
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Real numbers - Cantor's approach and in�nite decimal expansions

av

Michal Mnich

2022 - No K18

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM





Real numbers - Cantor's approach and in�nite decimal expansions

Michal Mnich

Självständigt arbete i matematik 15 högskolepoäng, grundnivå

Handledare: Pavel Kurasov

2022





Real numbers - Cantor’s approach and
infinite decimal expansions

Michal Mnich

Abstract

This paper presents two different constructions of the real numbers based
on the existence of the field of rational numbers. The concepts of supremum,
total orderings, fields and isomorphisms are introduced with basic set theory
as a starting point. An intuitive approach to real numbers through infinite
decimal expansions is presented and shown to result in a totally ordered field
with the supremum property. A different approach by means of Cauchy se-
quences is also presented and shown to result in a totally ordered field with
the supremum property. Finally, it is shown that any two totally ordered
fields with the supremum property are isomorphic, and the real numbers are
defined as any such field. It is argued that both presented constructions of
the real numbers have their uses in different circumstances.
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Introduction

Number systems have been used by humanity for thousands of years, first of them
being of course the natural numbers. Counting required the possibility of adding
numbers to obtain another number. However, this would not suffice. Sooner or
later the negative integers had to be added to ensure that a natural number could
be cancelled out. By such cancellation one would yield the mysterious number 0.
To this day mathematicians have not come to a consensus whether 0 is actually a
natural number. Either way, manipulations with the integers would allow to solve
mathematical problems which could not be solved before, yet clearly still not all
problems. Throughout history, the need to solve new mathematical problems has
been a key driving force in the expansion of number systems. The simple equation
2x = 1 cannot be solved by using only integers, clearly we need also the rational
numbers p

q
to solve equations. Simple enough to define ratios of integers as numbers

and set rules for multiplication and addition of ratios. This would allow to solve
many more equations. But what about x · x = 2? What is the diagonal in a square
with a side of length 1? This is where expanding number systems suddenly became
not so simple.

Mathematicians would try but for a long time not succeed to introduce the
irrational numbers and give a precise definition of the real number system. Notably,
attempts were made by known mathematicans as B. Bolzano (1781-1848), W. R.
Hamilton (1805-1865) and K. Weierstrass (1815-1897), but the results were not
entirely satisfactory, according to I. Weiss, [IW, p. 1]. This paper aims to show
how the real numbers may be constructed and give a hint about why more abstract
constructions of the reals might be preferred to more intuitive ones. In particular,
this paper will make clear that the construction of real numbers requires several steps
and cannot follow directly from rational numbers. The constructions are nontheless
based on our knowledge about rational numbers.

Around the time of publication of first rigorous constructions of real numbers
by R. Dedekind (1831-1916) and G. Cantor (1845-1918), efforts were also made to
formalize natural numbers. Peano’s axioms give a complete characterization of the
natural numbers. Likewise, the Zermelo-Frankel set theory lays a solid foundation
upon which the set of natural numbers can be strictly defined. These characteriza-
tions are worth noting, as any rigorous construction of real numbers cannot be fully
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satisfactory if it rests on the rational numbers, which are defined based on a less
rigorous theory of natural numbers.
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Preliminaries

Let us begin by laying a foundation upon which the real numbers may be con-
structed. This section aims to establish terminology and some basic concepts which
will be used throughout this paper. Most of the section is based on Walter Rudin’s
Principles of Mathematical analysis [WR] and Hewitt and Stromberg’s Real and ab-
stract analysis [HS]. Many definitions and details that won’t be used in this paper
are however omitted for the sake of brevity. The unfamiliar reader is referred to
those works for a more thoruogh introduction to the subject.

This section is mainly included to give the reader a more complete description
of how the real numbers may be constructed. It should give the reader a fair un-
derstanding of how such a construction can be carried out relying only on basic set
theory and the set Q of rational numbers, which are assumed to be known.

Notation. Sets will be denoted by capital letters, elements of sets by small letters. If
an object x is an element of a set A, we will write x ∈ A, otherwise we write x /∈ A.
The set which contains no elements is denoted by ∅.

Definition 2.1. Let A and B be sets. If every x ∈ A is also an element of B, then
we say that A is a subset of B and write A ⊂ B. If both A ⊂ B and B ⊂ A, we
write A = B, else A ̸= B.

2.1 Ordered sets

Definition 2.2. Let A and B be sets. The Cartesian product of A and B is the
set of ordered pairs (a, b) such that a ∈ A and b ∈ B. A relation is a subset of a
Cartesian product of two sets.

Notation. If R is a relation and (a, b) ∈ R, we will often write aRb.

Definition 2.3. Let P be a set. A total ordering on P is a relation, denoted by ≤,
which is a subset of P × P and satisfies

(i) x ≤ x [reflexivity];

(ii) (x ≤ y and y ≤ x) =⇒ x = y [antisymmetry];

(iii) (x ≤ y and y ≤ z) =⇒ x ≤ z [transitivity];
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(iv) x, y ∈ P =⇒ (x ≤ y or y ≤ x) [trichotomy].

If ≤ is a total ordering on P , then (P, ≤) is called a totally ordered set. If x and y

are elements of a totally ordered set such that x ≤ y and x ̸= y, we sometimes write
x < y. The expression y ≥ x means the same as x ≤ y.

In the remainder of this paper, we will simply use the term ordered set to mean
to totally ordered sets. Further, if (P, ≤) is an ordered set and it is clear which total
ordering ≤ is, we simply say that P is an ordered set. It may also be worth noting
that every subset of an ordered set is also an ordered set.

Example 2.4. The reader is likely well acquainted with the symbol used for an or-
dering. In fact, the set of natural numbers N = {0, 1, 2, . . .} equipped with the usual
less or equal to relation, denoted by ≤, is an ordered set.

Definition 2.5. Let X be an ordered set and E a subset of X. Suppose that there
is an α ∈ X such that e ≤ α for all e ∈ E. Then α is called an upper bound of E.
Moreover, if α is such that

β < α =⇒ β is not an upper bound of E,

then α is called the least upper bound, or supremum, of E, and we write α = sup E.
The terms lower bound and greatest lower bound, also called infimum, denoted inf E,
are defined analogously. If E has an upper/lower bound, then E is said to be bounded
from above/below.

Definition 2.6. Suppose X is an ordered set such that every nonempty and bounded
from above subset E ⊂ X has a least upper bound that belongs to X. Then X is
said to have the least upper bound property.

This will occasionally be called the supremum property. The definition of greatest
lower bound property is analogous.

Theorem 2.7. A set X has the least upper bound property if and only if it has the
greatest lower bound property.

Proof. Let X be a set with the least upper bound property. Take any nonempty
subset E ⊂ X that is bounded from below. Let L be the set of all lower bounds of
E. Then L is bounded from above, since we have

a ≤ b for all b ∈ E and for all a ∈ L, (1)
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by the definition of L. Thus L has a least upper bound by the supremum property
of X. Let α = sup L.

If α is not a lower bound for E, then there exists a β ∈ E such that β < α. But
β ∈ E is by (1) an upper bound for L, which contradicts that α is the least upper
bound. Therefore α is a lower bound for E. Since α = sup L ≥ a for every a ∈ L,
then α is the greatest lower bound for E, α = inf E. In particular, inf E exists in X.

We have shown that every set with the least upper bound property also has the
greatest lower bound property. The proof of the converse is almost identical.

Therefore no distinction must be made between the least upper bound and the
greatest lower bound property of a set. We will henceforth for the sake of consistency
choose to speak of the supremum property.

2.2 Groups and fields

In the following we will need to use functions. Hewitt and Stromberg give a complete
description of how a funciton can be defined as a relation, see [HS, p. 9-10]. In this
paper it will suffice to use a more informal definition, included mainly for the purpose
of establishing notation.

Definition 2.8. A function f from a set X to a set Y is a rule that for every x ∈ X

assigns exactly one y ∈ Y , written as f(x) = y.

Sometimes we shall write f : X → Y and x 7→ f(x) to represent the function f .

Definition 2.9. Let A be a set. A binary operation ∗ on A is a function

∗ : A × A → A : (a, b) 7→ a ∗ b.

Onwards, the shorter notation ab will be used interchangeably with a ∗ b in con-
texts where it is clear which operation is being used. We continue with a definition
of our first algebraic structure.

Definition 2.10. Let G be a set and ∗ a binary operation on G. If the operation
satisfies

(i) a(bc) = (ab)c ∀a, b, c ∈ G [associativity];

(ii) ∃e ∈ G such that ae = a, ∀a ∈ G [existence of left identity];
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(iii) ∀a ∈ G, ∃a−1 ∈ G such that a−1a = e for all e as in (ii) [existence of left
inverse];

then < G, ∗ > is called a group. If moreover

(iv) ab = ba ∀a, b ∈ G [commutativity],

then < G, ∗ > is said to be Abelian. In any group G, an element e as in (ii) is called
a left identity in G and an element a−1 as in (iii) is called a left inverse of a.

Remark 2.11. It follows from the definition that a left identity e in a group is unique
and must satisfy ea = ae = a for all a ∈ G. Likewise, a left inverse a−1 is unique
and must satisfy a−1a = aa−1 = e. This is shown in [HS, p. 32-33]. Therefore such
an e ∈ G will be called the identity of G and each such a−1 will be called the inverse
of a.

Definition 2.12. Suppose F is a set with two binary operations + and ·, which we
call addition and multiplicaiton, respectively. Then F is called a field provided that

(i) < F, + > is an Abelian group, with the identity element 0;

(ii) < F \ {0}, · > is an Abelian group;

(iii) a · (b + c) = (a · b) + (a · c) for all a, b, c ∈ F [distributivity].

Notation. In order to avoid unnecessarily lenghty notation, we will from now on
write ab instead of a · b and ab + c instead of (a · b) + c whenever convenient. If
a is an element in a field F then we write −a and a−1 to denote the additive and
multiplicative inverse of a, respectively. We will often write a − b and a

b
instead of

a + (−b) and ab−1.
The rational numbers Q form a field when combined with the conventional oper-

ations of addition and multiplication. For it is clear that 0 and 1 are identities, that
every nonzero rational number has an additive and multiplicative inverse, and that
the rules of associativity, commutativity and distributivity are precisely the rules we
are used to in Q.

Definition 2.13. Let F be a field and an ordered set. If for all x, y, z ∈ F

(i) x < y =⇒ x + z < y + z, and

(ii) x > 0, y > 0 =⇒ xy > 0,
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then F is said to be an ordered field.

Some rules for working with inequalities in ordered fields can be derived directly
from the above definition. We now state the results that will be relevant in the
remainder of this text.

Proposition 2.14. Let F be an ordered field. The following statements are true for
every x, y, z ∈ F .

(i) x > 0 ⇐⇒ −x < 0.

(ii) If y < z then x > 0 =⇒ xy < xz and x < 0 =⇒ xy > xz.

(iii) x ̸= 0 =⇒ xx > 0.

(iv) 0 < x < y =⇒ 0 < y−1 < x−1.

A proof is presented in [WR, p. 8]. We will not write it out, since it is rather
technical and does not aid our discussion.

Theorem 2.15. The field F is ordered if and only if there is a nonempty subset
P ⊂ F such that, with N = {−x : x ∈ P} ⊂ F ,

(i) P ∪ {0} ∪ N = F ;

(ii) P ∩ N = ∅;

(iii) if x, y ∈ P then xy ∈ P and x + y ∈ P .

Theorem 2.15 states an alternate definition of an ordered field. To show the
equivalence, one can argue as follows.
Sketch of a proof. If F is an ordered field with a relation <, then let P = {x ∈
F : x > 0}. Then 2.13(i) and 2.13(ii) imply 2.15(iii) and the other points can be
verified using that x > 0 ⇐⇒ −x < 0 in an ordered field. Conversely, if F is a
field with a subset P as in Theorem 2.15, then a total ordering on F can be defined
by x < y if y − x ∈ P . Then 2.13(ii) follows immediately from 2.15(iii) and 2.13(i)
follows from the fact that y + z − (x + z) = y − x.

The elements x ∈ P , or equivalenlty x > 0, are called positive and the elements
y ∈ N , or y < 0, are called negative. This definition is of course consistent with
the customary meaning of the terms. As might have been expected, the field Q of
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rational numbers is ordered. Moreover, it is actually the smallest ordered field; see
for instance [HS, p. 34-35]. Even though the integers Z do not form a field, we
will continue to speak of positive and negative integers whenever it will be useful.
Positive and negative integers satisfy all of the above rules which can applied to
integers.

Definition 2.16. An ordered field F is said to have to Archimedean property if for
all x, y ∈ F with x > 0 there exists a positive integer n such that nx > y.

Laslty, we recall what is meant by the absolute value of an element in an ordered
field and state a well-known result which will be useful for dealing with absolute
values.

Definition 2.17. Let F be an ordered field and let a ∈ F . The absolute value of a,
denoted by |a|, is defined as

|a| =





a a ≥ 0

−a a < 0
.

Theorem 2.18 (Triangle inequality). If F is an ordered field and x, y ∈ F , then

|a + b| ≤ |a| + |b|.

2.3 Isomorphisms

It is often the case that we want to compare fields with eachother. In particular,
sometimes we wish to determine whether two fields are "the same". Examinining
whether they both contain exactly the same elements is often not practical and not
particularily enlightening. For if an element in a field F is renamed to create a new
field, then the new field no longer consists of the same elements as F . But clearly the
elements in both fields behave identically under addition, multiplication and order,
since definitions 2.12 and 2.13 are based only on relations between elements, not on
how the elements are represented. That is, two ordered fields F1 and F2 cannot be
distinguished as algebraic structures if the elements in F1 are the elements in F2

renamed. We will make use of functions to formalize the idea of renaming elements.

Definition 2.19. Let X and Y be sets and f : X → Y a function. Then f is said
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to be injective or one-to-one if

y1 ̸= y2 =⇒ f(y1) ̸= f(y2),

and f is said to be surjective or onto if

∀y ∈ Y, ∃x ∈ X such that y = f(x).

If f is both injective and surjective, then f is called bijective.

Definition 2.20. Let X and Y be ordered sets and f : X → Y a function. Then f

is said to be order-preserving if for every x ∈ X

x > 0 ⇐⇒ f(x) > 0.

Definition 2.21. Let F1 and F2 be fields. If φ : F1 → F2 is a bijective mapping
such that

φ(x + y) = φ(x) + φ(y),

φ(xy) = φ(x)φ(y),

then φ is called an isomorphism. If such an φ exists, we say that F1 and F2 are
isomorphic and write F1 ∼= F2.

If F1 and F2 are ordered fields and if there exists an order-preserving isomorphism
φ between them, then by the definitions F1 and F2 have the same structure. In
particular, φ sends the additive and multiplicative inverses of F1 to the additive and
multiplicative inverses of F2, respectively.
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Constructing the reals

Ever since the discovery of numbers which could not be represented as ratios mathe-
maticians have tried to define the irrationals. The first complete constructions of the
real numbers were published in the second half of the 19th century. Since then, many
alternate constructions have been proposed. A summary of many of the known con-
structions has been provided in 2015 by Ittay Weiss, in his article The real numbers
- a survey of constructions[]. In this paper we will only consider two different con-
structions, one intuitive construction by means of infinite decimal expansions, and
another, perhaps less intuitive, but more elegent and far more common construction
due to the German mathematician Georg Cantor (1845-1918).

3.1 Infinite decimal expansions

Encountering the real numbers for the first time, they are likely introduced as num-
bers whose decimal expansions need not be finite. This is a natural extension of the
rational numbers and allows for using the same operations of addition and multipli-
cation. Each infinite decimal expansion can be approximated arbitrarily well by a
terminating decimal expansion, thus each sum or product of two real numbers can
be approximated arbitrarily well by a sum or product of rational numbers. Depend-
ing on the desired accuracy of the result, the real number π = 3.14159 . . . may be
rounded to π ≈ 3, π ≈ 3.14 or even a number so close to π that a computer won’t
be able to tell them apart. While this is useful and sufficient for many applications,
approximating real numbers is in essence reducing ourselves to rational numbers.

In the following we shall formalize the idea of infinite decimal expansions and
define arithmetics that will be consistent with, yet not limited to, operations on
rational numbers. The presented construction, along with most proofs, is largely
inspired by [KK], wherein a similar practical construction is presented. We begin
with a definition of the elements.

Definition 3.1. An infinite decimal expansion is a sequence A = (an)n≥0 in Z such
that a0 ∈ Z and 0 ≤ an ≤ 9 for all n ≥ 1. If for some (an) there is an N ∈ N such
that N = 0 or aN ̸= 9, and an = 9 for n > N , then we define

(a0, a1, . . . , aN , aN+1, aN+2, . . .) = (a0, a1, . . . , aN + 1, 0, 0, . . .). (2)
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Let Rd be the set of all infinite decimal expansions.

Notation.

(i) The reader may be more familiar with expressing the elements of Rd as (a0, a1, a2, . . .) =
a0.a1a2 . . ., we shall use this notation for non-negative a0 whenever convenient.
However, for a0 < 0 we will think of the sequence (a0, a1, a2, . . .) as the num-
ber ((a0 + 1) + 0.a1a2 . . .). Thus −0.333 . . . is represented by (−1, 6, 6, 6, . . .),
−3.141 . . . by (−4, 8, 5, 8, . . .) and so on.

(ii) Given an A ∈ Rd where am, . . . , ak, m ≤ k, is repeated for the rest of the
sequence, we write

(a0, a1, ..., am−1, am, . . . , ak, am, . . .) = (a0, a1, ..., am−1, am, . . . , ak).

For instance, 0.171717 . . . = 0.17. In particular, (2) may now be written as

(a0, a1, . . . , aN , 9̄) = (a0, a1, . . . , aN + 1, 0̄).

Definition 3.2. Let < be the relation on Rd defined by

A < B ⇐⇒ ai < bi,

where i is the smallest integer such that ai ̸= bi. If ai = bi for all i ∈ N, we write
A = B. If either A < B or A = B, we write A ≤ B.

Note that by Definition 3.1, 0.9̄ and 1.0̄ represent the same element. To avoid
any disambiguity, onwards we shall always choose to use the representation with
repeating nines when dealing with such elements of Rd.

Lemma 3.3. The relation less or equal to on Rd, denoted ≤, is a total ordering.

Proof. Reflexivity is clear, since A = A for all A ∈ Rd. If A ≤ B and B ≤ A then
ai = bi for all i ∈ N, i.e. A = B and it follows that the relation is antisymmetric. If
A ≤ B and B ≤ C and either A = B or B = C, then obviously A ≤ C. Suppose
A < B and B < C. Then ai < bi for some i such that ak = bk for all k < i, and if
j is the smallest integer such that bj < cj, then p = min(i, j) is the smallest integer
such that ap ̸= cp, and we have ap < cp. Thus the relation is transitive. Lastly,
every A ∈ Rd is of the form (an), thus it can be compared with every other element
of Rd, therefore trichotomy holds.
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Theorem 3.4. Every nonempty subset of Rd which is bounded from above has a
least upper bound in Rd.

Proof. Let X ⊂ Rd be nonempty and let U = (un) ∈ Rd be an upper bound for E. If
U ∈ E then we are done. Suppose U /∈ E. For every A ∈ E we have a0 ≤ u0. Note
that (maxA∈E a0, 9̄) ∈ Rd must also be an upper bound for E, since it’s first element
is greater than or equal to the first element of every A ∈ E. Define s0 = maxA∈E a0.
Next define sn for n ≥ 1 inductively as the greatest an in elements A ∈ E of the
form (s0, . . . , sn−1, an, . . .). The sequence S = (sn) ∈ Rd defined in such a manner
must be an upper bound of E, since si ≥ ai for all A ∈ E and i ∈ N.
Now suppose that U < S, i.e. there is a k ∈ N such that uk < sk and ui = si for all
i < k. By definition of S, there is some element A′ = (s0, . . . , sk, ak+1, ak+2, . . .) ∈ E.
Then, clearly, U < A′, which contradicts that U is an upper bound for E. Thus S

is the lowest upper bound, S = sup E.

Using the supremum property of Rd we can now proceed to define addition and
multiplication on the set. However, we will first consider the rational number field
Q and some of its connections to Rd. We will assume without proof that each p

q
∈ Q

has a unique corresponding decimal representation that either terminates or after
some point repeats digits.

Proposition 3.5. There exists a one-to-one order-preserving mapping φ : Q → Rd.
Moreover, φ(Q) is dense in Rd.

The mapping which we have in mind is that which sends every rational number
to its decimal expansion. If the expansion is finite, simply add zeros to make it
infinite. For negative rationals we need to make a minor correction due to the
earlier remark that −1.33 . . . should correspond to (−2, 6, 6, . . .) etc.. With such a
choice of φ it becomes clear that the mapping is one-to-one and order-preserving,
for the order on Rd is defined in the same manner that we would define an order
on decimal expansions of rationals. Finally, it follows that φ(Q) is dense in Rd,
since two rationals can be chosen arbitrarily large or small and arbitrarily close to
eachother. Therefore the same holds for φ(Q), since φ is order-preserving. A formal
proof would not provide much insight and will therefore not be presented.

This result allows us to regard Q as a subset of Rd. Therefore we may use our
order on Rd to compare elements within and between the sets Q and Rd.

Lemma 3.6. Let A be an element of Rd. Then there exist An, An ∈ Q, for n ≥ 1,
such that
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(i) Am ≤ An ≤ A ≤ An ≤ Am whenever m < n;

(ii) An − An ≤ 10−n;

(iii) sup An = inf An = A.

Sketch of a proof. Each such An and An is a rational approximation of A ∈
Rd. One way to find a lower approximation An would be to cut off the decimal
expansion of A after the nth decimal place. Then An can be obtained by letting
An = An + 10−n. With this choice of An and An, the result should be clear: 3.6(i)
states that each An and An is in fact a lower, respectively upper approximation of
A, and that cutting off the decimal expansion of A at place n cannot yield a worse
approximation than cutting it off earlier, at place m < n. Next, (ii) states that A

can be approximated arbitrarily well by An and An, if only n is chosen large enough.
Finally, the lower/upper approximations of A are bounded from above/below by A,
and so sup An and inf An exist in Rd. In fact they must be equal because of 3.6(ii),
and sup An = inf An = A because of (i).

Remark 3.7. It is to be understood that when performing arithmetics on the rational
elements An and An, the operations used are addition and multiplication in Q.

By Lemma 3.6(i) we have An + Bn ≤ An + Bn ≤ A1 + B1, so that An + Bn

is bounded from above for all n ≥ 1. Since An + Bn ∈ Q, the rational sum is
an element in Rd and by the supremum property, sup(An + Bn) exists. A similar
argument shows that inf(An+Bn) exists. In addition, we have An+Bn ≤ An+Bn by
3.6(i)] and (An +Bn)−(An +Bn) ≤ 2·10−n by 3.6(ii)], which implies sup(An +Bn) =
inf(An + Bn). Thus the following definition is legitimized.

Definition 3.8. Let A, B ∈ Rd. Define addition on Rd by

A + B = sup(An + Bn) = inf(An + Bn).

Lemma 3.9. Addition on Rd is commutative and satisfies, for A, B, C ∈ Rd,

A < B =⇒ A + C ≤ B + C. (3)

Proof. Take A, B ∈ Rd. Commutativity follows immediately from the definition of
addition on Rd and commutativity of rational numbers. That is, A + B = B + A.
Suppose A < B. Then sup An < sup Bn, and the lower approximations must differ
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for sufficiently large n, hence there exists an N ∈ N such that An < Bn for n ≥ N .
For any C ∈ Rd we then have An + Cn < Bn + Cn whenever n ≥ N . Thus
A + C = sup(An + Cn) ≤ sup(Bn + Cn) = B + C and we are done.

The Lemma states a weaker version of that which is required for a field to be
ordered, by Definition 2.13(i). We will later show strict inequaliy in (3).

Theorem 3.10. The set Rd together with addition as defined above forms an Abelian
group.

Proof. Let A, B, C ∈ Rd. For any n ≥ 1 we have

Bn + Cn ≥ inf(Bk + Cn) = B + C = sup(Bk + Ck) ≥ Bn + Cn.

Hence it follows, by (3), that A + (B + C) ≥ An + (B + C) ≥ An + Bn + Cn.
Similiarily, A + (B + C) ≤ An + Bn + Cn for all n. By Lemma 3.6 (ii),

An + Bn + Cn − (An + Bn + Cn) ≤ 3 · 10−n,

thus sup(An + Bn + Cn) = inf(An + Bn + Cn) = A + (B + C). The proof of
(A+B)+C = sup(An+Bn+Cn) is identical. It follows that (A+B)+C = A+(B+C).

We have already shown that Rd is Abelian [Lemma 3.9]. It is also clear that
0 ∈ Rd is the additive identity, since A + 0 = 0 + A = sup(0 + An) = sup An = A.

To show that A ∈ Rd has an additive inverse, first we observe that since An ≤
Am for all positive n and m, then −An ≥ −Am for all positive n and m. This
follows from Proposition 2.14 and the fact that Q is an ordered field. Now, if we let
A′ = sup(−Ak) = inf(−Ak), then using (3) yields An − Am ≥ A + A′ ≥ An − Am for
all positive n and m. In particular, for n = m this means 10−n ≥ A + A′ ≥ −10−n,
recalling that An −An ≤ 10−n. The equality holds for all positive n, hence it follows
that A + A′ = sup(−10−n) = inf(10−n) = 0 and it is clear that each A ∈ Rd has an
additive inverse −A = A′ = sup(−An).

Similiarily to addition in Q, it is the case that multiplication of elements An, Bn ∈
Q yields a rational An ·Bn ≤ A1 ·B1 for all n. Therefore sup(An ·Bn) exists in Rd, and
may be used to define multiplication on Rd. As previously with addition, it can be
shown that sup(An ·Bn) = inf(An ·Bn). Also, note that by (3), A < 0 ⇐⇒ 0 < −A,
where strict inequality follows from A = 0 ⇐⇒ −A = 0.
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Definition 3.11. Let f : Rd × Rd → Rd be given by f(A, B) = sup(An · Bn) =
inf(An · Bn). Define multiplication on Rd by

A · B =





f(A, B) A ≥ 0, B ≥ 0

−f(−A, B) A < 0, B ≥ 0

−f(A, −B) A ≥ 0, B < 0

f(−A, −B) A < 0, B < 0

.

Remark 3.12. Division into different cases is done to ensure that we only need to
consider supremum for non-negative elements of Rd. Adding negative signs in front
of the two middle cases is needed for Proposition 2.14(ii) to hold.

Theorem 3.13. The set Rd with operations defined by 3.8 and 3.11 is a totally
ordered field with the least upper bound property.

Proof. We have already shown that Rd is an ordered set with the least upper bound
property and that < Rd, + > forms an Abelian group. It remains to verify that

(a) < Rd, · > is an Abelian group,

(b) multiplication is distributive over addition,

(c) A < B =⇒ A + C < A + C for all A, B, C ∈ Rd,

(d) A > 0, B > 0 =⇒ AB > 0 for all A, B ∈ Rd.

(a). Commutativity of multiplication on Rd follows from commutativity of mul-
tiplication on Q. Also, it is clear that A · 1 = 1 · A = A for all A ∈ Rd. If either
A = 0, B = 0 or C = 0, then A(BC) = 0 = (AB)C. Suppose A > 0, B > 0
and C > 0. Then A < B =⇒ AC < BC, proof is similar to the proof of
the second part of Lemma 3.9. Now, since BC = sup(BnCn) > 0, we obtain
A(BC) ≥ An(BC) ≥ AnBnCn and A(BC) ≤ AnBnCn for all positive n. The same
steps for (AB)C show that AnBnCn ≥ (AB)C ≥ AnBnCn for all positive n. It
follows that

A(BC) = sup(AnBnCn) = (AB)C.

The other cases are by definition reduced to the case A ≥ 0, B ≥ 0, C ≥ 0. Multi-
plication on Rd is thus associative.
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To find an inverse for A > 0, first note that An ≤ An ⇐⇒ (An)−1 ≤ (An)−1,
which gives (An)−1 ≤ (A1)−1. Hence A′ := sup((An)−1) exists and (An)−1 ≤ A′ ≤
(An)−1 for all n. This gives

An(An)−1 ≥ AnA′ ≥ AA′ ≥ AnA′ ≥ An(An)−1

for all n. But An − An ≤ 10−n implies

(An)−1 ≤ 1
An − 10−n

and (An)−1 ≥ 1
An + 10−n

,

therefore we have

1 + 10−n

A1 − 10−n
≥ 1 + 10−n

An − 10−n
= An

An − 10−n
≥ An(An)−1 ≥ AA′

≥ An(An)−1 ≥ An

An + 10−n
= 1 − 10−n

An + 10−n
≥ 1 − 10−n

A1 + 10−n

for all n. Since
10−n

A1 ± 10−n
−→ 0, n −→ ∞,

we must have AA′ = 1, so that A−1 = A′ = sup((An)−1) is the inverse of A. If
A < 0, similar calculations show that the inverse is given by A−1 = − sup(−An)−1.

(b). The proof is much like the proof for associativity and leads to the conclusion

AB + AC = sup(AnBn + AnCn) = A(B + C).

We will not write out the details.
(c). In any Abelian group we have A + C = B + C =⇒ A = B. The result now

follows from (3).
(d). If A > 0, B > 0 then An > 0, Bn > 0 for all n, which means that AB =

sup(AnBn) > 0.

This is our final result about the properties of Rd. We took the effort to prove
it with moderate rigor because it will be central to our conclusion in Section 3.3.
But before that, let us for a moment set aside the infinite decimal expansions, and
instead look into a more abstract extension of the rational numbers.
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3.2 Cantor’s construction

Cantor was one of the first to present a rigorous construction of the real numbers,
in which he used Cauchy sequences. This section will give a description of Cantor’s
construction following [HS, p. 38-46]. Several proofs will be omitted in this paper,
instead we suggest the interested reader to study the proofs presented in [HS]. The
construction in essence fills up the holes in Q, thus creating a new field which contains
all the rationals, but also has a new, important property. This property will be
explained and discussed in some depth after the construction has been presented.

Definition 3.14. Let F be an ordered field. A Cauchy sequence in F is a sequence
(an) in F such that for every ϵ ∈ F, ϵ > 0 there is an N(ϵ) ∈ N such that i, j ≥ N

implies |ai − aj| < ϵ.

Proposition 3.15. Every Cauchy sequence (an) in an ordered field F is bounded,
i.e. there exists an M ∈ F such that −M < an < M for all n ∈ N.

Proof. If (an) is Cauchy and we take ϵ = 1 > 0, then there exits an N(1) ∈ N such
that |aN − an| < 1 for all n ≥ N . Take M = maxn≤N(|an|) + 1. Then

|an| ≤ |an − aN | + |aN | < 1 + max
n≤N

(|an|) = M for all n ≥ N,

and clearly |an| < M for all n < N . Hence |an| < M for all n ∈ N.

Definition 3.16. Suppose (an) is a Cauchy sequence in an ordered field F . Define
[(an)] as the set of all Cauchy sequences (bn) in F such that the sequence (an − bn)
converges to 0. Let Rc be the set of all [(an)] such that (an) is a Cauchy sequence
in Q.

Note that the representation for a given element in Rc is not unique. In fact,
if (bn) ∈ [(an)], then [(an)] = [(bn)]. This also implies that if [(an)] ̸= [(bn)] then
[(an)] ∩ [(bn)] = ∅.

Notation. For any q ∈ Q, by q̄ we mean the element [(q, q, q, . . .)] of Rc.

Definition 3.17. Let [(an)], [(bn)] be elements of Rc. Define addition,+ and multiplication,·
in Rc by

[(an)] + [(bn)] = [(an + bn)]

[(an)] · [(bn)] = [(an · bn)].
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Theorem 3.18. Addition and multiplicaiton in Rc are binary operations. The set
Rc together with addition and multiplicaiton is a field.

We will accept this theorem without a proof. Most of the requirements for a field
do not require lenghty proofs, as they follow from properties of rational numbers.
As expected, the identities are 0̄ ∈ Rc and 1̄ ∈ Rc. However, not all the field
requirements are trivial. For a proof, see for instance [HS, p. 40f.].

Theorem 3.19. The field Rc is totally ordered.

The requirements for an ordered field can be verified by standard calculations if
we define an order on Rc by setting [(an)] > 0 to mean that there is some (bn) ∈ [(an)]
such that bn > 0 for all n.

Lemma 3.20. The mapping φ : Q → Rc defined by φ(q) = q̄ is one-to-one and
order preserving.

Proof. It is clear that φ is well defined, since [(q, q, q, . . .)] is well defined. Let p, q ∈ Q
be such that p ̸= q. Then p − q = e > 0 and p̄ − q̄ = ē. But ē does not converge to
0, therefore φ(p) = p̄ ̸= q̄ = φ(q). Thus φ is one-to-one.

If q ∈ Q and q > 0, then φ(q) contains the sequence (q, q, q, . . .) containing only
positive elements of Q. Hence φ(q) > 0. Similarily, if q < 0 then φ(q) < 0. It follows
that φ is order preserving.

Theorem 3.21. Every Cauchy sequence in Rc converges to some element r ∈ Rc.

Proof. Let (xn) be a Cauchy sequence in Rc. By 3.15, the sequence is bounded.
Let M ∈ Rc be such that |xn| < M − 1 for all n, and take y1, z1 ∈ Q such that
−M ≤ ȳ1 ≤ −M + 1 and M − 1 ≤ z̄1 ≤ M . Hence

ȳ1 ≤ xn ≤ z̄1

for all n. For i ≥ 1, let
ξ̄i = ȳi + z̄i

2 .

If ȳi ≤ xn ≤ ξ̄i for infinitely many indices n, then let ȳi+1 = ȳi and z̄i+1 = ξ̄i.
Otherwise, let ȳi+1 = ξ̄i and z̄i+1 = z̄i. By this construction, for every i ≥ 1 we have
that

0 ≤ z̄i − ȳi ≤ 2−i+1M, (4)
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and
ȳi ≤ xn ≤ z̄i

for infinitely many indices n. In particular, for every N ∈ N there exists an n ≥ N

such that ȳi ≤ xn ≤ z̄i for all i ≥ 1.
Let e > 0 be in Q. It follows from (4) that |ȳi−ȳj| < 2−N+1M < ē if N > 2M

ē
and

i, j ≥ N . This implies |yi − yj| < e for i, j ≥ N , since there is an order preserving
one-to-one mapping from Q to Rc. Therefore (yn) is a Cauchy sequence and we may
define r = [(yn)] ∈ Rc. We now wish to show that (xn) converges to r.

Let ϵ > 0 be in Rc. Then there is an N( ϵ
2) ∈ N such that |xn − xm| < ϵ

2 for all
n, m ≥ N . Moreover, ȳi ≤ r ≤ z̄i and there exists an n ≥ N such that ȳi ≤ xn ≤ z̄i

for all i ≥ 1. Thus |xn − r| < 2−i+1M < ϵ
2 if we choose i > 4M

ϵ
. Therefore, for all

m ≥ N( ϵ
2) we have

|xm − r| ≤ |xm − xn| + |xn − r| <
ϵ

2 + ϵ

2 = ϵ.

Theorem 3.22. The field Rc has the least upper bound property.

Proof. Let E be a nonempty subset of Rc that is bounded from above. Take an
element x1 ∈ E and an upper bound u1 ∈ Rc of E. For i ≥ 1, define

ξi = xi + ui

2 .

If ξi ∈ E, then let xi+1 = ξi and ui+1 = ui. Otherwise, let xi+1 = xi and ui+1 = ξi.
Note that xi ≤ ui and ui −xi = 2−i+1(u1 −x1) for all i ≥ 1. Therefore |xi −xj| ≤

2−N+1(u1 − x1) for all i, j ≥ N . For every ϵ > 0 in Rc we then have |xi − xj| < ϵ if
i, j ≥ N , provided that N > 2(u1−x1)

ϵ
. The same holds for (un). Thus the sequences

(un) and (xn) are Cauchy, and by Theorem 3.21, the sequences converge to some u

and x in Rc, respectively. Further, it follows from the construction of the sequences
that xi ≤ x and u ≤ ui for every i ≥ 1. Therefore |x−ui| ≤ |xi−ui| = 2−i+1(u1−x1).
By the same argument as previously, it follows that (un) converges to x, so that
u = x.

Since every ui is an upper bound, u is also an upper bound. For if u is not an
upper bound, then there exists some s ∈ E such that u < s ≤ ui for all i ≥ 1,
which contradicts that (un) converges to u. Similarily, there cannot exist a lower
upper bound than u = x since every xi is in E, so the existence of a lower upper
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bound than x would contradict the fact that (xn) converges to x. It follows that
x = u = sup E.

Proofs of Theorems 3.21 and 3.22 are mostly inspired by [CP, p. 18-19], along
with certain ideas from [HS, p.41-43]. We will conclude this section by pointing out
that the described construction is but a special case of the more general construction
presented by Hewitt and Stromberg. Following their steps, we have shown that Rc

contains Q, is ordered and has the least upper bound property. However, the same
steps may be applied to any ordered field F , creating a completion F̄ which can
be shown to be Archimedean ordered provided that F is Archimedean ordered. In
such F̄ , every Cauchy sequence will converge. Furthermore, it can be shown that
any two completions F̄1, F̄2 of Archimedean ordered fields have the same structure,
i.e. they are indistinguishable as algebraic structures. A version of this result will
be formulated and exploited in the following section.

3.3 Unification of definitions

To show that Rd and Rc represent the same field one needs to show that there
exists an order-preserving isomorphism between the two. An isomorphism can be
constructed explicitly by sending each (an) ∈ Rd to [(a0, a0.a1, a0.a1a2, . . .)] ∈ Rc,
and then verifying the function’s properties. However, this section will present a
different approach. The existence of such an isomorphism between Rd and Rc will
be asserted by a more general result about all ordered fields with the least upper
bound property.

Definition 3.23. Let F be an ordered field with multiplicative identity 1. If n is an
integer then the element n ∈ F is defined as the sum of n multiplicative identities
and −n is defined as the sum of n additive inverses of 1. If an element r ∈ F is of
the form nm−1, where n, m ∈ Z and m ̸= 0, then r is called a fraction.

Lemma 3.24. Suppose that F is an ordered field with the least upper bound property.
Then F has the Archimedean property and for all x, y ∈ F such that x < y there
exists a fraction n

m
∈ F such that

x <
n

m
< y.

Proof. (Based on [WR, p. 9]). Let x, y ∈ F and x > 0. Suppose y ≥ nx for all
positive integers n. Then the set S = {xn : n ∈ Z} is bounded from above and
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s := sup S exists in F . Further, x > 0 implies −x < 0 so that s − x < s − 0 = s.
Therefore s − x is not an upper bound of S, and there exists some positive integer
n such that s − x < nx. But s − x < nx implies s < nx + x = (n + 1)x. Clearly,
(n + 1) is a poitive integer, which contradicts that s = sup S. Hence our assumption
was wrong, and F is Archimedean.

Now, if x < y then y − x > 0. By the Archimedean property, there exists a
positive integer m such that

m(y − x) > 1 (5)

and a positive integer k such that k > mx and −k < mx. The set of all such k is
bounded from below by 0, hence it has a least element, call it k′. If k′ − 1 ≤ nx, let
n = k′. Otherwise, let n = −k′. Then we have n − 1 ≤ nx < n, and together with
(5) gives

mx < n ≤ mx + 1 < my.

But m is positive, so this gives
x <

n

m
< y.

Theorem 3.25. Suppose that F1 and F2 are ordered fields with the least upper bound
property. Then there exists an order-preserving isomorphism φ : F1 → F2.

Proof. Denote the additive and multiplicative identities in Fi by 0i and 1i, for i ∈
{1, 2}. Let φ(01) = 02 and φ(11) = 12. By n1 and n2 we mean the sum of n

multiplicative identities in F1 and F2, respectively. For fractions n1
m1

∈ F1, define

φ( n1

m1
) = n2

m2
.

For all other x ∈ F1, define φ(x) = sup{φ( n1
m1

) : n1
m1

< x}. Then φ is defined for
every element of F1 and the definition is unambiguous because an r ∈ F1 is either a
fraction or it is not. We will from now on drop the subscripts when it is clear which
field’s elements we mean.

If r = 0 then φ(r) = 0. If r = n
m

> 0 then either both n and m are positive, or
they are both negative, by Proposition 2.14. Then both φ(n) = n and φ(m) = m

are positive or both negative. Thus n2
m2

> 0, so φ sends positive fractions to positive
fractions. Similarily, φ send negative fractions to negative fractions, i.e. φ preserves
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order on fractions. By this fact, we may write

φ(x) = sup{φ( n1

m1
) : n1

m1
≤ x}

for all x ∈ F1. Now, if x is any positive element in F1, then there exists some fraction
r ∈ F1 such that 0 < r < x, therefore 0 < r < φ(x). The same argument holds for
negative x ∈ F1. It follows that φ preserves order on all elements of F1.

Let x, y ∈ F1 such that x ̸= y. Suppose without loss of generality that x < y.
Then there exists a fraction r such that x < r < y. Hence φ(x) < φ(r) ≤ φ(y) and
it is clear that φ(x) ̸= φ(y). Injectivity follows.

Next, suppose χ is in F2. Then χ = sup{ n
m

: n
m

≤ χ}. But the set of fractions
n2
m2

in F2 which are less than χ is bounded, therefore the set of fractions E =
{ n1

m1
: φ( n1

m1
) ≤ χ} is bounded. If we let x = sup E, then φ(x) = χ. Surjectivity

follows.
If x, y ∈ F1 then

φ(x+y) = sup{φ( n1

m1
) : n1

m1
≤ x+y} = sup{φ( n1

m1
) : n1

m1
≤ x}+sup{φ( n1

m1
) : n1

m1
≤ y}

= φ(x) + φ(y);

and similarily φ(xy) = φ(x)φ(y).

Now the following definition is legitimized.

Definition 3.26. The real number field, denoted R, is any ordered field with the
least upper bound property.

Theorem 3.27. The field of real numbers R is algebraically and order isomorphic
with Rd and Rc, respectively.

Proof. The result follows immediately from Theroems 3.13, 3.22 and 3.25.

Corollary 3.28. There is an order-preserving isomorphism between Rd and Rc.

Thus it is clear that the elements of Rd are the same as the elements of Rc,
merely renamed. We may therefore view them as the same field, Rd

∼= Rc
∼= R.
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Conclusions

Much is to be said about the impact of real numbers on mathematics. The concepts
of continuous functions, derivatives and integrals in R all rely on the least upper
bound property, which differentiates R from Q.

The real numbers are also used in dealing with complex numbers, in fact it can
be shown that C is isomorphic to R × R, or simply defined as R × R with adequate
operations, see for instance [BMPS, p. 2] or [WR, p. 12]. By the Fundamental The-
orem of Algebra, every polynomial of degree n in C has n complex roots, see [BMPS,
p. 41]. The complex field is then a final number system which no longer needs to be
expanded in search for roots for polynomials. Because of the isomorphism between
C and R × R, many of the properties of R also hold in the complex number field.

Viewing real numbers as infinite decimal expansions might not have many prac-
tical uses, but it is nonetheless worth noting that the decimal expansions give a
perfectly valid description of R. Because of this, infinite decimal expansions need
not be abandonded and forgotten when we speak of real numbers more generally
and rigorously. Thus the decimal expansions may still serve as a tool for creating
understanding whenever they are likely to give more insight than abstract represen-
tations.

The second construction which we considered has another strenght: it is more
general. Not only can one complete the field Q of rational numbers to obtain R,
but the same can be done for any ordered field, as is shown in [HS]. Furthermore, a
completion by means of Cauchy sequences actually does not require that we begin
with a field. It is enough to have a set M with a notion of distance between its
elements, i.e. a metric space; see for instance [HN, p. 2-8] on metric spaces. Then,
instead of using the absolute value, which is defined in fields, we may use the distance
function to define Cauchy sequences in M . Similar steps to those presented in
Section 3.2 then lead to the creation of a complete metric space M , an outline of
such a completion is described in [BN]. Complete metric spaces have applications
in computer security and engineering, among others [NO].
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