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Abstract

We give an exposé of the current understanding of local model structures on presheaves
and suggest possible future results. We give an introduction to combinatorial model cat-
egories, left Bousfield localizations and the injective and projective model structures on
categories of presheaves. After this, we present Jardine’s local model structure on sim-
plicial presheaves and describe Dugger, Hollander and Isaksen’s way of obtaining said
model structure using hyperdescent. This is followed by descriptions of other local model
structures constructed by Ayoub, Drew and Meadows.
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Chapter 1

Introduction

This Master’s thesis concerns presheaves taking values in specific kinds of model cate-
gories. In a first course in algebraic geometry, the reader may encounter sheaves of abelian
groups, rings or modules. In homotopical algebra, we are interested in sheaves taking val-
ues in some higher category commonly said to be presented by a model category. The latter is
an ordinary category equipped with a model structure.

The study of model categories began in 1967 with Daniel Quillen’s Homotopical Algebra
[Q]. Model categories were modeled after the category of topological spaces and the cat-
egory of chain complexes, inspired by the homotopy theory being used there. Since then,
the purpose of studying them have shifted and model categories are now primarily used to
study the aforementioned higher categories. Higher categories are categories which do not
only have objects and arrows, but also arrows between the arrows, and arrows between
those arrows, ad infinitum. Working in such a setting requires some extra care. We have
attached a section in the appendix, Section 8.4, explaining briefly how a reader may obtain
an ∞-category1, a sort of higher category, from a model category via a process called simpli-
cial localization. Understanding this transition is not necessary to read this report, although
possible implications should become more apparent.

We are in this paper particularly interested in categories of presheaves. However, we
do not consider presheaves to necessarily associate an abelian group or ring to each open
subset of a topological space; instead we are content with regarding presheaves as con-
travariant functors between two categories. We will in this paper often consider source
categories endowed with a Grothendieck Topology, defined in Section 4.1, and we will let the
target category be a model category.

There are a number of different conditions we may impose on this model category, of
which requiring it to be combinatorial is the most important for this paper. Historically,

1Technically, what we mean by ∞-categories are (∞, 1)-categories. These are the only sort of higher cate-
gory we are concerned with however and we will stick to calling these ∞-categories for short.
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CHAPTER 1. INTRODUCTION

combinatorial model categories were introduced by Jeff Smith in seminars, although to
the author’s knowledge, no printed source has yet been published. Instead numerous
results inspired by Smith have been produced by a number of people, see for example
[BAR] and [D1]. Oftentimes combinatorial model structures allow us to construct other
model structures. If the target category is a combinatorial model category, we get induced
model structures on the category of presheaves, from which we may construct new model
structures by performing a left Bousfield localization.

A prominent result utilizing a left Bousfield localization is [DHI, Thm. 1.2 & Thm. 1.3].
The authors show in said paper that interesting model structures on simplicial presheaves,
i.e. presheaves taking values in the category of simplicial sets, may be obtained via left
Bousfield localizations with respect to a class of morphisms which they call hypercovers.
These model structures was first described by [J] and [BL] and are local in the sense that
the weak equivalences may be checked stalkwise if the site has enough points.

Since the work done by Jardine [J] and Dugger, Hollander and Isaksen [DHI], there
have been a number of similar results where the presheaf model category varies. The
original goal of this thesis was to prove the existence of a local model structure on left
proper simplicial combinatorial model categories, but alas, no definitive results are found
thus far. We do however make some remarks in the last chapter regarding interesting and
potentially fruitful approaches to finding such structures.

The structure of this paper is as follows: We begin with a chapter which mainly con-
cerns combinatorial model categories, although we also introduce some necessary con-
structions such as homotopy (co)limits and (co)ends. This is followed up by a chapter
introducing left Bousfield localizations which as mentioned above will be used to, from an
induced model structure on a presheaf category, construct a local model structure on the
same presheaf category.

The last three chapters specializes to talking about categories of presheaves. Chap-
ter four introduces presheaves in a category theoretic language and describes two natu-
ral model structures, the injective and projective model structures, which we may equip
a presheaf category with, under “nice” conditions. We also introduce descent conditions
which one may impose on a presheaf to obtain some kind of local-to-global property. The
reader may be familiar with the difference between a sheaf and a presheaf, which we may
formulate as “a sheaf is a presheaf which satisfies Čech descent”. We will in particular be
interested in a condition called hyperdescent, where we require even stronger properties
of the presheaf. To obtain the local model structures we will combine hyperdescent with a
left Bousfield localization.

Constructing these local model structures is the content of chapter five. We give an
overview over known such structures, with some emphasis put on the local model struc-
tures on simplicial presheaves first described by Jardine and Blander. The last chapter con-
cerns circumstances under which the author conjectures it to be possible to construct local
model structures, although as of yet no such result exists to the author’s knowledge.
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CHAPTER 1. INTRODUCTION

1.1 Knowledge Expected of the Reader

The reader is expected to have taken a course in homotopical algebra and to be familiar
with model categories and homotopy categories. It does not hurt to know some things
about quasi-categories either - the authors favorite way to think about ∞-categories. Clas-
sic references regarding model categoriesinclude [H], [HOV], and a more modern source
is [R3].

As we are interested in presheaves it might be helpful to know some algebraic geom-
etry as well. A standard reference in this field is Hartshorne’s book Algebraic Geometry
[HAR], although the reader wishes to include Richard Borcherds’ video lectures for good
intuition [BO1] [BO2].
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CHAPTER 1. INTRODUCTION

1.2 Notation

Here we introduce common notation. A lot of the definitions appear in the text, but com-
piling common ones here ensures that they are easy to find when needed.

1. We write (M, WE, Cof, Fib) for a model category with WE being the weak equiva-
lences, Cof being the cofibrations and Fib being the fibrations. Often we will only
use M to reference the model category.

2. We take • • to mean a fibration, • • to mean a cofibration and
• •∼ to mean a weak equivalence.

3. We take ∼= to mean isomorphism and ' to mean weakly equivalent.

4. Set is the category of sets.

5. sSet is the category of simplicial sets. When referenced as a model category without
further specified structure, the classical Kan-Quillen model structure is intended.

6. Let S, T be classes of morphisms such that S is the morphisms with the left lifting
property (LLP) with respect to T and such that T is the class of morphisms with the
right lifting property (RLP) with respect to S. Then we write S T.

7. Letting S be a class of morphisms in a category. Then S is the class of morphisms
which have the RLP with respect to S and S is the class of morphisms which have
the LLP with respect to S.

8. Subscripts on categories often indicate which model structure is intended, e.g. sSetJoyal
is the category of simplicial sets equipped with the Joyal model structure.

9. With ∞-categories we will always mean (∞, 1)-categories. At times these will be
used interchangeably with quasi-categories.

10. Let C be a category and let X be an object in C. We write rX for the representable
Set-valued presheaf homC(−, X).

If M is a symmetric monoidal model category with unit 1, we will by yMX mean the
M-valued presheaf on C given by yMX = 1 · rX. If M is the category of simplicial sets
with the classical Kan-Quillen model structure we will often by abuse of notation
write rX instead of ysSetKan-Quillen X.

11. Suppose that C is enriched over a symmetric monoidal model category D. We write
homD

C (−,−) for the hom-functor which takes objects in C to an object in D. Some-
times the superscript if dropped if no confusion may be had.

If hom is underlined, this means the internal hom in a category.

For a simplicial category, we instead of hom use map(−,−) for the hom functor,
unless the simplicial category is sSet or the category of simplicial presheaves in which

4



CHAPTER 1. INTRODUCTION

case we use Map(−,−) with capital M.

12. For a functor F : M → C with M a model category and C any category, we write LF
for the left derived functor of F and RF for the right derived functor of F.

13. We will interchangeably use both [Cop,D] and Dpre(C) for the presheaf category
with source category C and target category D.

14. For a bifunctor F : Cop × C → D we will use
∫

c:C F(c, c) to denote the end of F and∫ c:C F(c, c) to denote the coend of F.

15. For a model category M and a class of morphisms H for which the left Bousfield
localization of M exists, we write LHM for the model category obtained by said lo-
calization.

If M is a model category enriched over a model category V and H is a class of
morphisms for which the enriched left Bousfield localization of M exists, we write
LH/VM for the obtained model category.
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Chapter 2

Prerequisites

This paper concerns functor categories of a special kind. Namely, we wish to work with
presheaves taking values in some fixed left proper combinatorial model category enriched
over sSetKan-Quillen. Here we introduce and explore such a target category, as well as in-
troduce some general constructions constructions, e.g. homotopy (co)limits and (co)ends.
The concepts from model category theory are mostly standard and may be found in either
[H] or [HOV], both great sources. We begin by introducing the notion of weak factorization
systems as means of gaining control over the morphisms in a given category.

Notation 1. We shall divert somewhat from classical notation and use the suggestive sym-
bol , as far as we know introduced by Emily Riehl, to signal certain lifting properties.
Namely, if D is a collection of morphisms in a category C, we denote by D the collection
of morphisms in C which have the right lifting property with respect to D. Likewise, D are
the morphisms in C with the left lifting property with respect to D.

Definition 1. Let C be a category, and let (L,R) be two classes of morphisms in C. We say
that (L,R) is a weak factorisation system on C if

1. any morphism in MorC may be factored as a morphism in L followed by a morphism
in R, and

2. L = R and R = L , i.e. L are all morphisms with the left lifting property with
respect to all the morphisms in R, and R are all morphisms with the right lifting
property with respect to all morphisms in L.

The reader may note that any model category comes equipped with two weak fac-
torisation systems - (Cof, Fib∩WE) and (Cof∩WE, Fib). In fact, a concise definition of a
model category is in manners of weak factorization systems, as described in [R2].

In showing the existence of a particular model structure it is therefore useful to know
when we have a weak factorization system on our hands. The perhaps most common
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CHAPTER 2. PREREQUISITES

way of doing so is using Quillen’s small object argument. This ultimately leads us to
describe cofibrantly generated model categories. Later on in the paper, all model categories
considered will in fact be cofibrantly generated.

2.1 Cofibrantly Generated Model Categories

It can be quite difficult showing that a particular choice of subcategories constitute a model
structure. One of the most common ways of constructing model structures utilizes the the
small object argument, described already in Quillen’s book on homotopy theory in 1967 [Q,
Lemma 3 & the following remark.]. An important consequence of the small object argu-
ment is the ability to construct cofibrantly generated model categories - model categories
which have a small set of generating cofibrations and acyclic cofibrations in the sense that
many properties need only be checked on the generators rather than the whole class of
cofibrations and acyclic cofibrations.

Example 1. A classic example of a cofibrantly generated model category is the category
of simplicial sets equipped with the classical Quillen model structure. Here the gener-
ating cofibrations are the boundary inclusions ∂∆[n] ↪→ ∆[n], and the generating acyclic
cofibrations are the horn inclusions Λ[n]i ↪→ ∆[n].

2.1.1 The Small Object Argument

The small object argument is used to construct and detect weak factorization systems. The
argument is built on what is called transfinite induction - a generalization of the induction
the reader may be used to seeing. In standard induction, one considers a sequence often
indexed over N. Then the reader may infer that an object in the sequence has a specific
property given that all previous objects in the sequence has said property. The natural
extension to this is working with sequences indexed by another ordinal. This allows us
to formalize the notion of smallness which as the name suggests is essential to the small
object argument.

Definition 2. An ordinal is an equivalence class of well-ordered sets, where the equivalence
relation is given by isomorphism.

Definition 3. Let λ be an ordinal. We say that the successor ordinal of λ is the smallest
ordinal larger than λ.

Definition 4. Let λ be an ordinal. We say that λ is a successor ordinal if it is the successor
ordinal of some ordinal. We say that λ is a limit ordinal if λ is neither 0 nor a successor
ordinal.

The most common examples are the finite ordinals, often thought of being the numbers
from 0 up to some natural number n − 1, with the ordinary ≤-order. The first infinite
ordinal may be represented by the natural numbers and is usually denoted ℵ0.

7



CHAPTER 2. PREREQUISITES

Remark 1. There is a canonical way in which to regard a partially ordered set as a category
where the objects are the elements in the set and there is an arrow A → B if and only if
A ≤ B. In particular, a totally ordered set has for any pair of objects A and B either a unique
arrow with direction given by the ordering, as well as the identities. A consequence is that
ordinal diagrams are of the shape

X0 → X1 → . . .

Definition 5. Let λ be an ordinal and let C be a cocomplete category, i.e. a category with
all small colimits. A λ-sequence is a functor X : λ→ C, commonly written

X0 → X1 → . . .→ Xα → . . . .

We say, by slight abuse of notation as the colimit is unique only up to unique isomor-
phism, that the induced morphism X0 → colimα<λ Xα is the composition of X.

If D is a class of morphisms in C such that each morphism in the λ-sequence is in D,
we say that X0 → colimα<λ Xα is a transfinite composition of morphisms in D.

Notation 2. Let A be a set. Then we denote by |A| the smallest ordinal to which there is a
bijection A→ |A|. A cardinal is an ordinal κ such that |κ| = κ.

Definition 6. Let κ be a cardinal. We say that an ordinal λ is κ-filtered if

1. λ is a limit ordinal, and

2. if A ⊆ λ and |A| < κ, then sup A < λ.

Here sup A is the usual notion of supremum of the elements in A.

We are now ready to present a notion of smallness. The intuition one should have
is that an object A of a category is small if every morphism from A to a large enough
composition colim X• factors through one of the factors Xβ.

Definition 7. Let C be a category and A an object in C. Let κ be a cardinal and let D be a
class of morphisms in C. We say that A is κ-small relative to D if for every κ-sequence

X0 → . . .→ Xβ → . . .

with every morphism Xβ → Xβ+1, β + 1 < κ, being in D, any morphism from A to the
composition of X factors as A → Xβ → colimα<κ Xα, for some β < κ. In other words, we
have an isomorphism

colimα<κ homC(A, Xα) ∼= homC(A, colimα<κ Xα).

We say that A is small relative to D if A is κ-small with respect to D for some κ and we say
that A is small if it is small relative to D = C.

8



CHAPTER 2. PREREQUISITES

Definition 8. Let I be a collection of morphisms in a category C.

1. We say that a map f is I-injective or injective with respect to I if f ∈ I .

2. We say that a map f is I-projective or projective with respect to I if f ∈ I.

3. We say that a map f is an I-cofibration if f ∈ (I ). We call the class of morphisms
(I ) the I-cofibrations.

4. We say that a map f is an I-fibration if f ∈ ( I) . We call the class of morphisms
( I) the I-fibrations.

With these notions we approach the I-cell complexes which will then be used to prove
the small object argument.

Definition 9. Let I be a collection of morphisms in a category C containing all small colim-
its. We say that a morphism f in C is a relative I-cell complex if f is a transfinite composition
of pushouts of morphisms in I. We denote the collection of relative I-cell complexes by
I-cell. We say that an object C ∈ C is an I-cell complex if the unique morphism from the
initial object to C is a relative I-cell complex.

We expand upon this definition. Let

X0 → X1 → . . .→ Xβ → . . .

be a λ-sequence for some ordinal λ, where each morphism Xβ → Xβ+1 is a pushout of a
morphism in I, for all β + 1 < λ. That is, there is a pushout square

A Xβ

B Xβ+1

gβ

where gβ is in I. Then the transfinite composition X0 → colimβ<λ Xβ is a relative I-cell
complex.

Remark 2. Ensuring that all small colimits exist implies that the initial object exists as the
initial object is the colimit of the empty diagram. Dually, if C contains all small limits, C
has a terminal object.

We now present the small object argument which is a convenient way of finding model
structures which in many instances will carry good properties. One such property is that
the small object argument often produces cofibrantly generated model structures, described
in Section 2.1.2.

Theorem 1 (The small object argument, [HOV, Thm.2.14]). Suppose C is a category containing
all small colimits and let I be a set of morphisms in C. If the domains of the morphisms in I are
small relative to I-cell, then there exists a functorial factorization (γ, δ) such that

9



CHAPTER 2. PREREQUISITES

1. For any morphism f ∈ C, γ( f ) is a relative I-cell complex.

2. For any morphism f ∈ C, δ( f ) is in I .

3. f = δ( f ) ◦ γ( f ).

Proof. We use transfinite induction. By letting κ be a cardinal large enough to ensure that
domains of I are κ-small relative to I-cell, we may choose an ordinal λ which is κ-filtered.

Consider for a morphism f : X → Y the constant λ-sequence Y → Y → . . . which
we by abuse of notation will call Y. Our aim is to construct another λ-sequence with
a natural transformation to Y. By taking the composition of this λ-sequence we get an
induced morphism to Y which will be δ( f ). We construct a λ-sequence Z and a natural
transformation ρ inductively:

Let Z0 = X and ρ0 = f . Let β be a limit ordinal and suppose that Zα and ρα is defined
for all α < β. Then we let Zβ = colimα<β and ρβ be the morphism from Zβ to Y induced
by the universal property of the colimit.

Now we wish to define Zβ+1 for any successor ordinal β + 1. Let Sβ be the set of
commutative squares of the form

A Zβ

B Y

g

with g ∈ I. For a fixed commutative square s ∈ S, let gs be the corresponding morphism
in I. We may define Zβ+1 to be the pushout

äs As Zβ

äs Bs Zβ+1

äs gs

and let ρβ+1 be the corresponding induced morphism.

The composition of Z so defined is by [HOV, Lemma 2.1.13.] in I-cell and we set this
to be γ( f ). We get an induced morphism from colim Zβ to Y which we wish to choose as
δ( f ). To do this we need to show that δ( f ) ∈ I . Consider a commutative square

10



CHAPTER 2. PREREQUISITES

A colim Zβ

B Y

in which A→ B is in I. The information left that is not used is that the domains of the mor-
phisms in I are small relative to I-cell. With this assumption, we may factor A→ colim Zβ

into A → Zβ → colim Zβ, for some β < λ. But by construction there is a morphism
B→ Zβ+1 such that the composite B→ Zβ+1 → colim Zβ works as a lift. �

Hence we have at this point a way of knowing when weak factorization systems ex-
ist. Using the definition of a model category found in [R2], a large part of finding model
structures would be lying in finding two sets of morphisms which allow the small object
argument.

2.1.2 Cofibrantly Generated Model Categories

Definition 10. We say that a model category M is cofibrantly generated if there exists two
sets of morphisms I and J satisfying the following.

1. The domains of the morphisms of I are small relative to I-cell.

2. The domains of the morphisms of J are small relative to J-cell.

3. The class of fibrations are the morphisms which have the right lifting property with
respect to J, i.e. Fib = J .

4. The class of trivial fibrations are the morphisms which have the right lifting property
with respect to I, i.e. Fib∩WE = I .

We will call I the generating cofibrations and J the generating acyclic cofibrations.

This sort of model structure is especially nice to work with since we by definition have
a small set (as opposed to a proper class) of morphisms against which we may detect
fibrations and acyclic fibrations. In fact, more can be deduced. A succinct compilation of
important properties is Proposition 2.1.18 in [HOV]:

Theorem 2. Let M be a cofibrantly generated model category, with generating cofibrations I and
generating acyclic cofibrations J.

1. The cofibrations form the class (I ).

2. The acyclic cofibrations form the class (J ).

3. Every cofibrations is a retract of a relative I-cell complex.

4. Every acyclic cofibration is a retract of a relative J-cell complex.

11
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5. The domains of the morphisms of I are small relative to the cofibrations.

6. The domains of the morphisms of J are small relative to the acyclic cofibrations.

One may as written above use the small object argument to show the following, which
is a standard result included for example as Theorem 2.1.19 in [HOV].

Theorem 3. Let M be a bicomplete category. Let W be a subcategory of M and let I and J be sets of
morphisms of M. Then there is a cofibrantly generated model structure on M with W being the weak
equivalences, I being the generating cofibrations and J being the generating acyclic cofibrations if
and only if:

1. The subcategory W satisfies the 2-out-of-3 property and is closed under retracts.

2. The domains of I are small relative to I-cell.

3. The domains of J are small relative to J-cell.

4. J − cell ⊆ (I ) ∩W.

5. I ⊆ J .

6. Either ( (I )) ∩W ⊆ (J ) or J ∩W ⊆ I .

In other words, we may get by without checking the factorization axioms, and we get
Theorem 2 for free, should we be able to show that the conditions in the above theorem are
satisfied.

Recall at this point that we are interested in combinatorial model categories. These are
model categories which are both cofibrantly generated and locally presentable. We are in-
terested in such model structures since it turns out that from them, we may often construct
other model structures which in turn inherit a lot of structure. An example is Theorem 10
which states that if M is a combinatorial left proper model category, then the left Bousfield
localization described in Chapter 3 exists in a large number of cases. Another example is
Theorem 11 which states that combinatorial model categories induce combinatorial model
structures on presheaf categories under sufficiently nice conditions.

2.2 Locally Presentable Categories

The second condition for a model category being combinatorial is that the underlying cat-
egory has to be locally presentable. I refer the reader to [AR] for a thorough investiga-
tion.

Definition 11. Let C be a category. We say that C is locally presentable if

(i) C is cocomplete,

(ii) C is locally small, and

12
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(iii) There is a regular cardinal λ and a λ-small set S such that every object of C may be
written as a colimit of a λ-filtered sequence of objects in S.

If γ is a cardinal such that condition 3 is met, we say that C is locally γ-presentable.

Definition 12. We say that a model category M is combinatorial if it is

1. cofibrantly generated, and

2. the underlying category is locally presentable.

Although not explicitly used in any arguments in this text, local presentability is an
assumption which is often necessary in category theory. As an example, the ever so nec-
essary theorem that the localization of a left proper combinatorial model category exists
(Theorem 10) uses implicitly that the underlying category is locally presentable. See for ex-
ample [BAR, Prop. 2.2] for a result regarding locally presentable categories used to show
said theorem.

2.3 Enriched Model Structures

Recalling that in a 1-categorical setting, we have (if the category is locally small) sets of
morphisms between the objects, it is a natural extension to work in a setting in which
the morphisms between objects form not only sets, but also carry additional structure. In
higher category theory we do not only have arrows between objects but instead n-arrows
relating the n− 1-arrows for any natural number n ≥ 2, whence we instead obtain spaces,
i.e. simplicial sets, of morphisms between objects. This is a special case of an enriched
category, where the category in question is enriched over the category of simplicial sets.
We may analogously consider enrichment over a another category C, where the morphisms
between objects may be represented by an object in C. We must however require that C be
symmetric monoidal for enrichment to make sense.

We have written an exposé of symmetric monoidal categories for the interested reader,
but there is unfortunately a morass of machinery needed to capture what is ultimately
quite an intuitive idea. Hence that section is moved to the appendix, see Section 8.3.
For this paper it is probably sufficient and easier for the reader to think of a symmetric
monoidal model category as a category S with a composition operation −⊗− : S× S→ S

and a unit object 1 ∈ S satisfying that 1⊗ X ∼= X ∼= X⊗ 1 for any object X ∈ S.

Suppose that C is a category enriched over a symmetric monoidal category S. This
means that for any two objects A, B ∈ C, there is a hom-object, denoted by homS

C(A, B) ∈ S,
which models the morphisms from A to B.

Example 2. The category of sets with the cartesian product is symmetric monoidal where
we may choose any singleton to be the unit.

Example 3. Any locally small category has Set-valued hom-objects.

13
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Definition 13. Let S be a symmetric monoidal category and let C be a category. We say
that C is enriched over S if

1. For any pair of objects X, Y ∈ C there is an object homS
C(X, Y) in S called the hom-

object from X to Y.

2. For any triple of object X, Y, X ∈ C, there is a composition morphism

homS
C(Y, Z)⊗ homS

C(X, Y)→ homS
C(X, Z).

3. For each object X ∈ C there is a morphism 1→ homS
C(X, X).

4. The hom-objects are compatible with the symmetric monoidal structure of S in the
sense that for any quadruple of objects X, Y, Z, W in C, the diagrams

homS
C(Y, W)⊗ homS

C(X, Y)

(homS
C(Z, W)⊗ homS

C(Y, Z))⊗ homS
C(X, Y)

homS
C(X, W)

homS
C(Z, W)⊗ (homS

C(Y, Z)⊗ homS
C(X, Y))

homS
C(Z, W)⊗ homS

C(X, Z)

and

homS
C(X, X)⊗ homS

C(X, Y) homS
C(X, Y) homS

C(X, Y)⊗ homS
C(Y, Y)

1⊗ homS
C(X, Y) homS

C(X, Y)⊗ 1

commute.

Notation 3. If no confusion may be had, we will drop the superscripts and subscripts of
the hom-object.

We now wish for an analogue of enrichment for model categories. In order to enrich
a model category over another model category, some extra structure is necessary. The
model category which we enrich over needs to be a symmetric monoidal model category (see
Def. 73).

14
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This is a symmetric monoidal category S which

1. admits an internal hom-functor hom(−,−) : Sop × S such that for any object b in S,
−⊗ b : S � S : hom(b,−) forms an adjunction, and

2. which we may equip with a model structure in a compatible way.

We also require of the enriched model category what are called tensor products and
cotensor products, which are ways in which to combine objects in the enriched category
with objects in the category enriched over. Tensoring and cotensoring are not hingent on
the involved categories having model structures and analogously to the above, we may
see the tensoring as a left adjoint to the hom-functor.

Definition 14. Let C be a category which is enriched over S. We say that C is tensored and
cotensored over S if there exist functors

1. (Tensor)
(−)⊗C (−) : C× S→ C, and

2. (Cotensor or power)
(−)(−) : C× S→ C,

such that for any objects X, Y ∈ C and S ∈ S we have natural isomorphisms

homS
C(X, YS) ∼= homS(S, homS

C(X, Y)) ∼= homS
C(X⊗C S, Y).

Remark 3. Note that we have two adjunctions (−)⊗C S a (−)S and X⊗C (−) a homS
C(X,−).

Notation 4. If no confusion may be had, the subscripts on the hom-objects and the tensor-
ing are often dropped.

In order to finally make sense of what it means to enrich one model category over
another we just need to require that the tensor and cotensor products are compatible with
the model structure.

Definition 15. Let S be a symmetric monoidal model category and let M be a model cate-
gory. We say that M is an S-enriched model category or enriched over S if

1. As categories, M is enriched, tensored and cotensored over S.

2. For every cofibration A → B and any fibration X → Y, the induced morphism on
the pullback

homS
M(B, X)→ homS

M(A, X)×homS
M(A,Y) homS

M(B, Y)

is a fibration which is an acyclic fibration whenever any of A → B or X → Y is a
weak equivalence.

Notation 5. An important special case is when a category C is enriched over sSet, in which

15
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case we call C a simplicial category. If M is a model category, we say that M is a simplicial
model category if M is an sSetKan-Quillen-enriched model category. If M is a simplicial model
category, it is customary to write mapM(X, Y) for the hom-object from X to Y. We refer to
the simplicial set mapM(X, Y) as the simplicial mapping space from X to Y. If no confusion
may be had we will drop the subscript.

The simplicial mapping space acts as a homotopy function complex (see Section 8.1) be-
tween cofibrant and fibrant objects.

Theorem 4 ([H, Ex. 17.1.4]). Let M be a simplicial model category and suppose that X is a
cofibrant object in M and that Y is a fibrant object in M. Then map(X, Y) is a homotopy function
complex from X to Y.

This will be of importance when describing local objects and local equivalences in Sec-
tion 3.1.

2.4 Homotopy (Co)Limits and (Co)Ends

In homotopy theory, it turns out that limits and colimits are often ill-equipped to coop-
erate with model structures. One major limitation is that even though we may have a
morphism of diagrams in M which is an objectwise weak equivalence, the induced mor-
phism between the limits or indeed the colimits may not be a weak equivalence. Hence
we introduce the homotopy limit and the homotopy colimit. These remedy the situation
somewhat. An overwiew of the basic theory may be seen in [H, Ch. 18-19].

As an intuitive start, the reader is encouraged to think of the homotopy limit as a con-
struction which preserves fibrancy, and if we have a homotopy limit of a fibrant diagram,
then it coincides with the limit. Dually, if we have a homotopy colimit of a cofibrant dia-
gram, the result is a cofibrant object which is simultaneously the colimit of said diagram.
Note here the subtlety that we talk about fibrant diagrams and cofibrant diagrams, which
require that we equip the functor category with some sort of model structure. There are
a number of ways of doing so, with the most natural structures being the injective and
projective model structures of Section 4.1.1.

Recalling that we may, for any category C and any small category D, consider the col-
imit and limit of the D-diagrams in C as the left and right adjoints of the constant functor
from C to the diagram category [D,C], we have a natural way to extend this to a homotopy
theoretic setting.

Definition 16. Let M be a model category and let C be a small category. Make the diagram
category [C,M] into a category with weak equivalences by taking the morphisms which
are objectwise weak equivalences in M to be weak equivalences in [C,M]. The homotopy
limit is defined as the right derived functor of the limit functor. Dually, the homotopy colimit
is defined to be the left derived functor of the limit functor.

16
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From this it is clear that homotopy limits of fibrant diagrams are ordinary limits, and
the dual result for cofibrant diagrams also follows. The following result is very important
and acts as motivation for the necessity of homotopy (co)limits as well.

Theorem 5 ([H, Thm. 19.4.2]). Let M be a framed model category and let C be a small category.

1. If f is a morphism between C-diagrams in M and f is an objectwise weak equivalence between
fibrant objects, then f induces a weak equivalence between the fibrant homotopy limits.

2. If f is a morphism between C-diagrams in M and f is an objectwise weak equivalence between
cofibrant objects, then f induces a weak equivalence between the cofibrant homotopy colimits.

We have the following result regarding homotopy function complexes (see Section
8.1).

Theorem 6 ([H, Thm. 19.4.4]). Let M be a model category and let C be a small category.

1. If X is a cofibrant C-diagram in M and Y ∈M is fibrant, we have a natural weak equivalence

map(hocolim X, Y) ' holim map(X, Y).

2. If X ∈ M is cofibrant and Y is a fibrant C-diagram in M, then there is a natural weak
equivalence

map(X, holim Y) ' holim map(X, Y).

where map denotes a homotopy function complex.

2.4.1 Ends and Coends

The homotopy limit and homotopy colimit is part of more general structures known as
ends and coends, described in chapters 18 and 19 of [H]. Although this generalization is
interesting, perhaps more important for this text is that the end and coend will be necessary
for us to look at inherited enrichment in presheaf categories.

We may think of the end as a special kind of limit of a bifunctor, and dually we may
think of the coend as a special kind of colimit of a bifunctor. To formalize this we introduce
the wedge.

Definition 17. Let F : Cop × C → D be a bifunctor. A wedge with respect to F is an object
w ∈ D and a collection of morphisms πc : w→ F(c, c) for all c ∈ C such that the following
family of diagrams commute:

w F(c, c)

F(c′, c′) F(c, c′)

17
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Definition 18. Let F : Cop × C→ D be a bifunctor. A cowedge with respect to F is an object
w ∈ D and a family of morphisms ωc : F(c, c) → w such that the following family of
diagrams commute:

F(c′, c) F(c, c)

F(c′, c′) w

Definition 19. Let C be a small category and let D be a category. Suppose that F : Cop ×
C→ D is a bifunctor.

1. We define the end
∫

c:C F(c, c) of F to be the universal wedge in the sense that any
other wedge factors uniquely through

∫
c:C F(c, c).

2. We define the coend
∫ c:C F(c, c) of F to be the universal cowedge such that for any

other cowedge w, the morphisms F(c, c)→
∫ c:C F(c, c) factor uniquely through w.

Remark 4. The convention to use the integration symbol for ends and coends is due to
there being an analogue of Fubini’s theorem for ends and coends. We will not use it in this
paper but the interested reader is encouraged to read for example [K].

It is not at all clear how to see the homotopy limit and homotopy colimit as ends and co-
ends but it turns out that if one chooses a specific kind of functor, both holim and hocolim
are part of this construction. We will not cover this as this requires an alternative approach
to the homotopy limit and colimit but the interested reader is referred to [H, Ex. 19.2.8].
In Section 4.1.2 we will also use the theory of ends and coends to enrich presheaf cate-
gories.
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Chapter 3

Bousfield Localizations

Recall that a localization of a category with respect to a class of morphisms may be viewed
as formally inverting said morphisms, keeping the objects constant. This hopefully re-
minds the reader with a background in commutative algebra of the localization of a ring
or module. The fundamental example in homotopy theory is the homotopy category of a
model category. Namely, for any model category M, its homotopy category Ho(M) may
be viewed as the localization of M with respect to the weak equivalences. In general there
is no guarantee that a given localization exists, though there are some prominent cases
where the existence is known.

The natural extension of the concept of a localization of a category to the setting of
model categories is to not require that the morphisms we localize with respect to, to be-
come inverted, but instead to become invertible up to homotopy. In other words, we wish to
expand the class of weak equivalences to include some chosen class of morphisms.

This paper focuses on two natural ways of constructing such localizations, known as
left and right Bousfield localizations.

Definition 20. Let M be a model category. A left (right) Bousfield localization of M is a new
model category LM on the same underlying category such that

• The class of cofibrations (fibrations) of LM is the same as the class of cofibrations
(fibrations) of M, and

• the weak equivalences in LM includes the weak equivalences in M.

Note that for a left (right) Bousfield localization, the identity functor on the underlying
category Id : M→ LM gives a left (right) Quillen functor.

It is convenient to ask of such this localization, should it exist, to have some tractable
properties. One of these properties is that we hope for a homotopy theoretic analogue of a
reflective localization.
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Definition 21. We say that a localization of a category is reflective if the localization functor
admits a fully faithful right adjoint.

The correct homotopy theoretic analogue is the following.

Definition 22. Let M � N be an adjunction between two model categories. We say that
this adjunction is a Quillen reflection if the derived adjunction counit is an objectwise weak
equivalence.

Theorem 7. A left Bousfield Localization of a model category M gives rise to a Quillen reflection:

Id : M � LM : Id .

Proof. The counit is given by the identity functor, whence the derived counit is given by
an objectwise cofibrant approximation in M. Let f : Xc ∼� X be a cofibrant approximation.
We need to see that f is a weak equivalence in LM. But the cofibrations coincide in both
M and LM, whence the acyclic fibrations coincide. Hence f is still an acyclic fibration. �

To see that the Quillen reflection is indeed a natural extension of the ordinary reflective
localization we have the following.

Theorem 8. An Quillen pair between two model categories is a Quillen reflection if and only if the
induced adjunction between the homotopy categories is a reflective localization.

Proof. Let F : M � N : G be a Quillen reflection. Then the counit ε is an objectwise weak
equivalence by definition. Hence composing with the homotopy category functor Ho we
obtain an objectwise isomorphism as the counit of LF a RG. �

Although the above definition of a left Bousfield localization is compact, it hides a lot
of information with respect to what maps are inverted. What one wishes for is a Bousfield
localization with respect to certain morphisms. In order to do this formally we introduce local
objects and morphisms.

3.1 Local Objects and Local Equivalences

Fix in this section a model category M. Is there a way of measuring how close a morphism
is to being a weak equivalence? This is where the homotopy function complexes from
Section 8.1 are useful. With them we may introduce local objects and local equivalences.
The local objects of a class of morphisms are the objects which make the morphisms “look”
like weak equivalences. Hence we may expect that if the class of morphisms is the weak
equivalences, all objects are local. Dually, the local equivalences are the morphisms which
“look” like weak equivalences at all local objects.
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Definition 23. Let M be a model category and let I be a collection of morphisms in M. An
I-local object M ∈ M is a fibrant object such that for any morphism f : A→ B, the induced
morphism of homotopy function complexes

f ∗ : map(B, M)→ map(A, M)

is a weak equivalence.

If I consists of a single map g, then M will be called g-local.

Dually, we have the notion of a local equivalence.

Definition 24. Let M be a model category and let I be a collection of morphisms in M. An
I-local equivalence is a morphism f : A → B in C such that for every I-local object M, the
induced morphism of homotopy function complexes

f ∗ : map(B, M)→ map(A, M)

is a weak equivalence.

The first result regarding local equivalences is one we should wish for.

Theorem 9. All weak equivalences are I-local equivalences for any class of morphisms I in M.

In other words, all weak equivalences are local equivalences. The converse is certainly
not true. This shortcoming is in fact a strength. We should think of the I-local equiva-
lences as the minimal class of morphisms which must become weak equivalences in order
to expand the weak equivalences to include I. An important property of the I-local equiv-
alences are that they satisfy the 2-out-of-3 property.

In general, the function complexes may be hard to control. Especially good control
may however be obtained under the added assumption that we are working in a simpli-
cial model category (see section 8.4). Here we may use Theorem 4 to conclude that the
simplicial mapping space map(X, Y), where X is cofibrant and Y is fibrant, acts as a ho-
motopy function complex from X to Y. An analogue which works when working in any
enriched model category is described in [BAR, Ch. 4], and which we describe in Section
3.2.2.

3.2 Bousfield Localizations with Respect to a Class of Morphisms

As mentioned in the beginning of the chapter, we often want to choose what morphisms
to perform a left or right Bousfield localization at.

Definition 25. Let M be a model category with WE being its class of weak equivalences.
Further fix a class of morphisms H in M. A left (right) Bousfield localization of M with respect
to H is a new model category LHM with the following properties:

1. The underlying category of M is the same as that of LHM.
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2. The class of cofibrations (fibrations) of M is the same as the class of cofibrations (fi-
brations) in LHM.

3. The class of weak equivalences in LHM are the H-local equivalences of M.

In other words, a left Bousfield localization with respect to a class of morphisms I
endows the underlying category with a new model structure. This model structure has
the minimal amount of weak equivalences such that H becomes weak equivalences, while
keeping the cofibrations fixed.

Although the concepts of left and right Bousfield localizations are dual, it is in general
much easier to work with left Bousfield localizations (Barwick even names his chapter
on the right variant "The dreaded right Bousfield localization" [BAR, Ch. 5]). By certain
slackness we will by “localization” mean the left Bousfield localization.

3.2.1 Existence and Properties of a Left Bousfield Localization

In general it may be hard to show that a given model structure exists, but the following the-
orem is a major reason why we wish to work with combinatorial model categories.

Theorem 10 ([BAR], Thm. 4.7). Let M be a left proper combinatorial model category and let S
be a set of equivalence classes in HoM. Then the left Bousfield localization LSM exists and is left
proper and combinatorial.

Remark 5. Beware of the subtlety that we require S to be a set. The statement is not true
in general when S is a proper class.

3.2.2 Enriched Left Bousfield Localization

As mentioned in Section 3.1 we may generalize the usage of simplicial mapping spaces to
detect local equivalences whenever we are working in an enriched setting. Let S be a sym-
metric monoidal model category and let M be a model S-category, i.e. a model category M

enriched S.

Definition 26. Suppose H is a set of morphisms in M. A left Bousfield localization of M with
respect to H, enriched over S is a new model S-category, LH/SM with a left Quillen S-enriched
functor M→ LH/SM which is initial among all left Quillen S-enriched functors which turn
H into weak equivalences.

Using the S-valued hom-objects one may obtain a more intuitive notion of local equiv-
alences and local objects.

Definition 27. An object X in M is called (H/S)-local if for all f : A→ B in H, the induced
morphism on the right derived hom-objects

R homS
M(B, X)→ R homS

M(A, X)

is an isomorphism in the homotopy category Ho(S).
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Definition 28. A morphism f : A → B in M is called (H/S)-local if for all (H/S)-local
objects X, the induced morphism on the right derived hom-objects

R homS
M(B, X)→ R homS

M(A, X)

is a weak equivalence.

Definition 29. We say that a combinatorial model category is tractable if we may choose
a set of generating cofibrations where all domains are cofibrant and a set of generating
acyclic cofibrations where all domains are cofibrant.

Proposition 1 (Thm. 4.46, [BAR]). Suppose that M is a left proper, tractable combinatorial model
category enriched over a tractable symmetric monoidal model category S. Further suppose that H
is a small set of morphisms in M.

Then the enriched left Bousfield localization of M with respect to (H/S) exists and is a new
model structure LH/SM in which

1. LSM is tractable and left proper,

2. the underlying category is the same as that of M,

3. the cofibrations are the same as in M,

4. the fibrant objects are the fibrant (H/S)-local objects of M, and

5. the weak equivalences are the (H/S)-local equivalences.

Note that we may in this enriched version use the right derived hom-objects instead of
the homotopy function complexes which gives us extra structure to work with.
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Chapter 4

Model Structures on Presheaves

4.1 Presheaves on a Site

For the reader with a background in algebraic geometry, the notion of a presheaf is hope-
fully familiar. Here we first translate the classic presheaf into a categorical setting and go
on to generalize both the target category and the source category. A good source regarding
presheaf and sheaf categories is [BOR], although to transfer presheaf categories to a homo-
topy theoretic setting the reader is encouraged to consult [L]. Recall first the definition
presheaves of abelian groups as defined by Hartshorne.

Definition 30 ([HAR, First def. Ch. 2]). Let X be a topological space. A presheaf F of
abelian groups on X consists of the data

a) for every open subset U ⊆ X, an abelian group F(U), and

b) for every inclusing V ⊆ U of open subsets of X, a morphism of abelian groups
ρUV : F(U)→ F(V),

subject to the conditions

1. F(∅) = 0, where ∅ is the empty set,

2. ρUU is the identity map F(U)→ F(U), and

3. if W ⊆ V ⊆ U are open subsets of X, then ρUW = ρVW ◦ ρUV .

Remark 6. The condition F(∅) = 0 is to the author’s knowledge not standard outside
of [HAR], and when changing the source category we may not have any initial object on
which to evaluate the presheaf. Hence we will ignore this condition.

We wish to rephrase this in a more compact and categorical way. We may for any
topological space X consider its category of open subsets Op(X) where the morphisms
are given by inclusion. Then we may say that a presheaf of abelian groups on X is a
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contravariant functor F : Op(X)op → Ab. The reader may of course replace the target
category with their favorite category, such as Grp or Ring.

Example 4. The reader is encouraged to think about some topological concepts and to try
to formulate them in category theoretic terms. Here we describe the intersection of two
open subsets U and V.

Since the arrows signify inclusions, we know that the intersection U ∩V has arrows to
both U and V. It is therefore intuitive to think of U ∩ V as the pullback of U and V over
some object. As all objects have inclusions into the whole topological space, it is natural to
assume that U ∩V is the pullback U×X V and a short calculation may convince the reader
that this is indeed the case. The choice of U ∩ V being the pullback of U and V over X
is somewhat arbitrary however, as X may be substituted for any open subset containing
both U and V.

We may at this point define a category of presheaves in a broad sense.

Definition 31. Let C be a small category, and let D be a category. The D-valued presheaves
on C is the functor category [Cop,D] which we shall often denote DPre(C). If D = sSet we
will call a simplicial set-valued presheaf a simplicial presheaf and we will write sPre(C)
for the simplicial presheaf category on C.

4.1.1 The Injective and Projective Model Structures on Presheaves

There are two natural model structures of which to equip a presheaf category with.

Definition 32. Let MPre(C) be the category of M-valued presheaves on a site C. We say
that a morphism of M-valued presheaves f : F → G is an injective cofibration (resp. injective
weak equivalence) if f is an objectwise cofibration (resp. objectwise weak equivalence). If
the injective cofibrations and injective weak equivalences constitute a model structure, we
refer to said structure as the injective model structure on MPre(C) and write it as MPre(C)inj.

Definition 33. Let MPre(C) be the category of M-valued presheaves on a site C. We say
that a morphism of M-valued presheaves f : F → G is a projective fibration (resp. projective
weak equivalence) if f is an objectwise fibration (resp. objectwise weak equivalence). If the
projective fibrations and projective weak equivalences constitute a model structure, we re-
fer to said structure as the projective model structure on MPre(C) and write it as MPre(C)proj.

Remark 7. One may consider these model structures for any functor category. In particular
one may consider the injective and projective model structures on the functor categories
discussed in section 2.4.

We have the convenient existence theorem stated below.

Theorem 11 ([BAR, Thm. 2.14 & Thm. 2.16]). Let M be a combinatorial model category and
let C be a site. Then both the projective and injective model structure on MPre(C) exists, both of
which are again combinatorial.
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We also know that the presheaf categories preserve properness.

Theorem 12 ([BAR, Prop. 2.18]). Suppose that M is left (right) proper and combinatorial, then
MPre(C)inj and MPre(C)proj are both left (right) proper.

Note in particular that this means that if M is both combinatorial and left proper, then
both MPre(C)inj and MPre(C)proj may be localized at any small set of morphisms by The-
orem 10.

4.1.2 Enriched Presheaves

Recalling Section 3.2.2, it is natural to consider whether or not the injective and projec-
tive model structures on presheaves inherits enriched properties. Here we may under
sufficiently nice conditions use the theory of ends and coends of Section 2.4.1 to get in-
duced enrichment on the category of presheaves. Many of these theorems are found in
[BAR].

Theorem 13. [[BAR, Not. 3.35]] Suppose S is a symmetric monoidal category and that C is a
small site. Let further S be an object in S and suppose F and G are objects in MPre(C). Then SPre
is enriched, tensored and cotensored over S where the hom-objects are given by

homM
MPre(C)(F, G) =

∫

c:C
hom(F(c), G(c)).

the tensor product is given by

(M⊗MPre(C) F)(c) := M⊗M F(c)

and the cotensoring is given by

homMPre(C)(M, F)(c) := homM(M, F(c)).

It is also a general fact that if M is enriched over a model category, then MPre(C) with
both the injective and projective model structure is similarly enriched over the same model
category (if the structures exist). It is an unfortunate thing that the only source the author
has found so far for this general statement is the website Model Structure on Functors -
nLab.

Specifically for this paper we are however only interested in simplicial combinatorial
model categories. Then the presheaf category equipped with either the injective or projec-
tive model structure is simplicial by [MO, Thm. 5.4 & Rmk. 5.5].
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4.2 Sheaves on a Site

We are often interested in some sort of local-to-global property, i.e. some kind of sheaf con-
dition, on a presheaf taking values in a model category. There are a number of ways of do-
ing this but what we would want is a definition which has a homotopy theoretic analogue
and which may generalize to other similar local-to-global properties. We are particularly
interested in a definition which leads naturally to the definition of a hypersheaf, which we
will work with in Section 5.1.1.

Recall first the conditions imposed for a presheaf to be a sheaf in the classical set-
ting:

Definition 34 ([HAR, Second def, Ch.2.]). A presheaf F of abelian groups on X is a sheaf if
it satisfies the following supplementary conditions:

4. if U is an open set, if {Vi} is an open covering of U and if s ∈ F(U) is an element
such that s |Vi= 0 for all i, then s = 0;

5. if U is an open set, if {Vi} is an open covering of U, and if we have elements si ∈ F(Vi)
for each i, with the property that for each i, j, si |Vi∩Vj= sj |Vi∩Vj , then there is an
element s ∈ F(U) such that s |Vi= si for all i.

Note that suddenly the notion of a cover or covering is very important. When changing
the source category to something other than the open subsets of a topological space we
must define some new sort of cover. Hence we introduce the Grothendieck topology.

Definition 35. Let C be a category and c an object in C. A sieve over c is a collection of
morphisms with c as codomain which is closed under precomposition, i.e. if d → c is in s,
then for any morphism e→ d, the composition e→ d→ c is in S.

Definition 36 (Grothendieck Topology). Let C be a category. A Grothendieck Topology τ on
C is an assignment c 7→ τ(c), for every object c ∈ C, where τ(c) is a collection of sieves
over c. These sieves satisfy the following:

1. If S is a sieve covering c and g : d → c is a morphism in C, then the pullback sieve
g∗S :=

⋃
e∈C{ f : e→ d | g f ∈ S} is a sieve covering d.

2. If F is a sieve over c and
⋃

e∈C{g : e→ c | g∗F covers e} contains a sieve which covers
c, then F covers c.

3. hom(−, c) covers c.

The set of sieves assigned to c are said to cover c.

Definition 37 (Site). A tuple (C, τ) where C is a category and τ is a Grothendieck topology
on C is called a site.

Example 5. Consider again the classical setting where the source category is Op(X) for a
topological space X. We describe the covering sieves for an open subset U. Let S be a sieve
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over U, i.e. a collection of morphisms with U as codomain. We may consider evaluating S
on another subset V to obtain all morphisms in S from V to U. Note that S(V) in this case
is either empty or consists of one morphism. We may then say that S is a covering sieve if
the union over all V such that S(V) 6= ∅ is U.

There are a number of equivalent ways of stating Hartshorne’s sheaf condition, Defini-
tion 34, in category theory. But recall that we want a definition which generalizes to other
local-to-global properties. We first introduce an intuitive way of thinking of sheaves but
which is not ideal for later purposes.

Definition 38. Let C be a site and let D be a category. We say that a D-valued presheaf
F ∈ DPre(C) is a D-valued sheaf if for any object X ∈ C and any covering sieve R over X,
we have an isomorphism

F(X) ∼= lim
Y∈R/C

F(Y).

This definition of a sheaf is easy to state and it has a natural homotopy theoretic ana-
logue where we switch the limit for the homotopy limit, and instead of F(X) being isomor-
phic to holimY∈R/C F(Y) we instead require this to hold only by weak equivalence.

Definition 39 ([BAR, Def. 4.54]). Let M be a symmetric monoidal model category. Then
an M-valued presheaf on a small site (C, τ) is called an M-valued sheaf if for any X and any
covering sieve R ∈ τ(X), the morphism

F(X)→ holimY∈R/C F(Y)

is a weak equivalence.

It is not too hard to show the existence of a model structure which presents M-valued
sheaves as the fibrant objects when M is left proper, combinatorial and symmetric monoidal.

Proposition 2 (Prop 4.56, [BAR]). Suppose M has a cofibrant unit 1 and equip MPre(C) with
the projective (resp. injective) model structure. Then we may perform a left Bousfield localization
to obtain a model structure in which the projective (resp. injective) fibrant M-valued sheaves are
the fibrant objects.

We introduce some results regarding symmetric monoidal model categories in order to
show this.

Definition 40 (Enriched Yoneda Embedding). Let M be a symmetric monoidal model cat-
egory with unit 1. For any X ∈ C we define the M-enriched representable presheaf to be

yMX := 1 · rX.

In the special case where M = sSetKan-Quillen we will sometimes by abuse of notation
write rX for ysSetKan-Quillen X when no confusion may be had. We refer to such presheaves as
simplicial representables.
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Remark 8. Note that the simplicial representables may be obtained by viewing the ordi-
nary representable functor as a discrete simplicial presheaf.

Notation 6. “The M-enriched representable presheaf” seems a bit tedious to write, so if no
confusion may be had, we will simply refer to the M-enriched representable presheaves as
representables.

Lemma 1 (Enriched Yoneda Lemma, Thm 6.3.5 [BOR]). The two objects in M, hom(yMX, F)
and F(X), are isomorphic.

Proof. We show this when MPre(C) has the projective model structure. Since M is as-
sumed to be symmetric monoidal, we may regard it as canonically as enriched over itself.
Using the characterization of (H/M)-local equivalences found in 3.2.2, we wish to find a
suitable set of morphism on which to localize. Consider for a covering sieve R over X a
presheaf 1R defined by

1R(Y) =

{
1 · yMY, if Y is a domain of a morphism in R, and
∅, otherwise.

Thus we by postcomposition obtain for every sieve an induced morphism 1R → yMX. De-
note the set of all such morphisms H. Then we have that LH/SMPre(C) exists by Theorem
10, and any fibrant object F in LH/SM is fibrant in MPre(C) and satisfies that

hom(yMX, F) ∼→ hom(1R, F).

By the Lemma 1, hom(yMX, F) = F(X). One may easily verify that 1R = colimY∈R/C yMY.
Since the unit is cofibrant, we hence obtain a colimit of cofibrant objects, i.e. a homotopy
colimit. Hence we may compute

hom(hocolim yMY, F) = holim hom(yMY, F) = holim F(Y)

whence the proposition is a restatement of Definition 39 of F being an M-valued sheaf. �

A consequence of the above theorem is that the weak equivalences between the fibrant
objects in the described structure are objectwise weak equivalences.

4.2.1 Hypercovers and Descent Conditions

Although Definition 39 is perhaps the most natural, it does not generalize to other local-to-
global notions easily. If we want to formulate some stronger local-to-global property we
must instead use another definition. What we can do is rephrase Definition 39 into what
is known as Čech descent, which then naturally extends to hyper descent.

Definition 41. Let C be a site and let U → X be a morphism in C. The Čech complex
associated to a covering {Ui} of an object X in C, is the simplicial object in C which in level
n is given by äa0,...an

Ua0 ×X . . .×X Uan .
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Definition 42. We say that an M-valued presheaf F on a site C satisfies Čech descent if for
all objects X ∈ C and all coverings {Ua} of X, F(X) is the same as the inverse limit of the
cosimplicial diagram

∏a F(Ua) ∏a,b F(Ua ×X Ub) . . .

Remark 9. We may state the definition more compactly as follows: A presheaf F satisfies
Čech descent if F(X) ∼= limn F(ČUn) where ČU is the Čech complex associated to the
covering {Ui} of X. Also note that a presheaf satisfying Čech descent is the same as a
sheaf.

These sort of descent properties generalize naturally to a homotopy theoretic setting by
substituting limits by homotopy limits and isomorphisms by weak equivalences, precisely
as in Definition 39.

Definition 43. We say that an M-valued presheaf satisfies Čech descent if

F(X) ' holim
(

∏a F(Ua) ∏a,b F(Ua ×X Ub) . . .
)

for all objects X ∈ C and all coverings {Ua} of C.

What the Čech descent property also allows us to do is vary the complex for which a
presheaf may satisfy descent. Thus we may obtain what are known as hypersheaves. The
general idea is to construct a simplicial object in C which in level n is a cover of the n + 1-
fold intersections.

Remark 10. If S is a symmetric monoidal model category, we may lift the complexes into
Spre(C) by using the enriched Yoneda embedding.

It is in fact using the above remark that one major result regarding local model struc-
tures was shown. Lifting hypercovers into the category of simplicial presheaves, Dugger,
Hollander and Isaksen showed the existence of a local model structure obtained by per-
forming a left Bousfield localization with respect to them. See Section 5.1.1, or indeed the
original source [DHI].
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Chapter 5

Local Model Structures on
Presheaves

In this chapter we introduce another kind of local model structure on the category of M-
valued presheaves, where the weak equivalences may be checked stalkwise. Of course ob-
jectwise weak equivalences satisfy this condition but there are also stalkwise weak equiv-
alences which are not objectwise. Although a number of such model structures have been
described now, the first such structure was shown to exist by Jardine [J].

5.1 Jardine’s Local Model Structure

In 1987, Jardine [J] showed the existence of a model structure on presheaves taking values
in the category of simplicial sets which was local in nature. A lot of fruitful research has
in some way or another utilized this structure. A prominent case which comes to mind is
the paper “A1-Homotopy Theory of Schemes” by Morel and Voevodsky [MV]. Here, the
authors developed a new homotopic scheme theory which was modelled after Jardine’s
model structure. Their work laid ground for a whole field of study and the reader is en-
couraged to read about the consequences.

The model structure was constructed by performing a left Bousfield localization on the
injective model structure on sPre(C). Concretely, we may for any simplicial set X consider
its geometric realization |X| on which we may compute the homotopy groups, or indeed
take the path components in the zeroth level. In such a way we obtain a presheaf of groups
from a simplicial presheaf. Thus, a morphism f : F → G of simplicial presheaves induce
morphisms of sheaves of homotopy groups.

Definition 44. Let f : F → G be a morphism of simplicial presheaves on a site C. Let
π0(X) be the set of path components of a topological space X and let πn(X, x0) be its n:th
homotopy group. Further, for a presheaf A, let A+ be its associated sheaf. We say that f is

31



CHAPTER 5. LOCAL MODEL STRUCTURES ON PRESHEAVES

a local simplicial equivalence if

1. π+
0 (F)→ π+

0 (G) is an isomorphism in Sh(C).

2. π+
n (F |U , x)→ π+

n (G |U , f (X)) is an isomorphism for all U ∈ C, and x ∈ F0(U). Here
F |U denotes the pullback to the over category C/U and F0(U) are the zero-simplicies
of F(U).

Remark 11. The quite technical definition above reduces to a morphism f being a local
simplicial equivalence if and only if it induces simplicial equivalences on all stalks when
the site C has enough points.

Jardine shows the existence of a model structure on the category of simplicial presheaves
where the weak equivalences are the local equivalences.

Theorem 14. There exists a model structure on the category of simplicial presheaves in which
the cofibrations are the monomorphisms and where the weak equivalences are the local simplicial
equivalences. We refer to this structure as Jardine’s local model structure.

The dual result, that we may obtain a local model structure in the projective case was
shown by Blander [BL].

Theorem 15 ([BL, Thm. 1.6]). Let C be an essentially small site. Then sPre(C) admits a proper
simplicial model structure if we define weak equivalences to be the local simplicial equivalences,
cofibrations to be the projective cofibrations, and fibrations to be the morphisms which has the RLP
with respect to the acyclic cofibrations.

Later on, Dugger, Hollander and Isaksen [DHI] showed that we may obtain both Jar-
dine’s local model structure and the local projective model structure via a left Bousfield lo-
calization with respect to a class of morphisms called hypercovers (see Definition 47).

Remark 12. Just as in Remark 5, we need to be careful. The above local model structures
are not obtained via an application of Theorem 10, as we are not certain that the local
simplicial equivalences constitute a small set rather than a proper class.

5.1.1 The Left Bousfield Localization at the Hypercovers

In a paper published in 2002, Dugger, Hollander and Isaksen [DHI] showed that we may
construct both Jardine’s and Blander’s local model structures by (left Bousfield) localizing
at a class of morphisms which are the aforementioned hypercovers, introduced in Section
4.2.1 as one way of generalizing Čech complexes. In order to define the simplicial hyper-
covers properly, we introduce some related concepts.

Definition 45. Let f : F → G be a morphism of simplicial presheaves. We say that f is a
local fibration if for every diagram
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Λ[n]i ⊗ rX F

∆[n]⊗ rX G

we may find a covering sieve R such that for all U → X in R, the diagram obtained by
restricting to U

Λ[n]i ⊗ rU F

∆[n]⊗ rU G

has a lifting.

Remark 13. Any objectwise fibration is a local fibration since the set of all morphisms of
the form Λ[n]i ⊗ rX ↪→ ∆[n]⊗ rX generates the projective acyclic cofibrations.

Definition 46. A local acyclic fibration is a morphism which is both a local weak equivalence
and a local fibration.

We now arrive at the definition of a simplicial hypercover.

Definition 47. Let U be a simplical presheaf with an augmentation U → rX. We say that
U → rX is a simplicial hypercover if U in each level is a coproduct of representables and
U → rX is a local acyclic fibration.

Although not obvious from this compact definition of a simplicial hypercover, this is
indeed what Remark 10 referred to. The category of simplicial presheaves is symmetric
monoidal with the unit being the constant simplicial presheaf which to any object assigns
the terminal object. To see the equivalence we introduce generalized covers and reformulate
the latter condition of the definition.

Definition 48. Let f : F → G be a morphism of set-valued presheaves. We say that f is a
generalized cover if given any map rX → G there is a covering of X, R, such that for every
morphism U → X ∈ R the composite rU → rX → G lifts through f .

Definition 49. For a simplicial presheaf F, we denote by M̃nF the Set-valued presheaf
which is given by

X 7→ { f : ∂∆[n]→ F(x) | f ∈ Mor sSet}.

Remark 14. It may in fact be shown [DHI, Prop. 3.2] that a local acyclic fibration f : F → G
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is precisely a morphism satisfying that

Fn → M̃nF×M̃nG G

are all generalized covers.

Using these observations, we may define a hypercover precisely as a simplicial presheaf
U with an augmentation U → X such that Un → M̃nU, ∀n ≥ 1 are all generalized cov-
ers. A Čech complex is precisely a hypercover for which all these morphisms are isomor-
phisms.

Theorem 16 (Theorem 1.2, [DHI]). The local projective (injective) model structure on sPre(C)
may be obtained by performing a left Bousfield localization at the collection of hypercovers in the
projective (injective) model structure on sPre(C).

As the reader may have become accustomed to at this point, the standard warning re-
garding localizing at proper classes applies. Localizing at the class of hypercovers does not
guarantee a model structure. Instead the authors show the important Theorem 17.

Definition 50. A refinement of a hypercover U → X is another hypercover V → X which
factors through U → X.

Definition 51. We say that a set S of hypercovers is dense if every hypercover may be
refined through a hypercover in S.

Theorem 17. The class of hypercovers contains a dense (small) set of hypercovers.

We are thus allowed to localize at such a dense set of hypercovers and it is this local-
ization which is shown to coincide with both the localization at all hypercovers as well as
Jardine’s local model structure. An added benefit of this approach is that the authors were
able to classify the fibrations in Jardine’s local structures on simplicial presheaves.

Notation 7. For a simplicial set X, we write cX for the constant cosimplicial simplicial set.

Definition 52. We say that a morphism of simplicial presheaves F → G satisfies descent for
a hypercover U → X if the induced morphism

F(X)→ holim∆

[
cG(X)×G(U) F(U)

]

is a weak equivalence.

Theorem 18. The fibrations in the injective (projective) local model structure on the category of
simplicial presheaves are the injective (projective) fibrations satisfying descent for all hypercovers.

Perhaps more importantly, they characterize a set of generating acyclic cofibrations in
the local model structures. Often when using a left Bousfield localization, one loses control
over the generating acyclic cofibrations.

For any hypercover U → X, let A(U) := hocolimn Un and factor the morphism A(U)→
X into
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A(U) B(U) X∼

Theorem 19. Let JC consist of all morphisms of the form Λ[n]i ⊗ rX ↪→ ∆[n]⊗ rX for all X ∈ C,
and all morphisms of the form

[A(U)⊗ ∆[n]] ä
A(U)⊗∂∆[n]

→ B(U)⊗ ∆[n]

for all hypercovers U → X in some dense set of hypercovers S. Then JC is a set of generating acyclic
cofibrations for sPre(C)proj,loc.

5.2 General Results

Apart from the results on simplicial presheaves with the classical model structure there
have been numerous results published. In the doctoral thesis of Meadows [M2], super-
vised by Jardine, he constructs local model structures on three model categories: the cate-
gory of simplicial sets equipped with the Joyal model structure, the category of simplicial
sets equipped with the model structure for complete Segal spaces and lastly for the Bergner
model structure on the category of simplicial categories. However, Meadows uses a dif-
ferent sort of localization - that of Boolean localization which is beyond the scope of this
thesis. A quick description of the local Joyal model structure on simplicial presheaves may
however be found in Section 8.2. We will instead focus on works by Ayoub [AY] and Drew
[DR] in this section.

5.2.1 Coefficient Model Categories

Ayoub presents in his paper [AY] a local structure on presheaves taking values in a special
kind of combinatorial model categories. The precise conditions on the model category are
very technical and the author has so far not been able to decipher where the assumptions
are necessary. We will establish the language of Ayoub in order to state the theorem. All
introduced definitions before Theorem 20 may be found in [AY, Section 4.4].

Definition 53. We let yC : C → PSh(C, Spc) be the ∞-categorical Yoneda embedding de-
scribed for example in [L, §5.1.3].

Definition 54. We say that a small category C is β-small for some cardinal β if the cardinal-
ity of C is smaller than or equal to β.

Definition 55. Let C be a category and let X be an object in C. Let α be a cardinal. We
say that X is α-accessible if for any functor Y : I → C with I a totally ordered set such that
|I| ≥ α, the map

colimi∈I homC(Y(i), X)→ homC(colimi∈I Y(i), X)

is an isomorphism.
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Definition 56 ([AY], Def.4.2.16). Let C be a category and let α be a cardinal. We say that C
is α-presentable if the following conditions are satisfied where β is any cardinal bigger than
or equal to α:

(i) The small limits and small colimits are representables in C. The filtered colimits
commute with finite limits. The β-filtered colimits commutes with limits indexed
by β-small categories.

(ii) The monomorphisms in C are universal.

(iii) All objects in C are accessible. A subobject of a β-accessible object is still β-accessible.

(iv) Any object in C is the β-filtered colimit of its β-accessible subobjects.

(v) The subcategory Cβ formed by its β-accessible objects is essentially small.

We say that C is finitely presentable if α is finite and greater than or equal to 5. We say that
C is presentable if the conditions hold for some cardinal α.

Definition 57. We say that a model category M is α-presentable through cofibrations if the
following conditions are satisfied:

(i) The underlying category of M is α-presentable.

(ii) The cofibrations are the monomorphisms.

(iii) Let Cofα be the class of cofibrations with α-accessible targets. Then Fib = (Cofα ∩WE)
and Fib∩WE = (Cofα) .

Next we need some kind of compactness-condition on the objects in a stable model
category. For reference, and since the notion of compactness is important, not only in
general but also for the results of Drew, we include the classical definition of a compact
object.

Definition 58. Let C be a locally small category with filtered colimits. An object X of C is
said to κ-compact for a cardinal κ if hom(X,−) commutes with κ-filtered colimits. X is said
to be compact if this holds for some unspecified cardinal κ.

Ayoub uses a more specified version of compactness.

Definition 59. Let M be a stable model category. An object A ∈ M is said to be homotopi-
cally compact if for all n ∈ Z, the functor hom(A,−[n]) : M → Set commutes with small
filtered colimits.

Remark 15. It is not at all clear at first glance what M[n] would mean for an object M ∈
HoM. It turns out however that the homotopy category of a stable model category is
triangulated whence objects naturally have such a structure. A good source for information
on triangulated categories is for example [NE].

With this notation we may define a coefficient category.
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Definition 60 ([AY, Def. 4.4.23]). Let M be a model category. We say that M is a coefficient
model category if the following conditions are satisfied:

(i) M is left proper, presentable and stable.

(ii) The weak equivalences are stable under finite coproducts.

(iii) There exists a set E of homotopically compact objects in M which generate HoM

with infinite sums.

We take the set E to be part of the data of a coefficient category.

Next we construct what may be seen as related to the sheaves of homotopy groups
found in the definition of a local simplicial equivalence, or indeed in Theorem 21 to come.
Since M is not assumed to be simplicial in Ayoub’s work, it is not immediately clear what
construction should be used.

Definition 61. Let M be an object in M and let H be a set. We define H⊗M to be the colimit
of the diagram

H → ∗ M→M

where we view H as a discrete category. We may view H⊗M as a coproduct of |H| copies
of M.

Definition 62. Let F be a Set-valued presheaf and let G be an M-valued presheaf. We
denote by F⊗G the M-valued presheaf given by

U 7→ F(U)⊗G(U).

Definition 63. Let H and K be M-valued presheaves. We denote by ∏0(H, K) the Set-
valued presheaf defined by

U 7→ homHoMPre(C)(C)(U
L⊗ H, K),

where the derived functor U
L⊗ − is taken relative to the injective model structure on

MPre(C). We denote by

∏top

0
(H, K)

the sheaf associated to ∏0(H, K).

Remark 16. In the case where H = Acst is constant, we have

∏top

0
(H, K)(U) = homHoM(A, K(U))

and we will for simplicity denote ∏
top
0 (H, K) by ∏

top
0 (A, K)
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Definition 64. Suppose that (M,E) is a coefficient model category and let f : F → G be a
morphism of M-valued presheaves. We say that f is top-local equivalence if for all n ∈ Z,
and all M ∈ E, the induced morphism on the Set-valued sheaves

top

∏
0
(A, F[n])→

top

∏
0
(A, G[n])

are isomorphisms. We denote the class of all top-local equivalences by Ltop.

We here arrive at the model structure shown by Ayoub:

Theorem 20. Let M be a coefficient model category and let C be a small site. The left Bousfield
localization at the class of top-local equivalences exists for both the projective and the injective
model structures on MPre(C). The model structures thus obtained will be called the projective
top-local model structure and the injective top-local model structure.

Proof. This is [AY, Prop. 4.4.31 & Def. 4.4.33]. �

5.2.2 Locally Presentable ∞-categories

Drew on the other hand works in an ∞-categorical setting. There are a number of equiv-
alent ways of thinking about ∞-categories, one of which is to think of an ∞-category as a
quasi-category. This is not an obvious observation, as the quasi-category is by definition a
simplicial set such that any inner horn has fillers, i.e. that for any n ≥ 2 and any 0 < i < n,
we may find a lifts in any diagram of the form

Λ[n]i K

∆[n]

For a good introduction to how we may view such simplicial sets as ∞-categories I refer
the reader to [L, §1.1]. The intuition one should have is that the n-faces act as n-morphisms
and that the filler condition may be viewed as ways to compose morphisms.

Example 6. Let S be a quasi-category and let f : x → y and g : y → z be elements in S1.
Then we may construct a morphism from Λ[2]1 into S, constructing the diagram:

z

x y

where the dotted line is obtained by extending Λ[2]1 → S to ∆[2] → S. We may view the
dotted arrow as a composition of f and g.
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Hopefully the reader now has at least an inclination as to why quasi-categories are
a good model for ∞-categories. There are however other equivalent ways to model ∞-
categories.

Remark 17. In the following paragraphs regarding Drew’s theorem, Theorem 21, it is im-
plied that we may handle a locally presentable quasi-category M as a simplicial category.
By Dugger’s theorem, Theorem 22, any locally presentable quasi-category arises as the bi-
fibrant objects in a simplicial combinatorial model category however, whence this makes
sense. Another way to see this is to use the adjunction described in Section 8.4.

Now we move on to describe Drew’s model structure before we compare it to the top-
local structures. In the discussion in Section 2 of [DR], Drew points out the existence of
a local model structure on any category of presheaves which take values in a locally pre-
sentable quasi-category. The following theorem characterizes the weak equivalences in
this local model structure given that the quasi-category is locally ℵ0-presentable.

Theorem 21 ([DR], Prop. 2.5). Let M be a locally ℵ0-presentable quasi-category, f : F → G a
morphism of M-valued presheaves and ∗ the terminal object in C. The following are equivalent:

1. For each n ∈ N>0, each 0-simplex x of homM(M, F(∗)) and each M ∈ Mℵ0 , the τ-
sheafifications of the morphisms of presheaves of sets

π0(homM(M, F(−)))→ π0(homM(M, G(−)))

and

πn(homM(M, F(−)), x)→ πn(homM(M, G(−)), f (x))

are all isomorphisms of sheaves.

2. For each M ∈Mℵ0 , the morphism

lτ homM(M, F(−))→ lτ homM(M, F(−))

is an equivalence in the full sub-quasi-category consisting of the hypersheaves in MPre(C).

3. The morphism f : F → F′ is a τ-local equivalence.

Drew’s result shows that for any simplicial combinatorial model category whose un-
derlying ∞-category is locally ℵ0-presentable may be equipped with a local model struc-
ture with weak equivalences as described in Theorem 21. In particular we have a corollar-
ies comparing Drew’s structure structure with the top-local structure of Theorem 20.

Corollary 1. Let M be a combinatorial model category which is also a coefficient category (Defi-
nition 60) and whose underlying quasi-category is locally ℵ0-presentable. Then the τ-local model
structure on the M-valued presheaves exists and is canonically equivalent to its underlying quasi-
category. The weak equivalences are those described in Theorem 21.
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Corollary 2. If M is a coefficient model category, then the top-local model structures of Theorem
20 coincides with the structure described by Drew in Corollary 1.

Proof. This is [DR, Rmk. 2.6]. �

There is a subtlety here in which we require M to be locally ℵ0-presentable rather than
just locally presentable. In the proof presented by Drew, he shows an equivalence between
the left exact functors

Funlex
(
(Vℵ0)

op , Ŝhτ(C, Spc)
)
' Ŝhτ(C,V)

which only holds in this particular setting.

Remark 18. Since a site with enough points by definition means that isomorphisms of
set-valued sheaves may be checked stalkwise, the first condition guarantees that we have
stalkwise isomorphisms on the set-valued sheaves

π̃0(homM(M, F(−))→ π̃0(M, G(−))

and

π̃n(homM(M, F(−), x)→ π̃n(M, G(−), f (x))

if and only if the morphism F → G is τ-local.

Lemma 2. Let (C, τ) be a site with enough points and let M be a simplicial combinatorial model cat-
egory with a locally ℵ0-presentable underlying quasi-category. A morphism of M-valued presheaves
F → G is a τ-local equivalence if and only if the morphisms mapM(M, F) → mapM(M, G) are
stalkwise weak equivalences for all M ∈Mℵ0 .

Proof. We have that map(M, F(−)) and map(M, G(−)) are simplicial presheaves. Hence
[DHI, Thm. 1.1 & Thm. 1.2] show that Condition 3 in Theorem 21 is true if and only if the
induced morphisms on the stalks are weak equivalences. �

Corollary 3. Let C have enough points. For a morphism of simplicial presheaves F → G, the
induced morphisms on the stalks Fp → Gp as p ranges over the points on the site are weak equiv-
alences if and only if map(M, F(−)) → map(M, G(−)) is a local weak equivalence for every
M ∈ sSetℵ0 .

Proof. Combine [DHI] and 2. �

Remark 19. The alert reader may have noted a difference in the used sheaves of homotopy
groups. [J] uses πn(F(−), x) as the homotopy groups whereas [DR] uses the homotopy
groups of the function complex πn(map(M, F(−)), x). The latter includes the former in
that we may choose M to be the tensor unit. Hence the corollary above is mainly interesting
for the other direction.
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What one would wish for is a similar statement for an arbitrary simplicial model cat-
egory, i.e. that τ-local equivalences may be checked stalkwise in an arbitrary model cat-
egory presenting a quasi-category such as in Theorem 21. The author was not able to
provide such a result in the allotted time frame and the partial findings are presented in
the next chapter.
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The Case for Left Proper Simplicial
Combinatorial Model Categories

We begin with the important Dugger’s theorem after Daniel Dugger.

Theorem 22 ([D1, Thm.1.2]). Any (∞, 1)-category may be presented by a left proper, simplicial
combinatorial model category in which every object is cofibrant.

It is natural to ask whether we may translate Drew’s (∞, 1)-categorical findings into
concrete model categorical settings. By the above theorem, left proper simplicial combi-
natorial model categories are the primary suspects on which to find a hypercompletion.
Unless otherwise stated, M will in this section be such a model category, and M will be an
object in M.

Thinking of Drew’s results, one might expect there to exist a model structure when
we localize at morphisms of the form M ⊗ U → M ⊗ X where U → X is a simplicial
hypercover. Indeed, by adjointness we have isomorphisms:

hom(M⊗U, F) ∼= hom(U, map(M, F)).

and hence the following lemma says that an injective-fibrant F being local with respect to
M ⊗U → M ⊗ X is the same as map(M, F) satisfying descent for the hypercover U →
X.

Lemma 3 ([DHI, Lemma 4.4]).

1. A simplicial presheaf F satisfies descent for a hypercover U → X if and only if

Map(X, F̃)→ Map(U, F̃)

is a weak equivalence of simplicial sets, where F̃ is an injective-fibrant replacement for F.
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2. A simplicial presheaf F satisfies descent for a hypercover U → X if and only if

Map(X, F̂)→ Map(U′, F̂)

is a weak equivalence of simplicial sets, where U′ is a projective-cofibrant approximation for
U and F̂ is an objectiwise fibrant approximation for F.

Of course we have some cardinality issues in that the cofibrant objects are not neces-
sarily a small set. We do however have some small inclination that this is the correct way
of proceeding.

Remark 20. As we wish for our result to coincide with Dugger, Hollander and Isaksens
when M = sSet, one would wish for that a presheaf satisfies descent for the hypercover
U → X if and only if it is local with respect to all morphisms K ⊗U → K ⊗ X where K
is any simplicial set. In other words if Map(M ⊗ U′, F) → Map(M ⊗ X, F) being weak
equivalences is indeed equivalent to Map(U′, F)→ Map(X, F) being weak equivalences.

Letting M = ∗, it is clear that the former imply the latter. Suppose now that Map(U′, F)→
Map(X, F) is a weak equivalence and let M be a cofibrant simplicial set, i.e. any simplicial
set. We have

Map(hocolim ∏ M⊗Un, F) = holim ∏ Map(M⊗Ua
n, F)

= holim Map(Ua
n, Map(M, F(−)))

= holim ∏ Map(M, F(Ua
n))

=Map(M, holim ∏ F(Ua
n))

and

Map(M⊗ X, F(−)) = Map(M, F(X)).

Since M is cofibrant and holim ∏ F(Ua
n) → F(X) is a weak equivalence of fibrant objects,

Map(M ⊗ X, holim ∏ F(Ua
n)) → Map(M, F(X)) is a weak equivalence of fibrant objects.

Hence the local objects with respect to the morphisms M⊗U → M⊗ X are precisely the
hypersheaves when M = sSetKan-Quillen.

Now we have an intuitive way to lift hypercovers to our model category. By consid-
ering for any simplicial hypercover U → X the family of morphisms M ⊗U → M ⊗ X
in M, we obtain a reasonable class of morphisms to localize at. In order to get around the
cardinality issues, one might consider imposing the condition that M be monoidal with
cofibrant unit and only consider morphisms of the form 1⊗U → 1⊗ X. One may also
consider using the generating cofibrations in a smart way. However, the author has as of
yet not been able to proceed in deriving properties of, or showing existence of, such a lo-
calization. In any case, we hope that the reader has found the field interesting and should
they feel inclined to do so, they are encouraged to continue where this paper ends.
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Chapter 8

Appendix

In this chapter we include some material on homotopy function complexes and symmetric
monoidal categories and the interconnection between simplicial categories and infinity cat-
egories. We expand somewhat on the local Joyal model structure on simplicial presheaves
and finally give an elegant way of thinking about local equivalences and local objects in
terms of an antitone Galois connection.

8.1 Homotopy Function Complexes

The homotopy function complex is a simplicial set which models the morphisms between
two objects in a model category. In a non-obvious way, this lets us measure for which
objects in a model category certain morphisms behave as weak equivalences. For such
objects it is then valuable to know which morphisms in M which share this property.

In order to formalize homotopy function complexes, we need to introduce cosimpli-
cial and simplicial resolutions. For these resolutions to make sense, the reader needs to
know of a model structure which some functor categories may be endowed with, called
the Reedy model structure. This model structure is quite technical to define and not partic-
ularly illuminating in the author’s mind. The interested reader is referred to [H, Ch. 15].
For a thorough investigation about simplicial and cosimplicial resolutions, the reader may
consult [H, Ch. 16].

As usual, let M be a model category.

Definition 65. Let M be an object in M. Then we define cc∗ M to be constant cosimplicial
object in M and we define cs∗ M to be the constant simplicial object in M.

Definition 66. Let M be an object in M. A cosimplicial resolution of M is defined to be a
cofibrant approximation of cc∗ M in the Reedy model structure on [∆,M].
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A simplicial resolution of M is defined to be a fibrant approximation of cs∗ M in the
Reedy model structure on [∆op,M].

Definition 67. Let X and Y be objects in M. A left homotopy function complex from X to
Y is a triple (X̃, Y f ,M(X̃, Y f )) where X̃ is a cosimplicial resolution of X, Y f is a fibrant
approximation of Y and M(X̃, Y f ) is the simplicial set given by

M(X̃, Y f )n = M(X̃n, Y f ).

As the name suggests, there is a right analogue of the homotopy function complex as
well.

Definition 68. Let X and Y be objects in M. A right homotopy function complex from X to Y
is a triple (Xc, Ŷ,M(Xc, Ŷ)), where Xc is a cofibrant approximation of X, Ŷ is a simplicial
resolution of Y and M(Xc, Ŷ) is the simplicial set given by

M(Xc, Ŷ)n = M(Xc, Ŷn).

There is in this case a third analoguous construction.

Definition 69. Let X and Y be objects in M. A two-sided homotopy function complex from X
to Y is a triple (X̃, Ŷ,M(X̃, Ŷ)), where X̃ is a cosimplicial resolution of X, Ŷ is a simplicial
resolution of Y and M(X̃, Ŷ) is the simplicial set given by

M(X̃, Ŷ)n = M(X̃n, Ŷn).

Notation 8. Often we will not care which construction is used, hence the notation map(X, Y)
will be taken to mean either a left, right or two-sided homotopy function complex from X
to Y. By abuse of notation we will often write "the" homotopy function complex although
it of course depends on the choices of resolutions. One may however show [H, 17.4.14]
that any two homotopy function complexes from X to Y are connected via an essentially
unique zig-zag of weak equivalences.

It may also be shown that π0 map(X, Y) ∼= HoM(X, Y). Hence when constructing
the derived mapping space from X to Y - the induced simplicial set of HoM(X, Y), any two
choices of homotopy function complexes give derived mapping spaces connected via an
essentially unique isomorphism.

8.2 The Local Joyal Model Structure

As the simplicial hypercovers introduced in Definition 47 are intrinsic to the category of
simplicial presheaves, the most natural generalization is to see what happens when chang-
ing the model structure. There are a number of model structures on the category of sim-
plicial sets which are important in the field of homotopy theory. Apart from the classical
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Kan-Quillen structure, perhaps the most important is the Joyal model structure. The Joyal
model structure serves as a presentation of the infinity categories as the fibrant objects are
the quasi-categories.

Quite recently there has been work done by Meadows, showing amongst other results
the existence of a local model structure on the Joyal simplicial presheaves [M1].

Definition 70. We say that a morphism is a quasi-injective fibration if it has the right lifting
property with respect to all morphisms which are both monomorphisms and local Joyal
equivalences.

Theorem 23 (The Local Joyal Model Structure [M2, Thm. 2.3.3]). There exists a model struc-
ture on simplicial presheaves such that

1. the cofibrations are the monomorphisms,

2. the weak equivalences on a site with enough points are stalkwise Joyal equivalences, and

3. The fibrations are the quasi-injective fibrations.

As mentioned before, the method used by Meadows is not a Bousfield localization.
Instead he uses another form of localization called Boolean localization which exceeds the
scope of this thesis.

8.3 (Symmetric) Monoidal Model Categories

We describe in this section symmetric monoidal categories. There is a surprising amount
of machinery necessary to capture the quite intuitive idea behind such a category. If the
reader is somewhat comfortable with these structures she is encouraged to skip this sec-
tion.

Definition 71. We say that a category C is symmetric monoidal if there is a functor called the
tensor product

⊗ : C× C −→ C

together with a unit object (or simply "unit"), 1 ∈ C such that there are two natural isomor-
phisms called the left unitor

λc : 1⊗ c −→ c

and right unitor,

ρc : c⊗ 1 −→ c.

We further require the existence of a natural isomorphism called the associator,

αc1,c2,c3 : (c1 ⊗ c2)⊗ c3 −→ c1 ⊗ (c2 ⊗ c3).
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and another natural isomorphism called the braiding,

Bc1,c2 : c1 ⊗ c2 → c2 ⊗ c1.

The associator and unitors are required to satisfy the triangle identity, i.e. that dia-
grams of the following form

(c1 ⊗ 1)⊗ c2 c1 ⊗ (1⊗ c2)

c1 ⊗ c2

αc1,1,c2

ρc1⊗Idc2

Idc1 ⊗λc2

commute, and we further require from the associator that the pentagon identity holds, i.e.
that all diagrams of the form

(c1 ⊗ c2)⊗ (c3 ⊗ c4)

((c1 ⊗ c2)⊗ c3)⊗ c4 c1 ⊗ (c2 ⊗ (c3 ⊗ c4))

(c1 ⊗ (c2 ⊗ c3))⊗ c4 c1 ⊗ ((c2 ⊗ c3)⊗ c4)

αc1,c2,(c3⊗c4)
α(c1⊗c2),c3,c4

αc1,c2,c3⊗Idc4

αc1,(c2⊗c3),c4

Idc1 ⊗αc2,c3,c4

commute.

The associator and the braiding must satisfy the first hexagon identity, i.e. that all
diagrams of the form

(c1 ⊗ c2)⊗ c3 c1 ⊗ (c2 ⊗ c3) (c2 ⊗ c3)⊗ c1

(c2 ⊗ c1)⊗ c3 c2 ⊗ (c1 ⊗ c3) c2 ⊗ (c3 ⊗ c1)

commute and finally we require of the braiding that

Bc2,c1 ◦ Bc1,c2 = 1c1⊗c2 .

As the reader may have noted, the braiding acts as a sort of symmetry whence the
“symmetric” monoidal name.

There are a lot of categories which are symmetric monoidal. The most prominent in
category theory is perhaps Set, although in homotopy theory our favorite category sSet
also satisfies being symmetric monoidal. In Set we may take the unit to be any singleton
and the product to be the cartesian product. In sSet we may similarly take the unit to be a
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singleton in each level, i.e. the terminal object, and the tensor product to be the level-wise
cartesian product.

As one would expect there is a notion of a monoidal model category as well. The first
condition we need is that of a closed monoidal category.

Definition 72. A closed (symmetric) monoidal category is a symmetric monoidal category in
which the tensor product − ⊗ b admits a left adjoint hom(−, b) called the internal hom-
functor, for all objects b ∈ C, i.e. we have natural isomorphisms

hom(a⊗ b, c) ∼= hom(a, hom(b, c))

for all objects a, b, c ∈ C.

To incorporate the symmetric monoidal structures into a homotopy theoretic setting
we need extra conditions.

Definition 73. A symmetric monoidal model category M is a closed symmetric monoidal cat-
egory equipped with a model structure satisfying

1. For every pair of cofibrations in M, I → J and K → L, the induced morphism

I ⊗ L ä
I⊗K

J ⊗ K → J ⊗ L

is a cofibration which is also a weak equivalence if any of I → J and J → K is.

2. For any cofibrant object M ∈ M and any cofibrant approximation of the unit 1̃, the
morphism

1̃⊗M→ 1⊗M ∼= M

is a weak equivalence.

The next section handles simplicial model categories which is a particularly important
kind of enriched model category.

8.4 Simplicial Model Categories and Simplicial Sets

In this section we first recall briefly what a simplicial model category is and go on to de-
scribe an important adjunction between the category of simplicial categories and the cate-
gory of simplicial sets. This adjunction is important because it entails why we may see a
model category as a presentation of an ∞-category. Namely we may for any model cate-
gory associate to it a simplicial category via simplicial localization, then use this adjunction
to associate a quasi-category to the model category. It is perhaps not important to under-
stand the results in this text, but nonetheless it is one of the cornerstones of homotopy
theory.
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Definition 74. We say that a model category M is a simplicial model category if it is enriched
over sSetKan-Quillen.

There are numerous results regarding simplicial model categories. The interested reader
is encouraged to consult [H, Ch. 9] for a thorough investigation. One thing that is recur-
ring is however that simplicial mapping spaces are well-behaved only when it is from a
cofibrant object into a fibrant one.

An important property used in Section 5.2 is that there is an adjunction between the
category of simplicial categories, Cat∆, and the category of simplicial sets, sSet.

Theorem 24. There is an adjunction

C : Cat∆ � sSet : N.

We call the right adjoint N the homotopy coherent nerve.

We shall describe at least part of this adjunction. At least enough to uniquely determine
the whole adjunction, although a description for how the adjunction works on every object
is hard to achieve. We may define as a preliminary measure

(NC)n := Cat∆(C∆[n],C)

which only moves our attention to how C behaves. To understand the nerve, we will
however only need to know how C acts on the simplices. For a detailed outline, we refer
the reader to a paper by Riehl [R1]. The objects of C∆[n] are the same as those of [n], i.e.
{0, . . . , n}. The morphisms are as follows:

C∆[n](i, j) =





∅, if i > j,
∆[0], if i = j, and
∆[1]j−i−1, if j > i.

These may be derived by considering Pi,j to be the partially ordered set of subsets of the
interval [i, j] containing both endpoints (with Pi,j understood to be empty if j < i). We may
then think of C∆[n](i, j) as the (ordinary) nerve of Pi,j.

One may show using Kan extensions that this description uniquely determines CX for
an arbitrary simplicial set X, although in a convoluted way. Again the reader is referred to
[R1].

Remark 21. The adjunction descibed in 24 is a Quillen equivalence when Cat∆ is equipped
with the Bergner model structure and sSet is equipped with the Joyal model structure.

An important consequence is that we may view any simplicial category as a simplicial
set and vice versa. Viewing quasi-categories as ∞-categories, we may see a deep connec-
tion between simplicial categories and ∞-categories. In fact, the Bergner model structure
may be used to present ∞-categories in an equivalent way to the quasi-categories.
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8.5 The Galois Connection Between Local Objects and Local
Equivalences

An elegant way of thinking about local objects and local equivalences is that of a (antitone)
Galois connection. In this section we define what such a connection is and show that we
may find a Galois connection between classes of objects on a site, and morphisms in the
target category.

Definition 75. Let (P,≤) and (P′,≤) be two partially ordered classes. We say that F : P→
P′ and G : P′ → P constitute an antitone Galois connection if the following holds: b ≤ F(a)
if and only if a ≤ G(b).

Proposition 3. Let M be a model category. Let P(ObM) be the partially ordered set of subsets of
objects in M, with T ≤ T′ if T is contained in T′, and let P(MorM) be the partially ordered set of
subsets of morphisms in C, again with S ≤ S′ if S is contained in S′.

Let F : P(ObM)→ P(MorM) be the function which sends a class of objects S to the S-local
equivalences, and let G : P(MorM) → P(ObM). Then F and G constitute an antitone Galois
connection between P(ObM) and P(MorM).

Proof. Note first that for S, S′ ∈ P(ObM), S ≤ S′ =⇒ F(S′) ≤ F(S). Similarly, for
T, T′ ∈ P(MorM), T ≤ T′ =⇒ G(T′) ≤ G(T). In other words, both F and G are order
reversing.

Suppose that S is a class of objects in M and T is some class of morphisms T in M. We
wish to show that T ≤ F(S) if an only if S ≤ G(T).

Now suppose first that T ≤ F(S). By the observation above we have that

T ≤ F(S) =⇒ GF(S) ≤ G(T)

but S is contained in GF(S) and hence S ≤ G(T) whence one implication is clear.

Next suppose that S ≤ G(T). Then by the above observation we have that

FG(T) ≤ F(S).

Hence T ≤ F(S) and we are done.

�
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