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Abstract

This paper will examine a topological invariant known as the topological fun-
damental group. The first main theorem discussed gives conditions for exactly
when the topological fundamental group is discrete, and the second one gives
an example of a topological fundamental group which fails to be a topological
group.
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1 Introduction

The fundamental group is a well-known topological invariant defined as the
group of homotopy equivalence classes of loops in the space with path-class
concatenation as its operation. This paper will focus on an even finer invariant
than the usual fundamental group which is obtained by endowing the funda-
mental group with some extra structure, the structure of a topological space.
This invariant is called the topological fundamental group. The topology on
the topological fundamental group is defined as the quotient topology of the
compact-open topology on the set of all loops in the space, which is a topology
commonly used for function spaces.

The purpose of this paper is to define the topological fundamental group and
investigate some of its properties. In particular we will discuss a result from [1]
which gives necessary and sufficient conditions for the topological fundamen-
tal group of a space to be discrete, and we will also discuss a result from [2]
which gives an example of a relatively nice space (a locally path connected and
connected metric space) where the group multiplication of its topological fun-
damental group fails to be continuous, which means that there are cases where
the topological fundamental group fails to be a topological group.
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2 Preliminary Notions

This section will review some important definitions, lemmas and notation that
will be used throughout this paper.

Definition 2.1. Let I denote the unit interval [0, 1] ⊂ R endowed with the
subspace topology.

Definition 2.2. Consider the circles

{(x, y) ∈ R2 :

(
x− 1

n

)2

+ y2 =

(
1

n

)2

}

where n ∈ Z+. Define theHawaiian Earring, H, as the union of all such circles
endowed with the subspace topology from R2. Furthermore, let Yn denote the
union of the first n circles and let p = (0, 0). It will look something like this:

At first glance, one may think that the Hawaiian Earring looks just like a
wedge sum of infinitely many circles, but in fact it is very different from it. The
key difference is that the circles get smaller and smaller, which greatly alters
the Hawaiian Earring’s topological properties near the origin. For example we
can have a loop in H that goes around infinitely many of the circles, since the
fact that the circles get smaller and smaller will allow it to be continuous, in the
wedge sum of circles a loop may only pass around finitely many of the circles.
This makes the fundamental group of π1(H) drastically more complex than the
fundamental group of the wedge sum of infinitely many circles.

Lemma 2.3. There is a surjective homomorphism

R : π1(H, p) →
∞∏

n=1

Z

and π1(H, p) is uncountable.
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Proof. Let Cn be only the n:th circle in H, and let rn : H → Cn be the
retraction collapsing all circles in H except Cn to the origin. Each rn induces
a map Rn : π1(H, p) → π1(Cn, p) ∼= Z so the product of all such Rn will be a
homomorphism R : π1(H, p) → ∏∞

n=1 Z.

To show R is surjective, let x = (x1, x2, ...) ∈ ∏∞
n=1. We will construct a

loop f : I → H such that R(f) = x. To do this, let f wrap around Cn a total of
xn times in the interval [1− 1

n , 1− 1
n+1 ]. It is clearly continuous on [0, 1), and

the fact that any neighborhood of the origin will contain all but finitely many
of the circles ensures continuity at 1 as well. Since it wraps xn times around
Cn we will have Rn(f) = xn, so R(f) = x and R is surjective. It immediately
follows that π1(H, p) is uncountable since the product of infinitely many copies
of Z is.

Lemma 2.4. For each n we have that π1(Yn, p) = Fn where Fn is the free group
on n generators. Furthermore, there is an injection

i∗ : π1(Yn, p) → π1(H)

induced by the inclusion of Yn into H.

Proof. That π1(Yn, p) = Fn follows from the Seifert-Van Kampen theorem.
Since there is a retraction r : H → Yn given by collapsing all the circles in
H except for the first n ones to the origin, the inclusion i : Yn → H will
induce an injective homomorphism of fundamental groups, because since we
have r ◦ i = idYn we get by functoriality that r∗ ◦ i∗ = idπ1(Yn,p) so i∗ has a
left-inverse, which means that it is injective.

We now define a couple of important topologies on function spaces.

Definition 2.5. Let X and Y be two topological spaces and C(X,Y ) the set
of all continuous maps from X to Y . If K is a compact subset of X and U is an
open subset of Y , we denote the set of all f ∈ C(X,Y ) such that f(K) ⊂ U by
V (K,U). Then the collection of all V (K,U) form a subbasis for the compact-
open topology on C(X,Y ).

Definition 2.6. If Y is a metric space and X a compact space, define a metric
on C(X,Y ) such that the distance between f and g is given by

sup
x∈X

dY (f(x), g(x)).

The topology on C(X,Y ) generated by this metric will be called the topology
of uniform convergence.

The following lemma will be used in section 4.

Lemma 2.7. If Y is a metric space and X is compact, the compact open topol-
ogy on C(X,Y ) is equivalent to the topology of uniform convergence.
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Proof. We want to show that for every function f ∈ C(X,Y ) and for every open
ball around f in the topology of uniform convergence there exists a basic set in
the compact-open topology containing f which is contained in the ball, and that
for every subbasic open neighborhood of f in the compact-open topology there
exists an open ball around f in the topology of uniform convergence contained
in the neighborhood.

To begin, let Bε(f) denote a ball around f ∈ C(X,Y ) of radius ε in the
topology of uniform convergence. The balls Bε/3(f(x)) for each x ∈ X form an
open cover of f(X), since f is continuous f(X) is compact, so f(X) has a finite
subcover of sets of the form Bε/3(f(xn)). Now let Kn ⊂ X be the closure the
preimage of Bε/3(f(xn)). It is then clear that each Kn is compact since they
are closed subsets of a compact space, and they will also cover X. Furthermore,
we have that f(Kn) ⊂ Bε/2(f(xn)) = Un. So each subbasic open set of the
form V (Kn, Un) will contain f , and thus so will their intersection which we will
denote by A. Now suppose g ∈ A. Then for any x ∈ Kn we have by the triangle
inequality that

dY (f(x), g(x)) ≤ dY (f(x), f(xn)) + dY (f(xn), g(x)) <
ε

2
+

ε

2
= ε

since g(Kn) ⊂ Un and f(Kn) ⊂ Un and Un is a ball of radius ε
2 . Since this

holds for all x we have that g ∈ Bε(f), and therefore A ⊂ Bε(f).

Now let V (K,U) be a subbasic open set in the compact-open topology.
Let f ∈ V (K,U). Since f(K) is compact and contained in U , its minimum
distance from Y − U is ε > 0. Then if d(f, g) < ε

2 we have that g(K) ⊂ U
since f(K) ⊂ U , so V (K,U) contains an open ball around f in the topology of
uniform convergence.

Now consider some topological space X, and let Cx(X) denote the space of
continuous loops with base point x endowed with the compact-open topology.
Recall that the fundamental group π1(X,x) is defined as path homotopy classes
of such loops with path class concatenation as its group operation. Therefore,
we will make the following definition.

Definition 2.8. If q denotes the map sending every element in Cx(X) to its
homotopy class in π1(X,x), then q is clearly surjective, so we can equip π1(X,x)
with the quotient topology induced by q. We call this space the topological
fundamental group of X with base point x, and we denote it by πtop

1 (X,x).

We will also discuss topological groups, which we define as follows.

Definition 2.9. Let G be a group endowed with a topology. If both the group
operation which is a map from the product space G×G to G and the inversion
map from G to itself are continuous, we say that G is a topological group. If
we replace the condition that the group operation is continuous with a weaker
condition, namely that we obtain a continuous map G → G by fixing either one
of the arguments of the group operation and letting the other one vary, we get
the definition of a quasitopological group.
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Contrary to what one may believe from its name, the topological fundamen-
tal group is not always a topological group (although it is always a quasitopolog-
ical group, as noted in [3]), we will see an example of a topological fundamental
group that is not a topological group in section 4.

Example 2.10. The group R under usual addition endowed with the standard
metric topology is a topological group, since both x 7→ −x and (x, y) 7→ x + y
are continuous as functions from R → R and R× R → R, respectively.

Example 2.11. Any group G with the discrete topology is a topological group,
since then both the operation and the inversion are trivially continuous.

Definition 2.12. Suppose Gk is a sequence of groups and that we have homo-
morphisms fk : Gk+1 → Gk for each k ≥ 0, so we have a diagram

...
f3−→ G3

f2−→ G2
f1−→ G1

f0−→ G0.

Then we define the inverse limit lim
←−

Gk as the set of points (x0, x1, ...) ∈
∏∞

k=0 Gk which satisfy fk(xk+1) = xk for all k. It is clear that lim
←−

Gk is a group

since Gk is a group and fk is a homomorphism for all k.

Viewing the groups as discrete topological spaces, the inverse limit has a
natural topology as a subspace of the infinite product

∏∞
k=0 Gk. The topology

on an infinite product of discrete spaces is not discrete, but it is Hausdorff, and
a subspace of a Hausdorff space is always Hausdorff, therefore the inverse limit
is a not necessarily discrete Hausdorff space.

If we consider the groups π1(Yn, p) = Fn together with the maps induced
by the retractions Yn+1 → Yn which will map the generator corresponding to
the innermost circle to the identity and fix the others, we can define lim←− Fn.
Furthermore, for each Fn we have a map rn : π1(H, p) → Fn induced by the
retraction H → Fn. Then the product of the maps rn discussed above gives a
continuous homomorphism r : πtop

1 (H, p) → lim
←−

Fn. The following result about

this homomorphism is non-trivial, and a proof can be found in [4].

Theorem 2.13. The homomorphism r : πtop
1 (H, p) → lim

←−
Fn is injective.

The following definition will be important in section 3.

Definition 2.14. Let X be a topological space and x ∈ X. A neighborhood of
x is called relatively inessential if the homomorphism π1(U, x) → π1(X,x) in-
duced by the inclusion U ↪→ X is trivial. If every x ∈ X has such a neigborhood
we say that X is semilocally simply connected.

It is clear from the definition that every locally simply connected space is
also semilocally simply connected, the converse is not true, however. We will
illustrate the difference between the two with the following example which is
briefly discussed in [5].
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Example 2.15. Let H be the hawaiian earring as defined above and consider
the cone CH = (H × I)/(H × {0}). Now we take x = ((0, 0), 1). Then any
small open neighborhood of x will contain non-trivial loops (since every such
neighborhood will contain an infinite number of cylinders formed from the Cns),
so CH is not locally simply connected. However, since CH is a cone, which in
particular means it is contractible, the inclusion of this loop into π1(CH, x) = 0
will be trivial, so CH is in fact semilocally simply connected.

We also state the following standard result from [6] that will be used in
section 3.

Lemma 2.16 (The Lebesgue number lemma). If (X, d) is a compact metric
space and we are given an open cover of X there exists a number λ > 0 (called
a Lebesgue number of the cover) such that every subset of X with diameter
less than λ is contained in some member of the cover.
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3 Discreteness

In this section we will explore that under some conditions on X, the space
πtop
1 (X,x) is discrete (and as such is a topological group, even if it is not a very

interesting example). We begin by stating the following theorem from [1].

Theorem 3.1. Let X be a locally path connected topologcial space, then we have
that πtop

1 (X,x) is discrete for every point x ∈ X if and only if X is semilocally
simply connected.

Recall that X being semilocally simply connected means that every x ∈ X
has a relatively inessential neighborhood. In what follows, whenever f is a path
[f ] will denote the set of all paths that are path-homotopic to f . The following
two lemmas are from [1].

Lemma 3.2. Let (X,x) be a pointed topological space. If the singleton {[cx]},
where cx denotes the constant map, is open in πtop

1 (X,x) then x has a relatively
inessential neighborhood in X.

Proof. The quotient map q : Cx(X) → πtop
1 (X,x) is continuous and by as-

sumption {[cx]} ⊂ πtop
1 (X,x) is open, so q−1({[cx]}) = [cx] is open in Cx(X).

Therefore cx has a basic open neighborhood

cx ∈ V =
N⋂

n=1

V (Kn, Un) ⊂ [cx] ⊂ Cx(X)

where each Kn ⊂ I is compact and each Un ⊂ X is open, so that V (Kn, Un)
is a subbasic open set for the compact-open topology on Cx(X) as defined in
section 2. The goal is to show that

U =
N⋂

n=1

Un

is a relatively inessential neighborhood of x. Since U is the intersection of finitely
many open sets it is clearly open in X, and by the definition of the compact-
open topology each f ∈ V (Kn, Un) must satisfy f(Kn) ⊂ Un, and since cx is
constantly x, we must have x ∈ Un for all n, so x ∈ U . Finally, let f be an
arbitrary loop in U based at x. Then for each 1 ≤ n ≤ N we have

f(Kn) ⊂ U ⊂ Un

which means f ∈ V (Kn, Un) and thus f ∈ [cx] so [f ] = [cx] is trivial in π1(X,x),
in other words the inclusion from π1(U, x) to π1(X,x) is trivial and therefore U
is a relatively inessential neighborhood of x.

Lemma 3.3. Let (X,x) be a pointed topological space and let f ∈ Cx(X). If X
is locally path connected and semilocally simply connected then {[f ]} is open in
πtop
1 (X,x).
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Proof. By the definition of the quotient topology, {[f ]} being open in πtop
1 (X,x)

is equivalent to q−1({[f ]}) = [f ] being open in Cx(X). Let g ∈ [f ]. We want to
find a neighborhood of g contained in [f ]. For each t ∈ I let Ut denote a path
connected relatively inessential neighborhood of g(t) in X which exists by our
assumptions. Then the collection of sets of the form g−1(Ut) for all t ∈ I form
an open cover of I. Let λ > 0 be a Lebesgue number for this cover. We choose
an N ∈ N such that 1/N < λ. For each 1 ≤ n ≤ N let

In =

[
n− 1

N
,
n

N

]
⊂ I

and then reindex the Uts so that g(In) ⊂ Un for each 1 ≤ n ≤ N . This is made
possible by the Lebesgue number lemma. Now for each 1 ≤ n ≤ N let Wn

denote the path component of Un ∩ Un+1 containing g(n/N) so we have

g
( n

N

)
∈ Wn ⊂ Un ∩ Un+1 ⊂ X.

No consider the basic open set

V =

( N⋂

n=1

V (In, Un)

)
∩
(N−1⋂

n=1

V
({ n

N

}
,Wn

))
⊂ Cx(X).

Since g(In) ⊂ Un for all n and Wn is defined to contain g(n/N), we have g ∈ V .
We want to show that V ⊂ [f ]. So let h ∈ V . As [g] = [f ], we just need to show
that [h] = [g] to conclude h ∈ V .

By the construction of V , we have

h(In) ∈ Un for each 1 ≤ n ≤ N and

h
( n

N

)
∈ Wn for each 1 ≤ n ≤ N − 1.

For each 1 ≤ n ≤ N − 1 we let γn : I → Wn be a continuous path starting at
h(n/N) and ending at g(n/N). Such a path exists since Wn is path-connected.
Let γ0 = γN = cx. For each n let sn : I → In be defined by

s(t) =
1

N
t+

n− 1

N

and let gn = g ◦ sn and hn = h ◦ sn. So gn and hn will be the ”parts” of g and
h on In. Now for each n, let δn be a loop in Un based at gn(0), defined by

δn = gn ∗ γ−1n ∗ h−1n ∗ γn−1.
Since Un is path-connected and relatively inessential, δn must be path homotopic
to the constant path, so gn is path homotopic to γ−1n−1 ∗ hn ∗ γn. This means
that

[h] = [h1 ∗ ... ∗ hN ]
= [γ−10 ∗ h1 ∗ γ1 ∗ γ−11 ∗ h2 ∗ ... ∗ γ−1N−1 ∗ hn ∗ γN ]
= [g1 ∗ ... ∗ gN ]
= [g].
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So h ∈ V ⊂ [f ], since for every g ∈ [f ] we have a neighborhood of g contained
in [f ], we have that [f ] is open.

Proof of theorem 3.1. With these two lemmas, we can finally prove theorem 3.1.

First we assume that πtop
1 (X,x) is discrete for all x ∈ X. Then clearly

{[cx]} is open in πtop
1 (X,x). So by lemma 3.2 x has a relatively inessential

neighborhood. Since this holds for all x, we have that X is semilocally simply
connected.

For the other direction, assume X is semilocally simply connected. Single-
tons in πtop

1 (X,x) are open by lemma 3.3 which means πtop
1 (X,x) is discrete for

all x. This concludes the proof.
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4 The Hawaiian Earring

In this section we will discuss further the topological fundamental group of the
Hawaiian Earring H as defined in 2.2. Throughout this section, p will denote
the point (0, 0) ∈ H. As before, Cp(H) will denote the set of loops in H based
at p endowed with the compact-open topology. Furthermore, Yn will denote the
union of the first n circles in H.

Note that H is not semilocally simply connected, so the main theorem of
section 3 does not apply here. In fact, the topology on πtop

1 (H, p) doesn’t at all
behave nicely with the group operations, and it turns out that the group multi-
plication in πtop

1 (H, p) is discontinuous, so πtop
1 (H, p) is in fact not a topological

group, which is the main theorem of this section.

As in [2], we will start by making the following definition

Definition 4.1. Let qn = (2/n, 0) ∈ Cn. The oscillation number On :
Cp(H) → N ∪ {∞} will be defined as the maximum number m such that there
exists a set {t0, t1, t2, ..., t2m} such that 0 = t0 < t1 < t2 < ... < t2m = 1 with
f(t2i) = p and f(t2i+1) = qn where f ∈ Cp(X).

The oscillation number On(f) thus represents the number of times that f
loops around the n:th circle in H. The following is an important property of it.

Lemma 4.2. Let f ∈ Cp(H), then On(f) is finite.

Proof. Let U = H − {qn} and V = H − {p}. The sets f−1(U) and f−1(V )
form an open cover of I. By the Lebesgue number lemma, we can subdivide
I into finitely many subintervals with 0 = x0 < x1 < ...xk = 1 such that for
each i the interval [xi−1, xi] is contained in either f−1(U) or f−1(V ), then if
0 = t0 < t1 < t2 < ... < t2m = 1 such that f(t2i) = p and f(t2i+1) = qn, no
two tj , tj+1 can belong to the same interval, so 2m ≤ k + 1, which proves the
claim.

This means that a loop in Cp(H) can’t go around any given circle infinitely
many times (although it may still go around infinitely many different circles).

The following standard lemma will be used in the proof of lemma 4.4.

Lemma 4.3. If fk → f uniformly and ak → a then fk(ak) → f(a).

Proof. We know by the assumption of uniform convergence that for each ε > 0
there exists some natural number N such that k > N implies |fk(x)− f(x)| < ε

2
for all x, and there exists some natural number M and δ > 0 such that k > M
implies |ak − a| < δ which in turn implies |f(ak)− f(a)| < ε

2 , since ak → a and
f is continuous. But then if k > max(N,M) we have by the triangle inequality
that

|fk(ak)− f(a)| ≤ |fk(ak)− f(ak)|+ |f(ak)− f(a)| < ε

2
+

ε

2
= ε

since f is continuous, therefore fk(ak) → f(a).
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The next three lemmas, based on remark 1, 2 and 3 of [2], will be very
important in the proof of the main theorem of this section.

Lemma 4.4. If fk → f uniformly in Cp(H) and On(fk) ≥ m, then On(f) ≥ m.

Proof. That On(fk) ≥ m means that for each k we have set of the form
{tk0 , tk1 , tk2 , ..., tk2m} where tk0 = 0, tk2m = 1, fk(t

k
2i) = p and fk(t

k
2i+1) = qn.

Also, we have tk0 < tk1 < ... < tk2m. We construct the set {0, t1, t2, ..., t2m−1, 1}
as follows. Take t1 to be the limit of a convergent subsequence tmk

1 which exists
by compactness, and taking t2 to be the limit of a convergent subsequence t

mkl
2 ,

and so on. Since fk → f uniformly and by the previous lemma we will have that
fk(t

mk
1 ) → f(t1) and so on for each ti, so f(t2i) = p and f(t2i+1) = qn. Note as

well that ti < ti+1 for each i, we can’t have ti = ti+1 since f(ti) ̸= f(ti+1) and
f is continuous. This shows that On(f) ≥ m.

That g corresponds to a maximally reduced finite word in the free group on
n generators means that if x1, x2, ..., xn are the generators of Fn (which is the
fundamental group of Yn), and we have a finite word in Fn with k letters, we
subdivide [0, 1] into k equal parts, one for each letter xi or x−1i , and for each
part we let g travel once around the i:th circle clockwise if that element is an
xi, and counterclockwise if it is an x−1i . So if the word is x1x3x

−1
1 , for instance,

g will go around the first circle clockwise on [0, 1
3 ], go around the third circle

once clockwise on [ 13 ,
2
3 ] and go around the first circle once counterclockwise on

[ 23 , 1].

Lemma 4.5. Let f and g be in the same path component of Cp(H) and let
the image of g be contained in some Yn. Then if g corresponds to a maximally
reduced finite word w in the free group on n generators, we have On(f) ≥ On(g).

Proof. Let Rm : H → Ym denote the retraction collapsing all the circles not in
Ym to p and let f1 = Rm(f). Then On(f1) = 0 if n > m and On(f1) = On(f)
if n ≤ m, so we always have On(f) ≥ On(f1).

Now let U be a contractible open subspace of Ym containing p. And let
J1, J2, ... be the open interval components of f−11 (Ym − {p}). Note that Ji ⊂
(0, 1) since f1(0) = f1(1) = p. Then f−11 (U), J1, J2, ... is an open cover of [0, 1]
which is compact, and therefore the open cover has a finite subcover so all but
finitely many of the Jis are contained in f−11 (U). And since the value of f1 will
be p at the endpoints of Ji, f1 must be nullhomotopic on all of the Jis that are
contained in f−11 (U).

So f1 is path-homotopic to f2 which we define by replacing f1 with the
constant function on each Ji that is contained in f−11 (U). The gluing lemma for

locally finite closed covers ensures that f2 is continuous, since f−11 (U), J1, J2, ...
is a locally finite closed cover of [0, 1] and since the value of f1 will be p at the
endpoints of Ji.
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Furthermore, On(f1) ≥ On(f2). Then [f2] can be interpreted as a finite
word v in π1(Ym, p). And as noted before [f1] = [f2]. Note that for a path
corresponding to a word, the oscillation number will just be the number of
occurrences of the generator corresponding to that particular circle. We now
know that [g] and [f2] represents the same element in the free group Fm and
that [g] represents a reduced word, so [g] is obtained from [f2] by eliminating
redundancies. This can only reduce the oscillation number. Therefore we have
found that On(f) ≥ On(f1) ≥ On(f2) ≥ On(g).

Lemma 4.6. The path components of Cp(H) are closed subspaces of Cp(H).

Proof. By Theorem 2.13 there is a continuous injection from πtop
1 (H, p) to

lim← π1(Yn, p), and as noted in [3], lim← π1(Yn, p) is Hausdorff It follows that
πtop
1 (H, p) is Hausdorff and in particular that singletons in πtop

1 (H, p) are closed.
Then by the definition of the quotient topology we have that the path com-
ponents of Cp(H), which are the preimages of singletons in πtop

1 (H, p), are
closed.

The following theorem and its proof is based on a part of theorem 1 in [2].

Theorem 4.7. The standard multiplication M : πtop
1 (H, p) × πtop

1 (H, p) →
πtop
1 (H, p) defined by path class concatenation is discontinuous and therefore

πtop
1 (H, p) fails to be a topological group.

Proof. Let xn ∈ Cp(H) orbit Cn once counterclockwise. Let cp ∈ Cp(H) denote
the constant loop. For integers n ≥ 2 and k ≥ 2 let a(n, k) ∈ Cp(H) be a loop
corresponding to the finite word (xnxkx

−1
n x−1k )k+n and let w(n, k) ∈ Cp(H)

be a loop corresponding to the finite word (x1xkx
−1
1 x−1k )n. Furthermore, let

F ⊂ πtop
1 (H, p)× πtop

1 (H, p) be the set of all ordered pairs ([a(n, k)], [w(n, k)]).
To show that M is discontinuous, we will exhibit a closed set A ∈ πtop

1 (H, p)
such that M−1(A) is not closed in πtop

1 (H, p)× πtop
1 (H, p).

Consider the set A ⊂ πtop
1 (H, p) such that each element of A is of the form

[a(n, k)] ∗ [w(n, k)].

Firstly, notice that an element in A will be of the form [(xnxkx
−1
n x−1k )k+n] ∗

[(x1xkx
−1
1 x−1k )n]. None of these are trivial (since by lemma 2.4 a non-zero

element in the fundamental group of a wedge sum of circles corresponds to
a non-zero element in the fundamental group of H), and when we take their
product nothing will cancel out since the first one ends with xk and the second
one starts with x1. Therefore the product is not trivial, so [cp] ̸∈ A.

Since [cp] ̸∈ A we have that ([cp], [cp]) ̸∈ M−1(A). Note that F ⊂ M−1(A).
We will first show that M−1(A) is not closed.

Suppose [cp] ∈ U and U is open in πtop
1 (H, p). Then V = q−1(U) is open in

Cp(H) where q denotes the standard quotient map Cp(H) → πtop
1 (H, p). Since

cp ∈ V , there exists N and K such that n ≥ N and k ≥ K implies a(n, k) ∈ V ,
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since by lemma 2.7, V must contain a basic open ball with the uniform metric
around cp, if we choose n and k large enough, a(n, k) will be contained in such
a ball.

Note that (x1x
−1
1 )N is path homotopic to cp and hence contained in V . Also,

w(N, k) → (x1x
−1
1 )N uniformly as k → ∞. Thus there exists K ′ > K such that

if k ≥ K ′ then w(N, k) ∈ V Therefore ([a(N,K ′)], [w(N,K ′)]) ∈ U × U .

We have shown that every open neighborhood of ([cp], [cp]) contains a point
in F , therefore ([cp], [cp]) is a limit point of F . This means in particular that
([cp], [cp]) is also a limit point of M−1(A) that is not contained in M−1(A), so
M−1(A) is not closed in πtop

1 (H, p)× πtop
1 (H, p).

It remains to prove that A is closed in πtop
1 (H, p). This is equivalent to

q−1(A) being closed in in Cp(H). Suppose fm → f ∈ Cp(H) uniformly and
fm ∈ q−1(A).

That fm is in q−1(A) means that each fm is homotopic to some a(n, k)
concatenated with some w(n, k). So we can find sequences {nm} and {kn} such
that fm ∈ [a(nm, km)] ∗ [w(nm, km)].

Assume for contradiction that nm is unbounded. Then for each integer
K, there is a subsequence {nmi} such that nmi ≥ K for each i. Also, since
fm → f , the subsequence fmi also converges to f . Then we get from lemma
4.4 that O1(f) ≥ K since O1(fm) ≥ O1(w(nm, km)) ≥ nm by lemma 4.5. Since
this is true for any K we get that O1(f) is unbounded which contradicts lemma
4.2. So {nm} must be bounded.

Next, assume that {nm} is bounded but {km} is not. Then by essentially
the same argument (just looking at a(nm, km) instead of w(nm, km)) we find
that there is some integer N such that ON (f) > M for any integer K, which
again contradicts lemma 4.2. So {km} must be bounded.

Since both {nm} and {km} are bounded, and since q−1(A) consists of a union
of path components in Cp(H), it follows from the pigeon hole principle that some
subsequence of {fm} is contained in a single path component of Cp(H). Then
by lemma 4.6 we get that f is also in this path component, and in particular
f ∈ q−1(A). Since q−1(A) contains all its limit points, it is closed, and by the
definition of the quotient topology this implies that A is closed.

Since we have found a closed set whose preimage is not closed, the multi-
plication in πtop

1 (H, p) is discontinuous which means that it is not a topological
group.

In a very similar fashion as the above proof, one can also show that the
product of two quotient maps, in particular the map q × q : Cp(H)×Cp(H) →
πtop
1 (Hp)× πtop

1 (H, p), fails to be a quotient map. For more details on this, see
the full proof of theorem 1 in [2].
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