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Abstract

This thesis has two purposes. The first one is to introduce sheaves
on spaces and present the Kripke-Joyal semantics for the internal lan-
guage of sheaves. We will do this by first laying the ground work for the
internal language, i.e. defining unary and binary operators on the subob-
ject classifier corresponding to logical connectives and quantifiers. Then
we define a forcing relation that translates internal properties to external
properties and give a recursive way to unwind internal statements to ex-
ternal statements. In the second part we illustrate some translations of
common properties and internal proofs of results from algebraic geometry
presented in [Ble21], an example being proving that a sheaf of modules
of finite type is internally a finitely generated module. The main portion
of this part is dedicated to □-operators and proving that for a geometric
formula the □’d version is equivalent to the □-translated version.
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1 Introduction

In this thesis we will be introducing the internal language of the category of
sheaves and the Kripke-Joyal semantics for formulae in the internal language,
using this to work through some of the internal translations of notions in alge-
braic geometry from [Ble21]. We have also included a (very) short introduction
to category theory, since much of the ground work for the internal language
relies on category theory (we are after all working in the category of sheaves).

The idea behind the internal language is that the category of sheaves behaves
almost like a universe of sets. It turns out that with the right definitions of the
meet, join, implication and quantifiers as maps on the collection of subsheaves
and truth values as subsheaves we get morphisms to the subobject classifier that
act like the the connectives and quantifiers of first order logic. Consequently,
with the help of the Kripke-Joyal semantics, we are able to translate proofs
concerning sets into proofs concerning sheaves.

Why algebraic geometry? Algebraic geometry is hard, but since it is mainly
about schemes and other locally ringed spaces we by translating the structure
sheaf into the internal language obtain a ring and those are much simpler to
work with. Generally the point of having an internal language is to reduce some
complicated structures to simpler ones, this is quite useful since we can reduce
some complicated proofs in algebraic geometry to ones in commutative algebra.
This frankly sounds too good to be true, so of course there is a caveat, namely
that the internal language is intutionistic. We can thus not make use of the
classically valid statements φ ∨ ¬φ (law of excluded middle), φ ⇔ ¬¬φ and
axiom of choice. But even if we can only work constructively internally there
is till quite a lot we can do, we will for example give an internal proof of the
statement “if (X,OX) is locally ringed and I ⊆ OX , then (V (I,OV (I) is a
locally ringed space”.

A large part of section 4 is dedicated to modal operators (actually Lawvere-
Tierney topologies) which are maps that slightly weaken formulas and can be
thought of as “property holds locally”-operators. These turn out to be helpful
in understanding how properties that holds at a stalk or locally spread to the
surrounding space, we will for example prove that for an OX -module of finite
type being the zero-module at the stalk at x is equivalent to it being the zero-
module on some open neighbourhood of x.
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2 Preliminaries

In this section we will list some definitions and results that are good to have in
mind when reading this thesis.

Definition 2.1 (category). A category C consists of

• a collection of objects, ob(C);

• for each A,B ∈ ob(C) a collection of morphisms from A to B, Hom(A,B);

• for each A,B,C ∈ ob(C) a function

Hom(B,C)×Hom(A,B) → Hom(A,C)
(g, f) 7→ g ◦ f

satisfying associativity;

• for each object A in C there is a morphism idA such that for each f : A→
B we have that f ◦ idA = f = idB ◦ f .

Definition 2.2. A category is small if the collection of objects and every col-
lection of morphisms are sets and locally small if each of its collections is a
set.

Definition 2.3 (opposite category). Given a category C the opposite category,
Cop, is defined by reversing all morphisms (this is also a category).

Definition 2.4 (terminal object). An object in a category is a terminal object
if there from every other object is a unique morphism to the object.

Remark 2.5. The terminal object is often denoted by 1, we too shall follow this
convention.

Definition 2.6 (functor). Let C and D be categories, a functor F between C
and D consists of

• a function that associates each object A ∈ ob(C) to an object F (A) ∈
ob(D);

• for each pair of objects A,B in C, a function which associates each mor-
phism f ∈ Hom(A,B) to a morphism F (f) ∈ Hom(F (A), F (B)) for each
A,B ∈ ob(C), such that for f : A → B and g : B → C we have that
F (g ◦ f) = F (g) ◦ F (f) and F (idA) = idF (A) for all A ∈ ob(C).

Remark 2.7. We will also call a contravariant functorn (a functor but with
reversed composition) a functor.

Definition 2.8 (natural transformation). Let C and D be categories and F
and G be functors from C to D. A natural transformation α between F and
G is a family of maps (αA)A∈ob(C) such that for each f : A → B the following
diagram commutes.
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F (A) F (B)

G(A) G(B)

F (f)

αA αB

G(f)

Definition 2.9 (pullback). In a category C a pullback of two morphisms f :
F → E and g : G → E is a pair of morphisms a : P → F and b : P → G such
that the following diagram commutes

P G

F E

b

a g

f

and for any other pair of morphisms p and q that makes this diagram

Q G

F E

q

p g

f

commute there is a unique morphism u : Q→ P which makes this diagram

Q

P G

F E

p

q

u

b

a g

f

commute.

Remark 2.10. These are unique up to isomorphism by the Yoneda lemma 2.20.

Definition 2.11 (subobject). A subobject of an object F ∈ ob(C) in a cate-
gory C is an equivalence class of monics into F with equivalence of two such
monomorphism i : A → F and j : B → F if there is isomorphism h : A → B
such that f = g ◦ h.

Definition 2.12 (Cone). A cone on a functor D : J → C is a pair (L,φ) such
that L ∈ ob(C) and φ = {φX : L→ D(X)}X∈ob(J).

Definition 2.13 (limit). Let J and C be categories and D : J → C be a
functor, this is called a diagram of type J in C. The limit of D is a cone (L,φ)
such that there for each (N,ψ) is a unique u : N → L and
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N

L

F (X) F (Y )

u
ψX ψY

φX φY

F (f)

commutes for each X,Y ∈ ob(J) and f ∈ Hom(X,Y ).

Definition 2.14 (finite limit). Limit of a diagram of finite type.

Definition 2.15 (equalizer). In any category C, given any two morphism f, g :
A → B an equalizer of f and g (if it exists) is an object E and a morphism
e : E → A such that fe = ge. Given any h : C → A with fh = gh, h factorizes
uniquely through e, ie there is, for every h, a unique u : C → E such that

E A B

C

e
f

g

u
h

commutes.

Remark 2.16. For e, f and g as in the definition above the diagram

E A Be
f

g

is called an equalizer diagram.

Lemma 2.17. A category, C, that has all pullbacks and a terminal object has
all finite limits.

Proof. To prove this one first need to prove that having pullbacks and terminal
object is equivalent to having finite products and equalizers, then that products
and equalizers imply finite limits. For a proof we refer to Proposistion 5.23
[Awo10].

Definition 2.18 (subobject classifier). A subobject classifier in a category C
with finite limits is a monomorphism true : 1 → Ω, such that for every monic
i : S → F there is a unique morphism φ : F → Ω making

S 1

F Ω

i true

φ

is a pullback.
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Remark 2.19. Since pullbacks are unique up to isomorphisms this implies that
there is a bijection between subobjects of an object and morphisms φ as de-
scribed in the definition.

Lemma 2.20 (Yoneda lemma). [Lei14, Thm. 4.2.1] In a locally small category
C

Hom(Hom(−, F ), X) ∼= X(F )

naturally for F ∈ ob(C) and X : C → Set.

Remark 2.21. In particular, if α is a natural transformation from Hom(−, F )
to X and f : F → G for some G ∈ ob(C), then (X(f))(αF (idF ) = αG(f) (cf
[Lei14, p.97]), i.e. any natural transformation Hom(−, F ) to X is determined
by its value at idF .

3 Sheaves and their internal language

3.1 Sheaves

Definition 3.1 (presheaf of sets). For any category C, a presheaf on C is a
functor F : Cop → Set.

Remark 3.2. If V ⊆ U ⊆ X are two open sets and r ∈ HomCop(U, V ), then for
x ∈ F(U) we will denote F(r)(x) as x|V .
Definition 3.3 (sheaf of sets). Let, again, X be a topological space, a sheaf of
sets on X is a presheaf F : O(X)op → Set such that for each open set U ⊆ X
and each open cover {Ui}i∈I of U

U
∏

i

F(Ui)
∏

i,j

F(Ui ∩ Uj)e
p

q

is an equalizer diagram, where for t ∈ F(U), e(t) = {t|Ui | i ∈ I} and for a
family ti ∈ F(Ui), q({fi}) = {fi|(Ui∩Uj)} and p({fi}) = {fj |(Ui∩Uj)}.
Remark 3.4. The sheaf condition is equivalent to having the gluing property,
i.e. if U ⊆ X is open, {Ui}i∈I is an open cover of U and there is an xi ∈ F(Ui)
for all i ∈ I such that xi|Ui∩Uj

= xj |Ui∩Uj
then there is an x ∈ F(U) such that

x|Ui
= xi.

Example 3.5. We give some illustrative examples and non-examples of sheaves

(1) Let R with the usual topology be our space, then F : O(R)op → Set such
that F (U) = RU for any open U ⊆ R is a sheaf of sets. In fact F , with
the usual addition and multiplication operators is a sheaf of rings (these
we will talk more about later).

(2) Let R be a ring and U ⊆ Spec(R) be open, then OSpec(R)(U), the set of
all regular functions on U , is a sheaf. Since these sets are rings OSpec(R)

is also a sheaf of rings. We call this sheaf the structure sheaf of Spec(R).
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(3) Let X be a scheme, then the function mapping U ⊆ X to the ring of
regular functions on U is a sheaf of rings.

(4) Let again R be our space and U ⊆ R be open, then letting B(U) be the set
of bounded functions from R to R gives us a presheaf that is not a sheaf.

All sheaves of sets over a fixed topological space X with natural transforma-
tions as morphisms form a category, which by convention is denoted Sh(X). As
with functors in general we can for sheaves define subsheaves, which are sub-
functors of sheaves which themselves are sheaves, we will use Sub(F) to denote
the set of subsheaves of a sheaf F . This may seem a bit misleading as Sub(F) is
usually reserved for the subobjects of F but we can justify it with the following
proposition.

Proposition 3.6. [LM92, Prop. II.3.3] Each subobject of F ∈ Sh(X) is iso-
morphic to some subsheaf of F .

Proof. Let m : A → F be monic, then the commutative diagram

A A

A F

id

id m

m

must be a pullback (cf. [Lei14, Lemma 5.1.32]). By §II.2.2 in [LM92] it must also

be a pullback in the presheaf category SetO(X)op , consequently it is a pullback
pointwise and A(U) for each open U ∈ X is isomorphic to some subset S(U) of
F(U), therefore isomorphic to the subsheaf S ∈ Sub(F).

The set Sub(F) has some interesting properties.

Proposition 3.7. [LM92, §III.8] For any sheaf F in the category of sheaves
over a topological space X and A,B ∈ Sub(F), {Ai} ⊂ Sub(F) and U ∈ O(X)
the following are also elements in Sub(F).

• (A ∧ B)(U) := A(U) ∩ B(U)

• (A ∨ B)(U) := {x ∈ F(U) | for some open cover of U , {Ui}i∈I , x|Ui
∈

A(Ui) ∨ x|Ui
∈ B(Ui)}

• (A ⇒ B)(U) := {x ∈ F(U) | for all open V ⊆ U x|V ∈ A(V ) ⇒ x|V ∈
B(V )}

• (
∧
iAi)(U) =

⋂
iAi(U)

• (
∨
iAi)(U) = {x ∈ F(U)|x|Uj

∈ Ai(Uj) for some i ∈ I
and some open cover of U, {Uj}j∈J}

• ⊤(U) = F(U)
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• ⊥(U) = ∅

Proof. These are all subfunctors because the restriction morphisms of subfunc-
tors agree with that of the functor, i.e. if V ⊆ U ⊆ X and x ∈ A(U) then
x|V ∈ A(V ). We will prove that these indeed are sheaves, starting with con-
junction.

Let U ∈ X be open and {Ui}i∈I be an open cover of U . Assume that we for
each i ∈ I have an xi ∈ (A ∧ B)(Ui) such that xi|Ui∩Uj

= xj |Ui∩Uj
for i, j ∈ I,

then by definition xi ∈ A(Ui) and xi ∈ A(Ui) for all i ∈ I. Since both A and B
are sheaves there must be some x that is in both A(U) and B(U) which satisfies
x|Ui = xi.

For disjunction the premise is the same. By definition either xi is in A(Ui)
or in B(Ui), let UA denote the union of all Ui’s such that the corresponding xi
is in A(Ui) and UB be the union of all Ui’s such that xi is in B(Ui). Since A is
a sheaf there must be some xA ∈ A(UA) such that xA|Ui = xi for all Ui ⊆ UA,
the analogous statment is true for B. But then xA|UA∩UB = xB|UA∩UB and by
definition there must be some x ∈ (A∨B)(U) such that x|Uk

= xk for k = A,B.

We will also use the same premise for implication, for (A ⇒ B)(U) to define
a sheaf we need to prove that x|V ∈ A(V ) ⇒ x|V ∈ B(V ) for the x ∈ F(U) that
we get from the sheaf condition and the premise. By the premise we have that
for any open V ⊆ U , xi|V ∩Ui

∈ A(V ∩ Ui) ⇒ xi|V ∩Ui
∈ B(V ∩ Ui). Suppose

xi|V ∩Ui
∈ A(V ∩ Ui) for all i ∈ I, then because xi|Ui∩Uj∩V = xj |Ui∩Uj∩V and

because A is a sheaf there is some xV ∈ A(V ) such that xV |Ui∩V = xi|Ui∩V ,
this xV must also be in B(V ), since each xi|V ∩Ui

must also be in B(Ui ∩ V ),
by the premise and the fact that B also is a sheaf. But xi|Ui∩V = x|Ui∩V , thus
xV = x|V and x|V ∈ (A ⇒ B)(V ).

⊤ is a sheaf by assumption and ⊥ is a sheaf since the condition holds vacu-
ously. We have omitted the proofs of arbitrary conjunctions and disjunction on
purpose, they are quite similar to the binary versions.

Now that we have all connectives of propositional logic, what about quanti-
fiers? And indeed we can ”use” quantifiers to define subsheaves, in fact we have
the following proposition.

Proposition 3.8. [LM92, §III.8] Any natural transformation φ : E → F be-
tween sheaves E ,F ∈Sh(X) induces a functor φ−1 : Sub(F) → Sub(E) and we
have that for A ∈ Sub(E) both

∃φ(A)(U) =
{y ∈ F(U) | ∃x ∈ A(Ui)(φUi

(x) = y|Ui
) for some open cover {Ui}i∈I of U}

and

∀φ(A)(U) = {y ∈ F(U) | ∀V ⊆ U ((φ−1
V (y|v) ⊆ A(V ))}
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define subsheaves of F .

Proof. Again these are all subfunctors because the restriction morphisms of
subfunctors agree with that of the functor, so we only need to prove that they
satisfy the sheaf condition.

Suppose U ⊆ X is open, {Ui}i∈I is an open cover of U and that there is an
yi ∈ ∃φ(A)(Ui) for each i ∈ I such that yi|Ui∩UJ

= yj |Ui∩UJ
. Then by definition

there is an open cover of each Ui = ∪n∈Ni
Vn such that there is an xn ∈ A(Vn)

and φVn
(xn) = yi|Vn

. But F is a sheaf, consequently there is some y ∈ F(U)
such that y|Ui

= yi and thus yi|Vn
= y|Vn

and since {Vn}n∈∪i∈INi
is an open

cover of U it follows that y ∈ ∃φ(A)(U).

We have the same premise for the universal quantifier but with each yi ∈
∀φ(A)(Ui). Then by definition we have that for each open V , φ−1

V ∩Ui
(yi|V ∩Ui

) ⊆
A(V ∩Ui). Since F is a sheaf there is a y ∈ F(U) such that y|Ui

= yi. Suppose
φ−1
V (y|V ) ̸= ∅, then for each x ∈ φ−1

V (y|V ), x|V ∩Ui
∈ φ−1

V ∩Ui
(y|V ∩Ui

). But by

assumption φ−1
V ∩Ui

(y|V ∩Ui) ⊆ A(V ∩Ui), consequently x ∈ φ−1
V (y) ⊆ A(V ) since

A is a sheaf.

Proposition 3.9. Sh(X) has all pullbacks and a terminal object.

Proof. Since the terminal object also must be a terminal object pointwise (i.e.
in Set) we can take the sheaf defined such that 1(U) = {∗} for all open U ⊆ X.

For pullbacks, suppose we have F ,G, E ∈ Sh(X) and f : F → G and g :
E → G. For something to be a pullback in Sh(X), it has to be a pullback in
the preasheaf category, and for this to be true it has to be a pullback pointwise.
Thus we know that (F ×G E)(U) ∼= F(U)×G(U) E(U) for all open U ⊆ X, this
is a sheaf.

Proposition 3.10. Sh(X) has all finite limits.

Proof. A consequence of the previous proposition and 2.17.

Proposition 3.11. [LM92, §II.8] The sheaf Ω(U) = {V ∈ O(X)| V ⊆ U} with
true : 1 → Ω defined by 1 7→ U is the subobject classifier in Sh(X).

This proposition follows from the proof of the following proposition.

Proposition 3.12. [LM92, Prop. I.3.1] There is a natural isomorphism

θF : Sub(F) ∼= Hom(F ,Ω).

Proof. To prove the bijection we define two functions and show that they are
mutually inverse. Let θF : Sub(F) → Hom(F ,Ω) send the equivalence class of
a monic i : A → F to φ : F → Ω defined such that ψU sends x 7→ ⋃{Ui ⊆
U | x|Ui

∈ A(Ui)}, this ψ makes the following diagram
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A 1

F Ω

i true

ψ

a pullback. Let ηF : Hom(F ,Ω) → Sub(F) send φ ∈ Hom(F ,Ω) to the collec-
tion of j which makes this

B 1

F Ω

j true

φ

a pullback (such a collection must exist by 3.9). That the function ηF indeed
maps to Sub(F) may need some justification, we begin by proving that any such
j which makes the diagram a pullback is monic, this follows from the fact that
it must pointwise be a pullback

B(U) 1

F(U) Ω(U)

jU true

φU

and that B(U) must be isomorphic to the equalizer F(U)×Ω(U)1 (since pullbacks
are unique up to isomorphism) which in turn is isomorphic to some subset of
F(U), thus jU is injective, consequently j must be monic (cf. proof of 4.1). That
the collection of such j’s is a subobject follows from pullbacks being unique up
to isomorphism, i.e. if j and j′ both make the diagram a pullback there is some
isomorphism of their domains h such that j = j′ ◦ h. Now suppose we have
some subobject i of F , we know that θF (i) = ψ (as defined before), but since i
is the pullback of ψ along true ηF must map ψ to i (by i we of course mean the
equivalence class).

For the opposite composition let φ ∈ Hom(F ,Ω), then ηF maps φ to the
subobject j of F , with subsheaf F(U) ∼= F(U) ×Ω(U) 1. θF maps j to ψ as
defined above, we need to show that ψ = ϕ. Let x ∈ F(U) for some open
U ⊆ X and assume φU (x) = V , then by assumption V ∈ U and by naturality
of φ the following diagram must commute

F(U) Ω(U)

F(V ) Ω(V )

φU

φV

this implies that x|V ∈ S(V ). To prove that V is the largest such subset consider
any open subset V ′ of U such that V ⊆ V ′ if x|V ′ ∈ S(V ′) then φV ′(x|V ′) = V ′

but this would contradict the naturality of φ. Because S is a sheaf, we can
conclude that φU = ψU for all open U ⊆ X, thus φ = ψ. Consequently both
θF and ηF must be bijections.

12



Now to show that our θ is natural assume that we have some f : E → F ,
then

B A 1

E F Ω
f

is a pullback (rectangle) and since f induces a morphism f−1 : Sub(F) →
Sub(E) we have that θE ◦ f−1 = f−1 ◦ θF .

Now that we have a decent understanding of Sh(X) with subobjects and all,
here comes the punchline.

Proposition 3.13. [LM92] We can define binary operators on Ω such that
these correspond to the logical connectives on subsheaves.

Before proving this we need the following lemma.

Lemma 3.14. SetC
op

is locally small if C is a small category.

Proof. Let F ,G ∈ ob(SetC
op

). We know that each morphism α ∈ Hom(F ,G) is
just a family of morphisms {αC}C∈ob(C). Since each αC is a function from F(C)

to G(C) there is an injection from Hom(F ,G) to the set
∏
C∈SetC

op G(C)F(C),
consequently Hom(F ,G) must be a set too.

By this lemma Sh(X) must be locally small, now for the proposition.

Proof of 3.13. We will prove this for disjunction, the proof for the others are
similar. Define ∧F as the operation which makes the following diagram commute

Sub(F)× Sub(F) Sub(F)

Hom(F ,Ω)×Hom(F ,Ω)

Hom(F ,Ω× Ω) Hom(F ,Ω)

∩

∼

∼

∼

∧F

(the isomorphisms are by 3.12).
Since the following diagram commutes for any f : E → F

Sub(F)× Sub(F) Sub(F)

Sub(E)× Sub(E) Sub(E)
f−1

∩

f−1

∩

13



our ∧ must be natural in F . By the Yoneda lemma (which we are allowed to use
because Sh(X) is locally small) any natural transformation from Hom(F ,Ω×Ω)
to Hom(F ,Ω) is uniquely determined by its value at idΩ×Ω because for any
f : F → Ω× Ω we have that this diagram commutes

Hom(Ω× Ω,Ω× Ω) Hom(F ,Ω× Ω)

Hom(Ω× Ω,Ω) Hom(F ,Ω)

−◦f

∧Ω×Ω ∧F

−◦f

which implies that ∧Ω×Ω(idΩ×Ω)(f) = ∧F (f) for any F and f . Consequently
∧Ω×Ω(idΩ×Ω) : Ω × Ω → Ω is the binary operation on Ω that corresponds to
disjunction of subsheaves and we will denote it by ∧ : Ω× Ω → Ω.

This is going to be useful later for the internal language

3.2 Internal language

We have already proved that it is in some sense possible to “apply” first order
logic to Sh(X) and since we could almost say that a sheaf “believes” itself to
be a set we should be able to view Sh(X) as a ”universe of sets” equipped with
some modified version of the language of sets. It turns out that this is possible
and it is called internal language, in general an internal language consists of
types, variables, terms and formulas. In the Mitchell-Bénabou language, which
is one type of internal language of sheaves and the one that we are going to use,
the types are the objects of Sh(X). We define variables and terms inductively

• Variables x of type F are interpreted as as the identity morphism id :
F → F

• Terms σ of type F are interpreted as morphisms σ = (σi)i∈I : Ei → F for
some family {Ei}i∈I of sheaves in Sh(X). (take look at this, maybe only
binary prod?)

Formulas are terms of type Ω, we can apply the usual logical connectives
because of 3.13, consequently from terms φ : E → Ω and ψ : F → Ω we can
construct new terms

φ ∧ ψ : E × F Ω× Ω Ω

φ ∨ ψ : E × F Ω× Ω Ω

φ⇒ ψ : E × F Ω× Ω Ω

⟨φ,ψ⟩ ∧

⟨φ,ψ⟩ ∨

⟨φ,ψ⟩ ⇒
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We want to put special emphasis on the morphisms which correspond to
true ⊤ and false ⊥. Per 3.7 there is a subsheaf corresponding to ⊤ and one
corresponding to ⊥ for each sheaf F on X, now let instead ⊤ : F → Ω and
⊥ : F → Ω denote the unique morphisms corresponding to the subsheaves. It
may seem strange to have a different pair of ⊤ and ⊥ for each sheaf, but this
poses no issue for the semantics as we will see in the next section. We have also
omitted ¬ on purpose since ¬φ is defined as φ =⇒ ⊥ and it is easier to apply
the Kripke-Joyal sematics to this composition.

The usual description of the Mitchell-Bénabou language consists of a few
other terms which are not relevant for our purpose, for a complete account cf.
[LM92, §VI.5].

We promised that the language would behave like first order logic so there
are of course also quantifiers, consider the formula φ(x, y) with free variables
x of type X and y of type Y = Y1 × ... and denote by {(x, y)| φ(x, y)} the
subobject classified by the interpretation of φ(x, y). Let π : X × Y → Y be the
projection of X × Y on Y then by 3.8 ∀π{(x, y)|φ(x, y)} and ∃π{(x, y)|φ(x, y)}
are subsheaves of Y and the interpretations of ∀xφ(x, y) and ∃xφ(x, y) must be
the unique arrows from Y to Ω such that the following are pullbacks.

∀π{(x, y)|φ(x, y)} 1 ∃π{(x, y)|φ(x, y)}

Y Ω Y
true

∀xφ(x,y) ∃xφ(x,y)

3.3 Kripke-Joyal Semantics

While the internal language provides us with a simple way to describe properties
of some sheaf the Kripke-Joyal sematics provides a way to translate internal
properties to the external language.

Definition 3.15. Let Sh(X) be the category of sheaves of sets on X and φ(x)
be some formula φ : F → Ω in the internal language of Sh(X), then U ⊨ φ(α)
for α ∈ F(U) iff α ∈ {x|φ(x)}(U).

This gives us the following theorem.

Theorem 3.16. [LM92, p. VI.7.1] Let Sh(X) be the category of sheaves of sets
over the topological space X, F , E ∈ Sh(X) and α ∈ F(U), then

(i) U ⊨ ⊤ iff U = U (i.e. always true)

(ii) U ⊨ ⊥ iff U = ∅

(iii) U ⊨ φ(α) ∧ ψ(α) iff U ⊨ φ(α) and U ⊨ ψ(α).

(iv) U ⊨ φ(α)∨ψ(α) iff there is an open cover of U , {Ui}i∈I , such that for all
i ∈ I either Ui ⊨ φ(α|Ui

) or Ui ⊨ ψ(α|Ui
).
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(v) U ⊨
∧
i∈I φi(α) iff U ⊨ φi(α) for every i ∈ I.

(vi) U ⊨
∨
i∈I φi(α) iff there is an open cover of U , {Uj}j∈J , such that for

each j ∈ J there is an i such that Uj ⊨ φi(α|Uj
).

(vii) U ⊨ φ(α) ⇒ ψ(α) iff for all open V ⊆ U V ⊨ φ(α|V ) implies V ⊨ ψ(α|V ).

(viii) U ⊨ ¬φ(α) iff the only open V ⊆ U such that V ⊨ φ(x) holds is V = ∅.

(ix) U ⊨ ∃y : E χ(α, y) iff there is some open cover {Ui}i∈I such that there is
some yi ∈ E(Ui) such that Ui ⊨ χ(αUi

, yi) for all i ∈ I.

(x) U ⊨ ∀y : E χ(α, y) iff for every open V ⊆ U and for all β ∈ E(V )
V ⊨ χ(α|V , β)

Remark 3.17. (viii) is just a special case of (vii).

Proof. Most of this proof relies on proposition 3.7 and 3.8 and each case is quite
similar so we will only prove (i). Suppose U ⊨ φ(x) ∧ ψ(x), by definition this
is equivalent to α ∈ {x|φ(x) ∧ ψ(x)}(U) by (prop 2.1) the meet is defined as
{x|φ(x)} ∩ {x|ψ(x)} and thus α ∈ {x|φ(x) ∧ ψ(x)}(U) is equivalent to α ∈
{x|φ(x)}(U) and α ∈ {x|ψ(x)}(U).

To make things more readable we will instead of φ(α) write α ∈ G if φ :
F → Ω is the characteristic function of G, thus

U ⊨ α ∈ G iff α ∈ G(U) for any section α of F

and if φ(α, β) = δF (α, β) is the characteristic map for the diagonal of F then
we will write α = β instead of δF (α, β), thus

U ⊨ α = β : F iff α = β ∈ F(U).

To illustrate how one would use 3.16 translate an internal statement to an
external we give the following example:

Example 3.18. Let X be a topological space, F ,G ∈ Sh(X) and f : F → G
and suppose U ⊨ ∀y : G (∃x : F f(x) = y) for every open U ⊆ X. Then

U ⊨ ∀y : G (∃x : F f(x) = y)
⇐⇒ ∀V ⊆ U ∀y ∈ G(V ) V ⊨ ∃x : F f(x) = y
⇐⇒ ∀V ⊆ U ∀y ∈ G(V ) ∃xi ∈ F(Ui) fUi(xi) = y|Ui

for some open cover {Ui}i∈I of V

which we in section 4.1 will see is equivalent to f being an epimorphism.
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3.4 Soundness

Before we ventures into the interesting world of internal proofs we need to make
sure that the properties we would expect to hold indeed holds as to avoid any
pitfalls on the way.

Theorem 3.19. [Ble21, Prop. 2.5] The Kripke-Joyal semantics are sound with
respect to intuitionistic logic, i.e. if φ implies ψ intuitionistically then U ⊨ φ
implies U ⊨ ψ.

Proof. We can prove this by induction on the structure of intuisionistic proofs,
these are all straight forward so we only give an example (complete list of rules
can be found in the appendix). Let us prove this for the following rule:

If φ holds and φ ∧ ψ imply χ then ψ ⇒ χ.

We have that

U ⊨ φ ∧ ψ ⇒ χ ⇐⇒ ∀V ⊆U (V ⊨ φ ∧ ψ =⇒ V ⊨ χ)
⇐⇒ ∀V ⊆U ((V ⊨ φ and V ⊨ ψ) =⇒ V ⊨ χ).

But we assumed U ⊨ φ which implies that ∀V ⊆ U (V ⊨ φ) and thus ∀V ⊆
U (V ⊨ ψ =⇒ V ⊨ χ which is equivalent to U ⊨ ψ ⇒ χ.

3.5 Sheaves of rings

For the purpose of this thesis we want be able to describe sheaves of rings, these
are sheaves of sets with two binary operators +, · : R × R → R, one unary
− : R → R and two global sections 1 and 0 such that the usual ring axioms
hold (i.e. instead of R(U) for some open U ⊆ X being a set it is a ring). Now
for our first look at an external property from the internal perspective:

Proposition 3.20. [Ble21, Prop. 3.1] Let X be a topological space and R be
a sheaf of sets over X with operators +, ·,− and global sections 1 and 0 as
described above, then R is a sheaf of rings if and only if R is a ring from the
internal perspective.

Proof. We will only prove that R is an abelian group under + : R ×R → R,
the other conditions are proved in a similar way.

• Commutativity: X ⊨ ∀x, y : R (x+y = y+x) ⇐⇒ x+y = y+x ∈ R(U)
for any U ⊆ X and any x, y ∈ R(U).

• Associativity: X ⊨ ∀x, y, z : R (x+(y+z) = (x+y)+z) ⇐⇒ x+(y+z) =
(x+ y) + z ∈ R(U) for all open U ⊆ X and any x, y, z ∈ R(U).

• Identity: X ⊨ ∀x : R (0 + x = x) ⇐⇒ there is a global section 0 such
that 0|U + x = x ∈ R(U) for any x ∈ R(U) and all open U ⊆ X.

• Inverses: X ⊨ ∀x : R (x + (−x) = 0) ⇐⇒ for all open U ⊆ X and any
x ∈ R(U) we have that x+ (−x) = 0 ∈ R(U).
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Remark 3.21. An analogous statement holds for sheaves of modules.

We will leave the translations of some other properties that sheaves of rings
can have for the section on translations of properties from algebraic geometry.

4 Some algebraic geometry

4.1 Some interesting properties we will use later

We saw in section 3.5 that a sheaf of rings is internally a ring, in this section
we will translate some more useful external notions to internal ones.

Proposition 4.1. [Ble21, Example 2.3] Let X be a topological space, F and G
be sheaves over X and f : F → G be a natural transformation, then f is an
monomorphism (or epimorphism) if and only if f from the internal perspective
is injective (or surjective).

Proof. Suppose X ⊨ ∀x, y : F f(x) = f(y) ⇒ x = y, then

X ⊨ ∀x, y : F f(x) = f(y) ⇒ x = y
⇐⇒ for all open U⊆X and ∀x, y ∈ F(U) (U ⊨ f(x) = f(y) : F ⇒ U ⊨ x = y : F)
⇐⇒ for all open U⊆X and ∀x, y ∈ F(U) fU (x) = fU (y) ∈ F(U) ⇒ x = y ∈ F(U))

This means that f is injective pointwise, which we claim is equivalent to f being
a monomorphism. To prove this claim suppose for the “only if”-direction that f
is pointwise injective, then for any morphisms g, h : G → F such that fg = fh
and section s ∈ G(U) we have that fUgU (s) = fUhU (s). But f is pointwise
injective so gU = hU for all U ⊆ X, thus g = h and f is a monomorphism.
For the “if”-direction suppose f is not injective, then for some x ̸= yF(U)
fU (x) = fU (y). But then for some morphisms g, h : G → F such that g is equal
to h everywhere except for some s ∈ F(U) where gU (s) = x and hU (s) = y
we have fg = fh but g ̸= h. Thus f being a monomorphism implies that f is
pointwise injective.

We determined that the internal surjective condition is equivalent to the
following external condition in 3.18.

∀V ⊆U ∀y ∈ G(V ) ∃xi ∈ F(Ui) fUi(xi) = y|Ui for some open cover {Ui}i∈I of V

We need to prove that this is equivalent to f being an epimorphism. For the
“only if”-direction suppose f is right cancellable and define a subsheaf of G the
following way

A(U) = {y ∈ F(U)| for some open cover {Ui} of U ∃xi ∈ F(Ui) f(xi) = y|Ui} (∗)

Then the characteristic function χA of A, makes the following diagram commute

18



F 1

G Ω

f true

χA

g

Since f is right cancellable we have that true◦g = χA, which implies that A = G
and consequently f has property (∗).

For the “if”-direction assume f has property (∗) and let s ∈ G(U), then
for some open cover {Ui}i∈I of U such that there is some xi ∈ F(Ui) and
fUi

(xi) = si. Thus for any morphisms g, h : G → H such that gf = hf we
have that gUi

(s|Ui
) = hUi

(s|Ui
), but since this is a morphism of sheaves we

know gUi
(s|Ui

) = gU (s)|Ui
, consequently gU (s)|Ui

= hU (s)|Ui
for all i ∈ I which

implies that gU (s) = hU (s).

Recall the definition of a sheaf of modules of finite type.

Definition 4.2. Let (X,OX) and F be an OX -module, we say that F is of
finite type if for each x ∈ X there is an open neighbourhood U of x such that
F |U is generated by finitely many sections.

F|U being generated by finitely many sections means that for sections x1, ..., xn ∈
F(U) the map

⊕

1≤i≤n
OX → F|U (a1, ..., an) 7→ a1x1 + ...+ anxn

is surjective.
Then, because of how surjective is defined for maps of sheaves, a sheaf of

modules being of finite type is equivalent to it fullfilling the following condition:

“There is some open cover {Ui}i∈I of X such that for each i ∈ I there
is some n ∈ N and n sections of F(Ui), (x1, ..., xn) such that for each i ∈ I
and each open V ⊆ Ui and all sections x ∈ F(V ), there is some open cover
{Vj} of V such that for each x ∈ F(Vi) there is a1, ..., an ∈ OX(Vi) such that
xVi

= a1x1|Vi
+ ...anxn|Vi

”.

Proposition 4.3. [Ble21, Prop. 4.3] Let X be a ringed space and F be an OX-
module. Then F is of finite type if and only if internally F is finitely generated.

Proof. Suppose F is finitely generated internally, i.e.

X ⊨
∨

n∈N
∃x1, ..., xn : F∀x : F∃a1, ..., an : OX(x =

n∑

i=0

aixi))
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Using the Kripke-Joyal semantics:

X ⊨
∨
n∈N ∃x1, ..., xn : F∀x : F∃a1, ..., an : OX(x =

∑n
i=0 aixi))

⇐⇒ there is an open cover {Ui}i∈I of X such that for every i ∈ I
∃n ∈ N∃(x1, ..., xn) ∈ F (Ui)

n Ui ⊨ ∀x : F∃a1, ..., an : OX(x =
∑n
i=0 aixi))

Unwinding the universal and existential quantifiers gives us

there is an open cover {Ui}i∈I of X such that for every i ∈ I
∃n ∈ N ∃(x1, ..., xn) ∈ F(Ui)

n

∀V ⊆Ui ∀x ∈ F(V ) there is an open cover {Vi}i∈I∃(a1, ..., an) ∈ OX(Vi)
Vi ⊨ x =

∑n
i=0 aixi|Vi

which is equivalent to

there is an open cover {Ui}i∈I of X such that for every i ∈ I
∃n ∈ N ∃(x1, ..., xn) ∈ F(Ui)

n

∀V ⊆Ui ∀x ∈ F(V ) there is an open cover {Vi}i∈I∃(a1, ..., an) ∈ OX(Vi)
x|Vi

=
∑n
i=0 aixi|Vi

)).

This is, as we concluded above, equivalent to F being of finite type.

Remark 4.4. It may seem like an unnecessary detour to use the arbitrary dis-
junction, when we instead could have used ∃n ∈ N since these turn out to be
equivalent. But there is a good reason behind this choice, the reason being that
we want to avoid the issue of proving that there is a natural numbers object.

4.2 Modalities

We are not only interested in what property holds on an open set, but in what
the properties tells us about the surrounding space and we thus introduce some
thing called a modal operator, which is almost like a “weakening” of a formula.

4.2.1 Definitions and basic properties

Definition 4.5 (modal operator). A modal operator is a map □ : Ω → Ω such
that

(1) φ =⇒ □φ

(2) □□φ =⇒ □φ

(3) □(φ ∧ ψ) ⇐⇒ □φ ∧□ψ

Remark 4.6. In particular, we have that □(φ ⇔ ψ) ⇐⇒ (□φ ⇔ □ψ), since
φ ⇔ ψ means φ = ψ, this is important to note for the proof of □ being
monotonic.
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But before presenting some interesting results about modal operator we be-
lieve it is helpful to give some examples of operators that are relevant to algebraic
geometry.

(1) □φ := (α⇒ φ)

(2) □φ := (φ ∨ α)
(3) □φ := ¬¬φ
(4) □φ := ((φ⇒ α) ⇒ α)

In all of these α is a fixed proposition. Now for the promised lemma.

Lemma 4.7. [Ble21, Lemma 6.3] □-operator is monotonic, i.e. if φ⇒ ψ then
□φ⇒ □ψ.

Proof. We know that the assumption φ ⇒ ψ is equivalent to the assumption
φ ∧ ψ ⇔ φ, this implies □(φ ∧ ψ ⇔ φ) by axiom (1), which in turn, by an
earlier remark 4.6 about equivalence being the same as equals and axiom (3), is
equivalent to □φ ∧□ψ ⇔ □φ which is equivalent □φ⇒ □ψ.

Corollary 4.8. [Ble21, Lemma 6.3] If □φ and φ⇒ □ψ then □ψ.

Proof. By 4.7 we have that □φ ⇒ □□ψ holds and by □φ holding □□ψ must
hold too. Now by axiom (2) □ψ must hold.

We gave some examples of different types of modal operators before, now
the following proposition gives them a geometric meaning for some choices of
α. But let us first introduce some new notation.

By the fact that U is a global section of Ω we have that V ⊨ U ⇐⇒ V ⊆U ,
we can thus make the following definition.

Definition 4.9. Let !x denote int(X \{x}) because V ⊨ int(X \{x}) ⇐⇒ x ̸∈
V .

Proposition 4.10. [Ble21, Prop. 6.5] Let U⊆X be open, A⊆X be closed and
x ∈ X, then for all open V ⊆U

(1) V ⊨ (U ⇒ φ) ⇐⇒ V ∩U ⊨ φ

(2) V ⊨ (φ ∨Ac) ⇐⇒ ∃W ⊆V such that A∩V ⊆W and W ⊨ φ

(3) V ⊨ ¬¬φ ⇐⇒ ∃W ⊆V which is open and dense such that W ⊨ φ

(4) V ⊨ ((φ⇒!x) ⇒!x) ⇐⇒ x ̸∈ V or ∃W ⊆V with x ∈W and W ⊨ φ

Proof. (1)

V ⊨ (U ⇒ φ) ⇐⇒ ∀W ⊆V W ⊨ U ⇒W ⊨ φ
⇐⇒ ∀W ⊆V (W ⊆U) ⇒W ⊨ φ
⇐⇒ V ∩U ⊨ φ
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(2)

V ⊨ (φ ∨Ac) ⇐⇒ there is some open cover of V

{Vi}i∈I such that for each i ∈ I

either Vi ⊨ φ or Vi⊆X \A
⇐⇒ ⋃{Vi| Vi ⊨ φ and Vi ̸⊆ X\A} ⊨ φ
⇐⇒ ∃W ⊆V W ⊨ φ and V ∩A ⊆W

(3) Let W =
⋃{W ′⊆V | W ′ ⊨ φ}

V ⊨ ¬¬φ ⇐⇒ V ′⊆V (V ′ ⊨ ¬φ⇒ V ′ = ∅)

⇐⇒ V ′⊆V ((V ′′⊆V ′ (V ′′ ⊨ φ) ⇒ (V ′′=∅)) ⇒ V ′=∅)

⇐⇒ V ′⊆V (V ′′⊆V ′ (V ′′⊆W ⇒ V ′′=∅) ⇒ V ′=∅)

⇐⇒ V ′⊆V (V ∩W = ∅) ⇒ V ′=∅
⇐⇒ W is dense in V

(4)

V ⊨ ((φ⇒!x) ⇒!x) ⇐⇒ ∀V ′⊆V such that V ′ is open

V ′ ⊨ (φ⇒!x) =⇒ V ′ ⊨!x
⇐⇒ ∀V ′⊆V

(∀V ′′⊆V ′ (V ′′ ⊨ φ =⇒ x ̸∈ V ′′))

=⇒ x ̸∈ V ′

⇐⇒ x ̸∈ V or ∃W ⊆V such that

x ∈W and W ⊨ φ

A modal operator induces a map on the global sections of Ω (i.e. the open
subsets of X), let us call this set T (X)

j : T (X) → T (X)
U 7→ ⋃{V ⊆ X| V open, V ⊨ □U}

in other words there is a map j that maps U to the largest open subset of X on
which □U holds. In particular we have that for any open U, V ⊆X

(1) U ⊆ j(U)

(2) j(j(U)) ⊆ j(U)

(3) j(U ∩ V ) = j(U) ∩ J(V )

by the modal operator axioms. This in turn defines a subspace of X.
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Modal operator associated map X□

□φ ≡ (U ⇒ φ) j(V ) = int(U c ∪ V ) U

□φ ≡ (φ ∨Ac) j(V ) = V ∪Ac A

□φ ≡ ¬¬φ j(V ) = int(cl(V ) smallest
dense sublo-
cale of X

□φ ≡ ((φ⇒!x) ⇒!x) j(V ) = {x}{
X if x ∈ V

X \ cl({x}) if x ̸∈ V

Table 1: Subspaces and associated maps to some modal operators

Definition 4.11. Let j be a map on T (X) induced by some modal operator
□ : Ω → Ω, then the subspace associated to □, X□ (not to be confused with the
game console), is given by the frame (partially ordered set with indexed union
and finite intersections) T (X□) := {U ∈ Ω(X)|j(U) = U} (i.e. the set of open
U ⊆ X such that the largest subset on which □U holds is U).

In general this is not a topological subspace but a sublocale since it does
not know anything about the points in the underlying set, this is not a problem
since sheaves only refer to open sets. The subspaces and associated maps of the
four modal operators in 4.10 are listed in Table 1.

One thing one might notice is that it seems to be the case that X¬¬ should
coincide with {x} if x is a generic point in X. Let us first recall the definition
of a generic point.

Definition 4.12. Let X be a topological space and x ∈ X be a point, we call
x generic if cl({x}) = X.

Proposition 4.13 ([Ble21] Prop. 6.16). Let X be a scheme and ξ be a generic
point of X then the modal operator □ := (( ⇒!ξ) ⇒!ξ) coincides with the double
negation modality and X¬¬ = {ξ}.

Proof. By definition U ⊨!ξ ⇐⇒ ξ ̸∈ U but this cannot hold on any non-empty
open U since ξ is dense in X and thus U ⊨!ξ ⇐⇒ U = ∅ ⇐⇒ U ⊨ ⊥.
Consequently

((φ⇒!ξ) ⇒!ξ) ⇐⇒ ((φ⇒ ⊥) ⇒ ⊥) ⇐⇒ ¬¬φ.
The second claim can be verified by the Table 1. above.

23



4.2.2 The □-translation

It is well known that the double negation translation (i.e. putting ¬¬ before
any subformula, denoted by φ¬¬) has some interesting properties (such as φ is
derivable classically iff φ¬¬ is derivable intuitionistically), the following defini-
tion generalises the translation to any modal operator.

Definition 4.14 (□-translation).

(s = t)□ := □(s = t)
(s ∈ F )□ := □(s ∈ F )

⊥□ := □⊥
⊤□ := □⊤(⇔ ⊤)

(φ ∧ ψ)□ := (φ□ ∧ ψ□) (
∧
i φi)

□ := □(
∧
i φ

□
i )

(φ ∨ ψ)□ := □(φ□ ∨ ψ□) (
∨
i φi)

□ := □(
∨
i φ

□
i )

(φ⇒ ψ)□ := (φ□ ⇒ ψ□)
(∀x : Fφ)□ := (∀x : Fφ□)
(∃x : Fφ)□ := □(∃x : Fφ□)

Definition 4.15. A formula φ is □-stable iff □φ⇒ φ.

Lemma 4.16 ([Ble21] Lemma 6.22 (1)). All □-translations of formulas are
□-stable.

Proof. The case for the formulas such that the translation puts a □ in front
follows from 4.5 (2), for the other cases this needs to be proved by cases with
induction on subformulas.

We present the case for implication

□(φ⇒ ψ)□ ⇐⇒ □(φ□ ∧ ψ□ ⇔ φ□)
⇐⇒ (□φ□ ∧□ψ□ ⇔ □φ□) (by 4.6)
⇐⇒ □φ□ ⇒ □ψ□

⇐⇒ □φ□ ⇒ ψ□ (by IH)
⇐⇒ φ□ ⇒ ψ□ (by 4.8)
⇐⇒ (φ⇒ ψ)□ (by def.)

To again make sure that the properties we want to hold indeed holds we
need to make sure that the □-translation is sound.

Proposition 4.17 ([Ble21] Lemma 6.23). Suppose there is some intuitionistic
proof of φ⇒ ψ then there is an intutionistic proof of φ□ ⇒ ψ□.

Proof. We can prove this by induction on the structure of intuitionistic proofs,
this is again very straight forward so we will again use the double rule for im-
plication as an example.

Suppose we have (φ ∧ ψ)□ ⇒ χ□ and assume that φ□ holds, we have that
(φ ∧ ψ)□ is equivalent to φ□ ∧ ψ□ by definition, thus φ□ ∧ ψ□ ⇒ χ□. But φ□

holds by assumption and consequently ψ□ ⇒ χ□ holds which is equivalent to
(ψ ⇒ χ)□.
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4.2.3 □-sheaves and □-sheafification

Before we present one of the most important theorems of this section we need
to take a closer look at Sh(X□). We begin by defining the following map

i : T (X) → T (X□) U 7→ j(U)

which induces a map

i∗ : Sh(X□) → Sh(X) F 7→ (U 7→ F(j(U))).

It turns out that the image of i∗ can be explicitly described, it consists of all
□-sheafs (explained below), and thus to make things easier for us we identify
Sh(X□) with its image in Sh(X) (we can do this because of 4.21). The following
is described from the internal perspective, thus a sheaf is a set.

Definition 4.18. A set F is □-separated if and only if

∀s, t : F(□(s = t) =⇒ s = t).

i.e □ does indeed see every element in F as different.

Definition 4.19. A set F is a □-sheaf if and only if it is □-separated and

∀S ⊆ F(□⌜S is a singleton⌝ =⇒ ∃s : F(□(s ∈ S))).

Remark 4.20. We can combine the two conditions into the following:

∀S ⊆ F(□⌜S is a singleton⌝ =⇒ ∃!s : F(□(s ∈ S))).

Proposition 4.21. [Ble21, Prop. 6.13] Let X be a topological space and □ a
modal operator in Sh(X) and let i be defined as above then i∗ induces an equiv-
alence of categories Sh(X□) ≃ Sh□(Sh(X)), where Sh□(Sh(X)) is the category
of □-sheaves in Sh(X).

We won’t prove this here cf. [Ble21] and [Joh02] for proof.

Definition 4.22. (Johnstone construction/plus construction [Vri87, Def. 2.3])
Let F ,G ∈ Sh(X) and f : F → G, then

(1) F+ = {S ⊆ F □(⌜S is singleton⌝)}/ ∼, where S ∼ T :⇔ □(S = T )

(2) f+ : F+ → G+, [S] 7→ [{f(x)|x ∈ S}]

(3) γ : F → F+, x 7→ [{x}]

Proposition 4.23. [Ble21, Prop. 6.15] The □-sheafification F++ of F is a
□-sheaf.
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Proof. We divide this proof into two parts: first we prove that that F+ must
be separated, then we prove that F+ is a □-sheaf if F is separated.
For the former, let [S], [T ] ∈ F+, and suppose □([S] = [T ]), but this is equiv-
alent to □(□(S = T )). By definition of □ this implies □(S = T ) and thus
[S] = [T ].

Now suppose F is separated, we want to prove that F+ is a □-sheaf. Let
S ⊆ F+ such that □⌜S is singleton⌝ holds and take t = {x ∈ F | ∃y ⊆
F(□⌜y is singleton⌝ ∧ x ∈ y ∧ [y] ∈ S}. It suffices to prove that □([t] ∈ S)
since we proved that F+ is separated. The statement is boxed so we can by 4.7
assume that S is an actual singleton i.e. S = {[u]}. What we want to prove
then becomes t = u and t is a singleton. By F being separated we have t =
{x ∈ F | ∃y ⊆ F(□⌜y is singleton⌝ ∧ x ∈ y ∧ [y] ∈ S} = {x ∈ F| x ∈ u}, which
tells us exactly that t = u and since u is a singleton t must be too, thus (t ∈ S).
Consequently we have for an arbitrary S ⊆ F+ constructed some t ∈ F+ such
that □(t ∈ S) and ∀S ⊆ F(□⌜S is a singleton⌝ =⇒ ∃t : F+(□(t ∈ S))) must
hold.

We might want a way to translate properties from Sh(X) into Sh(X□) and
we thus make the following definition.

Definition 4.24 (+-translation).

• The context is changed from x ∈ F to x ∈ F+.

• Terms x1, ..., xn and f(y) are changed to γ(x1), ..., γ(xn) and f
+(y).

• φ+ of a formula φ : F → Ω is attained by replacing all free variables with
their γ-images and morphisms and domains of quantifications with their
+-constructions, e.g. (∀x : F f(x) = g(x))+ := ∀x : F+ f+(x) = g+(x).

To make the translation from Sh(X) into Sh(X□) we would need to apply
the +-translation twice.

Theorem 4.25 ([Ble21] Thm. 6.31). Let X be a topological space and □ be a
modal operator on Sh(X) then for any formula φ

Sh(X) ⊨ φ□ ⇐⇒ Sh(X□) ⊨ φ
where all parameters on the right side are pulled back to X□ along X□ ↪−→ X.

Remark 4.26. We have written Sh(X) instead of X and Sh(X□) instead of just
X□, to mark that we work in different contexts.

Before proving this we prove the following lemma.

Lemma 4.27 ([Ble21], Lemma 6.38). Let □ be a modal operator, φ be some
formula, Then φ⇔ ((φ□)+)+ intuitionistically.
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Proof. For any formula φ, let φ⊞ denote the formula we get after applying □-
translation and then substituting all domains of quantification with their plus
construction. For each set F there is a canonical map from F to F+, x 7→ [{x}],
thus it suffices to show that φ□(x1, ..., xn) is equivalent to φ⊞([{x1}, ..., [{xn}]).
We prove this by induction on formula structure (predictable). The cases for
any formula without any bounded quantifiers or = and ∈ are uninteresting,
since nothing is changed.
We begin with “∈”, suppose φ = x ∈ G, then φ□ = □(x ∈ G) and φ⊞ =
□([{x} ∈ G+). By 4.7 it suffices to show that x ∈ G ⇔ [{x}] ∈ G+, this holds
by the definition of the plus construction 4.22. The case for “=” is similar (cf.
[Ble21]).

Now for bounded quantifiers, suppose φ = ∀x : Fφ(x), then φ□ = ∀x :
Fφ□(x) and φ⊞ = ∀x′ : F+φ⊞(x′). For the “if”-direction suppose ∀x : Fφ⊞(x)
holds, this implies that φ⊞(x) holds for any x′ : F+ such that x′ = [{x}] for
some x : F , but by assumption φ⊞([{x}]) ⇔ φ□(x) thus ∀x′ : F+φ⊞(x′) ⇒
∀x : Fφ□(x). For the “only if”-direction suppose ∀x : Fφ□(x) and let y ∈ F+,
then there is some z ⊆ F such that □⌜z is singleton⌝ and y = [z]. Since we
want to prove a boxed statement we can assume that z is a singleton, and
thus z = {x′} for some x′ ∈ F , but then by assumption φ□(x′) holds and by
hypothesis φ⊞([{x′}]) must also hold so for every z that is a singleton φ⊞([z])
holds and thus ∀y : F+□φ⊞(y) which is equivalent to ∀y : F+φ⊞(y). The proof
for existential quantifier is similar (cf. [Ble21]).

Proof of 4.25. We prove this by induction on formula structure (for a nicer proof
cf. [Ble21]), all cases are similar similar we present the one for implication as
an example.

U ⊨ (χ⇒ ψ)□ ⇐⇒ ∀V ⊆U (V ⊨ χ□ =⇒ V ⊨ ψ□) (by def.)
⇐⇒ ∀V ⊆U (j(V ) ⊨ χ =⇒ j(V ) ⊨ ψ) (by IH)
⇐⇒ j(U) ⊨ (χ⇒ ψ) (by def.)

Now by applying this to the modal operators in 4.10 we get the following
corollary.

Corollary 4.28. [Ble21, Cor. 6.32] Let X be a topological space, then

(1) Let U ⊆ X be open and □φ :≡ (U ⇒ φ), then

X ⊨ φ□ ⇐⇒ U ⊨ φ

(2) Let A ⊂ X be closed and □φ :≡ (φ ∨Ac), then
X ⊨ φ□ ⇐⇒ A ⊨ φ

(3) Let □φ :≡ ¬¬φ, then
X ⊨ φ□ ⇐⇒ X¬¬ ⊨ φ
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(4) Let x ∈ X and □φ :≡ ((φ⇒!x) ⇒!x), then

X ⊨ φ□ ⇐⇒ φ holds at x

Remark 4.29. by φ holding at a point x we mean that φ holds if we substitute
all parameters with their stalks at x (as in thm. 4.25).

4.2.4 □ vs. □-translation

It is well known that for a sheaf F ∈ Sh(X) properties like sx = 0 ∈ Fx are
equivalent to s = 0 ∈ F(U) for some neighbourhood U ⊆ X around x, in the
internal language translates to

X ⊨ □(s = 0 : F) ⇐⇒ ∃V ⊆ X(U ⊨ s = 0 : F )
⇐⇒ (s = 0 : F) holds at x
⇐⇒ X ⊨ (s = 0 : F)□

with □φ := ((φ⇒!x) ⇒!x). It is quite interesting that for this particular choice
of formula □(s = 0 : F) ⇐⇒ (s = 0 : F)□, this poses questions about what
conditions we need impose on φ to make □φ ⇐⇒ φ□ hold. Since any modal
operator is a pullback along some geometric morphism this reduces to a well
known property in categorical logic, namely that the meaning of any geometric
formula is preserved under pullback along any geometric morphism (this is quite
a handwavy explanation, but it serves the purpose of justifying how we know
that the condition we are seeking indeed is geometricity, cf. [Ble21] and [nLa]
for a more thorough treatment of the subject). This seems a bit circular since
a geometric formula is defined as a formula whose meaning is preserved under
pullbacks along geometric morphisms, but since we will not discuss geometric
morphisms we believe the choice of using the proposition about the structure of
geometric formulas as a definition is justified.

Definition 4.30. A formula φ is geometric if and only if it consists of only

= ∈ ⊤ ⊥ ∧ ∨
∨

∃.
Definition 4.31. A geometric implication is a formula of the form

∀ · · · ∀(...) =⇒ (...)

where the subformulas (...) are geometric.

Lemma 4.32 ([Ble21] Lemma 6.25). Let φ be a formula such that for any
subformula ψ that is an antecedent of an implication it holds that ψ□ ⇒ □ψ,
then □φ⇒ φ□.

Proof. We prove this by induction on formula structure, all cases except for
implication are direct.

We know that (ψ□ ⇒ χ□) is □-stable so by 4.8 we can assume (ψ ⇒ χ)
instead, but then by assumption and induction hypothesis

ψ□ =⇒ □ψ =⇒ □χ =⇒ χ□.
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An important consequence of this lemma is that □φ⇒ φ□ if φ is geometric,
we will later see that this also holds if φ is a geometric implication.

Lemma 4.33. [Ble21, Lemma 6.26] Let φ be geometric, then φ□ ⇒ □φ.

Proof. This proof is also by induction on formula structure, again the cases are
similar and we thus only give an example.

(ψ ∧ χ)□ ⇐⇒ (ψ□ ∧ χ□) (by def.)
=⇒ (□ψ ∧□χ) (by IH)
⇐⇒ □(ψ ∧ χ) (by 4.5)

Remark 4.34. From this we can indeed deduce that □φ⇔ φ□ if φ is geometric
and also that the right implication also holds if φ is a geometric implication.

Proposition 4.35. [Ble21, Lemma 6.28] Let φ, φ′ and ψ be formulas and
assume:

(1) The formula φ′ is geometric.

(2) φ and φ′ are equivalent given that ψ holds.

(3) Both □ψ and ψ□ hold.

Then □φ⇔ φ□.

Proof. Assume φ□, then (φ∧ψ)□ (which is equivalent to φ□∧ψ□) holds. Since
the □-translation is sound with respect to intuitionistic logic by 4.17 (φ′)□

must hold. We know □φ′ must hold by 4.33 and thus by monotonicity (4.7) □φ
holds.

Proposition 4.36. [Ble21, Cor. 6.34] Let φ be geometric, then φ holds at some
open neighbourhood around x if and only if φ holds at x.

Proof. This is a consequence of 4.32, 4.33, 4.28 and 4.10.

A well known fact in algbraic geometry is that a morphism of sheaves on a
space is injective (or surjective) if and only if the induced map on stalks is in-
jective (or surjective) for every stalk, note that injectivety (and surjectivity) are
geometric implications, it turns out that this can be generalised to all geometric
implications.

Proposition 4.37 ([Ble21] cor. 2.11). A geometric implication holds on X is
and only if it holds on all points of x.

Proof. The “only if” direction follows from remark 4.34.

For the “if” direction we will for notational simplicity assume that the ge-
ometric implication is of the form ∀s : Fφ(s) ⇒ ψ(s) (like Blechschmidt did).
Now assume that ∀s : Fφ(s) ⇒ ψ(s) holds for every x ∈ X. Let U ⊆ X be open
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and s ∈ F (U) be a section such that φ(s) holds on U , then by 4.36 it suffices to
show that ψ(s) holds at every point of U . But by 4.36 φ(s) holds at every point
in U , consequently ψ(s) must hold at every point in U by assumption.

Using this proposition we get results like:

Proposition 4.38. [Ble21, Prop. 3.3] A scheme X is reduced if and only if
OX is reduced from the internal perspective.

Proof. Reducedness is a geometric implication

∀s : OX

(∨

n∈N
sn = 0

)
⇒ (s = 0)

and the proposition follows directly by 4.37.

Proposition 4.39. A locally ringed space is internally a local ring.

Proof. We will make use of the fact that the definition of a local ring is clas-
sically equivalent to the ring having the properties: (1) 1 ̸= 0 and (2) ⌜x +
y is invertible⌝ =⇒ ⌜x is invertible⌝ ∨ ⌜y is invertible⌝. These are both geo-
metric implications and the proposition follows from 4.37.

4.2.5 Some internal proofs

It is easy to lose sight of the purpose when there is quite a lot of technical
ground work so let us briefly remind ourselves that we promised the reader that
this was useful for algebraic geometry. Now let us present some internal proofs
of some results from algebraic geometry.

Proposition 4.40 ([Ble21] lemma 6.40). Let X be a scheme (or a ringed space)
and let F be an OX-module of finite type.

(1) Let x ∈ X, then Fx is the zero module iff F is zero on some open neigh-
bourhood of x.

(2) Let A ⊆ X be closed, then the restriction F|A is zero if and only iff it is
zero on some open subset of X containing A.

Proof. We know that F being of finite type is equivalent to F being finitely
generated from the internal perspective, by 4.3, let (m1, ...,mn) be the gener-
ators. Consequently the non geometric formula ∀x : F(x = 0) is equivalent
to the geometric

∧n
i=1(mi = 0) internally, thus by 4.35 for any modal oper-

ator □ we have that (∀x : F(x = 0))□ ⇒ □(∀x : F(x = 0)) and by 4.32
□(∀x : F(x = 0)) ⇒ (∀x : F(x = 0))□. Using □φ := ((φ ⇒!x) ⇒!x), the
established equivalence and the equivalences in 4.10 and 4.32 proves (1) and
using □φ := (φ ∨Ac) and the same equivalences proves (2).
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Proposition 4.41 ([Ble21] lemma 6.42). Let X be a scheme (or ringed space),
x ∈ X, F be an OX-module of finite type and n ∈ N, then the following are
equivalent:

(1) There is a generating family for Fx consisting of n elements.

(2) There is an open neighbourhood U of x such that

U ⊨ ⌜there is a collection of n elements such that these generate F⌝

Proof. Let □φ ≡ ((φ⇒!x) ⇒!x), we need to show that

X ⊨ □(∃x1, ..., xn : F ∀x : F ∃a1, ..., an : OX(x =
n∑

i=1

aixi))

holds if and only if

X ⊨ (∃x1, ..., xn : F ∀x : F ∃a1, ..., an : OX(x =

n∑

i=1

aixi))
□

holds. The “only if”-direction follows from 4.33. For the “if”-direction we need
to show that (∃x1, ..., xn : F∀x : F∃a1, ..., an : OX(x =

∑n
i=1 aixi)) is equivalent

to some geometric formula under the assumption that F is of finite type. This
reduces the problem to one about “linear transformations”, we know that for
some m ∈ N it holds internally that ⌜y1, ..., ym generates F⌝ then (∃x1, ..., xn :
F∀x : F∃a1, ..., an : OX(x =

∑n
i=1 aixi) implies that there for these x1, .., xn

exists an A ∈ Om×n
X such that y = Ax, the reverse implication also holds under

the assumption. More formally, given that ⌜y1, ..., ym generates F⌝ holds

(∃x1, ..., xn : F ∀x : F ∃a1, ..., an : OX(x =
∑n
i=1 aixi)

⇐⇒ ∃x1, ..., xn : F ∃A : Om×n
X ⌜y = Ax⌝.

Since the right hand side is geometric we by 4.35 get the desired result.

Observe that we did not use the finite type assumption for the “only if”-
direction and we consequently get the following corollary.

Corollary 4.42. The right implication in 4.41 still holds if we remove the
assumption of F being of finite type.

Proposition 4.43. [Ble21, Prop. 10.4] Let X be a locally ringed space and
I ⊆ OX a sheaf of ideals, then the subspace associated to □φ := (φ ∨ (1 ∈ I))
is V (I) = {x ∈ X|Ix ̸= (1) ⊆ OX,x}.
Proof. By the fact that (1 ∈ I) ⇔ D(I) internally we have that for all open
U ⊆ X

U ⊨ (1 ∈ I) ⇐⇒ U ⊆ D(I)
And thus according to the Table 1 we have that the subspace is D(I)c = V (I).
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Proposition 4.44. [Ble21, Prop. 10.5] Let X be locally ringed, I ⊆ OX be a
sheaf of ideals, then (V (I),OV (I)) is also locally ringed.

Proof. By 4.39 we need to show

Sh(V (I)) ⊨ ⌜OV (I) is a local ring⌝

which is equivalent to

Sh(X) ⊨ ⌜OX/I is a local ring⌝□

with □φ := (φ ∨ (1 ∈ I)) by 4.25. Consequently we only need to give an
intuitionistic proof of

∀x, y : OX/I (⌜x+ y is invertible⌝ ⇒ □(⌜x is inv.⌝ ∨ ⌜y is inv.⌝))

by 4.8. We know that x = r + I and y = s + I for some r, s ∈ OX , for
x + y ≡ 1 (mod I) there must be some t ∈ OX and some i ∈ I such that
tr + ts + i = 1 ∈ OX , but by assumption OX is local and thus either tr,
ts or i is invertible in OX . If tr is invertible then x is invertible in OX/I
and same goes for ts and y, thus ⌜x is inv.⌝ ∨ ⌜y is inv.⌝ ∨ (1 ∈ I) holds, i.e.
□(⌜x is inv.⌝ ∨ ⌜y is inv.⌝) holds.

Proposition 4.45. [Ble21, Prop. 10.6] Let X be a locally ringed space and let
I ⊆ OX be a sheaf of ideals, then V (I) is reduced (as a ringed space) if and
only if I is radical internally.

Proof. We know from 4.38 that V (I) being reduced is equivalent to OV (I) being
a reduced ring internally, i.e.

Sh(V (I)) ⊨ ∀s : OV (I)

(∨

n∈N
sn = 0

)
⇒ (s = 0)

Which is equivalent to

Sh(V (I)) ⊨
∧

n∈N
∀s : OV (I)(s

n = 0) ⇒ (s = 0)

By previous results and some commutative algebra the following series of
equivalences holds

Sh(V (I)) ⊨ ∧n∈N ∀s : OV (I)(sn = 0) ⇒ (s = 0)

⇐⇒ Sh(X) ⊨ (
∧
n∈N ∀s : OX/I (sn = 0) ⇒ (s = 0))□

⇐⇒ Sh(X) ⊨
∧
n∈N ∀s : OX/I (sn = 0) ⇒ □(s = 0)

⇐⇒ Sh(X) ⊨
∧
n∈N ∀s : OX (sn ∈ I) ⇒ □(s ∈ I)

⇐⇒ Sh(X) ⊨
∧
n∈N ∀s : OX (sn ∈ I) ⇒ (s ∈ I).
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5 Conclusion

We want to conclude by revisiting the ideas and purpose mentioned in the
introduction. The goal of this thesis was to present the internal language of the
category of sheaves and the Kripke-Joyal semantics for formulas in the internal
language. We began by defining ⊤, ⊥, meets, joins, implication and quantifiers
as nullary, binary or unary operators on subobjects of some sheaf, then letting
the corresponding morphism from Ω to Ω act on the characteristic functions of
the subobjects gives us formulas in the internal language. Next we needed a way
to translate the internal formulas into the external language, this was achieved
by making the following definition: for any formula φ(x) in the internal language
of Sh(X) and open set U ⊆ X

U ⊨ φ(α) ⇐⇒ α ∈ {x| φ(x)}(U).

By combining this definition and the definition of the morphisms corresponding
to the logical connectives we get a method to recursively translate internal
formulas to external positions.

In the second part of the thesis we started with translating some internal
properties to external ones and then examined some types of “modal operators”
(actually a Lawvere-Tierney topologies) in Sh(X), placing our focus on when
□’d statements are equivalent to their □-translated versions. The conclusion
being that equivalence holds when the statement is a geometric formula, this
gives us insight as to why common facts such as “A morphism of locally ringed
spaces is an isomorphism if and only if it is an isomorphism at each stalk” or
why ”an OX -module of finite type is zero at some open neighborhood at a point
if and only if it’s stalk at that point is zero”.

33



Appendix

Structural rules

φ ⊢ φ
ψ ⊢ ψ

φ[s/x] ⊢ ψ[s/x]
φ ⊢ ψ ψ ⊢ χ

φ ⊢ χ

Rules for nullary and binary conjunction

φ ⊢ ⊤ φ ∧ ψ ⊢ φ φ ∧ ψ ⊢ ψ
φ ⊢ ψ φ ⊢ χ
φ ⊢ ψ ∧ χ

Rules for nullary and binary disjunction

⊥ ⊢ φ φ ⊢ ψ ∨ φ ψ ⊢ ψ ∨ ψ
φ ⊢ χ φ ⊢ χ
φ ∨ ψ ⊢ χ

Rules for arbitrary set-indexed conjunction and disjunction

∧
i∈I φi ⊢ φj for all j ∈ J

φ ⊢ ψj for all j ∈ I

φ ⊢ ∧i∈I ψi

φj ⊢
∨
i∈I φi for all j ∈ J

φj ⊢ ψ for all j ∈ I
∨
i∈I φi ⊢ ψ

Double rule for implication

φ ∧ ψ ⊢ χ
φ ⊢ ψ ⇒ χ

Double rules for bounded quantifiers

φ ⊢ ψ
∃y : Y φ ⊢ ψ

φ ⊢ ψ
φ ⊢ ∀y : Y ψ

Rules for equality

⊤ ⊢ x = x (x = y ∧ φ ⊢ φ[y/x]
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