding to the alcoves, to prove the following:
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Theorem 4.2.1. For any x,y,z € W the polynomial f,,. € & is a polynomial in & with
integral, non-negative coefficients, of degree

degg fu,y,» < card o,

where card @ denotes the number of positive roots in the corresponding root system of (W, S).

Corollary 4.2.1. For any w € W, we have a(w) < card .
Proof. From Theorem 4.2.1, we see that
q(1/2)-card (I)+fz,y,z cat
for all z,y,z € W. On the other hand, we know, by the relation in (4.2.2) that

Ty ata,
ueWw

so it follows that
q(1/2)~card <I’+1~—vxrfy c Z e Cy,
ueW
and the corollary follows, by definition of the a-function. O

Example 4.2.1. (Type ;&2) Let (W, S) is an affine Weyl group of type A, for which we explicitly
describe its decomposition into left KL-cells in Example 4.1.5. We now want to compute the
values of the a-function on the elements of W. Since the number of positive roots in the root
system corresponding to W is 3, then we know that for any w € W, we have a(w) < 3. Now,
since every element w in the left KL-cell A5 is of the form w = w’sos152 where w’ € W such that
(w) = L(w') + £(s158251) and s1s257 is the longest element in the subgroup Wis of W generated
by s1 and sg, it follows, by Proposition 4.2.3, that a(w) > 3, and thus a(w) = 2 for any w € Ajs.
Since the left KL-cell Aq3, Ass, A1, Ao and Aj are all sets with the same property as Ajs with
their corresponding longest element each, which is either s15951, s28382 or s18381, it follows that
a(w) = 3 for every element in one of these left KL-cells. Using similar arguments, the .o/-linear
map 7 and the multiplication relations of the KL-basis, we compute

0 weC
a(w) =141 weB (4.2.9)
3 w € A.

A different method is used in Section 4.4, once we have established further results. We thus see
that the a-function is constant on the set B with a value different to the constant value on the
set A. We later see that the a is constant on the two-sided cells, allowing to deduce that each
of A, B and B is indeed a two-sided cell of W, and the partition represented in Figure 4.4 is the
correct partition into two-sided KL-cells. Also, since each of the parabolic subgroups is a Coxeter
system of type Xz, we see that in this case, for any I C S, if w € W is such that w € Wy, we
have that aj(w) = a(w).

Remark 4.2.5. Conjecture 4.2.1 also holds, for instance, if the Coxeter graph is complete, proved
by Xi in [42], or if the rank is 3, proved by Zhou in [43].

Remark 4.2.6. In the case of affine Weyl group, given the result in Theorem 4.2.1, the study of
the set
{we W |a(w) = card ®*}

becomes relevant for affine Weyl groups. It turns out to be a two-sided cell of W. This has
been studied in [7] and [35] and [36]. In particular, the last two articles study the left KL-cells
contained in such set as well as the exact number of such left KL-cells.
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Remark 4.2.7. In [30], Lusztig proves that in the case of finite crystalographic Coxeter groups
a(w) < £(w) for any w € W using the fact that since W is finite, then H = # and so the products
D,T,D, and T,,D.D, are actually well-defined, but he claims that he does not see how to carry
the proof for infinite crystallographic Coxeter groups. Later in [31], Lusztig generalizes his result
using a proof shown to him by Springer based on a “positivity property” of the coefficient of the
structures constants with respect to the KL-basis for crystallographic Coxeter groups. It has not
been until recently that the inequality a(w) < ¢(w) has been shown to hold for arbitrary Coxeter
groups. This has been possible thanks to the proof of Conjecture 3.5.9 about the non-negativity
of the coefficients of P, ,, by Ellias and Williamson in [11]. Using an adaptation of Lusztig’s
proof suggested by Springer’s, we can prove the following for general Coxeter groups:

Proposition 4.2.4. Let (W, S) be an arbitrary Coxeter system. Then, for any w € W, we have
a(w) < L(w).

Proof. For any x,y,w € W, define polynomials hy ., € &/ T so that

CoCy= > hayuwCu (4.2.10)
weWw

If we then apply the 7-linear map 7 : H — o to both sides of the equality in (3.5.24), we get

T(Cw) = 5wQ11U/2 Z 5zQz_1/2Pz,w7'(Tz> = 5wQ111;/251QI1/2P1,w = 5szlu/2pl,wa

zeW
z<w

Therefore, applying <7-linear map 7 : # — o to both sides of the equality in (4.2.10), gives

T(CoCy) = Y hayweuwdsl “Pruw. (4.2.11)
weWw

But note that, writing C; and C, as an «/-linear combination of the Ty (w € W) as in (3.5.24),
we get
-1/2% -1/2% 5 5
Cny = Z Z 5:6Qi/25yq@1//25x’qm/ / P:c’,xey’qy/ / Py’,yT:(:’Ty’v
z'eW y'eWw
' <z y’<y

and so, by (a) in Lemma 3.7.2, we see that

7(CxCy) = ezq;/Qeyq;/Q Z qglpw@xpxl_l’y, (4.2.12)
z'eWw
' <z
<y
if there is some 2’ < x such that 2~ = ¢/ < y, and 7(C,Cy) = 0 otherwise. Therefore, since by
the degree property in (3.5.3) of Theorem 3.5.1, we have, using the equality £(z') = ¢(z'~!), that

degq Qz'P:c’,xPa:’*l,y < e(‘r/) + % (6(1’) - E(‘T,) -1+ E(y) - e(‘rlil) - 1) = % (6(1’) + E(y) - 2) ’

and thus, in the first case, we have that the lowest power of ¢ in 7(C,C)y) is

((x) 4+ £(y)) — max deg, Py xPpr—1y > 1.
z'eW
' <z
Ty

N | —

It thus follows that in either case we have 7(C,Cy) € &7, and from (4.2.11), we recover

> haywewts! *Prw = 7(CoCy) € o™, (4.2.13)
weWw
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Now, by the “positivity property” of the coefficients of the KL-polynomials, we have that the
the coefficient of Py, is non-negative for every w € W in the sum, and moreover, given the
multiplication formulas in (3.6.7)-(3.6.10), the same is true for hy ., as a polynomial in —q'/?
and —q¢~1/2. Hence the sum in (4.2.13) has no cancellations, and we have

ey wewds*Prw € /% for all z,y,w € W. (4.2.14)

Since Py 4, # 0, and so Py, # 0, it follows that hx,%wfswalﬂ/2 € @/, which shows that a(w) < £(w).
O

Remark 4.2.8. Note that the proof of Proposition 4.2.4 not only tells us that hx’y,wswc]}ﬂ/2 c o,

but also, from (4.2.14), we see that hx,y,wewalumq*%(w) € o/, where §(w) := deg, P14, and so

it follows that
a(w) < l(w) —25(w) for all w e W.

4.3 Distinguished involutions

In [23], Joseph shows that for each left KL-cell of a Weyl group, the function z — ¢(w) — 2§(w),
reaches its minimum at a unique element of that left KL-cell, which he calls “Duflo involution”.
Inspired by this, and in view of Remark 4.2.8, Lusztig shows in [31] that such minimum value is in
fact a(w) for each w in the left KL-cell. Of course in [31], given that the “positivity property” for
general Coxeter groups has only been recently proved in [11], Lusztig only proves this for Weyl
and affine Weyl groups using, as starting point, the result in Remark 4.2.8, for which he had, at
the time, a proof for in these cases. For this, he assumes that (W, S) is such that a(w) < oo,
and defines a set
7 :={weW|a(w)=Lw)—26w)},

which enables him to prove several properties of the a-function that were proved in [30] only for
Weyl groups, this time for a larger class of Coxeter groups, including the affine Weyl groups.
Today, the “positivity property” for general Coxeter groups allows us to define the set 2 whithout
the boundedess assumption, following Remark 4.2.8. In this section, we construct the set &
following [31] but updating the results taking into account the recently proved positivity property
for general Coxeter groups.

Definition 4.3.1. For any z,y,w € W define v, 4., € Z by

(_l)a(w)qa(w)/2h$7y’w71 — Yoy € _q1/2£{+.

Remark 4.3.1. Note that applying the unique algebra anti-automorphism b : H — H mapping
Ty — T,—1 for any w € W in Definition 3.1.2 to the equality in (4.2.7), we deduce that

Jeyw = fy-12-1,-1 forany z,y,z € W. (4.3.1)
Similarly, since b(Cy,) = Cy,-1 for any w € W, we deduce from (4.2.10), that

heyw = hy—1 41 -1 for any z,y,w € W. (4.3.2)
From this together with the definition of v, 4 .,, we deduce

Veyw = Vy-1z-10-1 forany z,y,weW. (4.3.3)

From (4.3.2) we immediately see that a(w) = a(w™!) for any w € W.
Proposition 4.3.1. Let (W, S) be any Coxeter system.
(a) Let d € W. Thend € 2 if and only if d* € 9.
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(b) Letd € 9. Then if x,y € W are such that v, yq # 0, then z =y~ and YVy-1yd=1.
(¢c) For anyy € W, there is a unique d € & such that v, , q # 0.
(d) Ifd € 2, then d*> = 1.

Proof. From (4.3.1) and (4.3.2), we immediately see that a(w) = a(w™!) for any w € W.
Therefore, by definition of 4 and the fact that Py, = P -1, we have that d € Z if and only if

a(d™) = a(d) = £(d) —26(d) = £(d™ ) —26(d™ 1),

which is the case if and only if d~! € 2. This proves (a).
Now, let z,y € W and d € Z be as in (b) and consider the inclusion in (4.2.14) with w = d~*.
The left-hand side has constant term equal to v, , 4nq €, where ng € Z such that

() 4 lower powers of q.

Py g =P 41 =nqq
As seen in the proof of Proposition 4.2.4, each term hx,%wswq},}ﬂplw in the sum in (4.2.13)
has non-negative constant term. Since the sum of these constant terms is the constant term of
7(C3Cy), this shows that we have that the constant term of 7(C,C,) is at least 7,y qnqg > 0.
But recall, from the proof of Proposition 4.2.4, that 7(C,Cy) = 0 if x # y~ !, and if x =y,
then 7(C,Cy) is given by (4.2.12) and so from the bounds of the degree of the polynomials P, ,
and P, ,-1, we see immediately that the constant term of 7(C,C,) is exactly 1 in this case.
Combining this with the fact that constant term of 7(C,C)) is at least v, qnq > 0, it must be
the case that = y~ !, so that Yy-1y,dnd = 1, and since y,-1 , g,n, € Z, it follows that

’yy_17y7d = nd = 17

which proves (b).

Now, let y € W. For this, recall the discussion in the previous paragraph about the constant
term of 7(C,Cy), which gives that the constant term of the expression in (4.2.13) for z = y*
is equal to 1. Since each term in the sum in the left-hand side of the equality in (4.2.13) has
non-negative constant term, it follows that hyq’y’wswq,lu/ 2]31’1” has constant term 1 for a unique
w, say w’, and has constant term equal to 0 for all w € W with w # w’. Also notice that we
may write

5(w) B

h yw  Quw Lw

2P = (—1)2W @2y + (—gl/2)tw)—a(w)~20(w)

Y
with
(—1)2Wqa) 2y e ot WP, € @F, and f(w) —a(w) — 25(w) > 0.

Then, for w = w', we have y,-1, ,~1 # 0 and {(w) —a(w) —26(w) > 0, which shows that v’ € 2,
and for w # w’, we have -1, ,, = 0. By the result in (a), the result in (c) follows.

Finally, take any d € 2, and find «,y € W such that 7, , 4 # 0. By the result in (a), we have
r =y~ ! so that Vo124 7 0. From the equality in(4.3.3), we obtain

Vy=1y,d-1 = Vy=1yd-1t F 0,

and thus, by the uniqueness in the the result in (c), it follows that d = d~'. This proves (d) and
completes the proof. O

Remark 4.3.2. In view of (b) in Proposition 4.3.1, we call the elements d € 2 distinguished
inwvolutions of W, and the set & is called the set of distinguished involutions of W.
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Example 4.3.1. Let (W, S) be any Coxeter system. By Proposition 4.2.2, we have a(1) = 0.
Therefore, since £(w) = 0 and 6(1) = deg, P11 = 0, we see that

and thus 1 € 2.

Example 4.3.2. Let (W,S) be any Coxeter system and let s € S be an arbitrary simple
reflection. By Proposition 4.2.4, we have a(s) < ¢(s) = 1, and thus, by Proposition 4.2.2; it
follows that a(s) = 1. Moreover, since ¢(s) — ¢(1) = 1 < 2, we know by Corollary 3.5.1, that
P s =1, and thus 6(s) = 0. We therefore see that

a(s)=1=14(s) =l(s) —24(s),

which shows that s € 2. Since s € S is chosen arbitrarily, it follows that S C 2.

Lemma 4.3.1. Let (W, S) be any Coxeter system. If y,w € W are elements such that y <prw,
then a(y) > a(w). Hence, if y ~rrw, then a(y) = a(w).

Proof. Take any elements y',w’ € W and any s € S such that y's < y and v’ < w's and
such that hy s, # 0, and let 2,z € W be any elements such that v, . . 7& 0. Then we have
(—q)2w )/2h$z -1 # 0, so there exists 2’ € W such that (—q)2® )/2h ' »y—1 has a non-zero
constant term. In particular, we have a(w’) < a(y/).

Now, if y,w € W are such that y <prw, then we may assume, by the transitivity of “ <
that, y ng or y~ ! gL w_l. In fact we may assume that y — w and Z(y) € £ (w) or that
y~! 1 and Z(y ¢_ Z(w™h). In the second case we are dlrectly in the case described
in the previous paragraph with ¢ = y and v’ = w as Z(y) € Z(w), and thus a(w) < a(y)
follows. In the first case we have Z(y ! ) € Z(w ) so if we take y =y ' and w’ = w! in the
previous paragraph, it follows that a(wil) < a(yil), and thus, by Proposition 4.2.1, we have
a(w) < a(y), as required. O

Lemma 4.3.2. Let (W, S) be any Cozeter system and pick any x,y,z € W and any d € 9 such
that vzy.» # 0, such that 7,-1 , 4 = 1 and such that a(d) = a(z) =: a. Then Yey,. = Vy 22

Proof. Take x,y,z € W and any d € Z as in the statement of Lemma 4.3.2. Since 7y, ,. # 0,
we deduce that h,, ,-1 # 0, and thus, by (4.1.3), we see that 271 <z and so in particular, we
have 2~ <y rz. Hence, by Lemma 4.3.1, it follows that a(z) < a(z~!) = a. By the associativity
of H, if we let h, , . 4 denote the coefficient of Uy in the expansion of the product C,C,C, with
respect to the KL-basis, we can compute h; , . 4 in two ways, and get

,y,zd Z h T,Y,U uzd - Z hxvd Y20 (4~3~4)

uew veW

Now, since hy, , q # 0 implies d <pgu and h; , 4 # 0 implies d <prv, then, by Lemma 4.3.1, we
have a(u) < a(d) = a and a(v) < a(d) = 0, and thus the equalities in (4.3.4) can be written as

hx,y,z,d = Z hx,y,uhu,z,d = Z hx,v,dhy,z,v- (435)
ueW veW
a(u)<n a(v)<n

Since hy, . g # 0 and hy 4, g # 0 imply that (—q)a/Q'}’u’Z’d—l # 0 and (—q)“/ny%U’dq # 0, it follows,
by (b) in Proposition 4.3.1, that u = 27! and v = 27!, so, using (d) in Proposition 4.3.1 and the
hypothesis 7,-1 , 4 = 1, the left-hand side of (4.3.5) is

Va,y,2(—q)* + strictly smaller powers of —q'/?,
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and similarly, the right-hand side is
Vou-1,d - coeffo(hy , 1) - (—q)* + strictly smaller powers of —q'/?,

where coeffy(h, , ,-1) denoted the coefficient of the (—¢"/?)% in hy . s-1. Hence, comparing
coefficients on both sides of (4.3.5) and the hypothesis v, . # 0, we get

0# Yay: = Vao-1d" CoefFa(hy,z,z—l), (4.3.6)

which implies that
Yoo-1,a7 0 and coeffy(hy, . 1) # 0.

Now, since 7, ;-1 4 # 0, we have, by (b) in Proposition 4.3.1, that v, ,-1 4 = 1, so from (4.3.6),
we recover
VYzy,z = CoefFa(hy,z,z*1)7 (437)

which implies that a(z~!) > a. But recall that a(w) < a, so we have a(z) = a(z™!), and by
definition, coeffy(hy, . 1) = Yy,20- This together with (4.3.7) gives v,y = V.22, as required.
O

Lemma 4.3.3. Let (W, S) be any Cozeter system such that {(w) < oo for all w € W, and let
y €W and d € 9 be elements such that vyy_1,q4 # 0. Then a(z) = a(d).

Proof. We proof this by descending induction on a(y) since a(y) is bounded above by #(y), and
by assumption, £(y) is finite for all z € W. Therefore, we assume that the if y € W and d € W
are elements such that v,-1, 4 # 0 and a(y) > No for a given integer No > 0, then a(y) = a(d),
and we shall deduce that that it is also true when a(y) = No.

So let y € W and d € Z be as in the statement of the lemma with a(y) = Ny > 0. Since
YVy-1y.4 7 0, it follows that hy—1 , 4 = hy-1 , ;-1 # 0, and hence, by (4.1.3), we see that d <r, y L
and so in particular, d < gy '. By Lemma 4.3.1, it follows that a(y) = a(y~!) < a(d). So
assume, for a contradiction, that a(d) > a(y) = No, and let d’ € 2 be such that v;-1 44 # 0,
which exists and is unique by (c¢) in Proposition 4.3.1. Now, by the induction hypothesis applied
to d,d" instead of y,d, we have a(d) = a(d’). Therefore, since we also have v,-1, 4 # 0 and,
Ya-1.aa 7 0, Lemma 4.3.2 applies, and we get

Vydy—t = Vy—tyd 7 0-

It follows that hy,q, # 0 and hence, again by (4.1.3), we have y <z d, and hence, by Lemma
4.3.1, we obtain a(d) < a(y). But this contradicts the assumption a(d) > a(y) = Ny. Hence we
must have a(y) = a(d), and the proof is complete. O

Theorem 4.3.1. Let (W, S) be any Cozeter system such that {(w) < oo for allw € W. For any
x,y,z € W, we have Yp . = Yy 2.z

Proof. Let x,y,z € W be arbitrary elements. First assume that v,,. # 0. By (¢) in Propo-
sition 4.3.1, there exists a unique d € & such that 7,1 , 4 # 0, and by Lemma 4.3.3, we have
a(d) = a(z). Since we also have v, . # 0 and 7,-1 , 4 # 0, Lemma 4.3.2 applies, and gives

Yz,y,z2 = Vy,z,x»

as required.

On the contrary, assume that 7., . = 0, and assume, for a contradiction, that v, ., # 0. As
in the previous paragraph, v, ., # 0 implies that

ryz7x7y = ’Yy,Z,CC % O’
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which in turn implies that
7177%2 = ’72@,?! % 07

which contradicts the assumption that 7, , . = 0. The proof is now complete. O

Remark 4.3.3. Notice that the proofs of Proposition 4.3.1, Lemma 4.3.1 and Lemma 4.3.2 did not
require any boundedness assumption on the length of the elements of the (W, S), so they apply
generally to any Coxeter group. However the proof of Lemma 4.3.3 did require that the length
of the elements of the (W, S) was finite for all elements of W in order to bound the a-function.
Therefore Lemma 4.3.3 actually works for any Coxeter system (W, S) such that a(w) < oo for
all w € W (see Remark 4.2.3 to see when this applies). We say more about this in Section 4.4.

4.4 Lusztig’s conjectures

As we have seen so far, the a-function turns out to very difficult to compute. However, in
view of Lusztig’s Conjecture 4.2.1 and the fact that the only requirements needed to prove the
results in [31] were the boundedness of the a-function and the “possitivity property” resulting
from the fact that (W, S) was assumed to be crystallographic, Lusztig presents in [32] a series
of conjectures (P1)-(P15) which seem to govern the behaviour of the a-function. As one can
imagine from the results in Section 4.3, these are closely related to the set Z and the integers
Va,y,> for x,y, z € W. In this section we present the original set of conjectures (P1)-(P15) in [32]
and we make some remarks about these now that the “positivity property” is known to hold for
general Coxeter groups, by [11]. Next, we study the relation between these conjectures as well
as their implications for the partition of W into KL-cells. We also finish the example on W of
type Az to illustrate the results. The main reference for this section is 32|, and its updated
version [33], which includes the more recent results in [11].

Conjectures 4.4.1. (Lusztig) Let (W,S) be any Coxeter system. The following properties
hold.

For any w € W we have a(w) < l(w) — 20(w).

Ifde 2 and x,y € W satisfy vy ya # 0, then v = y L.

If y € W, there exists a unique d € 2 such that v,-1, 4 # 0.

If 2/, 2 € W with 2/ <prz, then a(z') > a(z). Hence if 2’ ~prz, then a(z') = a(z).
Ifde 2,y e W, vy-14a#0, then yy-1,q=mnqg = *1.

Ifde 9, then d?* = 1.

)
)
)
)
)
)

P7) For any x,y,z € W we have Vg y > = Yy 2.z
) 1
)

)
)
)

P8) Let x,y,z € W be such that v, . # 0. Then x NLy_l, Y NLz_l, Z~LT
P9) If z,2/ € W with 2/ <1,z and a(z') = a(z), then 2’ ~ z.
(P10) If 2,2 € W with 2’ <pz and a(2') = a(z), then 2’ ~pz.
(P11) If 2,2 € W with 2’ <pgz and a(z') = a(z), then 2’ ~ g 2.
(P12) Let I C S. Ify € Wy, then a(y) computed in terms of Wy is equal to a(y) computed in
terms of W.
(P13) Any left KL-cell v of W contains a unique element d € 9. We have v,-1 4.4 # 0 for all
zel.

(P14) For any z € W, we have z ~Lrz L
(P15) Let v be a second indeterminate and let h' € Zv,v™1] be obtained from hy, . by the
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substitution ¢'/% — v. If z,2',y,w € W satisfy a(w) = a(y), then

’ _
E hw7x’,y’hw7y’7y - E :h%w,y’hy’;&y'
y/

Remark 4.4.1. Notice that (P1) is proved in Remark 4.2.8, (P2), (P3), (P5) and (P6) are exactly
the statements in (b) — (d) in Proposition 4.3.1, and (P4) is exactly Lemma 4.3.1. Therefore,
since the proofs of these in Section 4.3 take into account the “positivity property” in [11]| for
general Coxeter groups with no further assumptions, (P1)-(P6) are thus known to hold for
general Coxeter groups and are no longer conjectures. In particular, notice from the proofs of
(b) = (d) in Proposition 4.3.1, that (P1) and (P3) imply (P5), and that (P2) and (P3) imply (P6).
Also notice that (P7) is the statement in Theorem 4.3.1 without the assumption that ¢(w) < oo
for all w € W, and its proof in Section 4.3 makes use of (P3), and Lemmas 4.3.3 and 4.3.2.
Now, the proof of Lemma 4.3.3 makes use of (P3) and Lemmas 4.3.2 and 4.3.1, and the proof
of Lemma 4.3.2 makes use of (P2), (P5), (P6) and Lemma 4.3.1, which in turn uses (P4). We
therefore see that (P7) is implied by (P2)-(P5), given that Conjecture 4.2.1 holds.

Remark 4.4.2. In order to study the the remaining implications between Conjectures (P1)-(P15),
denote by (P0) the following:

(P0) Let x,y,2z,w € W be such that v, , ,-1 # 0 and w — 2z with .Z(w) € .Z(z). Then there
exists ' € W such that coeff,,)(hayw) # 0. In particular, a(w) > a(z).

Notice that (P0) was actually proved for general Coxeter groups in the first paragraph of the
proof of Lemma 4.3.1, and was used to prove such Lemma. Hence, from the discussion in Remark
4.4.1 and the proof of Lemma 4.3.1 we see that (P0) actually implies (P4).

Proposition 4.4.1. Assume that Conjecture 4.2.1 holds for any Coxeter system (W,S). We
also have the following implications between Lusztig’s Congectures (P1)-(P14) and the Property
(P0) of general Cozeter groups:

(a) (PT) implies (P8).

(b) (PO), (P4) and (P8) imply (P9).

(c) (P9) implies (P10).

(d) (P4), (P9) and (P10) imply (P11).

(e) (P3), (P4) and (P8) for W and W imply (P12).
(f) (PO), (P2), (P3) and (P7) imply (P13).

(9) (P6) and (P13) imply (P14)

Proof of (a) in Proposition 4.4.1. (a) Assume that (P7) holds and let x,y,z € W be such that
Yey,e # 0. Then h,, .1 # 0, and hence from (4.1.3) and (4.1.4), we deduce that z~! <py
and z <z z~'. Now, by (P7), we also have 7,., # 0, hence by the same argument <z
and x <z, y_l, and v, ;4 # 0, hence by the same argument y = <pz and y <, 2!, The rela-
tions ¥y~ <z and z <, yi1 then give x ~p, yil, the relations 27! <y and y <, 2! then give
Y~ z_l, and the relations =1 <z 2z and 2 <Lx_1 finally give z ~p, x_l, as required. O

Proof of (b)-(e) in Proposition 4.4.1. See [33] for the proofs. O]

Proof of (f) in Proposition 4.4.1. Assume that (P0), (P2), (P3), and (P7) hold and let T" be any
left KL-cell of W and x € W be any element such that x € I'. Note that, by (a) in Proposition
4.4.1, this implies that (P8) also holds, and moreover, by Remark 4.4.1, this implies that (P4)
and (P6) also hold. Now, by (P3), there exists a unique d € 2 such that v,-1, 4 # 0, so by

(P8), we have x ~p, d™', which shows that d~! € T'. Hence, by (P6), we have d € T.
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To show that uniqueness of d in the previous paragraph, let d € 2 such that d’ € T, and
find y, z € W such that v, , o # 0. By (P2), we have y = z~! and by (P8) we have z ~d’ and
thus z € I'. By definition of a left KL-cell, since we also have z ~, d with x,d € T, there exists a
sequence & = wy, Wi, ..., Wy = z such that w;—; — w; and £ (w;—1) € £ (w;) for integer ¢ such
that 1 <4 < n. Moreover, since x ~p, z, we have w; € I for all integers ¢ such that 0 <7 < n,
so for each w; with 1 < ¢ < n —1, let d; € Z be such that Ve w; d; # 0. Then, as in the
beginning of the proof of (f), we have d; € T for each 1 < i < n—1. Now, since w;_1 — w;
and £ (w;—1 SZ Z(w;), applying (P0) to w;, d;, w;, w;—1 instead of x,y, z, w in the statement of
(P0), we get that there exists u € W such that coeffy(y,) (hu,d;w;_1) 7 0. Also, since w;—1 ~pw;,
we have in particular, that w;_1 ~prw,, so by (P4), we get that a(w;—1) = a(w;), and hence

fyu7di7w;,11 = Coeffa(wl)(hu7d7,7wzfl) # 07

so by (P7), we obtain

Yt u,d; udl,w 1 #O

i—17
But then, by (P2), we have u = w;_; and Vool ws_1,di = 0. Since we also have Voo wi_1.d L, #0,
it follows by the uniqueness in (P3), that d;—1 = d;. Hence d = d’, as required. O
Proof of (g) in Proposition 4.4.1. Assume that (P6) and (P1 3) and take z € W. By (P13), there
exists a unique d € 2 such that z ~;d and since d = d~! by (P6), it follows that z ~p, d!
Hence, by definition of “ ~1”  we have
z<d, d<pz, =z ng_l and d~ ' <z

Therefore, we see that the sequence z,d, z~! satisfies 2 <y d and d~! < (271)"! = 2, and thus,
by definition of ° < <rr”, it follows that z < 27!, Similarly, the sequence 27!, d, 2 satisfies
(zH)t=z <rd ' and d <, 2z, and thus 27! < rz. Hence, by definition of “ ~pr”, it follows
that z NLszl, as required. O

Remark 4.4.3. Note that Remark 4.4.1 and Proposition 4.4.1 shows that (P7)-(P14) hold for
(W, S) given the a-function is bounded. Therefore, if Conjecture 4.2.1 holds, then (P7)-(P14)
hold all Coxeter systems (W, .S).

Example 4.4.1. (Type 7&2) Let (W, S) be of type A, as in Examples 2.9.3, 4.1.5, and 4.2.1.
From Examples 4.3.1 and 4.3.2, we know that 1, s1, s9, 53 € 2.

Now, consider the element sg9s1s9 € W. Since
So - S98182 = S182 < §28189 and 1 < sg-1,

we know, by Corollary 3.6.1, that P s,s5,5, = Psy.s95,s5, and thus, since £(sgs152)—£(s2) = 3—1 = 2,
it follows, by Corollary 3.5.1, that

P17828182 = P82,823152 =1,

and thus d(s2s152) = 0. We can see in Figure 4.2 that sgs1s9 € W12 = A, C A, and thus, by
(4.2.9) in Example 4.2.1, we know that a(s2s1s2) = 3. Therefore, we have

a(ses182) = 3 = l(s28182) = l(s28182) — 2(s25152),
which shows that s9s189 € &. Similarly, since the element s13s1 € W satisfies
S1- 818381 = $351 < 818351, 1<s1-1 and {l(s1s3s1) —€(s1) = 2,
and the element sgos3 € W satisfies

S3 - S35283 = S983 < S3S8283, 1 <s3-1 and /l(s3s2s3) — {(s3) = 2,
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exactly the same argument shows that

Pl,slsgsl = PS17818381 =1 a‘nd P1a533233 =P, L.

53,535253 —

We can then see in Figure 4.2 that s1s3s; € W13 = Aj3 C A and s3s9s3 € W23 = Agg C A,
and thus, by (4.2.9) in Example 4.2.1, we know that a(s1s3s;) = 3 = a(s3s2s3). Therefore, we
have

a(s1s3s1) = 3 = l(s18351) = l(s18381) — 2(s15351),
a(s3sas3) = 3 = l(s35283) = l(s35283) — 2(s35253),
which shows that s1s3s1, s35283 € Z.
Now, consider the element 5159535051 € W. Since
Z(s152838281) = {s1} and s1 & .Z(1),

we know by Corollary 3.6.1, that

P1,81828382S1 = P817S1828382817 (44'1)

and we have no further reductions. By the inductive formula to compute KL-polynomials in
(3.5.18) with ¢ = 1 since s1 - 51 = 1 < s1, we have

P51,s132535251 = P1,8253szs1 + qP51,52835251 - q5/2 Z N(Zv 52535231)Q;1/2P81,z- (4'42)

zeW
2—<828352S1
512<z

Again, since s3,s2 € Z(s2s35251) and sy & Z(1), s3 & ZL(s2) and s & Z£(s1), we have, by
Corollary 3.6.1, that

Py sys55051 = Psgsas3s0s1 = Psgsasosssass  and Py sysgsns) = Psysysosgsasty
and thus, since

0(s2835251) — l(s3s2) =4 —2=2 and /l(s2835251) —l(s2s1) =4—2=2,
it follows by Corollary 3.5.1, that

P1752335281 =1= P81,82835281~ (443)

We now need to find the z € W that contribute a term to the sum in (4.4.2). But note that
the only subexpression of s9s38981 having s1 in its descent set is s; itself, so by Theorem 2.10.1,
this is the unique element satisfying z < sgs3s9s1 and s12 < z. Since we have already computed
Py, sys550s; = 11n (4.4.3), we see that

1 1
deg, Ps, sys3s0s; = 0 < B 4-1-1)= 5 (0(s2838281) — £(s1) — 1),

and thus s; £ sos3s2s1 and the last sum in (4.4.2) is 0. This together with (4.4.1), (4.4.2) and
(4.4.3), gives

P1,5132333231 =1+ q,

and thus 0(s15253s251) = 1. We can see from Figure 4.2 and Figure 4.3 that s;s2s3s051 € A; C A,
and thus, by (4.2.9) in Example 4.2.1, we know that a(sjs2s3s251) = 3. Therefore, we have

a(s152835251) =3 =5 —2 = {(s152535251) — 20(5152535251),
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which shows that sisessses; € . Similarly, if we consider the elements sos3s15350 € Ao and
5382818283 € Az, by the symmetry, applying exactly the same argument but interchanging s;
with s and s3, respectively in each case, we see that sos3515352, 352515283 € Z. Note that we
have already found 10 elements of W belonging to the set 2, and by Example 4.1.5, we know
that this is exactly the number of left KL-cells partitioning W. Since, by Example 4.2.1, we
know that the a-function is bounded in this case, Remark 4.4.3 tells us that (P13) holds, and
thus we have found every distinguished involution in W. More precisely,

9 = {17 51,82, 83, 525152, 515351, 35283, 5152535251, 5283515352, 5352515253}7

and each alcove corresponding to one of the distinguished involutions appears with a black dot

s AVAYAVAVAVA
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o
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Figure 4.5: Distinguished involutions and left KL-cells of W of type A,
It is easy to see in Figure 4.5 that each left KL-cell contains a unique distinguished involution of
W, which agrees with the fact that (P13) holds for W of type As. Moreover, we can easily see
in Figure 4.5 the relation between the of the symmetry of the relations in the presentation of W
and the symmetry of the decomposition of W into KL-cell and the symmetry of the set Z.
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Remark 4.4.4. From the computations in Example 4.4.1, we can already see that that explicitly
computing the set Z becomes difficult very quickly simply even if we stay in rank 3, as increasing
the order of mgy of the product ss’ of a single pair of generator, already makes the computations
a lot harder. Of course, increasing the rank also increases the difficulty rapidly, as for each given
length value, there are more possible elements and thus more elements that need to be checked
as candidates for distinguished involutions.

4.5 Bibliographical Remarks

This Chapter focuses on exploring the concept of Kazhdan-Lusztig cells and the corresponding
partition of the Coxeter group, as well as some of tools and methods that have played and
continue to play a huge paper in the development of the Kazhdan-Lusztig theory of cells. Since
we cannot give a complete account of every result in which the partition into cells is known,
we give a brief account, definitely incomplete, together with references of the cases in which the
partition into KL-cells is known.

The cells of finite Coxeter groups of type A was dealt with by Kazhdan and Lusztig’s original
paper [24], we presented the case of finite dihedral groups in this thesis (see Example 4.1.3),
types B and D have been obtained by Barbasch and Vogan in [3] and by Garfinkle in [12], [13]
and [14] and Types Hs and Hy have been dealt with by Alvis [2].

The cells of affine Weyl groups have been described in [30] for type Kg, B, and Go. Those of
type C3, have been studied by Bédard in [6] and Du [22], and by Du in [10] for type Bs. The
KL-cells of type A,,_1 have been studied by Shi in [34] and Lawton in [27]

The KL-cells of some hyperbolic Coxeter groups of rank 3 have also been studied by Bédard
in [7] and [8].
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5 Concluding remarks

This thesis focuses on exploring the concept of Kazhdan-Lusztig cells and the corresponding
partition of the Coxeter group, as well as some of tools and methods that have played and
continue to play a huge paper in the development of the Kazhdan-Lusztig theory of cells. The
definition of KL-cells was generalized to the case where the simple reflections are given different
weights, giving rise to Hecke algebras with unequal parameters. We would have liked to explore
further this topic, since the knowledge on whether certain results that hold in the equal parameter
case extend to the general case is still very scarce. Since many of the established results in the
equal parameter case rely on the “positivity property" established in 1001[11], they break in
the unequal parameter case, where the “positivity property" no longer holds. We would have
therefore liked to explored different tools in the equal parameter case that avoid the use of the
“positivity property" and do not require some kind of geometric interpretation. Some of these
methods would include studying KL-cells and the behavoiur of the KL-basis in the parabolic
subgroups, as well some induction process such as the Guilhot Induction process that enable us
to extend results from more well-known, or manageable cases that are easier to study.
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