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Abstract

In dynamical systems it is sometimes not just the system variables that
are of interest, but also functionals of these variables. For linear systems
these functionals are often quadratic differential forms. We take a be-
havioural approach to linear systems and quadratic differential forms, fo-
cusing on how these can be described using polynomial matrices. Two ar-
eas of application are considered, the first being stability where quadratic
differential forms are used as Lyapunov functions. The second is dissipa-
tive systems and its close connection to LQ-control problems.
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1 Introduction

In dynamical systems theory we study how a system evolves over time, described
using a function of time. Sometimes it is not just the system variables them-
selves that are of interest, but also functionals of these variables. For linear
systems these functionals are often quadratic in the system variables and their
derivatives, we call these quadratic differential forms (QDFs for short). A clas-
sic example is mechanical systems. If the system variables describe for example
the position of something that is moving, then the mechanical energy can be
written as a quadratic differential form of the position.

In this text we will look at systems that are described using linear differential
equations. The strength of using QDFs is that we can sometimes use them to
derive properties of a system without having to solve the differential equations.
An example is stability theory, where QDFs appear in the form of Lyapunov
functions and can be used to derive several types of stability properties.

In chapter 2 we study linear differential systems, that is solution sets to
linear differential equations. We primarily work in the behavioural framework
introduced by Jan C Willems, as opposed to the state space framework that is
more standard in the field. In the behavioural framework much emphasis is put
on how linear systems are represented using polynomial matrices in one inde-
terminate, and how algebraic properties of these matrices describe the systems
they represent.

The main focus is on solutions to differential equations that are also smooth
(infinitely many times differentiable). We also look at more general solutions
that may not be differentiable everywhere. To do this we introduce weak solu-
tions of differential equations, which solve the equations in the sense of distri-
butions.
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The most important representations of behaviours is the kernel representa-
tion, including input/output representations. Introducing latent variables also
gives us some important representations, the two most important versions being
the image representation and state space representations. Both are particularly
simple versions of the latent variable representation but in different ways. We
also cover two important concepts in systems theory, controllability and observ-
ability.

In chapter 3 we introduce quadratic differential forms, which are nicely de-
scribed using polynomial matrices in two indeterminates. We cover how the
algebraic properties of these matrices affect the properties of the QDFs they
describe. We also look at how their interplay with the polynomial matrices rep-
resenting systems affect how the QDFs interplay with systems we apply them
to. In particular we look at positivity (and negativity) of QDFs and how this
relates to factorizations of the matrices representing the QDFs.

In stability theory we are concerned with the asymptotic behaviour of sys-
tems, what happens with them after a long period of time. In chapter 4 we
explore the stability of linear systems. We look at four forms of stability; Lya-
punov stability, semistability, asymptotic stability and bounded input-bounded
output stability. We put particular focus on how QDFs can be used as Lyapunov
functions to determine stability properties of linear systems.

Chapter 5 deals with the area of dissipative systems. In these systems a
supply (of for example energy) is lost over time through dissipation. This dissi-
pation is suitably described by QDFs. We look at how this can be related to one
of the most important type of problems in control theory, LQ-control problems.
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2 Linear differential systems

In dynamical systems theory we study how something changes over time in
some predictable way. In applications these systems can often be described
as solutions to some equations, for example differential equations. There are
several ways to present such systems and we will use the behavioural framework,
introduced by Jan C Willems. This is in contrast to the state space framework
that can be considered the standard approach for the field.

There are several differences between the behavioural framework and the
state space framework, some of them purely mathematical in nature while others
are of a more philosophical character. In the state space framework one works
with variables referred to as state, input and output variables respectively, each
with specific properties. For example we have a notion of causality, the input
influences the output but not the other way around. In many systems however
there is no preferred direction of causality, and our mathematical models should
be able to reflect this.

In the behavioural framework we therefore study sets of functions called be-
haviours (for example solutions to some equations) without any predetermined
roles. These ideas are covered in more detail in [6], as well as how this relates to
mathematical modelling of real phenomena. We will elaborate on the difference
between the different frameworks once we introduce inputs, outputs and state
variables.

The theory of this section is in large part based on [6] and [14]. We be-
gin by introducing dynamical systems as they are defined in the behavioural
framework.

Definition 2.1. A dynamical system is a triple Σ = (T ,W,B), where T ⊆ R is
called the time axis,W is a set called the signal space and B ⊆ WT is called the
behaviour. Functions w ∈ B are called external signals or external variables.

In this text the time axis T will always be an interval in R, often R itself.
Such systems are called continuous-time systems, in contrast with discrete-time
systems where we choose an interval in Z instead. We will for the most part
use the signal space W = Rd for some d ∈ N so the external signals are real
valued functions. In some cases we will also use complex valued functions, that
is W = Cd.

The elements of B are usually characterized as the solutions to some dif-
ferential equations. In this text we will look at solutions to equations of the
form

R

(
d

dt

)
w = 0 (1)

where R is a polynomial matrix with coefficients independent of t. Since w is a
map from R to Rd, R must have d columns. The number of rows in R can vary
however. We let Re×d[ξ] denote the set of polynomial matrices of size e × d in
the indeterminate ξ with real coefficients , so that R ∈ Re×d[ξ] for some e.

The next consideration to make is what smoothness criterion to put on w.
The easiest for proving results is of course to assume that w is smooth. This
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may seem a bit restrictive, indeed there are applications where functions with
for example (a finite number of) discontinuities are of interest. If one wants to
study this in full generality, one would need to work with distributions, which
is beyond the scope of this text.

A middle ground that is often good enough is to study functions w that
are locally integrable. The differential equations are then interpreted to hold
in the weak sense (that is, in the sense of distributions). This turns out to be
a particularly suitable class of functions to study, as the smooth functions are
dense in the locally integrable functions in a certain sense. We will elaborate on
the locally integrable functions, their properties and relation to smooth functions
in section 2.1.

The behaviours we will study are of the form

B =

{
w ∈ C∞(R,Rd)

∣∣∣R
(
d

dt

)
w = 0

}
(2)

for some R ∈ Re×d[ξ]. We let Ld denote the set of all sets that are of the form
(2) for some R ∈ Re×d[ξ] (here d is held fixed, but e is not). While R ∈ Re×d[ξ]
uniquely determines a behaviour in Ld via equation (1), behaviours do not
correspond to a unique polynomial matrix. Hence we say that R gives a repre-
sentation of the behaviour if (1) holds. We will explore the relationship between
different representations of the same behaviour, as well as several different types
of representations.

The behaviours in Ld have two very important properties. They are linear
and time invariant. By linear we mean that B ∈ Ld is a (real) linear vector space.
This follows simply from the fact that differentiation and matrix multiplication
are linear operators. Note that this extends also to complex valued solutions,
the set of complex solutions to some linear equation is a complex linear vector
space.

Time invariance is the property that if w(t) ∈ B, then also w(t + t0) ∈ B
for any t0 ∈ R. Since t does not appear by itself anywhere in the differential
equations studied, we have

R

(
d

dt

)
(w(t+ t0)) =

(
R

(
d

dt

)
w

)
(t+ t0).

which shows that all behaviours in Ld are time invariant. In ODE theory such
systems are usually called autonomous, however in systems theory the term
autonomous is often used to refer to something else (see Definition 2.12).

The set Ld does not include all behaviours in (Rd)R that are linear and time
invariant however. An example of a linear and time invariant behaviour not on
this form is the linear span of all functions of the form ent where n ∈ Z. It does
not belong to L1. The key here is that this behaviour has infinite dimension, and
we will see in Proposition 2.13 that the only behaviour in L1 that has infinite
dimension is the trivial case B = C∞(R,R).
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2.1 Locally integrable functions and weak solutions

In many applications it is necessary to consider not only smooth function. For
example we could have a system where at some time, say t = 0, we turn on
the power, and so in an instant the power changes from zero to some positive
value. To handle such situations we need a broader definition of what it means
to solve a differential equation that models the system, one that works even for
functions that are not differentiable everywhere.

Take for example the Heaviside step function defined as

H(t) =

{
0, if t < 0

1, if t ≥ 0.

Due to the point of discontinuity at t = 0, it does not have a derivative in the
classical sense. Hence it would not make sense as a solution to any differential
equation. By introducing distributions it is possible to give H a derivative, and
so we can make sense of it as a solution to a differential equation.

We will not go into the details of the theory of distributions here, but only
present some of the most important ideas needed to explain weak solutions. For
a more thorough exposition and proofs of claims made here we refer to [5]. We
begin by defining the space D(R,Rd) ⊂ C∞(R,Rd) as the set of smooth func-
tions that have compact support. In the context of distributions the elements of
D(R,Rd) are usually called test functions. The space D(R,Rd) can then be en-
dowed with a specific topology. The space of distributions, denoted D ′(R,Rd),
is then defined as the space of continuous linear functionals on D(R,Rd).

For example, any w ∈ C∞(R,Rd) defines a distribution by the linear func-
tional

ϕ 7→
∫

R
wTϕdt. (3)

Since the elements of D ′(R,Rd) are not actually functions from R to Rd, a
smooth function w is not itself a distribution. We instead use this integral
formula to characterize functions in C∞(R,Rd) as distributions.

For T ∈ D ′(R,Rd) it is customary to write 〈T, ϕ〉 for T (ϕ) when ϕ ∈
D(R,Rd). Thus the integral in equation (3) is written 〈w,ϕ〉.

The integral (3) is well defined even for more general w, for example the
Heaviside step function H above. We say that w : R→ Rd is locally integrable
if ∫

K

|w|dt <∞

for every compact K ⊂ R. We define a Lebesgue space, denoted L1
loc(R,Rd), of

locally integrable functions from R to Rd, though to be precise the elements of
L1

loc(R,Rd) are equivalence classes of functions, two functions being equivalent
if they are equal almost everywhere (with respect to the Lebesgue measure).
The space L1

loc is in many ways similar to Lp-spaces.
It is not difficult to see that the map (3) is a well defined map from D(R,Rd)

into R for all w ∈ L1
loc(R,Rd). It is in fact a continuous and linear functional

6



on D(R,Rd), and hence such w also define distributions. Less obvious is that
for any distribution that is given by a function w : R → Rd and the formula
(3), we have w ∈ L1

loc(R,Rd) (for a proof see [11]). Not all distributions are on
this form however. An example of a distribution that is not, is the Dirac delta
δ0 defined by

〈δ0, ϕ〉 = ϕ(0).

Sometimes the Dirac delta is written as

δ0(t) =

{
∞, t = 0

0, t 6= 0,

though this presentation does not make it entirely clear how the distribution
behaves. The idea is that δ0 represent an instantaneous impulse at t = 0. It
turns out that δ0 is exactly what we need to make sense of a derivative of the
Heaviside function. Away from the origin H is constant so the derivative should
be zero, but at zero H makes a jump and in this instant H makes a big leap in
value, hence the ”infinite” derivative.

To give a precise definition of the distributional derivative we first go back
to the smooth case. For any w ∈ C∞(R,Rd) we have by the integration by
parts formula ∫

R
ẇTϕdt = −

∫

R
wT ϕ̇dt

which we can also write as 〈ẇ, ϕ〉 = −〈w, ϕ̇〉. We now define that a distribution
u is the weak derivative, or distributional derivative, of w if 〈u, ϕ〉 = −〈w, ϕ̇〉
for every ϕ ∈ D . This is a generalization of the classical derivative in the sense
that if w is differentiable, then its classical derivative satisfies this criterion by
the integration by parts formula. It is possible to show that all distributions in
fact have a weak derivative in this sense.

It is a more general notion, and we illustrate this with the Heaviside function
and δ0. For any ϕ ∈ D(R,R) we have

−〈H, ϕ̇〉 = −
∫

R
Hϕ̇dt = −

∫ ∞

0

ϕ̇dt = ϕ(0) = 〈δ0, ϕ〉

so δ0 really is the weak derivative of H.
The weak derivative allows us to define weak solutions to a differential equa-

tion as essentially a function whose weak derivatives satisfy the equation. To be
more precise, we generalize weak derivatives to higher order by using integration
by parts repeatedly to get

∫

R
ϕT

dkw

dtk
dt = (−1)k

∫

R
wT

dkϕ

dtk
dt

for w ∈ C∞(R,Rd), ϕ ∈ D(R,Rd). Motivated by this we say that u is the kth

weak derivative of w if 〈u, ϕ〉 = (−1)k〈w, dkϕ
dtk
〉. We can now generalize this to
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linear differential operators R
(
d
dt

)
, where R ∈ Re×d[ξ] by the following. If w is

smooth, then ∫

R
ϕTR

(
d

dt

)
wdt =

∫

R
wTRT

(
− d

dt

)
ϕdt

for all ϕ ∈ D(R,Rd). We then say that w ∈ D ′(R,Rd) is a weak solution
of the equation R

(
d
dt

)
w = 0 if it satisfies that 〈w,RT

(
− d
dt

)
ϕ〉 = 0 for all

ϕ ∈ D(R,Rd). In particular w ∈ L1
loc(R,Rd) is a weak solution if it satisfies

∫

R
wTRT

(
− d

dt

)
ϕdt = 0

for all ϕ ∈ D(R,Rd).
Allowing our functions to be in L1

loc is quite generous, as the space includes
most functions that we may want to work with. All continuous functions are
included in L1

loc, since on any compact set a continuous function is bounded
and hence the integral of the function is also bounded. Also all Lp functions,
for 1 ≤ p ≤ ∞, are also in L1

loc. For p = 1 this is easy to see. For p > 1, let q
be its Hölder conjugate, that is, q is chosen so that 1

p + 1
q = 1 (if p = ∞, take

q = 1). Then by the Hölder inequality we have, for any K ⊂ R compact and
w ∈ Lp(R,Rd),

∫

K

|w|dt =

∫

R
|w|χKdt ≤

(∫

R
|w|pdt

) 1
p
(∫

R
χpKdt

) 1
q

where χK denotes the characteristic function of K. The first factor in the right
hand side is finite by assumption, and the second factor is equal to the Lebesgue
measure of K to the 1

q power, also finite. Hence we have w ∈ L1
loc(R,Rd).

As noted earlier, all functions in L1
loc define distributions and hence have

weak derivatives. The weak derivative need not itself be L1
loc however. For

example the Heaviside function is L1
loc but its derivative δ0 is not.

Another reason that the space L1
loc is nice to work with is that it can be seen

as a sort of closure for C∞. As we will see, this notion of convergence is also
well behaved with regard to behaviours in Ld.

Definition 2.2. A sequence wk ∈ L1
loc(R,Rd) converges to w ∈ L1

loc(R,Rd) in
the sense of L1

loc if for every compact set K ⊂ R

lim
k→∞

∫

K

|w − wk|dt = 0.

This definition and most results about weak solutions that we will derive
using it are from [6]. However, in [6] weak solutions are defined in a slightly
different way (not using distributions), so the proofs have been adjusted to
reflect this. We will seldom work with this definition directly, but rather use
the following two results.
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Proposition 2.3. Suppose {wk} ⊂ L1
loc(R,Rd) is a sequence of weak solutions

to the equation R
(
d
dt

)
w = 0 for some R ∈ Re×d[ξ]. If wk converges to w in the

sense of L1
loc, then w is a weak solution of R

(
d
dt

)
w = 0.

Note in particular that we can apply this to a sequence {wk} ⊂ C∞(R,Rd)
of strong solutions. The limit, which may or may not itself be smooth, is at
least a weak solution.

Proof. Take any ϕ ∈ D(R,Rd), and let K = suppϕ. Since wk are weak solu-
tions, we have for every k that

∫
R w

T
k R

T
(
− d
dt

)
ϕdt = 0. We get

∣∣∣∣
∫

R
wTRT

(
− d

dt

)
ϕdt

∣∣∣∣ =

∣∣∣∣
∫

R
wTRT

(
− d

dt

)
ϕdt−

∫

R
wTk R

T

(
− d

dt

)
ϕdt

∣∣∣∣ ≤

≤
∫

R

∣∣∣∣(w − wk)TRT
(
− d

dt

)
ϕ

∣∣∣∣ dt =

∫

K

∣∣∣∣(w − wk)TRT
(
− d

dt

)
ϕ

∣∣∣∣ dt ≤

≤
∫

K

|w − wk|
∣∣∣∣RT

(
− d

dt

)
ϕ

∣∣∣∣ dt

Since
∣∣RT

(
− d
dt

)
ϕ
∣∣ is continuous on the compact set K, it attains some maxi-

mum M . We then have
∣∣∣∣
∫

R
wTRT

(
− d

dt

)
ϕdt

∣∣∣∣ ≤M
∫

K

|w − wk| dt.

The right hand side converges to zero as k →∞ by assumption, and as the left
hand side does not depend on k it must be zero. Hence w is a weak solution to
the equation.

Proposition 2.4. For every w ∈ L1
loc(R,Rd) there is a sequence {wk} ⊂

C∞(R,Rd) such that wk converges to w in the sense of L1
loc. Furthermore, if w

satisfies R
(
d
dt

)
w = 0 weakly, then the wk can be chosen to satisfy R

(
d
dt

)
w = 0

(strongly).

The main idea here is to convolve w with a sequence of mollifiers to get the
sequence wk. To do this we need one additional property of Lebesgue spaces,
that for any w ∈ L1

loc(R,Rd) and any compact K ⊂ R we have

lim
τ→0

∫

K

|w(t)− w(t− τ)|dt = 0.

We can also express this as w(t + τ) converging to w(t) in the L1
loc-sense. A

proof of this fact as well as the following proof can be found in [10].

Proof. The proof is by explicitly constructing such a sequence wk. To start with
we define

f(t) =

{
e
− 1

1−t2 , |t| < 1

0, |t| ≥ 1.
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A straight forward calculation shows that this function is smooth and it clearly
has compact support, so f ∈ D(R,R), and then so is the normalized version

ψ(t) =
f(t)∫

R f(τ)dτ
.

Now let ψk = kψ(kt), which are then clearly also smooth. The support of ψk is
contained in the support of ψ, so we have ψk ∈ D(R,R). Finally let

wk(t) =

∫

R
w(t− τ)ψk(τ)dτ

be the convolution product. By a change of integration variable this can be
written

wk(t) =

∫

R
w(τ)ψk(t− τ)dτ

Since ψk is smooth, and passing derivatives under the integral sign, wk is also
smooth. We get, for any compact K ⊂ R

∫

K

|w − wk|dt =

∫

K

∣∣∣∣w
∫

R
ψk(τ)dτ −

∫

R
w(t− τ)ψk(τ)dτ

∣∣∣∣ dt ≤

≤
∫

K

∫

R
ψk(τ)|w(t)− w(t− τ)|dτdt =

=

∫

R
ψk(τ)

∫

K

|w(t)− w(t− τ)|dtdτ.

We now use that limτ→0

∫
K
|w(t) − w(t − τ)|dt = 0, i.e. for any ε > 0 there is

δ > 0 such that |τ | < δ implies
∫
K
|w(t)− w(t− τ)|dt < ε. Then we have

∫

R
ψk(τ)

∫

K

|w(t)− w(t− τ)|dtdτ =

∫

|τ |<δ
ψk(τ)

∫

K

|w(t)− w(t− τ)|dtdτ+

+

∫

|τ |≥δ
ψk(τ)

∫

K

|w(t)− w(t− τ)|dtdτ ≤

≤
∫

|τ |<δ
ψk(τ)εdτ +

∫

|τ |≥δ
ψk(τ)

∫

K

|w(t)− w(t− τ)|dtdτ ≤

≤ ε+

∫

|τ |≥δ
ψk(τ)

∫

K

|w(t)− w(t− τ)|dtdτ.

The support of ψk is [− 1
k ,

1
k ] and so for every δ > 0 there is some k such that

[− 1
k ,

1
k ] ⊂ [−δ, δ] and hence ψk(τ) = 0 for all |τ | ≥ δ. It follows that for every

ε > 0 we have ∫

K

|w − wk|dt ≤ ε

for all k large enough. Hence wk converge to w in the L1
loc sense, proving the

first part of the statement.
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If furthermore w satisfies R
(
d
dt

)
w = 0 weakly, then the wk as we have defined

them satisfy, for any ϕ ∈ D(R,Rd)
∫

R
wTk R

T

(
− d

dt

)
ϕdt =

∫

R

∫

R
(w(t− τ)ψk(τ))T dτRT

(
− d

dt

)
ϕdt =

=

∫

R
ψk

∫

R
wT (t− τ)RT

(
− d

dt

)
ϕdtdτ = 0.

Here we use in the last step that if w(t) is a solution, then so is w(t − τ), i.e.
time invarience. Hence all wk are weak solutions, but since they are smooth
functions, they are in fact strong solutions.

Combining these two results, we see that all limits (in the L1
loc sense) of ele-

ments of a behaviour B ∈ Ld are weak solutions to the corresponding equation,
and all weak L1

loc-solutions can be approximated by smooth (and hence strong)
solutions. In this sense the set of (weak) L1

loc-solutions can be seen as a closure
of the behaviour. We will hence write B for the set of weak solutions.

Another consequence of these results is that the set of weak solutions is
completely determined by the set of strong solutions. For this reason we can
in many theorems focus on proving them for the smooth solutions, the case for
weak solutions following simply by taking limits. Of course not all properties
are preserved when taking limits, and we will comment on which results hold
for weak solutions and which do not throughout the text.

2.2 Kernel representations of B ∈ Ld

As stated earlier, the behaviours of Ld are solutions sets to differential equations
of the form R

(
d
dt

)
w = 0. We can view R

(
d
dt

)
as a map from C∞(R,Rd) into

C∞(R,Re) and then the behaviour B is the kernel of this map. Hence we call this
a kernel representation of B, and write B = kerR

(
d
dt

)
. It should be noted that

while a polynomial matrix R ∈ Re×d[ξ] completely determines a behaviour B,
the converse is not true. For example, we could have two polynomial matrices
with different number of rows giving the same behaviour. To see how, take
a matrix R ∈ Re×d[ξ] and make a new matrix R̃ ∈ R(e+1)×d[ξ] by setting

R̃ =

(
R
r

)
, where r is any of the rows of R multiplied by a real polynomial, then

R and R̃ will define the same behaviour. This is because the new row added to
R̃ makes no new requirements of the solutions. These kind of vacuous rows can
in fact be removed, and we will define a notion of matrix rank to handle this.

However even polynomial matrices of the same size can define the same
behaviour without being equal. To describe these relations we need to define a
class of very useful polynomial matrices.

Definition 2.5. A polynomial matrix U ∈ Re×e[ξ] is unimodular if there is a
polynomial matrix U−1 ∈ Re×e[ξ] such that U(ξ)U−1(ξ) = I.
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Unimodular matrices can be characterized by the fact that their determi-
nants are non-zero constants. Indeed, if U is unimodular, then the determinants
of both U and U−1 are polynomials and det(U−1) = 1

detU . Hence detU must be
a non-zero constant polynomial. Conversely, if detU(ξ) is a non-zero constant,
then the inverse of U is given by U−1(ξ) = (detU)−1adjU , where adjU is the
adjugate of U . U−1 is a polynomial matrix since adjU is polynomial and detU
is constant.

Examples of unimodular matrices include invertible constant matrices and
upper (or lower) triangular matrices with non-zero constants on the main diag-
onal since their determinants are non-zero constants. A particular example that
we will make liberal use of are permutation matrices. As we will soon show,
unimodular matrices are very useful to transition between different matrices
that represent the same behaviour.

Proposition 2.6. Suppose R1, R2 ∈ Re×d[ξ] and that there is a unimodular
matrix U ∈ Re×e[ξ] such that R1 = UR2. Then kerR1

(
d
dt

)
= kerR2

(
d
dt

)
.

Proof. Whenever w ∈ kerR2

(
d
dt

)
, we have R1

(
d
dt

)
w = U

(
d
dt

)
R2

(
d
dt

)
w =

U
(
d
dt

)
0 = 0, so kerR2

(
d
dt

)
⊆ kerR1

(
d
dt

)
. Switching the roles of R1 and R2

and using that R2 = U−1R1, shows the opposite inclusion.

The converse of this statement is also true, but we will have to postpone the
proof somewhat (see Theorem 2.19). If we instead multiply from the right the
behaviour does change, but in a predictable way. Suppose R1, R2 ∈ Re×d[ξ] and
U ∈ Rd×d[ξ] unimodular such that R1 = R2U . If w ∈ kerR1

(
d
dt

)
, then

R2

(
d

dt

)(
U

(
d

dt

)
w

)
= 0

so we see that U
(
d
dt

)
w ∈ kerR2

(
d
dt

)
. So we can view U

(
d
dt

)
as a map

U

(
d

dt

)
: kerR1

(
d

dt

)
→ kerR2

(
d

dt

)

w 7→ U

(
d

dt

)
w.

This map is linear and hence a homomorphism, and in fact it is an isomorphism,
its inverse given simply by multiplying by U−1

(
d
dt

)
. The most important use

of this is that we can permute the components of w, and simultaneously the
columns of R. We are then technically changing to a different behaviour, but
they are isomorphic so the change is not so significant.

When looking at weak solutions the situation is a bit more complicated. For
multiplication with unimodular matrices from the left it does not matter if the
external signals w are smooth or just locally integrable, the argument in the
proposition above works either way. When multiplying from the right however,
we run into a problem. If w is locally integrable, U

(
d
dt

)
w may not be locally

integrable (the derivatives here are taken in the weak sense). Hence U
(
d
dt

)
does
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not give an isomorphism between the sets of weak solutions of R1

(
d
dt

)
w = 0

and R2

(
d
dt

)
w = 0, even if R1 = R2U .

We can remedy this problem using the fact that the weak solutions are com-
pletely determined by the strong solutions. If B1 = kerR1

(
d
dt

)
,B2 = kerR2

(
d
dt

)

denote the sets of strong solutions, and R1 = R2U , then while

U

(
d

dt

)
B1 6= B2

in general, we do have

U

(
d

dt

)
B1 = B2.

So while we cannot extend the isomorphism to weak solutions, we can get around
the problem quite easily. Next we prove a technical lemma that is useful when
we want to multiply with unimodular matrices. The proof is from [6].

Lemma 2.7. Let p1, . . . , pd ∈ R[ξ] be polynomials with no common factor and
let p be the row vector p = (p1, . . . , pd). Then there is a unimodular matrix
U ∈ Rd×d[ξ] such that the last row of U is p.

Since permutation of rows can be done by multiplying with a unimodular
matrix we can actually get p as any row of U we want. Also, by transposing U
we can get a unimodular matrix with a column specified by pT instead.

Proof. Pick pj with minimal degree. We now perform division with remainder
on the other pi:s, that is we find qi, ri ∈ R[ξ] such that

pi = qipj + ri

and deg(ri) <deg(pj) for all i 6= j. If we set rj = pj and r = (r1, . . . , rd) then
this means that we have the equality pV1 = r where

V1 =




1
. . .

1
−q1 . . . −qj−1 1 −qj+1 . . . −qd

1
. . .

1




where the qi:s are on the j:th row. Note that detV1 = 1 and hence V1 is
unimodular. Also, the minimal degree of the ri:s is strictly smaller than that of
the pi:s. Also the maximal degree of the ri:s is the minimal degree of the pi:s.

We can now repeat the process, giving us a sequence of unimodular matrices
V1, V2, . . . , Vk. Since the degrees of the remainders decrease in every step, after
a finite number, say k steps we have

pV1 · · ·Vk = (0, . . . , 0, r̃, 0, . . . , 0)

13



for some r̃ ∈ R[ξ]. Since permutation matrices are unimodular we can choose
Vk+1 such that

pV1 · · ·Vk+1 = (0, . . . , 0, r̃).

If we now set Ũ = (V1 · · ·Vk+1)−1, then we have p = (0, . . . , 0, r̃)Ũ and so we see
that r̃ divides all of the pi:s. The pi:s have no common factor by assumption,
so r̃ must be constant. Setting U = 1

r̃ Ũ , we get

p = (0, . . . , 0, 1)U,

which means that the last row of U is p.

For R ∈ Re×d[ξ] we define its rank, denoted rk(R), as its rank as a matrix
over the field of real rational functions. Hence the rows rk of R are considered
linearly dependent if there are real rational functions ak, not all zero, such that

∑

k

ak(ξ)rk(ξ) = 0.

Note that by multiplying this equation by all denominators of the ak we get
some polynomials bk such that

∑

k

bk(ξ)rk(ξ) = 0.

Further we could cancel all common factors of the bk, getting some new poly-
nomials ck not all zero and with no common factors such that

∑

k

ck(ξ)rk(ξ) = 0.

Going forward, we will use this to characterize linear dependence of polynomial
vectors.

For any λ ∈ C, we let rk(R(λ)) denote the rank of R(λ) as a matrix over
C. The two notions of matrix rank for R ∈ Re×d[ξ] are related by the following
proposition.

Proposition 2.8. For any R ∈ Re×d[ξ] we have rk(R) = maxλ∈C rk(R(λ)).

Proof. Let rk(ξ) denote the k:th row of R(ξ). If some of the rows of R(ξ) are
linearly dependent, then there are ak ∈ R[ξ] with no common factors such that

∑

k

ak(ξ)rk(ξ) = 0

For any λ ∈ C we thus have

∑

k

ak(λ)rk(λ) = 0

14



and since the ak have no common roots, not all ak(λ) are zero. Hence the
corresponding rows of R(λ) are also linearly dependent, and so rk(R) ≥ rk(R(λ))
for every λ ∈ C.

Next we note that for any linear combination
∑
k ak(ξ)rk(ξ) of some rows

of R(ξ), with none of the polynomials ak the zero polynomial, we can find some
λ ∈ C that is not the root of any of the polynomials ak nor the root of any
component of R(ξ). For such λ we can have

∑

k

ak(λ)rk(λ) = 0

only if ∑

k

ak(ξ)rk(ξ) = 0.

Hence if some rows of R(λ) are linearly dependent for all λ ∈ C, then the
corresponding rows of R(ξ) are also linearly dependent. Thus there is some
λ ∈ C such that rk(R) = rk(R(λ)), and so rk(R) = maxλ∈C rk(R(λ)).

Going forward, if we just say ”rank” of a polynomial matrix we are referring
to its rank as a matrix of real rational functions. When we want to refer to rank
over C we will always write out the dependence on the complex variable λ.

Example 2.9. Consider the matrix

R(ξ) =




(ξ − 3)(ξ + 1) 0 ξ2

0 ξ + 1 ξ + 3
0 0 2


 .

Looking at the polynomials on the main diagonal, we find that for λ ∈ C

rk(R(λ)) =





1 if λ = −1

2 if λ = 3

3 otherwise

.

It then follows from Proposition 2.8 that rk(R) = 3 in this case.

From Proposition 2.8 it is easy to deduce that multiplication by unimodular
matrices leaves rank unchanged. Indeed if U and V are unimodular, then for
every λ ∈ C

rk(U(λ)R(λ)V (λ)) = rk(R(λ))

since U(λ) and V (λ) are always invertible matrices over C. Hence the maximum
of both sides over all λ ∈ C is also the same, so the rank of R is preserved. An-
other thing we can do with a polynomial matrix that leaves its rank unchanged
is to remove any row with just zeros. By the following result from [6], multi-
plying by unimodular matrices allows us to find a full row rank representation
from any kernel representation.
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Proposition 2.10. For any R ∈ Re×d[ξ], there is a unimodular U ∈ Re×e[ξ]
and R̃ ∈ Rrk(R)×d[ξ] of full row rank such that

UR =

(
R̃
0

)
,

where in the right hand side we have e− rk(R) zero-rows. Furthermore we have
kerR

(
d
dt

)
= ker R̃

(
d
dt

)

Proof. If rk(R) = e then there is nothing to prove. If rk(R) < e, then there are
polynomials ak, not all zero and with no common factors, such that

e∑

k=1

ak(ξ)rk(ξ) = 0,

where rk denotes the kth row of R. Now by Lemma 2.7 there is a unimodular
U0 such that its last row is (a1, . . . , ae). Then

U0R =

(
R1

0

)

for some R1 ∈ R(e−1)×d[ξ]. Note that rk(R) = rk

(
R1

0

)
= rk(R1) since deleting

a zero-row does not change the rank of a matrix. Repeating the process for
R1 gives us another unimodular matrix U1 ∈ R(e−1)×(e−1)[ξ] and matrix R2 ∈
R(e−2)×d[ξ] such that

U1R1 =

(
R2

0

)

and rk(R1) = rk(R2). Note that then

(
U1

1

)
U0R =



R2

0
0


 ,

and

(
U1

1

)
U0 is unimodular. After repeating the process e− rk(R) times we

can take R̃ = Re−rk(R) which then has rk(R) rows and rk
(
R̃
)

= rk(R). In each

step we only multiply from the left by a unimodular matrix, hence R̃ is on the
desired form.

That kerR = ker R̃ now follows from Proposition 2.6 and the fact that
deleting zero-rows does not change the set of solutions.

The rank of R ∈ Re×d[ξ] is important as it describes the minimum number
of equations needed to describe the corresponding behaviour. We will soon show
that this is really a property of the behaviour, that is, the rank is always the
same for matrices that define the same behaviour.
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The next result (also from [6]) will be very important going forward. It tells
us that using unimodular matrices we can get a triangular or diagonal form.
This allows us to reduce many problems to the one dimensional case and this
is a standard method used in many proofs when working in the behavioural
framework.

Proposition 2.11. Let R ∈ Re×d[ξ]. Then the following holds

(i) There is a unimodular U ∈ Re×e[ξ] such that UR is an upper triangular
polynomial matrix.

(ii) There are unimodular U ∈ Re×e[ξ], V ∈ Rd×d[ξ] such that URV is a
diagonal polynomial matrix.

Proof. The proof is based on using division with remainder, similar to the proof
of Lemma 2.7. In that proof we saw that choosing an element of a row and
performing division with remainder on the other elements of the row constitutes
multiplying by a unimodular matrix from the right. Note also that performing
division with remainder on the column of a given element is instead given by
multiplication by a unimodular matrix from the left.

(i) The proof is by induction on d. Consider first the case d = 1. If R only
has zeroes then there is nothing to prove. Suppose instead that there
are some non-zero elements of R. Find the element of lowest non-zero
degree in R and perform division with remainder on the other elements.
Repeat this until there is only one non-zero element left. Since the lowest
non-zero degree of elements decreases in every step this will take only a
finite number of steps. Finally we permute the rows so that the non-zero
element is in the first row. Since all these manipulations are done by
multiplication with unimodular matrices from the left this proves the case
d = 1.

Next we suppose the statement holds for all matrices with less than d
columns and show that it then also holds for matrices with d columns.
For R ∈ Re×d[ξ], apply the same algorithm we used for the d = 1 case on
the first column of R, but multiplying all of R by the unimodular matrices
in the process. Hence there is unimodular U1 ∈ Re×e[ξ] such that the
first column of U1R is non-zero only in the first row. Now let R̃ be the
submatrix of U1R where we have deleted the first row and first column.
By the induction hypothesis there is unimodular U2 ∈ R(e−1)×(e−1)[ξ] such
that U2R̃ is upper triangular. Setting

U =

(
1 0
0 U2

)
U1

we have that UR is upper triangular, and we are done.

(ii) We begin with the case when R is square and has full rank. Find a non-
zero element of minimal degree in R and perform division with remainder
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on the corresponding row and column. We now repeat this step. Since the
minimal degree of non-zero elements decreases in each step we will, after a
finite number of steps, find that some element is the only non-zero element
in its row and its column. We then continue the algorithm on the rest of
the rows and columns. After a finite number of steps we hence arrive at
a matrix wherein every row and every column has exactly one non-zero
element (since R has full rank no row or column can be all zeroes). We
can then permute the rows and columns to get a diagonal matrix. Each
of these steps are given by multiplication by unimodular matrices, either
from the right or from the left, and hence the statement is proven for the
square and full rank case.

Now consider the general case R ∈ Re×d[ξ]. By Proposition 2.10 there is
a unimodular matrix U1 ∈ Re×e[ξ] such that

U1R =

(
R1

0

)

where R1 has rk(R) rows. Now apply Proposition 2.10 to (U1R)T , giving
us V1 such that

V1(U1R)T =

(
RT2 0
0 0

)

where RT2 has rk(R) rows and columns and is of full rank. Transposing
again we have

U1RV
T
1 =

(
R2 0
0 0

)

Since R2 is square and of full rank there are unimodular matrices U2, V2 ∈
Rrk(R)×rk(R)[ξ] such that U2R2V2 is diagonal. Then

(
U2 0
0 I

)
U1RV

T
1

(
V2 0
0 I

)
,

where I denotes identity matrices of appropriate sizes, is diagonal and so
we are done.

We call elements w of a behaviour an external signal. The name suggests
that w describes some sort of interaction that a system has with the outside.
The idea is usually that some of the components of w describe input imposed
on the system, and the other components describe some output from the system
that we can observe. How this split can or should be done is often guided by
the physical interpretation of the model. A more precise definition is as follows.

For B ∈ Ld, partition w ∈ B as w =

(
u
y

)
, possibly rearranging w first. Here

u ∈ C∞(R,Rp), y ∈ C∞(R,Rq) and p + q = d. Such a decomposition is an
input/output (i/o) decomposition, with u the input (or control), y the output,
if the following holds:
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(i) u is free; that is, for every u ∈ C∞(R,Rp) there is y ∈ C∞(R,Rq) such

that

(
u
y

)
∈ B

(ii) u is maximally free; that is, given u ∈ C∞(R,Rp) none of the components

of y can be chosen freely and still have

(
u
y

)
∈ B.

If B = kerR
(
d
dt

)
, then there is a one to one correspondence of partitioning w as

(u, y) and partioning the columns of R as R(ξ) =
(
−Q(ξ) P (ξ)

)
so that the

equation

P

(
d

dt

)
y = Q

(
d

dt

)
u (4)

holds. Equation (4) is then called an i/o representation of B. In fact whether a
decomposition of w is an i/o decomposition can be characterized by properties
of the matrices P and Q in the decomposition of R, see Theorem 2.18 below.
We will speak of i/o decompositions in terms of w and in terms of the columns
of R somewhat interchangeably.

Decompositions into input/output are in general not unique. A simple ex-
ample to illustrate this is the behaviour given by the equation w1 = w2. Here
either w1 or w2 could be chosen as input, but by doing so the other is completely
determined. Hence one variable must be input and one output, but either choice
is fine.

The output can not be chosen freely, meaning it is affected by the choice of
input. The input does not in general completely determine the output as the
output also depends on the past of the signal (usually described using initial
conditions). There is still a direction of the relation between input and output,
from the former to the latter.

This causal direction is sometimes wanted, and sometimes not. Consider for
example a simple circuit with a resistor with some resistance R. The voltage V
and current I through the circuit are related by Ohm’s law:

V = IR.

Either one of V, I could be input and the other output, and both choices imply
a causal direction. This holds both mathematically in terms of the equations,
and in the sense that we could control either voltage or current in a circuit.
This demonstrates the usefulness of foregoing the labels input and output in
the behavioural framework. Ohm’s law does not impose any kind of causality,
and so our model should not need to either.

Note that we can have either p or q equal to zero. If q = 0, then all of the
components of w can be chosen freely, i.e. B = C∞(R,Rp). This case is of
course not very interesting by itself, but once we introduce latent variables in
the next section it can be of interest. In the case p = 0, there is no input, no
outside influence on the system. The system, or equivalently the behaviour, is
then said to be autonomous. Autonomous behaviours can be given the following
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behavioural definition. We will soon show that this implies that we must have
p = 0 in the case of Ld-systems.

Definition 2.12. A behaviour B is autonomous if for every w1, w2 ∈ B
(
∀t ≤ 0w1(t) = w2(t)

)
=⇒ w1 = w2.

In an autonomous behaviour the future of the behaviour is completely deter-
mined by its past. If B is linear, and setting w = w1−w2 this can be formulated
as

(
∀t ≤ 0w(t) = 0

)
=⇒ w = 0.

In physical systems this can be interpreted as the notion that without any
external forces (inputs) a system at rest will remain at rest.

It turns out that if we have a square polynomial matrix with full rank, then
its kernel can be completely described using the determinant of the matrix.

Proposition 2.13. Suppose P ∈ Rq×q[ξ] has full rank and

detP (ξ) = c
N∏

k=1

(ξ − λk)nk

for some c ∈ R \ {0}. Then every complex solution of P
(
d
dt

)
w = 0 is of the

form

w(t) =
N∑

k=1

nk−1∑

l=0

bk,lt
leλkt (5)

for some bk,l ∈ Cd satisfying

nk−1∑

l=m

(
l

m

)
P (l−m)(λk)bk,l = 0 (6)

for every k = 1, . . . , N and every m = 0, . . . , nk−1. Furthermore the dimension
of kerP

(
d
dt

)
is n := deg detP (ξ).

Here the λk:s are the roots of detP (ξ), and the nk:s their multiplicities. The
number N is the number of unique roots of detP (ξ), and P (i)(ξ) denotes the
ith derivative of P with respect to ξ. Note also that since P is square, that
it has full rank is equivalent to detP (ξ) being non-zero. This ensures that the
determinant can be written on the desired form with non-zero c. Since the roots
λk will in general be complex numbers, when working with autonomous systems
it is often convenient to work with complex valued solutions. To recover the
real valued solutions we need only take real parts of the complex ones.

The scalar case of this statement is a classic result from ODE theory, and
can be found in most textbooks on the subject, for example [1]. Note that in
this case we have P (l−m)(λk) = 0 for all k and all l −m < nk, and so equation
(6) is satisfied automatically. In other words the coefficients bk,l can be chosen
arbitrarily in the scalar case. The proof of the general case is from [6].
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Proof. Let B be the complex solution set to P
(
d
dt

)
w = 0. The first step of the

proof is to show that the dimension of B over C is equal to n. We have already
covered the case q = 1, let us now look at the case q ≥ 2.

By Proposition 2.11 there are unimodular matrices U, V ∈ Rq×q[ξ] such that
UPV = diag(d1(ξ), . . . , dq(ξ)) =: D. Let B′ = V −1

(
d
dt

)
B, and note that the

solution set of the i:th component of w ∈ B′ has dimension equal to deg di(ξ). It
follows that the dimension of B′ is equal to

∑q
i=1 deg di(ξ) = deg detD(ξ). Since

detP (ξ) and detD(ξ) differ only by a constant factor given by the determinants
of U and V , they have the same degree. Furthermore B and B′ are isomorphic
and hence have the same dimension, and so the dimension of B is equal to n.

The next step is to note that the elements of B′ must be of the form

N∑

k=1

nk−1∑

l=0

b̃k,lt
leλkt

where b̃k,l ∈ Cd. This is because since D is diagonal, the equation D
(
d
dt

)
w = 0

splits into q separated scalar equations, so we can refer back to the scalar case.
Hence every w ∈ B is of the form

V

(
d

dt

) N∑

k=1

nk−1∑

l=0

b̃k,lt
leλkt =

N∑

k=1

nk−1∑

l=0

bk,lt
leλkt.

Finally we show that the solutions must satisfy (6). The key here is that

for any integer l ≥ 0 we have tleλkt = dl

dλlk
eλkt and the fact that differentiation

with respect to λk commutes with differentiation with respect to t. For any w
of the form (5) we have

P

(
d

dt

)
w =

N∑

k=1

nk−1∑

l=0

P

(
d

dt

)
bk,lt

leλkt =
N∑

k=1

nk−1∑

l=0

P

(
d

dt

)
bk,l

dl

dλlk
(eλkt) =

=
N∑

k=1

nk−1∑

l=0

dl

dλlk

(
P

(
d

dt

)
bk,le

λkt

)
=

N∑

k=1

nk−1∑

l=0

dl

dλlk

(
P (λk)bk,le

λkt
)

=

=
N∑

k=1

nk−1∑

l=0

l∑

m=0

(
l

m

)
P (l−m)(λk)bk,lt

meλkt =

=
N∑

k=1

nk−1∑

m=0

(
nk−1∑

l=m

(
l

m

)
P (l−m)(λk)bk,l

)
tmeλkt.

Since tmeλkt are linearly independent for different m and k, P
(
d
dt

)
w = 0 if and

only if (6) holds for every k = 1, . . . , N and every m = 0, . . . , nk − 1.

Corollary 2.14. If P ∈ Rq×q[ξ] has full rank, then B = kerP
(
d
dt

)
is au-

tonomous.
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Proof. Since B is linear we need to show that if for w ∈ kerP
(
d
dt

)
, w(t) = 0 for

t ≤ 0, then w = 0. By Proposition 2.13 any w ∈ B is of the form (5). Note that
tleλkt are linearly independent elements of C∞(R,R). Hence if w(t) = 0 for
t ≤ 0, then all coefficient vectors bk,l must be equal to zero, and so w = 0.

Remark 2.15. A kind of converse of Corollary 2.14 also holds. If B ∈ Lq

is autonomous, then B = kerP
(
d
dt

)
for some P ∈ Rq×q[ξ] with full rank. In

particular the elements of autonomous behaviours are always on the form (5).
We have already seen that every behaviour has a kernel representation that has
full row rank. If such a representation is not square (has fewer than q rows)
then at least one component of the external signal can be chosen as input. This
will be proven in Theorem 2.18 below. Since inputs are chosen freely they are
not determined by the past, so such systems can not be autonomous.

Remark 2.16. For any solution of the form (5), if we single out the terms corre-
sponding to a specific root λk then this is also a solution. In fact there are always
nk linearly independent solutions involving only the root λk, for each k. In the
scalar case these must involve all the elements of S = {eλkt, teλkt, . . . , thk−1eλkt}.

In the more general case it matters which of the polynomials di that λk
is a root of. If λk is only the root of one of the di:s, then to get nk linearly
independent solutions we again need all the terms of S. If λk has at most
multiplicity one in each of the di:s, then we can find nk linearly independent
choices for bk,0. Hence all solutions involving just λk are in this case on the
form bk,0e

λkt.

It is worth noting that for autonomous systems there are virtually no weak
solutions that are not also strong solutions. As we saw in the proof above,
autonomous behaviours are finite dimensional, and hence closed. Since in L1

loc

we identify functions that are equal almost everywhere we can find weak solu-
tions that are equal to a smooth solution almost everywhere, but not necessarily
everywhere. We can however not find any other weak solutions.

Let us now return to a matrix R ∈ Rq×d[ξ] of full row rank. The rank must
then necessarily be q satisfying q ≤ d. The idea is now choosing q linearly
independent columns to form P (possibly rearranging the columns first), and
the corresponding components of w are the output. The rest of the columns
form −Q and the corresponding components of w will be the free variables, i.e.
the input.

For the smooth case it is enough to choose P such that detP (ξ) is non
zero, however if we want to generalize this to the L1

loc-case we need another
assumption, namely that P−1(ξ)Q(ξ) is a matrix of proper rational functions.
A rational function is proper if the degree of its numerator does not exceed
the degree of the denominator. The matrix P−1(ξ)Q(ξ) is called the transfer
function and is important in frequency space considerations.

The case when P−1(ξ)Q(ξ) is a matrix of proper rational functions is still
important to us as we will use it to prove the more general case. The key here
is for proper rational functions we can use a partial fraction decomposition to
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construct an output for any given input. The properness property ensures that
in the decomposition ξ is only present in the denominators.

Lemma 2.17. Suppose P ∈ Rq×q[ξ], Q ∈ Rq×p[ξ] such that detP (ξ) 6= 0 and
P−1(ξ)Q(ξ) is a matrix of proper rational functions. If the partial fraction
decomposition of P−1(ξ)Q(ξ) is

P−1(ξ)Q(ξ) = A0 +
N∑

k=1

nk−1∑

l=0

Ak,l
(ξ − λk)l

,

then any pair u ∈ C∞(R,Rp) and

yp(t) := A0u(t) +

N∑

k=1

nk−1∑

l=0

Ak,l

∫ t

0

(t− τ)l−1

(l − 1)!
eλk(t−τ)u(τ)dτ

satisfy P
(
d
dt

)
yp = Q

(
d
dt

)
u.

Like before, the λk:s are the roots of detP (ξ), nk:s their multiplicities, and
N is the number of unique roots. Since the roots may be non-real, the coefficient
matrices A0, Ak,l are complex valued q×p matrices. Because of this the solution
yp we find may not be real valued, but taking the real (or imaginary) part, we
get a real i/o decomposition solving the same equation. For the proof we refer
to [6].

The subscript p in yp denotes a particular solution. The idea here is that
if (u, yp) satisfies P

(
d
dt

)
yp = Q

(
d
dt

)
u and y is another output with the same

input u, i.e. they satisfy equation (4), then yh := y − yp satisfies P
(
d
dt

)
yh = 0.

We can view yh as a homogeneous solution, in the sense that in the equation
P
(
d
dt

)
yh = 0 every term is a constant times either yh or one of its derivatives.

Hence any (u, y) that satisfy equation (4) can be decomposed into a homogenous
part and a particular part that depends on u,

(u, y) = (0, yh) + (u, yp).

This decomposition can be done for all of B, so B can be decomposed as a direct
sum. Since P is square and of full rank, Baut := kerP

(
d
dt

)
is autonomous. The

other part we denote Bcont, the controllable part. So B = Baut + Bcont. We will
return to this decomposition when discussing controllability.

For any polynomial matrix R with full row rank we can always choose rk(R)
columns to form P , so every Ld-system admits an i/o representation, and in
fact all i/o representations are on this form.

Theorem 2.18. Suppose R ∈ Re×d[ξ] is of full rank and decompose R (possibly
rearranging the columns) as R(ξ) =

(
−Q(ξ) P (ξ)

)
and make the corresponding

decomposition of w as w =

(
u
y

)
. Then this is an i/o decomposition if and only

if P is square and detP (ξ) 6= 0. In particular, the output y must have rk(R)
components.
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The ”if” part of the following proof is from [6].

Proof. We begin with the ”if” part. If P−1(ξ)Q(ξ) is a matrix of proper rational
functions then by Lemma 2.17 there is for every u a y satisfying (4), so u is free
in this case. If P−1(ξ)Q(ξ) is not a matrix of proper rational functions, then
there is k ∈ N such that ξ−kP−1(ξ)Q(ξ) is a matrix of proper rational functions.
Setting P̃ (ξ) = ξkP (ξ), there is then, by applying Lemma 2.17 to the pair P̃ , Q,

for every u, a ỹp such that P̃
(
d
dt

)
ỹp = Q

(
d
dt

)
u. But then yp := dk

dtk
ỹp satisfies

P
(
d
dt

)
yp = Q

(
d
dt

)
u, so u can be chosen freely in this case as well.

To see that u is maximally free, suppose that (u, y1) and (u, y2) are two
solutions to (4). By linearity (0, y1 − y2) is then also a solution to (4), which
in this case reduces to P

(
d
dt

)
(y1 − y2) = 0. Since detP (ξ) 6= 0, the system

kerP
(
d
dt

)
is autonomous, and hence the possible solutions y1−y2 are completely

determined by the roots of P . In particular no components of y1 − y2 can be
chosen freely.

For the ”only if” part we assume that R(ξ) =
(
−Q(ξ) P (ξ)

)
is an i/o

decomposition and consider a few different cases regarding the columns of P .

(i) Consider first the case when rk(P ) ≥ rk(R) and P has more than rk(R)
columns total. If we then make a new choice of rk(R) linearly independent
columns among those in P , then by the if part of the theorem, this new
choice gives us an i/o representation. However, when making this change
some outputs are turned into inputs. As outputs these could not be free,
but as inputs they must be free. Since the behaviour remains the same,
we have a contradiction.

(ii) Next we consider the case when rk(P ) < rk(R) and P has more than rk(P )
columns total, and consider i/o pairs of the form (0, y). They must satisfy
P
(
d
dt

)
y = 0. By selecting rk(P ) linearly independent columns we can split

P and y as P (ξ) =
(
−Q̃(ξ) P̃ (ξ)

)
and y =

(
ũ
ỹ

)
and by the if part of the

theorem this split gives ũ, ỹ as an i/o representation of kerP
(
d
dt

)
. This

means that ũ, some of the components of y can be chosen freely, which is
a contradiction since y is the output of kerR

(
d
dt

)
.

(iii) Finally consider the case when rk(P ) < rk(R) and P has full column rank.
We then form P̃ by taking the columns of P and switching some columns
of Q to P̃ in such a way that P̃ has rk(R) linearly independent columns.
Then we get a new i/o pair ũ, ỹ but some of the components of ỹ were
part of the original output u so they should be free. But then ũ is not
maximally free, a contradiction.

The only possibility left is that rk(P ) = rk(R) and P has full column rank, but
that means precisely that P is square and detP (ξ) 6= 0, and so the proof is
complete.

With these results we are finally ready to prove the converse of Proposition
2.6, also from [6].
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Theorem 2.19. Suppose R1, R2 ∈ Re×d[ξ] and let B1 = kerR1

(
d
dt

)
and B2 =

kerR2

(
d
dt

)
. Then B1 = B2 if and only if there is a unimodular matrix U ∈

Re×e[ξ] such that R1 = UR2.

Proof. The if part was proven in Proposition 2.6. For the only if part, we will
divide the proof in two parts.

(i) Consider first the case when R1, R2 are square and R1 of full rank. We
then proceed by induction of the size d.

For d = 1, the system given by R1

(
d
dt

)
w = 0 is autonomous, and hence

the solutions w are given explicitly by the roots of R1(ξ). Since R2 defines
the same system, it must have the same roots, i.e. there is a constant
U ∈ R such that R1 = UR2, proving the statement for d = 1.

Next we assume that the statement holds for matrices of size d and show
that it then also holds for size d + 1. The first step is to note that by
Proposition 2.11, by multiplying by a unimodular matrix from the left,
Ri, i ∈ {1, 2}, can be assumed to be upper triangular, so

Ri =

(
R

(i)
11 R

(i)
12

0 R
(i)
22

)

where R
(i)
11 ∈ Rd×d[ξ], R

(i)
12 ∈ Rd×1[ξ], R

(i)
22 ∈ R[ξ].

Now we also decompose w as w =

(
w1

w2

)
so that w2 is scalar valued. Then

for any

(
w1

0

)
∈ B we have

R
(1)
11

(
d

dt

)
w1 = R

(2)
11

(
d

dt

)
w1 = 0

and so by the induction hypothesis there is unimodular U11 such that

R
(1)
11 = U11R

(2)
11 . Also, for any

(
0
w2

)
∈ B we get

R
(1)
22

(
d

dt

)
w2 = R

(2)
22

(
d

dt

)
w2 = 0

so by the d = 1 case there is a non-zero constant U22 such that R
(1)
22 =

U22R
(2)
22 . So far we have concluded that

R1 =

(
U11R

(2)
11 R

(1)
12

0 U22R
(2)
22

)
.

Looking only at the first d rows of R1 and noting that detU11R
(2)
11 6= 0

there is by Theorem 2.18 for every w2 a w1 so that

U11R
(2)
11

(
d

dt

)
w1 +R

(1)
12

(
d

dt

)
w2 = 0
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(w2 is the free input, w1 the output). Hence for any w2 ∈ kerR
(2)
22 there

is w1 so that

(
w1

w2

)
∈ B. For such w1, w2 we have

U11R
(2)
11

(
d

dt

)
w1 +R

(1)
12

(
d

dt

)
w2 = 0

R
(2)
11

(
d

dt

)
w1 +R

(2)
12

(
d

dt

)
w2 = 0.

Taking the first of these equations and subtracting U11 times the second
we get (

R
(1)
12 − U11R

(2)
12

)( d

dt

)
w2 = 0. (7)

In other words R
(2)
22

(
d
dt

)
w2 = 0 implies that (7) holds. This means that

R
(2)
22 divides every element of R

(1)
12 − U11R

(2)
12 , so there is a polynomial

column vector U12 such that U12R
(2)
22 = R

(1)
12 −U11R

(2)
12 . But then we have

R1 =

(
U11 U12

0 U22

)

︸ ︷︷ ︸
U

R2

and since U11 and U22 are unimodular, so is U . The statement is then
proven for the (d+ 1)× (d+ 1) case, and by induction it holds for every d.

(ii) Now we look at the general case. By Proposition 2.10, by multiplication
by unimodular matrix R1, R2 can be assumed to be of the form

Ri =

(
R̃i
0

)

with R̃i full row rank. Now decompose R̃1 as R̃1 =
(
−Q̃1 P̃1

)
so that P̃1

is square and of full rank (by possibly rearranging the columns) and make

the corresponding decompositions w =

(
w1

w2

)
and R̃2 =

(
−Q̃2 P̃2

)
. Note

that if w2 ∈ ker P̃1, then

(
0
w2

)
∈ B and hence also w2 ∈ ker P̃2 and vice

versa. It then follows from part (i) of the proof that there is a unimodular
matrix U such that P̃1 = UP̃2.

By Theorem 2.18 this decomposition is an i/o decomposition for R̃1 so
there is for every w1 a w2 so that w ∈ B. Hence for every w1 we can find
w2 so that

P̃1

(
d

dt

)
w2 = Q̃1

(
d

dt

)
w1, P̃2

(
d

dt

)
w2 = Q̃2

(
d

dt

)
w1.
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Taking the first equation minus U times the second gives

(
Q̃1 − UQ̃2

)( d

dt

)
w1 = 0.

Since w1 was arbitrary, this implies that Q̃1 = UQ̃2, and so R̃1 = UR̃2.
But then

R1 =

(
U 0
0 I

)
R2,

where I is an identity matrix of appropriate size, and the statement is
proven.

With this theorem we can fully explain when two polynomial matrices define
the same behaviour.

Corollary 2.20. Let R1 ∈ Re1×d[ξ] and R2 ∈ Re2×d[ξ] where e1 ≤ e2. Then
R1 defines the same behaviour as R2 if and only if R2 can be recovered from R1

by first possibly adding some zero rows to R1 and then multiplying R1 from the
left by a unimodular matrix.

Proof. The if direction follows from the fact that adding zero rows or multiplying
from the left by a unimodular matrix has no impact on the resulting behaviour.
For the only if direction, note that we can always add e2−e1 zero rows to R1. A
suitable unimodular matrix to multiply with to get R2 then exists by Theorem
2.19.

As we alluded to earlier, it also follows that different matrices that represent
the same behaviour always have the same rank, since adding zero rows and
multiplication by unimodular matrix does not change the rank. The rank is
therefore in a sense a property of the behaviour, describing the smallest number
of equations that can describe the behaviour.

2.3 Latent variable representations of B ∈ Ld

We will now look at another representation, the latent variable representation.
The idea here is that it may be difficult to formulate differential equations using
only the external signal w, say from known laws of physics. It can then help
to define some new variables, latent variables, with which the formulation of
equations becomes easier, even if the latent variables themselves are of little to
no interest. If w ∈ B if and only if there is l ∈ C∞(R,Rn) such that

R

(
d

dt

)
w = M

(
d

dt

)
l

for some some R ∈ Re×d[ξ],M ∈ Re×n[ξ], then we say that this is a latent
variable representation of B with l as the latent variable. Every kernel repre-
sentation can of course be seen as a latent variable representation with M = 0.
However the latent variable representation is not actually more general because
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V

I

C

L

R

Figure 1: RLC circuit.

we can essentially eliminate the latent variable to recover a kernel representation
for B. To eliminate l we first use Proposition 2.10 to find a unimodular matrix
U to multiply with so that we get UM on the form

UM =

(
M̃
0

)

with M̃ having full row rank. By a suitable decomposition of UR =

(
R1

R2

)
we

can write this as

R1

(
d

dt

)
w = M̃

(
d

dt

)
l (8)

R2

(
d

dt

)
w = 0. (9)

Equation (9) of course puts some constraints on w, but equation (8) does not

in fact restrict w in any way. To see this note that by choosing rk
(
M̃
)

columns

of M̃ and a corresponding choice of components of l, these can be viewed as
outputs in the sense of Theorem 2.18. The rest of the components of l as well as
w are then the inputs and can hence be chosen freely and still satisfy equation
(9). Therefore R2 gives us a kernel representation for B. Let us demonstrate
the procedure with an example.

Example 2.21. Consider the RLC circuit shown in Figure 1. We are interested
in how the voltage V (t) across the external port and the current I(t) through the
external port vary over time. In the circuit we have a resistor with resistance R,
an inductor with inductance L and a capacitor with capacitance C. The values
of R,L and C are assumed to be positive real constants.
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To derive the relation between V and I we introduce some latent variables.
We let VR, VL and VC denote the (time varying) voltages across the resistor,
inductor and capacitor respectively, and similarly IR, IL and IC denote the
currents through the respective components. These quantities must satisfy the
constitutive equations for the different components and Kirchhoffs current and
voltage laws:





VR = RIR

L d
dt (IL) = VL

C d
dt (VC) = IC ,





I = IL + IR

I = IC + IR

IC = IL

{
V = VR

V = VL + VC .

These relations can be written in matrix form as

K

(
V
I

)
= M

(
d

dt

)




VR
VL
VC
IR
IL
IC




with

K =




0 0
0 0
0 0
0 1
0 1
0 0
1 0
1 0




,M(ξ) =




1 0 0 −R 0 0
0 0 −1 0 0 Lξ
0 Cξ 0 0 −1 0
0 0 0 1 1 0
0 0 0 1 0 1
0 0 0 0 −1 1
1 0 0 0 0 0
0 1 1 0 0 0




.

We would now like to eliminate the latent variables. For a small system of low
order such as this it is perhaps easiest in practice to do this by substitutions.
To start with, use V = VR and IC = IL to eliminate VR and IC . The resulting
system is then 




V = RIR

L d
dt (IL) = VL

C d
dt (VC) = IL

I = IL + IR

V = VL + VC .

Next we use VC = V − VL and IR = V
R to eliminate VC and IR giving us





L d
dt (IL) = VL

C d
dt (V − VL) = IL

I = IL + V
R .
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Next we use IL = I − V
R to eliminate IL, giving us
{
L d
dt (I − V

R ) = VL

C d
dt (V − VL) = I − V

R .

Finally, we use substitute the left hand side of the first equation of this system
for VL in the second to get the equation

C
d

dt

(
V − L d

dt

(
I − V

R

))
= I − V

R

which is equivalent to

CL
d2V

dt2
+ CR

dV

dt
+ V − CLRd

2I

dt2
−RI = 0. (10)

We can of course also do this elimination by multiplication by a unimodular
matrix. Let

U(ξ) =




1 + CLξ2 R −CRξ CLRξ2 R 0 −1− CLξ2 −CRξ
0 0 0 1 −1 1 0 0
0 0 0 0 0 0 1 0

−LξR 0 1 −Lξ 0 0 Lξ
R 0

0 0 0 0 0 0 0 1
0 1 0 0 1 0 0 −Cξ
0 1 0 −1 1 0 0 −Cξ
0 1 0 0 0 0 0 −Cξ




,

which can easily be verified to be unimodular (it has determinant 1). This
matrix is recovered by doing the elimination steps in matrix form. The matrix
multiplication U(ξ)

(
K −M(ξ)

)
yields




−1− Cξ(R+ Lξ) R+ CLRξ2 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0
Lξ
R −Lξ 0 −1 0 0 0 0
1 0 0 1 1 0 0 0
−Cξ 1 0 −Cξ 0 1 0 0
−Cξ 0 0 −Cξ 0 0 −1 0
−Cξ 0 0 −Cξ 0 0 0 −1




The first row gives us equation (10), and the second row is all zeros so it gives
no information. The other equations give us

K̃

(
d

dt

)(
V
I

)
= M̃

(
d

dt

)




VR
VL
VC
IR
IL
IC




(11)
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with

K̃(ξ) =




1 0
Lξ
R −Lξ
1 0
−Cξ 1
−Cξ 0
−Cξ 0



, M̃(ξ) =




1 0 0 0 0 0
0 −1 0 0 0 0
0 1 1 0 0 0
0 −Cξ 0 1 0 0
0 −Cξ 0 0 −1 0
0 −Cξ 0 0 0 −1



.

Note that M̃(ξ) has determinant −1, and so is of full rank. Hence V and I can
be chosen freely in equation (11), and so the behaviour of V and I are described
totally by equation (10).

Remark 2.22. This does not work quite so smoothly in the L1
loc-case. To apply

Theorem 2.18 in this case we also need the columns of R1 and M̃ to satisfy a
properness condition, which we can not guarantee in the general case. Then
(8) puts a smoothness condition on the possible solutions w, requiring that a
certain number of (weak) derivatives of w belong to L1

loc (a vacuous condition
if w ∈ C∞).

Let us demonstrate this with an example. Take the behaviour B ∈ L2 given
by {

ẇ1 = w2

ẇ2 = l.

It is easily verified that

(w1, w2)(t) =

{
(t, 1), t ≥ 0

(0, 0), t < 0

is an L1
loc function that satisfies ẇ1 = w2. The weak derivative of w2 is in this

case the Dirac delta δ0, not an L1
loc-function, so this w2 does not satisfy ẇ2 = l.

Therefore we cannot simply eliminate the latent variable when working with
weak solutions in this case.

There are two specific types of latent variable representations that are of
particular interest, image and state representations. Image representation is
the case when R is just an identity matrix, so B is given by w such that

w = M

(
d

dt

)
l

for some l ∈ C∞(R,Rn). The name of course comes from viewing M
(
d
dt

)
as

a map from C∞(R,Rn) to C∞(R,Rd) so that B = imM
(
d
dt

)
. We will later

show that not every behaviour in Ld admits such a representation. We will
see that it is precisely those behaviours that are controllable that admit such
representations.

The other form of latent variable representation that is of particular interest
is state space representation. The latent variable is in this case instead called
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the state, and is denoted x instead of l. For this definition, we first need to
define the concatenation of functions w1, w2 ∈ C∞(R,Rd). The concatenation
of w1, w2 at time t0, denoted w1 ∧

t0
w2 is given by

w1 ∧
t0
w2(t) =

{
w1(t), t < t0

w2(t), t ≥ t0.

The following definition is very similar to Definition 2.1.

Definition 2.23. A dynamical system in state space form is a quadruple Σs =
(T ,W,X ,Bs) where T ⊆ R is the time axis, W is a set called the signal space,
X is a set called the state space and Bs ⊆ (W × X )T is the state behaviour,
which satisfies the axiom of state:

∀t0 ∈ T
(
(w1, x1), (w2, x2) ∈ Bs∧x1(t0) = x2(t0)

)
=⇒ (w1, x1)∧

t0
(w2, x2) ∈ Bs.

We should note that if Σs = (T ,W,X ,Bs) is a system in state space form,
then (T ,W ×X ,Bs) is a dynamical system in the sense of Definition 2.1. Also,
if PW : W × X → W is the projection into W, then (T ,W, PWBs) is also a
dynamical system in the sense of Definition 2.1. This projection is in essence
the elimination procedure for latent variables described above. In this case we
say that Σs is a state space representation of the system (T ,W, PWBs), or for
the behaviour PWBs.

The concatenation of two smooth functions will in general not be smooth,
both the function values and derivatives may be different at the break point t0.
Hence we can not expect the concatenations of solutions to be strong solutions,
but the axiom of state tells us that they are at least weak solutions. If we want
to generalize state space representations to the L1

loc-case, we need an additional
condition in the antecedent, that x1, x2 are continuous at t0. This is because
L1

loc-functions are defined up to almost everywhere equivalence, so the exact
value at one specific point t0 has no meaning.

The content of the axiom of state is that the state x at time t0 determines
which futures are possible for w. The state contains all information about the
past of both x and w. In this sense the state acts as a kind of memory for the
system. For Ld-behaviours the state space is chosen as X = Rn for some n ∈ N
(or sometimes Cn). A state space representation is said to be minimal if n is
minimal among all state space representations. State space representations of
Ld-behaviours can also be characterized as those latent variable representations
that can be given by a particularly simple form of equation.

Proposition 2.24. Let B ∈ Ld. Then (R,Rd,Rn,Bs) is a state space represen-
tation of B only if there are matrices E,F ∈ Re×n, G ∈ Re×d such that Bs is
the solution set of

Eẋ+ Fx+Gw = 0.

The converse of this statement does also hold, however the proof is more
involved. For a proof of the converse we instead refer to [4].
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Proof. Take any t0 ∈ R and any (w1, x1), (w2, x2) ∈ B such that x1(t0) = x2(t0)
and let

(w, x) := (w1, x1) ∧
t0

(w2, x2).

For any ϕ ∈ D(R,Re),
∫

R
xTET ϕ̇dt =

∫ t0

−∞
xT1 E

T ϕ̇dt+

∫ ∞

t0

xT2 E
T ϕ̇dt =

=
[
ϕTEx1

]t0
−∞ −

∫ t0

−∞
ϕTEẋ1dt+

[
ϕTEx2

]∞
t0
−
∫ ∞

t0

ϕTEẋ2dt =

= ϕTE(x1(t0)− x2(t0))−
∫ t0

−∞
ϕTEẋ1dt−

∫ ∞

t0

ϕTEẋ2dt =

= −
∫ t0

−∞
ϕTEẋ1dt−

∫ ∞

t0

ϕTEẋ2dt.

Hence for any ϕ ∈ D(R,Re)
∫

R
− xTET ϕ̇+ (xTFT + wTGT )ϕdt =

=

∫ t0

−∞
ϕTEẋ1dt+

∫ ∞

t0

ϕTEẋ2dt+

∫

R
(xTFT + wTGT )ϕdt =

=

∫ t0

−∞
ϕT (Eẋ1 + Fx1 +Gw1)dt+

∫ ∞

t0

ϕT (Eẋ2 + Fx2 +Gw2)dt = 0

so (w, x) solves the equation weakly, and so Bs is a state space representation.

While we do not prove the converse, this proof can at least give us a hint of
why state representations always can be given by such simple equations. In the
first set of equalities we use that ϕTE(x1(t0) − x2(t0)) = 0. If we had higher
order derivatives present and we tried this same approach of using integration
by parts, we would get similar terms involving w1, w2 and derivatives of x1, x2

evaluated at t0. We would still need these terms to vanish, and this in turn
means that we will have some representation of the system where no higher
order derivatives are present.

Combining state representation and input/output decomposition we arrive
at an input/state/output (i/s/o) representation. Of particular interest are sys-
tems of the form

ẋ = Ax+Bu

y = Cx+Du

where A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n, D ∈ Rq×p. Note that this is of the form
of Proposition 2.24 by setting

E =

(
−I
0

)
, F =

(
A
C

)
, G =

(
B 0
D −I

)
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so this really is a state representation. We can also write the system as

(
ξI −A 0
−C I

)(
x
y

)
=

(
B
D

)
u.

Note that

det

(
ξI −A 0
−C I

)
= det(ξI −A)

which is not zero. Hence, by Theorem 2.18 u and y do indeed have the properties
of input and output. The differential equation can be solved using the formula

x(t) = eAtx(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ.

The output y can then be written out explicitly as

y(t) = CeAtx(t0) +

∫ t

t0

CeA(t−τ)Bu(τ)dτ +Du(t)

Here we can see the axiom of state in action. The possible values of y(t) for
t > t0 are determined by just the value of x(t0) and u(t) for t > t0 (and the
system paramters), and do not depend on the values of u(t) or y(t) for t ≤ t0.
Since u(t) is free in the first place, it is not limited by the state at t0 anyway.

The state space framework, a more standard approach for dynamical sys-
tems, usually starts with this kind of i/s/o representation. In for example [8]
a dynamical system (with outputs) is defined as a sextuple (T ,U ,X ,Y, ϕ, h),
where T ,U ,X , and Y are the spaces of time, inputs, states and outputs respec-
tively. The remaining two components, ϕ and h, are called the transition map
and the readout map respectively, and they describe how the state and output
change over time. They play essentially the same role as the behaviour B does
in our behavioural definition. The properties of state, inputs, and outputs are
then built into the definition of a dynamical system.

In some sense our definition is more general, as it has i/s/o systems as a
special case, but the i/s/o approach can easily be adapted to handle for example
i/o-behaviours. In some cases it may be useful to not have to assign roles to the
variables from the start, this of course depends on what it is we are modelling. In
practice the main difference between the different frameworks lie in perspective
and some terminology.

We will now introduce two important concepts for dynamical systems, con-
trollability and observability. The proofs of the following statements are from
[6].

Definition 2.25. A time invariant system (T ,W,B) is called controllable if for
any w1, w2 ∈ B there is t0 > 0 and w ∈ B such that

w(t) =

{
w1(t), t < 0

w2(t− t0), t ≥ t0.

34



Controllability means that we can transition between any two trajectories,
though with a small delay. The delay t0 does in fact not depend on w1 or w2.
In general the delay must be positive, but it can be taken arbitrarily small.
Two trivial examples of controllable behaviours are {0} and C∞(R,Rd), the
first since it only has one element and the second because smooth functions can
always be interpolated in a smooth way.

Controllability can be thought of as a kind of opposite to autonomous sys-
tems. For an autonomous system the past completely determines the future,
while controllability says that we can choose any future we want regardless of
the past. Consequently an autonomous behaviour is not controllable, with the
only exception being the trivial case B = {0}.

Theorem 2.26. The system B = kerR
(
d
dt

)
is controllable if and only if the

map λ 7→ rk(R(λ)) is constant for λ ∈ C.

Proof. We will first show the case when R is square and detR(ξ) 6= 0. By
Proposition 2.13 B is then autonomous and the solutions are given by the roots
of detR(ξ). An autonomous behaviour is controllable if and only if it is trivial,
which happens if and only if detR(ξ) has no roots, i.e. it is constant. This is
equivalent to rk(R(λ)) being the same for all λ ∈ C.

Next we look at the general case for R ∈ Re×d[ξ]. By Proposition 2.11 there
are unimodular matrices U, V such that

URV (ξ) =

(
D(ξ) 0

0 0

)

where D is diagonal with detD(ξ) 6= 0. We may have one, several or no zero
rows under and to the right of D(ξ) depending on the size and rank of R. Let
B̃ = V −1

(
d
dt

)
B. Then

B̃ =

{
w̃ =

(
v1

v2

)
∈ C∞(R,Rd)|D

(
d

dt

)
v1 = 0

}
.

The second component v2 can be chosen freely, so B̃ is controllable if and only
if kerD

(
d
dt

)
is. By the special case proven above it is controllable if and only if

the rank of (
D(λ) 0

0 0

)

is the same for all λ ∈ C. Since U, V are unimodular this is equivalent to the
map λ 7→ rk(R(λ)) being constant.

Next we show that B̃ is controllable if and only if B is. Suppose B̃ is con-
trollable and that w1, w2 ∈ B. Let w̃1 = V −1

(
d
dt

)
w1, w̃2 = V −1

(
d
dt

)
w2. Then

since B̃ is controllable there is w̃ ∈ B̃ such that

w̃(t) =

{
w̃1(t), t < 0

w̃2(t− t0), t ≥ t0.
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for any given t0 > 0. Then w := V
(
d
dt

)
w̃ ∈ B and

w(t) =

{
w1(t), t < 0

w2(t− t0), t ≥ t0.

so B is controllable. The opposite direction is analogous, switching the roles of
V
(
d
dt

)
and V −1

(
d
dt

)
.

This result extends to weak solutions as well. To see why we will look at the
decomposition of a behaviour

B = Baut + Bcont

discussed earlier. We call Bcont the controllable part, and it can be shown that
it is always controllable. Furthermore B is controllable if and only if Baut = {0}
(so that B = Bcont) and B is autonomous if and only if Bcont = {0} (so that
B = Baut). This decomposition is discussed in more detail in [6].

We have however already found that for an autonomous behaviour there are
virtually no weak solutions that are not strong solutions. As such controllability
is completely determined by the strong solutions, and hence the proposition
above applies just as well if we consider weak solutions.

The most important use of controllability for us will be its relation to the
existence of image representations. This will be particularly important in section
5 where we discuss dissipative systems.

Proposition 2.27. A behaviour B ∈ Ld is controllable if and only if it has an
image representation.

Proof. Suppose first that B has an image representation w = M
(
d
dt

)
l, where

M ∈ Rd×n[ξ]. We now carry out the latent variable elimination procedure
described above. More precisely, there is by Proposition 2.10 a unimodular
U ∈ Rd×d[ξ] such that

U

(
d

dt

)
w =

(
M̃
(
d
dt

)

0

)
l

where M̃ has full row rank. If we decompose U as

U =

(
U1

U2

)

so that U1 has the same number of rows as M̃ , then B = kerU2

(
d
dt

)
. Since U is

unimodular, the rows of U(λ) are linearly independent for every λ ∈ C and so
rk(U2(λ)) is the same for all λ ∈ C. By Theorem 2.26 B is then controllable.

Next we suppose that B is controllable. There is then R ∈ Re×d[ξ] such that
B = kerR

(
d
dt

)
, and by Proposition 2.10 we can assume R has full row rank. By

Proposition 2.11 there are unimodular U, V such that URV =
(
D 0

)
where

D(ξ) is diagonal. Since e = rk(R(λ)) = rk(D(λ)) for every λ ∈ C the diagonal
elements of D must be non-zero constants, and by suitable choices of U, V we
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can assume that D is an identity matrix. Hence we have RV =
(
U−1 0

)
. Now

set

W (ξ) = V (ξ)

(
U(ξ) 0

0 I

)

where I is an identity matrix of size d− e so that W ∈ Rd×d[ξ]. Note that since
U and V are unimodular, so is W . Also,

RW = RV

(
U(ξ) 0

0 I

)
=
(
U−1 0

)(U(ξ) 0
0 I

)
=
(
I 0

)
,

or equivalently R =
(
I 0

)
W−1. This means that R is the first e rows of the

matrix W−1. Let R̃ be the other d − e rows of W and consider the behaviour
given in latent variable form as

(
R

R̃

)(
d

dt

)
w =

(
0
I

)
l

where the identity matrix in the right hand side is of size d − e. By the latent
variable elimination procedure, this behaviour is kerR

(
d
dt

)
= B. Since W is

unimodular, an equivalent representation of B is given by

w = W

(
d

dt

)(
0
I

)
l,

giving us an image representation for B.

Next we define observability, which is used to describe if some sytem variables
carry information about the other system variables.

Definition 2.28. Let B ∈ Ld and for w ∈ B consider a decomposition

w =

(
w1

w2

)
.

We say that w2 is observable from w1 if

(
w1

w2

)
,

(
w1

w̃2

)
∈ B

implies that w2 = w̃2.

If w2 is observable from w1 then w2 does in some sense not add any more
information about the system, w holds the same information about the system
as w1 does. Observability also means that there is an injection sending w1 to
w2. The most important result is the following.

Theorem 2.29. Let R1 ∈ Re×d1 [ξ], R2 ∈ Re×d2 [ξ] and consider the system B
given by R1

(
d
dt

)
w1 = R2

(
d
dt

)
w2. Then w2 is observable from w1 if and only if

rk(R2(λ)) = d2 for all λ ∈ C.
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Proof. For any (w1, w2), (w1, w̃2) ∈ B we have by linearity that (0, w2−w̃2) ∈ B.
Hence w2 is observable from w1 if and only if R2

(
d
dt

)
w2 = 0 implies w2 = 0.

Now let B2 = kerR2

(
d
dt

)
, so we have concluded that w2 is observable from w1

if and only if B2 = {0}.
Suppose w2 is observable from w1 so that B2 = {0}. By Proposition 2.10

there is unimodular U such that

UR2 =

(
R̃2

0

)

where B2 = ker R̃2, rk(R2) = rk
(
R̃2

)
and R̃2 ∈ Rc×d2 [ξ] has full row rank. We

must then have c ≤ d2 and if c < d2 then by Theorem 2.18 some components
of w2 could be chosen freely as inputs, contradicting B2 = {0}. Hence we
must have c = d2. Since B2 = {0}, R̃2 must hence be unimodular, and so

rk(R2(λ)) = rk
(
R̃2(λ)

)
= d2 for all λ ∈ C.

Next we suppose rk(R2(λ)) = rk
(
R̃2(λ)

)
= d2 for all λ ∈ C. Then we must

have c = d2 and det R̃2(ξ) a non-zero constant. Hence R̃2 is unimodular, so
B2 = {0} and w2 is observable from w1.

Using Theorem 2.29 it is easy to check that the image representation con-
structed in the proof of Proposition 2.27 is observable, giving us the following.

Corollary 2.30. If B ∈ Ld is controllable, then it has an observable image
representation.

Let us look at controllability and observability of the i/s/o system given by

ẋ = Ax+Bu

y = Cx+Du.

We will first look at controllability. To be clear we want to control both the
external variables u, y as well as the state x. Note that the equations can be
written in matrix form as

(
A− d

dtI B 0
C D −I

)

x
u
y


 = 0.

By Theorem 2.26 this system is controllable if and only if

rk

(
A− λI B 0
C D −I

)

is the same for all λ ∈ C. If q is the size of y, then we have

rk

(
A− λI B 0
C D −I

)
= rk

(
A− λI B

)
+ q
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For any λ ∈ C that is not an eigenvalue of A, the matrix A − λI has rank
n, where n is the size of x. Hence the system is controllable if and only if
rk
(
A− λI B

)
= n for every eigenvalue λ of A.

Next we look at observability. For i/s/o systems we are usually interested in
whether the state x is observable from the external variables u and y. We can
write the equations as

(
B 0
D −I

)(
u
y

)
=

(
A− d

dtI
C

)
x.

By Theorem 2.29 x is observable from u and y if and only if

rk

(
A− λI
C

)

is the same for all λ ∈ C. Similar to controllability we have for λ that are not
eigenvalues of A that A−λI is full rank (rank equal to n). Hence x is observable
if and only if

rk

(
A− λI
C

)
= n

for all eigenvalues λ of A.
It is thus quite easy to determine controllability and observability for this

i/s/o system, provided that we can find the eigenvalues of A.
There is another system for which observability will be important to us,

given in latent variable form as

0 = A

(
d

dt

)
l

w = C

(
d

dt

)
l

Here we are interested in if l is observable from w. From the theorem it is clear
that this happens if and only if

rk

(
A(λ)
C(λ)

)
= n

for every λ ∈ C (here n is the size of l). If this holds we say that (A,C) is an
observable pair.

39



3 Quadratic differential forms

When studying dynamical systems functionals of the variables are at times of
interest. In many applications such functionals describe some form of energy,
the total energy in the system, energy being delivered to the system, etc. We
will look at functionals that are quadratic in the external signal w and its
derivatives, so called quadratic differential forms, in the context of the linear
systems discussed in the previous section. We will use them to study stability
and dissipativeness of linear systems. The theory of this section is in large part
based on [14].

Much like polynomial matrices in one variable are very useful to describe
linear differential systems, we will see in this section that polynomial matrices
in two variables are suitable to work with quadratic differential forms, and more
generally bilinear differential forms. Before we get to those we study some useful
properties of polynomial matrices in two variables.

We let Rd1×d2 [ζ, η] denote the set of d1 × d2 matrices whose elements are
polynomials in the two indeterminates ζ and η. Note that every Φ ∈ Rd1×d2 [ζ, η]
can be written

Φ(ζ, η) =
∑

k,l

Φk,lζ
kηl

where the sum is over nonnegative k, l and finite, and Φk,l ∈ Rd1×d2 for every
k, l. To Φ ∈ Rd1×d2 [ζ, η] we then associate the infinite matrix

Φ̃ =




Φ0,0 Φ0,1 · · ·
Φ1,0 Φ1,1 · · ·

...
...

. . .


 .

Note that only finitely many elements of this matrix are non-zero. Some authors
(e.g. [9]) take Φ̃ to be finite, its size then depends on the highest degrees of ζ

and η that are present in Φ. Whether to treat Φ̃ as a finite or infinite matrix is
only a matter of notation and taste since only the non-zero part of the infinite
one matters. In this text we will stick to the infinite approach. Note that
factorizations of finite matrices can essentially be applied to Φ̃ even though it
is infinite, for example if Φ̃ is positive definite then we can write Φ̃ = DTD for
some infinite matrix D.

Let

Ed(ξ) =




Id
Idξ
Idξ

2

...




where Id is an identity matrix of size d. We can now write

Φ(ζ, η) = ETd1(ζ)Φ̃Ed2(η).

Due to this relation we can use factorizations of Φ̃ to factorize Φ(ζ, η). This will
be particularly useful when we consider quadratic forms.
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The polynomial matrix Φ ∈ Rd1×d2 [ζ, η] induces a bilinear differential form
(abbreviated as BLDF)

LΦ : C∞(R,Rd1)× C∞(R,Rd2)→ C∞(R,R)

(v, w) 7→
∑

k,l

(
dk

dtk
v

)T
Φk,l

(
dl

dtl
w

)

and if d1 = d2 =: d, a quadratic differential form (abbreviated as QDF)

QΦ : C∞(R,Rd)→ C∞(R,R)

w 7→ LΦ(w,w).

We will refer to the expression LΦ(v, w) as LΦ evaluated along v and w, and
similarly QΦ(w) as QΦ evaluated along w. Both BLDFs and QDFs are defined
here as operators on smooth functions. We will later study them in the setting
where the functions v, w are not free, but rather belong to some behaviour
B ∈ Ld.

These definitions can of course easily be extended to functions v, w that are
not completely smooth, but differentiable enough times that the expressions are
well defined. We may also wish to extend this definition to L1

loc-functions and
interpreting the derivatives as weak derivatives. This is more complicated, since
the derivative of an L1

loc-function is not in general itself L1
loc. Hence we either

need some assumptions that we have enough nicely behaved derivatives or must
involve distributions in the definition.

Just as linear systems can be induced by many different polynomial matrices,
the same is the case for QDFs. Much like quadratic forms on Rd, QDFs can
always be induced by a matrix Φ that is symmetric in a certain sense. To see
how, we first define the asterisk operator as

∗ : Rd1×d2 [ζ, η]→ Rd2×d1 [ζ, η]

Φ(ζ, η) 7→ ETd2(ζ)Φ̃TEd1(η).

In words, the asterisk operator transposes the polynomial matrix, and then
switches the indeterminates. In the case when d1 = d2 we say that Φ ∈
Rd×d[ζ, η] is symmetric if Φ∗ = Φ. We denote the subset of Rd×d[ζ, η] con-
sisting of symmetric matrices by Rd×ds [ζ, η]. Note also that if d1 = d2, then
Φ∗ = Φ if and only if Φ̃ is symmetric. If Φ ∈ Rd×ds [ζ, η], then

QΦ∗(w) =
∑

k,l

(
dk

dtk
w

)T
ΦTk,l

(
dl

dtl
w

)
=

=


∑

k,l

(
dl

dtl
w

)T
Φk,l

(
dk

dtk
w

)

T

= QΦ(w).

It follows that
QΦ∗ = QΦ = Q 1

2 (Φ+Φ∗)
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and since Φ̃∗ is the transpose of Φ̃, if we let Ψ = Φ + Φ∗ then Ψ̃ is symmetric.
Hence every QDF can be induced by a symmetric matrix.

We can extend BLDFs to complex valued functions by

LΦ : C∞(R,Cd1)× C∞(R,Cd2)→ C∞(R,C)

(v, w) 7→
∑

k,l≥0

(
dk

dtk
v

)T
Φk,l

(
dl

dtl
w

)

where v denotes the complex conjugate of v. Just as before the definition of a
QDF for complex w follows as QΦ(w) = LΦ(w,w). Suppose w splits into its
real and imaginary parts as w = wr + iwi. Then we have

QΦ(w) = LΦ(wr + iwi, wr + iwi)

= QΦ(wr) +QΦ(wi) + iLΦ(wr, wi)− iLΦ(wi, wr).

Since we are interested in a QDF here we can assume that Φ is symmetric, and
then LΦ(wr, wi) = LΦ(wi, wr). It follows that

QΦ(w) = QΦ(wr) +QΦ(wi).

This means that QDFs are real valued even for complex valued functions.
Since for any w, a BLDF LΦ (or QDF) evaluated along v and w is itself a

function of time it makes sense to differentiate it. The derivative is then itself a
BLDF evaluated along v and w and the two BLDFs can be easily related using
the dot operator defined as

• : Rd1×d2 [ζ, η]→ Rd1×d2 [ζ, η]
•
Φ(ζ, η) := (ζ + η)Φ(ζ, η).

The induced BLDF of
•
Φ evaluated along some v ∈ C∞(R,Rd1), w ∈ C∞(R,Rd2)

is then

L•
Φ

(v, w)(t) =

=
∑

k,l

(
dk+1

dtk+1
v(t)

)T
Φk,l

(
dl

dtl
w(t)

)
+

(
dk

dtk
v(t)

)T
Φk,l

(
dl+1

dtl+1
w(t)

)
=

=
d

dt


∑

k,l

(
dk

dtk
v(t)

)T
Φk,l

(
dl

dtl
w(t)

)
 =

d

dt
(LΦ(v, w))(t),

so the dot operator encodes how differentiation affects the polynomial matrices.
The case for QDFs is analogous.

Another operator on polynomial matrices that we will need is the delta
operator, which relates polynomial matrices in two indeterminates to a matrix
with only one indeterminate. It is defined as

∂ :Rd1×d2 [ζ, η]→ Rd1×d2 [ξ]

∂Φ(ξ) := Φ(−ξ, ξ).

42



Just like we can differentiate BLDFs (or QDFs), we can also integrate them.
We will assume that the external signals are compactly supported in this case to
ensure that the integrals converge. Recall that we write D for smooth functions
with compact support (see section 2.1). We define

∫
LΦ :D(R,Rd1)×D(R,Rd2)→ R

(v, w) 7→
∫

R
LΦ(v, w)dt.

The integral of a QDF, denoted
∫
QΦ is defined analogously. For a finite interval

[t0, t1] we similarly define
∫ t1
t0
LΦ(v, w). We say that

∫ t1
t0
LΦ(v, w) is independent

of path if it depends only on v, w and finitely many of their derivatives at times
t0 and t1. These various operators on BLDFs are connected by the following
result found in [14].

Theorem 3.1. For any Φ ∈ Rd1×d2 [ζ, η], the following are equivalent:

(i)
∫
LΦ = 0.

(ii)
∫ t1
t0
LΦ is independent of path.

(iii) There exists Ψ ∈ Rd1×d2 [ζ, η] such that Φ =
•
Ψ, in other words

Ψ(ζ, η) =
Φ(ζ, η)

ζ + η
.

(iv) ∂Φ(ξ) = 0.

If d1 = d2, then the statement also holds with LΦ replaced by QΦ.

Proof. We will first show the implications (i) =⇒ (iv) =⇒ (iii) =⇒ (i) and
then (iii) =⇒ (ii) =⇒ (i).

(i) =⇒ (iv): We first note that if
∫
LΦ = 0 then this in fact extends to

complex valued functions. If v and w split into real and imaginary parts as
v = vr + ivi, w = wr + iwi, then

LΦ(v, w) = LΦ(vr, wr) + LΦ(vi, wi) + iLΦ(vr, wi)− iLΦ(vi, wr).

Hence if
∫
LΦ = 0 for real v, w it also holds for complex valued functions.

Now suppose for a contradiction that ∂Φ 6= 0. Then there are a ∈ Cd1 , b ∈
Cd2 , ω ∈ R such that aTΦ(−iω, iω)b 6= 0. Let v = aeiωt and w = beiωt. Since
these functions do not have compact support, we will multiply them with a
smooth transition function. There are many ways to construct smooth transition
functions, the following is from [12]. Let

f(t) =

{
e−

1
t , t > 0

0, t ≤ 0,
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which is easily verified to be a smooth function. Now let g(t) = f(t)
f(t)+f(1−t) ,

which is a smooth function that satisfies

g(t) =

{
1, t ≥ 1

0, t ≤ 0.

For N = 1, 2, . . . we define hN (t) = g( 2πN
ω +1+x)g( 2πN

ω +1−x). In the special

case ω = 0, we can replace 2πN
ω with N and proceed the same way. The function

hN is then smooth and satisfies

hN (t) =

{
1, |t| ≤ 2πN

ω

0, |t| ≥ 2πN
ω + 1.

Now we let vN (t) = v(t)hN (t) and wN (t) = w(t)hN (t). These functions are
then smooth functions with compact support, vN satisfies

vN (t) =

{
aeiωt, |t| ≤ 2πN

ω

0, |t| ≥ 2πN
ω + 1.

Now consider the integral

∫

R
LΦ(vN , wN )dt =

∫ 2πN
ω

− 2πN
ω

LΦ(vN , wN )dt+

+

∫ − 2πN
ω

−∞
LΦ(vN , wN )dt+

∫ ∞
2πN
ω

LΦ(vN , wN )dt.

Since v and w have period 2π
ω , we have

vN (t) = v(t)hN (t) = v

(
t− 2π(N − 1)

ω

)
h1

(
t− 2π(N − 1)

ω

)
=

= v1

(
t− 2π(N − 1)

ω

)

and similar for wN . By the variable change s = t− 2π(N−1)
ω we have

∫ ∞
2πN
ω

LΦ(vN , wN )dt =

∫ 2πN
ω +1

2πN
ω

LΦ(vN , wN )dt =

∫ 2π
ω +1

2π
ω

LΦ(v1, w1)ds =: A.

The exact value of the integral A is not important, what matters is that it

is independent of N . By symmetry we also have
∫ − 2πN

ω

−∞ LΦ(vN , wN )dt = A.
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Finally we have

∫ 2πN
ω

− 2πN
ω

LΦ(vN , wN )dt =

=

∫ 2πN
ω

− 2πN
ω

∑

k,l

((
d

dt

)k
ae−iωt

)T
Φk,l

((
d

dt

)l
beiωt

)
dt =

=

∫ 2πN
ω

− 2πN
ω

∑

k,l

(−iω)ke−iωtaTΦk,lb(iω)leiωtdt =

=

∫ 2πN
ω

− 2πN
ω

dt
∑

k,l

aT (−iω)kΦk,l(iω)lb =

=
4πN

ω
aTΦ(−iω, iω)b.

Hence we have
∫

R
LΦ(vN , wN )dt =

4πN

ω
aTΦ(−iω, iω)b+ 2A

and since aTΦ(−iω, iω)b 6= 0 and A is independent of N , there is some N such
that

∫
R LΦ(vN , wN )dt 6= 0. Hence if (iv) is false, then so is (i). In other words

(i) implies (iv).
(iv) =⇒ (iii): Viewing Φ(ζ, η) as polynomial in one variable ζ, we perform

division by ζ + η with remainder (componentwise) and get

Φ(ζ, η) = (ζ + η)Ψ(ζ, η) + r(ζ, η).

for some Ψ, r ∈ Rd1×d2 [ζ, η]. But then by (iv) we have

0 = ∂Φ(ξ) = r(−ξ, ξ)

so all coefficients in r must be zero, and so Φ =
•
Ψ.

(iii) =⇒ (i): If Φ =
•
Ψ, then

∫

R
LΦ(v, w)dt =

∫

R

d

dt
LΨ(v, w)dt = [LΨ(v, w)]

∞
−∞ = 0

since v and w have compact support.

(iii) =⇒ (ii): If Φ =
•
Ψ, then

∫ t2

t1

LΦ(v, w)dt =

∫ t2

t1

d

dt
LΨ(v, w)dt = LΨ(v, w)(t2)− LΨ(v, w)(t1)

so the integral depends only on the values of v, w and their derivatives at the
points t1, t2. Hence

∫ t2
t1
LΦ is independent of path.

45



(ii) =⇒ (i): For any v ∈ D(R,Rd1), w ∈ D(R,Rd2), if we take t1 small
enough and t2 big enough, t1 and t2 will lie outside the support of v and w. By
independence of path

∫ t2
t1
LΦ depends only on the function values and derivatives

of v, w at t1, t2 which now all vanish. Hence
∫ t2

t1

LΦ(v, w)dt =

∫ t2

t1

LΦ(0, 0)dt = 0.

Letting t1 → −∞, t2 →∞ the statement follows.
Proving the statements using QΦ when d1 = d2 is analogous. The most

significant difference is in the proof that (i) =⇒ (iv). The assumption that (iv)
does not hold now gives that there is a ∈ Cd, ω ∈ R such that aΦ(−iω, iω)a 6= 0,
and we only need to construct vN , wN is not needed. The proof then continues
as above.

We are particularly interested in studying QDFs along behaviours in Ld,
that is restricted to only w ∈ B for some B ∈ Ld. To do so it is useful to define
equivalence relations on polynomial matrices by the following. Let B ∈ Ld,

D1, D2 ∈ Re×d[ξ] and Φ1,Φ2 ∈ Rd×ds [ζ, η]. We write D1
B
= D2 if D1

(
d
dt

)
w =

D2

(
d
dt

)
w for every w ∈ B and Φ1

B
= Φ2 if QΦ1

(w) = QΦ2
(w) for every w ∈ B.

We will refer to these equivalences as B-equivalence. They can be related to
kernel representations of B by the following result from [14].

Proposition 3.2. Let B ∈ Ld. If R ∈ Re×d[ξ] gives a kernel representation of

B and D1, D2 ∈ Re×d[ξ] and Φ1,Φ2 ∈ Rd×ds [ζ, η], then D1
B
= D2 if and only if

there is F ∈ Re×e[ξ] such that

D2 = D1 + FR

and Φ1
B
= Φ2 if and only if there is F ∈ Re×d[ζ, η] such that

Φ2(ζ, η) = Φ1(ζ, η) +RT (ζ)F (ζ, η) + F ∗(ζ, η)R(η).

Proof. We consider D1, D2 first. If D2 = D1 +FR then we have, for any w ∈ B

D2

(
d

dt

)
w = D1

(
d

dt

)
w + F

(
d

dt

)
R

(
d

dt

)
w = D1

(
d

dt

)
w

so D1
B
= D2. Now let us assume that D1

B
= D2. Choose unimodular U, V such

that URV =: ∆ is diagonal, and let B̃ = V −1
(
d
dt

)
B. Setting D = D2 −D1, we

want to show that there is F such that D = FR, but by multiplication from the
right with V this is equivalent to existence of F ′ := FU−1 such that D′ = F ′∆,
where D′ := DV . By assumption we have for any w ∈ B̃ that D′

(
d
dt

)
w = 0.

Let δ1, δ2, . . . denote the diagonal elements of ∆. For any w1 ∈ C∞(R,R) such
that δ1

(
d
dt

)
w1 = 0, we have 



w1

0
...
0


 ∈ B̃
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and consequently

D′
(
d

dt

)



w1

0
...
0


 = d′1

(
d

dt

)
w1 = 0

where d′1 denotes the first column of D′. That δ1
(
d
dt

)
w1 = 0 implies d′1

(
d
dt

)
w1 =

0 means that δ1(ξ) must divide all elements of d′1(ξ), in other words there is a
polynomial vector f1 such that d′1 = f1δ1. Carriying out the same argument for
each diagonal element of ∆ gives polynomial vectors f1, f2, . . ..

Now we must consider two cases. If e ≤ d, then ∆ has e diagonal elements
so we get e vectors f1, . . . , fe. The last d− e columns of ∆ are zero,so the last
d − e components of w ∈ B̃ are free. Hence the last d − e columns of D′ must
also be zero. Setting F ′ =

(
f1 · · · fe

)
we have D′ = F ′∆, so the statement

is proven in this case.
If instead e > d, then we get d vectors f1, . . . , fd. Now the last e − d

rows of ∆ are zero, and so we can pick fd+1, . . . , fe arbitrarily, and setting
F ′ =

(
f1 · · · fe

)
we again have D′ = F ′∆, completing the proof for D1, D2.

Now consider Φ1,Φ2. If we have

Φ2(ζ, η) = Φ1(ζ, η) +RT (ζ)F (ζ, η) + F ∗(ζ, η)R(η)

then for any w ∈ B

QΦ2(w) = QΦ1(w) + LF

(
R

(
d

dt

)
w,w

)
+ LF∗

(
w,R

(
d

dt

)
w

)
=

= QΦ1(w) + LF (0, w) + LF∗(w, 0) = QΦ1(w)

so Φ1
B
= Φ2. Next we suppose Φ1

B
= Φ2 and take U, V,∆ and B̃ as above. Note

that it is enough to show that there is F such that

Φ′(ζ, η) = ∆T (ζ)F (ζ, η) + F ∗(ζ, η)∆(η)

where Φ′(ζ, η) = V (ζ)Φ1(ζ, η)V (η) − V (ζ)Φ2(ζ, η)V (η). If we let ϕ′k,l(ζ, η) be
the element of Φ′(ζ, η) on the k:th row, l:th column and fk,l similar for F we
can formulate this as the existence of F such that

ϕ′k,l(ζ, η) = δk(ζ)fk,l(ζ, η) + fl,k(η, ζ)δl(η)

for every k, l.
To show this we will first show the BLDF version of the statement in the case

when Φ′ and ∆ are polynomials. To be precise we will prove that if Φ′ ∈ R[ζ, η]
and δ1, δ2 ∈ R[ξ] such that LΦ′(w1, w2) = 0 whenever δ

(
d
dt

)
w1 = δ2

(
d
dt

)
w2 = 0,

then there are f1, f2 ∈ R[ζ, η] such that

Φ′(ζ, η) = δ1(ζ)f1(ζ, η) + f2(ζ, η)δ2(η).
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To find such f1, f2 perform division with remainder on Φ′(ζ, η), first dividing
by δ1(ζ) and then δ2(η). Hence we have

Φ′(ζ, η) = δ1(ζ)f1(ζ, η) + f2(ζ, η)δ2(η) + Ψ(η, η)

where Ψ(ζ, η) has degree smaller than δ1, δ2 in ζ and η respectively. Take some
w1 ∈ ker δ1

(
d
dt

)
, w2 ∈ ker δ2

(
d
dt

)
and note that

LΨ(w1, w2) =

= LΦ′(w1, w2)− Lf1
(
δ1

(
d

dt

)
w1, w2

)
− Lf2

(
w1, δ2

(
d

dt

)
w2

)
= 0.

In particular LΨ(w1, w2)(0) = 0. If we let n1 = deg δ1, n2 = deg δ2 then
LΨ(w1, w2)(0) is a bilinear form in the the n1 first derivatives of w1, n2 first of
w2 at t = 0. These can be chosen arbitrarily, so Ψ must be zero. This proves

the 1D case for BLDFs. Setting f(ζ, η) = f1(ζ,η)+f2(η,ζ)
2 , we have

Φ′(ζ, η) = δ1(ζ)f(ζ, η) + f(η, ζ)δ2(η).

which proves the 1D QDF case (that is, when δ1 = δ2).
For the general case, take wk such that δk

(
d
dt

)
wk = 0 and let w be wk on

the k:th row and zero on the other rows. Then

QΦ′(w) = Qϕ′k,k(wk) = 0.

By the 1D case there is hence fkk such that

ϕ′k,k(ζ, η) = δk(ζ)fk,k(ζ, η) + fk,k(η, ζ)δk(η).

Now take also wl such that δl
(
d
dt

)
wl = 0 and let w be wk on the k:th row, wl

on the l:th row and zero on the other rows. Then

0 = QΦ′(w) = Qϕ′k,k(wk) +Qϕ′l,l(wl) + Lϕ′k,l(wk, wl) + Lϕ′l,k(wl, wk) =

= 2Lϕ′k,l(wk, wl).

By the 1D case there is then fk,l such that

ϕ′k,l(ζ, η) = δk(ζ)fk,l(ζ, η) + fl,k(η, ζ)δl(η).

Since we can do this for every k and l, the proof is complete.

In practical terms, equivalence along a behaviour is more easily used by using
the condition R

(
d
dt

)
w = 0 for substitutions. For example we can look at the

system given by w1 + ẇ2 = w2 and the QDF w2
1 − ẇ2

2. Clearly we then have

w2
1 − ẇ2

2 = (w1 + ẇ2)(w1 − ẇ2)
B
= w2(w1 − ẇ2) = w1w2 − w2ẇ2.

Working this way we do not really need to find the matrix F in the proposition.
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We also define positivity of QDFs. These definitions go very much hand in
hand with definiteness of quadratic forms on Rd. Let Φ ∈ Rd×d[ζ, η]. We say
that QΦ is nonnegative, denoted Φ ≥ 0, if QΦ(w) ≥ 0 for every w ∈ C∞(R,Rd).
We say that QΦ is positive, denoted Φ > 0, if QΦ ≥ 0 and QΦ(w) = 0 only if
w = 0. Nonpositive and negative QDFs are defined analogously. This naturally
leads to a partial order of QDFs, we write Φ1 ≥ Φ2 if Φ1 − Φ2 ≥ 0. Positivity
is also connected to factorization of QDFs much like factorizations of forms on
Rd. This is essentially done by factorization of Φ̃.

Proposition 3.3. Let Φ ∈ Rd×ds [ζ, η]. Then Φ ≥ 0 if and only if Φ(ζ, η) =
DT (ζ)D(η) for some polynomial matrix D ∈ Re×d[ξ]. Also Φ > 0 if and only if
Φ(ζ, η) = DT (ζ)D(η) where D additionally satisfies that D(λ) has full rank for
every λ ∈ C.

Proof. Recall the factorization Φ(ζ, η) = ETd (ζ)Φ̃Ed(η). If we let W (t) =
Ed
(
d
dt

)
w, then we can write

QΦ(w)(t) = WT (t)Φ̃W (t).

Since W (t) is an arbitrary (infinite) vector, QΦ(w)(t) ≥ 0 if and only if Φ̃

is positive semidefinite. That Φ̃ is positive semidefinite is equivalent to the
existence of some matrix D̃ such that Φ̃ = D̃T D̃. This matrix D̃ can be taken
with a finite number e rows and infinitely many columns, but with only a finite
number of columns that are non-zero. Now take D(ξ) = D̃Ed(ξ) which then
satisfies Φ(ζ, η) = DT (ζ)D(η)

The requirement Φ > 0 means that the D constructed above satisfies
D
(
d
dt

)
w 6= 0 for w 6= 0. But this is equivalent to saying that the system

v = D

(
d

dt

)
w

is observable (w is observable from v) which, by Theorem 2.29 happens if and
only if D(λ) has full rank for every λ ∈ C.

Of particular interest to us is nonnegativity for w belonging to some be-

haviour B. We say that QΦ is nonnegative along B, denoted Φ
B
≥ 0, if Φ(w) ≥ 0

for every w ∈ B. We say thatQΦ is positive along B, denoted Φ
B
> 0, if Φ

B
≥ 0 and

if w ∈ B satisfies QΦ(w) = 0, then w = 0. Definitions for negative/nonpositive
are analogous.

A QDF that is nonnegative along a behaviour is not necessarily nonnegative
for all smooth functions. Take for example the QDF QΦ(w) = w2

1 − w2
2 along

the behaviour B ∈ L2 given by the equation w2 = 0. Along B we have QΦ(w) =
w2

1 ≥ 0, but clearly QΦ is not nonnegative for arbitrary signals. Using B-
equivalence positivity along a behaviour can be brought back to the more general
case, and so we can make use of factorizations in this case as well.

Proposition 3.4. Let Φ ∈ Rd×ds [ζ, η], R ∈ Re×d[ξ] and B = kerR
(
d
dt

)
. Then

49



(i) Φ
B
≥ 0 if and only if there is Φ′ ∈ Rd×ds [ζ, η] such that Φ

B
= Φ′ and Φ′ ≥ 0.

(ii) Φ
B
> 0 if and only if there is Φ′ ∈ Rd×ds [ζ, η] such that Φ

B
= Φ′ and

Φ′ = DT (ζ)D(η) for some D ∈ Rc×d[ξ] such that (R,D) is an observable
pair.

The following proof builds on a proof in [14] where only the case when R is
a polynomial is treated.

Proof. We show first the ”if” part of both statements. If Φ
B
= Φ′ and Φ′ ≥ 0

then for any w ∈ B we have

QΦ(w) = QΦ′(w) ≥ 0

so Φ
B
≥ 0. By Proposition 3.3 we have Φ′(ζ, η) = DT (ζ)D(η). If we now further

assume that (R,D) is an observable pair, then for any nonzero w such that
R
(
d
dt

)
w = 0 (i.e. w ∈ B) we must have D

(
d
dt

)
w 6= 0. Hence

QΦ(w) = QΦ′(w) =

∣∣∣∣D
(
d

dt

)
w

∣∣∣∣
2

6= 0

for nonzero w ∈ B, and the if part is proven.
Let us now look at the ”only if” part, beginning with (i). Take unimodular

matrices U, V such that URV =: ∆ is diagonal and let Ψ(ζ, η) = V (ζ)Φ(ζ, η)V (η)
and B̃ = V −1

(
d
dt

)
B. It is then enough to show that there is some Ψ′ such that

Ψ
B̃
= Ψ′ and Ψ′

B̃
≥ 0. Denote the nonzero diagonal elements of ∆ by δ1, . . . , δm

which we can assume are in the first m rows of ∆. Let us for the moment assume
that m < d. Then the last d−m components of w ∈ B̃ are free. Decompose Ψ
as

Ψ(ζ, η) =

(
Ψ1(ζ, η) Ψ2(ζ, η)
Ψ∗2(ζ, η) Ψ3(ζ, η)

)

where Φ1 is m×m, Ψ2 is m× (d−m) and Ψ3 is (d−m)× (d−m). Now take

w =




0
...
0
w̃


 ∈ B̃

so that we have m zero rows and w̃ free. Then

0 ≤ QΦ(w) = QΦ3(w̃)

and since w̃ is free this means Ψ3 ≥ 0. Next we will perform division with
remainder on the first m rows and first m columns of Ψ. To be precise we
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divide the k:th row by δk(ζ), for each k = 1, . . . ,m and the l:th column by
δl(η). This gives us Ψ′ ∈ Rd×d[ζ, η] such that

Ψ(ζ, η) = ∆(ζ)F1(ζ, η) + F2(ζ, η)∆(η) + Ψ′(ζ, η).

The matrix Ψ′ holds the remainder terms, so in the k:th row the degree of any
element in ζ is less than the degree of δk and similar for the columns (in the first
m rows and columns). The bottom right corner of Ψ′ is unchanged, so equal
to Ψ3. Also, due to the symmetry of Ψ, division of the kth row by δk(ζ) uses
the same quotients and remainders as divsion of the k:th column by δk(η). It

follows that F1 = F ∗2 and so by Proposition 3.3 Ψ
B̃
= Ψ′.

Similar to before we decompose Ψ′ as

Ψ′ =

(
Ψ′1 Ψ′2

(Ψ′2)∗ 0

)

︸ ︷︷ ︸
Ψ4

+

(
0 0
0 Ψ3

)

︸ ︷︷ ︸
Ψ5

.

Note that Ψ5 ≥ 0 because Ψ3 ≥ 0. Consider

w =



w1

...
wd


 ∈ B̃.

Note that QΨ4(w)(0) is a quadratic expression in wk(0), dwkdt (0), . . . , d
nk−1w
dtnk−1 (0)

where nk is the degree of δk, for k = 1, . . . , d. These initial conditions can be
taken arbitrary for w ∈ B̃, and hence the coefficient matrix Ψ̃4 must be positive
definite. Hence Ψ4 ≥ 0, and so we can conclude that Ψ′ ≥ 0.

In the case m = d we can simply forego the decomposition of Ψ and apply
the division with remainder directly. The proof of part (i) is complete.

For the ”only if” part of (ii), note that if Φ
B
> 0, then by part (i) there is

Φ′ such that Φ′(ζ, η) = DT (ζ)D(η) and Φ
B
= Φ′. If (R,D) is not an observable

pair, then there is nonzero w ∈ B such that D
(
d
dt

)
w = 0. Then we have

QΦ(w) = QΦ′(w) =

∣∣∣∣D
(
d

dt

)
w

∣∣∣∣
2

= 0

which contradicts Φ
B
> 0. Hence (R,D) must be an observable pair, proving

part (ii).

A key part of the proof above was to find a B-equivalent representative of
the QDF (Ψ′ in this case) whose polynomial elements had degree lower than
polynomials in the matrix giving the kernel representation. For autonomous
behaviours this idea can be made more precise.

Consider an autonomous behaviour B ∈ Ld and R ∈ Rd×d[ξ] such that B =
kerR

(
d
dt

)
. A polynomial matrix D ∈ Re×d[ξ] is called R-canonical if DR−1(ξ)
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is a matrix of strictly proper rational functions (a rational function is strictly
proper if the denominator has strictly higher degree than the numerator). Simi-
larly a matrix Φ ∈ Rd×d[ζ, η] is called R-canonical if (RT (ζ))−1Φ(ζ, η)(R(η))−1

is a matrix of strictly proper rational functions.
It can be proven (see [14]) that each equivalence class under B-equivalence

has a unique element that is R-canonical. This holds for polynomial matrices
in both one or two indeterminates. This gives a quite natural and convenient
representative for each equivalence class. Using the fact that the degrees of
their elements are small, we can use arguments about for example arbitrariness
of initial conditions, similar to above.
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4 Stability

In stability analysis we are interested in how small perturbations of initial values
can effect solutions to differential equations. Intuitively a system is stable if
small changes in initial values only lead to small changes in the overall trajectory.
For linear systems this is fairly simple, stability is essentially determined by how
a solution w(t) behaves as t goes to infinity. Since we are only interested in what
happens for very large t, it suffices to look at t belonging to any interval that
is not bounded above. By time invarience we may take the starting time as 0.
Hence we will in this section focus on w(t) for t ∈ [0,∞).

For linear behaviours we introduce three forms of stability.

Definition 4.1. Let B ∈ Ld. Then B is (Lyapunov) stable if every w ∈ B is
bounded on [0,∞), otherwise we say that B is unstable. B is semistable if for
every w ∈ B, limt→∞ w(t) exists. Finally, B is asymptotically stable if for every
w ∈ B, limt→∞ w(t) = 0.

For nonlinear systems we usually speak of stability around equilibrium points,
and the definition of Lyapunov stability is then more involved. For the lin-
ear systems we are studying the simpler definition above is in fact equivalent.
Throughout this text we will refer to Lyapunov stability simply as stability.

Note that asymptotic stability implies semistability which in turn implies
stability. Using Theorem 2.18, we can conclude that a necessary requirement for
stability is that the behaviour is autonomous. If the system is not autonomous,
then some component of the external signal could be chosen freely as input, and
hence not bounded in general.

Consider an autonomous behaviour B with kernel representation given by
some R ∈ Rd×d[ξ], which hence must have full rank. We have seen in Proposition
2.13 that the solutions are specified by the roots of detR(ξ). Stability of B can
also be determined from these roots. This is a classical result in stability theory.

Before stating the proposition, we make some definitions. For a square
polynomial matrix R we define the roots of R as the roots of detR(ξ). If λ ∈ C
is a root of R, then the algebraic multiplicity of λ is its multiplicity as a root of
detR(ξ) and its geometric multiplicity is the dimension of kerR(λ). Note that
the algebraic multiplicity of a root is always greater or equal than the geometric
multiplicity. A root λ is said to be semisimple if the algebraic and geometric
multiplicities are equal.

We can give an alternative characterization of what it means that a root λ
of R is semisimple. It follows from Remark 2.16 that λ is semisimple if and only
if the only terms involving λ in any solution to R

(
d
dt

)
w = 0 are of the form

aeλt, that is, there are no terms of the form atjeλt with j ≥ 1.

Proposition 4.2. Let B = kerR
(
d
dt

)
for some R ∈ Rd×d[ξ]. Then

(i) B is stable if and only if every root of R has nonpositive real part, and
every root with real part zero is semisimple.

(ii) B is semistable if and only if B is stable and R has no non-zero purely
imaginary root.
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(iii) B is asymptotically stable if and only if every root of R has strictly negative
real part.

Proof. First we show that the criteria are necessary for each type of stability.
Note that if λ is a root of R, then there is a ∈ Cd such that R(λ)a = 0. If

R(ξ) =
∑L
l=0Rlξ

l where Rl ∈ Rd×d, then we have

R

(
d

dt

)
aeλt =

L∑

l=0

Rl
dl

dtl
aeλt =

L∑

l=0

Rlλ
laeλt = R(λ)aeλt = 0,

so aeλt ∈ B.

(i) If λ is a root of R with positive real part, then aeλt is not bounded so B
cannot be stable in this case. Next suppose λ is a root of R with real part
zero that is not semisimple. This means that there is some solution of the
form r(t)eλt where r is a non-constant polynomial. This solution is not
bounded, hence B can not be stable in this case.

(ii) We have already remarked that a semistable behaviour is stable. If λ is a
non-zero imaginary root, then there is aeλt ∈ B but this function has no
limit as t→∞, and hence the system is not semistable.

(iii) We have already remarked that an asymptotically stable behaviour is
semistable. Hence, by part (ii) we only need to consider the case of a root
that is zero. If zero is a root then there is a constant solution ae0·t = a ∈ B
that does not converge to zero, hence the behaviour is not asymptotically
stable.

Next we show that the criteria are sufficient for each type of stability. By
Proposition 2.13 all solutions are linear combinations of expressions of the form
tjeλt where λ is a root.

(i) If λ is a root with negative real part, then tjeλt is bounded for any j ≥ 0.
If λ is a root of R with real part zero that is semisimple, then all terms
involving that root are on the form aeλt for some a ∈ Cd and hence
bounded. Any w ∈ B is hence a linear combination of bounded functions,
and hence itself bounded and so B is stable.

(ii) If λ is a root with negative real part, then tjeλt converges to zero for any j.
If λ = 0 is a root, then since B is stable it is a semisimple root. All terms
involving that root are thus constant solutions, which of course converge
as t→∞. A linear combination of functions that converge also converges,
so B is semisimple.

(iii) If λ is a root with negative real part, then tjeλt converges to zero for any
j ≥ 0. Since a general solution is a linear combination of such expressions,
it too will converge to zero, so B is asymptotically zero.
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Example 4.3. In this example we will look at systems given by equations on
the form

M
d2q

dt2
+D

dq

dt
+Kq = 0.

Such equations are often used to model viscoelastic mechanical systems. A
commonly used constitutional model is a set of masses that are connected with
springs and dampers. The viscous behaviour is modelled by the dampers and
the elastic behaviour is modelled by the springs.

Here q(t) ∈ C∞(R,Rd) describes the deviation in position of the masses
relative to some state of equilibrium. The matrices M,D,K ∈ Rd×d describe
the masses, damping and stiffness of the springs respectively. From physical
considerations we can usually assume that M = MT ≥ 0,K = KT ≥ 0 and
D +DT ≥ 0.

We will now look at the case when q is scalar valued, we will return to the
more general case later. We can write the equation above as R

(
d
dt

)
q = 0 where

R(ξ) = Mξ2 +Dξ +K. The roots of R are in this case

−D ±
√
D2 − 4MK

2M
.

Here we will assume that M,K > 0 and D ≥ 0. If D2 > 4MK, then we get
two distinct negative roots and by Proposition 4.2 the system is asymptotically
stable. If D2 = 4MK then there is just one negative root (of multiplicity two)
and again the system is asymptotically stable.

If D2 < 4MK then we have two complex roots, both with real part − D
2M .

If we assume D > 0, then we once again get asymptotic stability, but if D = 0
then we have two imaginary roots. Since they have multiplicity one they are
semisimple roots, and so the system is stable, it is oscillating.

Intuitively this makes sense. So long as there is some nonzero damping, the
system will tend to some equilibrium state no matter what initial state we put
it in. Without any damping the spring system will simply oscillate indefinitely.

The result above characterizes these stability properties for linear systems us-
ing their roots. A common alternative approach to studying stability is through
the use of Lyapunov functions. Consider a dynamical system (R,Rd,B). A
Lyapunov function is a differentiable function V : Rd → R such that V (0) =
0,V (w0) > 0 for any nonzero w0 ∈ Rd and along any w ∈ B we have

d

dt
V (w(t)) < 0.

In applications the Lyapunov function typically describes some form of energy.
The idea is that V evaluated along a trajectory w ∈ B is a strictly decreasing
function that is always nonnegative. Since V (w0) is only zero if w0 = 0, if we
show that V (w) converges to zero, then this implies that w(t) must converge to
zero as t goes to infinity. Hence we can use Lyapunov functions to show that
a behaviour has certain stability properties. Intuitively, the system is losing
energy, and so it tends to a state of minimal energy.
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For linear systems it is suitable to take Lyapunov functions as quadratic
functions. For a first order system we use a quadratic form in the external
variable, for higher order systems we will find that QDFs fill this role nicely.
We demonstrate the idea with a first order example.

Example 4.4. Let B be the solutions set of

ẇ = Aw

where A ∈ Rd×d. We will look for a Lyapunov function of the form V (w) =
wTPw where P = PT ∈ Rd×d to study stability. We of course want P > 0 and
it should also satisfy that

d

dt
(wTPw) = ẇTPw + wTPẇ = wT (ATP + PA)w < 0.

To find such P we study the matrix equation

ATP + PA = Q, (12)

which is called the Lyapunov equation. Here Q = QT ∈ Rd×d is some given
matrix, P is the sought unknown. The idea is that we choose some Q < 0 and
try to find a symmetric P > 0 that satisfies the equation. If we can do so then
V (w) = wTPw is a Lyapunov function which proves that B is asymptotically
stable. On the other hand it can be shown that if B is asymptotically stable,
then there is such a solution P for every Q < 0.

Depending on what type of stability we want to study it is possible to ease
up the strict inequalities P > 0 and Q < 0 if we involve some observability
conditions. We will not go into detail about first order systems. Instead we will
now look at higher order systems, beginning with asymptotic stability.

Theorem 4.5. Let B ∈ Ld. Then B is asymptotically stable if and only if there

is Ψ ∈ Rd×ds [ζ, η] such that Ψ
B
≥ 0 and

•
Ψ
B
< 0.

For the only if part we will actually prove a slightly stronger statement,
namely that if B is asymptotically stable, then there is for every Φ ∈ Rd×ds [ζ, η]

such that Φ
B
< 0, a Ψ ∈ Rd×ds [ζ, η] such that

•
Ψ
B
= Φ and Ψ

B
≥ 0. This Φ plays

a similar role to Q in equation (12). Indeed, for the only if part we will use a
polynomial Lyapunov equation to find Ψ.

Lemma 4.6. Let B ∈ Ld be asymptotically stable, with kernel representation
given by R ∈ Rd×d[ξ]. Then for every Φ ∈ Rd×ds [ζ, η] there is a solution X ∈
Rd×d[ξ] to the equation

XT (−ξ)R(ξ) +RT (−ξ)X(ξ) = ∂Φ(ξ). (13)

We refer to equation (13) as the polynomial Lyapunov equation. The proofs
of Lemma 4.6 and Theorem 4.5 are adapted from [14], where similar but slightly
stronger claims are proven.
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Proof of Lemma 4.6. We will first prove the case when R is diagonal. Write the
k:th diagonal element of R(ξ) as rk(ξ), ϕk,l(ζ, η) for the component of Φ on the
k:th row, l:th column and similarly xk,l(ξ) for X(ξ). Then we want to show
that we can find xk,l that solve

xl,k(−ξ)rk(ξ) + rl(−ξ)xk,l(ξ) = ϕk,l(−ξ, ξ) (14)

for each k = 1, . . . , d and l = 1, . . . , d. Note that due to the symmetry of Φ, it
is enough to show that this is possible for k ≤ l. The equations for k > l are
then automatically satisfied.

Consider first the case k < l. Since B is asymptotically stable, the roots of
rk(ξ) and rl(ξ) are all in the left open half plane of C. Hence rk(ξ) and rl(−ξ)
have no common roots. By the Bezout identity there are xk,l, xl,k ∈ R[ξ] that
satisfy equation (14).

Now we look at the case k = l. Then equation (14) reads

xk,k(−ξ)rk(ξ) + rk(−ξ)xk,k(ξ) = ϕk,k(−ξ, ξ).

It once again follows from the asymptotic stability of B that rk(ξ) and rk(−ξ)
have no common roots. Hence there are by the Bezout identity a, b ∈ R[ξ] such
that

a(ξ)rk(ξ) + rk(−ξ)b(ξ) = ϕk,k(−ξ, ξ).

Now set xk,k(ξ) = a(−ξ)+b(ξ)
2 . Then we have

xk,k(−ξ)rk(ξ) + rk(−ξ)xk,k(ξ) =

=
1

2

(
a(ξ)rk(ξ) + b(−ξ)rk(ξ) + rk(−ξ)a(−ξ) + rk(−ξ)b(ξ)

)
=

=
1

2

(
ϕk,k(−ξ, ξ) + ϕk,k(ξ,−ξ)

)
= ϕk,k(−ξ, ξ)

where the last step follows from the assumption that Φ is symmetric. This
proves the statement when R is diagonal.

If R is not diagonal then the problem can be reduced to the diagonal case. To
do so find unimodular U, V such that URV =: ∆ is diagonal and let Φ′(ζ, η) =
V T (ζ)Φ(ζ, η)V (η). By the case proven above there is Y ∈ Rd×d[ξ] such that

Y T (−ξ)∆(ξ) + ∆T (−ξ)Y (ξ) = ∂Φ′(ξ).

Now set X(ξ) = UT (−ξ)Y (ξ)V −1(ξ). We then have

XT (−ξ)R(ξ) +RT (−ξ)X(ξ) =

= V −T (−ξ)Y T (−ξ)U(ξ)R(ξ) +RT (−ξ)UT (−ξ)Y (ξ)V −1(ξ) =

= V −T (−ξ)
(
Y T (−ξ)∆(ξ) + ∆T (−ξ)Y (ξ)

)
V −1(ξ) =

= V −T (−ξ)Φ′(−ξ, ξ)V −1(ξ) = Φ(−ξ, ξ) = ∂Φ(ξ)

which proves the general case.
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Proof of Theorem 4.5. Suppose first that there is Ψ ∈ Rd×ds [ζ, η] such that Ψ
B
≥

0 and
•
Ψ
B
< 0. Suppose also that B = kerR

(
d
dt

)
, R ∈ Re×d[ξ]. That

•
Ψ
B
< 0 means

that there is some D ∈ Rc×d[ξ] such that
•
Ψ(ζ, η) = DT (ζ)D(η) and (R,D) is

an observable pair. We now have for any w ∈ B and T ≥ 0

QΨ(w)(T )−QΨ(w)(0) =

∫ T

0

Q •
Ψ

(w)(t)dt = −
∫ T

0

∣∣∣∣D
(
d

dt

)
w(t)

∣∣∣∣
2

dt.

Since Ψ
B
≥ 0 we therefore have

∫ T

0

∣∣∣∣D
(
d

dt

)
w(t)

∣∣∣∣
2

dt = QΨ(w)(0)−QΨ(w)(T ) ≤ QΨ(w)(0),

and so by letting T →∞ we have

∫ ∞

0

∣∣∣∣D
(
d

dt

)
w(t)

∣∣∣∣
2

dt <∞

for every w ∈ B. Now let λ be any root of R. Then there is some non-zero
a ∈ Cd such that aeλt ∈ B. We get in this case

∫ ∞

0

∣∣∣∣D
(
d

dt

)
aeλt

∣∣∣∣
2

dt =

∫ ∞

0

∣∣D(λ)aeλt
∣∣2 dt = |D(λ)a|2

∫ ∞

0

e2<(λ)tdt. (15)

Since aeλt ∈ B we have R(λ)a = 0 and so since (R,D) is an observable pair,
D(λ)a 6= 0. For the integral in (15) to be finite we must have <(λ) < 0.
Since this holds for every root of R, we have by Proposition 4.2 that B is
asymptotically stable.

Next we assume that B is asymptotically stable. Take Φ ∈ Rd×ds [ζ, η] such

that Φ
B
< 0. By Lemma 4.6 there is X ∈ Rd×d that solves the polynomial

Lyapunov equation (13). Now consider the polynomial matrix

Φ(ζ, η)−XT (ζ)R(η)−RT (ζ)X(η).

By equation (13), applying the delta operator ∂ to this matrix we get the zero
matrix, and hence by Proposition 3.1, there is Ψ ∈ Rd×ds [ζ, η] such that

•
Ψ(ζ, η) = Φ(ζ, η)−XT (ζ)R(η)−RT (ζ)X(η).

By Proposition 3.2 we then have
•
Ψ
B
= Φ, so

•
Ψ
B
< 0.

It remains to show that Ψ
B
≥ 0. For any t0, t1 ∈ R such that t0 < t1, we have

since
•
Ψ
B
< 0, that

QΨ(w)(t1)−QΨ(w)(t0) =

∫ t1

t0

Q •
Ψ

(w)(t)dt ≤ 0
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for any w ∈ B. Hence QΨ(w)(t1) ≤ QΨ(w)(t0). Since B is asymptotically stable
w(t1)→ 0 as t1 →∞, and so QΨ(w)(t1)→ 0 as well. Hence we have

QΨ(w)(t0) ≥ 0

for any t0 ∈ R and any w ∈ B, so Ψ
B
≥ 0 and the proof is complete.

Next we look at how QDFs can let us determine if a system is stable or
unstable.

Theorem 4.7. Let B ∈ Ld.

(i) If there is Ψ ∈ Rd×ds [ζ, η] such that Ψ
B
> 0 and

•
Ψ
B
≤ 0, then B is stable.

(ii) If there is Ψ ∈ Rd×ds [ζ, η] such that Ψ
B
� 0 and

•
Ψ
B
< 0, then B is unstable.

By Ψ
B
� 0 we mean that there is some w ∈ B and some t ∈ R such that

QΨ(w)(t) < 0.

Proof.

(i) Let B = kerR
(
d
dt

)
for some R ∈ Re×d[ξ] and suppose there is Ψ ∈

Rd×ds [ζ, η] such that Ψ
B
> 0 and

•
Ψ
B
≤ 0. Let λ be a root of R. Then

there is some nonzero a ∈ Cd such that w = aeλt ∈ B. Since Ψ
B
> 0 there

is E such that Ψ(ζ, η)
B
= ET (ζ)E(η) so that

QΨ(w)(t) =

∣∣∣∣E
(
d

dt

)
aeλt

∣∣∣∣
2

=
∣∣E(λ)aeλt

∣∣2 = e2<(λ)t |E(λ)a|2 .

Since
•
Ψ
B
≤ 0 we have for any t ≥ 0

QΨ(w)(t)−QΨ(w)(0) =

∫ t

0

Q •
Ψ

(w)(τ)dτ ≤ 0

so QΨ(w)(t) ≤ QΨ(w)(0), meaning that QΨ(w)(t) is bounded as t → ∞.
We have

0 = R

(
d

dt

)
aeλt = R(λ)aeλt,

so R(λ)a = 0. The assumption Ψ
B
> 0 implies that (R,E) is an observable

pair, so we must then have E(λ)a 6= 0. For

QΨ(w)(t) = e2<(λ)t |E(λ)a|2

to be bounded as t→∞, we must therefore have <(λ) ≤ 0.
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Now suppose λ = iω, ω ∈ R and that

v =

L∑

l=0

alt
leiωt ∈ B.

Then

E

(
d

dt

)
v = E(iω)aLt

Leiωt + p(t)eiωt

where p(t) ∈ Cd[t] has polynomials of degree at most L− 1. Then

∣∣∣∣E
(
d

dt

)
v

∣∣∣∣
2

= t2L|E(iω)aL|2 + |q(t)|2

where |q(t)|2 ∈ R[t] is of degree at most 2L − 1. For this to be bounded
as t→∞ we must have E(iω)aL = 0. But then aLe

iωt ∈ B and

QΨ(aLe
iωt) = |E(iω)aL|2 = 0

which contradicts that Ψ
B
> 0. So if λ is a root on the imaginary axis, it

must be semisimple. It then follows from Proposition 4.2 that B is stable.

(ii) If B is not autonomous, then B is unstable. For an autonomous B suppose

we have Ψ ∈ Rd×ds [ζ, η] such that Ψ
B
� 0 and

•
Ψ
B
< 0. The assumption Ψ

B
� 0

means that there is some w ∈ B and t0 ∈ [0,∞) such that QΨ(w)(t0) < 0.
Suppose for a contradiction that B is stable. Then QΨ(w)(t0) < 0 is a
sum of terms of the form

pk,l(t)e
(λk−λl)t (16)

where pk,l ∈ Cd[t] and λk, λl are roots of R. Furthermore λk, λl either
have negative real part or have real part zero and is semisimple. If either
<(λk) < 0 or <(λl) < 0 then the term (16) converges to zero as t→∞. If
<(λk) = <(λl) = 0, then these are semisimpe roots, so pk,l is a constant
vector. Hence the corresponding term (16) is periodic. We can therefore
split QΨ(w) as

QΨ(w)(t) = S1(t) + S2(t)

where limt→∞ S1(t) = 0 and S2(t) is periodic, say with period T .

Since
•
Ψ
B
< 0 we have QΨ(w)(t) < QΨ(w)(t0) for all t > t0. Note that if

S1(t0) ≥ 0, then we could pick a different w̃ with only the periodic terms
so that

QΨ(w̃)(t0) = S2(t0) < 0.

Then QΨ(w̃) is periodic, contradicting that QΨ(w̃)(t) < QΨ(w̃)(t0) for
t > t0. Hence we must have S1(t0) < 0. However then there is n ∈ N such
that

S1(t0 + Tn) >
S1(t0)

2
.
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Then we have

QΨ(w)(t0 + Tn)−QΨ(w)(t0) =

= S1(t0 + Tn) + S2(t0 + Tn)− S1(t0)− S2(t0) =

= S1(t0 + Tn)− S1(t0) > −S1(t0)

2
> 0

which is a contradiction. We can therefore conclude that B must be un-
stable.

In [14] it is claimed without proof that the converse of (i) also holds and
if B is assumed to be autonomous, then the converse of (ii) also holds. It is
indicated that one uses R-canonical representatives of the QDFs to do this. We
can at least give an idea for how to prove a result similar to Lemma 4.6, though
not quite as general. Consider the polynomial Lyapunov equation

XT (−ξ)R(ξ) +RT (−ξ)X(ξ) = ∂Φ(ξ)

where we now assume that kerR
(
d
dt

)
is stable. The argument to diagonalize

and reduce to the scalar case

xl,k(−ξ)rk(ξ) + rl(−ξ)xk,l(ξ) = ϕk,l(−ξ, ξ)

remains the same. The problem now is that since kerR
(
d
dt

)
is stable it is possible

that rk(ξ) and rl(−ξ) have a common imaginary root. If this root is not present
in the right hand side, then the equation can not be solved. The polynomial
Lyapunov equation can therefore not be solved for arbitrary Φ, but to prove the
converse of (i) in the theorem above we in fact only need this to be possible for
some Φ. We can achieve this by replacing Φ with a matrix such that ϕk,l(−ξ, ξ)
has the desired roots. Let ±iω1, . . . ,±iωK be the imaginary roots of detR(ξ).
If we replace Φ(ζ, η) with

(
K∏

k=1

(ζ2 + ω2
k)(η2 + ω2

k)

)
Φ(ζ, η)

in the Lyapunov equation, then stability is enough to conclude that a solution
X exists.

By making some minor adjustments to the proofs of Theorems 4.5 and 4.7
we can get a similar condition for semistability.

Corollary 4.8. Let B ∈ Ld be autonomous and suppose there is Ψ ∈ Rd×ds [ζ, η]

such that Ψ
B
= ET (ζ)E(η) and

•
Ψ
B
= −DT (ζ)D(η) for some E ∈ Re1×d[ξ], D ∈

Re2×d[ξ]. If further B = kerR
(
d
dt

)
, where R ∈ Rd×d[ξ],

rk

(
R(λ)
D(λ)

)
= d (17)
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for all λ ∈ C \ {0} and

rk

(
R(0)
E(0)

)
= d, (18)

then B is semistable.

Proof. The proof is similar to those of Theorems 4.5 and 4.7 so we will only

briefly cover the differences. In the proof of Theorem 4.5, we used
•
Ψ
B
< 0 to

show that if λ is a root of R, then <(λ) < 0. Since equation (17) need not hold
for λ = 0, we instead conclude that if λ is a root of R then either <(λ) < 0 or
λ = 0.

We can then show that if λ = 0 is a root of R then it is semisimple the
same way we showed imaginary roots are semisimple in the proof of Theorem

4.7, using equation (18) instead of the assumption Ψ
B
> 0. It then follows from

Proposition 4.2 that B is semisimple.

Example 4.9. We will now return to the spring-damper system we looked at in
Example 4.3, given by the equation R

(
d
dt

)
q = 0 where R(ξ) = Mξ2 +Dξ +K.

We will use QDFs to study the case when q is vector valued. Recall that from
the outset we had the assumption M = MT ≥ 0,K = KT ≥ 0 and D+DT ≥ 0.
We will use a QDF induced by

Ψ(ζ, η) = Mζη +K.

This QDF describes the total energy in the system, the first term gives the
kinetic energy due to movement and the second gives the potential energy stored
in the springs. Note that

•
Ψ(ζ, η) = M(ζ2η + ζη2) +K(ζ + η) = RT (ζ)ηI + ζIR(η)− (D +DT )ζη

B
=

B
= −(D +DT )ζη.

Clearly we have Ψ ≥ 0 and
•
Ψ
B
≤ 0, to conclude something about stability we

need to sharpen at least one of these inequalities.
Note that if kerK is nontrivial, then there is a constant solution q0 to the

equation R
(
d
dt

)
q = 0. This means that there is more than one (and by scaling

the vector, in fact infinitely many) equilibrium states. If we on the other hand
assume that there is only one equilibrium point, the origin, then K > 0. This
means that Ψ > 0 and so by Theorem 4.7 the system is stable.

If we want asymptotic stability, then we need to make sure that
(R(ξ),

√
D +DT ξ) is an observable pair, equivalently that

rk

(
Mλ2 +Dλ+K√

D +DTλ

)
= d

for all λ ∈ C. A condition for this to hold found in [14] is that K > 0 and
ker(D +DT ) ⊆ kerM . To see this suppose we have x ∈ Cd such that

(
Mλ2 +Dλ+K√

D +DTλ

)
x = 0. (19)
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If λ = 0 then we have Kx = 0 and since K > 0 this implies that x = 0. For
nonzero λ we must have (D + DT )x = 0 and consequently Mx = 0. It follows
that we must also have Dλx+Kx = 0. It follows that

0 = xTDx+
1

λ
xTKx =

1

2
xT (D +DT )x+

1

λ
xTKx =

1

λ
xTKx

and so we must have x = 0. It follows that (R(ξ),
√
D +DT ξ) is an observable

pair, and by Theorem 4.5 the system is asymptotically stable.
This condition can be slightly adjusted to get the semistable case instead.

We once again assume ker(D + DT ) ⊆ kerM , but instead of assuming K > 0
we will use the weaker condition kerK ∩ ker(D + DT ) = ∅. For nonzero λ,
equation (19) once again leads us to (D +DT )x = Kx = 0, which under these
new assumptions again gives us x = 0. If kerK is nontrivial, then as noted
above there is some nonzero constant solution to R

(
d
dt

)
q = 0. We still need to

check that that there are no solutions of the form q(t) = α+ βt with β 6= 0 (in
other words, that 0 is a semisimple root of R). We must then have

R

(
d

dt

)
(α+ βt) = Kα+Kβt+Dβ = 0.

It follows that β ∈ kerK, giving us that Kα + Dβ = 0. Multiplication by βT

gives

0 = βTKα+ βTDβ =
1

2
βT (D +DT )β.

Now since kerK ∩ ker(D + DT ) = ∅ this implies β = 0. Hence the system is
semistable in this case.

As noted earlier a system that is not autonomous cannot be stable because
some components could be chosen as inputs, which we can choose freely and
hence is not bounded in general. But this raises the question, what if we choose
the input to be bounded, will the output be bounded? This idea leads to another
form of stability.

Definition 4.10. Let B ∈ Ld be a behaviour in i/o-form. We say that B
is bounded input-bounded output (BIBO) stable if (u, y) ∈ B and u bounded
implies that y is bounded.

Sometimes this form of stability is called L∞ i/o-stability, as the input and
output have finite L∞ norm in this case. We can similarly define Lp i/o-stability
by using Lp norms instead.

The main result regarding BIBO stability is the following, which is from [6].

Proposition 4.11. Let B be the i/o-behaviour given by P
(
d
dt

)
y = Q

(
d
dt

)
u with

P−1Q(ξ) a matrix of proper rational functions. Then B is BIBO stable if and
only if each root of P either has negative real part or its real part is zero, it is
semisimple and not a pole of P−1Q(ξ).
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Proof. We begin by showing that each of the conditions on the roots of P are
necessary. Note first that if any root has positive real part or has real part zero
but is not semisimple, then by Proposition 4.2 the system kerP

(
d
dt

)
is unstable.

Then there is an unbounded solution y ∈ kerP
(
d
dt

)
, and if we combine it with

the (bounded) input u(t) = 0, we get an i/o pair where the input is bounded
but the output is not, so the system is not BIBO stable.

Next we look at the case when a root λ = iω of P is a pole of P−1Q(ξ).
Consider first the case when both u and y are scalar, so that P and Q are
polynomials. Then we can find a bounded input with unbounded output as
follows. Let us consider i/o pairs where the input is on the form u = aeiωt for
some a ∈ C \ {0}. We can write this in matrix form as

R

(
d

dt

)(
u
y

)
= 0, R(ξ) :=

(
−Q(ξ) P (ξ)
ξ − iω 0

)
,

the second row of R ensuring the input is on the desired form. Note that
kerR

(
d
dt

)
is now an autonomous system since detR(ξ) = (ξ − iω) detP (ξ) 6= 0,

so we can use Proposition 4.2 to show that it is unstable. Suppose the algebraic
multiplicity of iω in detP (ξ) is n. Then the algebraic multiplicity of iω in
detR(ξ) is n+ 1.

If n = 1, then since iω is a pole of P−1Q(ξ), iω can not be a root of Q(ξ).
Then the kernel of

R(iω) =

(
−Q(iω) 0

0 0

)

has dimension 1, and so iω is not a semisimple root of R. If n > 1, then the
algebraic multiplicity of iω in detR(ξ) is n+1 > 2, and since the kernel of R(iω)
can have dimension at most 2, iω is not a semisimple root of R in this case either.
It then follows from Proposition 4.2, that kerR(ξ) is unstable. Hence there is
an unbounded solution pair u, y and we know u = aeiωt for some a ∈ C, which
is bounded. Hence y must be unbounded, and so B is not BIBO stable in this
case.

Now let us return to the general case of input u of size p and output y of size
q. By Proposition 2.11 there are unimodular U, V such that UPV is diagonal.
Let P̃ = UPV , Q̃ = UQ and consider

P̃−1Q̃(ξ) = V −1P−1Q(ξ).

We now claim that if iω is a pole of P−1Q(ξ), then it is also a pole of P̃−1Q̃(ξ).
To see why, suppose iω is not a pole of P̃−1Q̃(ξ), so that P̃−1Q̃(iω) is well
defined. Then V (iω)P̃−1Q̃(iω) is also well defined, but this is equal to P−1Q(iω)
which is not well defined. Hence iω must be a pole of P̃−1Q̃(ξ).

Now suppose iω is a pole in the k:th row, l:th column of P̃−1Q̃(ξ) and
consider the system given by

P̃

(
d

dt

)
y = Q̃

(
d

dt

)
u.
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Take an input u that is of the form aeiωt on the l:th row, and zero on the other
rows. There is then a corresponding output y, with its k:th component given
by the equation

p̃k

(
d

dt

)
yk = q̃k,l

(
d

dt

)
ul.

This is the 1D case handled earlier, so there is an unbounded solution for yk
on the form yk = (b + ct)eiωt. Hence we have a bounded input, unbounded
output pair u, y for the equation P̃

(
d
dt

)
y = Q̃

(
d
dt

)
u. The pair u, V

(
d
dt

)
y is

then a bounded input, unbounded output pair for P
(
d
dt

)
y = Q

(
d
dt

)
u, so B is

not BIBO stable.
To show that these requirements on the roots are sufficient for BIBO stability

we use Lemma 2.17, giving us that given any input u, any output y solving the
equation can be written as a sum y = yh + yp where yh ∈ kerP

(
d
dt

)
and yp is

given by the formula

yp(t) = A0u(t) +
N∑

k=1

nk∑

l=1

Ak,l

∫ t

0

(t− τ)l−1

(l − 1)!
eλk(t−τ)u(τ)dτ

where

P−1(ξ)Q(ξ) = A0 +
N∑

k=1

nk∑

l=1

Ak,l
(ξ − λk)l

,

is the partial fraction decomposition. The conditions on the roots guarantee
that kerP

(
d
dt

)
is stable (via Proposition 4.2), and consequently yh is bounded.

That the imaginary roots of P are not poles of P−1Q means that Ak,l = 0
for k such that <(λk) = 0. If λ1, . . . , λN− are the roots with <(λk) < 0, then
we can write yp as

yp(t) = A0u(t) +
N−∑

k=1

nk∑

l=1

Ak,l

∫ t

0

(t− τ)l−1

(l − 1)!
eλk(t−τ)u(τ)dτ.

Now suppose u is a bounded input, say supt≥0 |u(t)| =: M ∈ R. Then

|yp| ≤ ‖A0‖M +

N−∑

k=1

nk∑

l=1

‖Ak,l‖
∫ t

0

(t− τ)l−1

(l − 1)!
|eλk(t−τ)|Mdτ =

= M


‖A0‖+

N−∑

k=1

nk∑

l=1

‖Ak,l‖
(l − 1)!

∫ t

0

(t− τ)l−1e<(λk)(t−τ)dτ




where ‖A‖ = sup{|Ax| : x ∈ Rp, |x| = 1} is a matrix operator norm. We note
that for any µ < 0 we have

∫ t

0

(t− τ)l−1eµ(t−τ)dτ =

∫ t

0

sl−1eµsds.
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Iterated integration by parts shows that this is equal to a polynomial in t times
eµt. This last expression is bounded as t → ∞, and it follows that |yp| in the
formula above is also bounded, and hence B is BIBO stable.

The assumption that P−1Q(ξ) is a matrix of proper rational functions is
needed to use Lemma 2.17. While this condition is not necessary to get an i/o-
behaviour, the process we used to recover an output for a given input u when
proving Theorem 2.18 involved differentiating a solution similar to yp above.
This in turn means differentiating the input u. This means that without the
properness condition on P−1Q(ξ), even if the input is bounded we may not get
a bounded output.

We illustrate with a simple example, if P = 1 and Q(ξ) = ξ, i.e. the equation

y =
d

dt
u.

A solution to this is u(t) = sin(t2), y(t) = 2t cos(t2) which has bounded input,
but the output is not bounded. Hence this system is not BIBO stable.

Example 4.12. We will once again look at the spring-damper system discussed
in Examples 4.3 and 4.9, but now with an external input. The system will now
be given by the equation R

(
d
dt

)
q = F where R(ξ) = Mξ2 + Dξ + K and F

is a (time dependant) input. In the asymptotically stable case discussed above
all roots of R have strictly negative real part, and so by Proposition 4.11 the
system is also BIBO stable in this case. If R has roots with real part zero, then
one would need more details on what the matrices M,D and K look like if one
wants to see which may be poles of the transfer function.
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5 Dissipative systems and LQ-control

In this section we will look at another application of QDFs in the area of dis-
sipative systems and how this relates to LQ-control problems. When looking
at issues of stability we used positivity and negativity of certain QDFs. For
dissipative systems we will instead use a form of average positivity.

To get an intuitive idea of what dissipative systems are it is useful to put
them in contrast with closed systems. A closed system usually refers to a system
that has no interaction with the outside, for example no energy enters or leaves
the system. In other words the total energy in the system always remains the
same. A dissipative system is in contrast one where (on average) for example
energy, is being supplied to the system. We could of course also have systems
where the energy is on average leaving the system, but mathematically this
makes little difference since adding a minus sign to the quantity of study would
give us a quantity that is on average increasing.

The basis of a dissipative system is a supply rate, describing how the supply
enters the system. In this text we will look at supply rates that are given by
QDFs, which is often suitable when working with linear systems. A more general
approach to supply rates can be found in [2].

Definition 5.1. Let B ∈ Ld and let Φ,Ψ,∆ ∈ Rd×d[ζ, η]. We say that B is
dissipative with respect to the supply rate QΦ, if

∫

R
QΦ(w)dt ≥ 0 (20)

for all w ∈ B ∩D(R,Rd). The QDF QΨ is called a storage function for QΦ if

Q •
Ψ

(w) ≤ QΦ(w) (21)

for all w ∈ B. The QDF Q∆ is called a dissipation rate for QΦ if ∆
B
≥ 0 and

∫
QΦ(w)dt =

∫
Q∆(w)dt

for all w ∈ B ∩D(R,Rd).

The supply rate QΦ describes the rate at which supply enters the system for
a given external signal. In equation (20) we consider only signals with compact
support. We can motivate this in two ways. First, this ensures that the integral
is finite. Second, equation (20) can then be interpreted as saying that for any
external signal that begins with the system at rest and eventually takes the
system back to being at rest, the net flow of supply is into the system.

At any time t, the supply that has entered the system must either still be
stored in the system or it has dissipated. A storage function QΨ describes how
much supply is stored in the system at any given time. The inequality (21)
is called the dissipation inequality and it tells us that the change in storage is
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always limited by the supply rate. We do not in general have equality because
some of the supply that enters the system does not remain in storage, but instead
dissipates.

The dissipation rate of course describes how fast the dissipation is happening.
The dissipation rate is nonnegative since the dissipation only works one way,
dissipation only causes supply to leave the system. That the integrals of QΦ

and Q∆ are equal represent that for a system that is initially and finally at rest,
the net supply change must be zero. Hence all supply that enters must leave
either through the supply rate or through dissipation.

When working with dissipative systems it is preferable to work with con-
trollable systems. In fact what dissipativeness should mean for non controllable
behaviour has been the subject of some discussion. In for example [14] it is
argued that the existence of a storage function is a more suitable definition for
dissipativeness in a more general context, while [9] uses the inequality (20) as
we do. The reason controllable systems are easier to handle is because we can
make use of image representations. Due to Corollary 2.30 we can assume with-
out loss of generality that we have an observable image representation. We can
then make use of the following fact.

Lemma 5.2. If w = M
(
d
dt

)
l, where M ∈ Rd×n[ξ], is an observable image

representation, then M(ξ) has a polynomial left inverse

M†(ξ) := (MTM)−1MT (ξ).

Proof. Since w = M
(
d
dt

)
l is observable we have rk(M(λ)) = n for all λ ∈ C

and so rk
(
MT (λ)M(λ)

)
= n for all λ ∈ C. Hence detMTM(ξ) has no roots,

so it must be a non-zero constant. This means that MTM(ξ) is a unimodular
matrix and hence (MTM)−1(ξ) is a polynomial matrix. It follows that M†(ξ)
is also a polynomial matrix and

M†M(ξ) = (MTM)−1MTM(ξ) = I

so M† is a left inverse for M .

Let us suppose B ∈ Ld is controllable and has an observable image represen-
tation given by w = M

(
d
dt

)
l. For Φ ∈ Rd×d[ζ, η], let

Φ′(ζ, η) = MT (ζ)Φ(ζ, η)M(η).

Since the image representation is observable we have a one-to-one correspon-
dence between w ∈ B and l ∈ C∞(R,Rn) such that w = M

(
d
dt

)
l, and we

have
QΦ(w) = QΦ′(l).

Hence looking at QΦ on w ∈ B can be reduced to looking at QΦ′ on l ∈
C∞(R,Rn). Consequently dissipativeness of B with respect to QΦ is equivalent
to dissipativeness of C∞(R,Rn) with respect to Φ′. Also, if QΨ′ , Q∆′ are a
storage function and a dissipation rate for QΦ′ respectively, then

Ψ(ζ, η) = (M†(ζ))TΨ′(ζ, η)M†(η)
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∆(ζ, η) = (M†(ζ))T∆′(ζ, η)M†(η)

are a storage function and a dissipation rate for QΦ. It is therefore enough for
controllable behaviours to check the free case when considering dissipativness
and the existence of storage function or dissipation rate. For controllable sys-
tems these notions are in fact equivalent. For this reason the question of what
dissipativeness should be defined as is not so important in the controllable case.

Theorem 5.3. Let B ∈ Ld be controllable and Φ ∈ Rd×ds [ζ, η]. Then the fol-
lowing are equivalent:

(i) B is dissipative with respect to QΦ.

(ii) There is a storage function QΨ for QΦ.

(iii) There is a dissipation rate Q∆ for QΦ.

If the above conditions hold then there is a one to one pairing of storage functions
and dissipation rates given by the equation

•
Ψ = Φ−∆.

In the proof of this theorem, in particular the existence of a dissipation rate,
we will need to factor the matrix ∂Φ in a particular way. The details are given
by the following lemma which we will prove first.

Lemma 5.4. Let Φ ∈ Rd×ds [ζ, η] such that
∫
RQΦ(w)dt ≥ 0 for all w ∈ D(R,Rd).

Then there is a matrix F ∈ Rd×d[ξ] such that ∂Φ(ξ) = FT (−ξ)F (ξ).

The proof of Lemma 5.4 is based on [3] where the case when Φ is a polynomial
is proven. The proof of Theorem 5.3 is from [14].

Proof of Lemma 5.4. The first step of the proof is to show that
∫
RQΦ(w)dt ≥ 0

for all w ∈ D(R,Rd) implies that aΦ(−iω, iω)a ≥ 0 for all a ∈ Cd, ω ∈ R. The
proof is very similar to the proof of Theorem 3.1 so we will be brief. Assume
for a contradiction that aTΦ(−iω, iω)a < 0 for some a ∈ Cd, ω ∈ R. For
N = 1, 2, . . . we construct functions vN just as in the proof of Theorem 3.1
where we furthermore found that

∫

R
QΦ(vN )dt =

4πN

ω
aTΦ(−iω, iω)a+ 2A

where A is a constant that does not depend on N . It follows that
∫
RQΦ(vN )dt <

0 for large enough N . Therefore
∫
RQΦ(vN )dt ≥ 0 for all w ∈ D(R,Rd) implies

that aTΦ(−iω, iω)a ≥ 0 for all a ∈ Cd, ω ∈ R.
By Proposition 2.11 there are unimodular matrices U, V such that

U(ξ)∂Φ(ξ)V (ξ) =: R(ξ) (22)
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is diagonal. Transposing equation (22) and switching ξ for −ξ we have

V T (−ξ)(∂Φ)T (−ξ)UT (−ξ) = R(−ξ). (23)

Since Φ is symmetric we have ∂Φ(ξ) = ∂(Φ∗)(ξ) = (∂Φ)T (−ξ), and so equations
(22) and (23) describe the same diagonalization. Hence we have U(ξ) = V T (−ξ)
and R(ξ) = R(−ξ).

Note that we now have for any a ∈ Cd, ω ∈ R that

aTR(iω)a = (V (iω)a)
T

Φ(−iω, iω)(V (iω)a) ≥ 0.

If we let R(ξ) = diag(r1(ξ), . . . , rd(ξ)) and

a =



a1

...
ad


 ,

then we have
aTk rk(iω)ak ≥ 0

for each k = 1, . . . , d. This implies rk(iω) ≥ 0 for all k = 1, . . . , d. If iω0 is an
imaginary root of rk, then it must have even multiplicity. To see this note that
if iω0 is a root with odd multiplicity, then rk(iω) switches sign as ω varies from
values smaller than ω0 to larger, which would contradict that rk(iω) ≥ 0.

We also note that since R(ξ) = R(−ξ) we also have that rk is even. Hence for
any root λ of rk that is not on the imaginary axis, −λ is another root. Since rk
is a real polynomial it follows that we also have ±λ as roots. All roots, counted
with multiplicity, can hence be put in groups of four of the form ±λl,±λl. If
we now let

γk(ξ) =
∏

l

(ξ − λl)(ξ − λl)

then rk(ξ) = γk(−ξ)γk(ξ). Setting Γ(ξ) = diag(γ1(ξ), . . . , γd(ξ)), we have
R(ξ) = Γ(−ξ)Γ(ξ). Finally, setting F (ξ) = Γ(ξ)V −1(ξ) we have

FT (−ξ)F (ξ) = V −T (−ξ)Γ(−ξ)Γ(ξ)V −1(ξ) = V −T (−ξ)R(ξ)V −1(ξ) = ∂Φ(ξ)

and the proof is finished.

Proof of Theorem 5.3. We will show the equivalences by proving the chain
(i) =⇒ (iii) =⇒ (ii) =⇒ (i). Since B is controllable it suffices to show the
statement in the case B = C∞(R,Rd).

(i) =⇒ (iii): We use Lemma 5.4, giving us F such that ∂Φ(ξ) = FT (−ξ)F (ξ).
Letting ∆(ζ, η) = FT (ζ)F (η), we will show that this is a dissipation rate. We
have, for any w ∈ C∞(R,Rd)

Q∆(w) =

∣∣∣∣F
(
d

dt

)
w

∣∣∣∣
2

≥ 0

70



so ∆ ≥ 0. We also have ∂(Φ −∆) = 0, and so by Theorem 3.1,
∫
QΦ−∆(w) =

0 for all w ∈ D(R,Rd). Hence
∫
RQΦ(w)dt =

∫
RQ∆(w)dt, and so Q∆ is a

dissipation rate for QΦ.
(iii) =⇒ (ii): If

∫
QΦ =

∫
Q∆, then

∫
RQΦ−∆(w)dt = 0 for all w ∈ D(R,Rd).

By Theorem 3.1 there is then Ψ such that
•
Ψ = Φ −∆. Since ∆ ≥ 0 it follows

that
•
Ψ ≤ Φ.

(ii) =⇒ (i): For any w ∈ D(R,Rd) we have
∫

R
QΦ(w)dt ≥

∫

R
Q •

Ψ
(w)dt = [QΨ(w)]∞−∞ = 0,

since w has compact support and hence limt→±∞QΨ(w) = 0.
If (iii) holds, then it is clear from the proof that there is a storage function

Ψ that satisfies
•
Ψ = Φ−∆, moreover this Ψ is unique.

Storage functions for a certain supply rate are in general not unique. If
∫
QΦ = 0, then there is a unique storage function given by

•
Ψ = Φ, but otherwise

we can in general find several.
The storage function describes how much has been stored in the system up

to the time t, depending on the external signal. As such we may guess that it
has some connection to the state, which is a kind of memory and should hold
all information about the past of the external signal. Indeed, by the following
proposition, if our behaviour is in state space form then any storage function
can be expressed as a function of the state. Additionally this expression can be
taken as a quadratic form, no derivatives of the state involved.

Proposition 5.5. Suppose B ∈ Ld is controllable, has a state space representa-
tion Bs and that B is dissipative with respect to QΦ. If QΨ is a storage function
for QΦ, then there is a matrix K = KT ∈ Rn×n such that for any (w, x) ∈ Bs

QΨ(w)(t) = xT (t)Kx(t).

A proof of this statement can be found in [14]. The set of storage functions
has some further nice properties. It is both convex and has a maximal and
minimal element.

Proposition 5.6. Let B ∈ Ld be controllable and dissipative with respect to
QΦ. Then the set of storage functions for QΦ is convex.

Proof. Let us suppose for simplicity that B = C∞(R,Rd). If QΨ1
, QΨ2

induce
two storage functions for QΦ and s ∈ (0, 1), then

d

dt
(sQΨ1(w) + (1− s)QΨ2(w)) = sQ •

Ψ1

(w) + (1− s)Q •
Ψ2

(w) ≤

≤ sQΦ(w) + (1− s)QΦ(w) = QΦ(w)

so sQΨ1
+ (1 − s)QΨ2

is a storage function for QΦ. Consequently the set of
storage functions is convex.
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Theorem 5.7. Let B ∈ Ld be controllable and dissipative with respect to QΦ.
Then there are storage functions Ψ−,Ψ+ such that for any storage function Ψ
we have

Ψ− ≤ Ψ ≤ Ψ+.

For a proof of this statement we refer to [14], where it is also shown how
to find these Ψ−,Ψ+. We will not go into detail here but only give the basic
idea, which starts with factoring ∂Φ(ξ). We use one factorization ∂Φ(ξ) =
AT (−ξ)A(ξ), where the roots of A are in the closed right half plane, and ∂Φ(ξ) =
HT (−ξ)H(ξ), where the roots of A are in the closed left half plane. These
different factorizations are given by choosing the γk:s in different ways in the
proof of Lemma 5.4.

The maximal and minimal storage functions are then induced by

Ψ+ =
Φ(ζ, η)−AT (ζ)A(η)

ζ + η

Ψ− =
Φ(ζ, η)−HT (ζ)H(η)

ζ + η
.

By Proposition 5.5, if we have a state space representation of B, then Ψ−,Ψ+

can be expressed as

QΨ+(w) = xTK+x

QΨ−(w) = xTK−x.

for some matrices K+,K− ∈ Rn×n.
There is another interpretation of these two storage functions that perhaps

give a more intuitive idea of what they are. Again we consider a behaviour with
state behaviour Bs and (w, x) ∈ Bs. The storage functions are given as

QΨ+(w)(t) = inf

{∫ t

−∞
QΦ(w̃)dτ |(w̃, x̃) ∈ Bs, x(t) = x̃(t), w̃ ∈ D(R,Rd)

}

QΨ−(w)(t) = sup

{
−
∫ ∞

t

QΦ(w̃)dτ |(w̃, x̃) ∈ Bs, x(t) = x̃(t), w̃ ∈ D(R,Rd)
}
.

At first glance it may not be entirely clear that these expressions are QDFs,
or that they can be expressed as quadratic functions of the state. In fact the
finiteness of this infimum and supremum is a direct consequence of the dissi-
pativeness of B (see [2]). If we accept that they are storage functions, showing
that they are the maximal and minimal storage functions is not so difficult.

Indeed, for any storage function QΨ, w ∈ B ∩D(R,Rd) and t0 < t1 we have
by the dissipation inequality that

∫ t1

t0

QΦ(w)dτ ≥ QΨ(w)(t1)−QΨ(w)(t0).

If we first let t1 →∞ and t0 = t we have

QΨ(w)(t) ≥ −
∫ ∞

t

QΦ(w)dτ.
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For any (w̃, x̃) ∈ Bs such that x(t) = x̃(t) we have QΨ(w)(t) = QΨ(w̃)(t), since
QΨ depends only on the state at t. Taking supremum over all such w̃ we have
that Ψ ≥ Ψ−.

Similarly, if we let t1 = t and t0 → −∞, then we have

QΨ(w)(t) ≤
∫ t

−∞
QΦ(w)dτ

and taking infimum over all w̃ such that x(t) = x̃(t) gives Ψ ≤ Ψ+.
Due to these last formulas for QΨ+ is called the required supply and QΨ−

is called available storage. For QΨ+ the idea is that it describes the smallest
amount of supply that needs to be stored to take the system from rest to the
state x(t). On the other hand QΨ− describes the largest amount of supply that
can be extracted from the system in state x(t) when bringing it to rest.

Since storage functions can be represented as quadratic forms of the state,
dissipativeness is equivalent to the existence of quadratic forms with certain
properties. This allows us to link dissipativeness with certain matrix inequali-
ties, which will be very important when we look at LQ-control problems. The
following result is called the Kalman-Yakubovich-Popov Lemma (often abbre-
viated as KYP Lemma), here formulated for generalized first order systems.
The proof is from [9], where a more general version for higher order system is
also proven. For the higher order version the idea is to introduce some latent
variables to give a first order representation of the behaviour, and then apply
the first order version.

Before we state the Proposition we need to introduce the notion of a trim
behaviour. For a dynamical system (T ,W,B) the set of consistent points is

W0 = {w0 ∈ W|∃w ∈ B, w(0) = w0}.

We say that B is trim if W0 =W, meaning that at time t = 0 we can have any
signal in the signal space. In some sense this means that the signal space is as
small as possible. The reason we need this is that we want be able to conclude
from a statement like wTKw ≥ 0 for all w ∈ B, that the matrix K is positive
semidefinite. If the behaviour is not trim, then we can not make this conclusion.

Proposition 5.8 (Kalman-Yakubovich-Popov Lemma).
Let B be the solution set of

Gẇ = Fw

where F,G ∈ Re×d. Assume that B is controllable and trim and let M = MT ∈
Rd. Then the following are equivalent

(i)
∫
R w

TMwdt ≥ 0 for all w ∈ B ∩D(R,Rd).

(ii) There is P = PT ∈ Re×e such that M + FTPG+GTPF ≥ 0.

Proof. We begin by showing that (i) implies (ii). The statement (i) means that
B is dissipative with respect to wTMw and so by Theorem 5.3 there is some
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storage function for this supply rate. Note that Gw has the properties of a state
variable, and so by Proposition 5.5 this storage function can be expressed as
wTGTKGw for some K ∈ Rd×d. It satisfies the dissipation inequality

d

dt
(wTGTKGw) ≤ wTMw ⇐⇒

wT (FTKG+GTKF )w ≤ wTMw.

Setting P = −K we have

wT (M + FTPG+GTPF )w ≥ 0,

and since B is trim this implies (ii).
To show (ii) implies (i) we simply need to show that−wTGTPGw is a storage

function for wTMw. Indeed, it satisfies the dissipation inequality

d

dt
(−wTGTPGw) = −wTFTPGw − wTGTPFw ≤ wTMw

so it is a storage function. By Theorem 5.3 B is dissipative with respect to
wTMw, i.e. (i) holds.

5.1 LQ-control problems

Dissipative systems and QDFs have a close connection to LQ-control problems,
a type of optimization problems. LQ-control problems can be formulated in a
variety of ways, here we give one of the simpler formulations.

In this section we will look at an i/s/o system on the form

ẋ = Ax+Bu (24)

y = x

where A ∈ Rn×n, B ∈ Rn×p. Of course we do not need both the variables x and
y, so we will just write x and use equation (24). Note that since x is now also
the output, we will write the external signal as

w =

(
u
x

)
.

For the remainder of this section B will refer to the solution set of (24). We will
also assume that this state space representation is minimal.

Here ”LQ” is short for linear-quadratic, the linear part refers to a linear
system, in our case given by B. The quadratic part refers to a quadratic cost
functional (sometimes called performance index), in our case given by

J (u, x0) =

∫ ∞

0

xTQx+ uTRudt
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where Q ∈ Rn×n and R ∈ Rp×p. Here x0 ∈ Rn is an initial value for x. The
LQ-control problem is to find a control u that minimizes J under the conditions
that (u, x) satisfy equation (24) and x(0) = x0.

The term LQ-control problem refers more generally to problems where we
want to minimize or maximize some quadratic cost expression subject to some
linear equations. The linear equation could for example be higher order, the
usual approach is then to introduce new variables to reduce to a first order
problem. We could also have a different cost expression, for example including
a mixed term uTSx. These cases can essentially be reduced to the one we
will look at through a change of variables. Hence if we can solve the problem
presented above, these slightly altered problems have solutions that can be
attained through a change of variables.

The problem we have formulated is the infinite horizon case, referring to the
fact that we integrate to infinite time horizon in J . Finite horizon versions of
the problem can also be studied, see for example [8]. Curiously the finite horizon
LQ-problem is actually more complicated than the infinite horizon problem.

We note that we have written the cost functional J as a function of u and
x0 but not of x even though x is included in the expression defining J . The
motivation is that given an initial condition x0 and having chosen a control u,
the initial value problem

ẋ = Ax+Bu, x(0) = x0

has a unique solution if u is chosen sufficiently smooth. As a consequence
J is completely determined once we have chosen x0 and u. The smoothness
condition on u turns out to not be a problem, as we will find that under suitable
assumptions there is always an optimal solution that is smooth.

Next we need to consider a few questions regarding well-posedness of the
problem. For the problem to be well-posed we of course need the integral J to
converge for some input u, so in particular we need xTQx→ 0 as t→∞. If B
is not controllable then there may be initial values x0 for which xTQx does not
converge to zero regardless of input. Hence we will assume going forward that
B is controllable.

To give us a clue to what the optimal cost might be, we will use the theory
of dissipative systems. We take the supply rate as QΦ(w) = xTQx+ uTRu, the
integrand in the cost function J . This integrand is usually called the instanta-
neous cost. Since we have assumed Q ≥ 0, R > 0 we have that QΦ ≥ 0 so B is
dissipative with respect to this supply rate. We can now make use of storage
functions, in particular the available storage which we found to be equal to

QΨ−(w)(0) = sup

{
−
∫ ∞

0

QΦ(w̃)dτ |(w̃, x̃) ∈ Bs, x(0) = x̃(0), w̃ ∈ D(R,Rd)
}

= − inf
{
J (ũ, x0)|(ũ, x̃) ∈ B, x̃(0) = x0, (ũ, x̃) ∈ D(R,Rp+n)

}
.

We see that the available storage is essentially minus the sought minimum of
J .
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There are some details that need clearing up though. First of all the available
storage is given here by an infimum while we seek a minimum, so it is a priori
not clear if this minimum is ever attained. Second, the infimum is taken over
external signals with compact support. It turns out that the optimal control
will be a smooth function, but it will not have compact support.

We will find that the restriction of compact support can not simply be re-
moved. Compact support implies that the state always goes to zero as t→∞,
so called zero endpoint solutions. It turns out that if the state does not converge
to zero, the free endpoint case, then the situation is more complicated.

The key to solving this problem is choosing u as a linear state feedback, that
is we choose u as a linear function of x. For this kind of approach to be feasible
the state at time t of course needs to be known to us at time t if we are to feed
it back into the system. In our case the state is also the output so it is justified
to feed it back to itself. We will hence look for a suitable control of the form
u = Fx where F ∈ Rp×n.

It turns out that a suitable feedback is given by setting u = −R−1BTPx
where P ∈ Rn×n is a symmetric solution to the equation

ATP + PA− PBR−1BTP +Q = 0. (ARE)

This matrix equation is called the algebraic Riccati equation (abbreviated as
ARE). We will use the theory of dissipative systems to give a motivation for
where this equation comes from. The first step is to use the KYP Lemma. To
do so note that we can write the equations for our system as

(
0 I

)
ẇ =

(
B A

)
w

and that since our state space representation is minimal, B is also trim. By the
KYP Lemma there is hence a matrix P ∈ Rn×n such that

(
R 0
0 Q

)
+

(
BT

AT

)
P
(
0 I

)
+

(
0
I

)
P
(
B A

)
≥ 0

which we can rewrite as
(
R BTP
PB ATP + PA+Q

)
≥ 0. (25)

This matrix can be factored as
(
R BTP
PB ATP + PA+Q

)
=

(
I 0

PBR−1 I

)(
R 0
0 R(P )

)(
I R−1BTP
0 I

)

where R(P ) = ATP + PA + Q − PBR−1BTP . Since R > 0 the inequality
(25) is equivalent to R(P ) ≥ 0. Note that R(P ) = 0 is the ARE, so clearly
any solution to the ARE also solves the inequality R(P ) ≥ 0. Hence if P is a
solution to the ARE, then −xTPx is a storage function. It can be shown that
the inequality R(P ) ≥ 0 has a solution only if R(P ) = 0 has a solution. In
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our case we know R(P ) ≥ 0 has some solution since we know there exists at
least one storage function. In particular it can be shown that the maximal and
minimal storage functions given by Ψ+ and Ψ− do correspond to solutions of
the ARE.

It is worth noting that not all storage functions correspond to solutions to
the ARE. We found that the set of storage functions is convex, but the set of
solutions to the ARE is not convex in general. In fact the solution set of the
ARE is isomorphic to an algebraic variety, often just a finite set. A proof of
this as well as several other topological and geometric considerations about the
solutions to the ARE can be found in [7].

Now let P be a solution to the ARE. Differentiating the form xTPx we get

d

dt

(
xTPx

)
= (ẋ)TPx+ xTPẋ = (Ax+Bu)TPx+ xTP (Ax+Bu) =

= xT (ATP + PA)x+ uTBTPx+ xTPBu =

= xT (PBR−1BTP −Q)x+ uTBTPx+ xTPBu =

= (u+R−1BTPx)TR(u+R−1BTPx)− xTQx− uTRu.

From here we can actually see that (u + R−1BTPx)TR(u + R−1BTPx) is the
dissipation rate that corresponds to the storage function given by −xTPx. In-
tegrating the first and last expressions in t from 0 to ∞ gives

lim
t→∞

(
xTPx

)
− xT0 Px0 =

=

∫ ∞

0

(u+R−1BTPx)TR(u+R−1BTPx)dt−
∫ ∞

0

xTQx+ uTRudt

or equivalently

J (u, x0) = xT0 Px0 − lim
t→∞

(
xTPx

)
+

+

∫ ∞

0

(u+R−1BTPx)TR(u+R−1BTPx)dt.

Clearly if we had limt→∞
(
xTPx

)
= 0, then since R > 0 we would get the

minimal cost if we set u = −R−1BTPx. The minimal cost itself would then be
xT0 Px0. To ensure that we have limt→∞

(
xTPx

)
= 0 we will need an observ-

ability condition, that (ξI −A,Q) is an observable pair.

Proposition 5.9. If (ξI − A,Q) is an observable pair and u is a control such
that J (u, x0) is finite, then the resulting state trajectory converges to zero as
t→∞.

Proof. If J (u, x0) is finite, then we must have u → 0 and Qx → 0 as t → ∞.
Since u→ 0 we also have

ẋ−Ax = Bu→ 0.

We can therefore decompose x as x(t) = x1(t) + x2(t) where ẋ1 = Ax1 and
x2 → 0. We also have

Qx1 = Qx−Qx2 → 0.
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Since ẋ1 = Ax1, we can write

x1(t) =

N∑

k=1

<(eλkt)pk(t)bk

where λ1, . . . , λN are the unique eigenvalues of A, pk(t) ∈ R[t] and bk ∈ Rn.
Because (ξI −A,Q) is an observable pair Qbk 6= 0 whenever bk 6= 0. Hence

Qx1(t) =
N∑

k=1

<(eλkt)pk(t)Qbk

can only converge to zero if <(λk) < 0 for all k. This in turn means that
limt→∞ x1(t) = 0, proving the statement.

Recall that the available storage can be written xTK−x, and this is the
minimal storage function. Setting P+ = −K−, we thus get a maximal solution
of the ARE. Using the control u∗ = −R−1BTP+x, the final cost is

J (u∗, x0) = xT0 P
+x0 − lim

t→∞

(
xTP+x

)
≤ xT0 P+x0,

which is clearly finite. The following result is therefore immediate.

Corollary 5.10. If (ξI − A,Q) is an observable pair and we set the control
to u∗ = −R−1BTP+x, then the resulting state trajectory converges to zero as
t→∞.

Note that this result could be stated as, if (ξI −A,Q) is an observable pair,
then the behaviour B̃ given by ẋ = (A−BR−1BTP+)x is asymptotically stable.
We can actually get this result in another way, using a Lyapunov function and
Theorem 4.5. The Lyapunov function in this case is xTP+x. Indeed, this
function is nonnegative and its derivative is

d

dt

(
xTP+x

)
= −xTQx− (u∗)TRu∗ = −xTQx− xTP+BR−1BTP+x.

Clearly d
dt

(
xTP+x

)
is nonpositive. Furthermore if x ∈ B̃ is not identically

zero but is such that −xTQx− xTP+BR−1BTP+x is identically zero, then in
particular we have Qx(t) = 0 and R−1BTP+x = 0 and so u∗ = 0. Hence such
x must satisfy the equation ẋ = Ax. However this contradicts that (ξI −A,Q)
is an observable pair.

Example 5.11. We will now look at an example of how Corollary 5.10 can fail
if (ξI − A,Q) is not an observable pair. In this example we take n = p = 2,
A = 0, B = R = I and

Q =

(
1 0
0 0

)
.

In this case the ARE reads as Q− P 2 = 0 which has only two solutions,
(
±1 0
0 0

)
.
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Clearly the maximal solution is

P+ =

(
1 0
0 0

)
.

Using the feedback u∗ = −P+x, the state should satisfy ẋ = −P+x. With the
initial condition x(0) = x0 we have

x(t) = e−P
+tx0 =

(
e−t 0
0 1

)
x0

and

u∗(t) = −P+x(t) =

(
−e−t 0

0 0

)
x0.

We can now see that for initial conditions on the form

x0 =

(
a
0

)

both the control and state trajectory will be non-zero but approach zero as
t → ∞, and the total cost will be a2. On the other hand for initial conditions
on the form

x0 =

(
0
a

)

the control will be zero, the state constant equal to x0 and the total cost will be
zero. In this case this is the optimal control, even if the resulting state behaviour
is not asymptotically stable.

With the observability condition we can now prove that u∗ really gives the
optimal control.

Proposition 5.12. If (ξI − A,Q) is an observable pair, then the control u∗ =
−R−1BTP+x is the unique optimal control.

Proof. Let u = v + u∗ be a control such that J (u, x0) is finite. By Proposition
5.9 the resulting state trajectory from using the control u converges to zero as
t→∞. We then have

J (u, x0) = xT0 P
+x0 − lim

t→∞

(
xTP+x

)
+

+

∫ ∞

0

(v + u∗ +R−1BTP+x)TR(v + u∗ +R−1BTP+x)dt =

= xT0 P
+x0 +

∫ ∞

0

vTRvdt

Since R > 0, this has a unique minimum when v = 0, in other words when the
control is equal to u∗.
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Under the assumption that (ξI − A,Q) is an observable pair it also holds
that P+ is positive definite. To see this note that if x0 ∈ kerP+, then the
optimal cost is given by

J (0, x0) = xT0 P
+x0 = 0.

The resulting state trajectory would have to satisfy Qx = 0 and ẋ = Ax, and
by the observability assumption this implies that x0 = 0.

Example 5.13. Let us now look at an example of why the observability con-
dition is necessary in Proposition 5.12.

In this example we take n = p = 2,

A =

(
0 0
0 1

)
,

B = R = I and

Q =

(
1 0
0 0

)
.

In this case the ARE has solutions

P1 =

(
1 0
0 0

)
, P2 =

(
−1 0
0 0

)
, P3 =

(
1 0
0 2

)
, P4 =

(
−1 0
0 2

)
,

Pγ+ =

(√
1− γ2 γ

γ −1−
√

1− γ2

)
, Pγ− =

(
−
√

1− γ2 γ

γ −1 +
√

1− γ2

)

where γ ∈ [−1, 1]. The maximal solution is in this case P3, to see this note that
only P1 and P3 have no negative eigenvalues and clearly P3 is maximal of the
two. However the optimal control is not u = −P3x in this case, but instead
u = −P1x is the optimal control.

If we use the control u = −P3x, then the resulting state trajectory is given
by

x(t) = e(A−P3)tx0 = e−tx0

and the cost

J (−P3x, x0) = xT0 P3x0 − lim
t→∞

(xTP3x) = xT0 P3x0.

The control u = −P1x gives the state trajectory

x(t) = e(A−P1)tx0 =

(
e−t 0
0 et

)
x0

and the cost
J (−P1x, x0) = xT0 P1x0 − lim

t→∞
(xTP1x).

If we write the initial condition as

x0 =

(
x1

x2

)
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then
lim
t→∞

(xTP1x) = lim
t→∞

e−2tx2
1 = 0

and hence
J (−P1x, x0) = xT0 P1x0.

However, if x2 6= 0, then xT0 P1x0 < xT0 P3x0 so using P1 for the control gives a
smaller total cost, even if P3 is the maximal solution to the ARE.

We can also note that in this case when using the optimal control, the
resulting state trajectory is unbounded as t → ∞ whenever x2 6= 0. It is the
fact that limt→∞(xTP1x) = 0 despite x not converging to zero that allows us
to use a smaller solution of the ARE.

The above example shows that without the observability assumption u∗ =
−R−1BTP+x is not necessarily the optimal control. The key thing to note is
that with the optimal control in the example, the resulting state behaviour is
unstable. If we restricted ourselves to only those controls for which the state
goes to zero, the zero endpoint case, then we would in fact find that it is the
control given by the maximal solution P3 that gives the optimal cost.

The free end point case is in fact always solved by a solution to the ARE,
but not necessarily the maximal solution. This is discussed in for example [13].
It can be shown that the free end point case is solved using the smallest positive
semidefinite solution of the ARE (see [2]). What we have seen above is that if
(A − ξI,Q) is an observable pair, then the maximal solution P+ is in fact the
only positive semidefinite solution and it gives the optimal control in both the
free end point and zero end point case (the two cases coincide).

It can also be shown that P+ is the only solution to the ARE for which all
eigenvalues of A−BR−1BTP lie in the closed left half plane of C (see [2]). For
any other solution to the ARE at least one eigenvalue of A − BR−1BTP has
positive real part, which means that the resulting state behaviour is necessarily
unstable. In the example above we indeed saw that the solution given by P1 is
unstable.

The ARE itself can also be used to draw conclusions about stability due to
its similarity with the Lyapunov equation. If P is a solution to the ARE and
we set AP = A−BR−1BTP , then the ARE implies that

ATPP + PAP = −Q− PBR−1BTP.

This is a Lyapunov equation for the system ẋ = APx, so it can be used to
discuss the stability of this system.

81



References
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