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Abstract. In this paper, we discuss key characteristics of fractals, we introduce

a self-similar structure with the help of iterated function systems and Hausdorff
dimension. We show that the attractor of an iterated function system is unique

and then present the theory of Hausdorff measure, which provides a general
notion of the size of a subset of Rn. The main theorem provides a simple

formula to compute the Hausdorff dimension of a self-similar set where the

open set condition holds.

Contents

1. Introduction 2
2. Similarity mappings 2
3. Iterated Function Systems 3
3.1. Example: The middle forth Cantor set 4
3.2. Hausdorff metric 5
3.3. Unique attractors 6
4. Outer Measure 7
5. Hausdorff Measure 8
5.1. Some properties of the Hausdorff measure 9
6. Hausdorff dimension 10
6.1. Integer Hausdorff dimension 11
6.2. The non-integer Hausdorff dimension of the von Koch curve 11
6.3. Mass distribution 13
7. Hausdorff dimension of self-similar sets 13
7.1. Constructing the measure 14
7.2. Main theorem on the Hausdorff dimension of self-similar sets 16
7.3. Examples of determining the Hausdorff dimension 18
References 19

To see a world in a grain of sand,
And heaven in a wild flower.

Hold infinity in the palm of your hand,
And eternity in an hour.

William Blake

Date: January 19, 2022.
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1. Introduction

Fractals are geometric figures where the smaller parts are in a way similar to
the whole. Those similar patterns occur often in nature from the shape of immense
spiral galaxies, to the pattern of a hurricane, to little eddies in a stream.

For a long time fractals were considered too complicated geometric shapes to
mathematically analyze, since the classical mathematical tools available were not
helpful with rough curves and surfaces. Until Mandelbrot finally put it in words in
his book The Fractal Geometry of Nature in the 70’s, see [Man82]. Mandelbrot was
appreciated for taking the first broad attempt to investigate the ubiquitous notion
of roughness. Ever since the science of fractals started to expand in mathematical
foundations and applications in a variety of fields, like technology, medicine, finance,
and computer science. Mandelbrot proposed over time multiple definitions of fractals,
that later on turned out to be too restrictive, as they exclude interesting shapes
that ought to be considered a fractal. At last he settled on to use a fractal without
a pedantic definition [Edg07].

However, fractals have in common multiple properties, so when we refer to a set
F as a fractal, we will typically have the following in mind.

• F has a fine structure, i.e. details on arbitrary small scales.
• F is too irregular to be described with the language of traditional math-

ematics. For example, the set F doesn’t necessarily satisfy some simple
geometric condition, nor it is the set of solutions for any simple equation.
• Often F has some form of self-similarity, could be determinant or statistical.
• Usually, the ‘fractal dimension’ of F is greater than its topological dimension.
• Although F has an intricate detailed structure, often F is defined in a simple

way, perhaps by a recursive procedure.

In this work we use similarity mappings in form of contractions to define self similar
sets and iterated function systems. Then we show the uniqueness property of the
attractor for the iterated function system. We illustrate these concepts with the
help of the middle fourth Cantor set example.

Of the variety of ‘fractal dimension’, we here define the Hausdorff measure and
dimension of subsets of Rn, to describe the roughness of the fractal. We visualize
the non-integer dimension with the help of the von Koch curve and then calculate
the dimension of this set.

We will see that it is often hard to estimate a lower and an upper bound for the
dimension of a fractal set. The main theorem of this work solves this by providing a
simple formula to calculate the dimension of a self-similar set for which the open
set condition holds. To prove the main theorem we use all tools we introduced
along the way. We take a closer look on the process of estimating the bounds of the
dimension, through defining an outer measure on our fractal set.

The main resource in writing this bachelor thesis has been Falconer’s Fractal
Geometry [Fal04]. Thereby, the general approach and much content is based on
this book. However, this thesis covers details concerning questions about measure
theory that Falconer glosses over. A relevant source has been [Eij18].

The figures we use come from [Fal04] except for the middle fourth Cantor set,
which is an edited version from the public domain.

2. Similarity mappings

When we see a fractal, the first thing we notice is how a certain geometrical shape
is being repeated, in variety of sizes. In this thesis, we use contraction mappings
from the set to its self, in order to describe the self similarity property of the fractal
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set. We start by introducing the following definitions and then we build on them.
Throughout, let D be a closed subset of Rn.

Definition 2.0.1. A mapping S : D → D is called a contraction on D if there is a
number c with 0 < c < 1 such that

|S(x)− S(y)| ≤ c|x− y| ∀x, y ∈ D.

The scaling factor c is called the ratio of S. Clearly, contractions are continuous
mappings.

Definition 2.0.2. If in a contraction S on D we have

|S(x)− S(y)| = c|x− y| ∀x, y ∈ D,
then the mapping is called a similarity.

A similarity S transform sets into geometrically similar sets, in the sense that
the map preserves angels. So in the case of the triangle formed by the points
{x, y, z} ⊆ D, with sides x′ = |x− y|, y′ = |y− z|, z′ = |z − x|, we apply a similarity
S to {x, y, z} and obtain the points {S(x), S(y), S(z)} ⊆ D. The triangle formed by
these points has sides of length cx′, cy′, cz′. The corresponding triangle is similar,
which means the angles are the same.

Definition 2.0.3. The diameter of a set U is defined as

|U | = sup{|x− y| : x, y ∈ U}.

We define |∅| = 0.

Lemma 2.0.4. If S is a similarity with ratio c > 0, and U is a non-empty subset
of Rn, then

|S(U)| = c|U |.

Proof. By the definition of the diameter and the definition of similarity, it follows

|S(U)| = sup{|a− b| : a, b ∈ S(U)}
= sup{|S(x)− S(y)| : x, y ∈ U}
= sup{c|x− y| : x, y ∈ U}
= c sup{|x− y| : x, y ∈ U}
= c|U |. �

3. Iterated Function Systems

In this section we look at finite collections of contractions, which are known as
iterated function systems or IFS. Their fundamental property is that they determine
a unique set called the attractor for the IFS. The attractor of an IFS is usually a
fractal. We rely on attractors and their property in the proof of the main result.

Definition 3.0.1. A finite family of contractions {S1, S2, . . . , Sm} with m ≥ 2 is
called iterated function system.

Definition 3.0.2. An attractor (or invariant set) for the IFS {S1, . . . , Sm} is a
non-empty compact subset F of D such that

F =

m⋃

i=1

Si(F ).
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Definition 3.0.3. Let S denote the class of all non-empty compact subsets of
D ⊆ Rn, and let the IFS {S1, . . . , Sm} be given. We define the corresponding
transformation S on S by

S(E) =
m⋃

i=1

Si(E),

for any set E in S.

Note that sets in S are transformed by S into other sets in S, as shown in the
proof of Theorem 3.3.1. By using a transformation we can express the attractor of
an IFS as an element F ∈ S such that F = S(F ). We illustrate these new concepts
with an example. We look at the middle fourth Cantor set which displays many
fractal characteristics.

3.1. Example: The middle forth Cantor set.

Figure 1. The first seven iterations for the middle fourth Cantor set.

Formally as a self-similar fractal, the middle fourth cantor set can be defined via an
iterated function system. We start first constructing the set F which represents the
middle fourth Cantor set from a unit interval by a sequence of deletion operations,
see Figure 1. Let E0 be the interval [0, 1] remove the middle fourth segment of this
interval, i.e. ( 38 ,

5
8 ), and let E1 be the union of the intervals [0, 38 ] and [ 58 , 1]. Remove

the middle fourth segments of these two intervals and let E2 be the union of the
resulted four intervals as follows

E2 =

[
0,

9

64

]
∪
[

15

64
,

24

64

]
∪
[

40

64
,

49

64

]
∪
[

55

64
, 1

]
.

Continuing in this way we obtain a sequence of compact sets En such that:

• E0 ⊃ E1 ⊃ E2 · · ·
• En is the union of 2n intervals.
• Since the middle intervals of length ( 1

4 )n are removed from [0, 1] for each

nth iteration, the length of the set En is ( 3
4 )n.

The set F =
⋂∞
i=1En is the middle fourth Cantor set. It consists of the numbers

that are in En for all n.
It can be shown that the middle fourth Cantor set has the following properties

• The set is a perfect set, i.e. it is closed and has no isolated points.
• The set is compact.
• The set is nowhere dense, i.e. the closure of the set does not contains any

nonempty open intervals.
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We now express this set in terms of similarity mappings. Let S1, S2 : [0, 1]→ [0, 1]
be given by

S1(x) =
3

8
x(1)

S2(x) =
3

8
x+

5

8
.(2)

We see that S1(F ) and S2(F ) represent the left and right ‘halves’ of F . We have
for all n

En+1 = S1(En) ∪ S2(En) = S(En)

and hence, by induction

F =

∞⋂

k=1

Sk(E0).

We come back to this example multiple times, and add to it as we go.

3.2. Hausdorff metric. In this section we introduce the concept of δ-neighborhood
and then define the Hausdorff metric. We will need these concepts to show the
fundamental property of the IFS.

Definition 3.2.1. The δ-neighborhood of a set A is the set of points within distance
δ of A, i.e. Aδ = {x ∈ D : |x− a| ≤ δ for some a ∈ A}.

Let S denote the class of all non-empty compact subsets of D ⊂ Rn. We want
to define a metric on S, where the distance between two sets A and B in S is the
least δ, such that the δ-neighborhood of A contains B, and the δ-neighborhood of
B contains A. See Figure 2.

Definition 3.2.2. The Hausdorff distance on S is defined as

d(A,B) = inf{δ ≥ 0: A ⊂ Bδ and B ⊂ Aδ},
for A,B ∈ S.

Figure 2. The Hausdorff distance between the sets A and B is
the least δ ≥ 0 such that the δ-neighborhood Aδ of A contains B
and vice versa.

Lemma 3.2.3. The Hausdorff distance is a metric on S.

Proof. To show that d is a metric function, we need to show that it satisfies the
three requirements of a metric.

5



(i) d(A,B) > 0 if A 6= B; d(A,A) = 0.
By definition it clearly holds d(A,B) ≥ 0 since d(A,B) is the infimum over
non-negative numbers. Suppose d(A,B) = 0. Let b ∈ B and note that
for n > 0, we have b ∈ B ⊂ A 1

n
and so there exists bn ∈ A, such that

|b− bn| ≤ 1
n , thus b ∈ A. We know that A is compact, and hence closed we

get B ⊆ A. Analogously, it can be shown A ⊆ B. We conclude A = B.
(ii) d(A,B) = d(B,A). This is true by definition.
(iii) d(A,B) ≤ d(A,C) + d(C,B) where A,B,C ∈ S.

Suppose d(A,C) = ε1, d(C,B) = ε2. Then for every δ1 > ε1 and for every δ2 > ε2
we have

A ⊂ Cδ1 , C ⊂ Aδ1 , C ⊂ Bδ2 , B ⊂ Cδ2 .
So it follows:

A ⊂ Cδ1 ⊆ Bδ1+δ2 and B ⊂ Cδ2 ⊆ Aδ2+δ1 ,
where the second and last inclusions hold by the triangle inequality.
Thus d(A,B) ≤ δ1 + δ2 for every δ1, δ2 with δ1 > ε1 and δ2 > ε2. So

d(A,B) ≤ ε1 + ε2 = d(A,C) + d(C,B).

We conclude the Hausdorff distance is a metric on S. �

From hereon, we consider S as a metric space by means of the Hausdorff distance.

3.3. Unique attractors. We here show that iterated function systems define unique
non-empty compact attractors, which are often fractals.

Theorem 3.3.1. Let an iterated function system formed by contractions {S1, . . . , Sm}
on D ⊆ Rn be given. Then this system has a unique attractor F .
Moreover, if E ∈ S such that Si(E) ⊂ E for all 1 ≤ i ≤ m, then the attractor can
be expressed as

F =
∞⋂

k=0

Sk(E),

where Sk is the kth iterate of the transformation S corresponding to the given IFS.

Proof. By applying a translation if necessary, we can without loss of generality
assume that 0 ∈ D. The strategy will be as follows. First we show the existence of
a set E0 ∈ S such that Si(E0) ⊂ E0 for all 1 ≤ i ≤ m. Then we show that for any
E ∈ S with Si(E) ⊂ E for all i, it holds that

⋂∞
k=0 S

k(E) is an attractor. Finally,
we show the uniqueness.

For the first part, we choose r such that it satisfies |Si(0)|1−ci ≤ r for all i, where ci
denote the ratio of Si. Then take E0 := D ∩ B(0, r), where B(0, r) is the closed
ball of radius r around 0. Take x ∈ E0, then by the triangle inequality we have
|Si(x)| ≤ |Si(x)− Si(0)|+ |Si(0)|. Combining this with the definition of contraction
gives |Si(x)| ≤ ci|x|+ |Si(0)|. It follows |Si(x)| ≤ ci|x|+ r(1− ci), and since |x| ≤ r,
we get |Si(x)| ≤ cir+ r− cir = r. So we have found a set E0 such that Si(E0) ⊂ E0.

Since D is closed, subsets of D are closed in D if and only if they are closed in
Rn. Since we know that a subset of Rn is compact exactly when it is closed and
bounded by [Rud64, Thm. 2.41], the same holds true for subsets of D. In particular,
E0 is compact, hence an element of S.

Now let E be any element of S, such that Si(E) ⊂ E for all 1 ≤ i ≤ m. We want
to show that if we iteratively apply S to the set E we will get the attractor of our
IFS. As a consequence of the condition we have on E, we get Sk+1(E) ⊂ Sk(E) for
every k ∈ N. We note that S(E) =

⋃m
i=1 Si(E) is a compact set, since the continuous

image of a compact set is compact, see [Rud64, Thm. 4.14], and a finite union of
6



compact sets is compact. By induction, it follows that Sk(E) is compact. We know
that the intersection of a decreasing sequence of nonempty compact sets is nonempty,
see [Rud64, Thm. 2.36], therefore F :=

⋂∞
k=0 S

k(E) is nonempty. Furthermore, as
an intersection of closed and bounded sets, it is itself closed and bounded, and hence
compact.

We note

S(F ) = S
( ∞⋂

k=0

Sk(E)
)
⊆
∞⋂

k=0

S
(
Sk(E)

)
,

which implies S(F ) ⊆ ⋂∞k=0 S
k+1(E) ⊆ S(F ), so they are equal. So

S(F ) =
∞⋂

k=1

Sk(E) = F,

and we conclude that F is an attractor for the IFS.
To prove the uniqueness we assume that H 6= F is another attractor. We know
S(H) = H, and S(F ) = F . We have

d(F,H) = d
(
S(F ), S(H)

)
= d
( m⋃

i=1

Si(F ),

m⋃

i=1

Si(H)
)

≤ max
1≤i≤m

d(Si(F ), Si(H)).

This is true since by the Hausdorff distance, if the δ-neighborhood (Si(F ))δ contains
Si(H) for every i, then (

⋃m
i=1 Si(F ))δ contains

⋃m
i=1 Si(H) and vice versa. Using

the contraction definition we obtain

d(F,H) = d(S(F ), S(H)) ≤ ( max
1≤i≤m

ci)d(F,H).

By 0 < (max1≤i≤m ci) < 1, the above implies that d(F,H) = 0. Since S is a metric
space we conclude that F = H. �

Now we consider the middle fourth Cantor set example we looked at earlier
in Subsection 3.1, and note that we can describe the set as the attractor of the
similarities S1, S2 defined in Equations (1) and (2), so that

F = S1(F ) ∪ S2(F ).

4. Outer Measure

When studying the mathematics of fractals, one will not get far before encoun-
tering measures in some form. For most fractal applications a few basic ideas of
measure are needed. In our case we will only encounter the outer measure and the
mass distribution on subsets of Rn.

Definition 4.0.1 (Outer measure). We call µ an outer measure on a set X if µ
assigns a non-negative number, possibly ∞, to each subset of X such that:

(i) µ(∅) = 0
(ii) µ(A) ≤ µ(B) if A ⊂ B
(iii) If A1, A2, ... is a countable sequence of sets then

µ

( ∞⋃

i=1

Ai

)
≤
∞∑

i=1

µ(Ai).
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5. Hausdorff Measure

For a better understanding of the mathematics of fractals, familiarity with
Hausdorff measure and dimension are essential. Of the variety of ‘fractal dimension’
in use, the definition of Hausdorff is one of the most important. It has the advantage
of being defined on any set, and is mathematically convenient, as it is based on
measures, which are relatively easy to manipulate.

The Hausdorff measure is a generalization for the traditional notion of length,
area, and volume to non-integer dimensions. The idea is to cover a given set
with small sets, for which we have an approximation of their size. Then we take
these covering sets even smaller so the approximation becomes more accurate. The
Hausdorff measure will roughly be the limit of those approximations. We first make
precise what we mean by small covering sets.

Definition 5.0.1. If {Ui} is a countable (or finite) collection of sets of diameter
at most δ that cover F , i.e. F ⊆ ⋃∞i=1 Ui with 0 ≤ |Ui| ≤ δ for each i, we say that
{Ui} is a δ-cover of F .

Definition 5.0.2 (Hausdorff measure). Suppose F ⊂ Rn and s ≥ 0. For every
δ > 0 we define

Hsδ(F ) = inf

{ ∞∑

i=1

|Ui|s : {Ui} is a δ-cover of F

}
.

Then the limit

Hs(F ) = lim
δ→0
Hsδ(F ),

exists, and is called the s-dimensional Hausdorff measure of F.

To unravel this definition, starting with Hsδ(F ), we first look at all the possible
covers of the set F with diameters at most δ and then we seek to minimize

∑∞
i=1|Ui|s

by taking the infimum. Decreasing δ means permitting less covers, which results
in an increase of Hsδ(F ). Therefore the limit limδ→0Hsδ(F ) always exists, although
it may be infinite. Next we show that the Hausdorff measure indeed is an outer
measure.

Theorem 5.0.3. The function that sends F ⊂ Rn to the Hausdorff measure Hs(F )
is an outer measure.

Proof. We show that the Hausdorff measure satisfies the requirements of an outer
measure.

(i). For every δ > 0, we have |∅| = 0 < δ and ∅ ⊂ ∅, implying that {∅} is a δ-cover
of ∅. Since we take the infima of all δ-covers we conclude Hsδ(∅) = 0 for any δ > 0
and therefore, Hs(∅) = 0.

(ii). If A ⊂ B, then any cover of B is also a cover of A, implying that Hs(A) ≤
Hs(B).

(iii). We show that Hsδ(∪iAi) ≤
∑
iHsδ(Ai). Let ε > 0, write ε =

∑
i εi, where

εi > 0. Take a δ-cover {U (i)
j } of Ai such that
∑

j

|U (i)
j |s ≤ Hsδ(Ai) + εi.

Then {U (i)
j }i,j is a δ-cover of UiAi. So

Hsδ(∪iAi) ≤
∑

i,j

|U (i)
j |s ≤

∑

i

(Hsδ(Ai) + εi) =
∑

i

Hsδ(Ai) + ε.
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Letting ε → 0 gives Hsδ(UiAi) ≤
∑
iH

s
δ (Ai), and letting δ → 0 gives Hs(UiAi) ≤∑

iH
s(Ai).

Thus, the Hausdorff measure is indeed an outer measure. �

It can be shown that Hs(F ) is a measure, which is a more specific notion than
the outer measure, but we don’t need this property of Hs(F ) here.

5.1. Some properties of the Hausdorff measure. We note that the Hausdorff
measure has multiple useful properties, we only need the scaling property and the
fact that this measure function is non-increasing. We discuss these properties in the
following paragraph.

Lemma 5.1.1. Let S be a similarity with ratio c > 0. If F ⊂ Rn, then

Hs(S(F )) = csHs(F ).

Proof. Let

A =

{
m∑

i=1

cs|Ui|s : {Ui} is a δ-cover of F

}
,

B =

{
m∑

i=1

|Vi|s : {Vi} is a cδ-cover of S(F )

}
.

Then we have csHsδ(F ) = inf A, and Hscδ(S(F )) = inf B. We start by showing
csHsδ(F ) ≤ HscδS(F ). Let {Ui} be a δ-cover of F . Then for Vi := S(Ui) we have

∪iVi = ∪iS(Ui) = S(∪iUi) ⊇ S(F ),

and |Vi|= c|Ui|≤ cδ.
Furthermore,

∑m
i=1 c

s|Ui|s =
∑m
i=1|S(Ui)|s =

∑m
i=1|Vi|s. It follows that A ⊆ B.

Therefore, it holds

Hscδ(S(F )) = inf B ≤ inf A = csHsδ(F ).

We let δ → 0 and obtain Hs(S(F )) ≤ csHs(F ).
We replace S by S−1 and c by 1

c , and F by S(F ) to get the other side of the
inequality. �

Lemma 5.1.2. For every F ⊂ Rn and δ < 1 the function Hsδ(F ) is non-increasing
in s > 0.

Proof. Observe for some α < 1 the function s 7→ αs is a decreasing function of s.
As long as |Ui| < δ < 1 it follows that if s1 < s2 then

∞∑

i=1

|Ui|s1 ≥
∞∑

i=1

|Ui|s2 ,

and hence,

Hs1δ (F ) = inf

{ ∞∑

i=1

|Ui|s1 : F ⊆
∞⋃

i=1

Ui and |Ui| < δ

}

≥ inf

{ ∞∑

i=1

|Ui|s2 : F ⊆
∞⋃

i=1

Ui and |Ui| < δ

}

= Hs2δ (U). �

Corollary 5.1.3. The Hausdorff measure Hs(F ) is a non-increasing function.
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6. Hausdorff dimension

The Hausdorff dimension is one key concept in studying fractals. It is a way
to describe how rough (not smooth) the surface of the fractal is. Most interesting
fractals have a non-integer dimension, we will use the Hausdorff dimension to make
sense of the concept of fractional dimension. Before we introduce the definition,
we first discover the behavior of the Hausdorff measure Hs(F ) which is either zero
or infinity for almost all values of s. In fact, only at one point the outer measure
‘jumps’ from one to the other. This unique value of s will then be the Hausdorff
dimension of the fractal.

By taking the value of s too large the measure will always be zero, and by taking
s too small the measure will tend to infinity, see Figure 3. The formal definition
comes after the following lemma which supports our claim regarding this behavior.

Lemma 6.0.1. Let F ⊂ Rn be given. If Hs(F ) <∞, then for any r > s we have
Hr(F ) = 0. And if Hs(F ) > 0, then for any r < s we have Hr(F ) =∞.

Proof. Assume Hs(F ) <∞, take r > s, let δ > 0, then for any δ-cover of F we have

∞∑

i=1

|Ui|r =

∞∑

i=1

|Ui|r−s|Ui|s ≤ δr−s
∞∑

i=1

|Ui|s

and hence,

Hrδ(F ) = inf

{ ∞∑

i=1

|Ui|r : {Ui} is a δ-cover of F

}

≤ inf

{
δr−s

∞∑

i=1

|Ui|s : {Ui} is a δ-cover of F

}

≤ δr−sHsδ(F ).

By letting δ → 0, we obtain

Hr(F ) = lim
δ→0
Hrδ(F ) ≤ lim

δ→0
δr−sHsδ(F ) = 0.

For the second claim we assume Hs(F ) > 0 and take r < s. Then we get

∞∑

i=1

|Ui|r =
∞∑

i=1

|Ui|r−s|Ui|s ≥ δr−s
∞∑

i=1

|Ui|s.

Analogously, letting δ → 0 gives

Hr(F ) = lim
δ→0
Hrδ(F ) ≥ lim

δ→0
δr−sHs(F ) =∞. �

This property of the Hausdorff measure justifies the following definition.

Definition 6.0.2. Hausdorff dimension For any F ⊂ Rn, we define:

dimH(F ) = inf{s ≥ 0: Hs(F ) = 0} = sup{s : Hs(F ) =∞}.
We here define the supremum of the empty set to be 0.

By Lemma 6.0.1 we have

Hs(F ) =

{
∞ if 0 ≤ s < dimH F

0 if s > dimH F.

10



Figure 3. Graph of Hs(F ) against s for a set F . The Hausdorff
dimension is the value of s at which the jump from ∞ to 0 occurs.

Corollary 6.0.3. It follows by Corollary 5.1.3 and Lemma 6.0.1 for any F ⊂ Rn
that if

0 < Hs(F ) <∞,
then s = dimH F .

6.1. Integer Hausdorff dimension. We all have an intuitive notion of integer
dimension for simple geometric shapes. For example, we know that a line should be
one dimensional, a plane should be two dimensional, and so on. We here argue that
the Hausdorff dimension agrees with this intuition.

One dimensional geometrical shapes: We here show that a line segment has Haus-

dorff dimension one. Let L = [0, 2] ⊂ R1. It suffices by Corollary 6.0.3 to show that
H1(L) = 2, then dimH(L) = 1. First observe that, for any δ > 0, and any δ-cover
{Ui} of L, it holds that

∑
i|Ui| is the sum of the lengths of the intervals Ui. Now

since {Ui} covers L, it follows that
∑
i|Ui| ≥ 2. Hence, H1

δ(L) ≥ 2 for all δ > 0, so
H1(L) ≥ 2.

Now observe that Hs(L) = limn→∞Hs1
n

(L), where the limit is taken over n ∈ N.

Then take, for n ∈ N, the sets Ui := [ in ,
i+1
n ] with 0 ≤ i < 2n − 1, which covers

L. It follows that H1
( 1
n )

(L) ≤ ∑i|Ui| = 2n
n = 2. This value represents the length

of the interval L. By letting n → ∞ we get H1(L) = 2 and hence, dimH(L) = 1.
Remark that we chose to look at L ⊂ R1 so we can only cover L with intervals.
In the case where L ⊂ Rn, the process is quite similar, except we look at the
intersection of the covering Ui with L. It follows directly that |L ∩ Ui| ≤ |Ui|, and∑
i|Ui| ≥

∑
i|L ∩ Ui| ≥ 2.

Two dimensional geometrical shapes: We now want to show that the unit square

S ⊂ R2 has Hausdorff dimension two. We define S := [0, 1]× [0, 1]. We cover S by

n2 squares of sides 1
n , so each small square has diameter

√
2
n . So for every δ ≥

√
2
n we

have H2
δ(S) ≤∑n2

i=1|
√
2
n |2 = 2. So H2(S) ≤ 2. The process of finding a lower bound

of H2(S) is not easy (because it involves looking at
∑
i|Ui|2 for all {Ui} a δ-cover of

S). However, it can be shown using [Fal86, Thm1.11], that for S measurable in R2,
we have H2(S) = cnvol2(S), for cn a constant depending on n. Using this results in
H2(S) = 2.

6.2. The non-integer Hausdorff dimension of the von Koch curve. We here
study the von Koch curve to illustrate a non-integer Hausdorff dimension. In this

11



paragraph we offer a closer look at fractional dimension and go through the process
of estimating it to reveal the challenges it holds in practice.

We construct the von Koch curve V from a unit interval E0 = [0, 1]. See Figure
4. The set E1 is obtained by dividing E0 into three equal segments and replacing
the middle segment by the two sides of an equilateral triangle of the same side
length as the segment being removed. Hence, the total length of E1 is 4

3 . For E2

we repeat, taking each of the four resulting segments, dividing each of them into
three equal parts and replacing each of the middle segments by two sides of an
equilateral triangle with sides of the same length as the length of the segment being
removed. The total length of E1 equals ( 4

3 )2. Thus Ek comes from replacing the
middle third of each straight line segment in Ek−1 by the other two sides of the
equilateral triangle. As k tends to infinity, it can be shown that Ek approaches a
curve V , called the von Koch curve, in the sense that for all ε > 0 there is a K such
that for all k > K the Hausdorff distance d(Ek, V ) is smaller than ε.

This curve V is self similar as it can be expressed as the union of four smaller
copies of itself. Let α = exp πi

3 and let S1, S2, S3, S4 : R2 → R2 be defined as

S1(x) =
x

3
; S2(x) =

αx+ 1

3
; S3(x) =

α2x+ 2

3
; S4(x) =

x+ 2

3
.

We observe that all these similarities scale the unit interval with a ratio 1
3 . S2 and

S3 are similarities with a translation and a rotation. V is the attractor of these four
similarities, so we can write V = ∪4i=1Si(V ).

Figure 4. Construction of the von Koch curve

Calculating the dimension of this set with the tools we developed so far seems to
be not possible. For example we define V := limk→∞Ek, so in each finite step we
can calculate Hs(Ek). However, we do not know whether Hs(limk→∞Ek) is equal
to limk→∞Hs(Ek). For now we assume that for s = dimH(V ) > 0, it holds that
0 < Hs(V ) <∞, and s > 0. (a big assumption, but we justify it in the last section
of this paper). We want to write V as a disjoint union. To this end, we define V ′ as

12



V \ {(1, 0)}, then we have that V ′ is a disjoint union of sets Si(V
′), and we have

Hs(V ) = Hs(V ′) +Hs({1, 0}) = Hs(V ′). So we have

Hs(V ′) = Hs(S1(V ′) ∪ S2(V ′) ∪ S3(V ′) ∪ S4(V ′))

=
1

3s
Hs(V ′) +

1

3s
Hs(V ′) +

1

3s
Hs(V ′) +

1

3s
Hs(V ′)

=
4

3s
Hs(V ′).

By assuming that the Hausdorff measure is finite and non-zero, we can obtain 1 = 4
3s .

This equation yields s = log 4
log 3 ≈ 1.26, which is the non-integer Hausdorff dimension

of the von Koch curve.

6.3. Mass distribution. Roughly speaking, a mass distribution on a set is an
outer measure that is finite and non-zero. We introduce this concept in order for
us to estimate a concrete lower bound for the Hausdorff dimension of self-similar
sets. We define a mass distribution on the set, and then use the mass distribution
principle that we discuss in this paragraph.

Definition 6.3.1. An outer measure µ on a bounded subset F of Rn for which
0 < µ(F ) <∞ will be called a mass distribution on F .

Theorem 6.3.2 (The mass distribution principle). Let µ be a mass distribution on
F , suppose that for some s there are numbers c > 0 and ε > 0 such that

µ(U) ≤ c|U |s

for all sets U with the property |U | ≤ ε. Then Hs(F ) ≥ µ(F )
c and

s ≤ dimH(F ).

Proof. Let {Ui} be any cover of F then

0 < µ(F ) ≤ µ
(⋃

i

(Ui ∩ F )

)
≤
∑

i

µ(Ui ∩ F ) ≤ c
∑

i

|Ui|s.

Recall that

Hsδ(F ) = inf

{
m∑

i=1

|Ui|s : {Ui} is a δ-cover of F

}

and hence, Hsδ(F ) ≥ µ(F )
c . By letting δ → 0 we obtain Hs(F ) ≥ µ(F )

c . �

7. Hausdorff dimension of self-similar sets

This section includes the main result of this work. We will show a simple formula
for the dimension of self-similar sets. Throughout, we let F be the attractor of the
IFS formed by the similarities {S1, . . . , Sm} : Rn → Rn with

|Si(x)− Si(y)| = ci|x− y| ∀x, y ∈ Rn,
where ci is the ratio of the similarity Si satisfying 0 < ci < 1. We use the properties
of the attractor F and the tools Hausdorff measure provides to show that, under
certain conditions the dimension of the set F is the unique solution s for the equation

m∑

i=1

csi = 1.(3)

In the proof of this result we estimate an upper and a lower bounds for the Hausdorff
measure, so we can use that the attractor has a finite Hausdorff measure. This
estimation requires a certain effort and uses all the tools we have introduced so far.
We will need to define an outer measure on our set F so that the mass distribution

13



principle conditions are satisfied. Furthermore, we ask of our set F to satisfy the open
set condition (defined in Definition 7.1.6) which is a way of saying that we can cover
the set without overlapping. We now introduce the following sets that we use from
hereon, we let I = {(i1, i2, · · · ) : 1 ≤ ij ≤ m} denote the set of infinite sequences with
entries between 1 and m, and let Ii1,...,ik = {(i1, . . . , ik, qk+1,...) : 1 ≤ qj ≤ m} denote
the cylinder set consisting of those sequences in I with initial terms (i1, . . . , ik). Let
J = {(i1, . . . , ik) : 1 ≤ ij ≤ m, k ∈ N} denote the set of finite sequences with entries
between 1 and m. Lastly, let Jk = {(i1, . . . , ik) : 1 ≤ ij ≤ m, k ∈ N} denote the
set of finite sequences of length k with entries between 1 and m. The main proof
requires a way to measure the attractor F , we do that by defining an outer measure
on the set I and then extending it to the set F .

7.1. Constructing the measure. This subsection is dedicated to discussing details
that Falconer glosses over in the main source of this thesis [Fal04]. We define an
outer measure over our set, and then add more tools that we will later need in the
main proof. We use the cylinder sets we introduced above to define a measure on I.
Let µ : P(I)→ R be the function that assigns to a subset I ⊂ I the number

µ(I) = inf





∑

(i1,...,ik)∈J
(ci1 · · · cik)s | J ⊆ J , I ⊆

⋃
(i1,...,ik)∈J

Ii1,...,ik



 .(4)

Lemma 7.1.1. The function µ is an outer measure on I.

Proof. We will check that µ satisfies the requirements of an outer measure.

(i). We evaluate µ at the empty set

µ(∅) = inf
{ ∑

(i1,...,ik)∈J
(ci1 · · · cik)s | J ⊆ J , ∅ ⊆

⋃
(i1,...,ik)∈J

Ii1,...,ik

}

= inf
{ ∑

(i1,...,ik)∈J
(ci1 · · · cik)s | J ⊆ J

}
.

Let ε > 0, claim µ(∅) ≤ ε. We know that for every ci we have ci < 1, in particular
c1 < 1. So for k big enough (cs1)k ≤ ε. Take J := {(1, 1, . . . , 1)} ⊂ J where the
length of this sequence is k. It follows

∑

(i1,...,ik)∈J
(ci1 · · · cik)s = (c1c1 · · · c1)s = (cs1)k ≤ ε.

Since µ(∅) equals the infima over all such expressions, it holds that µ(∅) ≤ ε. We
let ε→ 0, and obtain µ(∅) = 0.

(ii). We need that if I ⊂ I ′, then µ(I) ≤ µ(I ′). This follows directly by the fact
that any cover of I ′ is a cover of I.

(iii). Let {An}n∈N be a collection of subsets of I. We want to show µ(∪nAn) ≤∑
n µ(An). We have by definition

µ(An) = inf
{ ∑

(i1,...,ik)∈Jn
(ci1 · · · cik)s | Jn ⊆ J , An ⊆

⋃
(i1,...,ik)∈Jn

Ii1,...,ik

}
.

Let ε > 0 be given, write ε =
∑
n εn for certain εn > 0. Choose one covering by

choosing Jn ∈ J such that
∑

(i1,...,ik)∈Jn(ci1 · · · cik)s ≤ µ(An) + εn. Then ∪nJn give

rise to a cover of ∪nAn, and hence, we have

µ(∪nAn) ≤
∑

n

∑

(i1,...,ik)∈Jn
(ci1 · · · cik)s ≤

∑

n

(µ(An) + εn) =
∑

n

µ(An) + ε.

Since ε was arbitrary the inequality follows.
14



So we conclude that µ indeed is an outer measure on I. �

Lemma 7.1.2. Let Il1,...,ln be the cylinder set with initial terms (l1, . . . , ln), and
let µ be the outer measure defined in Equation (4). Then we have

µ(Il1,...,ln) = (cl1 · · · cln)s.

Proof. We have by definition of µ

µ(Il1,...,ln) := inf





∑

(i1,...,ik)∈J
(ci1 · · · cik)s | J ⊆ J , Il1,...,ln ⊆

⋃
(i1,...,ik)∈J

Ii1,...,ik





We start by showing µ(Il1,...,ln) ≤ (cl1 · · · cln)s. Take J := {(l1, . . . , ln)}, then we get
Il1,...,ln ⊆

⋃
(i1,...,ik)∈J Ii1,...,ik = Il1,...,ln . It also follows

∑
(i1,...,ik)∈J(ci1 · · · cik)s =

(cl1 · · · cln)s. To show the opposite direction of the inequality we take J ∈ J where
Il1,...,ln ⊆

⋃
(i1,...,ik)∈J Ii1,...,ik . Take (j1, . . . , jk) ∈ J such that (l1, . . . , ln, 1, 1, . . . ) ∈

Ij1,...,jk . Here we have two cases that we need to look at.
Case 1: If k ≥ n, then we have (l1, . . . , ln, 1, 1, . . . , 1) = (j1, . . . , jk) where the length
of the first sequence is k. Then (cl1 · · · cln)s = (cl1 · · · cln · 1 · · · 1)s = (cj1 · · · cjk)s ≤∑

(i1,··· ,ik)∈J(ci1 · · · cik)s.

Case 2: If k < n, then (l1 · · · lk) = (j1 · · · jk). So we have (cl1 · · · cln)s ≤ (cl1 · · · clk)s =
(cj1 · · · cjk)s ≤∑(i1,...,in)∈J(ci1 · · · cin)s, which proves the statement. �

Next we transfer this outer measure µ to the set F .

Notation 7.1.3. For any arbitrary set E ⊆ Rn and (i1, . . . , ik) ∈ Jk, we denote
Ei1,...,ik = Si1 ◦ · · · ◦ Sik(E).

Remark that by [Fri82, Thm. 3.4.1], the intersection of Fi1,...,ik for a given
sequence consists of one point that we denote as xi1,i2,..., so that

{xi1,i2,...} =

∞⋂

k=1

Fi1,...,ik .

Definition 7.1.4. Let A ⊆ F , Let µ be defined as in Equation (4). We define

µ̃(A) = µ
({

(i1, i2, · · · ) :
∞⋂

k=1

Fi1,...,ik ⊆ A
})
.

Lemma 7.1.5. The function µ̃ is an outer measure on F .

Proof. We check the three requirements of an outer measure to verify this claim.

(i). We evaluate µ̃ at the empty set µ̃(∅) = µ
({

(i1, i2, · · · ) :
⋂∞
k=1 Fi1,...,ik ⊆ ∅

})
.

For any (i1, i2, · · · ) we have
⋂∞
k=1 Fi1,...,ik is nonempty, meaning that no such

sequences exist. We conclude µ̃(∅) = µ(∅) = 0.

(ii). Let A ⊂ B, we want to show µ̃(A) ≤ µ̃(B). We have by assumption

{
(i1, i2, · · · ) :

∞⋂

k=1

Fi1,...,ik ⊆ A
}
⊂
{

(i1, i2, · · · ) :

∞⋂

k=1

Fi1,...,ik ⊆ B
}
.

This implies

µ
({

(i1, i2, · · · ) :

∞⋂

k=1

Fi1,...,ik ⊆ A
})
≤ µ

({
(i1, i2, · · · ) :

∞⋂

k=1

Fi1,...,ik ⊆ B
})
,

which results in µ̃(A) ≤ µ̃(B).
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(iii). To show µ̃(∪jAj) ≤
∑
j µ̃(Aj), we start by observing

{
(i1, i2, · · · ) :

∞⋂

k=1

Fi1,...,ik ⊆ ∪jAj
}

=
⋃

j

{
(i1, i2, · · · ) :

∞⋂

k=1

Fi1,...,ik ⊆ Aj
}
,

and then evaluate µ̃ at this set

µ̃(∪jAj) = µ

(⋃

j

{
(i1, i2, · · · ) :

∞⋂

k=1

Fi1,...,ik ⊆ Aj
})

≤
∑

j

µ
({

(i1, i2, · · · ) :

∞⋂

k=1

Fi1,...,ik ⊆ Aj
})

=
∑

j

µ̃(Aj).

We conclude that µ̃ is an outer measure on F . �

Definition 7.1.6. Let S1, . . . , Sm be an IFS. This system satisfies the open set
condition if there is a non-empty, bounded and open set V such that

m⋃

i=1

Si(V ) ⊂ V

with this union being disjoint.

This condition assures that the components Si(F ) of the iterated function system
do not overlap ‘too much’. In the middle fourth Cantor set example, the open set
condition holds for S1 and S2 with V as the open interval (0, 1).

We want to show that, provided that Si satisfies the open set condition, the
Hausdorff dimension of the attractor is given by Equation (3). For that we require
the following geometrical lemma.

Lemma 7.1.7. Let {Vi} be a collection of open disjoint subsets of Rn, let a1, a2, r ∈
R with r > 0 and 0 < a1 < a2 such that each Vi contains a ball of radius a1r and is
contained in a ball with radius a2r. Then any ball B of radius r intersects at most
(1 + 2a2)na−n1 points of the closures V i.

Proof. By assumption, we know |Vi| ≤ 2a2r for all Vi. So if some V i intersects the
ball with radius r, then V i must be contained in the ball with radius (2a2 + 1)r
concentric with the ball with the radius r. Note that (a1r)

n is less or equal to the
volume of Vi for all Vi. Let q denote the number of closures V i intersecting with
the ball with radius r. Then there exists q disjoint balls with radius a1r that are
contained in the ball with radius (2a2 + 1)r. It follows that q(a1r)

n ≤ (2a2 + 1)nrn,
giving us directly the stated bound for q. �

7.2. Main theorem on the Hausdorff dimension of self-similar sets. Now
we have introduced and collected all we need in order to show the main theorem of
this work.

Theorem 7.2.1. Let {S1, . . . , Sm} with ratios 0 < ci < 1 for 1 < i < m be an IFS
with attractor F . Suppose the open set condition holds for this system, then the
Hausdorff dimension of F is equal to s, where s is the unique solution for

m∑

i=1

csi = 1.
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Proof. We denote by s ≥ 0 the unique solution for
∑m
i=1 c

s
i = 1. Observe that such

an s exists uniquely since the function s 7→ ∑
i c
s
i is strictly decreasing and has

value m ≥ 1 at s = 0, and has limit 0. We show that dimH(F ) = s by showing that
the Hausdorff measure satisfies 0 < Hs(F ) <∞. For the latter, we need a suitable
upper and a lower estimate of the Hausdorff measure.

We first show that Hs(F ) < ∞. Recall, for any arbitrary set A ⊆ Rn and
(i1, . . . , ik) ∈ Jk we denote Ai1,...,ik = Si1 ◦ · · · ◦ Sik(A). We recall the attractor is
the unique set that satisfies F =

⋃m
i=1 Si(F ), we can iterate the attractor as follows

F =
m⋃

i=1

Si(F ) =
m⋃

i=1

Si




m⋃

j=1

Sj(F )


 =

m⋃

i,j=1

Si ◦ Sj(F )

= · · · =
⋃

i1,...,ik∈Jk
Si1,...,ik(F ) =

⋃

Jk
Fi1,...,ik .

Hence the unions
⋃
Jk Fi1,...,ik form a cover of F . These covers of F will provide a

suitable upper estimate for the Hausdorff measure. We use Lemma 2.0.4 to obtain
|Aj | = |Sj(A)| = cj |A|, and hence

|Fi1,··· ,ik | = (ci1 · · · cik)|F | ≤ ( max
1≤i≤k

ci)
k|F |.

Let δ > 0, to find a suitable δ-cover, take kδ big enough such that (max1≤i≤kδ ci)
kδ |F | <

δ. Then {Fi1,...,ikδ | (i1, . . . , ikδ) ∈ Jkδ} forms a δ-cover of F . Therefore,

Hsδ(F ) ≤
∑

Jkδ

|Fi1,...,ikδ |
s,

and hence

Hs(F ) ≤ lim
δ→0

∑

Jkδ

|Fi1,...,ikδ |
s

= lim
δ→0

∑

Jkδ

(ci1 · · · cikδ )s|F |s

= lim
δ→0

(
m∑

i1=1

csi1

)
· · ·




m∑

ikδ=1

cs
ikδ


 |F |s

= |F |s <∞.
Now we aim towards showing Hs(F ) > 0. We use the outer measure µ̃ we defined
in Definition 7.1.4 to estimate a suitable lower bound for the Hausdorff measure
over F . It can be shown by Lemma 7.1.2 that µ̃(F ) = 1, and so we obtain that
µ̃(F ) is a mass distribution, see Definition 6.3.1.

We now want show that µ̃ satisfies the mass distribution principal in Theorem
6.3.2. By the open set condition 7.1.6, there exists a nonempty bounded open
set such that it satisfies

⋃
i Si(V ) ⊂ V , with Si(V ) are disjoint. By continuity

of similarities V ⊃ S(V ) =
⋃m
i=1 Si(V ). By Theorem 3.3.1, it follows that the

decreasing sequence of iterations Sk(V ) converges to F . In particular we have
V ⊃ F and V i1,...,ik ⊃ Fi1,...,ik for each finite sequence (i1, . . . , ik) ∈ J .

We fix 0 < r < 1 a radius of a ball Br. We want to estimate µ̃(Br) by considering
the sets Vi1,...,ik with diameters comparable with that of Br and with closures
intersecting F ∩ Br. Let (i1, i2, . . . ) be an infinite sequences in I. The function
N→ R : k 7→ ci1 · · · cik has limit 0, so there exists the smallest k′, depending on our
choice of sequence, such that

ci1 · · · cik′ < r.(5)

17



Now for such a k′, it holds that ci1 · · · cik′−1
≥ r, this follows by minimality of k′.

Therefore, cik′ r ≤ ci1 · · · cik′ , and so

( min
1≤i≤m

ci).r ≤ cik′ r ≤ ci1 · · · cik′ .(6)

We denote by Q the set of all such sequences (i1, . . . , ik′) where k′ satisfies the
condition above. Then for every infinite sequence in I there is exactly one value
of k such that (i1, . . . , ik) ∈ Q. Recall that V1, . . . , Vm are disjoint, implying that
Vi1,...,ik,1, Vi1,...,ik,2, . . . , Vi1,...,ik,m are disjoint as well. Since V is compact we can

use Theorem 3.3.1 to express the attractor F as F =
⋂∞
k=0 S

k(V ).
Take x ∈ F , then there exists (i1, . . . , ik, · · · ) such that x ∈ ⋂∞e=1 Fi1,...,ie ⊆

Fi1,...,ik with (i1, . . . , ik) ∈ Q. So F ⊆ ⋃F(i) ⊆
⋃
V (i) with (i) ∈ Q. Now we choose

0 > a1 > a2 such that Ba1 ⊆ V ⊆ Ba2 . This is possible since both balls are open.
We have

Ba1r(mini ci) ⊆ Ba1ci1 ···cik ⊆ V i1,...,ik ⊆ Ba2ci1 ···cik ⊆ Ba2r,
where the first inclusion follows by Equation (6), and the last inclusion follows by
Equation (5). We define Q1 to be the set of all sequences (i1, . . . , ik) ∈ Q such
that the given ball Br intersects V i1,...,ik . We now use Lemma 7.1.7 to obtain

|Q1| ≤ (1+2a2)
n

(a2 min ci)n
=: q > 0. So we have

µ̃(Br) = µ̃(F ∩Br), since the mass is distributed over F

≤ µ̃
(
(∪(i)∈QV (i)) ∩Br

)
, since it covers F

≤ µ̃
(
∪(i)∈Q1

V (i)

)

≤
∑

(i)∈Q1

(ci1 , . . . , cik)s

≤
∑

Q1

rs

≤ q.rs.
Lastly we take a set U ⊂ F , we have U ⊂ B|U |. This implies µ̃(U) ≤ µ̃(B|U |) ≤
q.|U |s, as we estimated. By the mass distribution principal Theorem 6.3.2 it follows

Hs(F ) ≥ µ̃(F )

q
> 0.

We now have 0 < Hs(F ) <∞, so by Corollary 6.0.3 we conclude dimH(F ) = s. �

7.3. Examples of determining the Hausdorff dimension. We have seen that
it is not easy to determine the Hausdorff dimension of a fractal by estimating
upper and lower bounds for the measure on the set. Theorem 7.2.1 offers us a
straight forward formula to compute the dimension of the set. In fact, it reduces
the problem to a simple calculation. We know from earlier the middle fourth Cantor
set is the attractor F of the similarities S1, S2 : [0, 1]→ [0, 1] with S1 : x 7→ 3

8x and

S2 : x 7→ 3
8x+ 5

8 . The open set condition holds by considering the open interval (0, 1).

We have
∑2
i=1 c

s
i = 8

3

s
+ 8

3

s
= 2( 8

3 )s = 1. This equation yields dimH(F ) = log 2
log 8

3

.

In the von Koch curve V we have seen that the attractor is the union of four
similarities each of ratio 1

3 . We now calculate it’s dimension using Theorem 7.2.1.

We consider the open equilateral triangle in R2, with vertices (0, 0), (1, 0), ( 1
2 ,
√
3
2 )

so the open set condition is satisfied. Therefore, a straight forward calculation gives
us dimH(V ) = log 4

log 3 .
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