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Abstract

The Coupon Collector’s Problem asks the question of how many coupons,
belonging to a set where the probability of all coupons is equal, must be
purchased at random before at least one of each type has been acquired.

This thesis explores this specific problem, as well as the generalization to
unequal probabilities, using two different methods. The traditional discrete
approach, where one coupon is collected at each time unit, makes use of the
geometric distribution and the harmonic series. The alternative way is to
utilize the Poisson Process. There coupons are collected continuously at an
independent probabilistic rate of 1 per time unit, where the times between
coupons are exponentially distributed. An example calculating the expected
number of draws needed to collect all coupons will be given for each method
to illustrate the similarities and differences.

The discrete method is simpler to understand initially, however the contin-
uous approach makes the generalization as well as a mathematical analysis of
the problem significantly simpler. This will all be illustrated in a few examples
as well.

Additionally, it covers two applications of the generalized problem, the
Pokemon games and unfair dice. We will see how the games core mechanic, to
discover unique creatures, can be explained and quantified using the Poisson
Process method. Using the very same method we will show that the way
numbers appear on any unfair dice may have a distinctly different distribution
from a regular fair dice.
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1
Introduction
The purpose of this thesis is to investigate the Coupon Collector’s problem, a classic
problem of probability theory. It asks the question of how many coupons, belonging
to a set where the probability of all coupons is equal, must be purchased at random
before at least one of each type has been acquired. As well as its generalization,
some applications and two methods that can be used to solve it.

First is the discrete method. It is simpler and require only a high-school level
of mathematics to understand. However, it is quite limited and cannot be used to
generalize the problem in an effective manner. The continuous method, Poisson
Processes, is a much more powerful tool. More information about probability dis-
tributions is retained and most generalizations become easy, if not trivial, once you
understand it. A thorough description and brief history of the Coupon Collector’s
Problem is given in Section 2.

Section 3 serves as an introduction to the mathematics used to solve the problem.
We will cover three probability distributions, the Geometric, Poisson and Exponen-
tial distributions, and clarify some notation used later in the report. Additionally
we will define the Poisson Process and prove that it is applicable to the problem at
hand.

Section 4 and 5 are the heart of the thesis. In Section 4 we will solve the Coupon
Collector’s Problem using our two methods, and in Section 5 we will look at the
theory of generalizing the problem further. We will see that it is very hard when
using the discrete method, but no more difficult than the specific case if you use the
continuous method.

In Section 6 we will look at two applications of the generalized problem. First is
the Pokemon games, where we will see how the expected time until one of the main
goals of the games is completed can be quantified. The second application pertains
to unfair (or loaded) dice. Particularly we will see that the unfair dice we discuss
takes, on average,longer than a fair dice to roll each side once.
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The Coupon Collector’s problem
A classic formulation of the Coupon Collector’s problem reads as follows:

“Suppose a brand of cereal includes a coupon with every box purchased. There
are n different coupons, each one equally likely to be in any one box. If every draw
is independent from the others, what is the average amount of boxes that must be
purchased before one of each type of coupon has been collected?” This formulation
has been paraphrased from the description in section 1 of The Coupon Collector’s
Problem [FeSa14]

Though this formulation is obviously modernized to the twentieth century, the
history of the Coupon Collector’s problem goes all the way back to the early 1700s,
when it was first described by A. De Moivre in De Mensura Sortis (On the Mea-
surement of Chance). Since then it has been worked on and expanded by numerous
people, including such prolific names as Laplace and Euler.

The Coupon Collector’s Problem describes so called “collect all and win” con-
tests. Where the goal is, rather self explanatory, to collect at least one of each type
in a collection of things in order to "win". Unlike the name suggests, the Coupon
Collector’s Problem describes more than just coupons. Rolling a dice until you have
rolled each number at least once is the exact same problem.

You can also generalize the problem to "coupons" with unequal probabilities.
This is something that is nearly trivial when using the continuous method, but
highly laborious and impractical in the discrete case. Something we will see in
section 5.

The mathematical model that the problem describes is quite broadly applicable.
In section 6 we will explore two simple applications of the generalized Coupon Col-
lector’s Problem, but there are many more. Including in electrical engineering and
biology. For further information on this and the problem’s history, see [FeSa14].
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Theoretical background
Before we can solve the Coupon Collector’s Problem, we must first understand the
theory behind the methods we will utilize.

3.1 Relevant Probability Distributions and Little-o

Definition 3.1. Geometric distribution. A Geometric random variable counts the
number of tries leading up to, and including, the first success. If every attempt has,
independently of one another, a probability p of success, then X is a geometrically
distributed random variable with parameter p, and the probability mass function is:

pX(n) = P{X = n} = (1 − p)n−1p, n = 1, 2, 3, ...

The geometric distribution is appropriate if:

1. The modeled phenomena is a a sequence of independent trials.

2. Every trial can either succeed or fail.

3. The probability of success is the same for each trial.

Definition 3.2. Poisson Distribution. A random variable Y , taking the values
0, 1, 2, 3, ... is said to have a Poisson distribution with parameter λ if, for λ > 0:

pY (i) = P{Y = i} = e−λ λi

i! , i = 0, 1, 2, ...,

which naturally defines a probability mass function since ∑∞
i=0

λi

i! = eλ. The Poisson
distribution is intimately connected to the Exponential distribution. As will be
shown in Section 3.3, the interarrival (or waiting) times of the Poisson Process are
exponential random variables.



Definition 3.3. The Exponential distribution. A continuous random variable Z is
Exponentially distributed with parameter λ > 0 if:

P{Z > t} =
∫ ∞

0
λe−λtdt = e−λt, t > 0.

In addition, the exponential distribution is memoryless. A random variable is with-
out memory if the probability for an event to take place, after a certain time t, is
independent of how much time has already passed when the count starts, i.e:

P{x > s + t | x > t} = P{Z > s}
⇐⇒P{Z > s + t} = P{Z > s}P{Z > t}.

It is easily verified that the aforementioned exponential obeys this relation:

P{Z > s + t} = P{Z > s}P{Z > t}
⇒ e−λ(s+t) = e−λse−λt.

It turns out that having an Exponential distribution is equivalent to being without
memory for continuous random variables. See [Fel71], chapter 1.3, page 8.

Definition 3.4. Little-o notation. A function f(.) is said to be o(h) if:

lim
h→ 0

f(h)
h

= 0.

That is, the function shrinks faster than its argument. Some properties of such
functions are:

1. If the functions f and g are both o(h) respectively, then so is f + g.

lim
h→0

f(h) + g(h)
h

= lim
h→0

f(h)
h

+ lim
h→0

g(h)
h

= 0 + 0 = 0.

2. If f is o(h) then so is cf for c ∈ R.

lim
h→0

cf(h)
h

= c lim
h→0

f(h)
h

= c · 0.

3. From 1. and 2. follow that any finite linear combination of functions who are
o(h), is also o(h).
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As an example, f(x) = x2 is o(h), but g(x) = ex − 1 is not.

lim
h→0

h2

h
= lim

h→0
h = 0,

lim
h→0

eh − 1
h

≈ lim
h→0

1
h

(
h + h2

2 + h3

6 + ...

)
= lim

h→0
1 + h

2 + h2

6 + ... = 1.

Where, in the second equation, the Maclaurin Series of ex was used to find the limit.
The "little-o" notation is useful in giving more precise statements than could

otherwise be made.
P (t < x < t + h) ≈ f(t)h,

should then be read as:

P (t < x < t + h) = f(t)h + o(h).

3.2 The Poisson Process

In order to understand what the Poisson Process is, we must first know what a
counting process in general is. A counting process is simply any process counting the
number of events that has happened. Examples include; cars passing an intersection,
babies born at a certain hospital and paintings sold at auction.

A counting process cannot take negative values and can never go down. Meaning
that while the total amount of customers a store has in a day can be described by a
counting process, the number of people inside the store at any one time can not be.
Because people also leave the store.

Definition 3.5. The Poisson Process. The counting process N(t) is a Poisson
Process with parameter λ if:

1. N(0) = 0. When we start counting, we start at zero.

2. N(t), t > 0 has independent and stationary increments.

3. P [N(t + h) − N(t) = 0] = 1 − λh + o(h)

4. P [N(t + h) − N(t) = 1] = λh + o(h).

5. P [N(t + h) − N(t) ≥ 2] = o(h). In the limit of h −→ 0, the probability of
having more than one event in any one time interval is effectively zero.
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The Poisson Process does not get its name from Siméon Denis Poisson directly.
He was neither the discoverer nor a student of the process. The name comes from
the relation it has with the Poisson Distribution, that the number of events in any
time interval of length t is a Poisson random variable with mean λt, which in turn
was derived by Poisson. See [Sti00].

Theorem 3.6. If N(t), t ≥ 0 is a Poisson Process with rate λ, then for all s, t > 0,
N(s + t) − N(s) is a random variable with a Poisson distribution and mean λt.

Proof. The methodology for this proof was borrowed from [Ros14], page 299, The-
orem 5.1.

To start, we will derive the Laplace transform of N(t), which is E[e−uN(t)]. Set
g(t) = E[e−uN(t)] and fix u > 0. We will now find an expression for the transform
by deriving a differential equation.

g(t + h) = E[e−uN(t+h)]
= E[e−u(N(t)+N(t+h)−N(t))]
= E[e−uN(t)e−u(N(t+h)−N(t))]
= E[e−uN(t)]E[e−u(N(t+h)−N(t))]
= g(t)E[e−u(N(t+h)−N(t))].

Using point 3 to 5 of Definition 3.5, the second factor can be reformulated as:

E[e−u(N(t+h)−N(t)] = 1 − λh + o(h) + e−u(λh + o(h)) + o(h)
= 1 − λh + e−uλh + o(h),

⇒ g(t + h) = g(t)(1 + λh(e−u − 1) + o(h))

⇐⇒ g(t + h) − g(t)
h

= g(t)λ(e−u − 1) + o(h)
h

.

In the limit as h → 0, the left hand side becomes the definition of the derivative of
g(t), and the expression has now become the sought after differential equation.

g′(t) = g(t)λ(e−u − 1)

⇐⇒ g′(t)
g(t) = λ(e−u − 1),

where the left hand side now can be recognized as the derivative of ln(g(t)). Inte-
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gration gives us:

ln(g(t)) = λ(e−u − 1)t + C

⇐⇒ g(t) = exp[λt(e−u − 1) + C].

Since N(0) = 0 =⇒ g(0) = E[e−uN(0)] = E[1] = 1, C must be zero and we have:

g(t) = exp[λt(e−u − 1)].

Let us now perform a Laplace transform on a Poisson Random Variable with mean
λt specifically:

E[e−uX ], P{X = i} = e−λt (λt)i

i! , i = 0, 1, 2, ...

E[e−uX ] =
∞∑

i=0
e−λt (λt)i

i! e−ui

= e−λt
∞∑

i=0

(λte−u)i

i!

= e−λteλte−u

= exp[λt(e−u − 1)],

which is the same as before. Since the Laplace transform uniquely determines the
distribution, see [Ros14], we can conclude that N(t) is a Poisson random variable
with parameter λt.

In order to prove that N(s + t) − N(s) is a poisson random variable we fix s and
let Ns(t) = N(s + t) − N(s) be the number of events in time t when we start our
count at time s instead of 0. The argument is then analogous with the preceding
one, and we have shown that the number of events of a counting process in a time
interval of length t is a Poisson random variable with parameter λt.
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3.3 Interarrival Time of a Poisson Random Variable

The interarrival time is the time between events in a counting process. Let T1

denote the time of the very first event, then T2 is the time between the first and
second event. T3 will be the time between the second and third event, and so on.
Tn, n = 1, 2, 3, ... is called the sequence of interarrival times, the sum of which is the
total time elapsed.

To determine the distribution of the Tn we can notice that the time of the first
event T1 is greater than t if, and only if, no events take place in [0, t]. Therefore:

P{T1 > t} = P{N(t) = 0} = e−λt.

That the probability is an exponential comes from the fact that the counting process
must be memoryless by virtue of its independent and stationary increments, and
as mentioned in Definition 3.3, the exponential is the only continuous probability
distribution to possess that property. The probability that the second event happens
after time t is:

P{T2 > t} = E[P{T2 > t} | T1].

But because of the memoryless property, T2 is unaffected by T1:

P{T2 > t | T1 = s} = P{N(t + s) − N(s) = 0 | T1 = s}
= P{N(t + s) − N(s) = 0}
= e−λt.

We can therefore conclude that T1 and T2 are independent Exponential random
variables both with means 1

λ
. Repeating the argument gives us that the sequence

of interarrival times, Tn, n = 1, 2, 3, ..., are all identically distributed independent
random variables with mean 1

λ
. This result will be a key factor when using the

Poisson Process to solve the Coupon Collector’s Problem.

3.4 Splitting of Poisson processes

Consider a Poisson process with rate λ > 0 where events are, independently of one
another, either type 1 with probability p or type 2 with probability 1 − p. For
example, imagine flipping a coin. Every flip is an event in the counting process and
can be either heads with probability 1

2 or tails with probability 1
2 . Label these as
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type 1 and type 2 events respectively, and let N1(t) and N2(t) be the number of type
1 or 2 events in the interval [0, t]. Naturally, N1(t) + N2(t) = N(t). It can be shown
that N1(t) and N2(t), for t ≥ 0, are independent Poisson Processes with rates λp

and λ(1 − p) respectively. That this statement applies to an arbitrary number of
event types follows naturally. Label then the probabilities p1, p2, ..., pn, for n types of
events. In the classic Coupon Collector’s Problem, where all probabilities are equal,
p1 = p2 = ... = pn = 1

n
. For an informative argument and proof, see [Ros14], page

304, Proposition 5.2.
This property is not only useful, but necessary when using the Poisson Process

to solve the Coupon Collector’s Problem. Since every type of coupon drawn will
be a type 1, 2, 3, and so on, event, with respective processes NX(t) and rates λpX ,
where X stands for the event type.

12



4
Solving the Coupon Collector’s
Problem
4.1 Discrete time

In discrete time we think of the problem exactly as it is formulated in Section 2. We
draw a coupon and see if it is a new one, or not. If we draw one we already have,
we try again. If it is a new one, we add it to the collection and start looking for the
rest that we have yet to find. This continues until we have all n coupons.

Definition 4.1. Discrete interarrival times. Let T be the total time taken to com-
plete the collection of n different coupons. Here "time" stands for "number of draws",
to stay consistent with the continuous case. Then let ti be the time it takes to collect
the i-th coupon and let pi be the probability of success, per draw, to collect a new
coupon after i − 1 coupons have already been collected. ti is the interarrival time of
the i-th coupon. The ti are geometric random variables with parameter pi.

Proof. Let us show that the Coupon Collectors Problem follow the criteria of Defi-
nition 3.1:

1. Every draw is an attempt to acquire a new coupon. Per definition, every draw
is independent of the last. Just like a roll of the dice.

2. Drawing a new coupon counts as a success and not doing so counts as a failure.

3. If i − 1 coupons have already been drawn, then until we actually draw the i-th
coupon, the probability of a success doesn’t change.

Therefore, as stated in Definition 4.1, every individual ti is a geometrically dis-
tributed random variable.

13



The total time T is the sum of all the interarrival times ti. T = t1 + t2 + ... + tn.
By virtue of the linearity of expectation values we can conclude that:

E[T ] = E[t1 + t2 + ... + tn]
= E[t1] + E[t2] + ... + E[tn].

Since every ti is a geometric random variable, its expected value is 1
pi

, the reciprocal
of its probability.

While the probability of finding a new coupon is unchanged until we actually do,
it does change when that happens. The probability of finding a new one on the very
first draw is 1. Now that we have one the probability of finding any one we have yet
to draw is n−1

n
. The probability of finding a third is then n−2

n
, and so on. Note that

the probability is not "per draw", it is "per unique coupon we already have" or "per
new coupon to be collected", however you prefer to think about it. We can express
this as pi = n−i+1

n
, where i = 1, 2, ..., n represents the i-th coupon to be collected

after i − 1 already has been. The final expression for the expected value of draws
needed is then:

E[T ] = E[t1] + E[t2] + ... + E[tn]

= n

n
+ n

n − 1 + ... + n

1

= n
n∑

i=1

1
i
.

Which is simply the Harmonic series up to n, multiplied by n. As an example,
consider a 20-sided dice. There are 20 sides and therefore n = 20:

n
n∑

i=1

1
i

= 20
20∑

i=1

1
i

= 20
(1

1 + 1
2 + 1

3 + ... + 1
20

)
≈ 72. (1)

It takes, on average, 72 rolls before each side has been rolled at least once. Since
we are talking about discrete attempts in the end, I will round to the nearest whole
number.

14



To further illustrate how the expected time grows with n. let us find its asymp-
totic behavior. That the following inequality holds true should not be surprising:

∫ n

0

1
x + 1dx ≤

n∑

i=1

1
x

≤ 1 +
∫ n

1

1
x

dx

⇒ log(n + 1) ≤
n∑

i=1

1
x

≤ 1 + log(n).

Since the sum is neatly nestled between two logarithmic functions , we can say that
the expected time, n

∑n
i=1

1
x
, grows approximately like n log(n). Figure (1) shows a

graph of the two functions as well as the first eight terms of the sum.

Figure 1: Green line = 1
x+1 , blue line = 1

x
, t1 through t8 represent the terms in the

summation. Made with GeoGebra.

One final thing we are going to do is to calculate the variance of the Coupon
Collector’s Problem in discrete time. Or, rather, we are going to set an upper bound
for it. The variance of a geometric random variable is 1−p

p2 . See, for example, [Ros14],
page 40 for a definition on how to find an expression for the variance. Using our
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expression for the probability of drawing a new coupon from before, pi = n−i+1
n

, we
can express the variance as:

V ar[T ] = V ar[t1 + t2 + ... + tn]
= V ar[t1] + V ar[t2] + ... + V ar[tn]

= 1 − p1

p2
1

+ 1 − p2

p2
2

+ ...
1 − pn

p2
n

.

Now we ignore the numerator. Since it is smaller than one and larger than zero,
ignoring it only makes our answer larger, which is okay because we are trying to set
an upper bound. Doing so gives us that:

V ar[T ] <
n2

n2 + n2

(n − 1)2 + ... + n2

12

= n2
n∑

k=1

1
k2

< n2 π2

6 ,

since ∑∞
k=1

1
k2 = π2

6 . An upper bound for the variance is then that it grows like n2.
For our previously taken example of n = 20, the variance is bound by:

202 · π2

6 ≈ 658.

Here, some simplifying steps have been taken, and you can certainly do better in
finding an upper bound for the variance of the total time taken.

There is nothing wrong with the methodology we used here, except that it retains
little to no information about the probability distribution. Meaning it can only
effectively answer the original question. For more versatility, we must look to another
method.

4.2 Continuous time

Let us now look at the Coupon collectors Problem in continuous time. We want to
find E[N ], the expected value of the total number of draws. However, in this case
instead of drawing coupons discretely and analyzing the probabilities of success, we
draw coupons at random times chosen in accordance with a Poisson Process with
rate λ = 1.

16



Just like the discrete case we have n different types of coupons, j = 1, 2, ..., n

and with equal probabilities. As discussed in Section 3.3, these are represented by
individual Poisson Processes. Let Xj denote the time of the first event of the j-th
process. The larger the value, the later the event of drawing that particular coupon
for the first time happens. The largest of the Xj must therefore be the time when
the last coupon is drawn. Let then X = max1≤j≤nXj be the time when a complete
collection is amassed. By virtue of the Xj:s being independent random variables
with exponential distributions, the probability of completing the collection before
time t (the cumulative distribution function) is given by the product:

P{X ≤ t} = P{Xj ≤ t, j = 1, 2, ..., n} (2)

=
n∏

j=1
(1 − e−pjt) (3)

= (1 − e− t
n )n. (4)

In the final step I have used the fact that all probabilities are equal and that there
are n factors. This here is the probability density function of the whole Poisson
Process for the Coupon Collector’s Problem. To find the expectation value we
simply integrate P{X > t} = 1 − P{X < t} with respect to t:

E[X] =
∫ ∞

0
(1 − (1 − e− 1

n
t)n)dt. (5)

Evaluating the integral is a tedious affair of repeatedly multiplying parentheses to-
gether to get a sum of exponentials and then integrating. For small n this is manage-
able by hand, but for large n it is best left to a computer. An example calculation
for n = 4 is given in section 5.2. The final step is to relate E[X] to E[N ]. Let Ti be
the i:th interarrival time of the Poisson Process. Then, naturally, the total time X
is:

X =
N∑

i=1
Ti.

Since the Ti:s are independent exponentials with rate 1, they all have expectation
1 respectively, and by the linearity of expectation values and the standard relation
E[X] = E[E[X | N ]], see [Wol10]:
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E[X | N ] = E[
N∑

i=1
Ti] = NE[Ti] = N

=⇒ E[X] = E[N ].

We can therefore conclude that the expected value of the total number of coupons
needed is given by Equation (5).

Let us look at the same example as in section 4.1, the 20-sided dice. Since there
are 20 sides n = 20:

E[X] =
∫ ∞

0
(1 − (1 − e− 1

20 t)20) dt ≈ 72. (6)

As stated previously, evaluating the integral is a tedious calculation. Performing it
will reveal that, unsurprisingly, the answer is the same as in equation 1.

The Poisson Process has also given us a way to more accurately express the
variance. F (t) stands for the cumulative distribution function.

V ar(X) = E[X2] − E[X]2

=
∫ ∞

0
2t (1 − F (t)) dt −

(∫ ∞

0
(1 − F (t))dt

)2

=
∫ ∞

0
2t
(
1 − (1 − e− t

n )n
)

dt −
(∫ ∞

0
(1 − (1 − e− t

n )n)dt
)2

.

Continuing to use the 20-sided dice as an example:
∫ ∞

0
2t
(
1 − (1 − e− t

20 )20
)

dt −
(∫ ∞

0
(1 − (1 − e− t

20 )20)dt
)2

≈ 638.

Again, the evaluation of the integral is long and tedious and best left to a computer.
Remember that the upper bound on the variance for n = 20 we found using the
discrete method was 658. Which is larger than 638, but not much larger.
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5
Generalizations
5.1 Unequal probabilities

One natural generalization of the Coupon Collector’s Problem is coupons with un-
equal probabilities. While it is certainly doable using the discrete approach, the
Poisson Process makes this nearly trivial if you have an understanding of the spe-
cific case with all equal probabilities.

5.1.1 Discrete Time

In the case of discrete time I will start by quoting my supervisor Pieter Trapman:
"It will be a combinatorial hell."

Suppose you have two types of coupons, n = 2, but with unequal probabilities
(p1 = 0.75 and p2 = 0.25). Depending on which is drawn first, the expected time
until completion will differ. Say that coupon 1 is drawn first, then there is a 1

4
chance of drawing coupon 2 at any subsequent draw. Since this is a geometric
random variable with parameter p2 = 1

4 , the expected time until completion is
E1[T ] = 1

p2
= 4. Say now that we draw coupon 2 first instead. Then there is now a

3
4 chance of drawing coupon 1 during subsequent draws. By the same argument then,
the expected time until completion is E2[T ] = 1

p1
= 4

3 . The first option happens 75
percent of the time, and the second happens 25 percent of the time. Conditioning
on this, as well as the fact that one draw has already been performed to get there,
the expression for the total expected time is:

E[T ] = p1E1[T ] + p2E2[T ] + 1 = 3
4 · 4 + 1

4 · 4
3 + 1 = 13

3 ≈ 4.

Consider now four types of coupons, with probabilities p1 = 1
10 , p2 = 2

10 , p3 = 3
10

and p4 = 4
10 . If coupon 1 is drawn first then there is a 9

10 chance of drawing a new
one thereafter, if coupon 2 is drawn first then there is a 8

10 chance, and so on for
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the remaining two. In all four cases, the probability of drawing a third new coupon
depends again on which new coupon was drawn after the first. There are three
possibilities for the second coupon, for each of theses there are two possibilities for
the third coupon, and finally which is the fourth becomes obvious after this point.
This means there are 24 possible paths. For each of them you must calculate the
expected time for each step and weigh it based on which coupons have been drawn
previously. I will not perform this calculation. It would be long and dull and by
now it should be clear why we need a different approach when dealing with unequal
probabilities.

5.1.2 Continuous Time

As a contrast to discrete time, the general answer when using the continuous method
is no more difficult than the specific case of equal probabilities. In fact, it has already
been given by equation (3). Simply take the factors as they are and integrate the
expression.

As an example, consider the same problem of four coupons with unequal prob-
abilities stated in section 5.1. If the probabilities are p1 = 1

10 , p2 = 2
10 , p3 = 3

10 and
p4 = 4

10 , the integral becomes:

E[T ] =
∫ ∞

0

(
1 − (1 − e− t

10 )(1 − e− 2t
10 )(1 − e− 3t

10 )(1 − e− 4t
10 )
)

dt

=
∫ ∞

0

(
e

−t
10 + e

−2t
10 − 2e

−5t
10 + e

−8t
10 + e

−9t
10 − e−t

)
dt

=
[
e−t − 10

9 e
−9t
10 − 10

8 e
−8t
10 + 4e

−5t
10 − 10

2 e
−2t
10 − 10e

−9t
10

]∞

0

= 10 + 5 − 4 + 5
4 + 10

9 − 1

= 445
36 ≈ 12.

The problem which we all but abandoned in the previous section for being far too
cumbersome, has now become manageable.
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5.2 K Coupons of Each Type

Another generalization is to collect coupons until you have not just one, but two or
more of each type. Obviously this is going to, on average, take longer than collecting
only one of each. How much longer is not obvious however. Luckily, this question
was answered in 1960 by Donald J. Newman [New60]. He uses the approximation
that the expected time for K = 1 goes like n log(n), especially for large n. The
conclusion he comes to is that the first set takes n log(n) attempts on average, and
all subsequent sets takes an additional n log(log(n)) tries. The full expression is:

EK [T ] = n log(n) + n(K − 1) log(log(n)) + o(t). (7)

Just as we thought obvious it takes longer to collect k of each coupon, but not
much longer, since the logarithm of the logarithm grows incredibly slowly.

As an example, consider again the 20-sided dice. It took on average 72 rolls until
each side had been rolled once. Suppose we wanted to roll each side a total of 20
times (K = 20). Using Equation (7) we get:

EK [T ] = n log(n) + n(K − 1) log(log(n)) + o(t)
= 20 log(20) + 20(20 − 1) log(log(20)) + o(t)
≈ 59.915 + 380 · 1.0972
≈ 477.

One thing of note here are that 60 is a bit off from 72, suggesting that 20 is not
a large number of coupons. The main point, however, that further coupons do not
take that much extra time to acquire, is highlighted.
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6
Applications

6.1 The Pokemon Games

The rather well known series of video games called Pokemon is a perfect example of
the generalized Coupon Collector’s Problem. The series has been going on for almost
30 years and has evolved substantially since its inception. However, the core element
of the games has remained the same. To discover and collect all the different kinds
of creatures available. The games slogan, "Gotta catch ’em all", is all but equivalent
to the "Collect all and win" description of the Coupon Collectors Problem given in
section 2.

The game is divided into several areas. Each area has certain creatures available
to collect, with each type of creature having its own probability of appearing any
time there is an encounter. Naturally it might be in the interest of players to know
the expected number of encounters before they can hope to be done.

As an example. Near the beginning Pokemon Red (one of the first games in
the series) you can encounter a type A creature with probability 0.45, a type B
creature with probability 0.40, and a type C creature with a probability of 0.15.
Using Equation (3) we can express the cumulative distribution function as:

n∏

j=1
(1 − e−pjt) = (1 − e−0.45t)(1 − e−0.40t)(1 − e−0.15t).

Which, upon integration, yields the expected time until you have encountered all
three kinds.

E[X] =
∫ ∞

0
[1 − (1 − e−0.45t)(1 − e−0.40t)(1 − e−0.15t)] dt = 8.
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6.2 Loaded Dice

A loaded, or weighted, dice is one which has been manipulated to more often land
with a particular side facing up than would be expected of a regular fair dice. For
example, a standard six-sided dice will roll any particular number between one and
six with an equal probability of 1

6 for all of them. Suppose a six-sided dice was made
heavier on the side with one dot, making it more likely to show the side with six.
The sides showing two through five will still be as probable as one another, while
the one will be the least likely. What is the expected number of rolls needed to
"collect" all numbers if p(1) = 1

12 , the probabilities of two through five are all 1
8 ,

and p(6) = 5
12? Again, using Equation (3) and then integrating gives the expected

number of rolls:

E[X] =
∫ ∞

0
[1 − (1 − e− t

12 )(1 − e− t
8 )4(1 − e− 5t

12 )] dt = 20.

For a fair six-sided dice:

E[X] =
∫ ∞

0
[1 − (1 − e− t

6 )6] dt = 15.

Evidently the unfair dice takes longer to complete a full set. Whether or not this is
generally true will be discussed later in Section 7.1.2.
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7
Conclusion and Discussion
The Coupon Collector’s Problem is a classical, and versatile problem with its roots in
the eighteenth century. It can be appreciated by anyone from high-school students
to professors of mathematics. It has many real world applications, only a few of
which were touched upon in this thesis.

We have seen that computing the expected time until completion can be done ei-
ther using discrete geometric random variables, or by the Poisson Process, which uses
the exponentially distributed mean of the Poisson distribution. The first method
is simpler and avoids some mathematical notation that might scare away the more
casual reader. However, the Poisson Process offers a deeper understanding of the
problem and is necessary to generalize the problem effectively. In fact, the general-
ized problem is no more difficult than the specific case when using this method.

7.1 Further Problems

The main problem in this thesis was to compute the expected value of the total time
taken for various examples of the Coupon Collector’s Problem. Naturally, there are
more questions to be asked about the base problem, as well as further questions
about the examples that were explored.

7.1.1 Further Exploration of the Pokemon Games

The Pokemon Games go much further than the simple model presented in Section
6.1. Some complicating properties and mechanics of the games are:

1. The same type of creature can appear in multiple areas.

2. Some creatures may turn into other types of creatures, but not back. A →
B, B ̸→ A.

24



3. Any time you encounter a creature, there is not a 100 percent chance you can
collect it. The amount of tries it takes is also random with varying rates of
success between creature types. Additionally, if it takes too many tries, you
may run out of resources and be forced to abandon it and return later.

If someone intends to complete the goal of acquiring all creatures with as little work
as possible, this certainly complicates things. Point 1 tells us that we should look in
places with as little overlap with previous areas as possible. Point 2 tells us that we
should search for the type A creature and not type B. Point 3 is the most complex.
As the game progresses there are tools that the player may acquire that improve that
rate of success. Therefore it may be beneficial to leave certain areas and creatures
for later. When you have the proper tools and will not run the risk of running out.

In order to properly analyze this problem, a deep dive into the games is necessary.
Much too deep to fit in any further capacity here.

7.1.2 Loaded Dice

The unsatisfying answer to the question of whether or not all unfair dice take longer
before rolling one of each number than their fair counterparts, is that I do not know.
To prove it you would probably have to analyze Equation (3) with the probabilities
pj of rolling a particular number as variables, somehow. Consider this an open
problem to be explored in the future.

7.2 Improvements and Alterations

No project or person is perfect, and this thesis is no exception. There are things I
would have done differently with hindsight in mind.

The main thing is that I should have studied the theory much, much more than
I did before I started writing the first draft. I thought I had a good, solid under-
standing of the problem. However I was woefully unaware of both the depth with
which one can analyze the Coupon Collector’s Problem, as well as the rigour of the
mathematics behind it. This lead to most of my actual understanding coming first
as the project was nearing its end.
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