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Abstract

This thesis concerns the minimization of the lowest eigenvalue of cer-
tain perturbations of the Dirichlet Laplacian on a bounded domain with
potential supported on a discrete set of points. Recent results include
a Faber-Krahn-type inequality, valid when the support is a single point.
We show that some of the methods used to prove this inequality can be
generalized to an abstract operator-theoretic setting, and we use this to
obtain a new Faber-Krahn-type inequality for when the support consists
of more than one point. Our approach also yields some additional results
on the lowest eigenvalue, such as it being simple.
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1 Introduction

1.1 Background

Let Ω be a bounded open subset of Rd, d ≥ 1. The negative Laplacian (hence-
forth just “Laplacian”) is the linear partial differential expression

−∆ := −
d∑

i=1

∂2

∂x2
i

and appears in many different mathematical and physical contexts, not least
due to the ubiquity of Laplace’s equation

−∆f = 0 on Ω

which describes a wide array of natural phenomena. For example, Fick’s law of
diffusion, Fourier’s law of heat conduction, and Ohm’s law of electrical conduc-
tion are all special cases of Laplace’s equation [10]. On the other hand, a math
major’s first encounter with the Laplacian might typically be an undergraduate
course on complex analysis, in which the real and imaginary parts of functions
holomorphic on Ω are seen to solve Laplace’s equation, and the second encounter
might follow in a course on partial differential equations, where the Laplacian in
addition to being studied in and of itself also proves useful in understanding the
wave and heat equations [10]. For more discussion of the ubiquity of Laplace’s
equation in mathematical physics, see [13, Chapter 12].

Especially important is the Dirichlet eigenvalue problem on Ω, which is to
find those real numbers λ (“eigenvalues”) for which there exists a nonzero func-
tion f (an “eigenfunction” corresponding to λ) such that

{
−∆f = λf on Ω,

f = 0 on ∂Ω.
(1)

Whereas the classical formulation of (1) requires f ∈ C2(Ω)∩C(Ω), the modern
approach is instead to encode the boundary condition by letting −∆ act on a
carefully chosen subspace of the Hilbert space L2(Ω) of square-integrable func-
tions on Ω, which allows for much “rougher” eigenfunctions that may not even
be pointwise defined on ∂Ω. This gives rise to a realization of the Laplacian as
an unbounded self-adjoint operator −∆Ω

D in L2(Ω) [28, Section 10.6]. From this
point of view, solving (1) becomes equivalent to finding those λ such that the
operator −∆Ω

D −λ has nontrivial kernel. The set of all such λ is then called the
spectrum of the operator −∆Ω

D.
One can show that the spectrum of −∆Ω

D is countably infinite and that its
points can be arranged in an increasing sequence 0 < λ1(Ω) < λ2(Ω) < . . .
such that λn(Ω) → ∞ as n → ∞ [18, Theorem 1.2.2]. The lowest eigenvalue
λ1(Ω) is called the principal (Dirichlet) eigenvalue. In the context of the wave
equation on Ω, finding the standing waves reduces to solving (1), and this leads
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in the one- or two-dimensional case to a physical interpretation of λ1(Ω) as
the fundamental frequency of either a vibrating string with fixed endpoints (in
dimension one) or a vibrating drum with fixed edge (in dimension two), while
the other eigenvalues correspond to the overtones [6].

As every musician knows—though some perhaps only subconsciously—the
distribution of the overtones is an important factor in the timbre of a tone, and
is to some extent what allows a listener to distinguish between notes of the same
pitch when performed by different musical instruments [29]. The possibility of
inferring the shape of an instrument from its overtones was pondered by M. Kac
in a 1966 lecture titled Can one hear the shape of a drum? [21] where he asked:
If Ω1 and Ω2 are two bounded domains in the plane such that λn(Ω1) = λn(Ω2)
for all n ≥ 1, is it necessarily the case that Ω1 and Ω2 are congruent? His
question was later answered in the negative by C. Gordon, D. Webb, and S.
Wolpert in an article succinctly titled One cannot hear the shape of a drum
[16], in which they constructed a counterexample.

Arguably the first problem in this direction was posed already in 1877, when
Lord Rayleigh published his book ”The theory of sound” [25] in which he conjec-
tured, based on computations and physical evidence, that “...among all drums
of the same area and the same tension the circular drum produces the lowest
fundamental frequency” [6]. He was proven right nearly six decades later when
G. Faber [12] and E. Krahn [23] simultaneously and independently proved what
is now known as the Faber-Krahn inequality, which in its modern formulation
asserts that

λ1(B) ≤ λ1(Ω) (2)

for any open ball B ⊂ Rd with the same volume (Lebesgue measure) as Ω [18,
Theorem 3.2.1]. Under some additional regularity assumptions on the allowable
domains Ω, one can also show that the ball is also the unique minimizer.

The study of the interplay between geometry and spectrum grew over the
next century into a field aptly named spectral geometry. In fact, for some natural
classes of Ω, even the original problem of minimizing λ1(Ω) is far from settled:
we refer to [18, Chapter 3] for a few easy-to-formulate yet open problems, one of
which is to prove that “...the regular N -gone has the least first eigenvalue among
all the N -gones of given area for N ≥ 5.” The setting has also been successfully
generalized from Euclidean domains to domains in Riemannian manifolds; see,
e.g., [9, Chapter IV].

After its debut in the 1920s, the Faber-Krahn inequality has since been
extended to many other settings; see [6, Chapter 4] for a survey. The extension
most relevant for this thesis is to Schrödinger operators, i.e., perturbations of
the Laplacian of the form

HV := −∆ + V (3)

where V ∈ L1(Ω) is a potential. More precisely, assuming V is nonnegative
and letting λ1(Ω, V ) denote the principal eigenvalue of HV , one can use the
symmetric decreasing rearrangement (see the appendix) to prove the Faber-
Krahn-type inequality

λ1(Ω∗, V ∗) ≤ λ1(Ω, V ) (4)
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where Ω∗ (resp. V ∗) denotes the symmetric decreasing rearrangement of Ω
(resp. V ) [6, Theorem 4.2]. Taking V ≡ 0 in (4) yields the original Faber-Krahn
inequality, which is typical of such generalizations. Schrödinger operators are
also highly relevant for our next topic: point-interaction Hamiltonians.

In nonrelativistic quantum mechanics, each physical system has an associ-
ated complex Hilbert space, its state space H, such that at any instance of time
the state of the system is described by a unit vector in H. Until a measurement
is performed on the system, its time evolution ψ(t) ∈ H is deterministic and
obeys the Schrödinger equation

i~
d

dt
ψ(t) = Hψ(t),

where i is the imaginary unit, ~ is the reduced Planck’s constant, and H is a
self-adjoint operator in H called the Hamiltonian [30, Section 5.1].

As for −∆Ω
D we define the eigenvalues of H as those λ such that H − λ has

nontrivial kernel, but a new addition is that the spectrum of H already comes
equipped with a physical interpretation, namely as the set of possible energy
levels of the system. Upon measuring the energy we will observe one of these
energy levels λ, and, according to the postulates of quantum mechanics, the sys-
tem will then immediately enter a state described by a normalized eigenfunction
of H corresponding to λ [30, Section 5.4].

Each physical system has its own Hamiltonian. For example, to model a
free particle with mass m in Rd, d ≤ 3 we use the state space H = L2(Rd) and
Hamiltonian

H0 = − ~2

2m
∆, (5)

where again −∆ acts on some carefully chosen subspace of L2(Rd) so as to make
H self-adjoint [30, Section 6.1]. With the same state space, an electron with
mass µ and negative charge −e orbiting a proton can instead be modeled using
the Hamiltonian

He = − ~2

2µ
∆ + Ve

where Ve(x) = −e2/|x| is the Coulomb potential [30, Chapter 9]. This Hamil-
tonian is of the form (3) and therefore an example of a Schrödinger operator.

If instead we desire to model a particle with mass m “subject to a very
intense force with a range much shorter than the wavelength associated to the
particle,” then a point-interaction Hamiltonian is appropriate [30, Section 8.1].
Formally and in one dimension, such Hamiltonians have the form

Hν = − ~2

2m
∆ + νδy,

where y ∈ R is the interaction center, δy is a delta distribution, and ν ∈ R
is “a coupling constant which represents the strength of the interaction.” The
intuition of an intense but short-ranged force is supported by the fact that
Hν may be constructed as a suitable limit of Schrödinger operators HV where
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the potential V shrinks and spikes up to a delta-like profile [2]. In practice,
however, Hν is constructed by restricting (5) to a set of functions vanishing
at y and then carefully extending this restriction so as to obtain a self-adjoint
operator different from (5).

Point-interaction Hamiltonians with multiple interaction centers in Rd, d ≤ 3
have been extensively studied (see, e.g., [1, 3]), to the extent that the correspond-
ing quantum-mechanical models are considered solvable “...in the sense that
their resolvents and associated mathematical and physical quantities like the
spectrum, the corresponding eigenfunctions, resonances, and scattering quanti-
ties can be determined explicitly” [1]. Such Hamiltonians can then for example
be used to describe “...the motion of a quantum mechanical particle moving
under the action of a potential supported, e.g., by the points of a crystal lattice
or a random solid” [3].

More recently, in 2007, Blanchard et al. [8] used the self-adjoint extension
theory of boundary triplets to construct point-interaction Hamiltonians with
multiple interaction centers confined in bounded domains. Particular attention
was paid to the case of a single interaction center, and later investigations such
as [11] kept this line of inquiry by investigating the optimization of the principal
eigenvalue of such Hamiltonians with respect to the domain and placement of
center. It was in this context that Lotoreichik and Michelangeli [24] in 2020
derived an analogue of the Faber-Krahn-type inequality (4) for potentials sup-
ported at a single point. More specifically, they proved that for any two- or
three-dimensional smooth bounded domain Ω and any y ∈ Ω,

λα1 (B, 0) ≤ λα1 (Ω, y) for all α ∈ R, (6)

where λα1 (Ω, y) is the principal eigenvalue of the point-interaction Hamiltonian
in Ω with interaction center at y and extension parameter α, and B is the open
ball centered at the origin with the same volume as Ω [24, Theorem 5.1]. (The
parameter α has a physical interpretation as the “inverse scattering length”.)

It was with this background that the author set out to attempt to generalize
(6) to the multi-point case.

1.2 Outline and summary of results

In Section 2, we present the reader with most of the mathematical tools needed
to understand this thesis. Propositions are either proved or cited as necessary,
and we provide additional references for further reading.

In Section 3, after introducing some additional tools we present our first
results. These are abstract and operator-theoretic in nature: We define and
study triplets (T,E,W) consisting of

1. a densely defined lower semibounded symmetric operator T in a Hilbert
space with finite defect indices (m,m),

2. a family E = {Eλ : λ < m(T )} of bases of defect spaces of T that are in a
certain sense compatible with each other, and
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3. a family W = {W(λ) : λ < m(T )} of Hermitian m ×m matrices that is
in a certain sense compatible with E.

We prove an extension theorem (Theorem 3.43) that uses the data in (T,E,W)
to parametrize some of the self-adjoint extensions of T by Hermitian matrices.
The theorem furnishes explicit formulas for the domain, action, and quadratic
form of the extension, and these formulas include an additional real parameter
that can be varied to obtain different representations. We then prove a key result
(Theorem 3.44) asserting that for any parameter B, the principal eigenvalue of
the corresponding extension TB is controlled by W in the sense that

m(TB) = λ if and only if λmax(W(λ)−B) = 0.

We also study the case m = 1 in more detail (Section 3.7).
Next we require some notation. Let Ω ⊂ Rd, d ∈ {2, 3} be a bounded domain

with C∞-boundary, let X = {x1, . . . , xm} ⊂ Ω, and let α = (α1, . . . , αm) ∈ Rm.
Let λ1(Ω, X, α) be the principal eigenvalue of the point-interaction Hamiltonian
in Ω with interaction centers X such that xi has interaction parameter αi for
each i = 1, . . . ,m (as defined in [8, Section III]).

In Section 4, we apply the theory of Section 3 to construct the aforemen-
tioned Hamiltonians in a novel way (Section 4.4). In addition, we prove a few re-
sults for which it is difficult to find explicit references in the literature: We show
that λ1(Ω, X, α) is a simple eigenvalue (Theorem 4.39), that αi 7→ λ1(Ω, X, α)
is analytic and strictly increasing for each i = 1, . . . ,m (also Theorem 4.39),
and that if a new interaction center xm+1 with new parameter αm+1 is added
to X while the old parameters α1, . . . , αm are kept the same, then λ1(Ω, X, α)
decreases (Theorem 4.41).

In Section 5, we turn to the subject of Faber-Krahn-type inequalities. We
first prove a general operator-theoretic result (Theorem 5.3) that allows us to
efficiently recover (6) and which we believe could potentially be used to derive
inequalities similar to (6) in other settings. Our main result (Theorem 5.8) is a
novel Faber-Krahn-type inequality in the likeness of (6) and states: If m ≥ 2,
then there exist positive constants G1, . . . , Gm only dependent on Ω and X such
that

λ1(B, {0}, min
1≤i≤m

{αi −Gi}) ≤ λ1(Ω, X, α)

for all α ∈ Rm such that λ1(Ω, X, α) ≤ 0. Finally, we argue that one of the
proof strategies employed by [24] fails in the multi-point case (Section 5.4).

2 Preliminaries

In this section we recall some basic definitions and results from the spectral
theory of (unbounded) linear operators in Hilbert space with the purpose of
making this thesis as self-contained as possible. We will restrict our attention
to spaces defined over the complex numbers, but the reader should note that
much of the theory holds also when the scalars are the real numbers.

7



As additional references we suggest the following books: [14] provides a good
introduction to measure and Lebesgue integration theory, functional analysis,
L2-spaces, and some elementary Banach and Hilbert space theory. Two com-
prehensive references for the theory of linear operators in Hilbert space and
their spectral theory are [31] and [28], where the former includes a more de-
tailed treatment of Hilbert spaces, whilst the latter is newer and contains some
material on sesquilinear forms and self-adjoint extension theory that the former
does not.

2.1 Normed spaces and Banach spaces

Let V be a vector space over C. A norm on V is a map ‖·‖ : V → C such that

(i) ‖u‖ ≥ 0 for all u ∈ V , with equality if and only if u = 0;

(ii) ‖au‖ = |a| ‖u‖ for all a ∈ C, u ∈ V ;

(iii) the triangle inequality holds: ‖u+ v‖ ≤ ‖u‖+ ‖v‖ for all u, v ∈ V .

A normed space is a pair (V, ‖·‖) as above, but by a slight abuse of notation we
usually refer to V itself as the normed space.

Any norm on V induces a metric on V by d(u, v) := ‖u− v‖, which in turn
induces a topology on V . When we hereafter speak of topological properties
such as closedness or compactness of subsets of V we always mean with respect
to this induced topology. We say that the normed space V is a Banach space if
V is complete as a metric space with respect to the induced metric.

2.2 Bounded operators and compact operators

Let V , W be normed spaces and let T : V → W be a linear operator (i.e., a
linear map). We say that T is bounded if there exists a nonnegative constant C
such that

‖Tu‖ ≤ C ‖u‖ for all u ∈ V.
The least upper bound of all such C is denoted ‖T‖, and it too has the property
that

‖Tu‖ ≤ ‖T‖ ‖u‖ for all u ∈ V.
The set of all bounded linear operators V → W is denoted B(V,W ), and is a
normed space with norm T 7→ ‖T‖. This norm is called the operator norm,
or sometimes the uniform norm. If W is a Banach space, then B(V,W ) is a
Banach space with respect to the operator norm [31, Theorem 4.6]. If W = V ,
then we just write B(V ) := B(V, V ).

We say that the linear operator T : V → W is compact if T maps bounded
subsets of V onto relatively compact subsets of W . One can show that every
compact operator is bounded [31, Theorem 6.2].
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2.3 Inner product spaces and Hilbert spaces

Let V be a vector space over C. An inner product on V is a map 〈·, ·〉 : V×V → C
such that

(i) u 7→ 〈u, v〉 is linear for each fixed v ∈ V ;

(ii) 〈u, v〉 = 〈v, u〉 for all u, v ∈ V ;

(iii) 〈u, u〉 ≥ 0 for all u ∈ V , with equality if and only if u = 0.

(i) and (ii) together imply that v 7→ 〈u, v〉 is antilinear for each fixed u ∈ V . An
inner product space is a pair (V, 〈·, ·〉) as above, but by a slight abuse of notation
we usually refer to V itself as the inner product space.

Any inner product on V induces a norm on V by ‖u‖ :=
√
〈u, u〉, which in

turn induces a topology. The Cauchy-Schwarz inequality [31, Theorem 1.4] says
that

|〈u, v〉| ≤ ‖u‖ ‖v‖ for all u, v ∈ V.
As a consequence of the Cauchy-Schwarz inequality, we find [31, Section 2.1]
that the maps u 7→ 〈u, v〉 and v 7→ 〈u, v〉 (resp. (u, v) 7→ 〈u, v〉) are continuous
with respect to the induced topology of V (resp. V ×V ). We say that the inner
product space V is a Hilbert space if it is a Banach space with respect to the
induced norm.

Let V be an inner product space. The orthogonal complement of a subset
A ⊂ V is the set

A⊥ := {u ∈ V : 〈u, v〉 = 0 for all v ∈ A}.

One can show the following [31, Section 3.1]: A⊥ is a closed subspace of V , and
if V is a Hilbert space, then A⊥⊥ = spanA. In addition, if V is a Hilbert space
and A is a subspace, then A is dense in V if and only if A⊥ = {0}

Let (Vi, 〈·, ·〉i), i = 1, 2 be two inner product spaces. The Cartesian product
V1×V2 of the underlying vector spaces is itself a vector space under componen-
twise vector addition and scalar multiplication. Moreover,

〈(u1, u2), (v1, v2)〉 := 〈u1, v1〉1 + 〈u2, v2〉2 for (u1, u2), (v1, v2) ∈ V1 × V2

defines an inner product on V1×V2. The resulting inner product space is called
the direct sum of V1 and V2 and is usually denoted V1 ⊕ V2. If in addition both
V1 and V2 are Hilbert spaces, then V1 ⊕ V2 is also a Hilbert space.

2.4 Linear operators on Hilbert spaces

Let H be a Hilbert space. A linear operator (or just “operator”) in H is a linear
operator T : D(T ) → H, where D(T ) is a linear subspace of H. D(T ) is called
the domain of T , and we say that the operator T is everywhere defined (resp.
densely defined) if D(T ) = H (resp. D(T ) is dense in H). The kernel/nullspace
of T is the subspace N (T ) = {f ∈ D(T ) : Tf = 0}, and the range/image of
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T is the subspace R(T ) = {Tf : f ∈ D(T )}. We say that T is injective if
N (T ) = {0}, and in this case we define its inverse T−1 as the operator in H
having domain D(T−1) = R(T ) and action T−1f := g, where g is the unique
g ∈ D(T ) such that f = Tg.

We say that a linear operator T in H is bounded (resp. compact) if the linear
operator T : D(T ) → H is bounded (resp. compact) with respect to the norm
induced by the inner product of H.

The everywhere defined identity map on H will be denoted by I, and, for
any z ∈ C, the everywhere defined scalar multiplication map f 7→ zf on H will
by a slight abuse of notation be denoted by z.

Let T be a linear operator in H. Its domain D(T ) is an inner product space
with inner product

〈f, g〉T := 〈f, g〉+ 〈Tf, Tg〉 for f, g ∈ D(T ),

and the corresponding induced norm ‖f‖T :=
√
〈f, f〉T is called the graph norm

of T . We say that T is closed if (D(T ), 〈·, ·〉T ) is a Hilbert space. One can show
that if T is closed, then N (T ) is a closed subspace of H [31, Section 5.1].

Two operators S and T in H are said to be equal, written S = T , if they
have the same domain and Sf = Tf for all f ∈ D(S) = D(T ). If D(S) ⊂ D(T )
and Sf = Tf for all f ∈ D(S), then we say that S is a restriction of T and/or
T is an extension of S, and we write S ⊂ T . Clearly S = T if and only if both
S ⊂ T and T ⊂ S. The sum of S and T , denoted S + T , is the linear operator
in H defined by

D(S + T ) = D(S) ∩ D(T ) and (S + T )f = Sf + Tf for f ∈ D(S + T ).

(The difference S − T is defined analogously.) The composition of S with T ,
denoted TS, is the operator defined by

D(TS) = {f ∈ D(S) : Sf ∈ D(T )} and (TS)f = T (Sf) for f ∈ D(TS).

Let n be a nonnegative integer. The n:th power of T is defined inductively by
letting Tn = I if n = 0 and Tn = TTn−1 otherwise. We say that S is an n:th
root of T if T = Sn.

A linear operator S is said to be closable if it has a closed extension T . This
implies that (D(S), 〈·, ·〉S) is an inner product subspace of the Hilbert space
(D(T ), 〈·, ·〉T ). The closure of the former in the latter is a Hilbert subspace of
(D(T ), 〈·, ·〉T ), and thus this closure is the domain of a closed restriction of T .
This restriction is called the closure of S, and is denoted S. There are other
equivalent ways to define the closure [31, Section 5.1]; in particular, it can be
done in a manner independent of T . Hence S is uniquely determined by S, and
has the property that S ⊂ S ⊂ T for any closed extension T of S.

2.5 Some important classes of linear operators

Let T be an operator in a Hilbert space H. We say that T is symmetric if

〈Tf, g〉 = 〈f, Tg〉 for all f, g ∈ D(T ).
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An equivalent condition is that 〈Tf, f〉 is real for all f ∈ D(T ) [28, Lemma
3.1]. If T is everywhere defined and symmetric, then T is bounded by the
Hellinger-Toeplitz theorem [31, Theorem 5.7].

Lemma 2.1. If T is closable and symmetric, then T is also symmetric.

Proof. We use an equivalent definition of the closure [31, Section 5.1]: For any
f, g ∈ D(T ) there exists a sequence {fn} (resp. {gn}) such that fn → f and
Tfn → Tf (resp. gn → g and Tgn → Tg). Hence

〈Tf, g〉 = lim
n
〈Tfn, gn〉 = lim

n
〈fn, T gn〉 = 〈f, Tg〉.

We say that a densely defined symmetric operator T is lower semibounded
if there exists m ∈ R such that

〈Tf, f〉 ≥ m ‖f‖2 for all f ∈ D(T ).

Any such m is called a lower bound of T , and we write T ≥ m. The least upper
bound of all lower bounds of T is again a lower bound of T , and is denoted m(T ).
We say that the lower semibounded operator T is nonnegative if m(T ) ≥ 0 and
that it is positive if m(T ) > 0. If T1, T2 are lower semibounded operators and
T1 ⊂ T2, then m(T2) ≥ m(T1) as we now show:

m(T2) = inf
f∈D(T2)
‖f‖=1

〈T2f, f〉 ≤ inf
f∈D(T1)
‖f‖=1

〈T2f, f〉 = inf
f∈D(T1)
‖f‖=1

〈T1f, f〉 = m(T1).

Lemma 2.2. If T is closable and lower semibounded, then m(T ) = m(T ).

Proof. On the one hand T ⊂ T implies m(T ) ≥ m(T ). Let ε > 0. We can
find f ∈ D(T ) such that ‖f‖ = 1 and 〈Tf, f〉 − m(T ) < ε. By using an
equivalent definition of the closure [31, Section 5.1] we can find g ∈ D(T ) such
that ‖g‖ = 1 and 〈Tg, g〉 − 〈Tf, f〉 < ε. Adding these two inequalities gives
〈Tg, g〉 − m(T ) < 2ε, and hence m(T ) ≤ 〈Tg, g〉 < m(T ) + 2ε. Since ε was
arbitrary, m(T ) ≤ m(T ).

Let T be a densely defined operator inH. The adjoint operator of T , denoted
T ∗, is the linear operator in H defined as follows: f ∈ D(T ∗) if and only if there
exists uf ∈ H such that 〈f, Tg〉 = 〈uf , g〉 for all g ∈ D(T ), and in this case
T ∗f = uf . (The element uf is uniquely determined by density, so the action of
T ∗ on f is well-defined.) One can show that the adjoint operator T ∗ is always
closed [31, Theorem 5.3]. Furthermore, N (T ∗) = R(T )⊥ and (T + z)∗ = T ∗+ z
for all z ∈ C \ {0} [31, Theorems 4.13(b) and 4.20].

We say that a densely defined operator T is self-adjoint if T = T ∗. If
T is an everywhere defined self-adjoint operator, then T is bounded by the
Hellinger-Toeplitz theorem. (Such operators are sometimes called “Hermitian”
in analogy with Hermitian matrices, but we will not use this terminology.) We
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will use Bsa(H) to denote the vector space of all everywhere defined self-adjoint
operators in H, though we warn the reader that this notation is not standard.
(It is used in for example [27].)

A densely defined operator T is symmetric if and only if T ⊂ T ∗. This
implies that all densely defined symmetric operators are closable.

Proposition 2.3 ([31, Theorem 7.20(a)]). Let A be a positive self-adjoint op-
erator. Then A has a unique positive self-adjoint n:th root, denoted A1/n.

A partial isometry on H is an everywhere defined operator U on H for which
there exists a closed subspace M ⊂ H such that

‖Uf‖ = ‖f‖ for all f ∈M, Uf = 0 for all f ∈M⊥.

We call M (resp. R(U)) the initial (resp. final) domain of U . (This terminology
is not standard, but is used in for example [31].)

Proposition 2.4 ([31, Theorem 7.20(b)]). Let T be a densely defined closed
operator in H. Then T can be uniquely represented in the form T = UT |T |,
where |T | is a positive self-adjoint operator in H and UT is a partial isometry
with initial domain R(|T |) and final domain R(T ).

The decomposition T = UT |T | is called the polar decomposition of T . Note
that |T | has a unique positive self-adjoint square root, denoted |T |1/2. Note also
that D(T ) ⊂ D(|T |) ⊂ D(|T |1/2).

An orthogonal projection on H is an everywhere defined self-adjoint operator
P on H such that P 2 = P . One can show the following [31, Section 4.6]: If
P is an orthogonal projection, then P acts as the identity on R(P ) and as the
constant map sending everything to zero on R(P )⊥. Conversely, if M is a closed
subspace of H, then there exists a unique projection PM such that M = R(PM ).

2.6 Sesquilinear forms in Hilbert spaces

A sesquilinear form (or just “form”) in H is a map t[·, ·] : D(t) × D(t) → C,
where D(t) is a linear subspace of H and t[·, ·] is linear in its first argument and
antilinear in its second. D(t) is called the domain of t, and we say that the form
t is everywhere defined (resp. densely defined) if D(t) = H (resp. D(t) is dense
in H). The quadratic form associated to t is the map t[·] : D(t)→ C defined by

t[f ] := t[f, f ] for f ∈ D(t).

We say that the sesquilinear form t is symmetric if

t[f, g] = t[g, f ] for all f, g ∈ D(t).

The quadratic form of a symmetric sesquilinear form is real-valued. There is a
natural partial order on the set of all symmetric forms: Given two symmetric
forms s and t, we write s ≤ t if D(s) ⊃ D(t) and s[f ] ≤ t[f ] for all f ∈ D(t).

12



(Note that the direction of the inclusion of the domains is opposite to what the
symbol ≤ might suggest—this is intentional.)

We say that the symmetric form t is lower semibounded if there exists m ∈ R
such that

t[f ] ≥ m ‖f‖2 for all f ∈ D(t).

Any such m is called a lower bound of t, and we write t ≥ m. The least upper
bound of all lower bounds of t is again a lower bound of t, and is denoted m(t).
We say that the lower semibounded form t is nonnegative if m(t) ≥ 0.

If t is a lower semibounded form with lower bound m, then its domain D(t)
is an inner product space with inner product

〈f, g〉t := t[f, g] + (1−m)〈f, g〉 for f, g ∈ D(t).

The corresponding induced norm ‖f‖t :=
√
〈f, f〉t on D(t) is called the form

norm of t. Replacing m with any other lower bound gives an equivalent norm
[28, Section 10.1]. We say that t is closed if (D(t), 〈·, ·〉t) is a Hilbert space with
respect to one, hence to all, choices of lower bound m.

The notions of equality, restriction, extension, and sums of forms are defined
as for linear operators. We say that the lower semibounded form s is closable if
there exists a closed lower semibounded form t such that s ⊂ t, and the closure of
s, denoted s, is then defined similarly to the closure of a closable operator. One
can show that s only depends on s, satisfies s ⊂ s ⊂ t for any closed extension
t of s, and m(s) = m(s) [28, Section 10.1].

For any z ∈ C, the everywhere defined sesquilinear form (f, g) 7→ z〈f, g〉
will by a slight abuse of notation be denoted z. Note that if t is a symmetric
form and m ∈ R, then t ≥ m in the sense of form orderings if and only if
t[f ] ≥ m ‖f‖2 for all f ∈ D(t); that is, if and only if t ≥ m in the sense of
greatest lower bounds. Thus there is no ambiguity in the notation t ≥ m.

2.7 The form representation theorem

Let A be a self-adjoint operator in H and let A = UA|A| be its polar decompo-
sition. The sesquilinear form associated to A is the sesquilinear form tA in H
defined by

D(tA) = D(|A|1/2) and tA[f, g] = 〈UA|A|1/2f, |A|1/2g〉 for f, g ∈ D(tA).

D(tA) is called the form domain of A. Note that tA is densely defined since its
domain contains D(A) and A is self-adjoint (thus a fortiori densely defined). One
can show that A is lower semibounded if and only if tA is lower semibounded,
in which case tA is closed and m(A) = m(tA) [28, Propositions 10.5(ii) and
10.4(iii)]. The next theorem—the form representation theorem—states that we
can recover A from tA in the case that A is lower semibounded:

Theorem 2.5 ([28, Corollary 10.8]). The map A 7→ tA is a bijection of the set
of lower semibounded self-adjoint operators onto the set of densely defined lower
semibounded closed forms.
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Given a densely defined form t, let At be the linear operator defined as
follows: f ∈ D(At) if and only if there exists uf ∈ D(t) such that t[f, g] =
〈uf , g〉 for all g ∈ D(t), and in this case At = uf . (The element uf is uniquely
determined by density, so this action of At on f is well-defined.) One can show
[28, Theorem 10.7] that when restricted to densely defined lower semibounded
closed forms, the map t 7→ At is the inverse of the map A 7→ tA furnished by
the form representation theorem.

We define a natural partial order on the set of all lower semibounded self-
adjoint operators in H by letting A ≤ B if and only if tA ≤ tB . A sufficient
(but not necessary) condition for A ≤ B to hold is that D(A) ⊃ D(B) and
〈Af, f〉 ≤ 〈Bf, f〉 for all f ∈ D(B) [28, Section 10.3].

We say that a family {A(λ)} of lower semibounded self-adjoint operators
indexed by a real parameter λ is monotonically increasing if A(λ1) ≤ A(λ2) for
all λ1 ≤ λ2, and we say that {A(λ)} is strictly increasing if it is monotonically
increasing and A(λ1) 6= A(λ2) for all λ1 < λ2. The notions of monotonically
and/or strictly decreasing families are defined similarly.

If A is self-adjoint and m ∈ R, then A ≥ m in the sense of operator orderings
if and only if tA ≥ m, which as we have seen previously is the case if and only if
tA ≥ m in the sense of greatest lower bounds. Due to the equality m(A) = m(tA),
this is equivalent to A ≥ m in the sense of greatest lower bounds. Thus there is
no ambiguity in the notation A ≥ m.

2.8 Elementary spectral theory

Let T be a closed operator in H and let z ∈ C. With notation as in Section 2.4,
recall that T−z denotes the operator with domainD(T ) and action f 7→ Tf−zf .
The resolvent set of T is the set

ρ(T ) := {z ∈ C : T − z is injective and (T − z)−1 ∈ B(H)}.
For any z ∈ ρ(A), the operator (T − z)−1 is called the resolvent of T at z. The
spectrum of T is the set σ(T ) := C \ ρ(T ). The point spectrum of T is a subset
of σ(T ) and is defined as

σp(T ) := {z ∈ C : N (T − z) 6= {0}}.
A point z ∈ σp(T ) is called an eigenvalue of T , the (possibly infinite) dimension
of N (T − z) is called the multiplicity of the eigenvalue, and a nonzero f ∈
N (T − zI) is called an eigenfunction corresponding to the eigenvalue z. We say
that an eigenvalue is simple if its multiplicity is 1.

Let A be self-adjoint. One can show that σ(A) ⊂ R [28, Corollary 3.14].
Moreover, A is lower semibounded if and only if σ(A) is bounded from below,
and in this case m(A) = minσ(A) [31, Section 7.4, Corollary 2]. The discrete
spectrum of A is a subset of σp(A) and is defined as

σd(A) := {λ ∈ σp(A) : λ has finite multiplicity and is an isolated point of σ(A)}.
The essential spectrum of A is the set σe(A) := σ(A) \ σd(A), and we say that
A has a purely discrete spectrum if σe(A) = ∅.
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Proposition 2.6 ([28, Propositions 5.12, 10.6]). Let A be a lower semibounded
self-adjoint operator in an infinite dimensional Hilbert space H. The following
are equivalent:

(i) A has a purely discrete spectrum;

(ii) the resolvent (A− z)−1 is compact for one, hence for all, z ∈ ρ(A);

(iii) the embedding map (D(A), ‖·‖A)→ (H, ‖·‖) is compact;

(iv) the embedding map (D(tA), ‖·‖tA)→ (H, ‖·‖) is compact.

Let A be as in the above proposition, and suppose that A has a purely
discrete spectrum. Let {λn} be the increasing sequence of eigenvalues, counted
according to their (finite) multiplicity; that is, each eigenvalue appears in the
sequence as many times as its multiplicity, and

λ1 ≤ λ2 ≤ λ3 ≤ . . .

The eigenvalue λ1 is called the principal eigenvalue ofA. Since m(A) = minσ(A),
we necessarily have λ1 = m(A).

Let Fn denote the set of linear subspaces of H of codimension ≤ n. (In
particular, F0 = {H}.) The next theorem is (a special case of) the Courant-
Fischer-Rayleigh min-max principle:

Theorem 2.7 ([28, Theorem 12.1]). Let A be as in Proposition 2.6, and suppose
that A has a purely discrete spectrum. Then, for all n ≥ 1,

λn = sup
M∈Fn−1

inf
f∈D(A)∩M

f 6=0

〈Af, f〉
‖f‖2

= sup
M∈Fn−1

inf
f∈D(tA)∩M

f 6=0

tA[f ]

‖f‖2
.

Taking n = 1 yields the following important special case:

Corollary 2.8. Let A be as in Theorem 2.7. Then

λ1 = inf
f∈D(A)
f 6=0

〈Af, f〉
‖f‖2

= inf
f∈D(tA)
f 6=0

tA[f ]

‖f‖2
.

By using the min-max principle one can show the following result, which
explains why the operator ordering is natural.

Proposition 2.9 ([28, Corollary 12.3]). Let A, B be lower semibounded self-
adjoint operators in an infinite-dimensional Hilbert space, both with a purely
discrete spectrum. If A ≤ B, then λn(A) ≤ λn(B) for all n.
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2.9 Defect spaces and defect indices

Let T be a densely defined symmetric operator in a Hilbert space. Here and in
the sequel we use the abbreviation

Nz := N (T ∗ − z) for z ∈ C.

The defect space of T at z is the subspace R(T − z)⊥ = N (T ∗ − z) = Nz, and
the defect index of T at z is the cardinal number

β(T, z) := dimR(T − z)⊥ = dimN (T ∗ − z) = dimNz,

where “dim” refers to the Hilbert space dimension, i.e., the cardinality of an
orthonormal basis. One can show that the map z 7→ β(T, z) is constant in the
upper and lower half-planes of C [31, Theorem 8.1]. The two cardinal numbers
β(T, i) and β(T,−i) are called the defect indices of T , and we usually write them
as a pair (β(T, i), β(T,−i)). Using the so-called von Neumann extension theory,
one can show that T has self-adjoint extensions if and only if the defect indices
are equal [31, Theorem 8.6(c)], and if this is the case, then T is self-adjoint if
and only if the defect indices are zero [31, Theorem 5.20].

The regularity domain of T is the set

{z ∈ C : there exists c > 0 such that ‖(T − z)f‖ ≥ c ‖f‖ for all f ∈ D(T )}.

One can show that the regularity domain is open [31, Section 8.1] and the map
z 7→ β(T, z) is constant on each connected component of the regularity domain
[31, Theorem 8.1]. If T is lower semibounded, then one can moreover show that
one such component contains the union of the upper- and lower half-planes of
C together with the portion (−∞,m(T )) of the real line [31, proof of Theorem
8.8]. It follows that the defect indices of T are equal (so T has self-adjoint
extensions) and that these indices are equal to

β(T, λ) = dim(Nλ) for each λ < m(T ).

We restate this as a proposition:

Proposition 2.10. Let T be a densely defined lower semibounded symmetric
operator. Then T has defect indices (m,m) if and only if dim(Nλ) = m for one,
hence for all, λ < m(T ).

We shall also need a result from perturbation theory—the subject which
studies how the spectrum changes as operators are “perturbed.” This usually
means that an operator V which is in some sense “small” compared to T is
added to the latter to produce a perturbed operator T +V . For example, under
the assumptions of the below proposition and considering A as a perturbation of
TF , the difference between the resolvent (TF −z)−1 and the perturbed resolvent
(A−z)−1 is a finite-rank operator with rank at most m for every z ∈ ρ(TF )∩ρ(A)
[31, Theorem 8.10]. The proposition then follows essentially from this fact.
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Proposition 2.11 ([31, Section 8.4, Corollary 2]). Let T be a densely defined
lower semibounded symmetric operator with finite defect indices (m,m), and let
A be a self-adjoint extension of T . Then σ(A) ∩ (−∞,m(T )) consists of only
eigenvalues of A with total multiplicity ≤ m.

Corollary 2.12. Let T be a densely defined lower semibounded symmetric op-
erator with finite defect indices. Then all self-adjoint extensions of T are lower
semibounded.

Proof. As we explained in the previous section, a self-adjoint operator is lower
semibounded if and only if its spectrum is bounded from below, so the assertion
follows immediately from Proposition 2.11.

2.10 The Friedrichs extension

Let T be a densely defined lower semibounded operator in a Hilbert space. To
T we associate a densely defined lower semibounded symmetric form sT by

D(sT ) = D(T ) and sT [f, g] = 〈Tf, g〉 for f, g ∈ D(sT ).

One can show that sT is closable [28, Lemma 10.16]. Let t = sT . The Friedrichs
extension of T is then defined as the lower semibounded self-adjoint operator
TF := At, where At is defined as in Section 2.7.

Theorem 2.13 ([31, Theorem 10.17]). Let T be a densely defined lower semi-
bounded operator and let TF be its Friedrichs extension. Then

(i) TF is a lower semibounded self-adjoint extension of T with m(TF ) = m(T );

(ii) if A is any lower semibounded self-adjoint extension of T , then A ≤ TF ;

(iii) D(TF ) = D(T ∗) ∩ D(t) and TF = T ∗ � D(TF );

(iv) (T + λ)F = TF + λ for all λ ∈ R.

Here T ∗ � D(TF ) denotes the restriction of T ∗ to D(TF ).

Lemma 2.14. Let t be a densely defined lower semibounded closed form, and
let T be a densely defined restriction of At. Then TF = At if and only if D(T )
is dense in (D(t), ‖·‖t).

Proof. The form norm of t can be constructed as

‖f‖2t = t[f ] + (1−m(t)) ‖f‖2 for f ∈ D(t).

Since m(t) = m(At) ≤ m(T ) = m(sT ), the form norm of sT can be constructed
as

‖f‖2sT = sT [f ] + (1−m(t)) ‖f‖2 for f ∈ D(sT ).

We have D(sT ) = D(T ) ⊂ D(At) ⊂ D(t) and sT [f ] = 〈Tf, f〉 = 〈Atf, f〉 = t[f ]
for all f ∈ D(sT ), where the last equality follows from the definition of At.
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Hence the two form norms are equal on D(sT ), meaning (D(sT ), ‖·‖sT ) is a
normed subspace of (D(t), ‖·‖t). The form domain of the Friedrichs extension
of T is by definition the closure of D(sT ) = D(T ) in (D(t), ‖·‖t). We conclude
that TF = At if and only if this closure is exactly D(t); that is, if and only if
D(T ) is dense in (D(t), ‖·‖t).

3 Self-adjoint extension theory

While both [8] and [24] used the extension theory of boundary triplets to con-
struct and parametrize point-interaction Hamiltonians, they did so in rather
different ways: The former designed a boundary triplet specifically adapted to
the problem at hand, while the latter used what amounts to a generic boundary
triplet. The main benefit of the approach used by [24] was that after a physi-
cally motivated reparametrization, the authors obtain a connection between the
extension parameter and an object called the relative Green’s function, and it is
this connection that eventually allowed them to derive their Faber-Krahn-type
inequality (6). However, [24] only treated the case of a single interaction center.
Our aim in this section is therefore to generalize the extension-reparametrization
method of [24] until it is applicable to the multi-point case. The main results
are Theorem 3.43 and Theorem 3.44, which we consider to be the correct gen-
eralizations of their methods to the abstract operator-theoretic setting.

Our source for the Krein-Visik-Birman extension theory is [28], but we would
also like to recommend the (at the time of writing) newly published book [5],
which treats especially boundary triplets with a great deal of depth.

Henceforth, let H be a fixed Hilbert space.

3.1 Parametrizations of self-adjoint extensions

Let T be a densely defined symmetric operator in H and let A be the set of all
self-adjoint extensions of T . Assume that A is nonempty, which as we explained
in Section 2.9 is equivalent to the defect indices of T being equal. Suppose
furthermore that there exist A ∈ A such that ρ(A) ∩ R is nonempty. Fix any
such extension A and fix λ ∈ ρ(A) ∩ R. Under these assumptions, we will now
describe a way of parametrizing A by means of other self-adjoint operators. To
this end, recall the abbreviation Nλ := N (T ∗−λ) and let S(Nλ) denote the set
of all self-adjoint operators in arbitrary closed subspaces of Nλ; that is, each
B ∈ S(Nλ) corresponds to a pair (KB , B) where KB is a closed subspace of Nλ
and B is a self-adjoint operator in KB . (This necessitates that both D(B) and
R(B) are subspaces of KB .)

Theorem 3.1 ([28, Theorem 14.12]). Let T , A, A, and λ be as above. Then
there exists a bijection S(Nλ) → A, where the extension TλB ∈ A associated to
B ∈ S(Nλ) has domain

D(TλB) =

{
u = f + (A− λ)−1(Bg + h) + g :

f ∈ D(T ), g ∈ D(B)

h ∈ Nλ ∩ D(B)⊥

}
(7)
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and action
TλBu = Tf + (I + λ(A− λ)−1)(Bg + h) + λg. (8)

Different choices of λ ∈ ρ(A)∩R will in general lead to different parametriza-
tions S(Nλ) → A in Theorem 3.1, so it follows that for any pair (λ, µ) with
λ, µ ∈ ρ(A) ∩ R there exists a unique reparametrization S(Nλ) → S(Nµ), by
which we mean a bijection making the following diagram commute:

S(Nλ) A

S(Nµ)

Tλ·

Tµ·
(9)

We will have more to say about this later.
Recall that any lower semibounded self-adjoint operator A is uniquely as-

sociated to a densely defined lower semibounded closed form tA. (See Sec-
tion 2.7.) As in the next theorem we will sometimes find it convenient to
write D[A] := D(tA) for the form domain and A[ · ] := tA[ · ] for the associated
quadratic form.

Theorem 3.2. Let T be a densely defined lower semibounded symmetric oper-
ator in H. Take A = TF and λ < m(T ) in Theorem 3.1 and let B ∈ S(Nλ). If
TλB is lower semibounded, then

(i) the quadratic form of TλB has domain

D[TλB ] = D[TF ]uD[B] (10)

and action

TλB [f + g] = TF [f ] +B[g] + λ(‖f + g‖2 − ‖f‖2) (11)

for f ∈ D[TλB ], g ∈ D[B];

(ii) TλB ≥ λ if and only if B ≥ 0.

Proof.

(i) S := T − λ is a densely defined positive operator in H with Friedrichs
extension SF = TF − λ by Theorem 2.13(iv). We have

m(SF ) = m(TF )− λ = m(T )− λ > 0

and hence 0 ∈ ρ(SF ) ∩ R. Moreover,

B ∈ S(Nλ) = S(N (T ∗ − λ)) = S(N (S∗)).

We may therefore use Theorem 3.1 (with T = S, A = SF , λ = 0) to
construct a self-adjoint extension S0

B of S. By comparing the respective
expressions (7) and (8) for the two extensions TλB and S0

B we see that

TλB = S0
B + λ.
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Now [15, Theorem 2.1 (2.3)] gives

D[TλB ] = D[S0
B ] = D[SF ]uD[B] = D[TF ]uD[B]

which proves (10), while [15, Theorem 2.1 (2.3)] implies

(TλB − λ)[f + g] = S0
B [f + g] = SF [f ] +B[g] = (TF − λ)[f ] +B[g]. (12)

Rewriting this expression yields exactly (11).

(ii) The identity (12) tells us that TλB − λ ≥ 0 if and only if

(TF − λ)[f ] +B[g] ≥ 0 for all f ∈ D[TλB ], g ∈ D[B].

Recalling the theory of Section 2.7, we have m(tTF−λ) = m(TF − λ) > 0
and therefore (TF −λ)[f ] > 0 for all nonzero f ∈ D[TλB ]. Since in addition
(TF −λ)[f ] = 0 when f = 0, we hence conclude from the above inequality
that B ≥ 0 is both a necessary and sufficient condition for TλB − λ ≥ 0.

The next observation is the author’s own.

Lemma 3.3. With the same assumptions as in Theorem 3.2, suppose that T
has finite defect indices (m,m). Then each set

An := {TλB : B ∈ S(Nλ), dim(D(B)) = n} for n = 0, 1, . . . ,m

is independent of λ < m(T ), the sets A0,A1 . . . ,An are pairwise disjoint, and
A0 ∪ · · · ∪ An = A.

Proof. Let A be a self-adjoint extension of T and let B ∈ S(Nλ) be such that
A = TλB . Recall that B is a self-adjoint operator in some closed subspace KB
of Nλ. Proposition 2.10 implies dim(Nλ) = m, so dim(D(B)) ≤ dim(KB) ≤ m.
Moreover, since B is self-adjoint, D(B) is a fortiori a dense subspace of KB ,
but since both spaces are finite-dimensional we must have D(B) = KB . The
(always valid) chain of inclusions D(B) ⊂ D[B] ⊂ KB now gives D[B] = D(B).
Corollary 2.12 guarantees that A is lower semibounded, so the decomposition
(10) applies and we have

D[A] = D[TF ]uD(B).

Therefore
D[A]/D[TF ] ∼= D(B).

Since the left-hand side of this isomorphism depends on neither λ nor B, we see
that the integer

dim(D[A]/D[TF ]) = dim(D(B))

only depends on the particular self-adjoint extension A itself. Thus A belongs to
exactly one of the sets A0, . . . ,Am, proving both that the sets are independent
of λ and cover A. The sets are clearly disjoint since each A ∈ A is of the form
A = TλB for a unique B ∈ S(Nλ), and each set is nonempty since we can, for any
n = 0, 1, . . . ,m, let D(B) be an arbitrary n-dimensional subspace of Nλ and B
the identity operator in D(B).
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We have A0 = {TF } by (10) and (11). As for the other extreme case, recall
our notation Bsa(Nλ) for the vector space of all everywhere defined self-adjoint
operators on Nλ. Since D(B) = m if and only if B is everywhere defined on
Nλ, we have

Am = {TλB : B ∈ Bsa(Nλ)}.
The invariance of Am with respect to λ < m(T ) implies that we can restrict our
commutative diagram (9) of bijections to the following commutative diagram of
bijections:

Bsa(Nλ) Am

Bsa(Nµ)

Tλ·

Tµ·
(13)

We shall provide a formula for this map Bsa(Nλ)→ Bsa(Nµ) in Section 3.4.

Proposition 3.4. Let T be as in Lemma 3.3. If there exist f ∈ N (TF −m(T )),
λ < m(T ), g ∈ Nλ such that 〈f, g〉 6= 0, then m(A) < m(T ) for all A ∈ Am.

The following proof has been adapted from that of [24, Proposition 4.1(i)].

Proof. Let B ∈ Bsa(Nλ) be such that A = TλB . We may without loss of gener-
ality assume Re〈f, g〉 6= 0 by replacing f with if if necessary. Let

L(t) := TλB [f + tg]−m(T ) ‖f + tg‖2 for t ∈ R.

Since (f,m(T )) is an eigenpair of TF , TF [f ] = 〈TF f, f〉 = m(T ) ‖f‖2. Using
(11) we arrive after some simplification at

L(t) = t2B[g]− (m(T )− λ))(‖f + tg‖2 − ‖f‖2)

in which we note that the first term is o(|t|) as t→ 0. We may also write

‖f + tg‖2 − ‖f‖2 = 2tRe〈f, g〉+ t2 ‖g‖2

in which the second term is o(|t|) as t→ 0. Hence

L(t)

t
= −2(m(T )− λ)) Re〈f, g〉+ o(1).

Since L(0) = 0, letting t→ 0 at both sides yields

L′(0) = −2(m(T )− λ) Re〈f, g〉 6= 0.

Thus by choosing t0 with small enough absolute value and with correct sign,
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L(t0) will be negative. Corollary 2.8 then gives

m(A) = inf
h∈D[TλB ],h6=0

TλB [h]

‖h‖2

≤ TλB [f + t0g]

‖f + t0g‖2

=
L(t0)

‖f + t0g‖2
+ m(T )

< m(T ).

3.2 Boundary triplets

Let T be a densely defined symmetric operator in H. In the next definition,
recall the notion of direct product of Hilbert spaces as defined in Section 2.3.

Definition 3.5. A boundary triplet for T ∗ is a triplet (K,Γ0,Γ1) consisting of
a Hilbert space K and two linear operators Γ0,Γ1 : D(T ∗)→ K such that

(i) the map D(T ∗)→ K⊕K given by f 7→ (Γ0f,Γ1f) is surjective;

(ii) 〈T ∗f, g〉 − 〈f, T ∗g〉 = 〈Γ1f,Γ0g〉 − 〈Γ0f,Γ1g〉 for all f, g ∈ D(T ∗).

The identity in (ii) is sometimes called the abstract Green identity.
Recall Section 2.9, in which we defined the defect indices of T and asserted

that T has self-adjoint extensions if and only if these indices are equal; this is
in fact a necessary and sufficient criterion for T ∗ to possess a boundary triplet:

Theorem 3.6 ([28, Proposition 14.5]). There exists a boundary triplet for T ∗

if and only if T has equal defect indices, in which case the defect indices are
equal to dimK, where K is the Hilbert space in Definition 3.5.

In view of the above theorem, let us for the remainder of this section assume
that T has equal defect indices, or equivalently that T has self-adjoint exten-
sions. Let (K,Γ0,Γ1) be a boundary triplet for T ∗. Since N (Γ0), N (Γ1) are
subspaces of D(T ∗), we can define two distinguished symmetric operators T0, T1

in H as the restrictions Ti := T ∗ � N (Γi) for i = 0, 1. Actually, we have

Proposition 3.7 ([28, Corollary 14.8]). T0, T1 are self-adjoint extensions of T .

Note that this provides the “only if”-part of Theorem 3.6. We now partially
prove the “if”-part by constructing a boundary triplet for T ∗ in the special case
that T has a self-adjoint extension whose resolvent set contains a real point.
For this we need the following proposition, in which u denotes the direct sum
of vector spaces and not necessarily an orthogonal sum.
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Proposition 3.8 ([28, Proposition 14.11]). Let A be a self-adjoint extension of
T . Then, for each z ∈ ρ(A),

D(T ∗) = D(T )u (A− z)−1Nz uNz, (14)

D(A) = D(T )u (A− z)−1Nz. (15)

Let us therefore assume that T has a self-adjoint extension A such that ρ(A)
contains a real number λ. We construct a boundary triplet for T ∗ as follows:
For any f ∈ D(T ∗), the decomposition (14) furnishes three uniquely determined
elements fT ∈ D(T ), f0, f1 ∈ Nλ such that

f = fT + (A− λ)−1f1 + f0. (16)

For i = 0, 1, define a linear operator Γλi : D(T ∗)→ Nλ by Γλi f := fi.

Proposition 3.9 ([28, Section 14.3]). (Nλ,Γλ0 ,Γλ1 ) is a boundary triplet for T ∗.

For this particular boundary triplet, the distinguished self-adjoint extension
T0 recovers the self-adjoint extension A that was used in the construction of the
boundary triplet: This is so because (15) and (16) imply

N (Γλ0 ) = {f ∈ D(T ∗) : Γλ0f = 0}
= {f ∈ D(T ∗) : f0 = 0}
= {f ∈ D(T ∗) : f = fT + (A− λ)−1f1}
= D(A).

3.3 Gamma fields and Weyl functions

Let T be a densely defined symmetric operator in H with equal defect indices,
and let (K,Γ0,Γ1) be a boundary triplet for T ∗. As usual, we use ‖·‖ to denote
the norm induced by the inner product of H. Recall also that the restriction of
T to a subspace K ⊂ D(T ) is denoted T � K.

Lemma 3.10 ([28, Lemma 14.13]).

(i) Γ0,Γ1 : (D(T ∗), ‖·‖T∗)→ (K, ‖·‖K) are continuous;

(ii) Γ0 � Nz : (Nz, ‖·‖)→ (K, ‖·‖K) is a continuous bijection for all z ∈ ρ(T0).

Let z ∈ ρ(T0). Since T ∗ − z is closed, its kernel (Nz, ‖·‖) is a Banach space,
and hence the operator (Γ0 � Nz)−1 : (K, ‖·‖K) → (H, ‖·‖) is bounded by (ii)
and the open mapping theorem [14, Theorem 4.6.2].

Definition 3.11. The map γ : ρ(T0)→ B(K,H) defined by γ(z) := (Γ0 � Nz)−1

is called the gamma field associated to (K,Γ0,Γ1).

Let z ∈ ρ(T0). By Lemma 3.10(i) and the boundedness of γ(z) there exist
positive constants c1, c2 such that

‖Γ1γ(z)f‖ ≤ ‖Γ1γ(z)f‖T∗ ≤ c1 ‖γ(z)f‖K ≤ c1c2 ‖f‖ for all f ∈ K.
In other words, Γ1γ(z) : (K, ‖·‖K)→ (K, ‖·‖K) is bounded.
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Definition 3.12. The map M : ρ(T0) → B(K) defined by M(z) := Γ1γ(z) is
called the Weyl function associated to (K,Γ0,Γ1).

Note that both the gamma field and Weyl function are operator-valued, and
as such are sometimes called operator fields.

For our intended purposes, it will be sufficient to only treat those boundary
triplets furnished by Proposition 3.9. Thus, for the remainder of this section, let
us assume that T has a self-adjoint extension A such that ρ(A)∩R is nonempty.
Since the induced boundary triplet (Nλ,Γλ0 ,Γλ1 ) is dependent on the choice of
λ ∈ ρ(A)∩R, the same is true for the associated gamma field and Weyl function,
so we will supplement our notation and write γλ and Mλ for these. Note that
these have the form

γλ : ρ(A)→ B(Nλ,H) and Mλ : ρ(A)→ B(Nλ).

Let us write

γ∗λ : ρ(A)→ B(H,Nλ) and M∗λ : ρ(A)→ B(Nλ)

for the pointwise adjoints of the respective operator fields: By this we mean
that γ∗λ(z) := (γλ(z))∗ and M∗λ(z) := (Mλ(z))∗ for all z ∈ ρ(A). Furthermore,
although we have γλ(z) : Nλ → H by definition, Lemma 3.10(ii) obviously allows
us to restrict the codomain, in which case we would have γλ(z) : Nλ → Nz. By
a slight abuse of notation we will write γλ(z) for both of these operators, since
it will be clear from the context which is meant. By a similar abuse of notation
we will sometimes use γ∗λ(z) to denote both the “full” adjoint γ∗λ(z) : H → Nλ
and the restricted adjoint γ∗λ(z) � Nz : Nz → Nλ.

While we cannot say much in the case of an arbitrary boundary triplet,
the gamma field and Weyl functions associated to (Nλ,Γ0,Γ1) have concrete
formulas in terms of resolvents and projections, as the next proposition shows.
(With notation as in Section 2.5, recall that PM denotes the unique ortogonal
projection such that M = R(P ), where M is a closed subspace of H.)

Proposition 3.13 ([28, Example 14.12]). For any z ∈ ρ(A),

(i) γλ(z) = (A− λ)(A− z)−1 � Nλ;

(ii) Mλ(z) = (z − λ)PNλγλ(z).

By writing A − λ = (A − z) + (z − λ) and inserting into (i) we obtain the
alternative and often useful formula

γλ(z) = I + (z − λ)(A− z)−1 � Nλ. (17)

Here are some important identities satisfied by γλ and Mλ. We remark that
these identities are valid for arbitrary boundary triplets as long as one makes
the necessary modifications, but as mentioned earlier we will not need this result
in its complete generality. Parts (iii) and (vi) imply that the gamma field and
Weyl function are operator-valued holomorphic functions on ρ(A)—we refer to
the appendix for a discussion of such functions. (One can even show that the
latter is a so-called Nevanlinna function, but we shall not need this fact here.)
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Theorem 3.14 ([28, Propositions 14.14 and 14.15]). Let z, w ∈ ρ(A). Then

(i) N (γ∗λ(z)) = (Nz)⊥ and γ∗λ(z) � Nz is a bijection of Nz onto Nλ;

(ii) γλ(z) = (A− w)(A− z)−1γλ(w);

(iii) γλ(z) is holomorphic with derivative d
dzγλ(z) = (A− z)−1γλ(z);

(iv) M∗λ(z) = Mλ(z);

(v) Mλ(w)−Mλ(z) = (w − z)γ∗λ(z)γλ(w);

(vi) Mλ(z) is holomorphic with derivative d
dzMλ(z) = γ∗λ(z)γλ(z).

Corollary 3.15. Let z ∈ ρ(A) and λ, µ ∈ ρ(A) ∩ R. Then

(i) γλ(z) = γµ(z)γλ(µ);

(ii) (γλ(µ))−1 = γµ(λ);

(iii) (γ∗λ(µ) � Nµ)(γ∗µ(z) � Nz) = γ∗λ(z) � Nz;

(iv) (γ∗λ(µ) � Nµ)−1 = γ∗µ(λ) � Nλ.

Proof.

(i) Take w = µ in Theorem 3.14(ii) and use Proposition 3.13(i) to rewrite the
right-hand side.

(ii) Take z = λ in (i) and observe that Proposition 3.13(i) implies γλ(λ) = I.

(iii) Let f ∈ Nz and g ∈ Nλ. Then

〈(γ∗λ(µ) � Nµ)(γ∗µ(z) � Nz)f, g〉 = 〈γ∗λ(µ)γ∗µ(z)f, g〉
= 〈f, γµ(z)γλ(µ)g〉
= 〈f, γλ(z)g〉
= 〈γ∗λ(z)f, g〉
= 〈(γ∗λ(z) � Nz)f, g〉

where we have used (i) in the third equality.

(iv) Taking z = λ in (iii) yields

(γ∗λ(µ) � Nµ)(γ∗µ(λ) � Nλ) = γ∗λ(λ) � Nλ = I∗ � Nλ = I.

Corollary 3.16. Let f, g ∈ Nλ. The map z 7→ 〈Mλ(z)f, g〉 is analytic on ρ(A),
and

d

dz
〈Mλ(z)f, g〉 = 〈γλ(z)f, γλ(z)g〉.
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Proof. By Theorem 3.14(vi),

d

dz
〈Mλ(z)f, g〉 = 〈 d

dz
Mλ(z)f, g〉 = 〈γ∗λ(z)γλ(z)f, g〉 = 〈γλ(z)f, γλ(z)g〉.

For the rest of this section we assume that A is lower semibounded. As
discussed in Section 2.8, this implies that m(A) is equal to the minimum of the
spectrum of A, and consequently (−∞,m(A)) ⊂ ρ(A).

Proposition 3.17. Suppose A is lower semibounded. For all s ≤ t < m(A),

(i) 〈γs(t)h, h〉 ≥ ‖h‖2 for all h ∈ H;

(ii) 〈Mλ(t)g, g〉 ≥ 〈Mλ(s)g, g〉+ (t− s) ‖γλ(s)g‖2 for all g ∈ Nλ.

Proof.

(i) Our assumptions imply that A − t ≥ 0 and t ∈ ρ(A). Let h ∈ H and
k := (A− t)−1h. Then

〈(A− t)−1h, h〉 = 〈k, (A− t)k〉 = 〈(A− t)k, k〉 ≥ 0.

Since h was arbitrary, (A− t)−1 ≥ 0. Now the assertion follows from (17).

(ii) Let g ∈ Nλ and h := γλ(s)g. By Theorem 3.14(v) and Corollary 3.15(i),

〈(Mλ(t)−Mλ(s))g, g〉 = (t− s)〈γ∗λ(s)γλ(t)g, g〉
= (t− s)〈γλ(t)g, γλ(s)g〉
= (t− s)〈γs(t)γλ(s)g, γλ(s)g〉
= (t− s)〈γs(t)h, h〉
≥ (t− s) ‖h‖2 ,

where we have used (i) in the final inequality.

Corollary 3.18. Suppose that A is lower semibounded. Then µ 7→ Mλ(µ) is
strictly increasing on (−∞,m(A)).

Proof. Let s < t < m(A). Since γλ(s) is injective, Proposition 3.17(ii) implies
that 〈Mλ(t)g, g〉 > 〈Mλ(s)g, g〉 for all nonzero g ∈ Nλ and the assertion follows.

Proposition 3.19 ([28, Statement after Corollary 14.23]). Suppose A is lower
semibounded. Then A is equal to the Friedrichs extension of T if and only if

lim
µ→−∞

〈Mλ(µ)g, g〉 = −∞ for all g ∈ Nλ \ {0}.
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3.4 The transition map

The reader should keep in mind that the notation and terminology in this and
the next three sections have been introduced by the author for the purposes of
this thesis and are not standard. The results as they stand have been derived
by the author, which is why we do not provide references.

Henceforth, let T be a densely defined lower semibounded symmetric opera-
tor with finite defect indices (m,m), let A be a self-adjoint extension of T , and let
λ, µ ∈ ρ(A)∩R. Recall that we write Bsa(K) for the vector space of everywhere
defined (and necessarily bounded) self-adjoint operators in a Hilbert space K.
Our goal in this section is to describe the unique bijection Bsa(Nλ)→ Bsa(Nµ)
making the diagram (13) commute.

By the theory in the previous section, we have for any B ∈ Bsa(Nµ) a not
necessarily commutative diagram as below, where “∼” indicates a bijection.

Nλ Nµ Nµ Nλ
γλ(µ)

∼

Mλ(µ)

B γ∗λ(µ)

∼

Theorem 3.14(iv) implies that Mλ(µ) ∈ Bsa(Nλ), so it follows from the above
diagram that our choice of B induces a new everywhere defined self-adjoint
operator C ∈ Bsa(Nλ) by

C := γ∗λ(µ)Bγλ(µ) +Mλ(µ).

In this way we obtain a map Γ(µ, λ) : Bsa(Nµ)→ Bsa(Nλ) by

Γ(µ, λ)B := γ∗λ(µ)Bγλ(µ) +Mλ(µ) for B ∈ Bsa(Nµ). (18)

Recall now the set Am of self-adjoint extensions of T defined in Lemma 3.3 and
note that Am acts as a sort of “manifold of self-adjoint extensions”: For each
λ < m(T ), Theorem 3.1 furnishes a map Tλ· : Bsa(Nλ)

∼−→ Am acting as a sort
of global coordinate chart, in the sense that Am takes the role of the manifold,
Bsa(Nµ) takes the role of the open Euclidean subset, B ∈ Bsa(Nµ) takes the role
of the local coordinate, and TλB ∈ Am takes the role of a point on the manifold.
Formally speaking, changing λ to µ or vice versa should then, as in manifold
theory, induce a transition map Bsa(Nµ)

∼−→ Bsa(Nλ) which describes how to
pass between the two coordinate systems. The author, based on this, has chosen
the following terminology:

Definition 3.20. Γ(µ, λ) is called the transition map from µ to λ.

Our next proposition shows that Γ(µ, λ) has some of the basic properties we
would expect from such a map.

Proposition 3.21. Let λ, µ, η ∈ ρ(A) ∩ R. Then

(i) Γ(λ, λ) is the identity map on Bsa(Nλ);
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(ii) Γ(µ, λ)Mµ(η) = Mλ(η);

(iii) Γ(µ, λ)Γ(η, µ) = Γ(η, λ);

(iv) Γ(µ, λ) is a bijection with inverse Γ(µ, λ)−1 = Γ(λ, µ).

Proof.

(i) Proposition 3.13 implies γλ(λ) = idNλ and Mλ(λ) = 0. Then γ∗λ(λ) =
PNλ , and hence γ∗λ(λ) � Nλ = idNλ . Plugging these into (18) gives that
Γ(λ, λ)B = B for all B ∈ Bsa(Nλ).

(ii) Theorem 3.14(v) gives

Mµ(η) = Mµ(η)−Mµ(µ) = (η − µ)γ∗µ(µ)γµ(η).

Proposition 3.13(i), Theorem 3.14(v), and (17) then together yields

γ∗λ(µ)Mµ(η)γλ(µ) = (η − µ)γ∗λ(µ)γ∗µ(µ)γµ(η)γλ(µ)

= (η − µ)(γµ(µ)γλ(µ))∗(γµ(η)γλ(µ))

= (η − µ)γ∗λ(µ)γλ(η)

= Mλ(η)−Mλ(µ).

Adding Mλ(µ) to both sides yields exactly Γ(µ, λ)Mµ(η) = Mλ(η).

(iii) Let B ∈ Bsa(Nη). Then, by (ii) and (18),

Γ(µ, λ)Γ(η, µ)B = Γ(µ, λ)(γ∗µ(η)Bγµ(η) + γµ(η))

= γ∗λ(µ)γ∗µ(η)Bγµ(η)γλ(µ) + γ∗λ(µ)Mµ(η)γλ(µ) +Mλ(µ)

= (γµ(η)γλ(µ))∗B(γµ(η)γλ(µ)) + Γ(µ, λ)Mµ(η)

= γ∗λ(η)Bγλ(η) +Mλ(η)

= Γ(η, λ)B.

(iv) This is an immediate consequence of part (i) and (iii).

Lemma 3.22. Let B ∈ Bsa(Nλ) and suppose that Γ(λ, µ)B is invertible. Then
B −Mλ(µ) is invertible and

(Γ(λ, µ)B)−1 = γλ(µ)(B −Mλ(µ))−1(γ∗λ(µ) � Nµ).

Proof. Let C := Γ(λ, µ)B. Then B = Γ(µ, λ)C, so we have

B = γ∗λ(µ)Cγλ(µ) +Mλ(µ)

by definition of the transfer map. Thus

B −Mλ(µ) = γ∗λ(µ)Cγλ(µ)
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in which we see that the right-hand side, and therefore also the left-hand side,
is invertible. Inverting both sides yields

(B −Mλ(µ))−1 = (γλ(µ))−1C−1(γ∗λ(µ) � Nµ)−1

and consequently

γλ(µ)(B −Mλ(µ))−1(γ∗λ(µ) � Nµ) = C−1.

We can now prove (under the assumption that T has finite defect indices)
that the transfer map is the unique map making the following diagram commute:

Bsa(Nλ) Am

Bsa(Nµ)

Γ(λ,µ)

Tλ·

Tµ·
(19)

Theorem 3.23. TλB = TµΓ(λ,µ)B for all B ∈ Bsa(Nλ).

Proof. Corollary 2.12 implies that TλB is lower semibounded, so we may choose
η < min{m(TλB),m(A)}. The Krein-Naimark resolvent formula [28, Theorem
14.18] when applied to the extension TλB states that B−Mλ(η) is invertible and

(TλB − η)−1 − (A− η)−1 = γλ(η)(B −Mλ(η))−1γ∗λ(η).

Theorem 3.14(i) implies that we can write γ∗λ(η) = (γ∗λ(η) � Nη)PNη where PNη
denotes the orthogonal projection onto Nη, and we may hence use Lemma 3.22
to substitute in the above formula and obtain

(TλB − η)−1 − (A− η)−1 = (Γ(λ, η)B)−1PNη .

Lemma 3.3 next implies that there exists a unique C ∈ Bsa(Nµ) such that
TλB = TµC . Arguing as above we find

(TµC − η)−1 − (A− η)−1 = (Γ(µ, η)C)−1PNη .

Since the left-hand sides of the respective resolvent formulas are equal, we obtain

(Γ(λ, η)B)−1PNη = (Γ(µ, η)C)−1PNη

which implies
Γ(λ, η)B = Γ(µ, η)C

and, using Proposition 3.21,

C = Γ(µ, η)−1Γ(λ, η)B = Γ(η, µ)Γ(λ, η)B = Γ(λ, µ)B.
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3.5 Gamma families and Weyl matrices

Let T and A be as in the previous section and let (m,m) be the (finite) defect
indices of T . Proposition 2.10 implies that dim(Nµ) = m for all µ ∈ ρ(A) ∩ R.
In fact, it suffices to know this for one particular µ, since γµ(λ) is a vector
space isomorphism of Nµ onto Nλ and therefore dim(Nλ) = dim(Nµ) = m for
all λ ∈ ρ(A) ∩ R. More precisely, any ordered basis Eµ = (e1

µ, . . . , e
m
µ ) of Nµ

induces an ordered basis Eλ = (e1
λ, . . . , e

m
λ ) of Nλ by letting eiλ := γµ(λ)eiµ for

each i = 1, . . . ,m. Let us abbreviate this relationship as

Eλ = γµ(λ)Eµ. (20)

By Corollary 3.15(i), we then conversely have γλ(µ)Eλ = Eµ, so just as Eµ is
said to induce Eλ we may also say that Eλ induces Eµ, or more generally that
they induce each other. This motivates our next pair of definitions:

Definition 3.24. Let Eµ and Eλ be ordered bases of Nµ and Nλ, respectively.
We say that Eµ and Eλ are gamma compatible if (20) holds.

Definition 3.25. Let J be a nonempty subset of ρ(A) ∩ R. A gamma family
for (T,A) on J is a family E = {Eµ : µ ∈ J } of gamma compatible bases,
where Eµ is a basis of Nµ for each µ ∈ J .

Note that the concept of a gamma family only makes sense with respect to
a pair (T,A) and not the operator T by itself. This is because changing the
self-adjoint extension A will in general change the gamma field and thus the
criterion of gamma compatibility. Note also that to specify a gamma family
on J , it suffices to specify Eµ for a single µ ∈ J ; all the other bases in the
family are then uniquely specified by gamma compatibility. Finally, note that
we may always uniquely extend a gamma family defined on a subset of ρ(A)∩R
to a “full” gamma family on ρ(A) ∩R. Our reason for allowing a smaller set J
in the definition is this: In our intended application of these concepts (Section
4.4), T will be a lower semibounded differential operator with a purely discrete
spectrum, A = TF will be the Friedrichs extension, (A−λ)−1 will be an integral
operator for all λ ∈ J := (−∞,m(T )), and we will construct a designated
gamma family for (T, TF ) on J using the kernels of these integral operators.

Let E be a gamma family for (T,A) on J , and let µ ∈ J . For each vector
u = (u1, . . . ,um)T ∈ Cm, define a corresponding element uµ ∈ Nµ by

uµ :=
∑

i

uie
i
µ.

This yields a vector space isomorphism Uµ : Cm → Nµ by letting Uµu := uµ.
The defining property of E, namely the requirement that the bases in E are
gamma compatible, is then equivalent to the commutation relation

Uλ = γµ(λ)Uµ for all λ, µ ∈ J . (21)
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Let Msa(m) denote the vector space of complex Hermitian m × m matrices.
For each everywhere defined self-adjoint operator B ∈ Bsa(Nµ), define a corre-
sponding matrix B = (Bij)ij ∈Msa(m) by letting

Bij := 〈Bejµ, eiµ〉 for all i, j = 1, . . . ,m.

This is equivalent to the requirement

〈Buµ,vµ〉 = vHBu for all u,v ∈ Cm.

Definition 3.26. B is called the E-matrix of B.

Conversely, for each matrix B ∈ Msa(m), we may define a corresponding
operator Bµ ∈ Nµ as the unique everywhere defined self-adjoint operator whose
associated sesquilinear form is given by

Bµ[uµ,vµ] = 〈Bµuµ,vµ〉 = vHBu for all u,v ∈ Cm. (22)

If B is the E-matrix of B, then clearly Bµ = B. In this way we obtain another
vector space isomorphism

Msa(m) Bsa(Nµ)

B Bµ.

∼
(23)

Proposition 3.27. Let λ, µ ∈ J . Then

Bλ = γ∗λ(µ)Bµγλ(µ) for all B ∈Msa(m).

Proof. Let u,v ∈ Cm. Then, by (21) and (22),

〈γ∗λ(µ)Bµγλ(µ)uλ,vλ〉 = 〈Bµγλ(µ)uλ, γλ(µ)vλ〉 = 〈Bµuµ,vµ〉
= vHBu = 〈Bλuλ,vλ〉.

Since {vλ : v ∈ Cm} = Nλ the assertion follows.

The simplest nontrivial E-matrix one is likely to think of is the E-matrix of
the identity operator. It will play an important role in the sequel, so we give
this matrix its own notation:

Definition 3.28. The E-matrix of the identity operator in Nµ is denoted E(µ).

By definition, E(µ) is the unique m×m matrix such that

〈uµ,vµ〉 = vHE(µ)u for all u,v ∈ Cm. (24)

That is, E(µ) = (〈ejµ, eiµ〉)ij , where 〈·, ·〉 as usual denotes the inner product of
the ambient Hilbert space H. Since the restriction of the inner product to Nµ
is again an inner product, we see from the above identity that E(µ) is a positive
definite Hermitian matrix. (Of course, the Hermitian part is already guaranteed
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due to E(µ) being an E-matrix.) In particular, Eµ is an orthonormal basis if
and only if E(µ) is the identity matrix.

The eigenspaces and operator ordering of operators in Bsa(Nµ) can be ex-
pressed in terms of the eigenspaces and operator ordering of their E-matrices,
as the next lemma shows.

Lemma 3.29. Let B,B1,B2 ∈Msa(m). Then

(i) N (Bµ − z) = UµN (B− zE(µ)) for all z ∈ C;

(ii) (B1)µ ≤ (B2)µ if and only if B1 ≤ B2.

Proof.

(i) Using (22), we have

N (Bµ) = {uµ : Bµuµ = 0}
= {Uµu : 〈Bµuµ,vµ〉 = 0 for all v ∈ Cm}
= Uµ{u : vHBu = 0 for all v ∈ Cm}
= Uµ{u : Bu = 0}
= UµN (B).

This proves the case z = 0. Since B 7→ Bµ is linear, (B − zE(µ))µ =
Bµ − zE(µ)µ = Bµ − z for all z ∈ C, and hence

N (Bµ − z) = N ((B− zE(µ))µ) = UµN (B− zE(µ)).

(ii) (22) implies that (Bi)µ[uµ] = Bi[u] for all u ∈ Cm and i ∈ {1, 2} in the
sense of quadratic forms. Hence (B1)µ[uµ] ≤ (B2)µ[uµ] for all u ∈ Cm
if and only if B1[u] ≤ B2[u] for all u ∈ Cm. This is equivalent to the
assertion.

Let λ ∈ J . Recall from Section 3.3 that T ∗ has a designated boundary
triplet (Nλ,Γλ0 ,Γλ1 ), and let as usual Mλ : ρ(A) → B(Nλ) denote the Weyl
function associated to (Nλ,Γλ0 ,Γλ1 ). For our purposes, the single most important
E-matrix will be the E-matrix of Mλ(µ) and deserves its own name:

Definition 3.30. The E-matrix of Mλ(µ) is called the Weyl matrix and is
denoted M(µ, λ).

Be mindful of the many implicit dependencies in this definition: M(µ, λ)
depends on λ, µ and the Weyl function, while the Weyl function depends on
the boundary triplet, and the boundary triplet finally depends on the particular
self-adjoint extension A of T . So as to not clutter the terminology, we suppress
most of these and just call M(µ, λ) the Weyl matrix. Now would also be a
good time to remind the reader that the material in this and the next section
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is original to this thesis, so it is unlikely that the name “Weyl matrix” would
have the same meaning anywhere else.

By definition, M(µ, λ) is the unique m×m matrix such that,

M(µ, λ) = (〈Mλ(µ)ejλ, e
i
λ〉)ij for all i, j = 1, . . . ,m.

The sesquilinear form of M(µ, λ) has a nice and symmetric appearance:

Lemma 3.31. vHM(µ, λ)u = (µ− λ)〈uµ,vλ〉 for all u,v ∈ Cm.

Proof. By the definition of the Weyl matrix, (22), and Proposition 3.13(ii),

vHM(µ, λ)u = 〈(µ− λ)PNλγλ(µ)uλ,vλ〉 = (µ− λ)〈uµ, PNλvλ〉
= (µ− λ)〈uµ,vλ〉.

We can now characterize the transfer map in terms of the Weyl matrix,
which was in fact the author’s main motivation for introducing gamma families
and E-matrices in the first place.

Theorem 3.32. Γ(µ, λ)Bµ = (B + M(µ, λ))λ for all B ∈Msa(m).

Proof. By (18), Proposition 3.27, the linearity of B 7→ Bλ, and the definition
of the Weyl matrix, we have

Γ(µ, λ)Bµ = γ∗λ(µ)Bµγλ(µ) +Mλ(µ) = Bλ + (M(µ, λ))λ = (B + M(µ, λ))λ.

The theorem can be viewed as asserting the commutativity of the diagram

Msa(m) Bsa(Nµ)

Msa(m) Bsa(Nλ)

B 7→B+M(µ,λ)

∼

Γ(µ,λ)

∼

(25)

where the top and bottom bijections are the isomorphisms in (23). We may then
chain this diagram with our earlier diagram (19) and obtain not only a family
of parametrizations of Am by Hermitian matrices, but also a rule for passing
between the different parametrizations. We will discuss this more thoroughly
in the next section.

Due to (25), another appropriate name for the Weyl matrix might have been
the “transfer matrix.” In any case it is not surprising that we have a counterpart
of Proposition 3.21 for Weyl matrices:

Proposition 3.33. Let λ, µ, η ∈ ρ(A) ∩ R. Then

(i) M(λ, λ) = 0;
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(ii) M(η, µ) + M(µ, λ) = M(η, λ);

(iii) M(µ, λ) = −M(λ, µ).

Proof.

(i) Take µ = λ in Lemma 3.31.

(ii) By Proposition 3.21(ii) and the definition of the Weyl matrix,

(M(η, λ))λ = Mλ(η) = Γ(µ, λ)Mµ(η) = Γ(µ, λ)(M(η, µ))µ,

so Theorem 3.32 gives

(M(η, λ))λ = (M(η, µ) + M(µ, λ))λ.

Since B 7→ Bλ is an isomorphism the assertion follows.

(iii) Take η = λ in (ii) and use (i).

We observe that the above properties are similar to those of a definite integral
of a function in one real argument, with integration limits from λ to µ. This
is not a coincidence, as we will soon derive an integral formula for the Weyl
matrix.

Recall that we started with an ordered basis Eµ of Nµ, which by gamma
compatibility induced an ordered basis Eλ ofNλ for every other λ ∈ ρ(A)∩R. Of
course, there is no need to stop there: Lemma 3.10(ii) says that γλ(z) : Nλ → Nz
is defined and bijective also for complex z ∈ ρ(A), so we can extend our gamma
family E to include these additional bases Ez. For this reason, we can also
extend the Weyl matrix M(z, λ) to complex values of z ∈ ρ(A) (but only in the
first argument, as the Weyl function Mλ is only defined for real λ.) Although
we will not need this extended notion of gamma family in the sequel, the reason
we are now bringing it up is because this extended Weyl matrix is holomorphic
in its first argument:

Theorem 3.34. z 7→M(z, λ) is holomorphic on ρ(A), and

d

dz
M(z, λ) = (〈eiz, ejz〉)ij .

Proof. This is a reinterpretation of Corollary 3.16 in terms of the Weyl matrix,
and the proof is trivial.

We say that a function defined on an open subset of the real line is analytic
if it has a (possibly complex) power series expansion at each point in its domain.
Similarly, we say that a real matrix-valued function x 7→ B(x) of a single real
argument is analytic if each component function x 7→ B(x)ij is analytic.
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Corollary 3.35. M(µ, λ) is analytic on ρ(A)∩R separately in each argument,
and

d

dµ
M(µ, λ) = E(µ),

d

dλ
M(µ, λ) = −E(λ).

Proof. The first derivative follows from the above proposition and the defini-
tion of E(µ). The second derivative follows from the first by using Proposi-
tion 3.33(iii).

As a consequence of this corollary, we arrive at an integral formula for the
Weyl matrix and its sesquilinear form. (The integral is taken componentwise.)

Proposition 3.36. Let λ < µ be such that [λ, µ] ⊂ ρ(A). Then

M(µ, λ) =

∫ µ

λ

E(t) dt

and

vHM(µ, λ)u =

∫ µ

λ

〈ut,vt〉 dt for all u,v ∈ Cm. (26)

Proof. By the previous corollary and Proposition 3.33(i),

M(µ, λ) = M(λ, λ) +

∫ µ

λ

d

dt
M(t, λ) dt =

∫ µ

λ

E(t) dt.

The second integral formula follows from the first together with (24).

Corollary 3.37. Let λ < µ be such that [λ, µ] ⊂ ρ(A). Then M(µ, λ) is positive
definite.

Proof. By (26), uHM(µ, λ)u =
∫ µ
λ
‖ut‖2 dt > 0 for all u ∈ Cm \ {0}.

As yet another corollary, we obtain a mean value theorem.

Corollary 3.38. Let λ < µ be such that [λ, µ] ⊂ ρ(A). For all u ∈ Cm, there

exists θ ∈ (λ, µ) such that 〈uµ,uλ〉 = ‖uθ‖2.

Proof. According to Lemma 3.31, uHM(µ, λ)u = (µ− λ)〈uµ,uλ〉. Now divide
by µ− λ in (26) and use the mean value theorem for integrals.

The following definition is commonly used in Sturm-Liouville theory: Let f
be a measurable function on a bounded or unbounded open interval (a, b). We
say that f is in L2 near a (resp. near b) if there exists c ∈ (a, b) such that
f ∈ L2(a, c) (resp. f ∈ L2(c, b)).

Recall our assumption that A is a self-adjoint extension of T such that
ρ(A) ∩ R is nonempty.

Proposition 3.39. Suppose that A is lower semibounded.

(i) µ 7→ M(µ, λ) (resp. λ 7→ M(µ, λ)) is strictly increasing (resp. strictly
decreasing) on (−∞,m(A));
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(ii) The following are equivalent:

(a) A is the Friedrichs extension of T ;

(b) lim
µ→−∞

uHM(µ, λ)u = −∞ for all u ∈ Cm \ {0};

(c) lim
λ→−∞

uHM(µ, λ)u = +∞ for all u ∈ Cm \ {0};

(d) t 7→ ‖ut‖ is not in L2 near −∞ for all u ∈ Cm \ {0}.

Proof.

(i) By Corollary 3.18, µ 7→ Mλ(µ) = (M(µ, λ))λ is strictly increasing on the
interval (−∞,m(A)), so Lemma 3.29 gives that µ 7→ M(µ, λ) is mono-
tonically increasing while the strictness follows from B 7→ Bλ being an
isomorphism. The corresponding assertion for λ 7→ M(µ, λ) then follows
from Proposition 3.33(iii).

(ii) By (22), 〈Mλ(µ)uλ,uλ〉 = uHM(µ, λ)u for all u ∈ Cm. Thus the equiva-
lence between (a) and (b) is just a restatement of Proposition 3.19. The
equivalence between (b) and (c) is a consequence of Proposition 3.33(iii),
and finally the equivalence between (c) and (d) is due to the integral for-
mula (26).

3.6 Weyl primitives and admissible operators

Let T be a densely defined symmetric operator with finite defect indices (m,m),
suppose that T has a self-adjoint extension A such that ρ(A) ∩ R is nonempty,
let J be a nonempty subset of ρ(A)∩R, and let E be a gamma family for (T,A)
on J . Let as before E(µ) denote the E-matrix of the identity operator in Nµ,
and let M(µ, λ) denote the Weyl matrix.

Let U be a connected subset of J . If µ 7→ W(µ) is any componentwise
primitive of µ 7→ E(µ) on U , then Proposition 3.36 implies that

W(µ)−W(λ) = M(µ, λ) for all λ, µ ∈ U.

Conversely, if a family {W(µ) : µ ∈ U} of matrices satisfies the above identity,
then Corollary 3.35 implies that µ 7→W(µ) is analytic with derivative

W′(µ) =
∂

∂µ
M(µ, λ) = E(µ) for all µ ∈ U.

This motivates our next definition.

Definition 3.40. A Weyl primitive for E is a family W = {W(µ) : µ ∈ J } of
Hermitian m×m matrices such that

W(µ)−W(λ) = M(µ, λ) for all λ, µ ∈ J . (27)
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As a first example, note that µ 7→M(µ, λ) itself is a Weyl primitive for E by
Proposition 3.33. Since any Weyl primitive is analytic with derivative µ 7→ E(µ),
we see that on each connected subset of J any two Weyl primitives may differ
by at most a constant Hermitian matrix. In particular, if J is connected, then
each Weyl primitive is of the form µ 7→M(µ, λ)+B for some constant Hermitian
matrix B.

As an immediate consequence of the definition, Corollary 3.35, and Propo-
sition 3.39, we have

Proposition 3.41. Let W be a Weyl primitive for E. Then µ 7→ W(µ) is
strictly increasing and analytic with derivative W′(µ) = E(µ). Furthermore, A
is the Friedrichs extension of T if and only if

lim
µ→−∞

uHW(µ)u = −∞ for all u ∈ C \ {0}.

In order to avoid repeating the same list of assumptions every time we wish
to use the theory in this and the previous sections, let us introduce the following
terminology:

Definition 3.42. An admissible operator is a triplet (T,E,W) consisting of

(i) a densely defined lower semibounded operator T with finite defect indices;

(ii) a gamma family E for (T, TF ) on (−∞,m(T )), where TF is the Friedrichs
extension of T ;

(iii) a Weyl primitive W = {W(µ) : µ < m(T )} for E.

The word “admissible” (in Swedish: ”till̊aten”) is meant in the sense of
“admissible for the purposes of this thesis” and was chosen for its neutral tone,
so as to not imply that admissible operators are mathematical objects of interest
outside of this thesis. In the definition, we have assumed A = TF , as this is the
only case we will encounter in practice. Note that this implies that the Weyl
primitive W satisfies the last assertion of Proposition 3.41. Finally, we would
like to point out that if (T,E,W) is an admissible operator, then it follows from
Proposition 2.10 that T has defect indices (m,m) if and only if m is exactly the
cardinality of each base in E.

We now state a “master theorem” for admissible operators that describes
some of the self-adjoint extensions of the operator in the triplet. For this pur-
pose, recall Lemma 3.3 and more specifically the definition of the sets An.
Recall also that Uλ : Cm → Nλ denotes the isomorphism that maps u ∈ Cm
onto uλ :=

∑
i uie

i
λ ∈ Nλ, where Eλ = (e1

λ, . . . , e
m
λ ) is the basis of Nλ.

Theorem 3.43. Let (T,E,W) be an admissible operator and let (m,m) be the
defect indices of T . Then, for all λ < m(T ),

(i) there exists a bijection Msa(m) → Am, where the extension TB ∈ Am
associated to B ∈Msa(m) has domain

D(TB) =
{
u = f + (TF − λ)−1(B−W(λ))λuλ + uλ : f ∈ D(T ),u ∈ Cm

}
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and action

TBu = Tf + (I + (TF − λ)−1)(B−W(λ))λuλ + λuλ

and is independent of λ.

(ii) the quadratic form of TB has domain

D[TB] = D[TF ]uNλ

and action

TB[f + uλ] = TF [f ] + uH(B−W(λ))u + λ(‖f + uλ‖2 − ‖f‖2)

for f ∈ D[TF ], u ∈ Cm;

(iii) TB ≥ λ if and only if B ≥W(λ);

(iv) N (TB − λ) = UλN (B−W(λ)).

Proof.

(i) Let λ, µ < m(T ). It follows from (27) that

(B−W(µ)) + M(µ, λ) = B−W(λ) for all B ∈Msa(m),

which can be expressed as the following commutative diagram:

Msa(m)

Msa(m)

Msa(m)

B 7→B+M(µ,λ)

B 7→B−W(µ)

B 7→B−W(λ)

Upon chaining this diagram with (19) and (25) we obtain another com-
mutative diagram

Msa(m) Bsa(Nµ)

Msa(m) Am

Msa(m) Bsa(Nλ)

B 7→B+M(µ,λ)

∼

Γ(µ,λ)

Tµ·B7→B−W(µ)

B 7→B−W(λ)
∼

Tλ·

(28)

in which every map is a bijection. Hence, for each B ∈ Msa(m) there
exists an associated self-adjoint extension Tλ(B−W(λ))λ

∈ Am, which by
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the commutativity of the above diagram is independent of λ < m(T ). We
therefore have a well-defined parametrization ofAm by Hermitian matrices
through the map

B 7→ TB := Tλ(B−W(λ))λ
for all B ∈Msa(m). (29)

The expressions for the domain and action follow from Theorem 3.1.

(ii) With notation as in (29), Theorem 3.2(ii) implies that TB ≥ λ if and only if
(B−W(λ))λ ≥ 0, which by Lemma 3.29(ii) is equivalent to B−W(λ) ≥ 0.

(iii) The assertion follows in a straightforward manner from Theorem 3.2(i);
we only have to note that D[(B −W(λ))λ] = Nλ and that (22) implies
(B−W(λ))λ[uλ] = uH(B−W(λ))u for all u ∈ Cm.

(iv) [28, Proposition 14.17(i)] implies that

N (TB − λ) = γλ(λ)N
(
(B−W(λ))λ −Mλ(λ)

)

and Proposition 3.13 gives that the right-hand side reduces to

N
(
(B−W(λ))λ

)

which is equal to
UλN

(
B−W(λ)

)

as can be seen by taking z = 0 in Lemma 3.29(i).

The parametrization in (i) is unfortunately far from unique, since it depends
on both the choice of gamma basis and the choice of Weyl primitive. However,
in the application we have in mind (Section 4.4), there will exist natural choices
for each of these, so the lack of uniqueness will not pose an issue.

Theorem 3.44. Let (T,E,W) be an admissible operator and let (m,m) be the
defect indices of T . Let B ∈Msa(m) and λ < m(T ). Then

m(TB) = λ if and only if λmax(W(λ)−B) = 0.

Proof. If m(TB) = λ, then Proposition 2.11 implies that λ is an eigenvalue of
TB. Thus m(TB) = λ if and only if

N (TB − λ) 6= {0} and TB ≥ λ.

By Theorem 3.43(iii-vi), this holds if and only if

N (W(λ)−B) 6= {0} and 0 ≥W(λ)−B,

which in turn is equivalent to λmax(W(λ)−B) = 0.
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3.7 Special case: Defect indices (1, 1)

Let (T,E,W) be an admissible operator and assume that T has defect indices
(1, 1). We shall now proceed to prove some results about such admissible oper-
ators which will later be used in Section 5.1.

As we remarked in Section 3.6, the defect indices of T being (1, 1) is equiv-
alent to each basis in the gamma family having cardinality 1:

E = {Eλ : λ < m(T )} = {(eλ) : λ < m(T )}.

Lemma 3.3 and Theorem 3.43(i) imply that the set of all self-adjoint extensions
of T is the disjoint union

A0 ∪ A1 = {TF } ∪ {TB : B ∈Msa(1)}.

In particular, every non-Friedrichs extension of T is of the form specified by
Theorem 3.43(i). Of course, each matrix in Msa(1) is just a scalar matrix αI
for some α ∈ R. It is then convenient to use the shorthand

Tα := TαI, for α ∈ R.

Proposition 2.11 implies that σ(Tα)∩ (−∞,m(T )) is either empty or consists of
at most a single isolated simple eigenvalue. Recall now that m(Tα) = minσ(Tα),
and moreover m(Tα) ≤ m(T ) since Tα is an extension of T (see Section 2.5). It
follows that for each α ∈ R there is one of two mutually exclusive alternatives:

Case 1: m(Tα) = m(T ) and σ(Tα) ∩ (−∞,m(T )) = ∅;
Case 2: m(Tα) < m(T ) and σ(Tα) ∩ (−∞,m(T )) = {m(Tα)} and m(Tα) is a

simple eigenvalue.

As for the Weyl primitive, we have W(λ) = w(λ)I for all λ < m(T ) and
some scalar function w : (−∞,m(T )) → R. Proposition 3.41 yields that w is

strictly increasing, analytic with derivative w′(λ) = 〈eλ, eλ〉 = ‖eλ‖2, and

lim
λ→−∞

w(λ) = −∞.

It follows that w : (−∞,m(T ))→ R is a bijection if and only if the limit

w(T ) := lim
λ↗m(T )

w(λ)

is equal to +∞. We observe that if w(T ) = +∞ for one choice of Weyl primitive,
then it is true for all choices, as any other Weyl primitive must be of the form
w + c for some constant c ∈ R. In fact, this property is even independent
of the gamma family: Choosing another gamma family amounts (by gamma
compatibility) to rescaling each basis vector eλ by a fixed nonzero (complex)

constant, and the identity w(µ)−w(λ) =
∫ µ
λ
‖et‖2 dt implies that this rescaling

cannot affect whether the above limit diverges or not. In other words, the
question of whether w(T ) = +∞ or not is only dependent on the operator T
itself and not on the particular choice of admissible operator.
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Proposition 3.45. Let α ∈ R. Then m(Tα) < m(T ) if and only if α < w(T ).
Letting m(α) := m(Tα), we have that the two maps

w : (−∞,m(T ))→ (−∞,w(T )) and m : (−∞,w(T ))→ (−∞,m(T ))

are inverses of each other.

Proof. Let λ < m(T ). Since the largest eigenvalue of a matrix of size 1 × 1 is
equal to the only component of the matrix, Theorem 3.44 implies that

m(α) = λ if and only if w(λ) = α.

Thus, if case 1 holds then w(λ) 6= α, and since w is a bijection onto (−∞,w(T ))
we must therefore have α ≥ w(T ). If case 2 holds, then α = w(m(α)) < w(T ).
This proves the first assertion. The second assertion then follows from the above
equivalence.

There is an interesting connection between the extended real number w(T )
and a recent result [15]. For it has been shown [15, Theorem 2.6] that if S is
a densely defined lower semibounded symmetric operator, then S has a lower
semibounded self-adjoint extension SLT , the “least-top extension”, such that
for any lower semibounded self-adjoint extension A of S,

m(A) = m(S) if and only if A ≥ SLT .
Let α ∈ R. Now, on the one hand Proposition 3.45 asserts that

m(Tα) = m(T ) if and only if α ≥ w(T )

while on the other hand, Theorem 3.43(ii) (more specifically, our expression for
the quadratic forms) implies that Tα ≥ Tw(T ) if and only if α ≥ w(T ). From
this we conclude that TLT = Tw(T ).

Corollary 3.46. The map m : (−∞,w(T ))→ (−∞,m(T )) is a strictly increas-

ing and analytic bijection with derivative m′(α) = 1/
∥∥em(α)

∥∥2
.

Proof. Since w is a strictly increasing and analytic bijection, its inverse m must
also be a strictly increasing and analytic bijection. By w′(λ) = ‖eλ‖2 along
with the well-known formula for the derivative of an inverse, we have

m′(α) =
d

dα
w−1(α) =

1

w′(w−1(α))
=

1∥∥em(α)

∥∥2 .

Lemma 3.47. The following are equivalent:

(i) m(Tα) < m(T ) for all α ∈ R;

(ii) w(T ) = +∞;

(iii) t 7→ ‖et‖ is not in L2 near m(T ).

Proof. Proposition 3.45 provides the equivalence between (i) and (ii), as it im-
plies that (i) holds exactly if α < w(T ) for all α ∈ R. The equivalence between

(ii) and (iii) follows from the identity w(µ)−w(λ) =
∫ µ
λ
‖et‖2 dt.
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4 Point-interaction Hamiltonians

We shall now begin our study of point-interaction Hamiltonians in bounded do-
mains. Section 4.1 starts with an overview of distributions and Sobolev spaces.
These concepts are then immediately applied in Section 4.2, in which we con-
struct the Dirichlet Laplacian as the Friedrichs extension of a certain densely
defined lower semibounded operator in L2(Ω). Section 4.3 introduces an impor-
tant function associated to the Dirichlet Laplacian called the Green’s function.
Using the above self-adjoint extension theory, we then proceed to construct
the point-interaction Hamiltonians and investigate their spectral properties in
Sections 4.4 and 4.5, respectively.

Throughout this entire section, let Ω denote a nonempty open subset of
Rd, d ≥ 1. We say that Ω is bounded if it is contained in some open ball. The
boundary of Ω is the closed set ∂Ω := Ω\Ω. If Ω is bounded and k a nonnegative
integer, then we say that Ω has Ck-boundary if the following holds: For any
x ∈ ∂Ω there exists a neighbourhood U of x and a function f ∈ Ck(Rd−1,R)
such that—upon relabeling and reorienting the coordinate axes if necessary—we
have

Ω ∩ U = {(x1, . . . , xd) ∈ U : xd > f(x1, . . . , xd−1)}.
If k ≥ 1, then the surface measure of the piece ∂Ω ∩ U is defined as

σ(∂Ω ∩ U) :=

∫

{x∈Rd−1:(x,f(x))∈U}

√
det(J(f)TJ(f)) dx

where J(f) is the Jacobian matrix of f . This induces a measure σ on ∂Ω which
is again called the surface measure of ∂Ω. The associated L2-space of complex-
valued functions on ∂Ω, square-integrable with respect to the surface measure,
will be denoted L2(∂Ω). Still supposing k ≥ 1, the outward unit normal vector
at x = (x1, . . . , xd) ∈ ∂Ω ∩ U is defined as

ν(x) :=
(−∇f(x1, . . . , xd−1), 1)√
|∇f(x1, . . . , xd−1)|2 + 1

or, if the coordinate axes have been relabeled and/or reoriented, ν(x) is defined
as the result of applying the opposite sequence of transformations to the right-
hand side. (Both the surface measure and the outward unit normal vector are
of course independent of the particular choice of f .)

4.1 Distributions and Sobolev spaces

For any bounded complex-valued function f defined on a subset of Rd, let

‖f‖∞ := sup |f(x)|,

where the supremum is taken over the domain of f . Let C∞0 (Ω) denote the
normed space of smooth complex-valued functions on Ω with compact support
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and norm given by ϕ 7→ ‖ϕ‖∞. Let

L2(Ω) :=

{
f : Ω→ C : f is measurable and

∫

Ω

|f |2 dx < +∞
}

where the integral is taken in the Lebesgue sense, and recall that L2(Ω) is a
Hilbert space with inner product

〈f, g〉 :=

∫

Ω

fg dx for f, g ∈ L2(Ω).

(See, e.g., [14, Section 3.2].) The induced norm on L2(Ω) will be denoted ‖·‖.
Lemma 4.1 ([19, Theorem 1.2.5]). C∞0 (Ω) is dense in (L2(Ω), ‖·‖).

A multi-index is a vector α = (α1, . . . , αd) of nonnegative integers. For any
multi-index α, let

|α| := α1 + · · ·+ αd and ∂α :=

(
∂

∂x1

)α1

· · ·
(

∂

∂xd

)αd
.

A distribution on Ω is a linear functional T : C∞0 (Ω) → C such that for every
compact subset K ⊂ Ω there exist a positive constant CK and a nonnegative
integer nK such that

|Tϕ| ≤ CK
∑

|α|≤nK
‖∂αϕ‖∞ for all ϕ ∈ C∞0 (Ω), suppϕ ⊂ K.

The set of distributions on Ω form a complex vector space.
An important class of distributions is the class of Dirac delta distributions

δx for x ∈ Ω. They are defined by δxϕ = ϕ(x) for all ϕ ∈ C∞0 (Ω).

Lemma 4.2. {δx : x ∈ Ω} is a linearly independent set in the vector space of
distributions.

By this we mean that each finite subset of {δx : x ∈ Ω} is a linearly inde-
pendent set in the usual sense.

Proof. Let X be a finite subset of Ω and suppose
∑
x∈X cxδx = 0 for some

cx ∈ C. Let x0 ∈ X. Let B be an open ball centered at x0 and small enough
that B∩X = {x0}. Choose ϕ ∈ C∞0 (B) such that ϕ(x0) = 1. By applying both
sides of our distributional equality to ϕ we obtain 0 =

∑
x cxϕ(x) = cx0 . Thus

all coefficients cx are zero, and {δx : x ∈ X} is a linearly independent set.

Any f ∈ L2(Ω) induces a distribution Tf on Ω by

Tfϕ :=

∫

Ω

fϕ dx = 〈f, ϕ〉 for all ϕ ∈ C∞0 (Ω).

If f, g ∈ L2(Ω) and Tf = Tg, then Lemma 4.1 implies f = g. Thus we have
a linear embedding f 7→ Tf , and we may in this sense say that we have the
inclusions

C∞0 (Ω) ⊂ L2(Ω) ⊂ {distributions on Ω}. (30)
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Lemma 4.3. δx is not of the form Tf for any f ∈ L2(Ω).

Proof. Suppose that δx = Tf for some f ∈ L2(Ω). Take ϕ ∈ C∞0 (Ω) supported
on the unit ball such that 0 ≤ ϕ(x) ≤ 1 for |x| ≤ 1 and ϕ(0) = 1, and let
ϕn(x) = ϕ(nx) for n ∈ N. Hence |fϕn| ≤ |f | pointwise for all n and fϕn → 0
almost everywhere, so

∫
Ω
fϕn dx → 0 by the dominated convergence theorem.

But this is a contradiction, since
∫

Ω
fϕn dx = Tfϕn = δxϕn = 1 for all n.

Let T be a distribution on Ω. For any multi-index α, the distributional
derivative ∂αT is defined by

(∂αT )ϕ := (−1)|α|T (∂αϕ) for all ϕ ∈ C∞0 (Ω)

and is again a distribution on Ω [19, Section 3.1]. By using partial integration,
one can show [10, Section 5.2.1] that ∂αTϕ = T∂αϕ for any ϕ ∈ C∞0 (Ω) and
multi-index α. Thus we have a notion of derivative on the largest set in (30)
that agrees with our classical notion on the smallest. In particular, we can
“differentiate” functions in L2(Ω) arbitrarily many times, though the result will
in general only be a distribution.

Let f ∈ L2(Ω) and let α be a multi-index. We say that f has a weak
derivative of order α if ∂αTf = Tg for some (necessarily unique) g ∈ L2(Ω). In
this case ∂αf := g is called the weak derivative of f of order α. Note that the
weak derivative of f of order (0, 0, . . . , 0) is just f itself. Given a nonnegative
integer k, we define the Sobolev space of order k as the vector space

Hk(Ω) := {f ∈ L2(Ω) : f has a weak derivative of order α for all |α| ≤ k},

and we equip Hk(Ω) with the inner product

〈f, g〉Hk(Ω) :=
∑

|α|≤k
〈∂αf, ∂αg〉L2(Ω) for all f, g ∈ Hk(Ω)

which induces the norm

‖f‖2Hk(Ω) :=
∑

|α|≤k
‖∂αf‖2L2(Ω) for all f ∈ Hk(Ω)

One can show that (Hk(Ω), 〈·, ·〉Hk(Ω)) is a Hilbert space [10, Section 5.2.3]. Note
that H0(Ω) = L2(Ω), not just as sets but as Hilbert spaces. Finally, we define
Hk

0 (Ω) as the closure of C∞0 (Ω) in (Hk(Ω), 〈·, ·〉Hk(Ω)), which automatically
makes it a Hilbert space.

Any f ∈ H1(Ω) has a well-defined gradient ∇f := ( ∂f∂x1
, . . . , ∂f∂xd ), where

|∇f |2 =

d∑

i=1

∣∣∣∣
∂f

∂xi

∣∣∣∣
2

is integrable, and

‖ |∇f | ‖2 =

d∑

i=1

∥∥∥∥
∂f

∂xi

∥∥∥∥
2

.
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Since this quantity appears often we will use the shorthand ‖∇f‖ := ‖ |∇f | ‖.
Note in particular that

‖f‖2H1(Ω) =
∑

|α|≤1

‖∂αf‖2 = ‖f‖2 + ‖∇f‖2 . (31)

Proposition 4.4 ([10, Section 5.6]). Suppose Ω is bounded. Then

(i) the embedding (H1
0 (Ω), ‖·‖H1(Ω))→ (L2(Ω), ‖·‖) is compact;

(ii) there exists a positive constant cΩ such that Poincaré’s inequality holds:

cΩ ‖f‖2 ≤ ‖∇f‖2 for all f ∈ H1
0 (Ω).

Under some mild regularity assumptions on Ω, the next theorem makes it
possible to assign boundary values along ∂Ω to functions in H1(Ω).

Theorem 4.5 ([10, Section 5.5, Theorems 1 and 2]). Suppose Ω is bounded with
C1-boundary. Then there exists a unique bounded linear operator

Tr : (H1(Ω), ‖·‖H1(Ω))→ (L2(∂Ω), ‖·‖L2(∂Ω))

such that Tr(f) = f � ∂Ω for all f ∈ H1(Ω)∩C(Ω). Moreover, H1
0 (Ω) = N (Tr).

The operator Tr is called the trace operator, and for any f ∈ H1(Ω) the
associated “boundary value” Tr(f) ∈ L2(∂Ω) is called the trace of f .

The following proposition is a special case of the Sobolev embedding theorem
[10, Theorem II.6.6]. (We actually have the stronger statement that H2(Ω)
embeds continuously into the Hölder space C2,γ(Ω) for a certain 0 < γ < 1
depending on d, but we will not need this strengthened version.)

Proposition 4.6. Suppose d ≤ 3 and Ω is bounded with C1-boundary. Then
H2(Ω) ⊂ C(Ω), and there exists a positive constant c such that

sup
x∈Ω

|f(x)| ≤ c ‖f‖H2(Ω) for all f ∈ H2(Ω).

We end this section with a couple of lemmas. These will be used in Section
4.4 to prove that a certain linear operator H is closed.

Lemma 4.7. Let k ≥ 0 be an integer such that 2k + 1 ≤ d. Let ϕ ∈ C∞0 (Rd),
and let ϕn(x) = ϕ(nx) for n ≥ 1. Then ‖ϕn‖Hk(Rd) → 0 as n→∞.

Proof. For any multi-index α,

(∂αϕn)(x) = n|α|(∂αϕ)(nx)

and
|(∂αϕn)(x)|2 = n2|α||(∂αϕ)(nx)|2
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so integrating both sides over Rd yields

‖∂αϕn‖2 = n2|α|
∫
|(∂αϕ)(nx)|2 dx.

The map x 7→ nx is a bijection of Rd onto itself, and the determinant of the
Jacobian of the map is nd. Hence, by the change of variables formula for inte-
grals,

‖∂αϕn‖2 = n2|α|−d ‖∂αϕ‖2 .
If |α| ≤ k, then 2|α| − d ≤ −1, and summing both sides over all such α gives

‖ϕn‖2Hk ≤ n−1 ‖ϕ‖2Hk .

Taking n→∞, the assertion follows.

Lemma 4.8. Let k be as in the previous lemma and let X ⊂ Rd be a finite set.
Then the set

{f ∈ C∞0 (Ω) : f(x) = 0 for all x ∈ X} (32)

is dense in (Hk
0 (Ω), ‖·‖Hk(Ω)).

Proof. Let f ∈ Hk
0 (Ω) and let ε > 0. By definition of Hk

0 (Ω), we can find ϕ ∈
C∞0 (Ω) such that ‖f − ϕ‖Hk(Ω) < ε/2. Let ψ ∈ C∞0 (Rd) be such that ψ(0) = 1,

and let ψn(x) = ψ(nx) for n ≥ 1. By the previous lemma, ‖ψn‖Hk(Rd) → 0 as
n→∞. For all large enough n, the function

ϕn(x) = ϕ(x)−
∑

x0∈X
ϕ(x0)ψn(x− x0)

is in (32). Moreover, ‖ϕ− ϕn‖Hk(Ω) → 0 as n → ∞. Hence we can choose

N such that ‖ϕ− ϕN‖Hk(Ω) < ε/2, and then ‖f − ϕN‖Hk(Ω) < ε by the trian-

gle inequality. This shows that every function in Hk
0 (Ω) can be approximated

arbitrary well in Hk-norm by functions in (32).

4.2 The Dirichlet Laplacian

Let L be the linear partial differential expression

L = −∆ = −
d∑

i=1

∂2

∂x2
i

.

We say “expression” because we do not a priori specify whether L acts on C2-
functions, or on functions in some Sobolev space, or even just as a distributional
derivative; we will use the same symbol L in all of these contexts. It is called the
negative Laplacian (henceforth just “Laplacian”), and we devote this section to
constructing an appropriate realization of L as a lower semibounded self-adjoint
operator in L2(Ω). For this we will need the Green’s formulas:
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Proposition 4.9 ([28, Theorem D.9]). Suppose Ω is bounded with C2-boundary.
Let ν(x) be the outward unit normal vector at x ∈ ∂Ω and let σ be the surface
measure of ∂Ω. For all h ∈ H1(Ω) and f, g ∈ H2(Ω), we have

∫

Ω

(−∆f)h dx =

∫

Ω

∇f · ∇h dx−
∫

∂Ω

∂f

∂ν
h dσ,

∫

Ω

(−∆f)g dx−
∫

Ω

f(−∆g) dx =

∫

∂Ω

(
f
∂g

∂ν
− ∂g

∂ν
g

)
dσ.

Before we proceed, let us first recall the classical formulation of the boundary
value problem for −∆ on Ω. For this purpose we introduce the sesquilinear form

D(t) = H1(Ω) and t[f, g] =

∫

Ω

∇f · ∇g dx for f, g ∈ D(t).

Definition 4.10. Suppose Ω is bounded with C1-boundary. Let f ∈ H1(Ω),
g ∈ L2(Ω), h ∈ L2(∂Ω), and z ∈ C. We say that f is a weak solution to the
boundary value problem

{
(−∆− z)f = g on Ω,

f = h on ∂Ω
(33)

if t[f, u] − z〈f, u〉 = 〈g, u〉 for all u ∈ H1
0 (Ω) and Tr(f) = h, where Tr is the

trace operator associated to Ω.

The classical approach to the Dirichlet eigenvalue problem (as used by for
example Evans [10]) is in other words to take g = 0 and h = 0 in (33) and look
for nontrivial weak solutions as z ∈ R varies.

The notion of a weak solution to (33) with Dirichlet boundary conditions
(i.e. h = 0) can be equivalently formulated using the more modern notion
of distributions: Observe that since C∞0 (Ω) is dense in (H1

0 (Ω), ‖·‖H1(Ω)), the
statement

t[f, u]− z〈f, u〉 = 〈g, u〉 for all u ∈ H1
0 (Ω)

is equivalent to

t[f, ϕ]− z〈f, ϕ〉 = 〈g, ϕ〉 for all ϕ ∈ C∞0 (Ω)

which by one of the Green’s formulas (Proposition 4.9) is equivalent to

∫

Ω

f(−∆− z)ϕdx =

∫

Ω

fϕ dx for all ϕ ∈ C∞0 (Ω)

which is equivalent to (−∆− z)Tf = Tg in the sense of distributions. It follows
by this and Theorem 4.5 that f ∈ H1(Ω) is a weak solution to

{
(−∆− z)f = g on Ω,

f = 0 on ∂Ω
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if and only if {
(−∆− z)Tf = Tg,

f ∈ H1
0 (Ω).

This suggests that by restricting the distributional derivative operator −∆ to
an appropriate subspace of H1

0 (Ω), we can not only view −∆ as an operator
in L2(Ω), but also encode the Dirichlet boundary condition into the operator
itself. (A benefit of this is that we can drop the assumption of C1-boundary
since we are no longer using the trace operator explicitly.) This is essentially
what we will do next, though in practice we will follow the approach of [28] and
construct the Dirichlet Laplacian as a certain Friedrichs extension.

Given any f, g ∈ C∞0 (Ω), let Ω̃ be a bounded open set with C2-boundary
such that

(supp f) ∪ (supp g) ⊂ Ω̃ ⊂ Ω.

Since f, g are identically zero in a neighbourhood of ∂Ω̃, the same is true for
their normal derivatives ∂f

∂ν ,
∂g
∂ν , and thus the Green’s formulas gives

∫

Ω̃

(−∆f)g dx =

∫

Ω̃

∇f · ∇g dx,
∫

Ω̃

(−∆f)g dx−
∫

Ω̃

f(−∆g) dx = 0.

Since f, g are identically zero also on Ω \ Ω̃, the above equations hold true when

we replace Ω with Ω̃, and the resulting equations may be summarized as

〈Lf, g〉 = 〈f,Lg〉 =

∫

Ω

∇f · ∇g dx.

In particular,
〈Lf, f〉 = ‖∇f‖2 .

As a consequence we obtain a densely defined lower semibounded symmetric
operator L0 in L2(Ω) by

D(L0) = C∞0 (Ω) and L0 = Lf for f ∈ D(L0).

We now proceeded by constructing the Friedrichs extension of L0. Following
Section 2.10, we introduce a densely defined positive closable form s by

D(s) = D(L0) and s[f, g] = 〈Lf, f〉 for f, g ∈ D(s),

and we aim to compute the closure of s. We observe that s is a restriction of t,
but it turns out that the domain of the latter is too large to be the closure of
the former. Instead, let us define

t0 := t � H1
0 (Ω)×H1

0 (Ω). (34)
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The quadratic form associated to t0 is given by

t0[f ] = ‖∇f‖2 for f ∈ D(t0),

and since m = 0 clearly is a lower bound of t0, its form norm (which we recall
is unique up to equivalence of forms) is given by

‖f‖2t0 = t0[f ] + (1−m)2 ‖f‖2 = ‖∇f‖2 + ‖f‖2 = ‖f‖2H1(Ω) ,

where we have used (31). Since s is a restriction of t0, the form norm of s is a re-
striction of the form norm of t0. In other words, the normed space (D(s), ‖·‖s) =
(C∞0 (Ω), ‖·‖H1(Ω)) is a normed subspace of (D(t0), ‖·‖t0) = (H1

0 (Ω), ‖·‖H1(Ω)).

Since H1
0 (Ω) is by definition the closure of C∞0 (Ω) with respect to the H1(Ω)-

norm, we conclude that s = t0. Hence, by Theorem 2.13(iii), the Friedrichs
extension of L0 can be constructed as

D((L0)F ) = D((L0)∗) ∩H1
0 (Ω) and (L0)F = (L0)∗ � D((L0)F ).

To obtain a concrete description of the Friedrichs extension, we therefore require
a concrete description of the adjoint of L0. As the next proposition shows, this
adjoint is the so-called maximal operator Lmax, which is defined as follows:
f ∈ D(Lmax) if and only if LTf = Tg for some (necessarily unique) g ∈ L2(Ω),
in which case Lmaxf := g.

Proposition 4.11. (L0)∗ = Lmax.

Proof. Let f ∈ L2(Ω). By definition of the adjoint, f ∈ D((L0)∗) if and only if

〈f, L0ϕ〉 = 〈g, ϕ〉 for some g ∈ L2(Ω) and all ϕ ∈ D(L0),

and if this is the case, then (L0)∗f = g. Since D(L0) = C∞0 (Ω), we have

〈f, L0ϕ〉 = Tf (L0ϕ) = Tf (Lϕ) = (LTf )ϕ and 〈g, ϕ〉 = Tgϕ

for all ϕ ∈ C∞0 (Ω). Hence f ∈ D((L0)∗) if and only if

LTf = Tg for some g ∈ L2(Ω),

and if this is the case, then (L0)∗f = g. In other words, (L0)∗ = Lmax by the
definition of the latter.

Definition 4.12. The Dirichlet Laplacian −∆D is the lower semibounded self-
adjoint operator in L2(Ω) defined in any of the following equivalent ways:

(i) as the Friedrichs extension of L0;

(ii) as the unique self-adjoint operator corresponding to the densely defined
positive closed form t0;

(iii) as the restriction of Lmax to D(Lmax) ∩H1
0 (Ω).
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Note that unlike the definition of a weak solution, the definition of the Dirich-
let Laplacian requires no additional assumptions on the open set Ω. However,
in order to gain a better understanding of −∆D and especially its spectrum
we must be willing to make at least some assumptions. To begin with, if we
impose that Ω is bounded (but without imposing any regularity whatsoever on
the boundary of Ω) we obtain

Proposition 4.13. Suppose Ω is bounded. Then −∆D has a purely discrete
spectrum and its principal (lowest) eigenvalue is the largest constant cΩ for
which Poincaré’s inequality holds. In particular, −∆D is a positive operator.

Proof. As we recall, the form associated to −∆D is t0, so the form domain and
form norm of −∆D is (H1

0 (Ω), ‖·‖H1(Ω)). According to Proposition 4.4(i), this
normed space is compactly embedded into its ambient Hilbert space, and hence
−∆D has a purely discrete spectrum by Proposition 2.6. Corollary 2.8 now says
that the principal eigenvalue of −∆D is given by

λ1 = inf
f∈H1

0 (Ω)
f 6=0

‖∇f‖2

‖f‖2
.

The greatest cΩ for which Poincaré’s inequality holds is exactly equal to the
right-hand side, and this cΩ is positive by Proposition 4.4(ii). Since −∆D has
a purely discrete spectrum, its greatest lower bound is equal to the principal
eigenvalue, which is cΩ, and thus −∆D is positive.

Due to this result we usually prefer to write λ1(Ω) instead of m(−∆D) for
the greatest lower bound when Ω is bounded, since in this case the greatest
lower bound and the principal eigenvalue are one and the same (as explained in
Section 2.8). This notation also makes explicit the dependence on Ω, which is
convenient when we want to vary the domain, as we will do later.

If we in addition impose that Ω has C1-boundary, then Definition 4.12(iii)
and Theorem 4.5 yield D(−∆D) = D(Lmax) ∩ N (Tr), which we may interpret
as saying that the domain of −∆D consists of all functions f vanishing on
the boundary of Ω and such that −∆f makes sense. If the boundary of Ω is
sufficiently regular, then the domain and graph norm of −∆D can in fact be
determined explicitly:

Proposition 4.14. Suppose Ω is bounded with C2-boundary. Then

(i) D(−∆D) = H2(Ω) ∩H1
0 (Ω);

(ii) the graph norm of −∆D is equivalent to the H2(Ω)-norm on D(−∆D).

Proof.

(i) Recall that D(−∆D) = D(Lmax) ∩H1
0 (Ω). Obviously H2(Ω) ⊂ D(Lmax),

so H2(Ω) ∩ H1
0 (Ω) ⊂ D(−∆D). By a so-called regularity result for the

Dirichlet Laplacian, itself a special case of a regularity result for uni-
formly elliptic second-order linear partial differential operators, we have
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D(−∆D) ⊂ H2(Ω) [10, Section 6.3, Theorem 4]. (It is at this point that we
use the assumption of C2-boundary.) Therefore we also have the reverse
inclusion D(−∆D) ⊂ H2(Ω) ∩H1

0 (Ω).

(ii) −∆D is self-adjoint and in particular closed, meaning (D(−∆D), ‖ · ‖−∆D
)

is a Hilbert space. (H1
0 (Ω), ‖ · ‖H1(Ω)) on the other hand is a Hilbert

space by construction, and, since ‖ · ‖H1(Ω) ≤ ‖ · ‖H2(Ω), we see that

(D(−∆D), ‖·‖H2(Ω)) is also a Hilbert space. To have equivalence between
the two norms, it therefore suffices to show that one is stronger than the
other [14, Corollary 4.6.3]. This is straightforward:

‖f‖2−∆D
= ‖f‖2 + ‖−∆Df‖2

= ‖f‖2 +
d∑

i=1

∥∥∥∥−
∂2f

∂x2
i

∥∥∥∥
2

≤ ‖f‖2H2(Ω) .

Finally, if the dimension is not too large, then −∆D is guaranteed to act
only on functions continuous up to the boundary:

Proposition 4.15. Suppose d ≤ 3 and Ω is bounded with C2-boundary. Then
D(−∆D) ⊂ C(Ω), and there exists a constant c > 0 such that

sup
x∈Ω

|f(x)| ≤ c ‖f‖−∆D
for all f ∈ D(−∆D).

Proof. By the previous proposition, D(−∆D) ⊂ H2(Ω). Now use Proposi-
tion 4.6 along with the fact that the graph norm of −∆D is equivalent to the
H2(Ω)-norm, which again follows from the previous proposition.

This implies in particular that the Dirichlet eigenvectors are continuous for
d ≤ 3, which in the case d = 2 is vital for their physical interpretation as the
standing waves of a vibrating drum shaped like Ω.

4.3 The Green’s function of the Dirichlet Laplacian

From now on we assume d ∈ {2, 3} and that Ω is bounded, connected, and has
C∞-boundary. Let

s(x, y) =

{
1
ω2

ln |x− y|−1 if d = 2,
1
ω3
|x− y|−1 if d = 3,

where ωd is the surface measure of the unit sphere in Rd. We use the shorthand
sy = s(·, y). We have

∂

∂xi
|x− y| = xi − yi

|x− y|
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and thus
∂

∂xi
sy = − 1

ωd
|x− y|−d(xi − yi)

which gives

∇xsy = − 1

ωd
|x− y|−d(x− y)

and

|∇xsy| =
1

ωd
|x− y|1−d. (35)

Lemma 4.16. Let y ∈ Ω. Then sy ∈ L2(Ω), but sy /∈ H1(Ω).

Proof. We may without loss of generality assume y = 0. Since s0 is smooth
outside of the origin, it suffices to show that

∫

Bε

|s0|2 dx < +∞ and

∫

Bε

|∇xs0|2 dx = +∞,

where Bε, ε > 0 is the open ball of radius ε centered at the origin, and ε is small
enough that Bε ⊂ Ω. Let

f(r) =

{
ln r−1 if d = 2,

r−1 if d = 3
for r > 0.

By integrating in polar (hyperspherical) coordinates (see, e.g., [10, Appendix C,
Theorem 4]),

∫

Bε

|s0|2 dx =
1

ω2
d

∫ ε

0

rd−1

∫

∂B1

f(r)2 dσdr =
1

ωd

∫ ε

0

f(r)2rd−1 dr.

Since f(r)rd−1 can be continuously extended to r = 0, we see that the rightmost
integral is finite. Thus s0 ∈ L2(Ω). Next, by (35) and polar coordinates,

∫

Bε

|∇xsy|2 dx =
1

ω2
d

∫ ε

0

rd−1

∫

∂B1

r2−2d dσdr =
1

ωd

∫ ε

0

r1−d dr.

The rightmost integral is divergent, and hence s0 /∈ H1(Ω).

Let z ∈ C and y ∈ Rd. A fundamental solution of the linear partial differen-
tial expression −∆−z is a distribution E acting on Rd such that (−∆−z)E = δy
in the sense of distributional derivatives. Since −∆−z has constant coefficients,
such solutions always exist by the Malgrange-Ehrenpreis theorem [26]. Letting
E′ := E � C∞0 (Ω), we obtain a distribution E′ on Ω such that (−∆−z)E′ = δy.
In what follows we will only be concerned with real z such that z < λ1(Ω), so
we will use λ instead of z to be consistent with our notation in Section 3. It
turns out that in this case, E′ = Tg for some unique g ∈ L2(Ω). We shall now
explain how to construct this g.

The following two definitions are equivalent to the one in [4, Section 1.1],
but the reader should be aware of three things: Firstly, some authors define hλ
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such that it differs in sign from ours, in which case one should take gλy := sy−hλy
instead of (37). Secondly, the name “relative Green’s function” does not seem
to be standard, and often hλy is not given any name at all; nevertheless, “relative

Green’s function” is how the authors of [24] refer to hλ, so we have chosen our
terminology to agree with theirs. Thirdly, gλ is sometimes defined in such a
way that hλ appears only implicitly in the definition and is not introduced in
a stand-alone way, but as we will later see hλ has an important role to play in
this thesis and as such deserves its own name and notation.

Definition 4.17. Let λ < λ1(Ω), y ∈ Ω, and let hλy ∈ H1(Ω) be the unique
weak solution to the boundary value problem

{
(−∆− λ)hλy = λsy on Ω,

hλy = −sy on ∂Ω.
(36)

The function hλ(x, y) := hλy (x) is called the relative Green’s function of −∆−λ
with respect to Ω.

It is known that hλ can be extended continuously to Ω×Ω [4, Section 1.1].

Definition 4.18. Let λ < λ1(Ω), y ∈ Ω, and let

gλy := sy + hλy . (37)

The function gλ(x, y) := gλy (x) is called the Green’s function of −∆ − λ with
respect to Ω.

It follows immediately from (37) that gλ(x, ·) ∈ C(Ω \ {x}) ∩ L2(Ω) and
gλ(·, y) ∈ C(Ω \ {y}) ∩ L2(Ω) for all x, y ∈ Ω, and moreover gλy = 0 on ∂Ω due
to the boundary condition in (36). Note however that Proposition 4.15 implies
gλy /∈ D(−∆D) due to the the discontinuity at y.

We set out to find g ∈ L2(Ω) such that E′ = Tg. As the next theorem shows,
gλy is exactly this g. (This implies that gλy is not even in D(Lmax), because if it
were, then δy would be of the form Tf for some f ∈ L2(Ω), which is not true
according to Lemma 4.3.) The result itself is stated as fact (but without being
called a “theorem”) in [4, Section 1.1].

Theorem 4.19. (−∆− λ)Tgλy = δy in the sense of distributions.

As a consequence, we obtain that the Green’s functions are linearly inde-
pendent:

Corollary 4.20. {gλy : y ∈ Ω} is a linearly independent set in L2(Ω).

Proof. Any linear combination of the Green’s functions will, after applying the
distributional derivative −∆− λ and using the theorem, result in a linear com-
bination of some elements of {δx : x ∈ Ω}. If the former linear combination
is equal to zero, then the latter is too, and then Lemma 4.2 implies that the
coefficients must all be zero.
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For our purposes, the most important aspect of the Green’s function is the
fact that for each λ < λ1(Ω), the resolvent (−∆D−λ)−1 is an integral operator
having the Green’s function as integral kernel. Before giving a formal proof we
shall first attempt to convince the reader of the validity of this statement. To
this end, let f ∈ L2(Ω) and

h(x) :=

∫

Ω

gλ(x, y)f(y) dy for all x ∈ Ω.

The Cauchy-Schwarz inequality and (37) implies

|h(x)| ≤
∥∥gλ(x, ·)

∥∥ ‖f‖
≤
∥∥hλ(x, ·)

∥∥ ‖f‖+ ‖s(x, ·)‖ ‖f‖
≤ |Ω|

∥∥hλ
∥∥
∞ ‖f‖+ ‖s0‖L2(Rd) ‖f‖

so h is bounded and hence in L2(Ω). Letting ϕ ∈ C∞0 (Ω) and ψ := (−∆− λ)ϕ,
we compute

((−∆− λ)Th)ϕ = Thψ

=

∫

Ω

h(x)ψ(x) dx

=

∫

Ω

(∫

Ω

gλ(x, y)f(y) dy

)
ψ(x) dx

=

∫

Ω

f(y)

(∫

Ω

gλ(x, y)ψ(x) dx

)
dy

=

∫

Ω

f(y)Tgλyψ dy

=

∫

Ω

f(y)((−∆− λ)Tgλy )ϕdy

=

∫

Ω

f(y)ϕ(y) dy

= Tfϕ.

where we have used the Fubini-Tonelli theorem and Theorem 4.19. It follows
that h ∈ D(Lmax) and (Lmax − λ)h = f by definition of the maximal operator.
If we also knew that h ∈ H1

0 (Ω), we could then conclude that h ∈ D(−∆D) and

((−∆λ − λ)−1f)(x) = h(x) =

∫

Ω

gλ(x, y)f(y) dy for all x ∈ Ω.

Instead of showing h ∈ H1
0 (Ω), however, we shall take a different approach.

Proposition 4.21. Let λ < λ1(Ω). Then (−∆D − λ)−1 is an integral operator
with kernel gλ. In other words,

((−∆D − λ)−1f)(x) =

∫

Ω

gλ(x, y)f(y) dy for all f ∈ L2(Ω), x ∈ Ω.

54



Proof. Let us first note that Proposition 4.15 implies (−∆D−λ)−1f ∈ C(Ω) for
each f ∈ L2(Ω), meaning ((−∆D−λ)−1f)(x) is a well-defined complex number
for each x ∈ Ω. Fix x ∈ Ω and let Tx : L2(Ω) → C be the linear functional
defined by Txf := ((−∆D−λ)−1f)(x). Let f ∈ L2(Ω) and g := (−∆D−λ)−1f .
Then (−∆D)g = f + λg. By the inequality (a+ b)2 ≤ 2a2 + 2b2 along with the
boundedness of −∆D − λ we get

‖g‖2−∆D
= ‖g‖2 + ‖f + λg‖2

≤ ‖g‖2 + 2 ‖f‖2 + 2λ2 ‖g‖2

≤ C ‖f‖2

for some constant C > 0. According to Proposition 4.15, there also exists a
constant c > 0 such that

|Txf | ≤ c ‖g‖−∆D
≤ c
√
C ‖f‖ .

Therefore Tx is bounded. The Fréchet-Riesz representation theorem (see, e.g.,
[14, Theorem 6.2.4]) now furnishes a unique ux ∈ L2(Ω) such that Txf = 〈f, ux〉
for all f ∈ L2(Ω). This provides us with our integral kernel, so we only have to
show that ux = gλ(x, ·) in the sense of L2-functions.

Let ϕ ∈ C∞0 (Ω) and ψ := (−∆D−λ)−1ϕ. This necessitates that ψ ∈ C∞(Ω)
by [10, Section 6.3, Theorem 6]; in particular, ψ is a classical (read: at least in
C2(Ω)) solution to the Dirichlet boundary value problem

{
(−∆− λ)ψ = ϕ on Ω,

ψ = 0 on ∂Ω

It follows by the discussion in [4, Section 1.1] that ψ has the representation

ψ(x) =

∫

Ω

gλ(x, y)ϕ(y) dy for all x ∈ Ω,

while on the other hand

ψ(x) = ((−∆D − λ)−1ϕ)(x) = Txϕ = 〈ϕ, ux〉 =

∫

Ω

ux(y)ϕ(y) dy,

and hence Lemma 4.1 implies that ux = gλ(x, ·) in the sense of L2-functions.

Proposition 4.22. Let λ < λ1(Ω) and x, y ∈ Ω, x 6= y. Then

(i) gλ(x, y) > 0;

(ii) gλ(x, y) = gλ(y, x);

(iii) λ 7→ gλ(x, y) is monotonically increasing on (−∞, λ1(Ω)).

Proof.
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(i) This is stated in [24, Proposition 2.5(iii)].

(ii) Since (−∆D − λ)−1 is a self-adjoint integral operator, [31, Theorem 6.19]

implies that (−∆D−λ)−1 has (x, y) 7→ gλ(y, x) = gλ(y, x) as kernel, where
the last equality follows from (i). This necessitates gλ(x, y) = gλ(y, x) a.e.
on Ω×Ω, which by continuity of the Green’s function must therefore hold
for all x, y ∈ Ω, x 6= y.

(iii) This is a consequence of (i) and [4, Section 1.2, Assertion (B)].

As an immediate consequence of this proposition and (37), we have

Corollary 4.23. Let λ < λ1(Ω) and x, y ∈ Ω. Then

(i) gλ(x, y) ∈ R;

(ii) gλ(x, y) = gλ(y, x);

(iii) λ 7→ gλ(x, y) is monotonically increasing on (−∞, λ1(Ω)).

The following two identities will play an important role in the next section.

Proposition 4.24. Let λ, µ < λ1(Ω) and x, y ∈ Ω. Then

(i) gµy = (−∆D − λ)(−∆D − µ)−1gλy ;

(ii) hµ(x, y)− hλ(x, y) = (µ− λ)〈gµx , gλy 〉.

Proof. By writing −∆D − λ = (−∆D − µ) + (µ− λ), we see that

(−∆D − λ)(−∆D − µ)−1 = I + (µ− λ)(−∆D − µ)−1.

Hence (i) is equivalent to

gµy − gλy = (−∆D − µ)−1((µ− λ)gλy ).

On the other hand, G := (−∆D − µ)−1((µ− λ)gλy ) is the unique weak solution
to the boundary value problem

{
(−∆− µ)G = (µ− λ)gλy on Ω,

G = 0 on ∂Ω.

It therefore suffices to show that G′ := gµy −gλy solves this problem. The bound-

ary condition is clearly correct, as gµy = gλy = 0 on ∂Ω. By (37), G′ = hµy − hλy .
By (36), (−∆− µ)hµy = µsy. As for the other relative Green’s function, we use
the same trick as above and write

(−∆− µ)hλy = ((−∆− λ) + (λ− µ))hλy = λsy + (λ− µ)hλy .
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Hence

(−∆− µ)G′ = µsy − λsy + (µ− λ)hλy = (µ− λ)(hλy − sy) = (µ− λ)gλy

where the last equality is by (37). This proves (i). As for (ii), we use Proposi-
tion 4.21 to evaluate

G(x) = (µ− λ)((−∆D − µ)−1gλy )(x) = (µ− λ)〈gλy , gµx 〉 = (µ− λ)〈gµx , gλy 〉

where we in the last equality used that the Green’s functions are real-valued.
As for the left-hand side, G(x) = hµy (x) − hλy (x) = hµ(x, y) − hλ(x, y). This
completes the proof.

4.4 Construction of the Hamiltonian

In what follows, let X be a fixed, finite and nonempty subset of Ω. We know by
Proposition 4.15 that f(x) is a well-defined complex number for all f ∈ D(−∆D)
and x ∈ Ω, so we can define an operator H by restricting −∆D to the domain

D(H) = {f ∈ D(−∆D) : f(x) = 0 for all x ∈ X}.

For any λ ∈ C, we write Nλ := N (H∗ − λ).

Proposition 4.25. H is a densely defined lower semibounded closed operator
with Friedrichs extension −∆D.

Proof. Symmetry and lower semiboundedness follows immediately from being
a restriction of the self-adjoint, lower semibounded operator −∆D.

As for the density, note that D(H) contains the set (32), so by taking k = 0 in
Lemma 4.8 we find that D(H) is dense in H0

0 (Ω). Since the latter is by definition
the closure of C∞0 (Ω) in L2(Ω) and thus equal to L2(Ω) by Lemma 4.1, we obtain
the density of D(H) in L2(Ω).

To show that H is closed, we must show that (D(H), ‖·‖H) is a Banach
space. Let {fn} be a Cauchy sequence in (D(H), ‖·‖H). Since the graph norm
of H is a restriction of the graph norm of −∆D, and (D(−∆D), ‖·‖−∆D

) is a
Banach space, we see that fn converges in ‖·‖−∆D

-norm to some f ∈ D(−∆D).
Let x ∈ X. Then, by Proposition 4.15, there exists c > 0 such that

|f(x)| = |f(x)− fn(x)| ≤ c ‖f − fn‖−∆D
for all n ∈ N.

Letting n → ∞ gives f(x) = 0, and since x ∈ X was arbitrary, f ∈ D(H).
Therefore {fn} has a ‖·‖H -limit in D(H), and H is a closed operator.

In view of Lemma 2.14, Definition 4.12, and (34), we have HF = −∆D if
and only if D(H) is dense in (H1

0 (Ω), ‖·‖H1(Ω)). Let k = 1. Since D(H) contains

the set (32), we see that in the case d = 3 the inequality 2k + 1 ≤ d holds and
thus the density follows by Lemma 4.8. This argument does not work when
d = 2, so for the general case we instead refer to [24, Section 3] where it is
stated that “[−∆D], obviously a self-adjoint extension of [H], is precisely the
Friedrichs extension of [H].”
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Theorem 4.26. Let λ < λ1(Ω). Then {gλx : x ∈ X} is a basis of Nλ.

Proof. λ < λ1(Ω) implies λ ∈ ρ(−∆D), so −∆D − λ is a bijection of D(−∆D)
onto L2(Ω). Moreover, H − λ is a restriction of −∆D − λ, and therefore a
bijection of D(H) onto R(H−λ) whose inverse is a restriction of (−∆D−λ)−1.
Hence (−∆D − λ)−1 maps R(H − λ) bijectively onto D(H). This implies

R(H − λ) = {f ∈ L2(Ω) : (−∆D − λ)−1f ∈ D(H)}
= {f ∈ L2(Ω) : ((−∆D − λ)−1f)(x) = 0 for all x ∈ X}
= {f ∈ L2(Ω) : 〈f, gλx〉 = 0 for all x ∈ X}
= (span{gλx : x ∈ X})⊥

where we have used Proposition 4.21 in the third equality. Taking orthogonal
complements of both sides and using the fact that finite-dimensional subspaces
are closed yields

span{gλx : x ∈ X} = R(H − λ)⊥ = N (H∗ − λ) = Nλ.

The linear independence of the Green’s functions was shown in Corollary 4.20,
and since they span Nλ they are therefore a basis.

Henceforth, let m = |X| denote the cardinality of X.

Corollary 4.27. The defect indices of H are (m,m).

Proof. The above theorem implies dim(Nλ) = m. Now use Proposition 2.10.

Let us now assume that we have chosen some fixed but otherwise arbitrary
enumeration {x1, x2, . . . , xm} = X. For each λ < λ1(Ω), define a corresponding
ordered basis Gλ of Nλ by ordering the Green’s functions in the obvious way:

Gλ := (gλ1 , . . . , g
λ
m) := (gλx1

, . . . , gλxm).

Let G := {Gλ : λ < λ1(Ω)} and recall the terminology of Section 3.5.

Proposition 4.28. G is a gamma family for (H,−∆D) on (−∞, λ1(Ω)).

Proof. Let λ, µ < λ1(Ω). Since −∆D is a self-adjoint extension of the densely
defined symmetric operator H we can construct a designated boundary triplet
(H∗,Γλ0 ,Γ

λ
1 ) for H∗ as in Section 3.2. This boundary triplet furnishes an as-

sociated gamma field γλ : ρ(−∆D) → B(Nλ, L2(Ω)) which Proposition 3.13(i)
asserts has the form

γλ(z) = (−∆D − λ)(−∆D − z)−1 for all z ∈ ρ(−∆D).

Proposition 4.24(i) is then equivalent to the statement

gλy = γλ(µ)gλy for all λ, µ < λ1(Ω), y ∈ Ω

and this statement implies Gµ = γλ(µ)Gλ in the sense of (20). In other words,
Gµ and Gλ are gamma compatible.
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We next define two real symmetric m×m matrices: Let G(λ) := (〈gλi , gλj 〉)ij
and let H(λ) be the matrix with entries

H(λ)ij =

{
hλ(xi, xi) if i = j,

gλ(xi, xj) if i 6= j.

Recall the terminology of Section 3.6.

Proposition 4.29. H(λ) is a Weyl primitive for G.

Proof. H(λ) is real and symmetric and therefore Hermitian. We must show
that M(µ, λ) = H(µ)−H(λ) for all λ, µ < λ1(Ω). By Lemma 3.31 and Propo-
sition 4.24(ii) we have, for all i, j = 1, . . . ,m,

M(µ, λ)ij = eTi M(µ, λ)ej = (µ− λ)〈gµj , gλi 〉 = hµ(xj , xi)− hλ(xj , xi)

where ei := (δ1i, δ2i, . . . , δmi)
T . This takes care of the diagonal. For the non-

diagonal elements we only have to note that (37) implies hµ(x, y)− hλ(x, y) =
gµ(x, y)− gλ(x, y) for all x, y ∈ Ω, x 6= y and use the symmetry of gλ.

In summary, we have proved

Theorem 4.30. (H,G,H) is an admissible operator.

Corollary 4.31. λ 7→ H(λ) is strictly increasing, analytic with derivative
H′(λ) = G(λ), and

lim
λ→−∞

uHH(λ)u = −∞ for all u ∈ C \ {0}.

Proof. This is Proposition 3.41 applied to the particular Weyl primitive H. The
last assertion holds because H is a Weyl primitive for G, which is a gamma family
for (H,−∆D), and −∆D is the Friedrichs extension of H by Proposition 4.25.

It might seem strange to use H(λ) as Weyl primitive when the matrix
(hλ(xi, xj))ij would also work. However, the former Weyl primitive makes pos-
sible a physical interpretation of the self-adjoint extensions of H generated by
Theorem 3.43(i) in the special case that B is diagonal. For this, let us use the
shorthand

Hα = Hdiag(α1,...,αm) for α = (α1, . . . , αm) ∈ Rm.

Proposition 4.32. Let u ∈ D(Hα), α ∈ Rm. Then there exist ci ∈ C such that
for each i = 1, 2, . . . ,m,

u(x) = (s(x, xi) + αi)ci + o(1) as x→ xi. (38)
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Proof. Let λ < λ1(Ω) and C := B−H(λ). Recall that H is closed by Proposi-
tion 4.25. By Theorem 3.43(i) there exist f ∈ D(H), u ∈ Cm such that

u = f + (−∆D − λ)Cλuλ + uλ.

The first two terms are continuous functions on Ω by Proposition 4.15. More-
over, f(xi) = 0. Thus

u(x) =
(
(−∆D − λ)Cλuλ)(xi) + uλ(x) + o(1) as x→ xi.

Let ei = (δ1i, . . . , δmi)
T . We compute

(
(−∆D − λ)Cλuλ

)
(xi) = 〈Cλuλ, g

λ
xi〉

= 〈Cλuλ, (ei)λ〉
= eTi Cu

=
∑

j

Cijuj

= αiui −
∑

j

H(λ)ijuj .

Next we consider the term uλ(x). As x 7→ hλ(x, xi) is continuous on Ω, we have

gλi (x) = s(x, xi) + hλ(x, xi) = s(x, xi) + H(λ)ii + o(1) as x→ xi.

Moreover, as gλj (x) = gλ(x, xj) is continuous on Ω \ {xj}, we have for all j 6= i,

gλj (x) = H(λ)ij + o(1) as x→ xi.

Thus

uλ(x) =
∑

j

ujg
λ
j (x)

= s(x, xi)ui +
∑

j

H(λ)ijuj + o(1) as x→ xi.

In summary,

u(x) = (s(x, xi) + αi)ui + o(1) as x→ xi,

so the assertion holds with ci = ui, i = 1, 2, . . . ,m.

A careful read of [8, Section III] makes clear that in the case d = 3, our
extension Hα is exactly equal to their extension H(αiδij)ij(δij)ij . Since the latter
extensions constitute what the authors of [8] call “the most general extension[s]
of the local kind,” or, in their introduction, “point interaction operators in [a]
bounded domain,” we will borrow some of this terminology and say:

Definition 4.33. Hα is called a point-interaction Hamiltonian in Ω.
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4.5 Spectral properties of the Hamiltonian

Proposition 4.34. Hα has a purely discrete spectrum for all α ∈ Rm.

Proof. Recall that to have a purely discrete spectrum means to have an empty
essential spectrum. H is a closed symmetric operator in a complex Hilbert
space with equal finite defect indices, so by [31, Theorem 8.18] all self-adjoint
extensions of H have the same essential spectrum. Since −∆D is a self-adjoint
extension of H, and −∆D has a purely discrete spectrum by Proposition 4.13,
we conclude that Hα also has a purely discrete spectrum.

In view of the above proposition, we will switch to the notation

λ1(Ω, X, α) = m(Hα) for α ∈ Rm.

This reflects the fact that, similarly to the Dirichlet Laplacian, the greatest
lower bound of Hα is equal to the principal eigenvalue. Including the explicit
dependence on Ω and X will also be convenient when we later let Ω and X vary.

Proposition 4.35. λ1(Ω, X, α) < λ1(Ω) for all α ∈ Rm.

Proof. Let f be an eigenfunction of −∆D corresponding to the smallest eigen-
value λ1(Ω). As is explained in [18, Section 1.3.3], we can choose f nonnegative
on Ω. Since the Green’s function gλ is positive on Ω × Ω and f 6= 0, we have
(f, gλx) > 0 for any x ∈ X. Now the assertion follows from Proposition 3.4.

Fix α ∈ Rm. According to Theorem 3.44, the value and eigenspace of
λ1(Ω, X, α) is controlled by the function

F (α, λ) := λmax(H(λ)− diag(α)) for λ < λ1(Ω). (39)

More specifically, we have λ = λ1(Ω, X, α) if and only if F (α, λ) = 0, and then

N (Hα − λ) = {uλ : u ∈ N (H(λ)− diag(α))} (40)

where

uλ :=

m∑

i=1

uig
λ
i .

Proposition 4.36. F (α, λ) is a simple eigenvalue of H(λ)− diag(α), and the
corresponding eigenvector is positive, i.e., each entry is positive.

Proof. Choose τ ∈ R such that

min
1≤i≤m

(hλ(xi, xi)− αi) + τ > 0.

Then all the diagonal entries of H(λ)−diag(α)+τI are positive. Since Proposi-
tion 4.22(i) furthermore implies that all the off-diagonal entries also are positive,
H(λ)−diag(α) + τI is a positive matrix (i.e., all entries are positive). It follows
by the Perron-Frobenius theorem (see, e.g., [7, Theorem 2.1.4]) that the largest
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eigenvalue of H(λ) − diag(α) + τI is simple and the corresponding eigenvector
can be chosen to have all entries positive. Then, since adding the factor τI to
H(λ) − diag(α) only translates the spectrum of the latter and moreover does
not affect the eigenvectors, the assertion follows.

Lemma 4.37. Let λ(t), q(t), and A(t) be differentiable families of scalars,
unit vectors, and symmetric matrices, respectively. If A(t)q(t) = λ(t)q(t), then
λ′(t) = q(t)HA′(t)q(t).

Proof. We compute

λ′(t)− q(t)HA′(t)q(t) = q′(t)HA(t)q(t) + q(t)HA(t)q′(t)

= λ(t)q′(t)Hq(t) + λ(t)q(t)Hq′(t)

= λ(t)
d

dt

(
q(t)Hq(t)

)

= λ(t)
d

dt
(1)

= 0.

Proposition 4.38. F (α, λ) is analytic separately in each argument, and

∂F

∂λ
= ‖uλ‖2 ,

∂F

∂αi
= −|ui|2 for all i = 1, 2, . . . ,m,

where u is the normalized eigenvector corresponding to F (α, λ). In particular,
F (α, λ) is strictly increasing in λ and strictly decreasing in each αi.

Proof. Since H(λ)−diag(α) is an analytic family of Hermitian matrices, both in
λ (by Corollary 4.31) and in each αi (obvious), we have by [22, Section II, Theo-
rem 6.1] that F (α, λ) is analytic separately in each argument. Moreover, by [22,
Section II§6.2], we can choose a family of orthonormal eigenbases such that each
eigenvector is analytic in any individual argument of our choice. In particular,
the normalized maximal eigenvector u = u(α, λ) can be chosen analytic with
respect to any one of the individual arguments λ, α1, . . . , αm. Now

∂

∂λ
(H(λ)− diag(α)) = G(λ),

∂

∂αi
(H(λ)− diag(α)) = −diag(δ1i, . . . , δmi),

where the first partial derivative follows from by Corollary 4.31 and the second
is obvious. Hence, by Lemma 4.37,

∂F

∂λ
= uHG(λ)u = ‖uλ‖2 ,

∂F

∂αi
= −uH diag(δ1i, . . . , δmi)u = −|ui|2.
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Theorem 4.39. Let λ := λ1(Ω, X, α). Then λ is a simple eigenvalue of Hα

with corresponding eigenfunction uλ, where u is the unique positive solution to

H(λ)u = diag(α)u.

Furthermore, each map αi 7→ λ1(Ω, X, α) is analytic with derivative

∂

∂αi
λ1(Ω, X, α) =

|ui|2
‖uλ1‖2

and hence strictly increasing.

Proof. The first few assertions follow from Proposition 4.36 and (40). Since
λ1(αi) := λ1(Ω, X, α) (all other αj held constant) is the unique solution of
F (α, λ) = 0, we have by the analytic implicit function theorem in one variable
that λ1(αi) is analytic, and, assuming u is normalized,

∂

∂αi
λ1(αi) = −

(
∂F

∂λ

)−1
∂F

∂αi
=
|ui|2
‖uλ1

‖2
,

where we have used Proposition 4.38. If u is not normalized, then we may first
multiply u by a constant so that it becomes normalized, but note that this
does not change the above derivative, as the constant is cancelled out in the
fraction.

Proposition 4.40. With notation as in Theorem 4.39, let u = (u1, . . . ,um).
The eigenfunction uλ has the alternative representation uλ = f + u0, where

u0 :=
∑

i

uig
0
i ∈ N0,

f :=
∑

i

ui(h
λ
xi − h0

xi) ∈ H1
0 (Ω) ∩ C(Ω).

If in addition λ ≥ 0 (resp. λ ≤ 0), then f ≥ 0 (f ≤ 0).

Proof. Taking λ = 0 in Theorem 3.43(ii), we see that uλ ∈ D(Hα) ⊂ D[Hα] =
D[−∆D] u N0 = H1

0 (Ω) u span{g0
i : i = 1, . . . ,m}. Thus there exist unique

f ∈ H1
0 (Ω) and v ∈ Cm such that uλ = f + v0. Since uλ and v0 are continuous

except on X, we see that f = uλ−v0 is also continuous except possibly at some
points in X. In view of (37), we have

uλ(x) = uisxi(x) + Ci + o(1) as x→ xi

for some constant Ci ∈ R, and similarly

v0(x) = visxi(x) +Di + o(1) as x→ xi

for some constant Di ∈ R. Hence

f(x) = (ui − vi)sxi(x) + Ci −Di + o(1) as x→ xi.
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We have f ∈ H1
0 (Ω), but also sxi /∈ H1(Ω) by Lemma 4.16, so it is necessary

that ui = vi for all i. Therefore uλ = f + u0, and

f = uλ − u0 =
∑

ui(g
λ
i − g0

i ) =
∑

ui(h
λ
xi − h0

xi).

The last assertion follows from this expression for f along with the fact that
λ 7→ hλxi(y) is monotonously increasing for each y ∈ Ω by Corollary 4.23.

With Ω and X = {x1, . . . , xm} as before, suppose now that we add a new
distinct point xm+1 ∈ Ω to our set X, yielding a larger set X ′ = X ∪ {xm+1}.
We may then assign a new interaction strength parameter at xm+1 and corre-
spondingly use a larger tuple α′ = (α, αm+1) ∈ Rm+1 of parameters. The next
theorem generalizes Proposition 4.35.

Theorem 4.41. λ1(Ω, X ′, α′) < λ1(Ω, X, α) for all α′ = (α, αm+1) ∈ Rm+1.

Proof. Let H(λ) denote the Weyl primitive before adding the point, and let
H1(λ) denote the Weyl primitive after adding the point. Then H(λ)− diag(α)
is the leading principal submatrix of order m of the (m+1)× (m+1) Hermitian
matrix H1(λ)−diag(α′). Therefore, by the Cauchy interlace theorem (see, e.g.,
[20, Theorem 1]),

λmax(H(λ)− diag(α)) ≤ λmax(H1(λ)− diag(α′)).

In the notation of (39),
F (α, λ) ≤ F1(α′, λ).

Suppose now that we have equality: Then F (α, λ) = F1(α′, λ) is a simple eigen-
value of both H(λ) − diag(α) and H1(λ) − diag(α′). By [20, Theorem 2], it is
then necessary that the vector

(gλ(x1, xm+1), . . . , gλ(xm, xm+1))T

is orthogonal to the eigenfunction of H(λ)−diag(α) corresponding to the eigen-
value F (α, λ). But both these vectors have all entries positive, so this cannot
happen. Therefore

F (α, λ) < F1(α′, λ).

Inserting λ = λ1(Ω, X ′, α′) yields

F (α, λ1(Ω, X ′, α′)) < 0.

Since λ 7→ F (α, λ) is strictly increasing (Proposition 4.38) and λ1(Ω, X, α) is
the unique solution of F (α, λ) = 0, we must therefore have λ1(Ω, X ′, α′) <
λ1(Ω, X, α).
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5 Faber-Krahn-type inequalities

Let Ω ⊂ Rd, d ≥ 1 be open and bounded. Consider the following variational
problem: Assuming that Ω has fixed volume, choose Ω so as to minimize the
principal eigenvalue of the Dirichlet Laplacian in Ω (recall Proposition 4.13).
As explained in the introduction, this problem is solved by the Faber-Krahn
inequality : With standard notation for the principal eigenvalues, we have

Theorem 5.1 ([18, Theorem 3.2.1]). Let B ⊂ Rd be an open ball with the same
volume (Lebesgue measure) as Ω. Then

λ1(B) ≤ λ1(Ω). (41)

It obviously follows that the solution to the variational problem is Ω = B.
Our goal in the remaining few sections is to derive similar variational inequalities
for point-interaction Hamiltonians in bounded domains, but we shall begin with
a general operator-theoretic result.

5.1 The abstract case with defect indices (1,1)

Henceforth, assume d ∈ {2, 3} and that Ω ⊂ Rd is open, bounded, and connected
with C∞-boundary. Recall the Faber-Krahn-type inequality (6), proven in [24];
in our notation, this inequality takes on the appearance

λ1(B, {0}, α) ≤ λ1(Ω, {x}, α) for all x ∈ Ω, α ∈ R. (42)

One of the key insights of [24] was that this inequality follows essentially from a
different inequality, namely Bandle’s inequality for the relative Green’s functions
with respect to Ω and B. In the authors’ own words:

“It is admittedly remarkable that the estimate [...] involving Green functions
of Dirichlet Laplacians, is so intimately connected with the spectral theory of

the Hamiltonian with a point interaction in bounded domain.”

As we now show, this connection generalizes all the way to arbitrary densely de-
fined lower semibounded operators with defect indices (1, 1). When attempting
this generalization we immediately face two fundamental issues: First, we need
a canonical way of parametrizing the self-adjoint extensions of the operators us-
ing real numbers, and second, we need to formulate an appropriate “abstract”
Bandle’s inequality for the operators. Both of these issues are solved by our
theory of admissible operators. First, however, we need a lemma:

Lemma 5.2. For i = 1, 2 let ai ∈ R and let fi : (−∞, ai) → R be a strictly
increasing bijection. Then the following are equivalent:

(i) a1 ≤ a2 and f1(x) ≥ f2(x) for all x < a1;

(ii) f−1
1 (y) ≤ f−1

2 (y) for all y ∈ R.
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We emphasize that f1 and f2 need to be bijections for this lemma to hold.

Proof. First suppose (i) holds. Let y ∈ R and xi := f−1
i (y), i = 1, 2. Then

x1 < a1 ≤ a2, and f2(x1) ≤ f1(x1) = y = f2(x2). Since f2 is strictly increasing,
this implies x1 ≤ x2. That is, f−1

1 (y) ≤ f−1
2 (y). Now suppose (ii) holds. Since

fi, i = 1, 2 are strictly increasing bijections, f−1
i : R → (−∞, ai), i = 1, 2 are

strictly increasing bijections. Hence

a1 = lim
y→+∞

f−1
1 (y) ≤ lim

y→+∞
f−1

2 (y) = a2.

Let x < a1. Then x < a2 also, so we may let yi := fi(x), i = 1, 2. It follows
that f−1

1 (y1) = x = f−1
2 (y2) ≥ f−1

1 (y2). Since f−1
1 is strictly increasing, this

implies y1 ≥ y2. That is, f1(x) ≥ f2(x).

Recall the notation and results in Section 3.7. In the next theorem, the
inequality m(T1) ≤ m(T2) takes the role of the Faber-Krahn inequality (41), the
inequality between the Weyl primitives takes the role of Bandle’s inequality (see
the next section), and the inequality in (ii) takes the role of the Faber-Krahn-
type inequality (42).

Theorem 5.3. For i = 1, 2, let (Ti,Ei, (wi)) be an admissible operator such
that Ti has defect indices (1, 1) and m((Ti)α) < m(Ti) for all α ∈ R. Then the
following are equivalent:

(i) m(T1) ≤ m(T2) and w1(λ) ≥ w2(λ) for all λ < m(T1);

(ii) m((T1)α) ≤ m((T2)α) for all α ∈ R.

Proof. For i = 1, 2, our hypothesis together with Lemma 3.47 implies that the
map wi : (−∞,m(Ti)) → R is a strictly increasing bijection, while Proposi-
tion 3.45 asserts that α 7→ m((Ti)α) is the inverse of wi. We therefore only have
to take ai = m(Ti) and fi = wi in the above lemma.

Note that the two operators Ti, i = 1, 2 in the theorem need not be defined
in the same Hilbert space.

5.2 The one-point case for the Hamiltonian

As mentioned earlier, the relative Green’s functions with respect to the domains
Ω and B are related by Bandle’s inequality :

Proposition 5.4. hλΩ(x, x) ≤ hλB(0, 0) for all λ < λ1(B), x ∈ Ω

The following proof has been adapted from that of [24, Proposition 2.6(iv)].
We have included it for the sake of completeness as it is not present in [4].

Proof. Let B(r) denote the open ball centered at the origin with radius r > 0.
Let R be the radius of the open ball B. By [4, Lemma 2.3], there exists a unique
R′ ≤ R such that hλB(R′)(0, 0) = hλΩ(x, x). As is stated in the proof of the same
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lemma, the map r 7→ hλB(r)(0, 0) is monotone increasing in the interval where

gλB(r)(·, 0) is positive. In our case this interval is the whole positive real line,

and since R′ ≤ R, we conclude that hλΩ(x, x) = hλB(R′)(0, 0) ≤ hλB(R)(0, 0) =

hλB(0, 0).

We can now recover the Faber-Krahn-type inequality (42) using only our
operator-theoretic result from the previous section along with the Faber-Krahn
and Bandle inequalities.

Theorem 5.5. λ1(B, {0}, α) ≤ λ1(Ω, {x}, α) for all x ∈ Ω, α ∈ R.

Proof. Theorem 4.30 furnishes two admissible operators (Hi,Gi,Hi), i = 1, 2,
where (H1,G1,H1) is constructed from the pair (B, {0}) and (H2,G2,H2) is
constructed from the pair (Ω, {0}). For i = 1, 2, the operator Hi has defect
indices (1, 1) by Corollary 4.27, while Proposition 4.35 merely expresses that
m((Hi)α) < m(Hi) for all α ∈ R but in a different notation. Thus all hypotheses
of Theorem 5.3 are satisfied. The Faber-Krahn inequality (Theorem 5.1) is
formulated in terms of the principal eigenvalues of the Dirichlet Laplacians
−∆B

D and −∆Ω
D, but these operators are exactly the Friedrichs extensions of the

operators H1 and H2, respectively (Proposition 4.25). Hence the Faber-Krahn
inequality is equivalent to the inequality m(H1) ≤ m(H2). The Weyl primitives
of the two admissible operators are H1(λ) = (hλB(0, 0)) and H2(λ) = (hλΩ(x, x)).
It follows from Bandle’s inequality (Proposition 5.4) that Theorem 5.3(i) holds,
and therefore (ii), which is exactly the assertion, must also be true.

5.3 The multi-point case for the Hamiltonian

Let X = {x1, x2, . . . , xm} be a finite nonempty subset of Ω. In this section we
attempt to generalize Theorem 5.5 to the multi-point case. More specifically,
we search for a function fm : Rm → R such that

λ1(B, {0}, fm(α)) ≤ λ1(Ω, X, α) for all α ∈ Rm. (43)

The most natural suggestion might be fm(α) = α1 + · · ·+αm, but this function
is forbidden straight away by the next lemma.

Lemma 5.6. Assume m ≥ 2. If fm satisfies (43), then fm(α) does not approach
infinity as αi →∞ for any i = 1, 2, . . . ,m.

Proof. Fix i and suppose for the sake of contradiction that

lim
αi→∞

fm(α)→∞.

Corollary 3.46 implies that β 7→ λ1(B, {0}, β) is a strictly increasing bijection
of R onto (−∞, λ1(B)), and consequently

lim
αi→∞

λ1(B, {0}, fm(α)) = λ1(B),
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which by (43) implies that for any choice of αj ∈ R, j ∈ {1, . . . ,m} \ {i},

lim
αi→∞

λ1(Ω, X, α) ≥ λ1(B).

Moreover, successive applications of Theorem 4.41 implies that for each j,

λ1(Ω, X, α) < λ1(Ω, {xj}, αj).

It follows that λ1(B) ≤ λ1(Ω, {xj}, αj) for all αj ∈ R, j 6= i, but this contradicts
the fact that αj 7→ λ1(Ω, {xj}, αj) is a bijection of onto (−∞, λ1(Ω)) and must
assume values strictly below λ1(B) for some choices of αj .

When taking Lemma 5.6 into consideration, the second most natural sug-
gestion might be fm(α) = mini αi. As Theorem 5.8 shows, this guess is almost
correct except for a missing term inside the minimum.

Before proceeding we need another lemma. For each λ < λ1(Ω), let gλ be
the Green’s function of −∆− λ with respect to Ω and let

Gλi :=
∑

j 6=i
gλ(xi, xj) for i = 1, 2, . . . ,m. (44)

Recall also the shorthand (39).

Lemma 5.7. For all α ∈ Rm and λ < λ1(Ω),

min
i

{
hλ(xi, xi)− αi −Gλi

}
≤ F (α, λ) ≤ max

i

{
hλ(xi, xi)− αi +Gλi

}
. (45)

Proof. Let ai := hλ(xi, xi) − αi be the diagonal elements of H(λ) − diag(α).
Note that Gλi is the sum of the absolute values of the nondiagonal elements of
row i of H(λ)− diag(α). It follows by the Gershgorin circle theorem that each
eigenvalue of H(λ) − diag(α) must lie within at least one of the m intervals
[ai −Gλi , ai +Gλi ]. Since F (α, λ) is defined as the maximal eigenvalue, it must
must be less than or equal to the largest of the upper endpoints ai +Gλi , which
gives the upper bound. The lower bound is derived similarly.

Without further ado we now state our Faber-Krahn-type inequality for multi-
point interaction Hamiltonians, which to our knowledge is a novel result.

Theorem 5.8. We have

λ1(B, {0},min
i
{αi −G0

i }) ≤ λ1(Ω, X, α) (46)

for all α ∈ Rm such that λ1(Ω, X, α) ≤ 0.

Proof. Let β := mini{αi−G0
i } and λ ≤ 0. Let us also supplement our shorthand

(39) with the domain Ω and set X by writing FΩ,X(α, λ) in order to show the
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explicit dependence on these; then

FΩ,X(α, λ) ≤ max
i

{
hλΩ(xi, xi)− αi +Gλi

}

≤ max
i

{
hλΩ(xi, xi)− αi +G0

i

}
(47)

≤ hλB(0, 0)− β
= FB,{0}(β, λ)

where we have used (in order) Lemma 5.7, Proposition 4.22(iii), Bandle’s in-
equality (Proposition 5.4), and (39) along with the fact that the maximal eigen-
value of a 1× 1-matrix is equal to its only component. Taking λ = λ1(Ω, X, α)
therefore yields

0 ≤ FB,{0}(β, λ1(Ω, X, α)).

Now we may argue as in the proof of Theorem 4.41: Since λ 7→ FB,{0}(β, λ) is
strictly increasing (Proposition 4.38) and λ1(B, {0}, β) is the unique solution of
FB,{0}(β, λ) = 0, the above inequality implies λ1(B, {0}, β) ≤ λ1(Ω, X, α).

When comparing Theorem 5.5 and Theorem 5.8, we see that the latter con-
tains an additional term G0

i that does not appear in the former, and which
moreover depends on both Ω and X through the Green’s functions in its defi-
nition (45). In dimension three we have the following bounds for this term:

Proposition 5.9. Suppose d = 3. Then there exist positive constants K1, K2

only dependent on the domain Ω such that

G0
i ≤ K1(m− 1)

∑

j 6=i
|xi − xj |−1

and, for any i, j such that |xi − xj | ≤ 1
2dist(xj , ∂Ω),

G0
i ≥ K2|xi − xj |−1.

Proof. By [17, Theorem 1.2.5] there exists a constant K1 > 0 only dependent
on Ω such that g0(x, y) ≤ KΩ|x − y|−1 for all x, y ∈ Ω, x 6= y, which together
with (44) yields the first inequality. The second constant and inequality follows
similarly by [17, Theorem 1.2.5].

Thus we see that G0
i explodes as any pair of points in X approach each other,

at least in dimension three. (The author could not find a similar inequality for
the case d = 2 and bounded domains.) Since the map β 7→ λ1(B, {0}, β) is
strictly increasing (Theorem 4.39), this implies that the left-hand side of (46)
decreases as any pair of points in X approach each other. This is a phenomenon
that for obvious reasons does not occur in the one-point case.

A re-examination of the proof of Theorem 5.8 makes clear that the term
G0
i appears as a consequence of the very first inequality in (47) and that any

improvement to the upper bound in Lemma 5.7 leads to a smaller gap in the
inequality (46). The bounds in Lemma 5.7 were derived using the Gershgorin
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circle theorem, which is valid for arbitrary complex matrices, so one might hope
that by using more of the specific structure of H(λ), the upper bound could be
improved sufficiently enough for the term Gλi to vanish. Unfortunately, as the
next proposition shows, there exist certain choices of Ω and X for which the
upper bound in Lemma 5.7 is an equality.

Proposition 5.10. Let Ω be an open disc in R2 and let x1, x2, . . . , xm be
equidistributed clockwise or counterclockwise on a circle contained inside and
concentric to Ω. Then

F (α, . . . , α, λ) = hλ(xi, xi)− α+Gλi

for all α ∈ R, λ < λ1(Ω), i = 1, 2, . . . ,m.

Proof. The symmetry of Ω implies that x 7→ hλ(x, x) is radially symmetric and
therefore hλ(xi, xi) = hλ(x1, x1) for all i = 1, 2, . . . ,m. Similarly, due to the
symmetry of Ω and the particular arrangement of the points x1, x2, . . . , xm, we
see that gλ(xi, xj) only depends on the distance between xi and xj . This implies
that for all i, j = 1, 2, . . . ,m such that i 6= j,

gλ(xi, xj) = gλ(xi+k (mod m), xj+k (mod m)) for all k ∈ Z.

It follows that H(λ) − diag(α, . . . , α) is a circulant matrix, i.e., for each i =
1, 2, . . . ,m−1 the (i+1):th row of H(λ)−diag(α, . . . , α) is obtained by cyclically
permuting the i:th row one position to the right. Consequently u = (1, 1, . . . , 1)T

is an eigenvector of H(λ)−diag(α, . . . , α) with the row sum as its corresponding
eigenvalue. (These sums are all equal since the matrix is circulant.) On the other
hand, Proposition 4.36 implies that u must be the eigenvector corresponding to
F (α, λ), which proves the assertion.

We conclude that for some triplets (Ω, X, α), the very first inequality in
(47) is actually an equality. Proceeding with Bandle’s inequality is therefore
guaranteed to add a term of the form Gλi in (46), at least if one finishes the
proof as usual. Of course, there is still the possibility that there exist more
sophisticated inequalities of, say, the form hλΩ(xi, xi) +Gλi ≤ hλB(y, y) + C that
could be used to improve the first inequality and get rid of the extra term in
(46) or possibly replace it with a better one, but at the time of writing the
author is not aware of any such inequalities.

5.4 Failure of the strategy of test functions

Let d, Ω, B, X all be as in the previous section. The authors’ of [24] devised
two rather different strategies for proving their Theorem 5.5: The first strategy
is essentially the same as our proof and uses Bandle’s inequality, except that
they derived the necessary preparatory results (e.g. Proposition 3.45) only for
single-point interaction Hamiltonians and by using other methods. (Indeed, our
notion of admissible operators and Theorem 5.3 are direct results of our efforts
to generalize this strategy.) Their second strategy is only sufficient to prove the
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theorem for those α ∈ R such that λ1(Ω, {0}, α) ≥ 0, but it has the virtue of
only requiring Bandle’s inequality at λ = 0.

More specifically, their second strategy uses a test function approach along
with the symmetric decreasing rearrangement, a.k.a. the Schwarz rearrange-
ment (see the appendix for details). As our Theorem 5.8 does not have anything
to say about the case λ1(Ω, X, α) ≥ 0, it was the hope of the author that this
second strategy would generalize to the multi-point case. Though all necessary
preparatory results ([24, Propositions 3.1, 3.2, 4.1]) have natural generalizations
to the multi-point case, it unfortunately seems that the strategy falls just short
of working. However, we believe it is of interest to include this admittedly neg-
ative result, as one of the original goals of this thesis was to see if the methods
of [24] could be extended to the multi-point case.

First we need a lemma. Let gΩ (resp. gB) be the Green’s function of −∆
with respect to Ω (resp. with respect to B). As in the appendix, we use (gΩ

x )∗

to denote the symmetric decreasing rearrangement of gλx .

Lemma 5.11. (gΩ
x )∗ ≤ gB0 for all x ∈ Ω.

Proof. Recall Proposition 4.22(i) and take p ≡ 0 in [4, Theorem 2.2].

We now proceed with the strategy. Let α ∈ Rm and β := mini{αi − G0
i }.

Let λ := λ1(Ω, X, α) and assume λ ≥ 0. Let uλ be as in Theorem 4.39. Since
obviously uλ ∈ D(HΩ,X

α ), we know from the theory in Section 2.7 that

HΩ,X
α [uλ] = 〈HΩ,X

α uλ,uλ〉 = λ〈uλ,uλ〉 = λ ‖uλ‖2L2(Ω) .

Proposition 4.40 enables us to write uλ = f + u0 for some f ∈ H1
0 (Ω) ∩ C(Ω)

such that f ≥ 0, and hence

λ =
HΩ,X
α [f + u0]

‖f + u0‖2L2(Ω)

. (48)

The strategy in [24] was to estimate the numerator and denominator separately,
so we attempt to do the same. Starting with the numerator, we see that taking
λ = 0 in Theorem 3.43(ii) yields

HΩ,X
α [f + u0] = (−∆Ω

D)[f ]− uH(HΩ,X(0)− diag(α))u

≥ ‖∇f‖2L2(Ω) − FΩ,X(α, 0)|u|2

where we have used Definition 4.12(ii) and the fact that

uH(HΩ,X(0)− diag(α))u

|u|2 ≤ FΩ,X(α, 0)

which follows because the left-hand side is a Rayleigh quotient. The Polya-Szego
inequality (Theorem 5.13(iii)) gives

‖∇f‖2L2(Ω) ≥ ‖∇f∗‖
2
L2(B)
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and we can argue as in (47) to derive the inequality

FΩ,X(α, 0) ≤ h0
B(0, 0)− β

but a difference this time around is that we only need to use Bandle’s inequality
at λ = 0. By these bounds and another application of Theorem 3.43(ii),

HΩ,X
α [f + u0] ≥ ‖∇f∗‖2L2(B) − (h0

B(0, 0)− β)|u|2

= H
B,{0}
β [f∗ + |u|gB0 ]. (49)

Let us next bound the denominator of (48). We first expand it as

‖f + u0‖2L2(Ω) = 〈f +
∑

uig
Ω
i , f +

∑
uig

Ω
i 〉L2(Ω)

= ‖f‖2L2(Ω) + 2
∑

i

ui〈f, gΩ
i 〉L2(Ω) +

∑

ij

uiuj〈gΩ
i , g

Ω
j 〉L2(Ω).

(Recall that the ui are positive.) The squared norm in the second line is equal to

‖f∗‖2L2(B) by Theorem 5.13(i), while the inner products can be bounded using

the Hardy-Littlewood inequality (Theorem 5.13(ii)) together with Lemma 5.11:
Namely, we have

〈f, gΩ
i 〉L2(Ω) ≤ 〈f∗, (gΩ

xi)
∗〉L2(B) ≤ 〈f∗, gB0 〉L2(B)

and
〈gΩ
i , g

Ω
j 〉L2(Ω) ≤ 〈(gΩ

xi)
∗, (gΩ

xj )
∗〉L2(B) ≤ 〈gB0 , gB0 〉L2(B)

for all i, j = 1, 2, . . . ,m. Since each ui is positive we therefore have

‖f + u0‖2L2(Ω) ≤ ‖f∗‖
2
L2(Ω) + 2

∑

i

ui〈f∗, gB0 〉L2(B) +
∑

ij

uiuj〈gB0 , gB0 〉L2(B)

=
∥∥f∗ + (

∑
ui)g

B
0

∥∥2

L2(B)
. (50)

We may now combine (48), (49), and (50) to arrive at the inequality

λ ≥ H
B,{0}
α [f∗ + |u|gB0 ]∥∥f∗ + (

∑
ui)gB0

∥∥2

L2(B)

.

In the one-point case (m = 1) we have
∑
iui = ui = |u|, so we obtain a test

function u := f∗ + uig
B
0 along with an inequality

λ1(Ω, X, α) ≥
H
B,{0}
β [u]

‖u‖2L2(B)

.

Corollary 2.8 implies that the the principal eigenvalue of H
B,{0}
β cannot exceed

the right-hand side of the above inequality (hence the name “test function”)
and consequently

λ1(Ω, X, α) ≥ λ1(B, {0}, β).
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Here β = mini{αi − G0
i } = α1, so we have recovered Theorem 5.5 for those

α ∈ R such that λ1(Ω, X, α) ≥ 0. However, in the multi-point case (m > 1) we
instead have the strict inequality

∑
iui > |u| and therefore

∥∥f∗ + (
∑

ui)g
B
0

∥∥2

L2(B)
>
∥∥f∗ + |u|gB0

∥∥2

L2(B)

which is the opposite estimation compared to what we want. Thus we cannot
take f∗+ |u|gB0 as test function and the strategy would appear to fail. (At least,
at the time of writing the author has not found a workaround for this.)

Appendix

Here we present some results which we feel do not fit in the rest of the text.

5.5 Holomorphic operator-valued functions

Let H be a Hilbert space. There are various ways one can define the notion of
a holomorphic operator-valued function with values in B(H), but the natural
ones all turn out to be equivalent:

Proposition 5.12. Let U ⊂ C be open, and let T : U → B(H) be an operator-
valued function. The following are equivalent:

(i) T is uniformly holomorphic, meaning there exists T ′ : U → B(H) such
that for all z ∈ U ,

lim
w→0

∥∥∥∥
T (z + w)− T (z)

w
− T ′(z)

∥∥∥∥ = 0.

(ii) T is strongly holomorphic, meaning there exists T ′ : U → B(H) such that
for all z ∈ U , f ∈ H,

lim
w→0

T (z + w)f − T (z)f

w
= T ′(z)f.

(iii) T is weakly holomorphic, meaning there exists T ′ : U → B(H) such that
for all z ∈ U , f, g ∈ H,

d

dz
〈T (z)f, g〉 = 〈T ′(z)f, g〉.

Proof. It is immediate that (i) implies (ii) and (ii) implies (iii). The implication
from (iii) to (i) follows from [22, Theorem III.3.12], which is stated for Banach
spaces.
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5.6 The symmetric decreasing (Schwarz) rearrangement

Let d ≥ 2 be an integer. Given any measurable subset E ⊂ Rd with finite
Lebesgue measure, its symmetric rearrangement E∗ is defined as the open ball in
Rd centered at the origin with the same Lebesgue measure as E. Let f : Rd → R
be a nonnegative measurable function. The measurable subsets

{f > t} := {x ∈ Rd : f(x) > t} for t > 0

are called the level supersets of f , and we say that f vanishes at infinity if each
level superset has finite Lebesgue measure. Assuming now that f vanishes at
infinity, we define its symmetric decreasing rearrangement as the nonnegative
measurable function f∗ : Rd → R given by

f∗(x) :=

∫ ∞

0

χ{f>t}(x) dt,

where χ{f>t}(x) denotes the characteristic (indicator) function of {f > t}. One
can show that supp f ⊂ E implies supp f∗ ⊂ E∗ [24, Lemma 2.1].

When E is a measurable subset of Rd with finite measure and f : E → R is a
nonnegative measurable function, let f̃ : Rd → R be the nonnegative measurable
function defined by

f̃(x) :=

{
f(x) if x ∈ E,
0 otherwise.

Then f̃ obviously vanishes at infinity since each of its level supersets is contained
in E. In this case the symmetric decreasing rearrangement can be extended to
f by defining f∗ := (f̃)∗. We have supp f̃ ⊂ E, so a previous remark implies
supp f∗ ⊂ E∗, and hence the symmetric decreasing arrangement of f : E → R
can be considered as a function f∗ : E∗ → R.

Theorem 5.13 ([24, Corollary 2.3]). Let Ω ⊂ Rd be a bounded domain with
C∞-boundary. Let f, g : Ω→ R be nonnegative measurable functions. Then

(i) ‖f‖L2(Ω) = ‖f∗‖L2(Ω∗);

(ii) the Hardy-Littlewood inequality holds:
∫

Ω

fg dx ≤
∫

Ω∗
f∗g∗ dx;

(iii) if f ∈ H1
0 (Ω), then f∗ ∈ H1

0 (Ω∗) and the Polya-Szego inequality holds:

‖∇f‖L2(Ω) ≥ ‖∇f∗‖L2(Ω∗) .
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