
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Brains and Bugs: Two Applications of Persistent Homology in the

Life Sciences

av

Daniel Collin

2021 - No M5

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM





Brains and Bugs: Two Applications of Persistent Homology in the

Life Sciences

Daniel Collin

Självständigt arbete i matematik 30 högskolepoäng, avancerad nivå

Handledare: Yishao Zhou

2021





Abstract

Persistent homology is a way of giving a topological summary of a data set. In
this thesis we give an introduction to persistent homology, including a proof
of its algebraic decomposition as a finitely generated graded module with re-
spect to a polynomial ring with a field as its underlying ring. This proof is
constructive and yields an algorithm for computing persistent homology in a
practical sense.

In order to provide examples of the practical applications of persistent homo-
logy, we present two case studies. In the first case study, we investigate the
relationship between size and persistent homology of the bumblebee Bombus
terrestris. We find that the difference in size between samples is in some ways
highly correlated to differences in persistent homology. In the second case
study, we analyze the persistent homology of a synthetic model of the stria-
tum, a part of the basal ganglia in the brain. Here we find that the synthetic
model differs in size and complexity from a number of control models when
viewed through the lens of persistent homology and the accompanying theory.
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1 Introduction

Although ordinary statistical analysis and machine learning continue to see
great success, the ever-changing modern digital landscape suggests there is
some value in exploring other avenues in mathematics for understanding data.
One such avenue is Topological Data Analysis (TDA), an umbrella term for
data analysis achieved through topological methods. At first glance topology
and algebraic topology in particular might be seen as something relegated to
realms of mathematics. However, the perhaps most popular technique of TDA,
persistent homology, is based on the concept of homology in algebraic topology
and has been successfully applied in areas such as neuroscience [1], biology [2]
and material science [3].

In persistent homology, we approximate a non-trivial topological space on the
data of interest. In this space, usually a simplicial complex, “holes” can be
found, and these holes are what constitute homology. However, this approx-
imation is not perfect, and there are multiple ways we can approximate a
topological space on a data set. In order to alleviate this imperfection, we
define a sequence of complexes ordered by inclusion, all of them valid approxi-
mations, and then compute for how many complexes in the sequence a hole
persists.

While the high-level idea is not very complicated, the devil is in the details.
To rigorously define the notion of homology persisting through approximations
for different types of approximations we need to build a robust framework. We
do this by defining the general framework of persistence complexes, a sort of
complex of complexes, from which we retrieve the holes that persist when going
from one complex to another.

Our goal with this thesis is partly to provide an introduction to persistent
homology as we would have liked it before we started this journey which is
done in Chapters 2 and 3. As such, we have tried to keep a balance between
the older material in the field of persistent homology that is foundational and
newer material that is more up-to-date. Most of the definitions and results are
accompanied by commentary, hopefully providing help along the way.
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1 Introduction

We try to make the theoretical part somewhat self-contained, but some famil-
iarity with linear algebra, category theory, commutative algebra and module
theory is needed.

The other part of the thesis is given in Chapter 4 and consists of two case stud-
ies. In the first study we analyze the eyes of the bumblebee Bombus terrestris ;
in the second study we analyze a synthetic microcircuit of the striatum in the
basal ganglia of the brain. Our goal is to show through these two case studies,
despite small, that persistent homology has potential as a tool in the toolbox
of data analysis. We have taken care to conduct our analysis in such a way
that we highlight how persistent homology enables our approaches.

We owe a lot to a variety of sources cited throughout the thesis. The algebraic
framework that we present in Chapter 3 was first developed in [4], although
it borrows heavily from the more computational view presented in [5]. The
articles [6], [7] have been of extra importance, as they provide clear overviews
of the theory generalized to modules. Our novel contributions are our method-
ologies in the two case studies, although we would not be surprised if similar
approaches have been conducted before in other domains.
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2 Homology

Before going into what persistent homology is, it is well worth our time clearly
stating what we mean by homology. Broadly speaking, homology is an in-
variant of topological spaces concerned with cycles in the space that are not
boundaries. More abstractly, homology captures the notion of “n-dimensional
holes” in the space.

In persistent homology we generally work without predefined topological spaces
and start with a basic data set which, at best, has some metric structure that
we can use to endow it with some type of complex. The main complex we
will be working on is the simplicial complex, since computationally we can
approximate such a complex on a set of data points. We will also review
homology of cubical complexes related to one of the case studies in Chapter 4.
Therefore the classical definitions involving concepts such as singular homology
are not something we will dwell on, but instead we refer the reader to Hatcher’s
excellent exposition in [8].

2.1 Simplices

We start with what will constitute our atoms in simplicial homology, namely
the simplices.

Definition 2.1.1 ([9, p. 62]). An n-simplex is the convex hull in Rm of
n + 1 points v0, . . . , vn such that the vectors v1 − v0, . . . , vn − v0 are linearly
independent. The points v0, . . . , vn are known as the vertices of the simplex.
The number n is the dimension of a simplex.

The positions of a simplex vertices in Euclidean space are not very important
in a topological sense: a bijection between two simplices’ vertex sets induces
a canonical homeomorphism between the two simplices.

As seen in Figure 2.1 the 0, 1, 2 and 3-dimensional simplices are familiar shapes
consisting of vertices, edges, triangles and tetrahedrons.
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2 Homology

Figure 2.1: 0-simplex (left), 1-simplex (middle left), 2-simplex (middle right)
and 3-simplex (right).

Definition 2.1.2 ([9, p. 62]). A face of a simplex is the convex hull of a
subset of its vertices. If τ is a face of σ we write τ ⊂ σ.

Note that the boundary of a simplex can be decomposed as a union of faces
of one dimension lower than the simplex itself. For example, the boundary of
a 2-simplex is the union of the three edges that surround the interior of the
triangle.

2.2 Simplicial Complex

By gluing together simplices at their faces as seen in Figure 2.2 we can con-
struct higher-order objects, which we call simplicial complexes.

Definition 2.2.1 ([9, p. 63]). A (finite) simplicial complex K is a finite
collection of simplices such that

• σ ∈ K and τ ⊂ σ implies that τ ∈ K,

• σ1, σ2 ∈ K implies that σ1 ∩ σ2 is either empty or a face of both.

The dimension of the simplicial complex dim(K) is the largest dimension of
any simplex in the complex.

The first requirement in the definition tells us that a simplicial complex con-
tains the faces of all its simplices. The second requirement tells us that the
simplices are only glued together at shared faces.
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2 Homology

Figure 2.2: Example of a simplicial complex consisting of two 2-simplices
glued together with an attached 1-simplex.

It is possible to consider simplicial complexes which allow for an infinite number
of simplices, however for our purposes it is sufficient to only consider finite
simplicial complexes. Hence, when we say “simplicial complex” it is to be
understood as “finite simplical complex” in the sense of Definition 2.2.1.

We will refer to the construction in Definition 2.2.1 as a geometric simplicial
complex. This is to distinguish the geometric simplicial complex from a
simplicial complex where we discard the geometric connotations. It is possible
to define a combinatorial simplicial complex by only considering the set of the
vertices for each simplex.

Definition 2.2.2 ([9, p. 62]). An abstract simplicial complex K is a
finite collection of sets such that α ∈ K and β ⊆ α implies that β ∈ K.

This abstract definition coincides with the geometric definition by calling the
elements of K its simplices. The simplices of K are no longer geometric objects
in Euclidean space, but simply combinatorial objects consisting of vertex sets.

Definition 2.2.3. Given a geometric simplicial complex K, we can construct
an abstract simplicial complex A by translating each simplex σi ∈ K to a
set {v0, . . . , vn} where each vi denotes the presence of a vertex. We call K a
geometric realization of A.

Hence, we can always transition from a geometric simplicial complex to an
abstract simplicial complex. There is an elementary result that allows the
construction in the other direction.
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2 Homology

Theorem 1 ([9, Geometric Realization Theorem, p. 64]). Every abstract
simplicial complex of dimension n has a geometric realization in R2n+1.

While there are many different possible geometric realizations for a given ab-
stract simplicial complex, any two realizations of the same abstract simplicial
complex are homeomorphic [10, Theorem 3.1, p. 15]. Hence, Theorem 1
guarantees the existence of a geometric realization unique up to topological
equivalence.

It is helpful to be able to talk about a specific face of a simplex, but to do so we
need some notion of order between the vertices. This motivates the following
definition.

Definition 2.2.4. An ordered simplicial complex K is an abstract simplicial
complex together with a partial order on the set of vertices of K, which restricts
to a total order on each simplex.

The restriction of the partial order on the vertices to a total order on σ means
that σ can be seen as an ordered set [v0, . . . , vn]. Therefore, the notion of the
ith face of σ is well-defined and is given by [v0, . . . , v̂i, . . . , vn] where v̂i denotes
the exclusion of this particular vertex.

Note that by enumerating the vertices of an abstract simplicial complex we
get a total order on its vertices, which turns any abstract simplicial complex
into an ordered simplicial complex.

From here on we will refer to an ordered simplicial complex as a simplicial
complex unless stated otherwise. This allows us to state our definitions and
work with simplices solely as combinatorial objects.

2.3 Simplicial Homology

Roughly speaking, in topology when two spaces are homeomorphic, they share
the same topological properties. One such property is the algebraic structure of
the holes, voids and higher-dimensional equivalents in the space. Homology can
generally thought of as being the characterization of these holes in a topological
space. Beyond that however, it is a way of associating algebraic objects to
topological spaces. In the context of simplicial complexes, we first need some
algebraic machinery to precisely define what we mean by holes in a simplicial
complex.
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2 Homology

Definition 2.3.1 ([4]). The kth chain module Ck(K) on a (ordered) simpli-
cial complex K is the free module with basis given by the k-dimensional sim-
plices in K with coefficients in some ring R with additive unit 0 and multi-
plicative unit 1. In other words, the elements of Ck(K) are formal sums

∑

i

riσi

where ri ∈ R and σi is a k-dimensional simplex in K.

Definition 2.3.2 ([11, p. 2]). A chain complex C∗ over a ring R is a family
of R-modules {Ck}k∈Z with R-module maps ∂k : Ck → Ck−1 such that the
composition ∂k−1 ◦ ∂k is the zero map. We call the maps ∂k the differentials
of the chain complex.

In other words, a chain complex is just a sequence of modules with maps
between them such that the maps cannot carry an element further than one
level below in the complex.

Example 2.3.1. The sequence of Z-modules

. . . Z Z Z . . . Z Z
∂k+1 ∂k ∂k−1 ∂k−2 ∂1 ∂0

with differentials

∂k(n)

{
k · n if k is odd

0 if k is even

is a chain complex since the composition of any consecutive differentials ∂k−1∂k
necessitates that either k− 1 or k is even, hence the composition has to be the
zero map.

Theorem 2. Given a sequence C∗ of chain modules with coefficients in a ring
R on a simplicial complex K

. . . Ck(K) Ck−1(K) Ck−2(K) . . . C0(K) 0
∂k+1 ∂k ∂k−1 ∂k−2 ∂1 ∂0

where we define the differential ∂k as

∂k : Ck(K)→ Ck−1(K)

∂k(σ) =
k∑

i=0

(−1)i[v0, . . . , v̂i, . . . , vk]

Then C∗ is a chain complex, or equivalently ∂k−1∂k = 0 for all k.
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2 Homology

Proof. We drop the subscripts on the differentials for convenience, so what we
need to show becomes ∂∂σ = 0 for any simplex σ. Since ∂ is a homomorphism
the result extends to arbitrary chains in the chain module in which σ lives. By
linearity of a homomorphism we get

∂∂σ =
∑

i

(−1)i∂[v0, . . . , v̂i, . . . vn]

=
∑

j<i

(−1)i(−1)j[. . . , v̂j, . . . , v̂i, . . . ]

+
∑

i<j

(−1)i(−1)j−1[. . . , v̂i, . . . , v̂j, . . . ]

=0.

The first sum comes from when j < i since when removing vi the position of
vj is unchanged in the resulting simplex, whereas the second sum comes from
the other possible case where i < j and so removing vi causes the position of
vj to shift by one. Hence, the sums cancel out and so ∂∂ = 0.

Note that the differential ∂ on a simplicial chain module is well-defined since
the presence of a simplex in an ordered simplicial complex in which the notion
of the ith face of simplex is well-defined.

Example 2.3.2. Given a simplicial complex K consisting of a triangle without
interior as in Figure 2.3, a chain in C1(K) would be a linear combination of
edges. For example, an element of C1(K) is [v0, v1]+[v1, v2] which is highlighted
in green.

v1

v0

v2
Figure 2.3: A simplicial complex in which the 1-chain [v0, v1] + [v1, v2] is

highlighted in green.

Example 2.3.3. Consider the chain complex on the simplicial complex given
by the 2-simplex in Figure 2.4.
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2 Homology

Module Generators

C0 [v0], [v1], [v2]
C1 [v0, v1], [v1, v2], [v0, v2]
C2 [v0, v1, v2]

Then the differential on the sole generator of C2 is given by

∂2([v0, v1, v2]) = [v1, v2]− [v0, v2] + [v1, v2]

which geometrically, as seen in Figure 2.4, is the boundary of the simplex. For
this reason we also refer to the differential of a chain complex as the boundary
map or boundary operator.

v1

v0

v2 v1

v0

v2

∂ →

Figure 2.4: Illustration of how the differential maps a 2-simplex to its bound-
ary.

The notion of the differential being a map from a simplex to its boundary
motivates the following definition.

Definition 2.3.3 ([11, p. 4]). Given a chain complex C∗ the k-cycles Zk
and the k-boundaries Bk of K are the R-modules

Zk := ker ∂k

Bk := im ∂k+1.

Just as for a chain complex we will sometimes refer to the collection of Zk and
Bk as Z∗ or B∗ respectively.

Our overarching goal is to characterize k-cycles modulo k-boundaries. Hence,
a vital result is this corollary to Theorem 2.

Corollary 2.1. The k-boundaries are a submodule of the k-cycles.

Proof. Let σ ∈ Bk = im ∂k+1 then for some τ ∈ Ck+1 we have that ∂k+1(τ) = σ.
Hence,

∂k(σ) = ∂k∂k+1(τ) = (∂k ◦ ∂k+1)τ = 0

and so σ ∈ ker ∂k = Zk.

9



2 Homology

Corollary 2.1 tells us that if we can find the cycles and ignore those which
are just boundaries, then we have identified the holes. This motivates the
following definition of homology.

Definition 2.3.4. Given a simplicial chain complex C∗ the homology module
Hk is defined as

Hk(K) := Zk/Bk = ker(∂k)/im(∂k+1)

Hence, the kth homology group captures precisely those cycles which are not in
the image of the higher dimensional differential. In other words, the non-trivial
equivalence classes represent the cycles which are not boundaries.

Example 2.3.4. Consider the chain complex over Z2 resulting from the simpli-
cial complex in Figure 2.5. There are two 1-cycles, the boundary of the filled

v3 v4

v1

v0

v2

Figure 2.5: Illustration of a simplicial complex with a 1-cycle in green con-
sisting of a square without interior.

triangle and the square. Since the boundary of the filled triangle is in im(∂2)
we get that this element belongs to the trivial class in H1. However, there is
one non-trivial element given by the square without interior. So H1 contains
one non-trivial element generated by the cycle in green.

To quantify the number of linearly independent generators in a homology
module Hk we say that the kth Betti number is denoted βk where βk =
rank (Hk), the maximum number of linearily independent elements of Hk as a
module.

10



2 Homology

2.4 Cubical Homology

The definition of a chain complex is general enough that we need not limit
ourselves to chain complexes arising from simplicial complexes. Since homo-
logy was defined on chain complex, regardless of how the chain complex was
constructed, we get a well-defined notion of homology for free. Another type
of complex which we can define chain complexes on are cubical complexes. As
the atoms of simplicial complexes are simplices, the atoms of cubical complexes
are cubes.

Definition 2.4.1 ([12, Definition 2.1, p. 40]). An elementary interval is a
unit interval [k, k + 1] or a degenerate interval [k, k] for k ∈ N.

Definition 2.4.2 ([12, Definition 2.3-2.4, p. 40]). An elementary cube Q
is the Cartesian product of n elementary intervals

Q =
n∏

i=0

Ii ⊂ Rn

and where n is known as the embedding number emb(Q).

Definition 2.4.3 ([12, Definition 2.4, p. 41]). The dimension dim(Q) of an
elementary cube Q is the number of non-degenerate intervals in the product
of elementary intervals that make up Q.

Under this definition a degenerate elementary interval is a 0-dimensional cube
and a non-degenerate elementary interval is a 1-dimensional cube, which cor-
responds to our notion of vertices and edges in simplicial complexes.

We let Kn denote the set of all elementary cubes in Rn. The set of all possible
elementary cubes is then denote K defined as

K :=
∞⋃

n=1

Kn

Additionally, we define

Kk := {Q ∈ K | dimQ = k}

Knk := {Kk ∩ Kn}
where it is important to note that Kd 6= Kd since Kd contains any elementary
cube embedded in Rd. For instance Q := [0, 0]× [1, 1]× [2, 2] ∈ K3, but Q 6∈ K3

since Q only consists of degenerate intervals and so dimQ = 0.

11



2 Homology

Definition 2.4.4 ([12, Definition 2.9, p. 43]). A cubical set X is a finite
union of elementary cubes. Given a cubical set X a cubical complex K(X) is
defined as

K(X) := {Q ∈ K | Q ⊂ X}.
Additionally we define the k-skeleton of the cubical complex as

Kk(X) := {Q ∈ K(X) | dimQ = k}.

Much like in the case with the simplicial complexes, working with the actual
geometric objects can be unwieldy when doing algebraic calculations. For this
reason we introduce an abstract object for each elementary cube, called an
elementary chain.

Definition 2.4.5 ([12, p. 48]). Given a cube Q ∈ Knk the elementary k-chain
Q̂ is a map

Q̂ : Knk → Z

Furthermore, since elementary cubes consist of finite cartesian products of
elementary intervals, we need a corresponding notion on elementary chains.

Definition 2.4.6 ([12, Definition 2.23, p. 51]). Given two elementary cubes
P,Q the cubical product of the corresponding elementary k-chains P̂ , Q̂ is
defined as

P̂ � Q̂ := P̂ ×Q

If we now fix some ring R with additive unit 0 and multiplicative unit 1 we
can proceed as for the simplicial case.

Definition 2.4.7 ([12, Definition 2.27, p. 53]). The kth chain module of
a cubical complex K(X) is the free R-module Ck(K(X)) whose elements are
formal sums ∑

i

αiQ̂i

known as k-chains where αi ∈ R and Qi ∈ Kk(X).

The cubical product extends to k-chains in the following way.

Definition 2.4.8. The cubical product � of two k-chains c1, c2 of a chain
module on a cubical complex is

c1 � c2 =
∑

i

∑

j

αiβjP̂i � Q̂j

12



2 Homology

It can be shown with relative ease that the cubical product on k-chains is dis-
tributive, associative and to 0 if one of its arguments is 0, see [12, Proposition
2.25, p. 51].

All we need to do in order for the machinery of homology to be applicable is to
define a boundary operator on the elements of the chain modules of a cubical
complex which has the property that ∂∂ = 0.

Definition 2.4.9 ([12, Definition 2.31, p. 54]). The boundary map of an
elementary cube is defined inductively on the embedding number cube in the
following way. Let Q be an elementary cube, we then have that

∂Q̂ =





0 Q = [k, k]

̂[k + 1, k + 1]− [̂k, k] Q = [k, k + 1]

∂Î � P̂ + (−1)dim Î Î � ∂P̂ Q = I × P, emb(Q) ≥ 2

which extends linearly on k-chains.

Theorem 3 ([12, Proposition 2.37, p. 58]). The composed boundary map ∂∂
is the zero map.

Proof. Let Q be an elementary cube. If emb(Q) = 0 then by the definition of
the boundary map ∂(∂Q) = ∂(0) = 0. If emb(Q) = 1 then

∂∂Q =∂([k + 1, k + 1]− [k, k])

=∂([k + 1, k + 1])− ∂([k, k])

=0− 0

=0

We prove it for higher embedding numbers by induction. Assume it holds for
emb(Q) = n, we want to prove that it also holds for emb(Q) = n+ 1.

∂∂Q =∂(∂Î � P̂ ) + ∂((−1)dim I Î � ∂P̂ )

Now assume that dim I = 0 then I is a degenerate interval and so we get

∂∂Q =∂(0 � P̂ ) + ∂((−1)0Î � ∂P̂ )

=0 + ∂(Î � ∂P̂ )

=(∂Î � ∂P̂ + (−1)dim I Î ◦ ∂∂P̂
=0 + Î � ∂∂P̂
=0 + 0

=0
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2 Homology

where ∂∂P̂ = 0 follows from the induction hypothesis since dim P̂ = n+1−1 =
n. Now, let us assume the other case, namely that dim I = 1 then we get

∂∂Q =∂(∂Î � P̂ )− ∂(Î � ∂P̂ )

=∂∂Î � P̂ + (−1)dim ∂I∂Î � ∂P̂ − (∂̂I � ∂P̂ − Î � ∂∂P̂ )

=0 + (−1)dim ∂Î∂Î � ∂P̂ − (∂̂I � ∂P̂ − 0)

=∂Î � ∂P̂ − ∂Î � ∂P̂
=0

where dim ∂Î = 0 since I is an elementary interval. Since we have now shown
the induction hypothesis holds for n + 1 given it holds for n, this concludes
the proof by induction.

We now have everything necessary to construct a chain complex on cubical
complexes: a sequence of R-modules, the k-chain modules on cubical com-
plexes, and module homomorphisms ∂ which have the property of ∂∂ = 0.
Since our prior definitions with regards to homology were entirely stated in
terms of chain complexes we can be assured that homology on chain com-
plexes given by cubical complexes is well-defined.

14



3 Persistence

In the world of data we rarely have a topological description of the space our
dataset lives in. At most, we could consider a set of data points as having
the discrete topology but that is not very informative. What if there is an
underlying topological space with a non-trivial topology? If so, figuring out
properties of this space could provide us with indications of how the data is
related globally. Consider for example the points sampled from an annulus in
Figure 3.1a.

(a) (b)

Figure 3.1: Imposing a simplicial complex (b) on data sampled from an an-
nulus (a).

If we were ignorant of the fact that the underlying space has a the shape
of an annulus, which is the situation we more often than not would have in
a real-world scenario, being able to deduce the topological properties of this
space would tell us that data only lies around a hole. This is where persistent
homology comes in as a way of approximating homology without anything
other than the data itself.

The basic principle is quite simple. Using the theory of simplicial homology we
can impose a simplicial complex on our dataset as in Figure 3.1b. A natural

15



3 Persistence

way of doing this when there is some measure of distance between data points
is to introduce a k-simplex when points k + 1 points are sufficiently close to
each other.

However, there is a problem with the idea in its naive form. How large is “suf-
ficiently close”? If we use a too large distance we end up with all points in a
single simplex and retrieve no valuable topological information. On the other
hand, if the distance is too small we end up with a simplicial complex with
very few connections between vertices and this too could prove uninforma-
tive. As we will see, persistent homology circumvents this problem by simply
considering all possible distances and encoding the homology of the resulting
simplicial complexes in a single mathematical object.

3.1 Endowing Data with a Complex

A data-set can often be considered as a set of points in Euclidean space. An
intuitive way of endowing a space of points in Rn with a simplicial structure
is the following construction.

Definition 3.1.1 ([9, p. 72]). For a family of points X = {xα}α in some
Euclidean space Rn the Čech complex Čε is given by the abstract simplicial
complex whose k-simplices are given by subsets of k+1 points {xαi

} such that

k⋂

i=0

Bε/2(xαi
) 6= ∅

where Br(x) is the closed ball of radius r centered at x.

The Čech complex is a special case of something called the nerve of a topolog-
ical space and its geometric realization is homotopy equivalent to the union of
balls centered at the points [9, p. 71].

However, the Čech complex is for practical purposes not feasible to compute
[13]. We need to keep the entire simplicial complex in memory and this can
be quite large.

A sort of compromise is the Vietoris-Rips complex as seen in Figure 3.2. This
complex is a simplification where we do not look for points in common between
all balls, but rather say that if k + 1 balls intersect pairwise they form a k-
simplex.
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(a) ε = 0.1 (b) ε = 0.15

(c) ε = 0.2 (d) ε = 0.3

Figure 3.2: The Vietoris-Rips complex at different ε-values.

Definition 3.1.2 ([9, p. 74]). For a family of points X = {xα}α in some
Euclidean space Rn the Vietoris-Rips complex Rε is given by the abstract
simplicial complex whose k-simplices are given by a subfamily of k + 1 points
{xαi
} such that for any two points in the collection xαi

, xαj
we have that

Bε/2(xαi
) ∩Bε/2(xαj

) 6= ∅

where Br(x) is the closed ball of radius r centered at x.

The Vietoris-Rips complex does not come with the same guarantee of fidelity
to the underlying space as the Čech complex does. However, it is entirely
defined by the vertices and the edges of the simplicial complex, allowing it to
be stored as a graph.

Given a monotonically increasing sequence of real numbers (εi)
n
i we can for

each εi associate to a finite set of points X the Vietoris-Rips complex Rεi .
Then as illustrated in Figure 3.2 we have inclusions

Rε1 Rε2 . . . Rεn−1 Rεn .
ι ι ι ι

For i < j the inclusion ι : Rεi → Rεj induces a map ι∗ : Hk(Rεi)→ Hk(Rεj) and
the image of this map tell us which equivalence classes inHk survive when going
from Rεi to Rεj , in other words the homological features that persist going from
resolution εi to resolution εj in the Vietoris-Rips construction. The following
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result then lends some credibility to the Vietoris-Rips complex through its
relationship with the Čech complex.

Lemma 4 ([9, Vietoris-Rips Lemma, p. 74]). Given ε > 0 there is a chain of
inclusions

Rε ↪→ Cε
√
2 ↪→ Rε

√
2

Hence, any cycle that persists through the induced map Hk(Rε) → Hk(Rε′)
for ε′ ≥

√
2ε is also present in the Čech complex Čε′ .

The insight that the homological features that persist tell us more than the
individual homology groups themselves are central to the idea of persistent
homology. Before we give the formal definition of persistent homology we
must first generalize the concept of endowing a space with a filtration.

Definition 3.1.3. A filtration F of a simplicial (or cubical) complex K is a
totally ordered set of subcomplexes Ki ⊆ K for i ∈ N such that if i ≤ j then
Ki ⊆ Kj.

Note that the Čech and Vietoris-Rips constructions over a sequence of res-
olutions are two instances of filtrations, but we are not restricted to them
alone with this definition. We can now state the formal definition of persistent
homology.

Definition 3.1.4. For p > 0 the p-persistent kth homology module of
filtration F is given as

H i,p
k = Zi

k/(B
i+p
k ∩ Zi

k)

where Zi
k, B

i
k are the cycle and boundary modules of the resulting chain com-

plexes C∗(Fi)

This module is well-defined since the inclusion Ki ↪→ Ki+p induces inclusions
Ci
k ↪→ Ci+p

k hence we have inclusions Zi
k ↪→ Ci

k ↪→ Ci+p
k and so Zi

k is a submod-
ule of Ci+p

k . Furthermore, it captures precisely what we have been alluding to
earlier: the p persistent homology modules are exactly the equivalence classes
that survive up to some filtration p.

3.2 Persistence Module

While Definition 3.1.4 serves as a sufficient framework for persistent homology,
it is still particular because it is stated in terms of filtrations and chain com-
plexes arising from them. It is possible to make the notion of persistence even
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more general, allowing us to understand its algebraic structure. This does not
mean that we should entirely discard our anchoring of persistent homology in
the realm of simplicial complexes, as it relates closely to how we will do per-
sistent homology in practice, rather we should let this more abstract approach
serve as the theoretical underpinning which opens up the possibility of other
types of approximation of data than simplicial complexes.

Definition 3.2.1 ([11, p. 2]). Let C∗, D∗ be chain complexes over some ring
R. A chain map u : C∗ → D∗ is a family of R-module homomorphisms
uk : Ck → Dk such that the following diagram commutes

. . . Ck+1 Ck Ck−1 . . .

. . . Dk+1 Dk Dk−1 . . .

∂k+2

uk+1

∂k+1 ∂k

uk uk−1

∂k−1

∂k+2 ∂k+1 ∂k ∂k−1

Definition 3.2.2. A persistence complex is a family of chain complexes Ci
∗

together with chain maps ιi : Ci → Ci+1 that go between them in the following
way

...
...

. . . Ci
k+1 Ci+1

k+1 . . .

. . . Ci
k Ci+1

k . . .

...
...

∂k+2 ∂k+2

ιi−1

∂k+1

ιi

∂k+1

ιi+1

ιi−1 ιi

∂k

ιi+1

∂k

Definition 3.2.3 ([4]). A persistence module M is a family of R-modules
Mk together with module homomorphisms φ : Mk →Mk+1.

With the definition of the persistence module we arrive at an alternate defini-
tion of persistent homology, the persistent homology of a persistence complex.

Definition 3.2.4. For p > 0 the p-persistent homology of a persistence com-
plex (C∗, ι) is denoted Hp

∗ and is defined to be the images of the induced
homomorphisms ιi+p−1∗ ◦ ιi+p−2∗ ◦ · · · ◦ ιi∗ : H∗(Ci

∗)→ H∗(Ci+p
∗ ).
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In the light of this definition, we see that the p-persistent homology of a per-
sistence complex is a persistence module where the module homomorphisms φ
are the maps induced by the chain maps ι : Ci

∗ → Ci+1
∗ . The objects given in

definitions 3.1.4 and 3.2.4 are in fact isomorphic.

Lemma 5. Let ιi,pk : H i
k → H i+p

k be the module homomorphism that takes a
class in H i to the class which contains that class in H i+p. Then im(ιi,pk ) ' Hp

k .

Proof. Note that the kernel of ιi,p are exactly those classes of cycles which
become boundaries at some index i, i+1, . . . , i+p, hence ker(ιi,p) = (Bi+p∩Zi).
So by the first isomorphism theorem for modules we get that

im(ιi,p) ' H i
k/ ker(ιi,p) ' H i

k/(B
i+p ∩ Zi

k) ' (Zi
k/B

i
k)/(B

i+p
k ∩ Zi

k) ' H i,p
k

where last isomorphism follows from the fact that Bi
k ⊆ Bi+p

k ∩ Zi
k.

Definition 3.2.5 ([4]). We say a persistence module (Mk, φk) is of finite
type if each component Mk is a finitely generated R-module and the maps φk

are isomorphisms for k > N for some integer N .

When we start with a finite simplicial complex K we get that C∗(K) consists of
finitely generated R-modules since the number of simplices in each dimension
is finite, hence the resulting persistence complex and persistence modules are
of finite type.

The most important theoretic result is just around the corner, but before that
we need to recall some definitions regarding graded rings and modules.

Definition 3.2.6. Let R be a ring. We say R is a graded ring if it can be
decomposed as a direct sum

R =
⊕

i

Ri

of abelian groups Ri, such that RiRj ⊆ Ri+j.

Note that given a ring R the polynomial ring R[t] is always a graded ring, since
it can be decomposed into R[t] = Rt0 ⊕Rt1 ⊕ . . . where Rtp = {rtp | r ∈ R}.
Definition 3.2.7. A non-zero element r in a graded ring R is said to be
homogeneous of degree n if r ∈ Rn and r 6∈ Rj for all j 6= n.

In other words, the homogeneous elements of a graded ring are those elements
that are contained to a single component. Adding elements from different
components give us elements that are not homogeneous, for example the sum
t2 + t3 does not live in a single component of the graded ring Z[t].
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Definition 3.2.8. Let R =
⊕

iRi be a graded ring and M an R-module. We
say that M is a graded R-module if M decomposes as

M =
⊕

i

Mi

where Mi are submodules of M , such that RiMj ⊆Mi+j.

In the exact same way as for a graded ring we say an element of a graded
module is homogeneous if lives in a single component.

Most of the ordinary algebraic constructions on modules hold for graded mod-
ules as well. The only additional requirement is that they preserve homo-
geneous elements in the obvious way. For example, a morphism of graded
modules is a morphism of modules such that it preserves degree. In other
words, a morphism takes an element in a graded module of degree n to an ele-
ment in another graded module of degree n. Similarly, a graded submodule of
a module is simply a graded module such that each component is a submodule
of the corresponding component in the parent module.

We can now see that if we have a persistence module M over some ring R then
a graded module structure over R[t] on M is given by

α(M) =
∞⊕

k=0

Mk

The action tp sends Mk → Mk+p by p repeated applications of t, in other
words t shifts the elements up in the graduation by its power

t · (m0,m1,m2, . . . ) = (0, φ0(m0), φ1(m1), φ2(m2), . . . )

and so we get that (R[t])pM
k = RtpMk ⊆ Mk+p which satisfies the condition

required in the definition of a graded module.

The map α is a functor between the category of persistence modules and graded
modules [13] which becomes an equivalence of categories when considering
persistence modules of finite type over any field F. Hence, for ease of notation
we will simply consider a persistence module to be a graded module when the
aforementioned conditions are fulfilled. The equivalence of categories gives
us a lot for free: we do not have to be afraid of taking quotients or direct
sums of persistence modules as we know what objects they correspond to in
the category of graded modules. For example, we write H for the direct sum
of the persistence modules Hk and similarly we write C for the persistence
complex given by the sum of the persistence modules Ck.
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We now arrive at the result which fully characterizes the algebraic structure of
persistent homology. Sadly, this result comes with the restriction that makes
α an equivalence of categories, namely that it only characterizes persistence
modules of finite type over a field. The more general problem is under the
functor α equivalent to characterizing graded R[t] modules over an arbitrary
ring R, which is known to be a hard problem [13].

Theorem 6 ([4]). For a persistence module M of finite type over a field F,
there exists a decomposition of M as a direct sum of graded modules

M ∼=
⊕

i

tpi · F[t]⊕ (
⊕

j

(trj · F[t])/(tsj))

Furthermore, this decomposition is unique up to permutation of components
and trivial components.

While the restriction to a field F somewhat limits the usefulness of the de-
composition, we often in practice prefer working in Z2 due to computational
aspects and hence in most cases it poses no real problem.

The proof of Theorem 6 is constructive and ultimately leads to an algorithm for
computing persistent homology in terms of linear algebra. Hence, persistent
homology is computable in practical applications even for large data-sets. Due
to the intimate relation between the proof and the computational aspects we
will give it an appropriate treatment in the next section.

Theorem 6 has an intuitive explanation in terms of filtrations: when M is the
persistent homology H given by some filtration F , the free part consists of
generators which appear in the subcomplex Fpi and continue to exist for all
future filtrations. The torsional part consists of generators which appear at in
the subcomplex Frj and disappear in Frj+sj . Furthermore, the decomposition
provides the p-persistent homology for all p and so we circumvent the problem
of having to choose an optimal step of the filtration of which to compute
homology.

We can make this association of the decomposition of a persistence module
with intervals more precise through the following corollary of Theorem 6.

Corollary 6.1. For a persistence module M as in Theorem 6 there exists a
unique multiset BM of intervals of the form [i, j) with i, j ∈ N∪{∞} and i < j
such that

M ∼=
⊕

[i,j)∈BM

tiF[t]/(tj)

with the convention that (t∞) = 0.
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Proof. Let BM be the union of the multisets

{[i,∞) | tiF[t] is a component of M}∪{[i, j) | tiF[t]/(tj) is a component of M}.

The claim follows easily from Theorem 6. Since the decomposition of M is
unique in its non-trivial components it follows that BM is well-defined. Then
by the definition of BM it is obvious that M is isomorphic to the decomposition
given as above, since its components are all non-trivial components of any
decompositions of M .

3.3 Proof of the Structure Theorem

As promised we will now derive the connection between linear algebra and
persistence modules. For this part we will abuse the isomorphism of categories
between persistence modules and graded modules over F[t] and readily switch
between the two perspectives. A key observation is that for every (graded)
module M there is an exact sequence

K → G→M → 0

where G and K are free modules. By the first isomorphism theorem this
exact sequence yields an isomorphism M ∼= G/im (K → G), and hence we
can characterize M by only knowing K,G and f . We call such a sequence a
presentation of M .

Lemma 7 ([7, Theorem 7]). For a finitely generated graded module M over
F[t] a presentation of M yields a short exact sequence

0→ K → G→M → 0

where G,K are finitely generated and free.

Proof. Choose a finite set of generators of M and let G be the free module
generated by those generators. Then there is a canonical surjection G → M .
Now let K := ker(G → M), this yields the short exact sequence. It remains
to show that K is free and finitely generated.

A standard result due to Hilbert (see for example [14, Theorem 4, p. 76]) is
that any submodule of a finitely generated module over F[t] is finitely gener-
ated. This means in particular that K is finitely generated, as it is a submodule
of G over F[t].
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Suppose for contradiction that K is not free. Then for a finite set of generators
{ki}ni=0 of K the assumption implies linear dependence such that

∑

i

rit
aiki = 0 ⇐⇒ tb

∑

i

rit
ai−bki = 0 =⇒

∑

i

rit
ai−bki = 0

where b = min{ai | ri 6= 0}, ri ∈ F and the last implication follows from that
K is a submodule of the free module G. Then for some term in the sum we
have that aj = b and kj 6= 0 which gives us that

rjt
aj−bkj = rjkj =⇒ kj = −r−1j

∑

i 6=j
rit

ai−bki.

But then kj can be given as a linear sum of generators ofK so it can be excluded
from the list of generators. Iterating the argument above then exhausts the
finite set of generators until the set consists of linear independent generators,
hence K is free.

When K,G are free and finitely generated the presentation yields a map
F[t]n → F[t]m, in other words it can for a given choice of bases be repre-
sented by a matrix in F[t]n×m which we call a presentation matrix of M .
This is the vital connection between persistence modules and linear algebra.
By reducing this matrix, much like in the process of Gaussian elimination, we
end up with a matrix that describes compatible bases in K and G. Then M
is generated by the basis in G with relations given by the basis in K.

Definition 3.3.1. A matrix M ∈ F[t] is in graded Smith normal form if
its rows and columns can be permuted into a matrix M ′ such that

M ′ =




tα0 0 . . . 0

0
. . . 0

tαk

... 0
...

. . .

0 . . . 0




where αi ∈ N.

In the ordinary, non-graded definition of Smith normal form one usually as-
sumes M to already be permuted. However, in the graded case the order of
the rows and columns have importance for the degree of the basis elements
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defined by the rows and columns, hence the somewhat convoluted definition
above.

We will now describe an algorithm for computing the graded Smith normal
form. Since the resulting matrix consists of linearly independent columns and
rows they define a basis for the column and row space.

Algorithm 1 Reduction to graded Smith normal form [4], [7]

1: Input: Matrix ∈ F[t]n×m with homogeneous entries with columns sorted
in descending order and rows sorted in ascending order of degree.

2: Returns: Matrix ∈ F[t]n×m in graded Smith normal form.
3: while there are untreated non-zero rows or columns do
4: Find the indices i, j of the lowest degree entry in the lowest degree

block of untreated columns.
5: Eliminate all entries upwards by row additions in column i.
6: Eliminate all entries rightwards by column additions in row j.
7: Mark column i and row j as treated.

Proof. (Correctness of Algorithm 1.) To show the correctness of the algo-
rithm it suffices to show that we can eliminate entries and that such elimina-
tion does not change the degrees of the homogeneous basis elements given by
the rows and columns. Since columns and rows are finite, we will eventually
terminate.

Suppose we wish to eliminate some entry in row j with an element in row i.
This implies that i > j by the algorithm itself. Let the entries be denoted
ai = c · tri and bj = d · tsj respectively. Since the columns and rows are
chosen to be homogeneous, we know that they can be written this way. The
matrix is sorted in ascending degree order in both rows and columns, which
implies that deg(ai) ≤ deg(bj), hence we can always eliminate bj by adding
tsj−ri −d

c
· ai. Furthermore, if γi, γj are the basis elements of rows i, j then

we know from linear algebra that the addition causes a change of basis γ′i :=
γi − tsj−ri −d

c
· γj. We get that deg(γ′i) = max{deg(γi), (sj − ri + deg(γj)},

but since ai, bj are entries of the same homogeneous column this implies that
ri + deg(γi) = sj + deg(γj), hence deg(γ′i) = deg(γi). An identical argument
holds for if we wish to eliminate by column additions, with the exception that
the change of basis occurs in γj.
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When a presentation matrix of M is put into graded Smith normal form by
Algorithm 1 it gives us compatible bases for K and G and the isomorphism
becomes

M ∼= basis elements given by rows

basis elements given by non-zero rows times their entry

To understand how we can interpret the presentation matrix as such, consider
that the rows give a basis for G under the inclusion K ↪→ G. The non-zero
rows tell us which basis elements of G are hit by the inclusion when shifted in
the grading by their corresponding non-zero entry. Hence, these shifted basis
elements of G generate the elements that are killed in the projection G→M .

We are now ready to prove Theorem 6.

Proof. The module M is of finite type so it has a presentation matrix P . By
reducing P to graded Smith normal form with Algorithm 1 we get a matrix
P ′. Since M ∼= G/K by the first isomorphism theorem we have that free part
of M is given by the basis elements of G associated with the zero rows of P ′, as
these are basis elements which are not hit by the inclusion K ↪→ G in any part
of the grading. Furthermore, the torsion part in the decomposition is given
by the non-zero rows which define basis elements of G that when shifted by
their entry are basis elements of K and thus are killed in M . This proves the
existence of the decomposition.

What remains to show is that the decomposition is unique no matter our choice
of basis for G and K. This actually follows from a much more general result,
the Krull-Schmidt Theorem [15, p. 115], but we will give an elementary proof.

Suppose that we have two different decompositions of M that we denote C,D.
We claim that they are identical up to permutation of components and modulo
trivial components. We have homomorphisms

fij := Ci
ιCi
↪→

φ

C ∼= M ∼= D
πDj� Dj,

gij := Dj

ιDj

↪→
φ−1

D ∼= M ∼= C
πCi� Ci,

where the maps are the obvious inclusions and projections from and onto
components through the isomorphism between the decompositions of M .

First, we note that for at least one j the composed map g1jf1j cannot be the
zero map since

∑

j

g1jf1j =
∑

j

g1j(πDj
φιC1) =

∑

j

(πC1φ
−1ιDj

)(πDj
φιC1) =
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πC1φ
−1(

∑

j

ιDj
πDj

)φιC1 = πC1φ
−1φιC1 = 1C1 .

Let us assume that j = 1, if not we can just reorder the summands in D such
that this is the case. Then g11f11 is an automorphism of C1. To see this, note
that g11f11 is a graded non-zero endomorphism of C1, hence if C1 = taF[t]/(tb)
then g11f11 must take ta → cta, which generates the entirety of C1 for some
non-zero c ∈ F.

By symmetry, if f11g11 is non-zero then it is also an automorphism. However,
f11g11 cannot be zero since g11f11 being an isomorphism gives us that

g11(f11g11)f11 = (g11f11)(g11f11) 6= 0.

Hence, f11g11 is also an automorphism. Then by force f11 and g11 are isomor-
phisms.

Furthermore, we claim that the map f2+ defined below is also an isomorphism

f2+ : ⊕i≥2Ci → ⊕j≥2Dj

f2+(c2, c3, . . . ) =
∑

i≥2,j≥2
ι′Dj

fij(ci)

where ι′Dj
denotes the inclusion Dj ↪→

⊕
j≥2Dj.

For injectivity, note that if ĉ = (c2, c3, . . . ) ∈ ker f2+ then φ has to map∑
i≥2 ιCi

ĉi = (0, c2, c3, . . . ) to (d1, 0, 0, . . . ) for some d1 ∈ D1 since the final
maps are just the projections onto components and inclusion into ⊕j≥2Dj. By
post-composing with πC1φ

−1 we get

(d1, 0, 0, . . . ) = ιD1(d1) = φ
∑

i≥2
ιCi

(ĉi) ⇐⇒

πC1φ
−1ιD1(d1) = πC1φ

−1φ
∑

i≥2
ιCi

(ĉi) ⇐⇒

g11(d1) = 0

where the last equality implies that d1 = 0 since g11 is injective. Hence ĉ = 0
and so f2+ is injective.

For surjectivity take any element d̂ := (d2, d3, . . . ) in ⊕j≥2Dj. Since φ is an
isomorphism with C1

∼= D1 there exists some d1 ∈ D1 such that

φ(0, c2, c3, . . . ) = (d1, d2, d3, . . . )
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for some ci ∈ Ci. Then surjectivity follows from

f2+(c2, c3, . . . ) =
∑

i≥2,j≥2
ι′Dj

fij(ci) =

∑

i≥2,j≥2
ι′Dj

πDj
φιCi

(ci) =
∑

j≥2
ι′Dj

πDj
φ
∑

i≥2
ιCi

(ci) =

∑

j≥2
ι′Dj

πDj
(d1, d2, . . . ) =d̂

So we get a new isomorphism f2+ of the remaining components of C and D.
Hence, we can repeat the argument above to find a new index j ≥ 2 such
that f2j and g2j are isomorphisms. Since the decompositions C and D are
direct sums there are a finite number of non-trivial components, thus this
process will eventually exhaust all of them. The rest of the summands in the
decompositions not covered by these isomorphisms must then consist of trivial
modules, which proves the uniqueness of the decomposition up to permutation
and trivial modules.

Now for explicitly computing persistent homology we have the presentation

0→ B → Z → H → 0

and so we could theoretically apply the proof above and get a decomposition
of H, but this comes with one caveat: to give a presentation matrix of H
requires us to first have a basis of Z, which we typically do not have. Instead
we have the boundary map ∂ : C → C which has as its image B and Z as its
kernel. Hence, we must first compute the Smith graded normal form of the
map ∂ which gives us a compatible basis in both B and Z. Then we compute
the Smith normal form of the inclusion map B ↪→ Z from which we can derive
the barcode BH .

Example 3.3.1. Consider the filtration given in Figure 3.3. For simplicity we
work in F = Z2. The persistence complex has basis given by the simplices and
we get the following boundaries by evaluating the boundary map ∂ on those
basis elements:

C v0 v1 v2 v12 v02 v01 v03 v012

∂C 0 0 0 v2 + v1 tv2 + t2v0 tv1 + t2v0 v3 + t2v0 t2v12 + tv01 + tv02
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Hence we have the following matrix representing the map ∂:




v0 v1 v2 v3 v12 v02 v01 v03 v012
v0 . . . . . t2 t2 t2 .
v1 . . . . 1 . t . .
v2 . . . . 1 t . . .
v3 . . . . . . . 1 .
v12 . . . . . . . . t2

v02 . . . . . . . . t
v01 . . . . . . . . t
v03 . . . . . . . . .
v012 . . . . . . . . .




Reducing this matrix to graded Smith normal form while keeping track of basis
changes gives us the matrix




v0 v1 v2 v3 v12 v02 + tv12 v01 + v02 + tv12 v03 v012
v0 . . . . . . . . .
v1 + tv0 . . . . . t . . .
v2 + v1 . . . . 1 . . . .
v3 + t2v0 . . . . . . . 1 .
v12 . . . . . . . . .
v02 . . . . . . . . .
v01 + tv12 + v02 . . . . . . . . t
v03 . . . . . . . . .
v012 . . . . . . . . .




From the reduction to normal form we can read off a basis for Z given by the
zero columns and the basis of B given by the non-zero rows together with their
non-zero entry. This gives us a presentation matrix of H from the inclusion
B ↪→ Z




v2 + v1 tv1 + t2v0 v3 + t2v0 tv01 + t2v12 + tv02
v0 . t2 t2 .
v1 1 t . .
v2 1 . . .
v3 . . 1 .
v01 + v02 + tv12 . . . t
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Reduction of this matrix to Smith normal form gives us




. . . .

. t . .
1 . . .
. . 1 .
. . . t




We see that there is one zero row given by v0 which gives us the interval
[1,∞). This is because v0 is the 0-cycle in Figure 3.3 that eventually becomes
the connected component of the entire simplicial complex, hence it never dies.
We additionally have two intervals [2, 3) and [3, 4) from the rows with t as their
entry. The first one is the other connected component given by v1+v2 which is
born at filtration step 2 and dies when it becomes part of the single connected
component given by v0 in filtration step 3. The interval [3, 4) corresponds to
the triangle without interior at filtration step 3 which later dies at filtration
step 4 when the triangle is filled in.

v0 v0

v1
v2

v0

v1
v2

v3
v0

v1
v2

v3

Figure 3.3: Filtration of a simplicial complex showing the intermediate
simplicial complex at each filtration step. A blue simplex indi-
cates the simplex was added in that filtration step.

Algorithm 1 for a simplicial complex has, just like ordinary Gaussian elimi-
nation over fields, worst case time complexity O(m3) where m is the number
of simplices [4]. However, as seen in Example 3.3.1 the boundary matrix is
sparse. Furthermore, the decomposition of H can be read entirely from the re-
duced boundary matrix without constructing an explicit presentation matrix.
These are some areas where the algorithm usually is made more efficient, but
dwelling on such optimizations is outside the scope of this thesis. For more
in-depth treatments on this subject see [9] for the theoretical underpinnings
and [16] for the de facto solution on which many software libraries are based.
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3 Persistence

3.4 Visualizing Persistence

The persistent homology of a space is not a very easy algebraic object to
work with in practical terms. Even when considered under the bijection with
intervals it is a multiset of intervals and as such helpful visualizations allow us
to analyze and compare persistent homology. There are two principal ways of
visualizing the decomposition of a persistence module: barcode diagrams and
persistence diagrams.

3.4.1 Barcodes

A barcode diagram is a visual depiction of BH where each bar depicts the
start end and end of an interval, or equivalently the birth and death of a
particular generator in one of the homology modules.

In Figure 3.4 we see a barcode diagram generated from points sampled from
an annulus. Note that for small values of ε there are many generators of H0,
this is because the vertices have not been connected into a single component
yet.

We see that there some short intervals appearing for H1 at around ε = 0.3 and
we can see that these are not the hole that would represent the annulus, but
rather noise that appears before ε has become large enough. At around ε = 0.6
the simplicial complex now captures the shape of the annulus and indeed the
barcode diagram shows that we have one generator of H0, the only connected
component, and one generator of H1 which is the hole in the middle of the
annulus.

Note how this hole in the middle of the annulus is gone when ε = 1 which
highlights that it is difficult to find an optimal ε.

3.4.2 Persistence Diagrams

Another way of illustrating persistent homology is the persistence diagram as
seen in Figure 3.5.

Definition 3.4.1. The persistence diagram X of a persistence module M
is a multiset of points in R2 ∪ {∞} defined as

X := {(x, y) ∈ R2 ∪∞ | [x, y) ∈ BM} ∪ {(x, x) | |x ∈ R}.
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Figure 3.4: Persistence barcode showing the birth and death of generators
in the homology groups of a Vietoris-Rips complex approximated
from points sampled from an annulus at different ε.
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In other words, it is the set of (birth,death) pairs given by the intervals asso-
ciated with the decomposition of M together with all points on the diagonal.

When visualized as in Figure 3.5 it serves alternative to the barcode in Figure
3.4 where we instead plot the ε-value on both axes and for each generator
we draw a point given by its corresponding interval. When we have a lot of
intervals this is a preferable way of visualizing the persistent homology, since
unlike the barcode it does not grow vertically with the number of intervals.
Generators that never die are mapped at a line representing infinity.

Just like in the barcode in Figure 3.4 we can see in Figure 3.5 that the only
two generators that live for a considerable amount of time is a single connected
component in H0 and a single hole in H1. This is consistent with the topology
that we expect from an annulus. At around ε = 0 we see a lot of H0 generators
being born and dying at almost the same time. Since the number of generators
of H0 tells us the number of connected components in the topology this clearly
illustrates how the sampled points go from being isolated islands to being
incorporated in a larger simplex.
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Figure 3.5: A persistence diagram over the birth and death of generators
in the homology groups of a Vietoris-Rips complex approximated
from points sampled from an annulus. The closer a point is to
the diagonal line the shorter it lived.
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3.5 Metrics

As persistent homology is often used as a topological summary of some data, it
can be beneficial to be able to compare two different data samples with respect
to their persistent homology. There are two commonly used metrics for doing
this, the bottleneck distance and the Wasserstein distance.

Definition 3.5.1. The bottleneck distance between two persistence dia-
grams X, Y is

W∞(X, Y ) := inf
β:X→Y

sup
x∈X
||x− β(x)||∞

where β is a bijection from X to Y .

In other words, the bottleneck distance finds a matching, in the space of pos-
sible matchings, between the two persistence diagrams such that the largest
distance in the matching is the smallest one possible. Since there could be more
intervals in one persistence diagram, any point can also be matched with an
infinite number of points on the diagonal which are included in the persistence
diagram. Its name is derived from the fact that there is only one matching
of points that contributes to the actual value of the distance, the largest one,
and hence the distance is “bottlenecked” by that matching.

One disadvantage of the bottleneck distance is that it is quite coarse, it does
not tell us much about the other distances between other matched points.
An alternative is the q-Wasserstein distance which instead incorporates all
distances in the best matching.

Definition 3.5.2. For q ≥ 1 the q-Wasserstein distance between two persis-
tence diagrams X, Y is defined as

Wq(X, Y ) := ( inf
β:X→Y

∑

x∈X
||x− β(x)||q∞)

1
q

As hinted by the notation the bottleneck distance is the limit of the q-Wasserstein
distance as q goes to infinity.

Both the Wasserstein and bottleneck distance serve a purpose as the bottleneck
distance can be considered more robust to noise since small changes in the
matchings are ignored in favor of the largest matching.

A desired quality of these metrics are stability, ideally we want the metrics to
reflect differences in the underlying spaces. There are stability theorems that
under varying conditions fulfill a meta-theorem which guarantee this.
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Definition 3.5.3. A filtration function X → R is a function from a simplicial
or cubical complex X such that the sublevel set {f−1(−∞, a) | a ∈ R} is a
filtration.

Theorem 8 (Stability meta-theorem [6]). For a nice enough space X and nice
enough filtration functions f, g : X → R, a nice enough norm of the difference
of f − g serves as an upper bound to the distances between the persistence
diagrams given by f, g.

In other words, a small perturbation of the filtering functions will at most be
as large as the difference between the functions themselves. The term nice is
intentionally vague, since these conditions vary. For an overview of the par-
ticular scenarios in which the meta-theorem is applicable see [6], including a
formulation which allows for general persistence modules under certain con-
ditions. In practical applications we are often only considering finitely many
sublevel sets from a filtration function which motivates the following definition.

Definition 3.5.4. A filtration function is called tame if the persistence com-
plex arising from the filtration function is of finite type.

Then we have the following corollary of the meta-theorem.

Corollary 8.1. If f, g given as in Theorem 8 are tame then the meta-theorem
holds for the bottleneck distance with norm given by the L∞-norm and for the
q-Wasserstein distance with the Lq-norm.

As the proofs of Corollary 8.1 require a lot of tedious and technical details
which would detract from the overall theme of this thesis, we instead refer the
reader to elementary proofs regarding the q-Wasserstein distance in [17] and
the bottleneck distance in [18].
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4 Two Applications of Persistent
Homology

Our purpose with thesis is not only to give an introduction to persistent homo-
logy in terms of theory, but also display how it can be used with actual real-
world data. As such, we illustrate the practical workflow of persistent homo-
logy with two different case studies where the analysis of persistent homology
serve as our main tool.

In the first case we quantify differences in morphology between different-sized
individuals of the bumblebee Bombus terrestris by computing the persistent
homology of 3D volumes of their corneas. To our knowledge this is the first
use of persistent homology in data pertaining to insects, although materials
[3], [19], reconstructions of 3D volumes [20], [21] and plants [2] have been
investigated with approaches that are similar in spirit.

In the second case we try to understand the network structure of the striatum,
a part of the basal ganglia in the brain. Due to the sheer computational power
needed to compute persistent homology for this data our analysis is more of
a holistic summary of the resulting simplicial structure rather than focusing
solely on persistent homology. Our approach is largely inspired by [1], in which
a similar analysis is done but for a different part of the brain.

The application of persistent homology to a data set is not entirely trivial.
In order to compute persistent homology we need to construct a persistence
complex on the data at hand. This can be done in a multitude of ways, but
the basic pipeline can be seen in Figure 4.1.

A central part of this pipeline is the formulation of a filtration function that
yields a sequence of complex and hence a persistence complex. The filtra-
tion provides the translation of data into an algebraic object we can compute
persistent homology of. When we analyze results from persistent homology,
perhaps by comparing metrics between two barcodes or reading directly of a
persistence diagram, the semantic meaning of those results is intimately con-
nected to how the filtration creates the resulting complex. Dually, this means
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Filtration function

Data Persistence complex Barcode
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[5, 53)

Figure 4.1: The pipeline of computing persistent homology of data.

that to formulate the filtration we need to have a strong understanding of the
data itself so that our filtration captures essential properties of the data. The
complex constructed on the data set is topologically an approximation, but
since it is not the “true” space in which the data lives care has to be taken so
that any conclusions made from the barcode are meaningful.

4.1 Corneas of Bombus terrestris

It has been found that the size of individuals of the species Bombus terrestris
affects aspects of their visual capabilities [22]. By applying persistent homology
we can investigate whether this difference in size also translates to a difference
in persistent homology, and so by proxy a difference in topology. If so, this
could serve to strengthen the hypothesis that larger individuals have superior,
or at the very least different, visual capabilities than smaller individuals. Per-
sistent homology is a good candidate for this purpose as metrics on persistence
diagrams are indifferent to differences in scale but rather measures differences
in shape.

Our questions we wish to investigate in this case study are

1. Is there a correlation between the size of the bumblebees and their per-
sistent homology?
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2. Can we with persistent homology identify subgroups of bumblebees, and
if so are these subgroups related to their size?

4.1.1 Data

The data consists of binary 3-dimensional volumes (see Figure 4.2 for render-
ings of some of the samples) of the corneas acquired by micro-CT scans of the
samples as well as their intertegular width (ITW) described in Table 4.1. The
ITW of a bee is known to be an accurate estimator of its size [23].

The main focus of the analysis will be on samples from the bumblebee Bombus
terrestris, but in total there are 20 samples belonging to 8 different species
of insects. We use the additional samples from other species to verify our
topological findings.

(a) TA 60204 (b) MQ 60209 (c) BT 77970

Figure 4.2: Example renderings of cornea volumes.

4.1.2 Methodology

Since the data we are working with are 3-dimensional volumes a natural choice
is to endow it with the structure of a cubical complex. Our strategy is similar
to the Vietoris-Rips complex, but instead of working with distances between
points we work with adjacent cubes. Each voxel can be considered as a de-
generate interval (or vertex) in a cubical complex, where 4 pairwise adjacent
voxels give rise to a square and 8 pairwise adjacent voxels give rise to a cube.

In order to compute persistent homology we need a filtration which defines
subcomplexes of the cubical complex. Since the volumes are binary, we give
the volume a bit more structure by giving each voxel the distance to the closest
point on the volume’s boundary.
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ID ITW Species

AM 60185 2.90 Apis mellifera
AM 60186 2.95 Apis mellifera
BT 77967 5.42 Bombus terrestris
BT 77970 4.00 Bombus terrestris
BT 77971 4.02 Bombus terrestris
BT 77973 1.97 Bombus terrestris
BT 77974 2.97 Bombus terrestris
BT 77976 5.47 Bombus terrestris
MB 60160 3.25 Melipona bicolor
MB 60161 3.25 Melipona bicolor
MQ 60208 3.64 Melipona quadrifasciata
MQ 60209 3.64 Melipona quadrifasciate
PR 60164 1.49 Plebia remota
PR 60206 1.49 Plebia remota
TA 60204 1.17 Tetragonista angustula
TA 78016 1.17 Tetragonista angustula
TC 60166 1.94 Tetragona clavipes
TC 60167 1.94 Tetragona clavipes
TS 60163 2.10 Trigona spinipes
TS 60203 2.10 Trigona spinipes

Table 4.1: Table over the data samples used in the analysis. The ID column
gives a unique ID to each sample and the ITW column gives the
intertegular width of each sample.

Definition 4.1.1. Given a subset Y ⊂ Rn we define the Euclidean Distance
Transform, or EDT, as

EDT (x) = inf
y∈∂Y
||x− y||2

where ∂Y is the boundary of Y .

Our filtration is a sequence of cubical complexes Ki given by including voxels
whose EDT is at most εi as degenerate intervals. Higher dimensional cubes
such as edges, squares and geometric cubes are, similarly to the Vietoris-Rips
complex, included whenever there is a sufficient amount of pairwise adjacent
voxels.
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Example 4.1.1. To calculate the EDT of the binary image in Figure 4.3 we
simply calculate the difference vector from a pixel of value 1 to the closest
pixel with value 0. For example, to get

√
5 in the top left corner we need to

walk one step in to the left and two steps upwards which translates to the
vector (−1, 2) which has Euclidean norm

√
1 + 4 =

√
5. We then compute

the filtration of the transformed image, which gives us cubical complexes for
each value of ε. Since there are five distinct values of the pixels, we find five
subsequent cubical complexes ordered by inclusion.

√
5 2

√
5√

2 1
√
2

1 0 1

0 1
√
2

1 1 1

1 1 1

1 0 1

0 1 1

→

ε = 0 ε = 1 ε =
√
2 ε = 2 ε =

√
5

Figure 4.3: Transformation of a binary image into a filtration of cubical
complexes based on the Euclidean Distance Transform.

Our filtration on the volumes will describe the structure of the cornea start-
ing at it the void surrounding it, then including the hollow shell which is its
boundary, and then as the threshold increases the cubical complex will include
more and more of the denser parts within the volume. An illustration of the
thresholding at different values is seen in Figure 4.4.

The resulting topological summaries we get are persistence diagrams. While
these are in themselves interesting, in order to answer whether there is any
relation between the size of an individual and the persistent homology of its
cornea, we compute a distance matrix giving the distance of each sample to
another.

Since we have a number of dimensions of homology to compare and two differ-
ent distance metrics between persistence diagrams we get a total of 6 distance
matrices. For each of these distance matrices, we divide them into two sub-
matrices, one group consisting of the submatrix with entries from Bombus
terrestris and the other group consisting of all the other samples to act as a
control group on the first.
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(a) ε < 2 (b) ε < 10 (c) ε < 100

Figure 4.4: EDT thresholding of BT 77976. The pictures are rendered using
by maximum projections, meaning that the value at each pixel is
given by the maximum value in any of the voxels that a ray passes
through. The colors are then mapped so that cooler colors indicate
larger values relative to the other values in the rendering.

Our hypothesis is that there is some relationship between the absolute differ-
ence in ITW between samples and the difference in persistent homology be-
tween the filtrations of cubical complexes constructed from the EDT of cornea
volumes. But since different homology dimensions and metrics provide differ-
ent summaries of the objects, we first need to figure out which one of them is
most suited for our applications.

We determine which metric we will rely on by doing a so called Mantel test
[24, p. 813] of the distance matrix with respect to homology and the dis-
tance matrix with respect to ITW. A Mantel test is a non-parametric test of
distance matrices, in which we compute the Spearman rank correlation of the
two matrices under the null hypothesis that the matrices are uncorrelated. We
can then derive a test statistic by permuting one of the matrices in both rows
and columns and computing correlations for each such permutation. The re-
sults of a Mantel test is a correlation coefficient indicating the strength of the
correlation and p-value indicating how likely it is that this coefficient would
appear in a random permutation of one of the matrices.

We then perform clustering of the persistent homology distance matrix based
on hierarchical clustering. It is a simple algorithm where we first consider
each sample as its own cluster, and then group together clusters depending on
the distance between them. The distance between two clusters is given as the
minimum distance between any two samples between the two clusters. Our
hope then is that the final clustering, based on persistent homology, reflects
the ITW of the Bombus terrestris samples.
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4.1.3 Results

The Mantel tests in Table 4.2 reveal that the highest correlation is given by
the bottleneck distance on H2. Perhaps this is not too surprising, our objects
are volumes and the most distinguishing aspects of volumes will be how they
encode voids. Interestingly, the H1 bottleneck distance matrix shows a very
high p-value indicating that the largest distance between holes is not very
telling in drawing a conclusion about correlation between size and persistent
homology. This could be explained again by the fact that our object is a volume
of a single connected component namely a cornea, and so any existence of holes
will at best be local geometric information and at worst simply noise.

Group Metric H1ρ H1 p-value H2ρ H2 p-value

BT Bottleneck −0.069 0.84 0.86 0.0083
BT Wasserstein 0.59 0.053 0.49 0.080
Others Bottleneck 0.22 0.030 0.33 0.0073
Others Wasserstein 0.23 0.023 0.26 0.013

Table 4.2: Table displaying the statistics computed in the Mantel test of the
pairwise distances in different dimensions of persistent homology
and the ITW for the species Bombus terrestris. The symbol ρ de-
notes the Spearman rank correlation coefficient computed between
the two distance matrices.

The 1-Wasserstein metric does not provide a low enough p-value for us to draw
any conclusions from the tests when it comes to Bombus terrestris, this perhaps
indicates that the sample size of the Bombus terrestris submatrix is too small.
It is possible that the more sensitive nature in the 1-Wasserstein metric, since
it records not only the largest differences in the persistence diagrams but all
of them, makes it less robust to a smaller sample size.

Since the bottleneck distance on H2 has a strong correlation with the ITW
distance matrix we proceed with a hierarchical clustering on its distance matrix
as seen in Figure 4.5. We see that there are two groups formed where one of
the groups contains an additional cluster. The first group, which does not
contain a subgroup, consists of two samples BT 77967 and BT 77976. These
are the largest samples in terms of ITW and the remaining group contains two
subgroups both in which the ITWs are smaller. It is worth repeating that this
clustering is done without knowledge of the actual ITW, these clusterings are
purely based on the bottleneck distance of the H2 persistent homology and as
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such a differences here indicate differences based solely on the fact that their
persistence diagrams differ.
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Figure 4.5: Hierarchical single-link clustering of the bottleneck distance ma-
trix derived from the persistent homologies of the Bombus ter-
restris in H2.

In order to further clarify in what way the persistence diagrams of the Bombus
terrestris are differing we can look at visualizations of the bijections done under
the bottleneck distance and which pair of generators are the ones to determine
the metric.

In Figure 4.6 we see the matchings produced for the elements within each of the
identified clusters. We see that within the group the optimal matching always
gives the largest distance as a matching between a point and the diagonal.

On the other hand, if we look at the distances from samples between groups
in Figure 4.7 we see that there is one generator that is responsible for the bot-
tleneck distance in all of these matchings. That is the longest living generator
which is born at filtration value 0. At filtration value 0 the only voxels in the
volume are the empty voxels constituting the background, which means that
the void is left by the space where the cornea will be at a higher filtration
value. As the filtration value increases the volume gets filled in with denser
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and denser parts of the cornea, but as seen in Figures 4.6 and 4.7 it lives for
a long time before the cornea is entirely filled out. This difference in lifetime,
which can somewhat be translated to the density of the cornea, appears to be
the distinguishing factor between the three identified clusters of samples.
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Figure 4.6: Visualisations of bottleneck distances within clusters on persis-
tence diagrams of H2.
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Figure 4.7: Visualisations of bottleneck distances between clusters on persis-
tence diagrams of H2.

While the purpose of this analysis is mostly to showcase persistent homology
in the wild, these results do support to the idea that different sized Bombus
terrestris do not only have larger eyes, but also that they are topologically
different. Our clustering results on H2 group the larger individuals together
and we find a strong correlation with bottleneck distance in H2 and ITW.
Furthermore, we find that there is one generator born at the beginning of
the filtration that is responsible for the “bottleneck” when comparing samples
from the different clusters whereas within the same cluster other generators
with much shorter lifetime are the contributors.
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4.2 The Simplicial Structure of the Striatum

There is much reason for considering simplicial complexes when it comes to
networks related to the brain. An extensive field of study when it comes to
network analysis of the brain are motifs, which at a high-level simply means
a repeated pattern in a network which might have some form of semantic
meaning to the network. Simplices capture such patterns at a micro-level
through the connectivity of its faces. Furthermore, homology captures another
type of patterns at a meso-level through cycles of simplices. Armed with
persistent homology we arrive at a comprehensive summary of the network
through the lens of the filtration of our choice.

In this analysis we follow [1] by observing the high-dimensional simplicial struc-
ture of the brain by constructing a particular simplicial complex on the con-
nectivity matrix of a synthetically generated microcircuit of the striatum as
described in [25], a part of the basal ganglia in the brain. By computing the
resulting persistent homology we hope to discover distinguishing features of
our network from a few selected control models. Furthermore, our aim is that
this analysis serves as yet another example of the breadth of possible scenarios
in which persistent homology is applicable outside the realm of theory. While
we only investigate the mentioned microcircuit, our methodology is general
enough for it to be applicable in any scenario where we data can be inter-
preted as directed graphs.

4.2.1 Data

Recall that a directed graph G = {V,E} consists of a set of vertices V and
a set of edges E, where an edge is an ordered set (vi, vj) for some vertices
vi, vj ∈ V . The degree of a vertex in a directed graph is the sum of the
number of outgoing and incoming edges from and to the vertex.

In this case analysis our main object of study is a synthetic network based on
the micro-circuitry of the striatum realized as a directed graph. The network is
generated using empirical findings regarding connectivity between neurons, the
morphology of cells and electrophysical properties, see [25] for further details.
We compare this network to a three different models of directed graphs that
all have different qualities common to networks of the brain.

Definition 4.2.1 ([26]). The Erdős–Rényi (ER) model generates a di-
rected graph through the choice of two parameters: the number of vertices n
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and the number of edges m. The graph is then selected uniformly from the set
of all graphs with n vertices and m edges.

Definition 4.2.2 ([27]). The Watts-Strogatz (WS) model is parameterized
by the number of vertices n, the average out-degree m and a rewiring proba-
bility p. A directed graph is constructed by first creating a graph of n vertices,
such that for every vertex there is an outgoing edge to its m closest neighbors
modulo n, meaning that the graph is circular. Then finally each edge has a
probability p of being rewired to a different, uniformly selected, endpoint.

Definition 4.2.3 ([28]). The Barabási–Albert (BA) model is parameter-
ized by the number of vertices n and m, the average out-degree of each vertex.
It is constructed by starting with the complete directed graph on m vertices
and successively adding vertices until there are n vertices. For each new vertex
vi we add an edge {vi, vj} with a probability of

deg(vj)∑
k deg(vk)

Hence, at each addition of a vertex an older vertex with a high degree has a
higher chance of having its degree increased.

ER can be considered the baseline model, since it is an arbitrary random graph
among all possible graphs. WS is said to have small-world properties, which
means that there are clusters of highly connected nodes and that the average
path between two vertices is short. BA is said to be scale-free which means
that most vertices have a low degree, but some “hubs” have a high degree. Both
scale-free and small-world properties have been observed in brain networks [29].
Figure 4.8 gives an example of each model generated with 100 vertices.

In this analysis we compare the three models above with the synthetic network
generated from the striatum, which we will refer to as ST. In Table 4.3 we
can see our choice parameters for the models and the resulting number of
edges and vertices. For ER and WS our parameter choices were made to
match the number of edges in ST. However, for the BA model we instead
choose parameters in order to match the number of dimensions in the simplicial
complex on ST as seen in Figure 4.10.

4.2.2 Methodology

It is not entirely clear how we should define a simplicial complex on a directed
graph. The asymmetry is important as connections between neurons in the

47



4 Two Applications of Persistent Homology

(a) Erdos-Rényi (b) Watts-Strogatz (c) Barabási-Albert

Figure 4.8: An example of the ER, WS and BA models on 100 vertices.

Network Vertices Edges Parameters

ST 50000 12298074 -
ER 50000 12298074 n = 50000,m = 12298074
WS 50000 12300000 n = 50000,m = 247, p = 0.5
BA 50000 849864 n = 500000,m = 17

Table 4.3: Breakdown of the ST, ER, WS and BA graphs compared in the
analysis.

brain do not necessarily go both ways. While we could simply consider the
network as a undirected graph by adding missing edges it is likely that impor-
tant qualities of the network might be lost. There are a number of different
ways to go about defining a similar complex on a directed graph. In our case
we follow [1] and construct something called the directed flag complex of a
directed graph.

Definition 4.2.4 ([30]). A directed clique is a directed graph G = (V,E)
such that every vertex has at least an outgoing or incoming edge to every other
vertex in the graph.

Recall that an ordered simplicial complex as in Definition 2.2.4 is given by an
abstract simplicial complex together with a partial order that is total on each
simplex. Hence, by taking a directed graph and introducing such a partial
order on the vertices induced by the direction of each edge we can construct
an ordered simplicial complex.

Definition 4.2.5 ([30]). Let G={V,E} be a directed graph. The directed
flag complex dFl(G) is defined to be the simplicial complex whose k-simplices
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4 Two Applications of Persistent Homology

are all directed cliques with vertices v0, . . . , vk such that ∀i : vi ∈ V and
∀i, j : i < j =⇒ (vi, vj) ∈ E. The vertices v0, vk are called the source and the
sink of a k-simplex.

The directed flag complex is essentially the same construction given by the
Vietoris-Rips complex where pairwise intersection is given by an edge. How-
ever, there are some notable difference due to the fact that the underlying
graph is directed. The main difference is that we only create a simplex from
cliques of simplices whose edges flow “upwards” in the order. This is because
the total order on each simplex has to be respected in each of its faces. If
we allowed for arbitrary directed cliques to be simplices the ordering would
not be consistent. To see this, suppose that we have the directed simplices
[v0, v1], [v1, v2], [v2, v0] and [v0, v1, v2]. Then the partial order of the vertices
necessitates that both v2 < v1 and v1 > v2 which is a contradiction.

Since the directed flag complex is a simplicial complex homology is well-
defined. However, when the partial order on the vertices of is not a total
order there are certain oddities to be aware of. For example, a reciprocal edge
v0 ↔ v1 in the underlying directed graph yields a generator of H1 since the
1-cycle [v0, v1] + [v1, v0] cannot be the boundary of a 2-simplex.

In Figure 4.9 we see how the left clique has a source and sink and thus defines
a 3-simplex in the directed flag complex, but the right clique has one edge
going in the wrong direction, hence it is not a 3-simplex.

v0 v3

v2

v1

Source Sink
v0 v3

v2

v1

Figure 4.9: Two directed cliques where the left clique does create a 3-simplex
in the directed flag complex and the right clique does not.

We investigate the graphs ST, ER, WS, and BA in three different ways: the
number of simplices in each dimension, their Betti numbers and their persis-
tence diagrams.

For computing persistent homology, we need to define a filtration on the di-
rected flag complexes. We use a simple filtration function

f(σ) =

{
− deg(σ) if dim(σ) = 0

maxτ is a face of σ{f(τ)} if dim(σ) > 0

49



4 Two Applications of Persistent Homology

where we add vertices in descending order of degrees and their resulting higher-
dimensional simplices whenever all their vertices have been included in the
complex. The degree of the vertex indicates how central a vertex is to the
graph, which means that the filtration will describe the network in its most
basic building blocks and then add less and less important vertices.

4.2.3 Results

First we note the large number of simplices in ST as seen in Figure 4.10, where
we find as much as over a hundred billion simplices in dimension 7, 8 and 9.
This phenomena was also observed in [1], however not of the same magnitude.
Furthermore, we see that the number of dimensions is significantly larger in
ST compared to ER and WS. The graph BA was chosen so that its directed
flag complex had the same dimension as ST’s, but we see that the number of
simplices in each dimension is notably lower. So while the BA model seems to
capture the complexity of connectivity in ST it does not capture the magnitude.
ER and WS present a lot fewer simplices and a lot fewer dimensions than ST.
In this sense ER is the simplest model, but this is to be expected since it is a
random graph we expect there to be less of simplicial complexity.

One thing that has to be mentioned is that the computation of homology and
even more so persistent homology becomes extremely computationally expen-
sive due to the number of simplices in ST. As seen in Section 3.3 reducing the
boundary matrix in a dimension is at worst case given by a cubical amount
of field operations in proportion to the number of simplices in one dimension
above. Hence, computing something like β7 for ST would involve a computa-
tion of the magnitude 103·11 field operations. Even worse, in practice computa-
tion persistent homology is not only affected by the number of simplices in the
resulting simplicial complex, but also the number of simplicial complexes in
the filtration. For this reason we only present persistence diagrams and Betti
numbers for H0, H1 and additionally the Betti number for H2.

In Table 4.4 we see that ST has a lower β1 than any of the other graphs. Curi-
ously, even though BA has a lot fewer edges it still has a higher Betti number
in dimension 1. It is possible that the low amount of 1-cycles is a feature
that distinguishes brain networks from other types of networks, but no such
result is presented in [1] since β1 was never computed due to computational
limitations. If we turn to β2 we see that ST has the largest change from β1,
while the other graphs are pretty close to their β1 however with a larger error.
This dramatic increase from dimension 1 to dimension 2, both in Betti number
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and number of simplices, could also be seen as a feature of ST compared to
the other models. The distribution of simplices in Figure 4.10 hints that this
dramatic increase likely continues for several dimensions.

We see in Figure 4.11 that ST is markedly different from all other models in
terms of persistent homology. The persistence diagram of BA is not very infor-
mative due to all of its vertices essentially having the same degree. However,
WS and ER display similar persistence diagrams in which the distribution of
holes is concentrated to a small interval of filtration steps from degree 500 to
degree 400. In comparison, ST shows a much larger spread of both birth and
death of holes, with some holes even being born or dying close to degree 0.

To conclude, we have found that directed flag complex on ST differs in several
ways from the other three graphs: it has a much larger number of simplices
in each dimension, it has simplices in high dimensions, it has lower β1 than
all models and lower β2 than all models but BA. Furthermore, the persistence
diagram of ST shows a distinct spread of the birth and death of generators of
H1, whereas for BA they are all born at the same time due to nature of the
filtration and for ER and WS they are all restricted within a small interval of
degrees.

Network β1 β2 Computations

ST 5128± 1219 293013± 79867 1
ER 369770.18± 687.69 3470380.91± 2774.23 100
WS 334754.93± 625.38 3756595.22± 3709.97 100
BA 11982.51± 956.18 12946.77± 1734.00 100

Table 4.4: Table over the first and second Betti numbers for the graphs ST,
ER, WS and BA. The computation column denotes the number of
instances of the model over which the result was averaged, hence
the Betti numbers are given by an average value and its standard
deviation. For ST the approximation seen in [30] was used in
order to reduce computational time in which some columns were
not reduced to Smith normal form. Every such non-reduced column
can at most subtract or add one Betti number.
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Figure 4.10: The total number of simplices in each dimension for the directed
flag complex on ST, ER, WS and BA. For ER, WS and BA the
counts are the result of the mean number of simplices in each
dimension over 100 computations.
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(a) ST (b) ER

(c) WS (d) BA

Figure 4.11: Persistence diagrams over H0 and H1 for ST,ER,WS and BA
given by inclusion of vertices and their resulting higher order
simplices in the negative order of their degrees.
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5 Conclusion

Our goal with this thesis is to provide both an introduction to theory of per-
sistent homology, as well as examples of applications to real-world data. We
believe this is achieved.

We provide an exposition of persistent homology through the concept of a per-
sistence module. We then state and finally prove the unique decomposition of
persistence modules into a direct sum of free and torsional parts. Furthermore,
the proof of this theorem yields a concrete algorithm for computing persistent
homology of a given filtration through the computation of graded Smith nor-
mal form. By associating the decomposition with barcodes, and further on
persistence diagrams, we illustrate how persistent homology can be visualized.
Furthermore, we review the bottleneck distance and q-Wasserstein distance
which allows us to compare different barcodes with each other.

On the application side, we present two case studies. These studies are not
to be seen as stand-alone results in their respective domains, but rather as
examples of how persistent homology can be applied to achieve fruitful insights
into data. By using these non-traditional ways of exploring data we hope that
we show there is some merit to considering persistent homology as a way of
enhancing a traditional data analysis.

In the first case study we analyze 3D scans of the corneas of the bumble-
bee Bombus terrestris. This analysis shows how persistent homology can be
applied to volumetric data and how it can be used to perform a clustering
and similarity analysis. Furthermore, we are able to find that the persistent
homology, specifically the barcode of H2 compared across samples with the
bottleneck distance, reinforces the already shown hypothesis in [22], namely
that the shape of the eyes of Bombus terrestris differs between smaller and
larger individuals. We also interpret this result as implying that it is the den-
sity of the cornea which is a distinguishing factor between differently-sized
individuals.

In the second case study we analyze a synthetically generated network made
to mimic the micro-circuitry of the striatum. By interpreting the network as
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5 Conclusion

a directed graph, we show how persistent homology can be used to compare
real-world data given as graphs to control models generated in multiple ways.
We reinforce the already established result in [1], that the resulting directed
flag complex on the brain network displays a much richer simplicial structure
in terms of dimensions and number of simplices compared to control models.
Furthermore, we establish that β1 of the micro-circuitry is much lower than any
of the control models. Finally, we see that the distribution of the persistent
homology in H1 of the micro-circuitry is spread across the entire spectrum
of possible degrees, whereas control models only have holes in small intervals
of degrees. These observations could act as points of differentiation when it
comes to characterizing the striatum.

For some further directions in the first case study, one could extend the
methodology to see if H2 is always the distinguishing factor within and be-
tween different species of insects. However, this would likely require a larger
amount of samples.

In the second case study a potential lane of investigation is whether persistence
diagrams of filtrations other than the degree based filtration are as unique to
the micro-circuitry compared to the other models. Some other filtrations that
can be used with the exact same methodology are other measures of importance
in a graph, such as the number of shortest path through an edge or the number
of neighbors which are neighbors to each other. This is something we wanted
to do, but the computational demands together with time restraints made it
unfeasible.

Additionally, it could prove fruitful to see whether micro-circuitry in the actual
biological striatum displays a similar signature to the synthetic model in terms
of persistent homology. Should this be the case, then it strengthens the result
of the case study as a signature for the networks of neurons in the striatum.
If it is not the case, then persistent homology could perhaps be a parameter
to take into account when further calibrating the synthetic model.
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