
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Formalizing Linear Algebra in UniMath � Gaussian Elimination,

Matrix Foundations & Applications

av

Daniel Skantz

2022 - No K16

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

Formalizing Linear Algebra in UniMath � Gaussian Elimination,

Matrix Foundations & Applications

Daniel Skantz

Självständigt arbete i matematik 15 högskolepoäng, grundnivå

Handledare: Peter LeFanu Lumsdaine

2022

Formalizing Linear Algebra in UniMath – Gaussian
Elimination, Matrix Foundations & Applications

Daniel Skantz, Stockholm University
BSc. Thesis

Supervised by Peter LeFanu Lumsdaine

2022

Abstract

We formalize fundamental linear algebra in UniMath, a minimal foundation for math-
ematics programmed in Coq. We develop the necessary background theory, including
showing properties of sums over vectors, inverses, transposes and elementary row op-
erations over matrices in order to construct and prove correctness of procedures for
Gaussian elimination, including applications for solving systems of linear equations
and constructing inverses of matrices. The formalization is done partly over semir-
ings, with properties requiring additive identity, commutativity of multiplication or
decidable equality being formalized over fields.

1 Introduction

In this work, we formalize fundamental results in linear algebra over the UniMath
project [VAG+]. UniMath is an open-source project in constructive mathematics
originally thought of by Vladimir Voevodsky [Voe10] and originally implemented to-
gether with co-authors Benedikt Ahrens and Daniel Grayson as a dialect of Coq with
an alternative and minimal foundations based on homotopy type theory. We con-
tribute a linear algebra module with material building up to Gaussian elimination
and the construction of inverses of matrices. These theories form essential material
for development and formalization of other important mathematical results, making
a formalization a valuable contribution to UniMath. The most important result from
this work is proving the following theorem in a constructive context.

1

Theorem 7 (Gaussian elimination). For every matrix A, there exists an invertible
matrix B, such that the matrix product BA is in row echelon form.

Definition gaussian_elimination_stmt

{F : fld} {m n : nat} {A : Matrix _ m n}
:= Σ (B : Matrix _ _ _), (matrix_inverse B)
× (is_row_echelon (B ** A)).

Theorem gaussian_elimination

{m n : nat} {A : Matrix F m n}
: @ gaussian_elimination_stmt _ F _ _ A.

The various applications of Gaussian elimination follow as corollaries of having proven
this as a master theorem. The notation used in the constructive theorem statement
given above, which is presented in the same fashion as all other theorems in this
paper, as a direct quotation from the source code, will be introduced in Section 2. To
construct B as given above, we first need to contribute theories such as identities on
sums of vectors, properties of matrix operations such as associativity of multiplication,
invertibility and transposes, and elementary row operations. Having built up such
a constructive foundation, we formalize Gaussian elimination. In addition, we use
the formalization to prove some fundamental applications, such as the construction
of matrix inverses and solving systems of linear equations.

While the current formalization of linear algebra in UniMath is limited, the subject
has previously been formalized for different theorem provers. One closely related ex-
ample is the state-of-the-art in mainline Coq [CCDMS16], where the authors formalize
linear algebra over elementary divisor rings, working up until providing proven algo-
rithms for computing the Smith normal form. Providing this type of foundation for
UniMath is valuable as it would provide a base for (co)-homology calculation through
invariant factor decomposition. Part of our aim with this thesis is to provide a founda-
tion for such work that would be of special interest to UniMath authors. Meanwhile,
Gaussian elimination and its corollaries in solving systems of linear equations has
a wide range of well known applications within mathematics; thus our contribution
could be used to develop other significant theories within UniMath. Furthermore,
another part of our contribution is providing a model for how to formalize linear
algebra, having provided the first major work on the topic working over UniMath.

In presenting the material for this thesis, we start by covering formalization of matrix
fundamentals in Section 3. Having thus worked up to showing the associativity of
matrix multiplication, in Section 4, we define elementary row operations. In Section
7, we provide various summation identifies that will prove useful in Section 5 on
elimination. Having defined and proven procedures for putting a matrix in row echelon
form in Section 5, we use this procedure to construct matrix inverses and solve systems
of linear equations in Section 6.

2

2 Background

Constructive mathematics facilitates use of computerized methods to verify that each
step in producing a mathematical theorem has been made without an error. That
is one of the founding principles of the UniMath project, providing a foundation on
which modern mathematics can be formalized and developed building upon a comput-
erized assurance of correctness for increasingly complex proofs, making for a highly
rigorous body of mathematics. In addition, the equivalence of a computer program to
a mathematical statement and its associated proof allow the mathematician and pro-
grammer to use powerful computational methods, for instance to verify complicated
algorithms and extract a corresponding program, to develop certified compilers, and
to employ automation for proof search. There is moreover rich mathematical content
involved in computer friendly foundations of mathematics and mathematical formal-
ization, involving frontier research in category theory, type theory and homotopy
theory.

The UniMath kernel is a minimalistic design that uses a subset of constructs found
in the Coq theorem prover, notably eschewing general inductive types. UniMath as a
computer system is a realization of a theoretical system that is intensional Martin-Löf.
This entails having the well-known constructs of dependent pair type

∑
, dependent

function type
∏

, coproduct
∐

and identity type. In addition to the well known type
theory constructs, a key contribution of Unimath is a mathematical foundation built
on univalence, giving notions of equivalence and equality with beneficial computa-
tional properties. For a treatment of univalent theory, the reader can refer to the
HoTT book [Uni13], and for a gentle introduction to UniMath in particular, they can
refer to Grayson’s primer in [Gra18]. To follow the material presented in this thesis,
some familiarity with general type theory and constructive mathematics will be suffi-
cient. To make definitions and theorems presented in source code format throughout
the thesis understandable to the reader, we give the following brief introduction to
some useful constructs and notations.

The base types of UniMath follow the Curry-Howard correspondence between logic
and programming, where the sigma type

∑
has a corresponding interpretation in

existential quantification ∃. The product type
∏

corresponds to universal quantifi-
cation ∀, and the coproduct

∐
corresponds to disjunction; thus Theorem 7 might be

read as saying that there exists (
∑

) a matrix B, such that B is invertible (stronger,
we provide an explicit inverse), and (×) such that the product BA is in row echelon
form. The product type × is thus a special case of the dependent sum, correspond-
ing to conjunction in the logic setting. Appearing in e.g. Definition 1 are symbols
from the UniMath lambda calculus, where a function such as λ i j, i2 + j is the
same as (i, j) 7→ i2 + j in traditional mathematics. All functions in Coq are curried.
This means a function such as f : (A × B × C) 7→ D has a representation as a
function of one argument returning a function in terms of the remaining arguments
f : A 7→ (B 7→ (C 7→ D)).

3

The linear algebra material formalized in this thesis mostly follows a standard ex-
position that could be found in an textbook on linear algebra (such as [Str06]; we
formalize material that is in part covered by the first few chapters of this book).
There are a few potential deviations of note. We seek to formalize material at a high
level of generality, defining operations on vectors and matrices over semirings where
possible. When additive identity or commutativity of multiplication, or decidable
equality is needed, we tend to use fields, or on occasion, commutative rings. Useful
notations to keep in mind while reading our paper is that R tends to refer to a fixed
semiring, while F tends to refer to a fixed field. The successor of a natural number n
is interchangeably referred to as S n or n + 1. We might overload the

∑
symbol to

also mean a finite sum over a semiring when that would be unambiguous. Indexing
in UniMath starts at zero, as in most programming languages. Another convention
we use is that matrix multiplication has as shorthand notation ** when presented in
UniMath code.

3 Matrices

In the UniMath project there are presently theories developed over vectors and matri-
ces. A formalization of matrices was previously contributed to UniMath by Langston
Barrett. In his matrix module, matrices are defined as vectors of vectors, where a
vector in turn is a function JnK→ X for some natural number n, the standard finite
set JnK (also referred to as stn n, the sigma type of natural numbers with a proof that
they are less than n) and X being of arbitrary type. Theories on pointwise and en-
trywise binary operations are developed within this module on a general level. Later,
specialization on semirings (rings without necessarily an additive inverse), referred to
in UniMath as rigs, is made to define operations such as matrix multiplication. Fix
a semiring R for the definitions and theorems in this section.

Definition 1 (Matrix Multiplication). For A an m × n matrix, and B an n × p
matrix, the matrix product AB is defined using the formula ABi,j =

∑n
k=1Ai,k ·Bk,j.

Definition matrix_mult {m n : nat} (mat1 : Matrix R m n)
{p : nat} (mat2 : Matrix R n p) : (Matrix R m p) :=

λ i j,
∑

((row mat1 i) ̂ (col mat2 j)).

Above, the infix operator stands for the pointwise application of a binary operation,
in our case that of multiplication. In turn, sums are defined upstream as iterated
binary operations over semirings, with the base case being additive identity.

Local Notation
∑

:= (iterop_fun rigunel1 op1).

The existing matrix library in UniMath leaves off with the following formalization of
the property of matrix multiplication associativity, along with a note encouraging the
contribution of a future proof of this statement.

4

Definition matrix_mult_assoc_statement : UU :=∏
(m n : nat) (mat1 : Matrix R m n)

(p : nat) (mat2 : Matrix R n p)
(q : nat) (mat3 : Matrix R p q),

((mat1 ** mat2) ** mat3) = (mat1 ** (mat2 ** mat3))

We found this a suitable starting point for formalizing theories over matrices and
the property was later used to prove several useful properties pertaining to Gaussian
elimination. In proving associativity corresponding to Definition 3, we first prove
a number of properties of sums over semirings. Several of these properties can be
found described in Section 7. We tend to use proof by induction to show identities
over sums, and for showing equivalences between vectors and matrices, we tend to do
this by showing equivalence on each entry. Putting the lemmata proven in Section
7 together, we are able to prove the associativity of matrix multiplication as follows.
For illustrative purposes, we present the proof in UniMath code.

Lemma 2 (Matrix Multiplication Associativity).

We now show that it is indeed true that for all matrices A,B,C of dimensions m×n,
n× p, and p× q respectively, we have (AB)C = A(BC).

Lemma matrix_mult_assoc :∏ {m n : nat} (mat1 : Matrix R m n)
{p : nat} (mat2 : Matrix R n p)
{q : nat} (mat3 : Matrix R p q),

((mat1 ** mat2) ** mat3) = (mat1 ** (mat2 ** mat3)).
Proof.
intros; unfold matrix_mult.
apply funextfun; intro i; apply funextfun; intro j.
etrans.
2: { symmetry.

apply maponpaths, funextfun. intros k.
apply sum_is_ldistr. }

etrans.
{ apply maponpaths. apply funextfun. intros k.
apply sum_is_rdistr. }

rewrite interchange_sums.
apply maponpaths, funextfun; intros k.
apply maponpaths, funextfun; intros l.
apply rigassoc2.

Defined.

This is a typical proof in our UniMath library displaying use of various standard
tactics. Intros will introduce the universally quantified matrices as hypotheses. The
funextfun property is short for functional extensionality, a constructively non-trivial
property that for every function f and g, if for all i, f(i) = g(i), then f = g (in

5

UniMath, it is a consequence of the univalence axiom). Thus applying this property
twice will transform the proof goal into an entrywise obligation. The apply mapon-
paths tactic application allows us to show that f(i) = f(j) from i = j. Moreover,
etrans allows us to rewrite on either side of some equalities, where we apply the
properties of distributivity of multiplication over sums; the latter, and some other
constructively non-trivial properties, are proven in Section 7.

Having formalized up to this point, we have enough background material to also cover
fundamental material on matrix inverses, transposes and properties on their products;
thus formalizing material covered e.g. in part in Section 1.6 of [Str06].

4 Elementary row operations

Having proven properties of matrices such as the associativity of matrix multiplication
in the previous section, we can now define matrices corresponding to the three ele-
mentary row operations of interchanging, adding, or multiplying a row by a scalar as
multiplication by an appropriately constructed invertible matrix. This in turn allows
us to define multistep operations on a matrix A that retain invertibility; moreover,
from the product En...E2E1A of multiplying elementary matrices by A, the input
matrix can be obtained again by left multiplication with the matrix E−11 E−12 ...E−1n .

The elementary row operation matrices are constructed in a canonical way, which we
describe in the following; on the left-hand side, the matrix corresponding to a row
operation (when multiplied on the right by the input matrix), and on the right side
its inverse.

E1(r,m): Multiplication of a row r
by a non-zero scalar m.

1
. . .

1
m

1
. . .

1

Inverse of scalar row multiplication; inverse
element of m at same entry.

1
. . .

1
m−1

1
. . .

1

6

E2(r1, r2): Switching two rows.

1
. . .

0 1

1 0
. . .

1

Inverse of row switch (same as left).

1
. . .

0 1

1 0
. . .

1

E3(r1, r2,m): Adding a scalar multiple
m of one row to another.

1
. . .

1
1

m 1
. . .

1

Inverse of row addition; inverse element of
m at same entry.

1
. . .

1
1

−m 1
. . .

1

The three matrix constructions, the signatures of which we leave out for brevity, are
each respectively accompanied by one lemma demonstrating their invertibility.

Lemma 3 (Invertibility of scalar multiplication matrix).

E1(r, s) is invertible if s 6= 0, and E1(r, s)
−1 = E1(r, s

−1).

Lemma scalar_mult_matrix_is_inv

{ n : nat }
(i : J n K %stn) (s : F) (ne : s != 0%ring)

: @ matrix_inverse F n (mult_row_matrix s i).

Lemma 4 (Invertibility of switch row matrix).
E2(r1, r2) is invertible and E2(r1, r2)

−1 = E2(r2, r1).

Lemma switch_row_matrix_is_inv

{ n : nat } (r1 r2 : J n K %stn)
: @ matrix_inverse F n (switch_row_matrix r1 r2).

Lemma 5 (Invertibility of add row matrix).

E3(r1, r2, s) is invertible if r1 6= r2, and E3(r1, r2, s)
−1 = E3(r1, r2,−s).

Lemma add_row_matrix_is_inv { n : nat } (r1 r2 : J n K %stn)
(r1_neq_r2 : r1 6= r2) (s : F)
: @ matrix_inverse F n (add_row_matrix r1 r2 s).

7

Proofs. Proving that A∗A−1 = I for each of the three respective elementary matrices
A is done by case analysis on rows and columns, showing that

∑n
k=1Ai,k ∗ A−1k,j = 1

for i = j and
∑n

k=1Ai,k ∗ A−1k,j = 0 for i 6= j respectively.

To reduce the work in carrying out repeated case distinction in the formalization,
we additionally make use of the following properties. Let E1(m, r) denote the scalar
multiplication matrix, E2(r1, r2) the row switching matrix, and E3(s, r1, r2) the row
addition matrix. The following easy identities were useful in the constructive proofs.

E1(r, s1)E1(r, s2) = E1(r, s2)E1(r, s1)

E1(r, s1)E1(r, s2) = E1(r, s1s2)

E3(r1, r2, s1)E3(r1, r2, s2) = E3(r1, r2, s1 + s2)

E3(r1, r2, s1)E3(r1, r2, s2) = E3(r1, r2, s2)E3(r1, r2, s1)

In addition, we provide a lemma for the invertibility of product of two invertible
matrices.

Lemma 6 (Invertibility of product of invertible matrices).
If A and B are invertible matrices, the product AB is invertible too. An inverse of
AB is B−1A−1.

Lemma inv_matrix_prod_is_inv {n : nat} (A : Matrix R n n)
(A′ : Matrix R n n) (pa : matrix_inverse A) (pb : matrix_inverse A′) :
(matrix_inverse (A ** A′)).

Proof. We can first show this for left and right-invertible matrices. If A,B are left
invertible, the left inverse of AB is B−1L A−1L by Lemma 2. Correspondingly, for right
invertible A and B, (AB)−1R = B−1R A−1R . Consequentially, for two-side invertible
matrices A and B, the inverse of AB is B−1A−1.

Using Lemma 6 inductively, this allows us to show that any product En...E2E1B,
for an invertible B and elementary row operation corresponding matrices Ei, is also
invertible. As described on page 55 in [Str06], this will later allow us to define
Gaussian elimination as a sequence of multiplications by elementary matrices.

5 Elimination

Having previously established lemmata pertaining to elementary row operations, we
can proceed to define procedures for carrying out Gaussian elimination. Roughly,
our idea is to clear a matrix entry by means of an elementary row operation. For
computational reasons, proving the equivalence between this operation and a direct
manipulation of the target row proved beneficial. Having thus defined a procedure
for clearing an entry of the matrix, we provide an inductive procedure for clearing a
whole column segment. This in turn is done inductively over newly chosen pivots,

8

where the column-wise first non-zero element is chosen and switched to the current
row of iteration before clearing the next column segment.

The main theorem that we prove in this module is that of Theorem 7 presented in
the background of this thesis, which we restate here.

Theorem 7 (Gaussian elimination). For every matrix A, there exists an invertible
matrix B, such that the matrix product BA is in row echelon form.

Definition gaussian_elimination_stmt

{F : fld} {m n : nat} {A : Matrix _ m n}
:= Σ (B : Matrix _ _ _), (matrix_inverse B)
× (is_row_echelon (B ** A)).

Theorem gaussian_elimination

{m n : nat} {A : Matrix F m n}
: @ gaussian_elimination_stmt _ F _ _ A.

In literature and practice, there are various definitions of row echelon form. We choose
to work over the following form.

Definition 8. Row echelon form.
A matrix A is said to be in row echelon form if

1. Each leading entry is located strictly to the right of all leading entries of previous
rows.

2. Every empty row is located below every non-empty row.

In UniMath, we phrase this as below.

Definition is_row_echelon {F : fld} {m n : nat} (mat : Matrix F m n) :=∏
i_1 i_2 : J m K %stn,

(
∏

j_1 j_2 : J n K %stn,
is_leading_entry (mat i_1) j_2
→ i_1 < i_2 → j_1 ≤ j_2

→ mat i_2 j_1 = 0%ring)
× ((mat i_1 = const_vec 0%ring)
→ (i_1 < i_2)
→ (mat i_2 = const_vec 0%ring)).

Note the slight difference between the classical and constructive definitions. In Lemma
26, we will show that the UniMath formulation implies classical. The definition of a
leading entry is given as follows.

9

Definition 9. Leading entry. An entry of a vector is its leading entry if it is non-zero,
and all previous entries are zero.

Definition is_leading_entry {F : fld} {n : nat} (v : Vector F n) (i_1 : J n K %stn)
:= (v i_1 != 0%ring)
× (

∏
i_2 : J n K %stn, i_2 < i_1 → (v i_2) = 0%ring).

We now attend to defining procedures for calculating the leading entry of a vector,
that being the lowest index i such that vi 6= 0. To cover the case for when there is
no leading entry, equivalently when the vector considered is all-zero, we wrap some
computations in the maybe type, which in UniMath gives a definition as the coproduct
just (stn n) q nothing. For computational reasons, the leading entry procedure
is formalized as the converse of selecting the highest index i such that vi 6= 0; in
UniMath, this is expressed as taking the dual element of that element.

Definition 10. Dual element.

Definition dualelement {n : nat} (i : J nK) : J nK .
Proof.
induction (natchoice0 n) as [H | H].
= exact (make_stn n (n = 1 = i) (fromempty (dualelement_0_empty i H))).
= exact (make_stn n (n = 1 = i) (dualelement_lt i n H)).

Defined.

Definition 11. Leading entry computation.

Definition leading_entry_compute_internal

{ n : nat } (v : Vector F n) (iter : J S n K %stn)
: maybe (J n K)%stn.

Proof.
destruct (leading_entry_compute_dual_internal

(λ i : J n K %stn, v (dualelement i)) iter) as [s | ?].
= exact (just (dualelement s)).
= exact nothing.

Defined.

Now, we formalize the underlying dual procedure of Definition 12 as follows.

10

Definition 12. Leading entry computation (the internal, dual version).

Definition leading_entry_compute_dual_internal

{ n : nat } (v : Vector F n) (iter : J S n K %stn)
: maybe (J n K %stn).

Proof.
destruct iter as [iter lt].
induction iter.
{ exact nothing. }
simpl in lt.
destruct (fldchoice0 (v (iter,, lt))).
= refine (IHiter _).
apply (istransnatlth _ _ _ lt (natgthsnn n)).

= exact (just (iter,, lt)).
Defined.

And as customary, we provide equivalences between the two, expressed as equivalences
on the index of the leading and dual leading entry, and as implication from having
a leading entry to having the dual. In proving properties over inductively defined
procedures over natural numbers, such as computing the leading entry in Definition
11, we use a few common proof techniques. We tend to state a induction hypothesis on
all rows or columns greater than, or less than, a given separator for an internal partial
version of a lemma used for proof purposes (for the interface to the programmer, we
state another version of the lemma where the separator over which we internally
recurse is set to the dimension of the given matrix or vector, thus fully carrying out
the procedure in question). Then we set out to prove the induction step on the target
row or column. To facilitate this, we make plentiful use of the nat_rect_step identity.

Lemma 13. Stepwise identity on the nat_rect induction principle.

Lemma nat_rect_step (P : nat → UU) (p0 : P 0) (IH :
∏

n, P n → P (S n)) n :
nat_rect P p0 IH (S n) = IH n (nat_rect P p0 IH n).

The leading element computation is to satisfy the following two properties: it returns
the leading element, or if none exists, the input vector contains all zero elements. We
provide both directions of each respective implication, and provide the proofs and
equivalences over both the leading entry procedure and its dual version. An example
of these lemmata is the following.

Lemma 14. If the procedure in Definition 11 returns i on an input vector v, then i
is the leading element of v.

Lemma leading_entry_compute_internal_correct1

{n : nat} (v : Vector F n) (i : J n K %stn)
(eq : (leading_entry_compute_internal v (n,, natgthsnn n)) = (just i))
: is_leading_entry v i.

11

Proving these lemmata involves straightforward but somewhat mechanical proofs by
induction and case analysis.

Having thus formalized the notions of row echelon form and leading entry, we turn to
the elimination procedure and operations on matrices. Clearing an entry by means
of elementary row operations entails adding a multiple of a pivot row to a target
row. In the following, the pivot element is referenced by indices ki and kj for row
and column respectively, with the multiple −Ai,kj/Aki,kj being selected such that
(Aki +Ai)kj = 0. Note that we define the field inverse as a total function and handle
the case that Aki,kj = 0 upstream.

We first define a procedure for clearing an entry by means of left multiplication by
an elementary matrix defined in Section 4. This corresponds to page 24 in [Str06].

Definition 15. Clearing one matrix entry as left multiplication by an elementary
matrix.

Definition gauss_clear_column_step

{m n : nat}
(k_i : (J m K %stn))
(k_j : (J n K %stn))
(i : (stn m))
(mat : Matrix F m n)
: Matrix F m n.

Proof.
destruct (stn_eq_or_neq i k_i) as [? | ?].
= exact mat.
= refine ((add_row_matrix k_i i _)%ring ** mat).
exact (= ((mat i k_j) * fldmultinv′ (mat k_i k_j)))%ring.

Defined.

In addition, we define a procedure gauss_clear_column_step′ that we prove is equiv-
alent in output to Definition 15, but that is also computationally simpler.

12

Definition 16. Clearing one matrix entry as direct manipulation of target row.

Definition gauss_clear_column_step′

{m n : nat}
(k_i : (J m K %stn))
(k_j : (J n K %stn))
(i : (stn m))
(mat : Matrix F m n)
: Matrix F m n.

Proof.
destruct (stn_eq_or_neq i k_i) as [? | ?].
= exact mat.
= exact (gauss_add_row mat k_i i

(= ((mat i k_j) * fldmultinv′ (mat k_i k_j)))%ring).
Defined.

This is a typical approach we use for multiple procedures. It is sufficient to show that
the procedure is output-equivalent to multiplication by elementary matrices, while
carrying out proofs under rewriting to a simpler procedure.

Having defined procedures for clearing an entry of a matrix, and proving the equiv-
alence of the procedures, we define another procedure to carry out this operation
recursively in order to clear a multi-element segment of a column below the pivot
entry.

Definition 17 (Clearing of a column segment).

Definition gauss_clear_column { m n : nat }
(mat : Matrix F m n) (k_i : (J m K %stn))
(k_j : (J n K %stn)) (row_sep : J S m K %stn)
: Matrix F m n.

Proof.
destruct row_sep as [iter lt].
induction iter as [| iter gauss_clear_column_IH].
{ exact mat. }
destruct (natgthorleh iter k_i) as [gt | leh].
2: {exact mat. }
refine (gauss_clear_column_step k_i k_j (iter,, lt) _).
refine (gauss_clear_column_IH _).
refine (istransnatlth _ _ _ (natgthsnn iter) _).
assumption.

Defined.

This procedure recursively applies the column clearing step in Definition 15 for each
index between ki and row_sep. For computational reasons, an equality analogous to
that between Definitions 15 and 16 was useful to prove properties over this procedure.
We give a few invariants over Definition 17 in the following. In the following lemma,

13

we prove that considering any target row r, the output of the procedure is equal to
the pointwise application of the step procedure (if the index is larger than the pivot
element, and less than the iteration parameter). This will allow us to easily show
that each element of the column segment is indeed cleared by our procedure.

Lemma 18 (Clearing of a column segment – row equals output of step function).

Lemma gauss_clear_column_inv1

{ m n : nat } (k_i : (J m K %stn))
(k_j : stn n) (row_sep : J S m K %stn)
(mat : Matrix F m n)
:
∏

r : (J m K %stn), r < row_sep → k_i < r →
((gauss_clear_column mat k_i k_j row_sep) r
= (gauss_clear_column_step′ k_i k_j r mat) r).

Proof. For readability, let A = mat, f(t, A) = gauss_clear_column_step′ n k_i k_j t

mat, and let g(t, A) = gauss_clear_column_old mat k_i k_j t.

We want to show that f(t, A)r = g(t, A)r if r < t and ki < r. We prove this
by induction over t and case distinction on r < t + 1 or r = t + 1. In the first
case, the equality follows from Definition 15 and the induction hypothesis. Assume
r = t + 1. We have g(t + 1, A)r = f(t + 1, g(t, A))r by nat_rect_step. Moreover,
f(t+ 1, g(t, A))r = f(t+ 1, A)r follows from the fact that g(t, A) = A if t < r.

Having defined the entry-wise and column-wise procedures for zeroing parts of a
matrix, we turn to do this over multiple rows; this entails proceeding row-wise by
selecting the first uncleared column, that is, one having a non-zero column entry at
the current row of iteration.

Lemma 19 (Procedure for selecting uncleared column).
We can calculate the left-most non-zero column segment of any m × n matrix A,
observing only rows at index larger than an input parameter r.

Lemma select_uncleared_column_internal

{m n : nat} (mat : Matrix F m n)
(row_sep : J m K %stn) (col_iter : J S n K %stn) (p : n > 0)
: coprod

(exists_first_uncleared mat row_sep col_iter)
(lower_left_zero mat row_sep col_iter).

For readability, the constructive definitions of properties exists_first_uncleared and
lower_left_zero are left out. In essence, they entail finding pivot indices i, j (with
r ≤ i) such that i, j are the lowest indices for which Ai,j 6= 0, or evidence that for all
i, j, Ai,j = 0. This can be done by using Definition 12 as a sub-procedure.

Now, we formalize the notion of clearing a row as first selecting a pivot entry, which
will either be the leading element of the row to clear, or the first leading element

14

encountered on a later row, as found by the procedure in Definition 19. The non-
internal version used in the following proof is as customary the internal version with
the row separator parameter fixed to the value m (the length of a column).

Definition 20 (Row-wise procedure for echelon form).
The procedure defined in Definition 17 outputs a matrix where for any given row r,
the output matrix is identical to the result of calling the procedure in Definition 16
with r as the target parameter.

Definition gauss_clear_row

{ m n : nat }
(mat : Matrix F m n)
(row : (J m K %stn))
: Matrix F m n.

Proof.
destruct (natchoice0 n) as [contr_eq | p].
{ unfold Matrix, Vector; intros; apply fromstn0.
rewrite contr_eq; assumption. }

destruct (select_uncleared_column F mat row p) as [some | none].
2: {exact mat. }
set (piv_col := pr1 some).
set (piv_row := pr1 (pr2 (pr2 some))).
refine (gauss_clear_column _ row piv_col (m,, natlthnsn m)).
exact (gauss_switch_row mat row piv_row).

Defined.

Here, the notion of clearing a row i entails first finding the first column j with a
non-zero entry at (i, j); if no such row exists (as certified by an invariant on the
select_uncleared_column procedure), the matrix is in partial echelon form for all
rows r with r ≥ i, and the original input matrix is returned. The finishing switch row
procedure is only algorithmically necessary if the selected pivot does not lie on our
current row, but to avoid another case distinction we perform the ”switch” regardless.

This procedure is defined in order to put a matrix in row echelon form. For fulfilling
the first criteria given in Definition 20, we give the following defining lemma that
shows the stepwise property that if the matrix is partially eliminated up until row m,
the procedure will advance the elimination by one row, thus having the input matrix
partially eliminated until row m+ 1.

15

Lemma 21 (Clearing row – induction lemma).
The procedure defined in Definition 22 takes an m×n matrix A, and outputs a matrix
where, if each leading entry of the input matrix A is to right of all leading entries
above up until the r:th row, with r + 1 < n, then the leading entry of row r + 1
in A′, if not an empty row, is to the right of all previous rows. [This is proving the
induction step for being in row echelon form given in Definition 8.]

Lemma gauss_clear_row_inv2

{ m n : nat } (mat : Matrix F m n) (p : n > 0)
(row_sep : (J S m K %stn)) (p′ : row_sep < m)
: is_row_echelon_partial_1 mat p row_sep

→ is_row_echelon_partial_1 (gauss_clear_row mat (pr1 row_sep,, p′)) p
(S (pr1 row_sep),, p′).

Proof sketch. This proof is essentially a three part case distinction on the column
index j when observing the echelon form of A′i,j. If j is less than the leading entry of
Ar, then A′i,j is zero by definition. If j is larger than the leading entry, we have again
by definition a (partial) row echelon form. In the last case, j is equal to the leading
entry of the row at index r. In that case, A′i,j = 0 follows since for any row i ≥ r, Ai

is unchanged by the row clearing procedure.

Having defined a procedure for clearing a row, the final elimination procedure is
obtained by recursively clearing multiple rows. Starting with the uppermost row,
locating the leading element if any, pivoting if there is a nearer leading element in
a row below, clearing the associated column segment below, and proceeding likewise
over successive rows, until we are either at the last row or have encountered an all-zero
row.

Definition 22 (Clearing multiple rows).

Definition gauss_clear_rows_up_to

{ m n : nat }
(mat : Matrix F m n)
(row_sep : (J S m K %stn))
: (Matrix F m n).

Proof.
destruct row_sep as [row_sep row_sep_lt_n].
induction row_sep as [| row_sep gauss_clear_earlier_rows].
{exact mat. }
refine (gauss_clear_row _ (row_sep,, row_sep_lt_n)).
refine (gauss_clear_earlier_rows _).
exact (istransnatlth _ _ _ (natgthsnn row_sep) row_sep_lt_n).

Defined.

This is a standard recursive procedure applying Definition 20 repeatedly until all rows
less than row_sep are cleared. We will show that this entails putting the input matrix

16

in (partial) row echelon form.

Lemma 23 (Clearing multiple rows – row echelon 1).
The procedure defined in Definition 22 outputs a matrix where every leading entry
has a higher index than the leading entry of any previous row. [This is the first
criterion for being in row echelon form given in Definition 8.]

Lemma gauss_clear_rows_up_to_inv1

{ m n : nat } (mat : Matrix F m n)
(p : n > 0) (row_sep : (J S m K %stn))
: is_row_echelon_partial_1

(gauss_clear_rows_up_to mat row_sep) p row_sep.

The above follows essentially from the induction step proven in Lemma 21. That
which follows now is a lemma that shows that our procedure in Definition 22 satisfies
the second condition of row echelon form.

Lemma 24 (Clearing multiple rows – row echelon 2).
The procedure defined in Definition 22 inputs a matrix A and outputs a matrix A′

where for each pair of rows i1, i2 of A′, if i1 < i2, and i1 is an all-zero row, i2 is too.

Lemma gauss_clear_rows_up_to_inv0

{ m n : nat } (mat : Matrix F m n) (row_sep : (J S m K %stn)) (p : n > 0)
:
∏

i_1 : J m K %stn, i_1 < row_sep

→ (gauss_clear_rows_up_to mat row_sep) i_1 = const_vec 0%ring

→∏
i_2 : J m K %stn, i_1 < i_2

→ (gauss_clear_rows_up_to mat row_sep) i_2 = const_vec 0%ring.

Proof. Induction on row_sep. Case analysis as follows.
If select_uncleared_column returns none, we are done according to Definition 19;
hence assume select_uncleared_column returns a column j s.t. there exists a row i
and A′i,j 6= 0. Let t = row_sep for brevity. Case 1 : i1 < t follows essentially from the
induction hypothesis. Case 2 : i1 = t follows by contradiction.

Having shown that our procedure does put a given matrix in row echelon form,
verifying Theorem 7, we furthermore show that our constructive statement implies
the classical definition.

17

Lemma 25 (Row echelon form – constructive implies classical).
If a matrix is in row echelon form in our setting, it is in row echelon form in the
classical formulation too.

Lemma is_row_echelon_1_eq

{ m n : nat } (mat : Matrix F m n)
: is_row_echelon mat

→∏
i_1 i_2 : J m K %stn,

∏
j_1 j_2 : J n K %stn,

i_1 < i_2

→ is_leading_entry (mat i_1) j_1
→ is_leading_entry (mat i_2) j_2
→ j_1 < j_2.

This follows directly from Definition 11.

Row echelon form also implies upper triangularity, which is a notion we make use of
in Section 6.

Lemma 26 (Row echelon implies upper triangular).
Any m× n matrix A that is in row echelon form is also in upper triangular form.

Lemma row_echelon_to_upper_triangular

{ m n : nat }
(mat : Matrix F m n)
: is_row_echelon mat

→ @ is_upper_triangular F _ _ mat.

Proof. Another induction proof with induction on row_sep on the internal, partial
version of the lemma. Let t = row_sep for brevity. Assume that we for a given
parameter t, with t < n, want to show that the notion of row echelon form up to a
given row separator t implies a corresponding upper triangularity for every row up to
the same separator. By the induction hypothesis and definition of upper triangularity,
we have that the leading entry le of At satisfies le ≥ t. By definition of row echelon
form, we also have that ∀j′ ≤ t, At+1,j′ = 0. Thus A is also (partially) upper triangular
up until row t+1. The form in the signature above now follows from fixing t = n.

6 Elimination applications

We prove a few of the plentiful corollaries resulting from having in the previous section
defined an elimination procedure for reducing a matrix to row echelon form. Having
such a procedure allows us to solve systems of equations on the form AxT = bT for x.
In particular, this allows us to construct the inverse of any invertible square matrix
by solving for b = ei. In this section, definitions and proofs are stated over a fixed
field F . We also consider only square matrices for the remainder of this section.

The main result in this module is proving the following theorem.

18

Theorem 34 (Invertibility). We can either produce the inverse of a given n × n
matrix, or show that it is non-invertible.

Definition matrix_inverse_or_non_invertible_stmt

{ n : nat } {F : fld}
(A : Matrix F n n)
:= coprod (@ matrix_inverse F n A)

(@ matrix_inverse F n A → empty).

Theorem matrix_inverse_or_non_invertible { n : nat }
(A : Matrix F n n)
: @ matrix_inverse_or_non_invertible_stmt _ _ A.

The procedure in Definition 22 will put an input matrix in row echelon form by means
of elementary row operations equivalent to multiplication by invertible matrices. This
implies the output matrix is upper triangular. In the case that the output matrix has
a zero element in its diagonal, we will show that this implies non-invertibility. In the
other case, we can construct the inverse as per the below signature.

Theorem 27 (Back substitution).
There exists a procedure, such that for every upper triangular matrix A of dimensions
n× n with all non-zero diagonal, and every length n vector b, this procedure returns
x such that AxT = bT .

Definition back_sub_stmt

{ n : nat } {F : fld}
(mat : Matrix F n n)
(vec : Vector F n)
(ut : @ is_upper_triangular F _ _ mat)
(df : @ diagonal_all_nonzero F _ mat)
:= Σ f : (Matrix F n n → Vector F n → Vector F n),

(@ matrix_mult F _ _ mat _ (col_vec (f mat vec))) = (col_vec vec).

Lemma back_sub_inv0

{ n : nat }
(mat : Matrix F n n) (vec : Vector F n)
(ut : @ is_upper_triangular F _ _ mat)
(df : @ diagonal_all_nonzero F _ mat)
: back_sub_stmt mat vec ut df.

Showing that an invertible upper triangular matrix must have only non-zero elements
throughout the main diagonal can be done in multiple ways. We proceed slightly
differently from [Str06] by not explicitly considering row, column or null spaces, but
constructing witnesses through elementary methods involving previously shown prop-
erties on products of invertible or triangular matrices. In our case, we construct such
evidence by carrying out elimination on the transpose of the reduced (upper triangu-
lar) matrix.

19

Lemma 28 (Invertibility implies non-zero diagonal).
An invertible, upper triangular matrix has necessarily no zero elements in its diagonal.

Lemma invertible_upper_triangular_to_diagonal_all_nonzero

{n : nat }
(A : Matrix F n n)
(p : @ is_upper_triangular F n n A)
(p′ : @ matrix_inverse F n A)
: (@ diagonal_all_nonzero F n A).

Proof Sketch. Essentially, we are using the following lemma to differentiate between
invertible and non-invertible matrices.

Lemma zero_row_to_non_invertibility { n : nat } (A : Matrix F n n)
(i : J n K %stn) (zero_row : A i = (const_vec 0%ring)) :

(@ matrix_inverse F n A) → empty.

As a test for invertibility, we can carry out another round of elimination on the
transpose of the output matrix of Definition 22. If the procedure in Definition 22
returns a matrix A′, the product of a sequence of invertible matrices En...E2E1 by
the transpose (A′)T of A′ must also be invertible. We can define such a sequence
En...E2E1(A

′)T such that if A is invertible, En...E2E1(A
′)T has all non-zero diagonal,

and if A′ has a non-zero element in its diagonal, En...E2E1(A
′)T has an all-zero

row. Indeed, multiplication by the sequence En...E2E1 corresponds to the procedure
Elimination given in Definition 22.

Thus operating from an upper triangular, invertible matrix A, its inverse A−1 can
be found by a back-substitution formula. Working from the last element to the first,
with i in the range n−1 down to 1, the element xi of a given solution to the equation
AxT = bT is calculated as xi = (bi −

∑n
j=i+1Ai,jxj)/Ai,i, with xn = bn/Ai,j. In

UniMath, we adapt the summation bounds for computational simplicity.

Definition 29 (Back substitution step).

Definition back_sub_step { n : nat } (iter : (J n K)%stn)
(mat : Matrix F n n) (b : Vector F n) (vec : Vector F n) : Vector F n.

Proof.
intros i.
destruct (nat_eq_or_neq iter i) as [? | ?].
= exact (((vec i) * fldmultinv′ (mat i i))

= ((
∑

(mat i ̂ b) = (b i)* (mat i i))
* (fldmultinv′ (mat i i))))%ring.

= exact (b i).
Defined.

To prove correctness of the inductive procedure, we use a few properties of the stepwise
update, of which the following is important.

20

Lemma 30 (Back substitution step invariant. The back substitution procedure pro-
vides pointwise solution).
Let A be an n × n, upper triangular matrix with no zero elements on its diagonal,
and let b be a vector of length n. Let x′ = (back_sub_step iter mat x b). Then, we
have (Ax′T)i = bi.

Lemma back_sub_step_inv0 { n : nat }
(iter : J n K %stn) (mat : Matrix F n n)
(x : Vector F n) (b : Vector F n)
(p: @ is_upper_triangular F n n mat)
(p′ : (mat iter iter != 0)%ring)
: (mat ** (col_vec (back_sub_step iter mat x b))) iter = (col_vec b) iter.

This can be proven by case analysis on the iteration variable, in accordance to Defi-
nition 29. The equivalence is given by Lemma 41, and in the second case, addition-
ally using Lemma 37. We have shown that our procedure assures the property of
(AxT)i = bTi when applied to a given row i. Having defined the step procedure, we
define an inductive method that provides the solution for every entry.

Definition 31 (Back substitution iteration).

Definition back_sub_internal

{ n : nat }
(mat : Matrix F n n)
(b : Vector F n) (vec : Vector F n)
(iter : J S n K %stn)
: Vector F n.

Proof.
destruct iter as [iter p].
induction iter as [| m IHn] .
= exact b.
= refine (back_sub_step (dualelement (m,, p)) mat (IHn _) vec).
apply (istransnatlth _ _ _ (natgthsnn m) p).

Defined.

This is a standard iteration procedure with one twist to the previously defined ones in
that we make the inner procedure call over the dual element of the iteration variable.
Showing that the inductive procedure provides a correct solution to the systems of
equations (that is, proving Theorem 27) is now fairly simple given Lemma 30.

Having a procedure for solving system of equations on form AxT = bT , we define the
following procedure for computing the (right) inverse of A.

21

Definition 32 (Construction of matrix inverse by Definition 31).

Definition upper_triangular_right_inverse_construction

{ n : nat }
(mat : Matrix F n n)
:= transpose (λ i : (stn n), (back_sub F (mat) ((@ identity_matrix F n) i))).

The above is accompanied by a corresponding proof of correctness, given below.

Lemma 33 (Correctness of Definition 32).
For any n × n matrix A that is upper triangular and with all non-zero elements on
its diagonal, we can construct its right inverse A−1R with Definition 32.

Lemma right_inverse_construction_correct

{ n : nat } (mat : Matrix F n n)
(ut : @ is_upper_triangular F _ _ mat)
(df: @ diagonal_all_nonzero F n mat)
: (mat ** ((upper_triangular_right_inverse_construction mat)))

= (@ identity_matrix F n).

Proof. This follows straightforwardly from the fact that ∀i : JnK, y : F n, mat ** (

back_sub mat y) = y, if mat is upper triangular with all non-zero diagonal. There is
some mechanical work involved in showing that col_vec is injective in the UniMath
setting, which then allows us to show the equivalence that Ax = b gives; for all
rows i,

∑
j(Ai,j · xj) = bi; thus we can construct the inverse by seeking xj satisfying

(Axj) = ej (noting that the identity matrix is symmetric), for all j : JnK. Correctness
now follows from the definition of the inverse construction (Definition 32).

Tying together the results of having defined an elimination procedure and construct-
ing the inverse of a matrix under certain conditions, we can prove the following
stronger property of being able to either give the inverse of a matrix, or show that is
is not invertible.

Theorem 34 (Invertibility). We can either produce the inverse of a given n × n
matrix, or show that it is non-invertible.

Definition matrix_inverse_or_non_invertible_stmt

{ n : nat } {F : fld}
(A : Matrix F n n)
:= coprod (@ matrix_inverse F n A)

(@ matrix_inverse F n A → empty).

Theorem matrix_inverse_or_non_invertible { n : nat }
(A : Matrix F n n)
: @ matrix_inverse_or_non_invertible_stmt _ _ A.

22

Proof. Putting a matrix A into row echelon (and consequentially upper triangular)
form can be accomplished by left multiplication of a suitably constructed invertible
matrix B. If the product BA has a zero element in its diagonal, we are done, as BA
is not invertible by Lemma 28, and since B is invertible, A can’t be (Lemma 6).

Thus BA is upper triangular with all non-zero diagonal. This means we can construct
a right inverse C of BA such that BAC = I (Lemma 33). Since BAC = ACB (for
any left-right invertible B), this gives us the right inverse of A, A−1R = CB. It remains
to show that right inverse implies left: BAC = I =⇒ CBA = I, without the prior
that A is two-side invertible.

Lemma 35 (Left inverse implies right).
Having the left inverse B−1L of a matrix A, we can give the right inverse B−1R of A.

Lemma left_inverse_implies_right { n : nat } (A B: Matrix F n n)
: (B ** A) = (@ identity_matrix F n)
→ (@ matrix_right_inverse F n n A).

Proof. Assume that BA = I, with A,B being n×n matrices over a field. By lemmata
23 and 28, there exists an n× n matrix C, such that CA is upper triangular with all
non-zero diagonal. Thus our left inverse of A can also be expressed as B = BC−1C,
and (CA)−1L = (BC)−1R . Now, by the uniqueness of left inverses, and C being a
left-right invertible matrix, it follows that A−1R = BC−1R C = BC−1L C = B.

7 Vectors and auxiliary material

In this chapter, we outline some of the additional machinery necessary to formalize
material presented in previous sections. Some of the material may appear simple from
a classical mathematical standpoint, but required some work proving in an explicit
constructive setting, in part due to care taken in presenting reusable interfaces for
proofs and definitions to other authors working on UniMath. Firstly, a number of
identities on sums over semirings were beneficial in formalizing Gaussian elimination.
In addition we develop theories of standard basis vectors, establish various construc-
tive lemmata pertaining to injectivity and weak equality of vectors and matrices with
one as dimension, and prove a few special cases of sums over mostly zero functions
and vectors (“pulse” functions) that only take a non-zero value at one or two points.
This is useful when proving properties cover multiplication by elementary matrices,
which have one or two non-zero elements per row. For the remainder of this section,
the definitions and proofs are given over a fixed semiring R.

A useful identity on sums is the iterop_fun_step, allowing us to unroll the iter-
ated application of an operator on a vector by one step, thus facilitating proofs by
induction.

23

Lemma 36 (Stepwise identity on iterated function application).

Definition iterop_fun_step′ (lunax : islunit op unel) {m} (xs:stn m → X) (x:X) :
iterop_fun (append_vec xs x) = op (iterop_fun xs) x.

From the identity in 36 and by working on induction on n, the length of each vector,
we are able to derive a number of useful identities on sums, which we now present.
Let f, g be functions JnK 7→ R, or interchangeably, vectors of length n with elements
in R.

Lemma 37 (Sums of zero elements).
If f(i) = 0 for all 0 < i ≤ n, then

∑n
i=1 f = 0.

Lemma zero_function_sums_to_zero:∏
(n : nat)

(f : (J n K)%stn → R),
(λ i : (J n K)%stn, f i) = const_vec 0%rig →
(
∑

(λ i : (J n K)%stn, f i)) = 0%rig.

This is easily proven by induction and the definition of the additive identity in a
semiring.

Lemma 38 (Left distributivity of sums).
s
∑n

i=1 f(i) =
∑n

i=1 sf(i)

Lemma sum_is_ldistr :∏
(n : nat) (vec : Vector R n) (s : R),

op2 s (
∑

vec) =
∑

((const_vec s) ̂ vec).

This is again proven by induction on n in addition to vector appendation identities
on iterop_fun. A corresponding lemma for right distributivity is also provided.

Lemma 39 (Sum equality 1).∑n
i=1 f(i) +

∑n
i=1 g(i) =

∑n
i=1(f(i) + g(i))

Lemma rigsum_add :∏
(n : nat) (f1 f2 : (J n K)%stn → R),

op1 (
∑

(λ i: (J n K)%stn, f1 i)) (
∑

(λ i : (J n K)%stn, f2 i))
=

∑
(λ i: (J n K)%stn, op1 (f1 i) (f2 i)).

While mechanically slightly more involved, it can be proven in the same way as the
previous lemma.

24

Lemma 40 (Interchanging order of summation).∑n
i=1 f(i)

∑m
i=1 g(i) =

∑m
i=1 g(i)

∑n
i=1 f(i)

Lemma interchange_sums :∏
(m n : nat)

(f : (J n K)%stn → (J m K)%stn → R),∑
(λ i: (J m K)%stn,

∑
(λ j : (J n K)%stn, f j i))

=
∑

(λ j: (J n K)%stn,
∑

(λ i : (J m K)%stn, f j i)).

Another proof by induction; this one requires a few more steps, noting in addition
that in the definition of iterop_fun, the base case is addition by zero.

Lemma 41 (Sum equality 2).∑n
i=1 f(i) =

∑n
i=1,i 6=j f(i) + f(j)

Lemma rigsum_dni {n : nat} (f : J S n K %stn → R) (j : J S n K %stn) :∑
f = op1 (

∑
(f ◦ dni j)) (f j).

First note that any sum over a finite set of rig elements
∑n

i=1 f(i) can be expressed
as

∑m
i=1 f(i) +

∑n
i=m+1 f(i). This can be shown by induction over n; n = 0, this is

a variant of a zero-sum lemma, e.g. as shown in Lemma 37. Proving this for n + 1,
we want to show

∑n+1
i=1 f(i) =

∑m
i=1 +

∑n+1
m+1. Applying Lemma 36, this is equivalent

to showing
∑n+1

i=1 f(i) =
∑m

i=1 f(i) +
∑n

m+1 +f(n + 1) (in UniMath, this is slightly
more tricky due to manipulations needed to have well typed decomposition of sums
into left and right parts).

Lemma 42 (Sum of function non-zero at one point).
∀i1i2 < n, i1 6= i2 =⇒ f(i1) = 0 =⇒ ∑

i=1 f(i) = f(i2).

Lemma pulse_function_sums_to_point { n : nat }
(f : J n K %stn → R) (i : J n K %stn)
(f_pulse_function : is_pulse_function i f)
:
∑

f = f i.

This follows from Lemma 41 and Lemma 37. In the following, let ei refer to the
standard basis vector with unit element at index i, else 0. Let v1 · v2 refer to the
pointwise product of two vectors v1, v2.

Lemma 43 (Sum of function non-zero at two points). ∀i1 i2 i3 < n, i1 6= i2 ∧ i1 6=
i3 =⇒ f(i1) = 0 =⇒ ∑n

i=1 f(i) = f(i2) + f(i3).

Lemma two_pulse_function_sums_to_points { n : nat }
(f : J n K %stn → R)
(i : J n K %stn) (j : J n K %stn) (ne_i_j : i 6= j)
(X :

∏
(k: J n K %stn), (k 6= i) → (k 6= j) → (f k = 0%rig))

: (
∑

f = f i + f j)%rig.

First showing f = f(i)ei + f(j)ej by functional extensionality; the pointwise equality
follows simply by case analysis and definition of standard basis vector.

25

8 Conclusions

In this paper we have presented a formalization of Gaussian elimination over the
minimal UniMath kernel programmed in Coq. This entailed formalizing, among other
topics, the following material.

� A re-usable framework for elementary row operations.

� Procedures for Gaussian elimination.

� Applications in solving systems of linear equations and constructing matrix
inverses.

The background theory necessary to facilitate such formalization included the follow-
ing.

� Auxiliary materials on vectors. Injectivities, weak equalities, equalities on nat-
ural numbers, standard basis vectors; the concept of leading entries; properties
of sums over semirings, pointwise sums and products of vectors.

� Properties of matrices over semirings and fields. Associativity, distributivity,
identity matrices, transposes, triangular matrices, left inverses and right in-
verses, elementary matrices and properties of the product of matrices in those
categories.

The total material has a scope of roughly 6000 lines of code, and can be found in a
companion of this paper. 1

We hope that our formalization of important results such Gaussian elimination, pro-
cedures for solving systems of linear equations and material on invertibility of matrices
will prove useful to current and future authors working on UniMath. Our work in
setting up row operations and providing a framework for Gaussian elimination in par-
ticular is something we hope can be used to formalize Smith normal form factorization
in the future, covering some of the material in [CCDMS16].

References

[CCDMS16] Guillaume Cano, Cyril Cohen, Maxime Dénès, Anders Mörtberg, and
Vincent Siles. “Formalized linear algebra over Elementary Divisor Rings
in Coq”. In: Log. Methods Comput. Sci. 12.2 (2016). doi: 10.2168/
LMCS-12(2:7)2016.

[Gra18] Daniel R. Grayson. “An introduction to univalent foundations for math-
ematicians”. In: Bull. Amer. Math. Soc. (N.S.) 55.4 (2018), pp. 427–
450. issn: 0273-0979. doi: 10.1090/bull/1616.

1https://github.com/Skantz/UniMath/tree/elimination/UniMath/Algebra/Elimination

26

[Str06] Gilbert Strang. Linear algebra and its applications. 4th ed. Brooks/-
Cole, 2006.

[Uni13] The Univalent Foundations Program. Homotopy Type Theory: Univa-
lent Foundations of Mathematics. Institute for Advanced Study: https:
//homotopytypetheory.org/book, 2013.

[VAG+] Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al. UniMath
— a computer-checked library of univalent mathematics. available at
https://unimath.org.

[Voe10] Vladimir Voevodsky. Univalent Foundations Project. Available from
https://www.math.ias.edu/vladimir/publications. a modified
version of an NSF grant application. Oct. 2010.

27

