
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK
MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Image Deblurring with Regularized Least Squares and Beyond

av

Lars Lidvall

2022 - No K22

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

Image Deblurring with Regularized Least Squares and Beyond

Lars Lidvall

Självständigt arbete i matematik 15 högskolepoäng, grundnivå

Handledare: Yishao Zhou

2022

Abstract

In this report we study the optimization problem least squares
minx ∥b − Ax∥22 with applications to image deblurring. Least squares
can be solved directly in four ways: by the normal equation, the
pseudoinverse, QR-decomposition and regularization. The theory
for these methods are covered in detail. Least squares can be solved
iteratively using a gradient descent method. Specifically gradient
descent and Polyak heavy ball are covered, with focus on the theory
of convergence for these methods. Finally, a direct and an iterative
method are compared on a specific example of deblurring, where
other ways to deblur are also discussed.

i

Acknowledgements

First and foremost I would like to thank my supervisor professor
Yishao Zhou for being especially good with responding by e-mail and
always dedicating considerable time to give me tips and sources to
read, which has been greatly appreciated.

I would also like to extend a particular thanks to a previous teacher
Alexander Westerström for bringing back my passion for mathemat-
ics and learning, by having been encouraging and always interesting
to talk to and discuss various things with.

Moreover I would like to thank my parents Rolf and Lena for con-
tinuously supporting me while writing this report and through other
endeavours.

Lastly I would like to thank more people close to me. Especially
my partner Julia, brothers Kalle and Hugo, and friends Didrik, Jones,
Binel, Nikola, Max, and Micke, for caring about me and my work
throughout the process of working on it.

ii

Contents

Introduction 1

1 Preliminaries 2
1.1 Basics . 2

1.1.1 Special rectangular matrices . 2
1.1.2 Important subspaces . 3
1.1.3 Vector norms . 4

1.2 Singular value decomposition (SVD) 5
1.2.1 Singular values and the SVD 5
1.2.2 The compact SVD . 8

2 Least squares problems 10
2.1 Least squares . 10
2.2 Normal equation . 10

2.2.1 Deriving the normal equation 11
2.2.2 Analyzing the normal equation 13

2.3 Pseudoinverse . 15
2.3.1 Definition of the pseudoinverse 15
2.3.2 Properties of the pseudoinverse 16
2.3.3 The pseudoinverses relation to the normal equation 19

2.4 QR-decomposition . 19
2.4.1 QR-decompositions relation to the normal equation 20
2.4.2 Householder reflections . 21
2.4.3 Least squares numerical implementation 29

3 Regularizing least squares problems 31
3.1 Regularization . 31
3.2 Tikhonov regularization (L2) . 31

3.2.1 Definition of Tikhonov regularization 31
3.2.2 Solution to Tikhonov . 32
3.2.3 Tikhonov solutions relation to the pseudoinverse 35

3.3 Other types of regularization (L1, L∞, ”L0”) 37
3.3.1 Definitions of the regularizations 37
3.3.2 How to attain the solutions . 39

iii

4 Gradient descent methods 40
4.1 Gradient descent . 40

4.1.1 Definition of gradient descent 40
4.1.2 Properties of gradient descent 40

4.2 Gradient descent to solve least squares problems 45
4.2.1 Definition of the Landweber iteration 46
4.2.2 Analysing the Landweber iteration 46

4.3 Polyak heavy ball . 57
4.3.1 Definition of Polyak heavy ball 58

4.4 Heavy ball to solve least squares problems 58
4.4.1 Definition of the Landweber iteration with momentum 59
4.4.2 Analysing the Landweber iteration with momentum 59

4.5 Generalizations and other methods . 66

5 Applications to image deblurring 67
5.1 Modelling a deblurring problem . 67

5.1.1 Encode digital image as a very tall matrix 67
5.1.2 Blur as a linear transformation with rounding 67
5.1.3 Setting up least squares . 68

5.2 Solving a deblurring problem . 69
5.2.1 Direct solution . 69
5.2.2 Iterative solution . 70

5.3 Results . 70

6 Discussion 73
6.1 Theory of gradient descent and Polyak heavy ball 73

6.1.1 Convergence in the general case 73
6.1.2 Comparing number of iterations for an ε-accurate solution . . 74

6.2 Deblurring in practice . 75
6.2.1 Direct versus iterative solution in practice 75
6.2.2 Deep neural network . 76

A Appendix 78
A.1 MATLAB code . 78
A.2 Omitted proofs . 81

Bibliography 83

iv

Introduction

In mathematics as a whole, solving equations is very important. Practically speak-
ing, in Linear Algebra we are often talking about solving systems of linear equa-
tions, where a system of m equations with n variables can be neatly written as
Ax = b, where A is an m× n matrix, x is a vector with n unknown variables and b
is a vector of m constants. This is a quite general form of problem which perhaps
not surprisingly can model problems in ”the real world”. For real world appli-
cations, it may therefore be important to be able to solve Ax = b. However, this
system may be unsolvable for many reasons. Approximate solutions are hence
necessary.

A quite straightforward idea is that we look at the error of an approximate
solution x̂, being b − Ax̂, where this is a good approximation if this error is in
some way close to the zero vector 0 with m zeros. In this report we will measure
the closeness to the zero vector by the squared Euclidean norm (∥b− Ax̂∥2)2, more
simply denoted by ∥b−Ax̂∥22. The main idea is that we can look at this as a function
f : Rn → R, defined by f(x) = ∥b− Ax∥22, which we can try to minimize, resulting
in the optimization problem

min
x

∥b− Ax∥22.

This problem is called least squares, but it still has some flaws. To solve this problem
we find the stationary points of f , which turn out to be the points x̂ satisfying
ATAx̂ = AT b. This is called the normal equation. Again we arrive at a system of
linear equations which may be unsolvable. In this report we will cover two ways
to regularize the problem of least squares such that we may arrive at a solution.

The first way covered is by changing the problem to a new regularized least
squares problem minx ∥b − Ax∥22 + δR(x) and solving that, giving an approximate
solution to least squares.

The second way covered is by using an iterative method until we arrive at some
point x̂ which does satisfy the normal equation and is therefore a solution to least
squares. Specifically gradient descent methods are covered in this report.

For results of these methods on a particular example, see section 5.3 Results
from page 70 and a few pages onward.

Note that the content covered here is part of a very broad and deep subject, where the
goal of this report is to explain these concepts to students that have taken basic courses in
Linear Algebra and Analysis. The layout of the report is according to my own understand-
ing of the material.

1

1 Preliminaries

In this chapter we will cover some concepts that are used extensively in this report.
Knowing these concepts are needed to be able to have a deeper understanding of
the material.

1.1 Basics

In this report we are almost exclusively working within the field R, so some def-
initions are different to if we were working within the field C. Specifically we
will use the transpose T instead of the Hermitian conjugate H in the definition of
orthogonal and Euclidean norm.

1.1.1 Special rectangular matrices

First we introduce the notation for the entries of a matrix, because this will some-
times be the easiest way to conceptualize different matrices generally.

Definition 1.1.1. The entry of a matrix A ∈ Rm×n in row 1 ≤ i ≤ m from the top,
and column 1 ≤ j ≤ n from the left, will be denoted by (A)i,j .

Definition 1.1.2. The k:th entry of a vector v ∈ Rn, where 1 ≤ k ≤ m will be
denoted by vk or (v)k.

Definition 1.1.3. D ∈ Rm×n will be called diagonal if and only if

(D)i,j = 0, when i ̸= j.

This means that the entries of D not on its main diagonal are all equal to zero.

Definition 1.1.4. Q ∈ Rm×n will be called orthogonal if and only if

QTQ = In,

where In ∈ Rn×n is the n× n identity matrix.

Definition 1.1.5. R ∈ Rm×n will be called upper-triangular if and only if

(R)i,j = 0, when i > j.

This means that the entries of R below its main diagonal are all equal to zero.

2

Definition 1.1.6. M ∈ Rm×n will be called a block matrix if M is defined by the
matrices M1 ∈ Rm1×n1 , M2 ∈ Rm1×(n−n1), M3 ∈ R(m−m1)×n1 and M4 ∈ R(m−m1)×(n−n1)

positioned like

M =

[
M1 M2

M3 M4

]
∈ Rm×n.

M1,M2,M3 and M4 will be called the blocks of M . Note that M is still a standard
matrix, just with the entries of M1,M2,M3 and M4.

Remark. If ”0” is a block then this represents the matrix of only zeros with the
dimensions of that block.

1.1.2 Important subspaces

Given a matrix A ∈ Rm×n, there are two important subspaces N(A) ⊆ Rn and
C(A) ⊆ Rm associated with it. These subspaces are related by the rank-nullity
theorem. If the matrix is square (m = n), then this will tell us if A is invertible.

Definition 1.1.7. The null space of a matrix A ∈ Rm×n will be denoted by N(A) and
be defined by

N(A) = {x ∈ Rn | Ax = 0 ∈ Rm}.

This is the set of vectors x ∈ Rn which become mapped to the zero vector 0 ∈ Rm

by left multiplication with A.

Remark. The null space N(A) will be called trivial if and only if N(A) = {0}, mean-
ing that the only solution to Ax = 0 ∈ Rm is given by x = 0 ∈ Rn.

Definition 1.1.8. The column space of a matrix A ∈ Rm×n will be denoted by C(A)
and be defined by

C(A) = {y ∈ Rm | y = Ax, x ∈ Rn}. (1.1.1)

This is the set of vectors y ∈ Rm of the form y = Ax.

Definition 1.1.9. The rank of a matrix A ∈ Rm×n will be denoted by rank(A) and
be defined by

rank(A) = dim(C(A)).

This is the dimension of the column space of A.

Remark. A ∈ Rm×n will have full rank if and only if rank(A) = n.

Now we will state some very well known theorems of Linear Algebra. The
proofs will not be given because they are out of the scope of this report.

3

Theorem 1.1.10 (rank-nullity). Given a matrix A ∈ Rm×n

rank(A) + dim(N(A)) = n. (1.1.2)

Remark. In particular, N(A) is trivial if and only if A has full rank.

Proof. See page 79 of [4]. ο.ε.δ.

Theorem 1.1.11. A square matrix M ∈ Rn×n is invertible if and only if M has full rank.

Proof. See page 62 of [4]. ο.ε.δ.

Theorem 1.1.12 (spectral). A square matrix M ∈ Rn×n is (orthogonally) diagonalizable
if M is symmetric: MT = M .

Proof. See page 384 of [2]. ο.ε.δ.

1.1.3 Vector norms

The norm of a vector is a measurement of the ”length” of a vector. Given a vector
v ∈ Rn, perhaps the most natural norm is the Euclidean norm, which gives the
length based upon the generalized Pythagorean theorem.

Definition 1.1.13. The Euclidean norm, or L2 norm, of a vector v ∈ Rn will be de-
noted by ∥v∥2 and be defined by

∥v∥2 =
√
v21 + . . .+ v2n =

√
vTv.

Remark. In this report, most often the square of the Euclidean norm will be used.
This will hence be ∥v∥22 = vTv.

Two other standard norms are the L1 and L∞ norm.

Definition 1.1.14. The L1 norm of a vector v ∈ Rn will be denoted by ∥v∥1 and be
defined by

∥v∥1 = |v1|+ . . .+ |vn|.

Definition 1.1.15. The L∞ norm of a vector v ∈ Rn will be denoted by ∥v∥∞ and be
defined by

∥v∥∞ = max{|v1|, . . . , |vn|}.

These norms fulfill the definition of being a norm, which is the following.

4

Definition 1.1.16. ∥ · ∥ is a norm on Rn if and only if

∥u+ v∥ ≤ ∥u∥+ ∥u∥

∥αu∥ = |α|∥u∥

∥u∥ = 0 =⇒ u = 0

holds for any u ∈ Rn, v ∈ Rn and α ∈ R.

Lemma 1.1.17. ∥ · ∥p is a norm for p ∈ {2, 1,∞}.

Proof. See page 181 and 182 of [4]. ο.ε.δ.

A useful theorem about the Euclidean norm is a special case of the Cauchy-
Schwartz inequality.

Theorem 1.1.18 (Cauchy-Schwartz). |uTv| ≤ ∥u∥2∥v∥2, where equality holds if and
only if u is a scalar multiple of v.

Proof. See page 168 of [4]. ο.ε.δ.

1.2 Singular value decomposition (SVD)

This section covers the singular value decomposition of a matrix A ∈ Rm×n, given
by A = UΣV T . This is one of the most important decompositions in all of Linear
Algebra.

1.2.1 Singular values and the SVD

Given a matrix A ∈ Rm×n, if m ̸= n, then concept of eigenvalues (and eigenvectors)
become meaningless because Ax ∈ Rm and x ∈ Rn, meaning that Ax ̸= λx, no mat-
ter what. This means that if m ̸= n, we do not have the concept of diagonalization
A = PDP−1, because there are no eigenvalues. We do however always have the
singular value decomposition A = UΣV T , which is very similar in nature. U and
V will both be square orthogonal matrices, and Σ will be a diagonal matrix with
the singular values of A.

Definition 1.2.1. The singular values of a matrix A ∈ Rm×n will be denoted by
σ1, . . . , σmin{m,n}. If min{m,n} = m, then the singular values of A are the eigenval-
ues of AAT ∈ Rm×m, but square rooted. If min{m,n} = n, then the singular values
of A are the eigenvalues of ATA ∈ Rn×n, but square rooted.

5

Now we will show that the non-zero eigenvalues of AAT and ATA are the
same. This will mean that it does not matter from which matrix we calculate
σ1, . . . , σmin{m,n}, since, if the non-zero eigenvalues are the same, then the rest of
the eigenvalues are zero for both of them. This gives us every eigenvalue needed,
and therefore every singular value of A.

Lemma 1.2.2. Given λ ̸= 0, then λ is an eigenvalue of AAT if and only if λ is an eigen-
value of ATA.

Proof. (if, ⇐=). Let λ ̸= 0 be an eigenvalue of ATA. By definition of eigenvalue,
there exists some vector x ∈ Rn with x ̸= 0 ∈ Rn such that

ATAx = λx =⇒ AATAx = λAx =⇒ AAT (Ax) = λ(Ax). (1.2.1)

Note now that Ax ̸= 0, because if Ax = 0 then ATAx = λx gives AT 0 = 0 =
λx =⇒ x = 0 or λ = 0. Neither of these can be the case, so Ax ̸= 0. Because
also AAT (Ax) = λ(Ax), this means that Ax is an eigenvector to AAT with the same
eigenvalue λ ̸= 0.

(only if, =⇒). Let λ ̸= 0 be an eigenvalue of AAT . By definition of eigenvalue,
there exists some vector y ∈ Rm with y ̸= 0 ∈ Rm such that

AATy = λy =⇒ ATAATy = λATy =⇒ ATA(ATy) = λ(ATy). (1.2.2)

Note now that ATy ̸= 0, because if ATy = 0 then AATx = λx gives A0 = 0 =
λy =⇒ y = 0 or λ = 0. Neither of these can be the case, so ATy ̸= 0. Because also
ATA(ATy) = λ(ATy), this means that ATy is an eigenvector to ATA with the same
eigenvalue λ ̸= 0. ο.ε.δ.

Lemma 1.2.3. The singular values of any matrix are non-negative real numbers, that can
therefore be ordered: σ1 ≥ . . . ≥ σmin{m,n} ≥ 0.

Proof. By [4] (p233) the eigenvalues of ATA are non-negative real numbers. There-
fore, the non-zero singular values of A are positive, because the square root of
a positive number is a positive number. The singular values of A which are not
non-zero, are all equal to zero. We can therefore order them like

σ1 ≥ . . . ≥ σmin{m,n} ≥ 0. (1.2.3)

ο.ε.δ.

We can now define the pieces of the singular value decomposition for an arbitrary
matrix A ∈ Rm×n.

6

Definition 1.2.4. Given A ∈ Rm×n, let the singular values of A be σ1 ≥ . . . ≥
σmin{m,n} ≥ 0. The matrix Σ ∈ Rm×n will be defined as the diagonal matrix with the
singular values of A on the diagonal, in (not strictly) decreasing order. That is, for
1 ≤ k ≤ min{m,n}

(Σ)k,k = σk,

with all other entries being zero.

Definition 1.2.5. Given A ∈ Rm×n, by definition 1.2.1 and lemma 1.2.2 we have that
σ2
1 ≥ . . . ≥ σ2

min{m,n} ≥ 0 are eigenvalues of AAT , where the (if min{m,n} = n <
m) rest of the eigenvalues are zero. Let u1, . . . , um be corresponding eigenvectors
to every eigenvalue of AAT , which by [4] (p214) can be chosen to be mutually
orthogonal and of Euclidean length 1. Now we define

U =
[
u1 · · ·umin{m,n} · · · um

]
∈ Rm×m. (1.2.4)

Definition 1.2.6. Given A ∈ Rm×n, by definition 1.2.1 and lemma 1.2.2 we have that
σ2
1 ≥ . . . ≥ σ2

min{m,n} ≥ 0 are eigenvalues of ATA, where the (if min{m,n} = m <
n) rest of the eigenvalues are zero. Let v1, . . . , vn be corresponding eigenvectors
to every eigenvalue of ATA, which by [4] (p214) can be chosen to be mutually
orthogonal and of Euclidean length 1. Now we define

V =
[
v1 · · · vmin{m,n} · · · vn

]
∈ Rn×n. (1.2.5)

Lemma 1.2.7. A matrix M ∈ Rm×n with mutually orthogonal vectors of Euclidean length
1 is an orthogonal matrix: MTM = In.

Proof. Let w1, . . . , wn be mutually orthogonal vectors in Rm of Euclidean length 1.
Let

M =
[
w1 · · · wn

]
∈ Rm×n. (1.2.6)

By definition of matrix multiplication, we have that the entry in row 1 ≤ i ≤ n and
column 1 ≤ j ≤ n of MTM ∈ Rn×n is

(MTM)i,j = wT
i wj. (1.2.7)

By definition of mutually orthogonal wT
i wj = 0 if i ̸= j. By definition of Euclidean

length 1 we have wT
k wk = ∥wk∥22 = 12 = 1. Therefore, for 1 ≤ k ≤ n

(MTM)k,k = 1, (1.2.8)

and the rest of the entries are zero. This is the definition of In. Therefore

MTM = In, (1.2.9)

meaning that M is orthogonal. ο.ε.δ.

7

Corollary 1.2.8. U ∈ Rm×m and V ∈ Rn×n are square orthogonal matrices.

Proof. This immediately follows from definitions 1.2.5 and 1.2.6 with lemma 1.2.7.
ο.ε.δ.

Definition 1.2.9. Let A be any matrix in Rm×n. By [4] (p214), the singular value
decomposition (SVD) of A will always exist and be given by

A = UΣV T .

1.2.2 The compact SVD

The compact SVD is all about simplifying the SVD by only considering the positive
singular values. It turns out that the number of positive singular values is exactly
the rank of the matrix.

Lemma 1.2.10. Given a matrix A ∈ Rm×n, then rank(A) = r if and only if

σ1 ≥ . . . ≥ σr > 0 = σr+1 = . . . = σmin{m,n}.

Proof. Let the SVD of A be A = UΣV T and let rank(A) = r. Because U and V T are
invertible, they are full rank by theorem 1.1.11. Therefore

r = rank(A) = rank(UΣV T) = rank(Σ). (1.2.10)

The rank of Σ is the number of independent columns of Σ. Because it is a diagonal
matrix, this is the number of non-zero columns of Σ, which is exactly the number
of non-zero singular values of A. By lemma 1.2.3 this means that

σ1 ≥ . . . ≥ σr > 0 = σr+1 = . . . = σmin{m,n}. (1.2.11)

ο.ε.δ.

Now we can define the pieces of the compact singular value decomposition for an
arbitrary matrix A ∈ Rm×n of rank r.

Definition 1.2.11. Let Σ be as in definition 1.2.4. We now define Σr ∈ Rr×r to be
the matrix consisting of the first r rows and columns of Σ.

Remark. Because Σ is diagonal this means that Σr is also diagonal.

Remark. If rank(A) = r this means by lemma 1.2.10 that Σr is a block in Σ seen as
a block matrix, given by

Σ =

[
Σr 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

]
∈ Rm×n.

8

Definition 1.2.12. Let U be as in definition 1.2.5. We now define Ur ∈ Rm×r, where
1 ≤ r ≤ m, to be the matrix consisting of the first r columns of U . That is

Ur =
[
u1 · · · ur

]
∈ Rm×r.

Definition 1.2.13. Let V be as in definition 1.2.6. We now define Vr ∈ Rn×r, where
1 ≤ r ≤ n, to be the matrix consisting of the first r columns of V . That is

Vr =
[
v1 · · · vr

]
∈ Rn×r.

Corollary 1.2.14. Ur ∈ Rm×r and Vr ∈ Rn×r are orthogonal matrices.

Proof. This immediately follows from definition 1.2.12 and definition 1.2.13 with
lemma 1.2.7. ο.ε.δ.

We will now see that the compact SVD given by UrΣrV
T
r is in fact equal to the

standard SVD given by UΣV T .

Theorem 1.2.15. Given A ∈ Rm×n with rank(A) = r, then A = UΣV T = UrΣrV
T
r .

Proof. Let A ∈ Rm×n and rank(A) = r. Let us express U,Σ and V as block matrices
with Ur, Σr and Vr as blocks used within them.

U =
[
Ur Uother

]
, Σ =

[
Σr 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

]
, V =

[
Vr Vother

]
, (1.2.12)

where Uother ∈ Rm×(m−r) and Vother ∈ Rn×(n−r). By direct computation

A = UΣV T =
[
Ur Uother

] [Σr 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

] [
Vr Vother

]T
=
[
Ur Uother

] [Σr 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

] [
V T
r

V T
other

]
=
[
Ur Uother

] [ΣrV
T
r + 0V T

other
0V T

r + 0V T
other

]
=
[
Ur Uother

] [ΣrV
T
r

0(m−r)×n

]
= UrΣrV

T
r + Uother0(m−r)×n

= UrΣrV
T
r .

(1.2.13)

ο.ε.δ.

Definition 1.2.16. Let the SVD of A ∈ Rm×n be A = UΣV T . Let rank(A) = r. The
compact singular value decomposition (compact SVD) of A will then be

A = UrΣrV
T
r .

9

2 Least squares problems

This chapter is based upon section II.2 in Linear Algebra and Learning from Data
by Gilbert Strang [12]. In this chapter we will let A ∈ Rm×n, x ∈ Rn and b ∈ Rm.

2.1 Least squares

A recurring problem in linear algebra is to solve equations of the form Ax = b with
respect to x. If and only if a unique solution exists it takes the form x = A−1b. Note
that it is a requirement that A is square, meaning m = n, in order for A−1 to exist.
Let us now define a well-posed problem.

Definition 2.1.1. The problem of solving an equation of the form Ax = b with
respect to x will be called a well-posed problem if there exists a unique solution.

In the complementary case we call it an ill-posed problem.

Definition 2.1.2. The problem of solving an equation of the form Ax = b with
respect to x will be called an ill-posed problem if there are no solutions or an infinite
number of solutions.

Ill-posed problems of this form might still be very important to solve, at least
approximately. For these cases we will use some version of the method of least
squares. The idea is to find an x̂ that minimizes the expression ∥b− Ax̂∥22. That is

min
x

∥b− Ax∥22 = ∥b− Ax̂∥22. (2.1.1)

This will be the closest approximate solution in terms of the squared Euclidean
norm. There are many ways to find such an x̂. In this report we will cover four
ways, which are by the normal equation, pseudoinverse, QR-decomposition and
regularization. This is covered in the following sections and the next chapter.

2.2 Normal equation

The normal equation is ATAx̂ = AT b. In this section we will show that when this
has a unique solution it is the unique minimizer of ∥b− Ax̂∥22.

10

2.2.1 Deriving the normal equation

To find an x̂ that minimizes ∥b − Ax̂∥22 we first define an appropriate function f :
Rn → R by

f(x) = ∥b− Ax∥22
= (b− Ax)T (b− Ax)

= (bT − xTAT)(b− Ax)

= bT b− bTAx− xTAT b+ xTATAx.

(2.2.1)

It is then clear that the minimizer of this function is an x̂ that minimizes the ex-
pression ∥b − Ax̂∥22. Let us find local extrema of f this by solving ∇f(x̂) = 0. By
definition of matrix-multiplication we have

bT b =
m∑
i=1

(bi)
2, (2.2.2)

bTAx =
m∑
i=1

n∑
j=1

bi(A)i,jxj, (2.2.3)

xTAT b =
n∑

j=1

m∑
i=1

xj(A
T)j,ibi, (2.2.4)

xTATAx =
n∑

j=1

m∑
i=1

n∑
k=1

xj(A
T)j,i(A)i,kxk. (2.2.5)

We can now use standard derivative rules to compute the gradient ∇f(x). This
is a vector with entry t being (∇f(x))t =

∂f
∂xt

(x). By the linearity of the derivative
operator

∂f

∂xt

(x) =
∂

∂xt

bT b− ∂

∂xt

bTAx− ∂

∂xt

xTAT b+
∂

∂xt

xTATAx. (2.2.6)

Using the equations above, these terms can then be computed by

∂

∂xt

bT b = 0, (2.2.7)

∂

∂xt

bTAx =
m∑
i=1

bi(A)i,t =
m∑
i=1

bi(A
T)t,i =

m∑
i=1

(AT)t,ibi = (AT b)t, (2.2.8)

∂

∂xt

xTAT b =
m∑
i=1

(AT)t,ibi = (AT b)t. (2.2.9)

11

For ∂
∂xt

xTATAx we break it down into cases. The following indices will refer to the
indices used in equation (2.2.5). Terms with j ̸= t and k ̸= t contribute 0. Terms
with j = t and k ̸= t contribute

m∑
i=1

n∑
k=1

(AT)t,i(A)i,kxk −
m∑
i=1

(AT)t,i(A)i,txt = (ATAx)t −
m∑
i=1

(AT)t,i(A)i,txt. (2.2.10)

Terms with j ̸= t and k = t contribute
n∑

j=1

m∑
i=1

xj(A
T)j,i(A)i,t −

m∑
i=1

xt(A
T)t,i(A)i,t

=
n∑

j=1

m∑
i=1

(AT)j,i(A)i,txj −
m∑
i=1

(AT)t,i(A)i,txt

=
n∑

j=1

m∑
i=1

(A)i,j(A
T)t,ixj −

m∑
i=1

(AT)t,i(A)i,txt

=
n∑

j=1

m∑
i=1

(AT)t,i(A)i,jxj −
m∑
i=1

(AT)t,i(A)i,txt

=(ATAx)t −
m∑
i=1

(AT)t,i(A)i,txt.

(2.2.11)

Note that this expression equals the expression for the prior case. Terms with j = t
and k = t contribute

2
m∑
i=1

(AT)t,i(A)i,txt.

These are all the cases, therefore

∂

∂xt

xTATAx = 2(ATAx)t − 2
m∑
i=1

(AT)t,i(A)i,txt + 2
m∑
i=1

(AT)t,i(A)i,txt

= 2(ATAx)t.

(2.2.12)

Using equation (2.2.6) we arrive at

(∇f(x))t =
∂f

∂xt

(x) = 0− (AT b)t − (AT b)t + 2(ATAx)t

= 2(ATAx)t − 2(AT b)t.

(2.2.13)

This means that
∇f(x) = 2ATAx− 2AT b. (2.2.14)

12

We can now find local extremizers x̂ by setting this equal to 0 and solving.

∇f(x̂) = 2ATAx̂− 2AT b = 0

⇐⇒ ATAx̂ = AT b.
(2.2.15)

This is the normal equation.

2.2.2 Analyzing the normal equation

To solve the normal equation ATAx̂ = AT b is a well-posed problem if and only
if ATA is invertible. Note that ATA ∈ Rn×n, so the normal equation is a square
system (of equations). This is necessary, but not sufficient for ATA to be invertible.
However, if the null space of ATA is trivial it is sufficient.

Lemma 2.2.1. N(ATA) = N(A).

Proof. Let x ∈ N(ATA). By definition of the null space and the Euclidean norm

ATAx = 0 =⇒ xTATAx = 0

⇐⇒ (Ax)T (Ax) = 0

⇐⇒ ∥Ax∥22 = 0

⇐⇒ ∥Ax∥2 = 0

=⇒ Ax = 0

⇐⇒ x ∈ N(A)

=⇒ N(ATA) ⊆ N(A).

(2.2.16)

Let x ∈ N(A). By definition of the null space

Ax = 0 =⇒ ATAx = 0

⇐⇒ x ∈ N(ATA)

=⇒ N(A) ⊆ N(ATA)

(2.2.17)

By equation (2.2.16) and (2.2.17) we have

N(ATA) ⊆ N(A) ⊆ N(ATA) ⇐⇒ N(ATA) = N(A). (2.2.18)

ο.ε.δ.

13

Theorem 2.2.2. ATA is invertible if and only if N(A) is trivial.

Proof. Let N(A) be trivial. By lemma 2.2.1 this means that N(ATA) is trivial. By
the rank-nullity theorem ATA has full rank. Since ATA also is square, it is then
invertible.

Let ATA be invertible. This means that N(ATA) is trivial. By lemma 2.2.1 N(A)
is then also trivial. ο.ε.δ.

Corollary 2.2.3. The normal equation ATAx̂ = AT b has a unique solution if and only if
N(A) is trivial.

Proof. This immediately follows from theorem 2.2.2. ο.ε.δ.

Theorem 2.2.4. If x̂ = (ATA)−1AT b exists, it is the unique minimizer of ∥b− Ax̂∥22.

Proof. Let x̂ = (ATA)−1AT b exist. This is a minimizer if ∥b − Ax̂∥22 ≤ ∥b − Ax∥22
for each x ∈ Rn. Let r(x) = b − Ax. Therefore equivalently we wish to show that
∥r(x̂)∥22 ≤ ∥r(x)∥22 for each x ∈ Rn. Note that

r(x) = b− Ax

= b− Ax̂+ Ax̂− Ax

= r(x̂) + A(x̂− x).

(2.2.19)

By the definition of the Euclidean norm

∥r(x)∥22
= r(x)T r(x)

= (r(x̂) + A(x̂− x))T (r(x̂) + A(x̂− x))

= (r(x̂)T + (x̂− x)TAT)(r(x̂) + A(x̂− x))

= r(x̂)T r(x̂) + r(x̂)TA(x̂− x) + (x̂− x)TAT r(x̂) + (x̂− x)TATA(x̂− x)

= ∥r(x̂)∥22 + r(x̂)TA(x̂− x) + (x̂− x)TAT r(x̂) + ∥A(x̂− x)∥22.

(2.2.20)

Note now that
AT r(x̂) = AT (b− Ax̂)

= AT b− ATA(x̂)

= AT b− ATA(ATA)−1AT b

= AT b− AT b

= 0,

(2.2.21)

and therefore
r(x̂)TA = (AT r(x̂))T = 0T . (2.2.22)

14

By equation (2.2.20)

∥r(x)∥22 = ∥r(x̂)∥22 + r(x̂)TA(x̂− x) + (x̂− x)TAT r(x̂) + ∥A(x̂− x)∥22
= ∥r(x̂)∥22 + 0T (x̂− x) + (x̂− x)T 0+∥A(x̂− x)∥22
= ∥r(x̂)∥22 + ∥A(x̂− x)∥22
≥ ∥r(x̂)∥22.

(2.2.23)

Hence, x̂ = (ATA)−1AT b is a minimizer of ∥b − Ax̂∥22 when it exists. Since it is the
unique solution to the normal equation (2.2.15) it is the unique stationary point of
f(x) = ∥b− Ax∥22. It is therefore the unique minimizer of ∥b− Ax̂∥22. ο.ε.δ.

2.3 Pseudoinverse

In this section we will develop some theory for the pseudoinverse of a matrix A,
which will be denoted by A+. This always exists for every matrix A and we will
show that when a unique solution to the normal equation exists, then x̂ = A+b is
equal to that solution.

2.3.1 Definition of the pseudoinverse

The definition of the pseudoinverse builds upon the SVD explored in section 1.2.
We have that every matrix A ∈ Rm×n can be expressed as

A = UΣV T , (2.3.1)

where U ∈ Rm×m and V ∈ Rn×n are both orthogonal matrices and Σ ∈ Rm×n is
diagonal. Let the rank of A be r ≤ min{m,n}, meaning that the compact SVD of A
is

A = UrΣrV
T
r , (2.3.2)

where Ur ∈ Rm×r and Vr ∈ Rn×r are the first r column of U and V , and Σr ∈ Rr×r

are the first r columns and rows of Σ. We first define what the pseudoinverse of
the diagonal matrix Σ is. For 1 ≤ k ≤ r it is the case that (Σ)k,k = σk > 0, and all
other entries of Σ are 0.

Definition 2.3.1. The pseudoinverse of Σ will be denoted by Σ+ ∈ Rn×m which for
1 ≤ k ≤ r will be defined by

(Σ+)k,k =
1

σk

,

with all other entries being 0.

15

Example 2.3.2. Let A ∈ R4×3, with rank(A) = 2 where A = UΣV T is the SVD of A.
Then

Σ =

σ1 0 0
0 σ2 0
0 0 0
0 0 0

 , and Σ+ =

 1
σ1

0 0 0

0 1
σ2

0 0

0 0 0 0

 .

Definition 2.3.3. The pseudoinverse of any matrix A ∈ Rm×n will be

A+ = V Σ+UT ∈ Rn×m.

2.3.2 Properties of the pseudoinverse

Using the definitions above we now wish to derive interesting and important state-
ments about the pseudoinverse.

Lemma 2.3.4. Σ+ is the block matrix

Σ+ =

[
Σ−1

r 0
0 0

]
∈ Rn×m.

Proof. Because (Σ)k,k = σk > 0 for 1 ≤ k ≤ r with all other entries being 0 it is
the case that (Σr)k,k = σk > 0 with all other entries being 0. Because Σr then is
diagonal its inverse Σ−1

r ∈ Rr×r is

(Σ−1
r)k,k =

1

σk

> 0, (2.3.3)

for 1 ≤ k ≤ r, with all other entries being 0. If we pad Σ−1
r by adding columns and

rows of zeros until it has m rows and n columns, then this new matrix is the block
matrix [

Σ−1
r 0
0 0

]
∈ Rn×m.

Note that it has entries 1
σk

> 0 with 1 ≤ k ≤ r for the r first entries of its main
diagonal, with all other entries being 0. By definition 2.3.1 this is the pseudoinverse
Σ+. ο.ε.δ.

Corollary 2.3.5. Σ+Σ and ΣΣ+ are the matrices

Σ+Σ =

[
Ir 0
0 0

]
∈ Rn×n, (2.3.4)

ΣΣ+ =

[
Ir 0
0 0

]
∈ Rm×m, (2.3.5)

where Ir is the r × r identity matrix.

16

Proof. This immediately follows from lemma 2.3.4. ο.ε.δ.

Theorem 2.3.6. A+ = VrΣ
−1
r UT

r . (This is the compact pseudoinverse.)

Proof. By definition 2.3.3 we have A+ = UΣ+V T . By lemma 2.3.4

A+ = UΣ+V T

= U

[
Σ−1

r 0
0 0

]
V T

= U

[
Σ−1

r V T
r

0

]
= UrΣ

−1
r V T

r .

(2.3.6)

ο.ε.δ.

Let us use this to determine what A+A and AA+ is.

Corollary 2.3.7. A+A = VrV
T
r .

Proof. Using theorem 2.3.6 we have

A+A = VrΣ
−1
r UT

r UrΣrV
T
r

= VrΣ
−1
r ΣrV

T
r

= VrV
T
r .

(2.3.7)

ο.ε.δ.

Corollary 2.3.8. AA+ = UrU
T
r .

Proof. Using theorem 2.3.6 we have

AA+ = UrΣrV
T
r VrΣ

−1
r UT

r

= UrΣ
−1
r ΣrU

T
r

= UrU
T
r .

(2.3.8)

ο.ε.δ.

Theorem 2.3.9. If A has rank n then A+A = In. (This means that A+ is a left inverse of
A.)

Proof. Let A have rank r = n. Therefore Vr = Vn = V . From corollary 2.3.7 it
immediately follows that A+A = V V T = In. ο.ε.δ.

17

Theorem 2.3.10. If A has rank m then AA+ = Im. (This means that A+ is a right inverse
of A.)

Proof. Let A have rank r = m. Therefore Ur = Um = U . From corollary 2.3.8 it
immediately follows that AA+ = UUT = Im. ο.ε.δ.

Theorem 2.3.11. A+Ax = x if and only if x is in the row space C(AT).

Proof. (if, ⇐=). Let x ∈ C(AT) and A have rank r. By the compact SVD we have
that AT = (UrΣrV

T
r)T = VrΣ

T
r U

T
r = VrΣrU

T
r . By the definition of the column space

x = ATy for some y ∈ Rm, so by corollary 2.3.7

A+Ax = A+AATy

= VrV
T
r VrΣrU

T
r y

= VrΣrU
T
r y

= ATy

= x.

(2.3.9)

(only if, =⇒). Let A+Ax = x. Therefore

x = A+Ax

= VrV
T
r x

= Vr(ΣrU
T
r UrΣ

−1
r)V T

r x

= (VrΣrU
T
r)(UrΣ

−1
r V T

r x)

= ATy

(2.3.10)

with y = UrΣ
−1
r V T

r x ∈ Rm, meaning that x ∈ C(AT). ο.ε.δ.

Theorem 2.3.12. AA+y = y if and only if y is in the column space C(A).

Proof. (if, ⇐=). Let y ∈ C(A) and A have rank r. By definition of the column
space y = Ax for some x ∈ Rn, so by corollary 2.3.8

AA+y = AA+Ax

= UrU
T
r UrΣrV

T
r x

= UrΣrV
T
r x

= Ax

= y.

(2.3.11)

18

(only if, =⇒). Let AA+y = y. Therefore

y = AA+y

= UrU
T
r y

= Ur(ΣrV
T
r VrΣ

−1
r)UT

r y

= (UrΣrV
T
r)(VrΣ

−1
r UT

r y)

= Ax

(2.3.12)

with x = VrΣ
−1
r UT

r y ∈ Rn, meaning that y ∈ C(A). ο.ε.δ.

2.3.3 The pseudoinverses relation to the normal equation

When minimizing ∥b− Ax̂∥22 we arrive at the normal equation ATAx̂ = AT b. From
theorem 2.2.2 we know that this is a well-posed problem exactly when N(A) is
trivial, with solution x̂ = (ATA)−1AT b. We will show that if this is the case, then
x̂ = A+b is also the solution.

Theorem 2.3.13. If N(A) is trivial then A+ = (ATA)−1AT .

Proof. Let N(A) be trivial. By the rank-nullity theorem rank(A) = n. Let A =
UnΣnV

T
n = UnΣnV

T be the compact SVD of A. Then

(ATA)−1AT = ((UnΣnV
T)T (UnΣnV

T))−1(UnΣnV
T)T

= (V ΣT
nU

T
n UnΣnV

T)−1V ΣT
nU

T
n

= (V ΣnΣnV
T)−1V ΣnU

T
n

= (V Σ−2
n V T)V ΣnU

T
n

= V Σ−2
n ΣnU

T
n

= V Σ−1
n UT

n

= V Σ+UT ,

(2.3.13)

by padding Σ−1
n with m−n rows and columns of zeros, meaning that the last m−n

rows of UT do not contribute to the product. ο.ε.δ.

2.4 QR-decomposition

This section is about ways to attain the QR-decomposition of a matrix A = QR in
a numerically stable way, with Q ∈ Rm×m being an orthogonal matrix and R ∈
Rm×n being upper-triangular. We may use this in order to compute the solution
to the normal equation when a unique solution exists. In that case we have that
x̂ = R−1

1 QT
1 b. (See definition 2.4.1.)

19

2.4.1 QR-decompositions relation to the normal equation

First we wish to use the QR-decomposition of the matrix A ∈ Rm×n to solve Ax = b.
If we QR-decompose A as A = QR, then

Ax = b ⇐⇒ QRx = b ⇐⇒ Rx = QT b. (2.4.1)

Note that R is upper-triangular. This is then the same thing as using Gauss-
elimination to reach row echelon form, where back substitution can be used to
solve the system. However, this only has a unique solution when A is invertible,
meaning that A must be square and N(A) must be trivial.

In the case when A ∈ Rm×n we instead consider the least squares problem
minx ∥b−Ax∥22, where by definition of the normal equation, minimizers x̂ must sat-
isfy ATAx̂ = AT b. From theorem 2.2.2 we know that solving the normal equation
ATAx̂ = AT b is a well-posed problem exactly when N(A) is trivial, with solution
x̂ = (ATA)−1AT b. Note that if N(A) is trivial, by the rank-nullity theorem A has
full rank rank(A) = n. This means that m ≥ n.

Now, in this case when m ≥ n, we will relate the QR-decomposition of A to the
normal equation ATAx̂ = AT b.

Definition 2.4.1. Let A = QR be a QR-decomposition of A ∈ Rm×n with m ≥ n,
where Q ∈ Rm×m is orthogonal and R ∈ Rm×n is upper-triangular. We now define
R1 ∈ Rn×n to be the first n rows of R, and Q1 ∈ Rm×n to be the first n columns of Q
and Q2 ∈ Rm×(m−n) to be the last m− n columns of Q. That is

Q =
[
Q1 Q2

]
, and R =

[
R1

0

]
.

Lemma 2.4.2. If A = QR is a QR-decomposition of A ∈ Rm×n with m ≥ n, then
A = Q1R1.

Proof. By definition 2.4.1 we have that

A = QR =
[
Q1 Q2

] [R1

0(m−n)×n

]
= Q1R1 +Q20(m−n)×n = Q1R1. (2.4.2)

ο.ε.δ.

We will show that when the normal equation has a unique solution, which we
know is given by x̂ = (ATA)−1AT b, then x̂ = R−1

1 QT
1 b is also the solution. Therefore

we wish to show in that case that R−1
1 QT

1 = (ATA)−1AT . By theorem 2.2.2 we know
that this case is exactly when N(A) is trivial.

20

Theorem 2.4.3. If N(A) is trivial then R−1
1 QT

1 = (ATA)−1AT , where A = QR is a
QR-decomposition of A.

Proof. Let A ∈ Rm×n and N(A) be trivial. By the rank-nullity theorem we have
that rank(A) = n. Because the matrix Q ∈ Rm×m is orthogonal and square, it is
also invertible. This means that Q has full rank. Because A = QR we have that
rank(R) = rank(A) = n.

Since all rows in R are only zeros, except those in R1, this means that the n
rows of R1 ∈ Rn×n must be linearly independent for rank(R) = n. Therefore
rank(R1) = n. This means that R1 is invertible, and so RT

1 ∈ Rn×n is invertible
because it then must have n linearly independent columns. Using A = QR and
lemma 2.4.2 we have

(ATA)−1AT = ((QR)T (QR))−1(QR)T

= (RTQTQR)−1(QR)T

= (RTR)−1(QR)T

= (RTR)−1(Q1R1)
T

=

([
R1

0

]T [
R1

0

])−1

RT
1Q

T
1

=

([
RT

1 0T
] [R1

0

])−1

RT
1Q

T
1

= (RT
1R1 + 0T0)−1RT

1Q
T
1

= (RT
1R1)

−1RT
1Q

T
1

= R−1
1 (RT

1)
−1(RT

1)Q
T
1

= R−1
1 InQ

T
1

= R−1
1 QT

1 .

(2.4.3)

ο.ε.δ.

2.4.2 Householder reflections

The idea with Householder reflections is to create t matrices H1, . . . , Ht such that
when multiplying a matrix A′ ∈ Rm×n with Hk from the left, then this results in a
new matrix that has all entries as zero below its main diagonal in the k:th column.

We will have Ht . . . H1A = R ∈ Rm×n, where t = min{m − 1, n}, forced to be
an upper-triangular matrix. This will give rise to a QR-decomposition of A. We
first develop some theory about Householder reflection matrices, which will be used
in order to construct the matrices H1, . . . , Ht.

21

Definition 2.4.4. A m×m Householder reflection matrix will be a matrix of the form

Hv = Im − 2
vvT

∥v∥22
= Im − 2uuT ,

where v ∈ Rm, or u ∈ Rm with ∥u∥2 = 1.

Lemma 2.4.5. Householder reflection matrices H are symmetric: HT = H .

Proof. Let H = Im − 2uuT . We have that

HT = (Im − 2uuT)T = ITm − 2(uT)TuT = Im − 2uuT = H. (2.4.4)

ο.ε.δ.

Lemma 2.4.6. Householder reflection matrices H are orthogonal: HTH = Im.

Proof. Let H = Im − 2uuT . Note that ∥u∥2 = 1. We have that

HTH = H2 = (Im − 2uuT)(Im − 2uuT)

= I2m − 4uuT + 4uuTuuT

= Im − 4uuT + 4u(∥u∥22)uT

= Im − 4uuT + 4u(12)uT

= Im − 4uuT + 4uuT

= Im.

(2.4.5)

ο.ε.δ.

Corollary 2.4.7. Householder reflection matrices are involutory: H−1 = H .

Proof. By lemma 2.4.6 and lemma 2.4.5 we have that

Im = HTH = HH =⇒ H−1 = H. (2.4.6)

ο.ε.δ.

Lemma 2.4.8. Hvy is the reflection of y in the hyperplane through 0 with normal vector
v. (This is where the name Householder reflection matrix comes from.)

Proof. Omitted. See section A.2 of appendix A on page 81. ο.ε.δ.

What we now wish to be able to do is, given a vector a, find the reflection such
that a is reflected to another vector r. Because this is a reflection, note that they
have to have the same length ∥a∥2 = ∥r∥2. It turns out that this reflection is given
by the matrix Hv where v = a− r.

22

Theorem 2.4.9. If v = a− r and ∥a∥2 = ∥r∥2 then Hva = r.

Proof. Let v = a− r and ∥a∥2 = ∥r∥2. Note first that

∥a∥2 = ∥r∥2 ⇐⇒ ∥a∥22 = ∥r∥22 ⇐⇒ aTa = rT r. (2.4.7)

Note further that
aT r = rTa (2.4.8)

holds for every pair of vectors a ∈ Rm, r ∈ Rm. We have that

Hva =

(
Im − 2

vvT

∥v∥22

)
a

= Ima− 2
(a− r)(a− r)Ta

∥a− r∥22

= a− 2
(a− r)(a− r)Ta

(a− r)T (a− r)

= a− 2
(a− r)(aT − rT)a

(aT − rT)(a− r)

= a− 2
(aaT − arT − raT + rrT)a

aTa− aT r − rTa+ rT r

= a− 2
aaTa− arTa− raTa+ rrTa

aTa− rTa− rTa+ aTa

= a− 2
a(aTa)− a(rTa)− r(aTa) + r(rTa)

2(aTa)− 2(rTa)

= a− a(aTa− rTa)− r(aTa+ rTa)

aTa− rTa

= a− (a− r)

= r.

(2.4.9)

ο.ε.δ.

Definition 2.4.10. If

a =

a1
...
ai
...
aj
...
am

∈ Rm,

23

then let the vector from row i to row j be

ai→j =

ai...
aj

 ∈ Rj−i+1.

Definition 2.4.11. Let ei ∈ Rj be the vector in Rj with all zeros as entries, except a
one at entry i.

We now wish to use Householder reflection matrices in order to transform vec-
tors

ak→m =

ak
ak+1

...
am

 , to vectors βe1 =

β
0
...
0

 ∈ Rm−k+1.

Note that because this is a reflection it is required that

∥βe1∥2 = ∥ak→m∥2 =⇒ β = ±∥ak→m∥2. (2.4.10)

By theorem 2.4.9 we can now construct the Householder reflection matrix that
transforms ak→m to βem−k+1

1 .

Definition 2.4.12. Given a matrix A′ ∈ Rm×n with column vectors a1, . . . , an, let Hk,
where 1 ≤ k ≤ min{m,n− 1}, be the block matrix

Hk =

[
Ik−1 0
0 Hv

]
∈ Rm×m,

where
v = (ak)k→m − βe1 ∈ Rm−k+1,

with β = ±∥(ak)k→m∥2, and Hv = Im−k+1 − 2 vvT

∥v∥22
.

Remark. For k = 1, it is meant that H1 = Hv.

Remark. In numerical implementations one takes sign(β) = sign(akk).

Example 2.4.13. Let

A =

−2 3 5
5 6 −1
−8 3 3
4 −6 5

 , (2.4.11)

24

and we will calculate H2A. We have that

(a2)2→4 =

3
6
3
−6

2→4

=

 6
3
−6

 . (2.4.12)

We arbitrarily decide that β will be positive.

β = +
√

(6)(6) + (3)(3) + (−6)(−6) =
√
81 = 9. (2.4.13)

Therefore

v =

 6
3
−6

−

90
0

 =

−3
3
−6

 , (2.4.14)

so
∥v∥22 = (−3)(−3) + (3)(3) + (−6)(−6) = 54, (2.4.15)

and

vvT =

−3
3
−6

 [−3 3 −6
]
=

 9 −9 18
−9 9 −18
18 −18 36

 . (2.4.16)

Hence

Hv = I4−2+1 − 2
vvT

∥v∥22
= I3 −

2

54
vvT = I3 −

1

27
vvT

=

1 0 0
0 1 0
0 0 1

− 1

27

 9 −9 18
−9 9 −18
18 −18 36

 =

1 0 0
0 1 0
0 0 1

− 1

3

 1 −1 2
−1 1 −2
2 −2 4

=
1

3

3− 1 1 −2
1 3− 1 2
−2 2 3− 4

 =
1

3

 2 1 −2
1 2 2
−2 2 −1

 .

(2.4.17)
This means that

H2 =

[
I2−1 0
0 Hv

]
=

[
I1 0
0 Hv

]
=

1 0 0 0

0 2
3

1
3

−2
3

0 1
3

2
3

2
3

0 −2
3

2
3

−1
3

 . (2.4.18)

25

We can now calculate

H2A =

1 0 0 0

0 2
3

1
3

−2
3

0 1
3

2
3

2
3

0 −2
3

2
3

−1
3

−2 3 5
5 6 −1
−8 3 3
4 −6 5

 =

−2 3 5
−2 9 −3
−1 0 5
−10 0 1

 . (2.4.19)

Note that the entries below the main diagonal in column k = 2 now are only zeros.
Note further that the row(s) above row k = 2 are not altered from A. These are key
insights that we will use to create an upper-triangular matrix from any matrix A.

Lemma 2.4.14. Given A′ ∈ Rm×n, the first k − 1 rows of HkA
′ are the same as the first

k − 1 rows of A′. (Note that Hk is as in definition 2.4.12.)

Proof. Let the rows of A′ ∈ Rm×n be the row vectors a1∗, . . . , am∗ ∈ R1×n. We have
that

HkA
′ =

[
Ik−1 0
0 Hv

]

a1∗

...
a(k−1)∗

ak∗

...
am∗

=

Ik−1

 a1∗

...
a(k−1)∗

Hv

a
k∗

...
am∗

=

a1∗

...
a(k−1)∗

Hv

a
k∗

...
am∗

, (2.4.20)

which has the same first k − 1 rows as A′. ο.ε.δ.

Lemma 2.4.15. Given A′ ∈ Rm×n, the last m− k rows of the k:th column of HkA
′ are all

zeros. (Note that Hk is as in definition 2.4.12.)

Proof. Let the columns of A′ ∈ Rm×n be the vectors a1, . . . , an ∈ Rm. Let the rows
of A′ be the row vectors a1∗, . . . , am∗ ∈ R1×n. Let v = (ak)k→m − βe1 ∈ Rm−k+1, with
β = ±∥(ak)k→m∥2. By equation (2.4.20)

HkA
′ =

a1∗

...
a(k−1)∗

Hv

a
k∗

...
am∗

=

[
(a1)1→k−1 · · · (ak)1→k−1 · · · (an)1→k−1

Hv

[
(a1)k→m · · · (ak)k→m · · · (an)k→m

]
]

=

[
(a1)1→k−1 · · · (ak)1→k−1 · · · (an)1→k−1

Hv(a
1)k→m · · ·Hv(a

k)k→m · · ·Hv(a
n)k→m

]
.

(2.4.21)

26

By theorem 2.4.9 we have that

Hv(a
k)k→m = βe1 = ±∥(ak)k→m∥2e1 ∈ Rm−k+1. (2.4.22)

Column k of HkA
′ is therefore

(ak)1→k−1

±∥(ak)k→m∥2
0
...
0

 ∈ Rm. (2.4.23)

Because (ak)1→k−1 ∈ Rk−1 and ±∥(ak)k→m∥2 ∈ R1, the last m − k rows of the k:th
column of HkA

′ are zero. ο.ε.δ.

Lemma 2.4.16. Given A ∈ Rm×n, then Ht . . . H1A, where t = min{m − 1, n}, is an
upper-triangular matrix. (Note that Hk, where 1 ≤ k ≤ t, is as in definition 2.4.12.)

Proof (by induction). Let

P (c) = ”The first c columns of Hc . . . H1A form an upper-triangular matrix”,
(2.4.24)

and let t = min{m− 1, n}. We will begin by proving by induction that P (t) holds,
and then argue why this means that Ht . . . H1A is upper-triangular.

Base case. By lemma 2.4.15 we have that the last m− 1 rows of the first column
of H1A are zeros. These are the rows below the main diagonal. Therefore the first
column of H1A forms an m× 1 upper-triangular matrix, meaning that P (1) holds.

Inductive hypothesis. Assume that P (k−1) holds for some 2 ≤ k ≤ t. This means
that the first k−1 columns of A′ = Hk−1 . . . H1A form an m×(k−1) upper-triangular
matrix.

Induction step. Let the columns of A′ be the vectors a1, . . . , an ∈ Rm. Let v =
(ak)k→m − βe1 ∈ Rm−k+1, with β = ±∥(ak)k→m∥2. Because P (k − 1) holds, the last
m − (k − 1) = m − k + 1 rows of the first k − 1 columns of A′ are zero. Therefore,
with 0 ∈ Rm−k+1

A′ =

[
(a1)1→k−1 · · · (ak−1)1→k−1 (ak)1→k−1 · · · (an)1→k−1

0 · · · 0 (ak)k→m · · · (an)k→m

]
. (2.4.25)

27

Where then changing A′ to HkA
′ by left multiplying by Hk results in

HkA
′ =

[
Ik−1 0
0 Hv

]
A′. (2.4.26)

By equation (2.4.20), this means that the first k − 1 rows will be unchanged from
A′, and the last m − k rows, as a matrix, will be left multiplied by Hv. Note by
equation (2.4.25) that the last m − k rows of the first k − 1 columns of A′ are only
zeros. Since Hv 0 = 0, this means that all of (the rows) of the first k − 1 columns of
HkA

′ are the same as the first k − 1 columns of A′. That is

HkA
′ =

[
(a1)1→k−1 · · · (ak−1)1→k−1 (ak)1→k−1 · · · (an)1→k−1

0 · · · 0 Hv(a
k)k→m · · · Hv(a

n)k→m

]
. (2.4.27)

By the inductive hypothesis P (k−1) holds. This means that the first k−1 columns
of HkA

′ are also upper-triangular. By lemma 2.4.15 the last m − k rows of the k:th
column of HkA

′ are all zeros. These are the rows below the main diagonal. There-
fore, the first k columns of HkA

′ = Hk . . . H1A form an m × k upper-triangular
matrix, meaning that P (k) holds.

Inductive conclusion. By induction, P (t) holds, where t = min{m − 1, n}. This
means that the first t columns of A′ = Ht . . . H1A form an m × t upper-triangular
matrix. We will now split it into two cases: m > n, and m ≤ n.

Case m > n. This means that t = min{m − 1, n} = n and A is ”tall and thin”.
Since P (t) holds, the first n columns of Ht . . . H1A ∈ Rm×n form an m × n upper-
triangular matrix. Since Ht . . . H1A ∈ Rm×n, this means that Ht . . . H1A is upper-
triangular.

Case m ≤ n. This means that t = min{m− 1, n} = m− 1 and A is square, or A is
”short and thick”. Since P (t) holds, the first m − 1 columns of Ht . . . H1A ∈ Rm×n

form an m× (m− 1) upper-triangular matrix. Note that the columns of Ht . . . H1A
are in Rm, which means that the m:th column of Ht . . . H1A is in Rm. No matter
what entries the m:th column of Ht . . . H1A has, the first m columns of Ht . . . H1A
will therefore be a square m × m upper-triangular matrix. Because n ≥ m this
trivially means that (all of) Ht . . . H1A is upper-triangular. ο.ε.δ.

28

Lemma 2.4.17. Given A ∈ Rm×n, then Hk is a symmetric matrix: HT
k = Hk. (Note that

Hk is as in definition 2.4.12.)

Proof. Omitted. See section A.2 of appendix A on page 81. ο.ε.δ.

Lemma 2.4.18. Given A ∈ Rm×n, then Hk is an orthogonal matrix: HT
k Hk = Im. (Note

that Hk is as in definition 2.4.12.)

Proof. Omitted. See section A.2 of appendix A on page 81. ο.ε.δ.

Lemma 2.4.19. Given A ∈ Rm×n, then Ht . . . H1, where t = min{m − 1, n}, is an
orthogonal matrix. (Note that Hk, where 1 ≤ k ≤ t, is as in definition 2.4.12.)

Proof. Omitted. See section A.2 of appendix A on page 81. ο.ε.δ.

Theorem 2.4.20. Any matrix A ∈ Rm×n can be factored as A = QR where Q = H1 . . . Ht

is an orthogonal matrix and R = Ht . . . H1A is an upper-triangular matrix. (Note that
Hk, where 1 ≤ k ≤ t, is as in definition 2.4.12.)

Proof. By lemma 2.4.19, we have that Q = H1 . . . Ht is orthogonal. By lemma 2.4.16,
we have that R = Ht . . . H1A is upper-triangular. By lemma 2.4.17

R = Ht . . . H1A = (H1 . . . Ht)
TA = QTA. (2.4.28)

Since Q is square and orthogonal

QTQ = Im =⇒ QT = Q−1 =⇒ QQT = Im. (2.4.29)

Therefore
QR = QQTA = A. (2.4.30)

ο.ε.δ.

2.4.3 Least squares numerical implementation

We will do this using Householder reflections, because they are numerically sta-
ble compared to standard Gram-Schmidt, which is highly prone to round-off er-
rors [12] (p131), [2] (p397). First we consider the block matrix[

A b
]
∈ Rm×(n+1),

as in elimination. We will use definition 2.4.12, to be able to calculate the matrices
H1, . . . , Ht. By lemma 2.4.19 we have that QT = Ht . . . H1 is orthogonal, and by

29

theorem 2.4.20 R = QTA gives rise to the QR-decomposition A = QR. Explicitly
we will do the calculation

Ht(Ht−1 . . . (H2(H1

[
A b

]
)) . . .) = QT

[
A b

]
=
[
R QT b

]
, (2.4.31)

where t = min{m − 1, n}. Now we have the matrix R and vector QT b, so because
R is upper-triangular, the equation

Rx = QT b ⇐⇒ Ax = b (2.4.32)

is immediately solved by back substitution if m ≤ n, meaning A is square, or A
is ”short and thick”. If m > n then we instead only consider the first k ≤ n rows
which are non-zero in R. This results in the new system

[
R∼ QT

∼b
]
, where R∼

is square, or R∼ is ”short and thick”. This system can therefore be immediately
solved by back substitution.

If k = n then by definition 2.4.1, we are considering the square system[
R1 QT

1 b
]
. Solving this by back substitution then results in the least squares

solution x̂ = R−1
1 QT

1 b.

30

3 Regularizing least squares problems

This chapter is based upon a project description in the course MM5016 Numeri-
cal Analysis HT21 (Fall 2021) by professor Yishao Zhou, and page 132 in Linear
Algebra and Learning from Data [12].

3.1 Regularization

Regularization is a method of adjusting minimization problems that are ill-posed
or are prone to ”complicated” solutions. A regularized minimization problem is
the same minimization problem as prior but a penalty term is added, which will be
based on the variable(s). The idea is that now it will be a well-posed problem and
”complicated” solutions will be discouraged because they will be given a higher
penalty from the penalty term.
Remark. ”Complicated” could mean that the minimization problem is near ill-
posed, leading to numerical instability and high error in the solution. It could
also mean solutions which have high ”entropy”: containing large values, or has
many parts, etcetera.

Definition 3.1.1. A minimization problem minχ f(χ) will be regularized if one in-
stead considers

min
χ

f(χ) + δR(χ),

where δ > 0 is the regularization parameter and R(χ) ≥ 0 is the entropy measure.

3.2 Tikhonov regularization (L2)

3.2.1 Definition of Tikhonov regularization

Tikhonov regularization is a way of regularizing least squares problems. It is
named after the Russian mathematician Andrey Nikolayevich Tikhonov.

Definition 3.2.1. The Tikhonov regularization of minx ∥b− Ax∥22 is the minimization
problem minx ∥b − Ax∥22 + ∥Γx∥22, where in this report we will consider the case
Γ =

√
δIn, leading to the minimization problem

min
x

∥b− Ax∥22 + δ∥x∥22.

Remark. This special case is also called L2 regularization and it is called ridge re-
gression when solving this in regression [12] (p132).

31

3.2.2 Solution to Tikhonov

In order to solve Tikhonov regularized least squares problems minx ∥b − Ax∥22 +
δ∥x∥22, we first note that this can be restated as a standard least squares problem.

Theorem 3.2.2. ∥b−Ax∥22 + δ∥x∥22 =
∥∥∥∥[b0

]
−
[

A√
δIn

]
x

∥∥∥∥2
2

, where 0 is the zero vector in

Rn.

Proof. By definition of the Euclidean norm

∥b− Ax∥22 + δ∥x∥22 = (b− Ax)T (b− Ax) + δxTx

= (bT − xTAT)(b− Ax) + δxTx

= bT b− bTAx− xTAT b+ xTATAx+ δxTx.

(3.2.1)

At the same time∥∥∥∥[b0
]
−
[

A√
δIn

]
x

∥∥∥∥2
2

=

([
b
0

]
−
[

A√
δIn

]
x

)T ([
b
0

]
−
[

A√
δIn

]
x

)
=

([
b
0

]T
− xT

[
A√
δIn

]T)([
b
0

]
−
[

A√
δIn

]
x

)
=
([
bT 0T

]
− xT

[
AT

√
δITn
])([b

0

]
−
[

A√
δIn

])
=
([
bT 0T

]
−
[
xTAT

√
δxT
])([b

0

]
−
[
Ax√
δx

])
=
[
bT 0T

] [b
0

]
−
[
bT 0T

] [Ax√
δx

]
−
[
xTAT

√
δxT
] [b

0

]
+
[
xTAT

√
δxT
] [Ax√

δx

]
= bT b+ 0T 0−bTAx−

√
δ 0T x− xTAT b−

√
δxT 0

+ xTATAx+
√
δ
√
δxTx

= bT b− bTAx− xTAT b+ xTATAx+ δxTx.

(3.2.2)

This is the same expression as in equation (3.2.1). Hence ∥b − Ax∥22 + δ∥x∥22 and∥∥∥∥[b0
]
−
[

A√
δIn

]
x

∥∥∥∥2
2

are equal. ο.ε.δ.

32

We can now use our theory developed in chapter 2 in order to solve this stan-
dard least squares problem

min
x

∥∥∥∥[b0
]
−
[

A√
δIn

]
x

∥∥∥∥2
2

.

But first we develop some theory in order to obtain an even stronger result than
we achieved in chapter 2.

Lemma 3.2.3. If the eigenvalues of ATA are λj , where 1 ≤ j ≤ n, then the eigenvalues of
(ATA+ δIn) are λj + δ.

Proof. Let the eigenvalues of ATA be λj , where 1 ≤ j ≤ n. By definition of eigen-
values

0 = det(ATA− λjIn). (3.2.3)

Let η be an eigenvalue of (ATA+ δIn). By definition

0 = det(ATA+ δIn − ηIn)

= det(ATA− (η − δ)In).
(3.2.4)

Therefore, by equation (3.2.3) for each 1 ≤ j ≤ n, we have that η = λj + δ is an
eigenvalue of (ATA+ δIn), because

det(ATA− (η − δ)In) = det(ATA− (λj + δ − δ)In) = det(ATA− λjIn) = 0. (3.2.5)

Note that (ATA+δIn) ∈ Rn×n has n eigenvalues. Therefore η = λj+δ for 1 ≤ j ≤ n
are all the eigenvalues of (ATA+ δIn). ο.ε.δ.

Corollary 3.2.4. If the singular values of A are σi, where 1 ≤ i ≤ min{m,n}, then the

singular values of
[

A√
δIn

]
are
√

σ2
i + δ.

Proof. Let R =

[
A√
δIn

]
. Further, let the singular values of A be σi(A), where 1 ≤

i ≤ min{m,n}, and let the singular values of R be σi(R). Furthermore let the
eigenvalues of ATA be λj(A

TA), where 1 ≤ j ≤ n, and let the singular values
of RTR be λj(R

TR). By definition of singular values σj(A) =
√
λj(ATA), and

similarly σj(R) =
√
λj(RTR), where σi(A) = σi(R) = 0 if i > n. Note first that

RTR =

[
A√
δIn

]T [
A√
δIn

]
=
[
AT

√
δITn
] [A√

δIn

]
= ATA+ δIn. (3.2.6)

33

By lemma 3.2.3 λj(R
TR) = λj(A

TA) + δ. This means that

σi(R) =
√

λj(RTR) =
√

λj(ATA) + δ =
√
(σi(A))2 + δ. (3.2.7)

ο.ε.δ.

Lemma 3.2.5. If every eigenvalue of M ∈ Rn×n is not equal to 0, then M is invertible.

Proof. Let M ∈ Rn×n have no eigenvalues equal to 0. Note that M is square, and is
therefore invertible if and only if N(M) is trivial. By definition of the null-space

x ∈ N(M) ⇐⇒ Mx = 0 ⇐⇒ Mx = 0x. (3.2.8)

Therefore, we have that N(M) is trivial if and only if the only solution to Mx =
0x is x = 0. By the definition of eigenvector, x ̸= 0 satisfying Mx = 0x is an
eigenvector of M with eigenvalue 0. But, since M has no eigenvalues equal to
0, the only solution to Mx = 0x is x = 0. Therefore N(M) is trivial and M is
invertible. ο.ε.δ.

Lemma 3.2.6. (ATA+ δIn) is invertible.

Proof. Note that δ > 0 by definition of regularization parameter. Let the eigenval-
ues of ATA be λj , where 1 ≤ j ≤ n. Note that ATA can only be assumed to be
positive semi-definite because

xTATAx = ∥Ax∥22 ≥ 0, (3.2.9)

where this is zero when x ∈ N(A). ATA being positive semi-definite is equivalent
with the eigenvalues λj of ATA being real non-negative [4] (p233). That is, λj ≥ 0.
By lemma 3.2.3 the eigenvalues of (ATA+ δIn) are (λj + δ). Since δ > 0

λj ≥ 0 =⇒ (λj + δ) > 0. (3.2.10)

This means that all n eigenvalues (λj+δ) of (ATA+δIn) are positive, and therefore
non-zero. By lemma 3.2.5 this means that (ATA+ δIn) is invertible. ο.ε.δ.

Theorem 3.2.7. x̂δ = (ATA + δIn)
−1AT b always exists and is the unique minimizer of

∥b− Ax̂δ∥22 + δ∥x̂δ∥22.

Proof. By lemma 3.2.6 (ATA+ δIn)
−1 exists, therefore (ATA+ δIn)

−1AT b exists. By
theorem 3.2.2 we have that

f(x) = ∥b− Ax∥22 + δ∥x∥22 =
∥∥∥∥[b0

]
−
[

A√
δIn

]
x

∥∥∥∥2
2

. (3.2.11)

34

By theorem 2.2.4, then the unique minimizer of f(x̂δ) is

x̂δ =

([
A√
δIn

]T [
A√
δIn

])−1 [
A√
δIn

]T [
b
0

]
=

([
AT

√
δITn
] [A√

δIn

])−1 [
AT

√
δITn
] [b

0

]
= (ATA+

√
δ
√
δITn In)

−1(AT b+
√
δITn 0)

= (ATA+ δIn)
−1AT b.

(3.2.12)

ο.ε.δ.

We now know how to solve Tikhonov regularized least squares problems of the
form minx ∥b− Ax∥22 + δ∥x∥22, which are theoretically always solvable.

3.2.3 Tikhonov solutions relation to the pseudoinverse

It turns out that the solution to the Tikhonov regularized least squares problem
x̂δ = (ATA+δIn)

−1AT b is intimately related to the solution to the pseudoinverse so-
lution to the standard least squares problem x̂ = A+b. (Note that these are solutions
that always exist, compared to the solution (ATA)−1AT b, which, by theorem 2.2.2,
requires that N(A) is trivial.) In fact, we will prove the following theorem.

Theorem 3.2.8. limδ→0(A
TA+ δIn)

−1AT = A+.

Proof. Let the SVD of A be A = UΣV T . Note that UT = U−1 ∈ Rm×m and V T =
V −1 ∈ Rn×n. This means that

ATA+ δIn = (UΣV T)T (UΣV T) + δIn

= V ΣTUTUΣV T + δIn

= V ΣTΣV T + δIn

= V ΣTΣV T + δV V T

= V (ΣTΣ + δIn)V
T .

(3.2.13)

By lemma 3.2.6 (ΣTΣ + δIn) is invertible. Therefore

(ATA+ δIn)
−1 = (V (ΣTΣ + δIn)V

T)−1

= (V T)−1(ΣTΣ + δIn)
−1(V)−1

= V (ΣTΣ + δIn)
−1V T .

(3.2.14)

35

Now we can express (ATA+ δIn)
−1AT as

(ATA+ δIn)
−1AT = (V (ΣTΣ + δIn)

−1V T)(UΣV T)T

= V (ΣTΣ + δIn)
−1V TV ΣTUT

= V (ΣTΣ + δIn)
−1ΣTUT

= V DδU
T ,

(3.2.15)

where Dδ = (ΣTΣ + δIn)
−1ΣT . Let us now figure out what the entries of Dδ =

(ΣTΣ + δIn)
−1ΣT are. Let all of the singular values of A be σ1 ≥ . . . ≥ σr > 0 =

σr+1 = . . . = σmin{m,n}, where r = rank(A). Note now that Σ ∈ Rm×n, ΣT ∈ Rn×m

and In ∈ Rn×n are diagonal matrices. By definition, for 1 ≤ k ≤ r we have that
(Σ)k,k = (ΣT)k,k = σk > 0 and the rest of their entries are zeros. Therefore, for
1 ≤ k ≤ r

(ΣTΣ)k,k = σ2
k > 0, (3.2.16)

with all other entries being zero, including the last n− r entries on the main diag-
onal. And therefore, since δ > 0, for 1 ≤ k ≤ n

(ΣTΣ + δIn)k,k = σ2
k + δ > 0, (3.2.17)

where all other entries are zero. This means that (ΣTΣ + δIn) ∈ Rn×n is diagonal,
which means that for 1 ≤ k ≤ n

((ΣTΣ + δIn)
−1)k,k =

1

σ2
k + δ

> 0, (3.2.18)

and the rest of the entries are zero. Therefore (ΣTΣ+ δIn)
−1 is diagonal, and so for

1 ≤ k ≤ min{m,n}

(Dδ)k,k = ((ΣTΣ + δIn)
−1ΣT)k,k =

1

σ2
k + δ

(σk) =
σk

σ2
k + δ

≥ 0, (3.2.19)

with all other entries being 0, where σk

σ2
k+δ

= 0 if and only if σk = 0, which is true
if and only if k > r. Therefore Dδ ∈ Rn×m is diagonal, with the first r entries on
the main diagonal being non-zero, and the last min{m,n} − r entries on the main
diagonal being zeros. Because Dδ is diagonal we can write

(ATA+ δIn)
−1AT = V DδU

T =

min{m,n}∑
k=1

((Dδ)k,k) vku
T
k , (3.2.20)

36

where vk is the k:th column of V , and uT
k is the k:th row of UT . Therefore, because

this is a finite sum

lim
δ→0

(ATA+ δIn)
−1AT = lim

δ→0

min{m,n}∑
k=1

((Dδ)k,k) vku
T
k

=

min{m,n}∑
k=1

lim
δ→0

((Dδ)k,k) vku
T
k

=

min{m,n}∑
k=1

(
lim
δ→0

(Dδ)k,k

)
vku

T
k ,

(3.2.21)

since vku
T
k is a constant matrix with respect to δ. Now, for 1 ≤ k ≤ r

lim
δ→0

(Dδ)k,k = lim
δ→0

σk

σ2
k + δ

=
σk

σ2
k + 0

=
1

σk

, (3.2.22)

and for r < k ≤ min{m,n}

lim
δ→0

(Dδ)k,k = lim
δ→0

σk

σ2
k + δ

= lim
δ→0

0

02 + δ
= lim

δ→0
0 = 0. (3.2.23)

By definition 2.3.1, this means that

lim
δ→0

(ATA+ δIn)
−1AT = lim

δ→0
V DδU

T = V Σ+UT = A+. (3.2.24)

ο.ε.δ.

3.3 Other types of regularization (L1, L∞, ”L0”)

In this section we will define more types of regularization of least squares problems
other than Tikhonov regularization. There will be figures to see and compare what
kind of solutions these regularizations encourage or discourage for x ∈ R2.

It turns out there are no general closed form solutions to these regularized prob-
lems, and specific optimization theory and algorithms would be needed to solve
these problems numerically. However, this is beyond the scope of this report and
will not be covered.

3.3.1 Definitions of the regularizations

LASSO regularization is a way of regularizing least squares problems. LASSO is an
acronym meaning ”least absolute shrinkage and selection operator” [13] (p267).

37

Definition 3.3.1. The LASSO regularization, or alternatively L1 regularization, of
minx ∥b− Ax∥22 is the minimization problem

min
x

∥b− Ax∥22 + δ∥x∥1.

It turns out that because ∥b−Ax∥22 is a convex function of x, then solutions x̂δ to
the LASSO regularized minimization problem will contain (many) entries that are
zero. Solutions with many zeros are called sparse solutions, and in figure 2.2 on
page 11 of [3] we see why the LASSO regularized minimization will produce such
solutions compared to the solutions to the Tikhonov (L2) regularized least squares
problems.

Definition 3.3.2. The L∞ regularization of minx ∥b−Ax∥22 is the minimization prob-
lem

min
x

∥b− Ax∥22 + δ∥x∥∞.

The solutions x̂δ to the L∞ regularized minimization problem will, by definition
of the L∞ norm, not contain any entry that is too large, given that δ is large enough.

Definition 3.3.3. The ”L0 norm” of a vector v ∈ Rn will be denoted by ∥v∥0 and be
defined by

∥v∥0 = |{vi | vi ̸= 0}|.
This is the number of entries of v that are not equal to 0.
Remark. This may also be denoted by Card(v) [12] (p100).
Remark. This does not fulfill the definition of vector norm. (∥av∥0 ̸= |a|∥v∥0.)

Definition 3.3.4. The L0 regularization of minx ∥b− Ax∥22 is the minimization prob-
lem

min
x

∥b− Ax∥22 + δ∥x∥0.

By definition of L0 regularization, if the regularization parameter δ is large
enough, then solutions x̂δ to the L0 regularized minimization problem will con-
tain (many) entries that are equal to 0. This is a more direct approach to sparse
solutions than L1 regularisation. See figure 2.6 on page 22 of [3], and compare with
the previous figure cited, being figure 2.2 on page 11.

Another way to regularize the problem of least squares is to combine two dif-
ferent types of regularizations. This brings us to the elastic net, which is a combi-
nation of the LASSO and Tikhonov regularizations.

Definition 3.3.5. The elastic net regularization of minx ∥b−Ax∥22 is the minimization
problem

min
x

∥b− Ax∥22 + δ∥x∥1 + (1− δ)∥x∥22.

38

3.3.2 How to attain the solutions

In the case when A ∈ Rm×n is an orthogonal matrix, the L1 regularized least
squares problem does have a closed form solution (see page 269 of [13]). In the gen-
eral case, more advanced concepts such as second order cone programming (SOCP)
can be used to restate the problem [1] (p310).

One way of solving the L1, L∞ and elastic net regularized least squares prob-
lems numerically is by using a proximal gradient method [12] (p357, p191). An-
other way is by the homotopy method least angle regression (LARS) [3] (p17).

To solve L0 regularized least squares is especially hard, because it is no longer
a convex optimization problem. Algorithms to solve this problem numerically are
even in the class non-deterministic polynomial-time hard (NP-hard) [11] (p2). A very
efficient way to solve the convex relaxation of this problem is by using a forward
backward algorithm [11] (p2).

39

4 Gradient descent methods

Gradient descent methods are methods based on the iterative method gradient de-
scent, which are used to find local minima of functions f : Rn → R based on the
gradient of the function ∇f : Rn → Rn. Therefore, in this chapter we will assume
that f has a defined gradient for every element in Rn.

The following methods are all iterative, meaning that we consider some dis-
crete time k ≥ 0, where for each time step, one iteration of the methods will be
performed. Here we are interested in what happens as k → ∞ where we wish for
our methods to as rapidly as possible converge to a local minimum.

4.1 Gradient descent

In this section we will cover the definition of gradient descent and interesting prop-
erties of it.

4.1.1 Definition of gradient descent

We will consider f : Rn → R to be a function that we wish to minimize.

Definition 4.1.1. Let f : Rn → R. Let x(0) ∈ Rn be arbitrary. For k ≥ 0, one iteration
of gradient descent is

x(k+1) = x(k) − s(k)∇f(x(k)),

where s(k) > 0 is the step size at discrete time k.

4.1.2 Properties of gradient descent

Theorem 4.1.2. The direction of −∇f(x) ̸= 0 in Rn is locally the direction of steepest
descent with respect to f from the point x ∈ Rn.

Proof. Recall that the directional derivative in the direction of a vector u ∈ Rn with
∥u∥2 = 1 of a function f : Rn → R is

Dvf(x) = ∇f(x) · u = (∇f(x))Tv ∈ R. (4.1.1)

How locally steep the function is in the direction along the vector w ∈ Rn will be
defined to be Duf(x), where u = w

∥w∥ . Therefore, a direction of steepest descent for
f from x ∈ R is a vector v satisfying

min
u

Duf(x) = Dvf(x) (4.1.2)

40

subject to
∥u∥2 = 1. (4.1.3)

The Cauchy-Schwartz inequality says that

|a · b| ≤ ∥a∥2∥b∥2, (4.1.4)

for vectors a ∈ Rn and b ∈ Rn, which means that

a · b ≥ −∥a∥2∥b∥2. (4.1.5)

Note now that the lower bound is reached if and only if b = −γa, where γ ≥ 0. We
will now use this in our problem to find a lower bound of Duf(x). We have that

Duf(x) = ∇f(x) · u ≥ −∥∇f(x)∥2∥u∥2, (4.1.6)

and that this lower bound is reached if and only if u = −γ∇f(x). Constrained by
∥u∥2 = 1 we have that γ = 1

∥∇f(x)∥2 and

u = v = − ∇f(x)

∥∇f(x)∥2
(4.1.7)

is the unique solution to minu Duf(x) subject to ∥u∥2 = 1. Finally we note that this
is in the direction of −∇f(x). Therefore, locally, the direction of steepest descent
from a point x ∈ Rn with respect to a function f : Rn → R, is in the direction of
−∇f(x) ∈ Rn. ο.ε.δ.

Lemma 4.1.3. If ∇f is L-Lipschitz continuous then

f(b) ≤ f(a) + (∇f(a))T (b− a) +
L∥b− a∥22

2
.

Proof. Let ∇f be L-Lipschitz continuous. ∇f being L-Lipschitz continuous means
that for every c ∈ Rn and d ∈ Rn

∥∇f(c)−∇f(d)∥2 ≤ L∥c− d∥2. (4.1.8)

With u = (∇f(c) − ∇f(d)) and v = (c − d), the Cauchy-Schwartz inequality says
that

uTv ≤ ∥u∥2∥v∥2 ⇐⇒ (∇f(c)−∇f(d))T (c− d) ≤ ∥∇f(c)−∇f(d)∥2∥c− d∥2
≤ L∥c− d∥22.

(4.1.9)

41

For convenience, we will now define g : [0, 1] → R by

g(t) = f(a+ t(b− a)). (4.1.10)

Moreover, by the chain rule

g′(t) = (∇f(a+ t(b− a)))T (b− a), (4.1.11)

meaning that by inequality (4.1.9)

t(g′(t)− g′(0)) = t(((∇f(a+ t(b− a)))T (b− a))− ((∇f(a))T (b− a)))

= t(∇f(a+ t(b− a)−∇f(a)))T (b− a)

= (∇f(a+ t(b− a)−∇f(a)))T (t(b− a))

= (∇f(a+ t(b− a)−∇f(a)))T ((a+ t(b− a))− a)

≤ L∥(a+ t(b− a))− a∥22
= L∥t(b− a)∥22
= t2L∥b− a∥22.

(4.1.12)

If we from now on restrict t ̸= 0, meaning t ∈]0, 1], then this means

g′(t)− g′(0) ≤ tL∥b− a∥22
⇐⇒ g′(t) ≤ g′(0) + tL∥b− a∥22.

(4.1.13)

Integrating both sides of this inequality over]0, 1[with respect to t results in∫ 1

0

g′(t)dt = g(1)− g(0) = f(b)− f(a)

≤
∫ 1

0

g′(0)dt+

∫ 1

0

tL∥b− a∥22dt = g′(0) +
L∥b− a∥22

2

=(∇f(a))T (b− a) +
L∥b− a∥22

2
.

(4.1.14)

Therefore

f(b) ≤ f(a) + (∇f(a))T (b− a) +
L∥b− a∥22

2
, (4.1.15)

where a ∈ Rn and b ∈ Rn are arbitrary. ο.ε.δ.

Theorem 4.1.4. If x(0), x(1), . . . are generated from gradient descent with f : Rn → R
and ∇f : Rn → Rn is L-Lipschitz continuous, then f(x(0)) > f(x(1)) > . . . as long as
∇f(x(k)) ̸= 0 and s(k) < 2

L
.

42

Proof. Let x(k+1) be generated from gradient descent with f . That is

x(k+1) = x(k) − s(k)∇f(x(k))

=⇒ x(k+1) − x(k) = −s(k)∇f(x(k)).
(4.1.16)

Let ∇f be L-Lipschitz continuous. By lemma 4.1.3 we have that

f(x(k+1)) ≤ f(x(k)) + (∇f(x(k)))T (x(k+1) − x(k)) +
L∥x(k+1) − x(k)∥22

2

= f(x(k))− s(k)(∇f(x(k)))T (∇f(x(k))) +
L∥ − s(k)∇f(x(k))∥22

2

= f(x(k))− s(k)∥∇f(x(k))∥22 + (s(k))2
L∥∇f(x(k))∥22

2

= f(x(k))− s(k)
(
1− L

2
s(k)
)
∥∇f(x(k))∥22.

(4.1.17)

If s(k)
(
1− L

2
s(k)
)
∥∇f(x(k))∥22 > 0 we are done. Because ∇f(x(k)) ̸= 0 we have that

∥∇f(x(k))∥22 > 0, and s(k) > 0, so we are done if
(
1− L

2
s(k)
)
> 0. Therefore we are

done if 1 > L
2
s(k), that is, if s(k) < 2

L
. Since we have assumed in the statement of the

theorem that s(k) < 2
L

, this means that

f(x(k+1)) ≤ f(x(k))− s(k)
(
1− L

2
s(k)
)
∥∇f(x(k))∥22 < f(x(k)), (4.1.18)

and so f(x(k+1)) < f(x(k)) for any k ≥ 0, resulting in

f(x(0)) > f(x(1)) > . . . (4.1.19)

ο.ε.δ.

Theorem 4.1.5. If ∇f is L-Lipschitz continuous, s(k) = c < 2
L

is fixed, and a global
minimum of f exists, then gradient descent converges to a local minimum of f .

Proof. Let ∇f be L-Lipschitz continuous and s(k) = c < 2
L

. By inequality (4.1.18)
we have that

f(x(k))− c

(
1− L

2
c

)
∥∇f(x(k))∥22 ≥ f(x(k+1))

⇐⇒ f(x(k))− f(x(k+1)) ≥ c

(
1− L

2
c

)
∥∇f(x(k))∥22.

(4.1.20)

For convenience, let t = c
(
1− L

2
c
)
. Therefore

f(x(k))− f(x(k+1)) ≥ t∥∇f(x(k))∥22. (4.1.21)

43

Because k ≥ 0 is arbitrary, all at the same time

f(x(0))− f(x(1)) ≥ t∥∇f(x(0))∥22
f(x(1))− f(x(2)) ≥ t∥∇f(x(1))∥22

...

f(x(N−1))− f(x(N)) ≥ t∥∇f(x(N−1))∥22
f(x(N))− f(x(N+1)) ≥ t∥∇f(x(N))∥22,

(4.1.22)

where N > 0. Note that adding all these N inequalities produces a telescoping
sum. More precisely

N∑
k=0

t∥∇f(x(k))∥22 ≤
N∑
k=0

f(x(k))− f(x(k+1))

=
N∑
k=0

f(x(k))−
N∑
k=0

f(x(k+1))

= f(x(0)) +
N∑
k=1

f(x(k))−
N−1∑
k=0

f(x(k+1))− f(x(N+1))

= f(x(0)) +
N∑
k=1

f(x(k))−
N∑
k=1

f(x(k))− f(x(N+1))

= f(x(0))− f(x(N+1)).

(4.1.23)

Let the global minimum value of f be f ∗ ∈ R. Therefore

N∑
k=0

t∥∇f(x(k))∥22 ≤ f(x(0))− f(x(N+1)) ≤ f(x(0))− f ∗. (4.1.24)

Because f ∗ is the global minimum value of f we have that

f ∗ ≤ f(x(0)) =⇒ 0 ≤ f(x(0))− f ∗. (4.1.25)

This is a non-negative constant that we can call E = f(x(0))− f ∗. Because N > 0 is
arbitrary

N∑
k=0

t∥∇f(x(k))∥22 ≤ E

=⇒ lim
N→∞

N∑
k=0

t∥∇f(x(k))∥22 ≤ E.

(4.1.26)

44

Remember that t = c
(
1− L

2
c
)

and by definition of step size 0 < c < 2
L

. By def-
inition of L-Lipschitz continuous seen in inequality (4.1.8), it only possible that
0 ≤ L. (If L = 0 take ” 2

L
” to mean +∞). This means that L

2
c < 1, meaning that

t > 0. Therefore

0 ≤ lim
N→∞

N∑
k=0

t∥∇f(x(k))∥22 ≤ E, (4.1.27)

and so limN→∞
∑N

k=0 t∥∇f(x(k))∥22 is a convergent series, meaning that the terms
must go to zero. Hence

lim
k→∞

t∥∇f(x(k))∥22 = 0

=⇒ lim
k→∞

∥∇f(x(k))∥22 = 0

=⇒ lim
k→∞

∇f(x(k)) = 0 .

(4.1.28)

This means that gradient descent reaches a stationary point of f in the limit, mean-
ing because of theorem 4.1.4 that gradient descent converges to a local minimum
of f . ο.ε.δ.

4.2 Gradient descent to solve least squares problems

In this section we will now try to solve the standard least squares problem minx ∥b−
Ax∥22 by using gradient descent. Note first that minimizing ∥b−Ax∥22 with respect
to x is the same as minimizing 1

2
∥b−Ax∥22 with respect to x. Let f(x) = 1

2
∥b−Ax∥22.

By equation (2.2.14) we have that

∇f(x) = ∇1

2
∥b− Ax∥22

=
1

2
∇∥b− Ax∥22

=
1

2
(2ATAx− 2AT b)

= ATAx− AT b

= AT (Ax− b).

(4.2.1)

Remark. The matrix AT is factored out because it is more computationally efficient
to compute Ax followed by AT (Ax) compared to computing ATA followed by
(ATA)x.

Using gradient descent with f(x) = 1
2
∥b−Ax∥22 is called the Landweber iteration.

45

4.2.1 Definition of the Landweber iteration

We consider f(x) = 1
2
∥b− Ax∥22 to be a function that we wish to minimize. To find

a minimizer of this function we perform the Landweber iteration.

Definition 4.2.1. Let A ∈ Rm×n and b ∈ Rm. Let x(0) ∈ Rn be arbitrary. For k ≥ 0,
one iteration of the Landweber iteration is

x(k+1) = x(k) − s(k)AT (Ax(k) − b),

where s(k) > 0 is the step size at discrete time k.

4.2.2 Analysing the Landweber iteration

First we will analyze the step size of the Landweber iteration. After that we will
consider a fixed step size and analyze the convergence of the method.

Theorem 4.2.2. The optimal step size for the (k + 1):st step in the Landweber iteration is

s(k) =
∥∇f(x(k))∥22
∥A∇f(x(k))∥22

,

where optimal step size means

min
s

f(x(k+1); s) = f(x(k+1); s(k)),

and f(x) = 1
2
∥b− Ax∥22 and ∇f(x) = AT (Ax− b).

Proof. Let f(x) = 1
2
∥b − Ax∥22 and let x(k+1) be as in the Landweber iteration, but

with s(k) = s. For simplicity we let p(k) = −∇f(x(k)) = −AT (Ax(k) − b). We then
have

x(k+1) = x(k) − sAT (Ax(k) − b) = x(k) + sp(k). (4.2.2)
In order to find the optimal step size, let us define a function g(s) dependent on
the step size s that we can try to optimize. Let g : R → R be defined by

2g(s) = 2f(x(k+1); s)

= 2f(x(k) + sp(k))

= ∥b− A(x(k) + sp(k))∥22
= ∥b− Ax(k) − sAp(k)∥22
= ∥(b− Ax(k))− sAp(k)∥22
= ((b− Ax(k))− sAp(k))T ((b− Ax(k))− sAp(k))

= ((b− Ax(k))T − s(Ap(k))T)((b− Ax(k))− sAp(k))

= (b− Ax(k))T (b− Ax(k))− s(b− Ax(k))TAp(k)

− s(Ap(k))T (b− Ax(k)) + s2(Ap(k))TAp(k).

(4.2.3)

46

Note now that
(b− Ax(k))TAp(k) = (AT (b− Ax(k)))Tp(k)

= (p(k))Tp(k)

= ∥p(k)∥22,
(4.2.4)

and similarly
(Ap(k))T (b− Ax(k)) = (p(k))TAT (b− Ax(k))

= (p(k))Tp(k)

= ∥p(k)∥22.
(4.2.5)

Therefore
2g(s) = ∥b− Ax(k)∥22 − 2s∥p(k)∥22 + s2∥Ap(k)∥22

= 2

(
1

2
∥b− Ax(k)∥22 − s∥p(k)∥22 +

s2

2
∥Ap(k)∥22

)
.

(4.2.6)

This is a standard second degree polynomial in s with positive coefficient to the s2

term. Therefore s(k) satisfying g′(s(k)) = 0 is the unique global minimizer of g. By
standard derivative rules

g′(s) = −∥p(k)∥22 + s∥Ap(k)∥22. (4.2.7)

Therefore
g′(s(k)) = 0 ⇐⇒ −∥p(k)∥22 + s(k)∥Ap(k)∥22 = 0

⇐⇒ s(k)∥Ap(k)∥22 = ∥p(k)∥22

=⇒ s(k) =
∥p(k)∥22
∥Ap(k)∥22

.

(4.2.8)

By definition of p(k)

s(k) =
∥p(k)∥22
∥Ap(k)∥22

=
∥ − ∇f(x(k))∥22
∥ − A∇f(x(k))∥22

=
∥∇f(x(k))∥22
∥A∇f(x(k))∥22

=
∥AT (Ax(k) − b)∥22

∥A(AT (Ax(k) − b))∥22
.

(4.2.9)

ο.ε.δ.

Before we study the convergence of the Landweber iteration we cover some
useful concepts and theory.

Definition 4.2.3. The spectral radius ρ(M) of a square matrix M ∈ Rn×n is the abso-
lute value of an eigenvalue of M with the largest absolute value.

47

Theorem 4.2.4. For M ∈ Rn×n

lim
k→∞

Mk = 0n×n

if and only if ρ(M) < 1. (This means that M is a convergent matrix.)

Proof. (if, ⇐=). Let ρ(M) < 1. By [4] (p119), every square matrix is not diagonaliz-
able, but every square matrix has a more general Jordan decomposition. This means
that we can decompose our matrix M as

M = SJS−1, (4.2.10)

where S ∈ Rn×n is an invertible matrix and J ∈ Rn×n is the Jordan normal form of
M ∈ Rn×n defined by being the block matrix

J =

J1 0 0 · · · 0 0
0 J2 0 · · · 0 0

0 0
.

...
...

... 0 0
0 0 · · · 0 Jl−1 0
0 0 · · · 0 0 Jl

∈ Rn×n (4.2.11)

with l being the number of unique eigenvalues of M , and moreover, with the val-
ues γ1, . . . , γl being all the different values of eigenvalues of M we define

Jj =

γj 1 0 · · · 0 0
0 γj 1 · · · 0 0

0 0
.

...
...

... 1 0
0 0 · · · 0 γj 1
0 0 · · · 0 0 γj

∈ Rnj×nj , (4.2.12)

where nj is the (algebraic) multiplicity of the eigenvalue γj of M . Note now that

M = SJS−1

=⇒ M2 = SJS−1SJS−1 = SJ2S−1

=⇒ Mk = SJkS−1

=⇒ lim
k→∞

Mk = S
(
lim
k→∞

Jk
)
S−1.

(4.2.13)

48

Note also that because every block Jj is a square matrix

J =

J1 0 0 · · · 0 0
0 J2 0 · · · 0 0

0 0
.

...
...

... 0 0
0 0 · · · 0 Jl−1 0
0 0 · · · 0 0 Jl

=⇒ Jk =

Jk
1 0 0 · · · 0 0
0 Jk

2 0 · · · 0 0

0 0
.

...
...

... 0 0
0 0 · · · 0 Jk

l−1 0
0 0 · · · 0 0 Jk

l

.

(4.2.14)
Therefore, if we can show that limk→∞ Jk

j = 0nj×nj
for every block 1 ≤ j ≤ l, then

we will be done. Note now that we can express each block Jj as a sum of two
simple matrices

Jj =

γj 1 0 · · · 0 0
0 γj 1 · · · 0 0

0 0
.

...
...

... 1 0
0 0 · · · 0 γj 1
0 0 · · · 0 0 γj

=

γj 0 0 · · · 0 0
0 γj 0 · · · 0 0

0 0
.

...
...

... 0 0
0 0 · · · 0 γj 0
0 0 · · · 0 0 γj

+

0 1 0 · · · 0 0
0 0 1 · · · 0 0

0 0
.

...
...

... 1 0
0 0 · · · 0 0 1
0 0 · · · 0 0 0

= γj Inj

+ N.
(4.2.15)

Note further that N is an upper-triangular matrix, where also every entry on the
main diagonal is zero. By [4] (p133), this means that

Nnj = 0nj×nj
. (4.2.16)

Because γjInj
is a multiple of an identity matrix, it will commute in matrix multi-

plication with any other nj × nj matrix. Specifically

(γjInj
)N = γjN = N(γjInj

). (4.2.17)

With this knowledge we can compute Jk
j with the use of the binomial theorem,

since γjInj
and N commuting means that they act like regular numbers in multi-

plication. That is

Jk
j = (γjInj

+N)k =
k∑

i=0

(
k

i

)
(γjInj

)k−iN i =
k∑

i=0

(
k

i

)
γk−i
j N i. (4.2.18)

49

We may now assume that k ≥ nj − 1, because we are only interested in what
happens as k → ∞. Since N i = 0nj×nj

for i ≥ nj , we have that

Jk
j =

nj−1∑
i=0

(
k

i

)
γk−i
j N i (4.2.19)

is a finite sum. We may therefore move our limit inside the sum, resulting in

lim
k→∞

Jk
j = lim

k→∞

nj−1∑
i=0

(
k

i

)
γk−i
j N i =

nj−1∑
i=0

(
lim
k→∞

(
k

i

)
γk−i
j

)
N i. (4.2.20)

We are done if this is the zero matrix, which is true if and only if limk→∞
(
k
i

)
γk−i
j = 0

for every term 1 ≤ i ≤ nj − 1. Keep in mind that we have assumed that ρ(M) < 1
meaning that |γj| < 1 for every 1 ≤ j ≤ l. We have

0 ≤
∣∣∣∣(ki

)
γk−i
j

∣∣∣∣ = ∣∣∣∣ k!

i!(k − i)!
γk−i
j

∣∣∣∣ = k!

i!(k − i)!

∣∣γk−i
j

∣∣ = k!

i!(k − i)!
|γj|k−i

≤ k!

(k − i)!
|γj|k−i = k . . . (k − i+ 1)|γj|k−i ≤ ki |γj|k−i.

(4.2.21)

Note that ki grows like a polynomial, while |γj|k−i < 1 decreases exponentially.
This is a standard limit [8] (p160) with value

lim
k→∞

ki |γj|k−i = 0. (4.2.22)

This means that

0 ≤
∣∣∣∣(ki

)
γk−i
j

∣∣∣∣ ≤ ki |γj|k−i

=⇒ lim
k→∞

0 ≤ lim
k→∞

∣∣∣∣(ki
)
γk−i
j

∣∣∣∣ ≤ lim
k→∞

ki |γj|k−i

=⇒ 0 ≤ lim
k→∞

∣∣∣∣(ki
)
γk−i
j

∣∣∣∣ ≤ 0

=⇒ lim
k→∞

∣∣∣∣(ki
)
γk−i
j

∣∣∣∣ = 0

=⇒ lim
k→∞

(
k

i

)
γk−i
j = 0.

(4.2.23)

Therefore we have

lim
k→∞

Jk
j =

nj−1∑
i=0

(
lim
k→∞

(
k

i

)
γk−i
j

)
N i =

nj−1∑
i=0

0N i = 0nj×nj
. (4.2.24)

50

Hence limk→∞ Jk
j = 0nj×nj

for every block 1 ≤ j ≤ l of the Jordan normal form J .
This means by equation (4.2.14) that

lim
k→∞

Jk = 0n×n. (4.2.25)

From equation (4.2.13) we conclude that

lim
k→∞

Mk = S
(
lim
k→∞

Jk
)
S−1 = S0n×nS

−1 = 0n×n. (4.2.26)

(only if, =⇒). Let limk→∞ Mk = 0n×n. Let an eigenvalue of M be γ with u ̸= 0 as a
corresponding eigenvector. This means that

Mu = γu

=⇒ M2u = γMu = γ2u

=⇒ Mku = γku.

(4.2.27)

Hence
lim
k→∞

Mk = 0n×n

=⇒ lim
k→∞

Mku = 0n×nu = 0

=⇒ lim
k→∞

γku = 0

=⇒ lim
k→∞

γk = 0

=⇒ |γ| < 1.

(4.2.28)

Since this holds for any eigenvalue of M , this means that

max
γ eigenvalue of M

|γ| < 1 ⇐⇒ ρ(M) < 1. (4.2.29)

ο.ε.δ.

Now wish to study the convergence of the Landweber iteration more specifi-
cally than we did with the general gradient descent. We will consider a fixed step
size s(k) = s and wish to find the step size that gives the best conservative conver-
gence rate of the method.

51

Lemma 4.2.5. If the Landweber iteration converges to limk→∞ x(k) = x∗, then x∗ fulfills
the normal equation: ATAx∗ = AT b.

Proof. Let limk→∞ x(k) = x∗. By the definition of the Landweber iteration

x(k+1) = x(k) − s(k)AT (Ax(k) − b)

=⇒ lim
k→∞

x(k+1) = lim
k→∞

x(k) − s(k)AT (Ax(k) − b)

=⇒ x∗ = x∗ − sAT (Ax∗ − b)

(4.2.30)

and at the same time

x∗ = x∗ − sAT (Ax∗ − b)

⇐⇒ x∗ = x∗ − sATAx∗ + sAT b

⇐⇒ 0 = −sATAx∗ + sAT b

⇐⇒ sATAx∗ = sAT b

⇐⇒ ATAx∗ = AT b.

(4.2.31)

ο.ε.δ.

Lemma 4.2.6. In the Landweber iteration (x(k+1) − x∗) = (In − sATA)(x(k) − x∗).

Proof. Let x∗ ∈ Rn be a point that the Landweber iteration could converge to, us-
ing the step size s(k) = s. By lemma 4.2.5, this means that x∗ fulfills the normal
equation. From the definition of the Landweber iteration we have that

x(k+1) = x(k) − sAT (Ax(k) − b)

= x(k) − sATAx(k) + sAT b

= x(k) − sATAx(k) + sATAx∗

= (In − sATA)x(k) + s(ATAx∗).

(4.2.32)

Therefore
(x(k+1) − x∗) = (In − sATA)x(k) + s(ATAx∗)− x∗

= (In − sATA)x(k) + (sATA− In)x
∗

= (In − sATA)x(k) − (In − sATA)x∗

= (In − sATA)(x(k) − x∗).

(4.2.33)

ο.ε.δ.

52

Theorem 4.2.7. For a fixed step-size s, the Landweber iteration converges if and only if
ρ(In − sATA) < 1.

Proof. Note first that the Landweber iteration converges to a point x∗ if and only if
limk→∞ x(k) = x∗. Now let the error vector at step k of the Landweber iteration be
e(k) = x(k) − x∗. We have that

lim
k→∞

x(k) = x∗

⇐⇒ lim
k→∞

(x(k) − x∗) = 0

⇐⇒ lim
k→∞

e(k) = 0 .

(4.2.34)

By lemma 4.2.6, in the Landweber iteration

e(k+1) = (In − sATA)e(k)

⇐⇒ e(k+1) = (In − sATA)k+1e(0).
(4.2.35)

We now assume that e(0) ̸= 0 because otherwise our initial guess x(0) equals the
solution x∗, which is not interesting because then the Landweber iteration would
not be needed. This means that the Landweber iteration converges if and only if

lim
k→∞

e(k+1) = 0

⇐⇒ 0 = lim
k→∞

(In − sATA)k+1e(0)

⇐⇒ lim
k→∞

(In − sATA)k+1 = 0n×n.

(4.2.36)

By theorem 4.2.4 this is equivalent to

ρ(In − sATA) < 1. (4.2.37)

ο.ε.δ.

Now we wish to find the fixed step size that produces the best conservative
convergence rate for the Landweber iteration. This means that we wish to find a
step size s that minimizes ρ(In − sATA).

53

Theorem 4.2.8. s = 2
λ1+λn

is the unique minimizer of ρ(In − sATA), with minimum
value λ1−λn

λ1+λn
, where λ1 > 0 is a largest eigenvalue of ATA, and λn is a smallest eigenvalue

of ATA.
Remark. We assume λ1 > 0, because otherwise ATA is the zero matrix, which is not
interesting. If λn = 0 take ” 1

λn
” to mean +∞.

Proof. By [4] (p233), the eigenvalues of ATA are real and non-negative, and can
therefore be ordered: λ1 ≥ . . . ≥ λn ≥ 0. By lemma 3.2.3, the eigenvalues of
(In − sATA) are 1 − sλn ≥ . . . ≥ 1 − sλ1, since multiplying a matrix by a scalar
multiplies its eigenvalues by the same scalar. We have that

ρ(In − sATA) = max{|1− sλn|, . . . , |1− sλ1|}
= max{|1− sλn|, |1− sλ1|},

(4.2.38)

because 1 − sλn is the largest eigenvalue, and 1 − sλ1 is the smallest eigenvalue,
which is possibly the largest in the absolute value. Therefore

min
s

ρ(In − sATA) = min
s

max{|1− sλn|, |1− sλ1|}. (4.2.39)

To solve this problem we will make a table of the signs of the derivative and values
of the function

g(s) = max{|1− sλn|, |1− sλ1|}. (4.2.40)

First we find out the points of intersection t between |1− sλn| and |1− sλ1|. Either
1− sλn and 1− sλ1 have the same sign or the opposite sign, leading to two cases.

1− t1λn = 1− t1λ1

=⇒ t1λn = t1λ1

=⇒ t1(λn − λ1) = 0

=⇒ t1 = 0

(4.2.41)

and
−(1− t2λn) = 1− t2λ1

=⇒ −1 + t2λn = 1− t2λ1

=⇒ t2λn + t2λ1 = 2

=⇒ t2 =
2

λ1 + λn

.

(4.2.42)

For s ≤ 0 = t1, because λ1 ≥ λn ≥ 0, we have that

−sλ1 ≥ −sλn ≥ 0 =⇒ 1− sλ1 ≥ 1− sλn ≥ 1 ≥ 0

=⇒ |1− sλ1| ≥ |1− sλn|
=⇒ g(s) = |1− sλ1| = 1− sλ1.

(4.2.43)

54

For s ≥ t2 =
2

λ1+λn
, we first note that in general, if λj > 0, then |1−sλj| = 0 at s = 1

λj

and |1−sλj| has slope −λj < 0 if s < 1
λj

and slope λj > 0 if s > 1
λj

. Therefore, when
t2 ≤ s ≤ 1

λn
, it is the case that |1−sλn| is decreasing and |1−sλ1| is increasing since

λ1 ≥ λn ≥ 0 =⇒ λ1 ≥
λ1 + λn

2
=⇒ 1

λ1

≤ 2

λ1 + λn

= t2, (4.2.44)

and s ≥ t2. Because |1 − sλn| and |1 − sλ1| intersect at s = t2, this means that for
t2 ≤ s ≤ 1

λn
we have

|1− sλ1| ≥ |1− sλn| =⇒ g(s) = |1− sλ1|. (4.2.45)

Note further that there are only two intersection points: t1 = 0 and t2 = 2
λ1+λn

≥
0 = t1, and that |1 − sλ1| and |1 − sλn| are continuous functions of s. Therefore it
must still be the case that |1−sλ1| ≥ |1−sλn| for s ≥ 1

λn
, since they do not intersect

for any larger values of s than s = t2. Hence, for s ≥ t2

g(s) = |1− sλ1| = sλ1 − 1, (4.2.46)

because t2 ≥ 1
λ1

. For the case t1 < s < t2 it suffices to check which of |1 − sλ1| and
|1 − sλn| are larger for any value of s ∈]t1, t2[, since these are the only intersection
points of the continuous functions |1− sλ1| and |1− sλn| of s. We may take s = 1

2λ1
,

since 0 < 1
2λ1

< 1
λ1

≤ t2. We have

|1− sλ1| =
∣∣∣∣1− 1

2λ1

λ1

∣∣∣∣ = ∣∣∣∣1− 1

2

∣∣∣∣ = 1

2
, (4.2.47)

and, while noting that λ1 ≥ λn ≥ 0 =⇒ 0 ≤ λn

λ1
≤ 1, and s = 1

2λ1
< 1

λ1
≤ 1

λn
, we

attain

|1− sλn| = 1− sλn = 1− 1

2λ1

λn = 1− 1

2

λn

λ1

≥ 1− 1

2
=

1

2
= |1− sλ1|. (4.2.48)

Therefore, when t1 ≤ s ≤ t2, it is the case that

g(s) = |1− sλn| = 1− sλn. (4.2.49)

Now let us calculate g(t1) and g(t2). For s ≤ t1 we have g(s) = 1− sλ1, so

g(t1) = 1− (0)λ1 = 1, (4.2.50)

and for s ≥ t2 we have g(s) = sλ1 − 1, so

g(t2) =

(
2

λ1 + λn

)
λ1 − 1 =

2λ1 − λ1 − λn

λ1 + λn

=
λ1 − λn

λ1 + λn

. (4.2.51)

We can now make the following table (and the graph seen in figure 4.1)

55

−1 −0.5 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

s

|1
−

sλ
j
|

|1− sλ1|
|1− sλn|

max{|1− sλn|, |1− sλ1|}

Figure 4.1: (For this render λ1 = 2 ≥ λn = 2
3
≥ 0.)

s 0 2
λ1+λn

g′(s) −λ1 ≀ −λn ≀ λ1

g(s) 1− sλ1 1 1− sλn
λ1−λn

λ1+λn
sλ1 − 1

and the simpler variant

s t1 t2
g′(s) − ≀ − ≀ +

g(s) ↘ 1 ↘ λ1−λn

λ1+λn
↗

.

This means that s = t2 = 2
λ1+λn

is the unique minimizer of the function g(s) =

max{|1− sλn|, |1− sλ1|} = ρ(In − sATA) with minimum value λ1−λn

λ1+λn
. That is

min
s

ρ(In − sATA) =
λ1 − λn

λ1 + λn

, (4.2.52)

uniquely, for s = 2
λ1+λn

.
ο.ε.δ.

Remark. In terms of the singular values of A, this means that the optimal fixed step
size for the Landweber iteration is s = 2

σ2
1+σ2

n
with best conservative convergence

rate being σ2
1−σ2

n

σ2
1+σ2

n
.

56

Corollary 4.2.9. The Landweber iteration converges if s(k) = s = 2
λ1+λn

, where λ1 > 0 is
a largest eigenvalue of ATA, and λn > 0 (strictly larger than 0) is a smallest eigenvalue of
ATA.

Proof. By theorem 4.2.8 we have that if s = 2
λ1+λn

then ρ(In−sATA) = λ1−λn

λ1+λn
, where

λ1−λn

λ1+λn
< 1 since λ1 ≥ λn > 0. By theorem 4.2.7 we have that this means that the

Landweber iteration converges. ο.ε.δ.

4.3 Polyak heavy ball

Before we introduce the Polyak heavy ball method, we shall first go though an exam-
ple showing a weakness of gradient descent. That is, that gradient descent some-
times experiences a ”zig-zag phenomenon”, which the Polyak heavy ball method
tries to counteract.

Example 4.3.1. Take f(x; b) = 1
2
(x2

1 + bx2
2), where 0 < b ≤ 1 is a ”small” number.

(The graph of f will be like an oblong bowl over the x1-x2 plane.) This is clearly

minimized at x =

[
x1

x2

]
=

[
0
0

]
with minimum value 0. To find this minimizer using

gradient descent we do for k ≥ 0 the iteration

x(k+1) = x(k) − s(k)∇f(x(k)) = x(k) − s(k)

[
x
(k)
1

bx
(k)
2

]

= x(k) − s(k)
[
1 0
0 b

]
x(k) =

[
1− s(k) 0

0 1− s(k)b

]
x(k).

(4.3.1)

”Exact line search” gives the optimal step size s(k) = s = 2
1+b

[12] (p348). Therefore,

if we start at the point x(0) =

[
1
1

]
and use this step size, then

x(1) =

[
1− 2

1+b
0

0 1− 2
1+b

b

] [
1
1

]
=

[
b−1
b+1

0

0 1−b
1+b

] [
1
1

]
. (4.3.2)

And so

x(n) =

[
b−1
b+1

0

0 1−b
1+b

]n [
1
1

]
=

[(
b−1
b+1

)n
0

0
(
1−b
1+b

)n] [1
1

]
=

[(
b−1
b+1

)n(
1−b
1+b

)n] . (4.3.3)

Because 0 < b ≤ 1, if b = 1 we immediately arrive at the minimizer (x1, x2) = (0, 0)
in x(1). However, if b is ”small”, then

(
1−b
1+b

)
is a positive number close to 1, meaning

57

that x1 will converge to 0 at a somewhat slow rate. At the same time
(
b−1
b+1

)
will be

a negative number close to −1. Therefore, the value of x2 will alternate between a
negative and positive value in each iteration, but also converging at a somewhat
slow rate to 0. The path of (x1, x2) over each iteration of gradient descent will
therefore be in a ”zig-zag” shape down to the minimizer (x1, x2) = (0, 0).

Note that in the oblong bowl shape of the graph of f , it is a straight path down
to the minimizer (x1, x2) = (0, 0). However, as we have seen, in gradient descent,
the path taken to the minimizer is not straight, but instead is a zig-zag path. This
is clearly not optimal. (See Figure VI.9 on page 349 of [12].)

The Polyak heavy ball method counteracts this problem by introducing one more
term than in gradient descent. This term can be called the ”momentum term” given
by β(k)(x(k) − x(k−1)), with momentum β(k). Note that

(x(k) − x(k−1)) = (x(k−1) − s(k−1)∇f(x(k−1)))− x(k−1) = −s(k−1)∇f(x(k−1)). (4.3.4)

Therefore the momentum term is precisely β(k) times the change made in the last
step. The idea is that this will make the result of the next step (k) not be too radi-
cally different from the last step (k − 1). This will make zig-zag less prominent.

The results generated from Polyak heavy ball can therefore be thought of as
moving in ”the path of a heavy ball”, where, the higher momentum we are con-
sidering, the heavier the ball. This is because a heavy ball does not deviate much
from a straight path down, compared to a light ball, which might zig-zag.

4.3.1 Definition of Polyak heavy ball

Polyak heavy ball is a method for finding a local minimum of some function of the
type f : Rn → R that we wish to minimize. The method is named after Russian
mathematician Boris Teodorovich Polyak [9] (p65).

Definition 4.3.2. Let f : Rn → R. Let x(0) ∈ Rn be arbitrary, and let x(1) = x(0). For
k ≥ 1, one iteration of Polyak heavy ball is

x(k+1) = x(k) + β(k)(x(k) − x(k−1))− s(k)∇f(x(k)),

where s(k) > 0 is the step size and β(k) > 0 is the momentum at discrete time k.

4.4 Heavy ball to solve least squares problems

Now we wish to use the Polyak heavy ball method in order to try to make the
Landweber iteration converge faster. That is, we will consider the function f(x) =
1
2
∥b − Ax∥22 in Polyak heavy ball in order to solve the least squares problem given

by minx ∥b− Ax∥22.

58

4.4.1 Definition of the Landweber iteration with momentum

Definition 4.4.1. Let A ∈ Rm×n and b ∈ Rm. Let x(0) ∈ Rn be arbitrary, and let
x(1) = x(0). For k ≥ 1, one iteration of the Landweber iteration with momentum is

x(k+1) = x(k) + β(k)(x(k) − x(k−1))− s(k)AT (Ax(k) − b),

where s(k) > 0 is the step size and β(k) > 0 is the momentum at discrete time k.

4.4.2 Analysing the Landweber iteration with momentum

First we cover some similar concepts as with the Landweber iteration, where we
again will be considering a fixed step size s(k) = s, but also a fixed momentum
β(k) = β.

Lemma 4.4.2. If the Landweber iteration with momentum converges to limk→∞ x(k) = x∗,
then x∗ fulfills the normal equation: ATAx∗ = AT b.

Proof. Let limk→∞ x(k) = x∗. By the definition of the Landweber iteration with
momentum

x(k+1) = x(k) + β(x(k) − x(k−1))− sAT (Ax(k) − b)

=⇒ lim
k→∞

x(k+1) = lim
k→∞

x(k) + β(x(k) − x(k−1))− sAT (Ax(k) − b)

=⇒ x∗ = x∗β(x∗ − x∗)− sAT (Ax∗ − b)

=⇒ x∗ = x∗ − sAT (Ax∗ − b).

(4.4.1)

By equation (4.2.31) this means that x∗ fulfills the normal equation. ο.ε.δ.

Because the Landweber iteration with momentum uses two steps at a time, it
becomes quite different to analyze from now on. (It is different in a similar way
to how a second order differential equation is different to a first order differential
equation [12] (p352).)

Lemma 4.4.3. In the Landweber iteration with momentum[
x(k+1) − x∗

x(k) − x∗

]
=

[
(1 + β)In − sATA −βIn

In 0n×n

] [
x(k) − x∗

x(k−1) − x∗

]
.

Proof. Let x∗ ∈ Rn be a point of that the Landweber iteration with momentum could
converge to, using the step size s(k) = s and momentum β(k) = β. By lemma 4.4.2,

59

this means that x∗ fulfills the normal equation ATAx∗ = AT b. By the definition of
the Landweber iteration with momentum

x(k+1) = x(k) + β(x(k) − x(k−1))− sAT (Ax(k) − b)

= x(k) + βx(k) − βx(k−1) − sATAx(k) + sAT b

= x(k) + βx(k) − βx(k−1) − sATAx(k) + sATAx∗.

(4.4.2)

This means that

(x(k+1) − x∗) = x(k) − x∗ + βx(k) − βx(k−1) − sATAx(k) + sATAx∗

= (x(k) − x∗) + βx(k) − βx(k−1) − sATA(x(k) − x∗)

= (x(k) − x∗) + βx(k) − βx(k−1) + (−βx∗ + βx∗)− sATA(x(k) − x∗)

= (x(k) − x∗) + β(x(k) − x∗)− β(x(k−1) − x∗)− sATA(x(k) − x∗)

= −β(x(k−1) − x∗) + (In + βIn − sATA)(x(k) − x∗)

= ((1 + β)In − sATA)(x(k) − x∗)− βIn(x
(k−1) − x∗).

(4.4.3)
Note also that quite trivially

(x(k) − x∗) = In(x
(k) − x∗) + 0n×n(x

(k−1) − x∗). (4.4.4)

Putting equations (4.4.3) and (4.4.4) in matrix form yields the block matrix equation[
x(k+1) − x∗

x(k) − x∗

]
=

[
(1 + β)In − sATA −βIn

In 0n×n

] [
x(k) − x∗

x(k−1) − x∗

]
. (4.4.5)

ο.ε.δ.

Theorem 4.4.4. The Landweber iteration with momentum converges if and only if

ρ

([
(1 + β)In − sATA −βIn

In 0n×n

])
< 1.

Proof. Note first that the Landweber iteration with momentum converges to a
point x∗ if and only if limk→∞ x(k) = x∗. Now let the error vector at step k of
the Landweber iteration with momentum be e(k) = x(k) − x∗ ∈ Rn. We have that

lim
k→∞

x(k) = x∗

⇐⇒ lim
k→∞

(x(k) − x∗) = 0

⇐⇒ lim
k→∞

e(k) = 0 .

(4.4.6)

60

Now let ê(k) ∈ R2n for k ≥ 1 be the vector

ê(k) =

[
e(k)

e(k−1)

]
. (4.4.7)

Note that
lim
k→∞

e(k) = 0

⇐⇒ lim
k→∞

e(k) = 0 and lim
k→∞

e(k−1) = 0

⇐⇒ lim
k→∞

ê(k) = 0 ∈ R2n.

(4.4.8)

Therefore the Landweber iteration with momentum converges if and only if we
have that limk→∞ ê(k) = 0. By lemma 4.4.3, in the Landweber iteration with mo-
mentum

ê(k+1) =

[
(1 + β)In − sATA −βIn

In 0n×n

]
ê(k)

⇐⇒ ê(k+1) =

[
(1 + β)In − sATA −βIn

In 0n×n

]k
ê(1).

(4.4.9)

We now assume that e(0) ̸= 0 ∈ Rn, e(1) ̸= 0 ∈ Rn because otherwise our initial
guess x(0) = x(1) (where this equality holds by definition) equals the solution x∗,
which is not interesting because then the Landweber iteration with momentum
would not be needed. This means that ê(1) ̸= 0 ∈ R2n and the Landweber iteration
converges if and only if

lim
k→∞

ê(k+1) = 0

⇐⇒ 0 = lim
k→∞

[
(1 + β)In − sATA −βIn

In 0n×n

]k
e(1)

⇐⇒ lim
k→∞

[
(1 + β)In − sATA −βIn

In 0n×n

]k
= 0(2n)×(2n).

(4.4.10)

By theorem 4.2.4 this is equivalent to

ρ

([
(1 + β)In − sATA −βIn

In 0n×n

])
< 1. (4.4.11)

ο.ε.δ.

Lemma 4.4.5. Given that λ1, . . . , λn are the eigenvalues of ATA,

ρ

([
(1 + β)In − sATA −βIn

In 0n×n

])
= max

1≤i≤n
ρ

([
1 + β − sλi −β

1 0

])
.

61

Proof. Note that ATA ∈ Rn×n is symmetric because (ATA)T = (A)T (AT)T = ATA.
By the spectral theorem, this means that ATA is orthogonally diagonalizable as

ATA = QΛQT , (4.4.12)

where Q ∈ Rn×n is an orthogonal matrix and Λ ∈ Rn×n is a diagonal matrix with
the eigenvalues λ1, . . . , λn of ATA on its main diagonal. Because Q is square and
orthogonal QTQ = In =⇒ QT = Q−1 =⇒ QQT = In. Hence

M =

[
(1 + β)In − sATA −βIn

In 0n×n

]
=

[
(1 + β)In −QΛQT −βIn

In 0n×n

]
=

[
(1 + β)QQT −QΛQT −βQQT

QQT 0n×n

]
=

[
Q((1 + β)In − Λ)QT Q(−βIn)Q

T

Q(In)Q
T Q(0n×n)Q

T

]
=

[
Q((1 + β)In − Λ) Q(−βIn)

Q(In) Q(0n×n)

] [
QT 0
0 QT

]
=

[
Q 0
0 Q

] [
(1 + β)In − sΛ −βIn

In 0n×n

] [
Q 0
0 Q

]T
= Q̂LQ̂T ,

(4.4.13)

where

Q̂ =

[
Q 0
0 Q

]
∈ R(2n)×(2n), L =

[
(1 + β)In − sΛ −βIn

In 0n×n

]
∈ R(2n)×(2n). (4.4.14)

(Keep in mind that the zero blocks in Q̂ really are 0n×n.) Note now that Q̂ ∈
R(2n)×(2n) is a square orthogonal matrix, and therefore invertible. This means that
M and L are similar matrices, and so

ρ(M) = ρ(Q̂LQ̂T) = ρ(L). (4.4.15)

Note now that permutation matrices are invertible and that they are their own
inverse. This means that L will be similar to P2n . . . P1LP1 . . . P2n, where each Pj is
a permutation matrix, permuting the rows of L from the left and the columns of L
from the right. Specifically we may permute L to the similar matrix

B =

B1 0 · · · 0

0
.

... 0
0 · · · 0 Bn

 ∈ R(2n)×(2n), (4.4.16)

62

where for 1 ≤ i ≤ n

Bi =

[
1 + β − sλi −β

1 0

]
∈ R2×2. (4.4.17)

Moreover, by [2] (p318), because the blocks of B are square and lie on the main
diagonal, this means that the 2n eigenvalues of B is the union of each of the 2
eigenvalues of the n blocks B1 . . . Bn. Therefore, a largest eigenvalue in absolute
value of B is a largest eigenvalue in absolute value of one of the blocks, meaning

ρ(L) = ρ(B) = max
1≤i≤n

ρ(Bi). (4.4.18)

Finally, by equation (4.4.15) this means that

ρ(M) = ρ(L) = max
1≤i≤n

ρ(Bi)

⇐⇒ ρ

([
(1 + β)In − sATA −βIn

In 0n×n

])
= max

1≤i≤n
ρ

([
1 + β − sλi −β

1 0

])
.

(4.4.19)

ο.ε.δ.

Lemma 4.4.6. The eigenvalues of

Bi =

[
1 + β − sλi −β

1 0

]
are

µ1 =
1

2

(
(1 + β − sλi) +

√
(1 + β − sλi)2 − 4β

)
,

µ2 =
1

2

(
(1 + β − sλi)−

√
(1 + β − sλi)2 − 4β

)
.

Proof. By the definition of eigenvalues, µ is an eigenvalue of Bi if and only if

det(Bi − µI2) = 0 ⇐⇒ det

([
1 + β − sλi − µ −β

1 −µ

])
= 0

⇐⇒ −(1 + β − sλi − µ)µ+ β = 0

⇐⇒ −(−µ+ (1 + β − sλi))µ+ β = 0

⇐⇒ µ2 − µ(1 + β − sλi) + β = 0.

(4.4.20)

The desired result is attained by use of the quadratic formula. ο.ε.δ.

Lemma 4.4.7. The eigenvalues of

Bi =

[
1 + β − sλi −β

1 0

]
are not real numbers if and only if s fulfills

(1−
√
β)2 < sλi < (1 +

√
β)2.

63

Proof. By lemma 4.4.6, the eigenvalues of Bi are not real numbers if and only if

(1 + β − sλi)
2 − 4β < 0

⇐⇒ (1 + β − sλi)
2 − (2

√
β)2 < 0

⇐⇒ (1 + β − sλi − 2
√

β)(1 + β − sλi + 2
√

β) < 0

⇐⇒ ((1− 2
√

β + β)− sλi)((1 + 2
√

β + β)− sλi) < 0

⇐⇒ ((1−
√

β)2 − sλi)((1 +
√

β)2 − sλi) < 0.

(4.4.21)

Note that (1−
√
β)2 < (1 +

√
β)2. Therefore we wish that

(1−
√

β)2 − sλi < 0 and (1 +
√
β)2 − sλi > 0 (4.4.22)

for ((1−
√
β)2 − sλi)((1 +

√
β)2 − sλi) to be negative. Hence

(1−
√

β)2 < sλi and (1 +
√
β)2 > sλi

⇐⇒ (1−
√
β)2 < sλi < (1 +

√
β)2.

(4.4.23)

ο.ε.δ.

Lemma 4.4.8. If s fulfills (1−
√
β)2 ≤ sλi ≤ (1+

√
β)2 and µ1 and µ2 are the eigenvalues

of

Bi =

[
1 + β − sλi −β

1 0

]
then

|µ1| = |µ2| =
√

β.

Remark. This means that ρ(Bi) is independent of λi.

Proof. Let s fulfill (1 −
√
β)2 ≤ sλi ≤ (1 +

√
β)2. By lemma 4.4.7 and lemma 4.4.6

this means that
∆ = (1 + β − sλi)

2 − 4β ≤ 0 (4.4.24)

and

µ1 =
1

2

(
(1 + β − sλi) +

√
∆
)
=

1

2

(
(1 + β − sλi) + i

√
−∆

)
, (4.4.25)

µ2 =
1

2

(
(1 + β − sλi)−

√
∆
)
=

1

2

(
(1 + β − sλi)− i

√
−∆

)
. (4.4.26)

64

By the definition of absolute value for complex numbers

|µ2|2 =
1

4

(
(1 + β − sλi)

2 + (−
√
−∆)2

)
=

1

4

(
(1 + β − sλi)

2 + (
√
−∆)2

)
= |µ1|2.

(4.4.27)

Therefore

|µ1|2 = |µ2|2 =
1

4

(
(1 + β − sλi)

2 + (
√
−∆)2

)
=

1

4

(
(1 + β − sλi)

2 −∆
)

=
1

4

(
(1 + β − sλi)

2 −
(
(1 + β − sλi)

2 − 4β
))

=
1

4

(
(1 + β − sλi)

2 − (1 + β − sλi)
2 + 4β

)
=

1

4
(4β)

= β.

(4.4.28)

Hence
|µ1| = |µ2| =

√
β. (4.4.29)

ο.ε.δ.

Corollary 4.4.9. Given that λ1, . . . , λn are the eigenvalues of ATA, if the step size s fulfills
(1−

√
β)2 ≤ sλi ≤ (1 +

√
β)2 then

ρ

([
(1 + β)In − sATA −βIn

In 0n×n

])
=
√

β.

Proof. By lemma 4.4.5 and lemma 4.4.8

ρ

([
(1 + β)In − sATA −βIn

In 0n×n

])
= max

1≤i≤n
ρ

([
1 + β − sλi −β

1 0

])
= max

1≤i≤n
{|µ1|, |µ2|}

= max
1≤i≤n

{
√

β,
√

β}

=
√
β.

(4.4.30)

ο.ε.δ.

65

Theorem 4.4.10. (s, β) =
((

2√
λ1+

√
λn

)2
,
(√

λ1−
√
λn√

λ1+
√
λn

)2)
is the unique minimizer of

ρ

([
(1 + β)In − sATA −βIn

In 0n×n

])
with respect to (s, β) with minimum value

√
λ1−

√
λn√

λ1+
√
λn

=
√
β, where λ1 > 0 is a largest

eigenvalue of ATA, and λn > 0 is a smallest eigenvalue of ATA.

Proof. See [14]. ο.ε.δ.

Remark. Compare this convergence rate with the best conservative convergence
rate for the Landweber iteration, being λ1−λn

λ1+λn
as seen in theorem 4.2.8.

Remark. In terms of the singular values of A, note that
√
λ1−

√
λn√

λ1+
√
λn

= σ1−σn

σ1+σn
and λ1−λn

λ1+λn
=

σ2
1−σ2

n

σ2
1+σ2

n
.

4.5 Generalizations and other methods

For us to have gradient descent produce monotonically decreasing distance to an
optimum x∗ of f with each iteration we only needed a condition on ∇f (as seen
in theorem 4.1.4), meaning that we only need certain smoothness of f . We did not
need f to be convex.

However, to obtain an expression for the convergence rate we even need a
stronger version of convexity (see chapter 6 discussion). But we do have that
f(x) = ∥b−Ax∥2 fulfills this, which is why we could obtain our results for conver-
gence rate.

We could instead of considering f(x) = ∥b − Ax∥2 have considered a more
general function which also fulfills this stronger version of convexity. If instead of
considering f(x) = ∥b − Ax∥2 we would have considered f(x) = xTQx + qTx + c,
where Q ∈ Rn×n is symmetric positive definite, q ∈ Rn and c ∈ R, then all the same
results as in the Landweber iteration and Landweber iteration with momentum
are obtained except with Q substituted for ATA [14].

Another gradient descent method not covered in this report is the Nesterov accel-
erated gradient (NAG) method, by Russian mathematician Yurii Evgen’evich Nes-
terov [7] (p543). It is a generalization of the Polyak heavy ball method.

A specific case of the Polyak heavy ball method is the conjugate gradient method,
where the optimal step size s(k) and momentum β(k) is used at each step (see page
68 of [9]).

66

5 Applications to image deblurring

This chapter is based upon a project description in the course MM5016 Numerical
Analysis HT21 (Fall 2021), by professor Yishao Zhou.

5.1 Modelling a deblurring problem

In this section we cover how to mathematically model the problem of ”deblurring”
a digital image. We assume that the image is blurry in some way (e.g. out of focus,
motion blur), and that this blurry image can be attained by applying a blur to some
”not blurry” image.

The unknown not blurry image will be encoded as a matrix X . The blur will
almost be a linear transformation, meaning that we can encode it as a matrix A.
The blurry image that we do have will be the matrix B. The not blurry image can
then be attained by solving AX = B.

5.1.1 Encode digital image as a very tall matrix

Given a digital image of size h × w px, it can be flattened to one very tall image
of size (hw) × 1 px, meaning that it will be one pixel wide. This digital image can
then be broken up into three color channels: red, green and blue, where we then
have a red image, blue image, and green image, all of size (hw)× 1 px.

For a pixel in a digital image, the color brightness intensity of a color channel is
an integer between 0 and 255. The brightness intensity in each color channel, for
each pixel, is a complete description of any digital image. Therefore we can encode
our digital image of flattened size (hw)× 1 px as a (hw)× 3 matrix

M =
[
vred vgreen vblue

]
∈ R(hw)×3, (5.1.1)

where vc ∈ Rhw (c ∈ {red,green, blue}) is a vector of the brightness intensity in
color channel c for each pixel in the flattened (hw)× 1 px digital image.

5.1.2 Blur as a linear transformation with rounding

Given a matrix of brightness intensities X ∈ R(hw)×3, we can think of the blurring
of the corresponding image as a linear transformation of X , given by AX , where
A ∈ R(hw)×(hw) is a square matrix. However, we need to make sure that the bright-
ness intensities are integers between 0 and 255. Therefore we will introduce an

67

appropriate rounding function rd : R(hw)×3 → R(hw)×3, where

(rd(M))i,j =

0, if (M)i,j < 0

255, if (M)i,j > 255

round((M)i,j), otherwise,
(5.1.2)

and

round((M)i,j) =

⌊
(M)i,j +

1

2

⌋
. (5.1.3)

The blurred image can therefore be written as rd(AX).

5.1.3 Setting up least squares

We can now state what problem we are trying to solve. We wish to find a matrix
X ∈ R(hw)×3 satisfying

rd(AX) = B, (5.1.4)

where B ∈ R(hw)×3 is an encoded blurry digital image and A ∈ R(hw)×(hw) is a ma-
trix corresponding with a linear transformation which performs the type of blur-
ring that the image corresponding with B has.

However, this problem is clearly not solvable, because rd does not have an
inverse. We can instead consider the problem

AX = B, (5.1.5)

which will give an approximate solution if A is invertible. But, since A represents
blurring, it will almost guaranteed not be invertible, since information is lost when
blurring. If we break down the matrix X ∈ R(hw)×3 by its color channels like

X =
[
xred xblue xgreen

]
, (5.1.6)

and also break down B by its color channels like

B =
[
bred bgreen bblue

]
(5.1.7)

we instead have the problem of solving

Axc = bc, (5.1.8)

for c ∈ {red,green, blue}. Because A is almost guaranteed not to be invertible,
N(A) will not be trivial. We can therefore not use the solution x̂c = (ATA)−1AT bc
to the least squares problem

min
xc

∥bc − Axc∥22,

68

since (ATA)−1 will not exist by theorem 2.2.2. Either an iterative method could be
used to attain some approximate solution, or we could consider a regularized least
squares problem

min
xc

∥bc − Axc∥22 + δR(xc),

which might produce better solutions. Now we could choose R such that this has
a closed form solution we could calculate directly, or we could use an iterative
method still. If we do solve this for each color channel, we obtain the solution

X̂δ =
[
x̂redδ

x̂greenδ
x̂blueδ

]
, (5.1.9)

which will correspond to an image that will be the image corresponding with B,
but which has been approximately deblurred.

5.2 Solving a deblurring problem

In this section we will go through how to practically solve the least squares prob-
lem for deblurring. We will use the programming language MATLAB to imple-
ment these solutions.

5.2.1 Direct solution

If we consider the Tikhonov regularized least squares problem

min
xc

∥bc − Axc∥22 + δ∥xc∥22,

we can immediately obtain the solution, which by theorem 3.2.7 says that it always
exists and is equal to

x̂cδ = (ATA+ δIhw)
−1AT bc. (5.2.1)

This can be done using the MATLAB command lsqr [5], where by theorem 3.2.2,
we know that we should input the matrix[

A√
δIhw

]
∈ R(2hw)×(hw)

for the first argument and [
bc
0

]
∈ R(2hw)×3

for the second argument.

69

5.2.2 Iterative solution

We can solve the standard least squares problem

min
xc

∥bc − Axc∥22

by using an iterative method like the Landweber iteration with momentum, until
we converge x̂cδ , which by lemma 4.4.2 is a point fulfilling the normal equation
ATAx̂cδ = AT b. We may now realize that doing the Landweber iteration with
momentum for each of the color channels c ∈ {red,green, blue} like

x(k+1)
c = x(k)

c + β(k)(x(k)
c − x(k−1)

c)− s(k)AT (Ax(k)
c − bc) (5.2.2)

is the same thing as doing

X(k+1) = X(k) + β(k)(X(k) −X(k−1))− s(k)AT (AX(k) −B), (5.2.3)

because subtractions and additions are element-wise, and[
Ax

(k)
red Ax

(k)
green Ax

(k)
blue

]
= A

[
x
(k)
red x

(k)
green x

(k)
blue

]
= AX(k). (5.2.4)

Therefore, (5.2.3) is the iteration we will do in MATLAB. However, practically, a
fixed point X̂ =

[
x̂red x̂green x̂blue

]
satisfying ATAX̂ = ATB might not be reached

in a finite amount of steps. Therefore we will set how many iterations we will do
and hope for a good result. This will be done with a for-loop in MATLAB.

5.3 Results

The blurred digital image we encode with the matrix B can be seen in figure 5.1.
Trying to solve AX = B naively, without least squares or regularization as in equa-
tion (5.1.5), yields the image in figure 5.2. (This was done with the MATLAB com-
mand \ [6].) Time taken was about 30 seconds on my machine.

Using the direct method as described in subsection 5.2.1 yields the result in
figure 5.3. Time taken was about 40 seconds on my machine. Using the iterative
method as described in subsection 5.2.2 yields the result in figure 5.4. Time taken
was about 40 seconds on my machine.

The MATLAB code used can be seen in section A.1 of appendix A on page 78.

70

Figure 5.1: The image to be deblurred. Dimensions are 539x373 px, encoded as a
201047× 3 matrix B.

(The reader is encouraged to guess what the image is supposed to depict.)

Figure 5.2: Solving AX = B without least squares or regularization.

71

Figure 5.3: Solving using Tikhonov regularized least squares.

Figure 5.4: Solving using the Landweber iteration with momentum.

72

6 Discussion

In this chapter we will discuss the theory of gradient descent and Polyak heavy
ball, as well as the practical element of this report, being deblurring.

6.1 Theory of gradient descent and Polyak heavy ball

6.1.1 Convergence in the general case

We have seen in the case in the case when f(x) = ∥b − Ax∥22 = xT (ATA)x +
(−2bTA)x + (bT b), and in fact when f(x) = xTQx + qTx + c, that gradient de-
scent and Polyak heavy ball are guaranteed to converge for a fixed step size (and
momentum) if and only if ρ(M) < 1 where M is some matrix containing ATA
or Q respectively. These are indeed special cases of the more general case when
f : Rn → R is a twice differentiable function.

For a function f : Rn → R to be twice differentiable means that every entry
of the Hessian ∇2f(x) ∈ Rn×n is defined for every x ∈ Rn, where this is simply a
matrix of every second partial derivative of f , being

(∇2f(x))i,j =
∂2f

∂xi∂xj

(x). (6.1.1)

In fact, note that ∇2(∥b−Ax∥22) = ATA and ∇2(xTQx+qTx+c) = Q. Now we wish
to be more general, where we first define

B ≼ M ⇐⇒ 0 ≤ xT (M −B)x, (6.1.2)

meaning that M is positive semi-definite is equivalent to 0n×n ≼ M , which is more
simply denoted by 0 ≼ M . Note that in the proof of convergence of Polyak heavy
ball we need the following

µIn ≼ ∇2f(x(k)) ≼ LIn, (6.1.3)

which is true if f is µ-strongly convex (µ > 0) and L-Lipschitz smooth (L > 0) in
the case when f is a general non-linear function. Specifically this means that

0 < µ ≤ λn ≤ λ1 ≤ L, (6.1.4)

where λn is a smallest eigenvalue and λ1 is a largest eigenvalue of any Hessian
∇2f(x(k)) in the iteration. If at any step λ

(k)
1 > L, we do not have guaranteed

convergence.

73

In the more specific case, we had that the best conservative convergence rate
was λ1−λn

λ1+λn
for gradient descent and

√
λ1−

√
λn√

λ1+
√
λn

for Polyak heavy ball, where λn was a
smallest and λ1 was a largest eigenvalue of the constant Hessian (ATA or Q). Note
that we had guaranteed convergence when ATA (or Q) were positive definite. In
this case we will study how many iterations are needed to attain an ε-accurate
solution.

6.1.2 Comparing number of iterations for an ε-accurate solution

Let us consider the case when we have a fixed step size (and momentum) in
gradient descent and Polyak heavy ball used on a function of the form f(x) =
xTQx+ qTx+ b (which includes f(x) = ∥b−Ax∥22), where Q (or ATA) is symmetric
positive-definite. This means that ρ(M) = λ1−λn

λ1+λn
< 1, where

e(k) = Mke(0), (6.1.5)

with e(k) being the error of gradient descent at step k, and that ρ(M̂) =
√
λ1−

√
λn√

λ1+
√
λn

< 1

where
ê(k) = M̂kê(0), (6.1.6)

with ê(k) being the error of Polyak heavy ball at step k. Now we will say that we
have reached an ε-accurate solution by step k with gradient descent if ρ(M)k < ε

(and similarly if ρ(M̂)k < ε for Polyak heavy ball). That is, if

ρ(M)k < ϵ =⇒ k log(ρ(M)) < log(ε) =⇒ −k log(ρ(M)) > − log(ε)

=⇒ k log

(
1

ρ(M)

)
> log

(
1

ε

)
.

(6.1.7)

Since ρ(M) < 1 this means that 1
ρ(M)

> 1, so log
(

1
ρ(M)

)
> 0. Hence

k >
1

log
(

1
ρ(M)

) log

(
1

ε

)
. (6.1.8)

Now to make the expressions simpler, we will introduce the following number

κ =
λ1

λn

> 1 (6.1.9)

(assuming λ1 > λn.) Therefore

ρ(M) =
λ1 − λn

λ1 + λn

=
κ− 1

κ+ 1
=⇒ 1

ρ(M)
=

κ+ 1

κ− 1
=

κ− 1 + 2

κ− 1
= 1 +

2

κ− 1
(6.1.10)

74

and similarly

ρ(M̂) =

√
λ1 −

√
λn√

λ1 +
√
λn

=

√
κ− 1√
κ+ 1

=⇒ 1

ρ(M̂)
=

√
κ+ 1√
κ− 1

= 1 +
2√
κ− 1

. (6.1.11)

Using the first degree Taylor polynomial of the (natural) logarithm results in

1

log
(

1
ρ(M)

) =
1

log
(
1 + 2

κ−1

) ≈ 1
2

κ−1

=
κ− 1

2
, (6.1.12)

and similarly
1

log
(

1

ρ(M̂)

) ≈
√
κ− 1

2
. (6.1.13)

Hence we reach an ε-accurate solution using gradient descent and Polyak heavy
ball using

k ∈ O
(
κ log

(
1

ε

))
and k ∈ O

(√
κ log

(
1

ε

))
(6.1.14)

number of iterations, respectively.

6.2 Deblurring in practice

6.2.1 Direct versus iterative solution in practice

As we have seen in the results section of this report, given a blurry image of dimen-
sions 539x373 px, a deblurred image can be attained in a reasonable time frame.
However, given an image of much larger dimensions, it might take considerably
more time. A similar problem is if there are many smaller images to deblur, for
example in a blurry video.

In the practical case where the time taken is more limited, one could think that
simply seeing what the image depicts is enough, where a high level of sharpness
is not necessary. For example, in figures 5.3 and 5.4 we could tell in both cases that
the image depicts Stockholm City Hall. In this case it took around 40 seconds to
produce the images on my machine.

However, note that we can stop an iterative solution (Landweber with momen-
tum) whenever we want, since we supply the number of iterations taken. This is
different to the direct solution (Tikhonov regularization), which finishes only after
a specified tolerance is reached [5]. (Note that if you implement the solution to

75

the Tikhonov regularized least squares problem yourself, then you can supply the
number of iterations taken if you use an iterative method to calculate the inverse
(ATA + δIn)

−1. This is actually done in the MATLAB command lsqr by solving
(ATA + δIn)x̂ = AT b using the conjugate gradient method [5], which is a specific
case of the Polyak heavy ball method [9] (p68).)

In both the iterative and direct case we could tweak these parameters such that
we arrive at a deblurred image (which is less sharp, but hopefully sharp enough
to see what the image depicts) in a desired amount of time.

6.2.2 Deep neural network

A different approach to deblurring is using a deep neural network. This is a vector
valued mathematical function f which takes an input vector x(0) and repeatedly
alternates between applying an affine transformation and a entry-wise non-linear
function. That is for 1 ≤ k < L

x(k) 7→ z(k+1) = W (k+1)x(k) + b(k+1)

z(k+1) 7→ x(k+1) = σ(z(k+1)),
(6.2.1)

where L is the amount of layers of the deep neural network, with f(x(0)) = x(L)

being the output, W (k+1) is a matrix of weights, b(k+1) is a vector of biases, and σ is a
non-linear function applying on the entries of the inputted vector z(k+1). A specific
non-linear function is the rectified linear unit ReLU(zi) = max{0, zi}.

Given training data D = {(d(1), y(1)), . . . , (d(N), y(N))} of blurry image and cor-
responding sharp image pairs, both encoded as vectors, then one can define a cost
function of the form

cost(p;D) =
1

N

N∑
i=1

C(p; d(i), y(i)), (6.2.2)

where p is a vector of every weight and bias. That is, a vector of every entry
of every matrix W (1), . . . ,W (L) and vector b(1), . . . , b(L). This means that we can
value how good our choice of weights and biases are based on each training data
point individually. (This is needed for stochastic gradient descent, a gradient descent
method.)

Note that, if the number of layers is set, and the dimensions of the weight matri-
ces and bias vectors are set, and the non-linear function is set, then f is completely
determined by the entries of p (since p decides every weight and bias). We may
therefore denote our deep neural network by fp. A specific cost function is the

76

mean squared error (MSE), which has

C(p; d(i), y(i)) =
1

M
∥y(i) − fp(d

(i))∥22 =
1

M

M∑
j=1

(
(y(i))j − (fp(d

(i)))j
)2

. (6.2.3)

This is the sum of the squares of the ”pixel differences” (depending on how we
encode our images as vectors) of the actual sharp image and the result of the deep
neural network, where M is the dimension of the vectors we encode our images
as. Hence, if we use MSE

cost(p;D) =
1

NM

N∑
i=1

∥y(i) − fp(d
(i))∥22. (6.2.4)

To choose the weighs and biases p defining the deep neural network, we ”train”
the network, by simply minimizing cost(p;D). This is typically done by a gradient
descent method, where the gradient for each p in the iterative method is calculated
using backpropagation.

If the process of ”training” the deep neural network fp is successful, then we
arrive at a function fp∗ , where p∗ makes the cost low, meaning that fp∗ will be
able to take a blurry image d as input, and output an image y which is not very
different to how a corresponding sharp image probably is. (The theory of deep
neural networks is indeed deep and details are heavily out of the scope of this
report.)

A more advanced neural network is a convolutional neural network, which is a
similar type of function to a standard deep neural network. (See page 387 of [12].)
For a guide to image deblurring using a a convolutional neural network in the
programming language Python, see [10].

77

A Appendix

A.1 MATLAB code

The version of MATLAB used was MATLAB R2021a.

Code for running the program

1 % Load blurred image and blurring matrix
2 [B,h,w,A] = setup();
3

4 % Hyperparameter
5 sqrt_thelta = 10ˆ-2;
6

7 % Paremeters for iterative method
8 iters = 200;
9 s = 2;

10 beta = 0.1;
11

12 % Deblur image naively, with Tikhonov, and with Landweber
13 tic; im1 = naive(B, A); t1 = toc;
14 tic; im2 = tikhonov(B, A, sqrt_thelta); t2 = toc;
15 tic; im3 = landwebermomentum(B, A, iters, s, beta); t3 = toc;
16

17 % Create the deblurred images
18 figure(1); create_image(im1,h,w);
19 figure(2); create_image(im2,h,w);
20 figure(3); create_image(im3,h,w);
21

22 % Print the results
23 print -f1 -dpng naive.png
24 print -f2 -dpng tikhonov.png
25 print -f3 -dpng landwebermomentum.png
26

27 % Display time taken
28 fprintf('Naive: %g s\n', t1);
29 fprintf('Tikhonov: %g s\n', t2);
30 fprintf('Landweber with momentum: %g s\n', t3);

78

Code for blurring matrix A and blurred image B

1 % B - height*width-by-3 matrix. The columns corresponds to
2 % the RGB components of the pixel colors.
3 % height - height of the image
4 % width - width of the image
5 % A - blurring matrix (B = A*true + noise).
6 %
7 function [B, height, width, A] = setup()
8 B = imread('blurry.png');
9 height = size(B,1);

10 width = size(B,2);
11 A = formA(fspecial('motion', 100, 25), height, width);
12 B = reshape(double(B),height*width,3);
13

14 % Form a matrix corresponding to blurring with the kernel
15 % specified by h.
16 %
17 function A = formA(h, height, width)
18 % Construct blurring matrix
19 [i,j,hij] = find(h);
20 i = i-(size(h,1)+1)/2;
21 j = j-(size(h,2)+1)/2;
22

23 % Image dimensions
24 N = height*width;
25

26 % Array of pixel coordinates
27 pixi = (1:height)'*ones(1,width);
28 pixj = ones(height,1)*(1:width);
29 pixk = reshape(1:(height*width), height, width);
30

31 % Construct blurring matrix
32 A = sparse(N,N);
33 for l = 1:length(hij)
34 hpixi = pixi+i(l);
35 hpixj = pixj+j(l);
36 hpixk = (hpixj-1)*height+hpixi;
37 Iact = find(hpixi > 0 & hpixi < = height & hpixj > 0 & hpixj ...

< = width);
38 AA = sparse(pixk(Iact), hpixk(Iact), ...

hij(l)*ones(length(Iact),1), N, N);
39 A = A+AA;
40 end

79

Code for naive solution

1 function X=naive(B, A)
2 X=A\B;
3 end

Code for Tikhonov solution

1 function X=tikhonov(B, A, sqrt_thelta)
2 n = length(A);
3

4 A = [A; sqrt_thelta .* speye(n)];
5 B = [B; zeros(n,3)];
6

7 for j=1:3 % solve for each color channel
8 X(:,j) = lsqr(A, B(:,j), 10ˆ-4, 1000);
9 end

10 end

Code for Landweber with momentum solution

1 function X=landwebermomentum(B, A, n, s, beta)
2

3 At = A'; %A transpose
4

5 X = B;
6 last = B;
7

8 for J = 1:n
9 this = X;

10 next = this + beta.*(this - last) - s.*(At*(A*this - B));
11 last = this;
12 X = next;
13 end

80

Code for creating an image from a very tall matrix

1 % Display the image represented by the matrix X. X has ...
height*width rows

2 % (one per pixel) and three columns (for RGB) containing floating ...
point

3 % values between 0 and 255 representing color intensities. Any ...
values that

4 % fall out of the range 0 to 255 will be bumped back into range.
5

6 function create_image(X, height, width)
7 image(reshape(min(max(X,0),255),height,width,3)/255);
8 axis off;

A.2 Omitted proofs

Lemma A.2.1. Hvy is the reflection of y in the hyperplane through 0 with normal vector
v. (This is where the name Householder reflection matrix comes from.)

Proof. The orthogonal projection of y onto the hyperplane through 0 with normal
vector v is

y −
(

vTy

∥v∥2

)
v

∥v∥2
,

so the reflection of y in the hyperplane with normal vector v is

y − 2

(
vTy

∥v∥2

)
v

∥v∥2
= y − 2

v

∥v∥2

(
vTy

∥v∥2

)
= y − 2

vvT

∥v∥22
y

=

(
Im − 2

vvT

∥v∥22

)
y

= Hvy.

(A.2.1)

ο.ε.δ.

Lemma A.2.2. Given A ∈ Rm×n, then Hk is a symmetric matrix: HT
k = Hk. (Note that

Hk is as in definition 2.4.12.)

Proof. By lemma 2.4.5 we have that

HT
k =

[
Ik−1 0
0 Hv

]T
=

[
ITk−1 0
0 HT

v

]
=

[
Ik−1 0
0 Hv

]
= Hk. (A.2.2)

81

ο.ε.δ.

Lemma A.2.3. Given A ∈ Rm×n, then Hk is an orthogonal matrix: HT
k Hk = Im. (Note

that Hk is as in definition 2.4.12.)

Proof. By lemma 2.4.6 we have that

HT
k Hk =

[
Ik−1 0
0 Hv

]T [
Ik−1 0
0 Hv

]
=

[
ITk−1 0
0 HT

v

] [
Ik−1 0
0 Hv

]
=

[
Ik−1 0
0 HT

v

] [
Ik−1 0
0 Hv

]
=

[
Ik−1Ik−1 0

0 HT
v Hv

]
=

[
Ik−1 0
0 Im−k+1

]
= Im.

(A.2.3)

ο.ε.δ.

Corollary A.2.4. Given A ∈ Rm×n, then Hk is an involutory matrix: H−1
k = Hk.

Proof. By lemma 2.4.18 and lemma 2.4.17 we have that

Im = HT
k Hk = HH =⇒ H−1

k = Hk. (A.2.4)

ο.ε.δ.

Lemma A.2.5. Given A ∈ Rm×n, then Ht . . . H1, where t = min{m−1, n}, is an orthog-
onal matrix. (Note that Hk, where 1 ≤ k ≤ t, is as in definition 2.4.12.)

Proof. Let QT = Ht . . . H1. By definition, this is an orthogonal matrix if QTQ = Im.
By lemma 2.4.18, for 1 ≤ k ≤ t

HT
k Hk = Im =⇒ HT

k = H−1
k =⇒ HkH

T
k = Im. (A.2.5)

Therefore
QTQ = (Ht . . . H1)(Ht . . . H1)

T

= (Ht . . . H1)(H
T
1 . . . HT

t)

= Ht . . . Im . . . HT
t

= HtH
T
t

= Im.

(A.2.6)

ο.ε.δ.

82

Bibliography

[1] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge univer-
sity press, 2004.

[2] Stephen Friedberg, Arnold Insel, and Lawrence Spence. Linear Algebra. Pearson
new international edition. Pearson Education Limited, 2013.

[3] Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical Learning with
Sparsity: The Lasso and Generalizations. CRC Press, 2015.

[4] Anders Holst and Victor Ufnarovski. Matrix Theory. Studentlitteratur AB, 2014.

[5] MathWorks. Solve system of linear equations — least-squares method. URL: https://
se.mathworks.com/help/matlab/ref/lsqr.html (visited on 05/18/2022).

[6] MathWorks. Solve system of linear equations Ax = B for x. URL: https : / /
se . mathworks . com / help / matlab / ref / mldivide . html (visited on
05/18/2022).

[7] Yurii Evgen’evich Nesterov. “A method of solving a convex programming prob-
lem with convergence rate O

(
1
k2

)
”. Russian. In: Doklady Akademii Nauk. Vol. 269. 3.

Russian Academy of Sciences. 1983, pp. 543–547.

[8] Arne Persson and Lars-Christer Böiers. Analys i en variabel. Swedish. Studentlitter-
atur AB, 2010.

[9] Boris Teodorovich Polyak. Introduction to Optimization. New York: Optimization
Software, 1987.

[10] Sovit Ranjan Rath. Image Deblurring using convolutional neural networks and Deep
Learning. May 2020. URL: https://debuggercafe.com/image-deblurring-
using-convolutional-neural-networks-and-deep-learning/ (visited
on 05/18/2022).

[11] Emmanuel Soubies, Laure Blanc-Féraud, and Gilles Aubert. “A Continuous Exact
l0 penalty (CEL0) for least squares regularized problem”. In: SIAM Journal on Imag-
ing Sciences 8.3 (July 2015), pp. 1607–1639. URL: https://hal.inria.fr/hal-
01102492.

[12] Gilbert Strang. Linear Algebra and Learning from Data. Wellesley-Cambridge Press,
2019.

[13] Robert Tibshirani. “Regression Shrinkage and Selection via the Lasso”. In: Journal
of the Royal Statistical Society (Series B) 58 (1996), pp. 267–288.

[14] Trung Vu. Convergence of Heavy-Ball Method and Nesterov’s Accelerated Gradient on
Quadratic Optimization. Sept. 2018. URL: https://trungvietvu.github.io/
notes/2018/Momentum (visited on 05/18/2022).

83

