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Abstract

From childhood, people are subconsciously exposed to number sys-
tems; from counting the number of objects of something to understanding
the concept of having parts of a whole or owing someone something. How-
ever, while this natural exposure to number systems helps people compre-
hend number systems up to the reals rather intuitively, number systems
beyond the reals are more troublesome for our intuition. This paper ex-
plores complex numbers and quaternions in order to further develop un-
derstanding of how one can operate with them as well as to create some
sort of an intuition for these numbers. In this paper, it is shown that com-
plex numbers can be expressed and represented in different forms, most
of which can be compared to geometrical objects; for instance, complex
numbers can be represented as pairs of real numbers as well as rotation
matrices. Similarly, albeit different in certain aspects, quaternions can be
compared to complex numbers to find that, like the complex numbers,
they can be represented as tuples of real numbers and through rotation
matrices. However, they differ in that complex numbers can be repre-
sented as 2-tuples of real numbers that can describe rotations in R2, while
quaternions can be represented as 4-tuples of real numbers that can de-
scribe rotations in R3. Subsequently, in this text, the history of complex
numbers and quaternions is presented as it is discussed and explained in
other sources, this in order to facilitate the understanding of how these
number systems originated and thus strengthening the intuition. Finally,
the text touches on an approach to teaching number systems; the approach
in question mostly relies on teaching complex numbers and quaternions
based on the pupils’ prior knowledge, this can be achieved by for instance
comparing complex numbers to by the pupils’ previously known strategies
for operating on expressions with unknown variables. One can also use
the similarities that the complex numbers and the quaternions share in
order to facilitate the teaching of quaternions as a mathematical object.
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1 Introduction

During the mandatory school years, pupils are often taught the number systems
by starting with the natural numbers then expanding on those by learning about
the integers followed by the rational numbers which in turn are expanded by the
real numbers. Subsequently, while not mandatory in Sweden, pupils studying
mathematically intensive programmes in upper secondary school have the op-
portunity to learn about the imaginary unit i and the complex numbers. From
a pedagogical point of view, this order of learning the different number systems
seems to coincide with mathematical didactics literature.

However, while the intuition relating to the number systems until the reals
that one acquires by virtue of experiencing different phenomena in real life might
come naturally, the same cannot necessarily be said about number systems
beyond the reals. As such, this text aims to explore number systems beyond
the reals. Specifically, in Section 2 of this text, the number systems up to the
reals will be briefly discussed with focus on intuition, the text will then explore
different representations of complex numbers in order to motivate an intuition,
an exploration of quaternions then follows where complex numbers will chiefly
be compared to quaternions in order to find differences and similarities between
the two numbers systems. Section 3 deals with some history and background to
the invention of complex numbers and quaternions. In Section 4, applications
of complex numbers and quaternions are discussed. Finally, in Section 5, since
this paper is written as part of a thesis for the teacher education programme,
an approach to teaching higher number systems is presented with sample lesson
plans.

2 Number systems and intuitiveness

2.1 The number systems until the reals

While this section of the text might appear to most as very trivial and elemen-
tary, it is crucial to understand how number systems differ and what is included
in them in order to further understand how higher number systems take the
lower ones into account.

Natural numbers. Starting with the natural numbers, denoted by N, being
the set of all numbers following the sequence of 0, 1, 2, 3, 4, . . . . The natural
numbers, as the name suggest, intuitively appear very natural in the sense that
strictly counting the quantity of objects is something that occurs naturally; for
instance, when counting the number of apples one has where one can start with
zero apples and add apples by picking them one by one.

Integers. Expanding on the natural numbers are the integers, denoted by
Z. The integers are a number system combining the natural numbers with the
negative numbers, being the sequence . . . ,−5,−4,−3,−2,−1, together forming
the sequence . . . ,−2,−1, 0, 1, 2, . . . called the integers. In terms of intuitiveness,
these numbers can cause confusion, as is briefly explained by [EHHKMNPR91]
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when discussing numbers from a historical point of view of ancient Greece.
However, returning to the example of counting apples, one can imagine with
some logical leeway that if you owe someone an apple, you currently have a
negative number of apples, even though it is not necessarily possible to have a
negative number of any physical object per se.

Rational numbers. The following number system, called the rational num-
bers, is denoted by Q and is the set of numbers that can be written in the form
a
b where a, b ∈ Z and b ̸= 0. This number system can, again, be motivated in a
rather intuitive way if one disregards philosophical ideas of what constitutes as
a whole of something. Once more using an example involving apples, one can
cut an apple in half and count one of the halves as 1

2 of an apple, or in three
equal parts and call one part 1

3 of an apple.
Real numbers. Lastly in this section, there are the real numbers which are

denoted by R. This set of numbers contains the rational numbers and the irra-
tional numbers; irrational numbers being all numbers with continuous decimals
that cannot be expressed as a

b . Some well known examples of these numbers are

π, e and
√
2. Considering that the number of decimals that these numbers have

is infinite, they appear to be as intuitive as the concept of infinity. However,
unlike infinity, these numbers can always find themselves between two rational
numbers. For instance, it has been proved that the number π is irrational, that
is, it has an infinite number of decimals and is equal to 3.1415 . . . . Thus, it is
possible to create intervals which contain π. Crude examples are the intervals
3 < x < 4 and 3.14 < x < 3.15. It becomes evident here that it is possible to
approximate these numbers by adding more decimals to the intervals, leading
to these numbers being approximated by rational numbers. This approximation
becomes especially noticeable the more decimals an approximated number has
as the smallest decimals might become negligible in certain applications.

Hopefully, what has hitherto been shown is that, while some leeway may be
needed to make these numbers appear intuitive, there are arguments that could
be made for these number systems to appear intuitive to the human mind.
Additionally, while it might be evident, it is important to note that starting
with the natural numbers, each set of number systems discussed is a subset of
a different set of number systems such that

N ⊂ Z ⊂ Q ⊂ R

is true.
Finally, it should also be noted that each of these number systems can be

illustrated using a number system with each succeeding number system being
able to illustrate more numbers on the number line with R spanning the entire
number line.

2.2 Complex numbers

Given what has previously been presented, one might assume that there are
no number systems beyond the reals as the reals cover the entire number line.
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However, following the reals, are the complex numbers, denoted by C. Before
explaining how the complex numbers belong to the number systems, it is bene-
ficial to first define these numbers. This section of the text will mostly draw on
definitions and discussions from [MS20] and [EHHKMNPR91].

Definition 1. A complex number is an expression on the form a + ib where
a, b ∈ R and i is a formal symbol. The set of all complex numbers is denoted
by C and is equipped with addition, multiplication and multiplication by a real
scalar c as defined by

(a1 + ib1) + (a2 + ib2) = (a1 + a2) + i(b1 + b2) (1)

(a1 + ib1)(a2 + ib2) = (a1a2 − b1b2) + i(a1b2 + a2b1) (2)

c · (a+ ib) = (ca1 + icb1). (3)

Operations 1 and 3 appear to follow the natural addition and multiplication
found in real numbers. Operation 2, however, seems to significantly differ from
multiplication found in the real numbers. Using the natural operations, one can
observe that if the equation in 2 is to hold, then

(a1 + ib1)(a2 + ib2) = a1a2 + i(a1b2 + a2b1) + i2b1b2

= a1a2 + i(a1b2 + a2b1)− b1b2

= (a1a2 − b1b2) + i(a1b2 + a2b1)

which suggests that i2 = −1.
As might have been observed by the reader, a complex number z = a + ib

consists of two parts, the real part denoted by Re(z) which equals a, and the
imaginary part Im(z) which equals b. In other words, if z = a+ib then Re(z) =
a and Im(z) = b. The complex numbers thus consist of the real numbers and
imaginary numbers, just as the previous sets of the number systems contain
other sets, but one difference here is that the arbitrary complex number z = a+ib
with a, b ̸= 0 is neither a real nor an imaginary number, it is a complex number.
In other words, it follows that

N ⊂ Z ⊂ Q ⊂ R ⊂ C.

Additionally, for an arbitrary complex number z = a+ib, there exists a complex
conjugate, denoted by z or sometimes z∗, of said number with z = a − ib. In
other words, the complex conjugate of a complex number is the complex number
but with its imaginary part having the opposite sign.

Complex numbers as pairs of real numbers. Now that complex numbers
have been introduced, one might ask where on the number line the imaginary
unit i belongs, and the answer is: nowhere. Real numbers can be viewed as
one dimensional numbers geometrically residing only on the number line. The
complex numbers, on the other hand, can be viewed as two dimensional num-
bers, meaning that they geometrically exist in the complex plane with one axis
denoting the real numbers, i.e Re(z) of all complex numbers z, and one axis de-
noting the imaginary numbers, i.e Im(z) of all complex numbers z. Given this,
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complex numbers can be viewed as pairs of real numbers representing points
on the complex plane. As such, one can see that if complex numbers can be
represented geometrically as points in the complex plane with one coordinate
corresponding to the real axis and the other to the imaginary axis, complex
numbers z = a+ ib can be represented as z = (a, b) with Re(z) = Re((a, b)) = a
and Im(z) = Im((a, b)) = b. Additionally, one can see that when represented
this way, the unit element e such that e · z = z is 1 ≡ (1, 0) and if the property
i2 = −1 = −e is to hold for i ≡ (0, 1) then (0, 1) needs to have the property
that (0, 1)2 = (−1, 0) = −e.

Theorem 1. Representing complex numbers z = a+ ib as the ordered pairs of
real numbers z = (a, b) with the unit element e = (1, 0) such that e · z = z and
(0, 1) with the property that (0, 1)2 = (−1, 0) = −e, the map f:C → {(a, b) ∈ R2}
is bijective and satisfies

f(z1 + z2) = f(z1) + f(z2)

f(cz1) = c · f(z1)
f(z1z2) = f(z1)f(z2)

for all z1, z2 ∈ C and c ∈ R.

Proof. It can be seen in addition and multiplication by a real scalar that ordinary
laws hold and thus

f((a1 + ib1) + (a2 + ib2)) = (a1 + a2, b1 + b2)

= (a1, b1) + (a2, b2)

= f(a1 + ib1) + f(a2 + ib2)

and

f(c(a1 + ib1)) = (ca1, cb1)

= c(a1, b1)

= c · f(a1 + ib1)

act like operations on vectors. Using the properties e = (1, 0) and (0, 1) =
(−1, 0) = −e as well as the addition and multiplication by a scalar used above,
one can show that

f(a1 + ib2)f(a2 + ib2) = (a1, b1)(a2, b2)

= (a1(1, 0) + b1(0, 1))(a2(1, 0) + b2(0, 1))

= a1a2(1, 0) + (a1b2 + a2b1)(0, 1) + b1b2(0, 1)
2

= (a1a2 − b1b2)(1, 0) + (a1b2 + a2b1)(0, 1)

= (a1a2 − b1b2, a1b2 + a2b1)

= f((a1a2 − b1b2) + i(a1b2 + a2b1))

= f((a1 + ib1)(a2 + ib2)).
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While the map in Theorem 1 is bijective and satisfies the presented opera-
tions given the special property of (0, 1), it appears artificial when compared to
ordinary vector operations. Additionally, using this representation of complex
numbers is not advised when calculating as it is unnecessarily cumbersome; the
aim of this representation is simply to show the reader that complex numbers
can be represented geometrically as ordered pairs of real numbers in the complex
plane.

Dimensions and rotation. Knowing that the complex numbers can be viewed
and represented in different ways, it becomes easier to describe them in a geo-
metrical and somewhat more intuitive way. For some arbitrary number x ∈ R,
if x ·i = xi then that number is rotated by π

2 counterclockwise from the real axis
to the imaginary axis, if then xi · i, it is again rotated by π

2 counterclockwise
back to the real axis but now being the negative number −x. So while the prop-
erty i2 = −1 is hard to understand in the one dimensional set R because i /∈ R,
considering that C is a two dimensional plane, it becomes easier to understand
the property i2 = −1 simply as a reflection or rotation by π.

Polar form. Seeing how complex numbers can be viewed in the plane and
to some extent be represented through rotation, it is also beneficial to explore
the polar form representation of complex numbers.

Theorem 2. A complex number z = a+ ib has the polar form z = |z| (cos(θ) +
i sin(θ)) with Re(z) = cos(θ), Im(z) = sin(θ), |z| =

√
a2 + b2 and arg(z) = θ

being the angle between the positive real axis and the line going through the origin
and the point representing the complex number.

Proof. The arbitrary complex number z = a + ib can geometrically be repre-
sented by the point z = (a, b) in the complex plane. Given this, one can draw
a line with length r starting at the origin and ending at the point z. One can
then form a right triangle with the hypotenuse r, height b, base a and angle θ
between the line r and the positive real axis. The Pythagorean theorem then
states that r2 = a2 + b2, meaning that r =

√
a2 + b2. Using the trigonometric

ratios one has

cos (θ) =
a

r
⇒ r · cos (θ) = a

sin (θ) =
b

r
⇒ r · sin (θ) = b.

Now, one can substitute a and b in z with the expressions above to get

z = a+ ib

= r · cos (θ) + i(r · sin θ)
= r(cos (θ) + i sin (θ)).

Finally, because r =
√
a2 + b2 = |z| it is clear that

z = a+ ib

= r(cos (θ) + i sin (θ))

= |z| (cos (θ) + i sin (θ)).
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It is important to note that when viewing the complex numbers in polar
form, multiplication follows multiplication theorems and identities of trigono-
metric functions. Multiplication of the two complex numbers z1 = |z1| (cos(θ1)+
i sin(θ1)) and z2 = |z2| (cos(θ2)+i sin(θ2)) can thus be described by the following
formula by applying the compound angle identity

z1z2 = |z1||z2|
(
cos(θ1) cos(θ2)− sin(θ1) sin(θ2)

+ i(cos(θ1) sin(θ2) + cos(θ2) sin(θ1))
)

= |z1||z2| (cos(θ1 + θ2) + i sin(θ1 + θ2))

which in problems containing many multiplications of complex numbers seems
easier to calculate.

Matrix form. Complex numbers can, thus, be represented in polar form by
using trigonometric functions and multiplication with complex numbers is tied
to rotation in the complex plane. A mathematical object that seems similar to
this is the following 2× 2 rotation matrix multiplied with the positive scalar r

r

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

What this matrix does is rotate a point by θ counterclockwise. It is worth noting
that using matrix operations, this matrix can be written as

r
(
cos(θ)

(
1 0
0 1

)
+ sin(θ)

(
0 −1
1 0

))
.

As can be seen here, the above expression is very similar to the complex number
z written in polar form

z = |z| (cos(θ) + i sin(θ)).

By setting r = |z| = 1 and acknowledging that cos(θ) · 1 = cos(θ) with 1 being
the unit element in complex numbers such that z ·1 = z for all complex numbers
z and the identity matrix

I2×2 =

(
1 0
0 1

)

having the property that AI2×2 = A for any 2 × 2 matrix A, one can see that
1 ≡ I2×2 in this expression. Additionally, if θ = π

2 , the complex number and
rotation matrix equal

z = i and

(
0 −1
1 0

)
respectively.

If one now assumes that

i ≡
(
0 −1
1 0

)
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which might be suggested by how both of these objects transform the points in
the two dimensional plane, one could represent imaginary numbers as matrices.
Additionally, the matrix above has the property that when squared it equals
−I2×2 which is essentially a translation of the i2 = −1 property. Moreover, with
the above comparison one could then represent the complex number z = a+ ib
as

z =

(
a −b
b a

)
.

However, to prove that this is the case, it remains to verify whether complex
numbers and their operations map onto matrices of this type.

Theorem 3. The map f:C →
{(

a −b
b a

)
∈ M2(R)

∣∣∣∣∣a, b ∈ R

}
is bijective and

satisfies

f(z1 + z2) = f(z1) + f(z2)

f(z1z2) = f(z1)f(z2)

f(cz) = c · f(z)
f(z∗) = f(z)T

for all z, z1, z2 ∈ C and c ∈ R.

Proof. Starting with addition, it follows that

f((a1 + ib1) + (a2 + ib2)) =

(
a1 + a2 −(b1 + b2)
b1 + b2 a1 + a2

)

=

(
a1 −b1
b1 a1

)
+

(
a2 −b2
b2 a2

)

= f(a1 + ib1) + f(a2 + ib2).

Additionally, it is clear that the same applies to multiplication

f(a1 + ib1)f(a2 + ib2) =

(
a1 −b1
b1 a1

)(
a2 −b2
b2 a2

)

=

(
a1a2 − b1b2 −(a1b2 + b1a2)
a1b2 + b1a2 a1a2 − b1b2

)

= f((a1a2 − b1b2) + i(a1b2 + b1a2))

= f((a1 + ib1)(a2 + ib2))
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as well as scalar multiplication with c ∈ R

c · f(a+ ib) = c

(
a −b
b a

)

=

(
ca −cb
cb ca

)

= f(ca+ icb)

= f(c(a+ ib)).

Finally, as can be derived from the above as well as matrix operations, it becomes
apparent that

f((a+ ib)∗) = f(a− ib)

=

(
a b
−b a

)

=

(
a −b
b a

)T

= f(a+ ib)T .

Thus, as has been illustrated, while the complex numbers may seem unnat-
ural and counter-intuitive, they can be expressed and viewed in many different
ways. It is true that imaginary and complex numbers are confusing when viewed
in relation to the number line, but that is because doing so, while it might ap-
pear natural, is incorrect because a complex number z = a+ ib with b ̸= 0 is in
the complex plane, not on the number line. However, as has been shown, the
complex numbers can be viewed and expressed as pairs of real numbers, points
in a plane and real matrices. Complex and imaginary numbers can also be used
to describe the rotation in the plane, similar to rotation matrices.

2.3 Quaternions

Considering how the complex numbers can be motivated and represented as
objects in the two dimensional space. This suggests that there might be numbers
that can, in a similar way, be motivated and represented as objects in spaces of
higher dimensions. This, in fact, happens to indeed be the case. Following the
complex numbers are the quaternions and this section of the text will mostly
draw on [K99]

Definition 2. A quaternion is a number that can be written as the expression
a+ib+jc+kd where a, b, c, d ∈ R and the rule i2 = j2 = k2 = ijk = −1 applies.

Within number systems, the set containing all quaternions is denoted by
H. Addition of quaternions and multiplication with a real scalar as operations
do not differ much from how they are treated in previously discussed number
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systems. That is, for the two quaternions q = q0 + iq1 + jq2 + kq3 and p =
p0 + ip1 + jp2 + kp3 and real scalar c, addition and multiplication by a real
scalar are defined as

cq = cq0 + icq1 + jcq2 + kcq3

q + p = q0 + p0 + i(q1 + p1) + j(q2 + p2) + k(q3 + p3)

and addition is also associative and commutative.
Quaternion multiplication. However, quaternion multiplication differs quite

substantially from multiplication discussed in previous sections. Quaternion
multiplication is associative and distributive but it is generally not commutative
meaning that in general for the quaternions q and p, one has qp ̸= pq. This can
be derived from the defining equations for the quaternion, namely ijk = −1.
Multiplying this identity by −k from the right, we obtain ij = k. On the other
hand, using this identitiy, we find that

ji = 1 · ji = (−k)(ij)ji = −k(−1)2 = −k.

From here it is possible to continue multiplying in similar ways to describe
all possible products of the elements i, j, k in the quaternions, but it is also
possible to use substitution instead to find the same identities. The following
lemma shows a table containing the possible combinations.

Lemma 1. Through the rule i2 = j2 = k2 = ijk = −1 the factors i, j and k
in ijk = −1 can be expressed as a product of the remaining two factors. All
possible combinations are shown in the table below with the rows being the first
factor and columns being the second factor.

· 1 i j k
1 1 i j k
i i -1 k -j
j j -k -1 i
k k j -i -1

. (4)

Proof. First, 1 is the multiplicative unit element e in quternions such that, for
all quaternions q one has e · q = q meaning that the second row and column are
automatically filled out by the first row and column respectively. Second, the
main diagonal corresponds to the i2 = j2 = k2 = −1 part of the rule and is thus
also automatically filled out. Last, using the rule i2 = j2 = k2 = ijk = −1,
it is possible to multiply the equation ijk = −1 by k from both sides to get
ijk2 = −k which is equivalent to ij = k. From here one can use substitution to
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obtain the remaining products

ij = k

ik = i(ij) = −j

jk = (−ik)k = i

ji = j(jk) = −k

ki = (−ji)i = j

kj = (ij)j = −i.

Theorem 4. For two arbitrary quaternions q = q0 + iq1 + jq2 + kq3 and p =
p0 + ip1 + jp2 + kp3 the general formula for quaternion multiplication is

qp =(q0 + iq1 + jq2 + kq3)(p0 + ip1 + jp2 + kp3)

=q0p0 + iq0p1 + jq0p2 + kq0p3

+ iq1p0 − q1p1 + kq1p2 − jq1p3

+ jq2p0 − kq2p1 − q2p2 + iq2p3

+ kq3p0 + jq3p1 − iq3p2 − q3p3.

(5)

The above formula can be derived from the distributive property of quater-
nions. Additionally, the non-commutativity of quaternion multiplication can be
recovered by comparing Equation 5 to

pq =(p0 + ip1 + jp2 + kp3)(q0 + iq1 + jq2 + kq3)

=q0p0 + iq0p1 + jq0p2 + kq0p3

+ iq1p0 − q1p1 − kq1p2 + jq1p3

+ jq2p0 + kq2p1 − q2p2 − iq2p3

+ kq3p0 − jq3p1 + iq3p2 − q3p3

which further indicates that, in general, qp ̸= pq.
Conjugate and inverse. Similarly to the complex numbers, a quaternion

q = q0 + iq1 + jq2 + kq3 can be represented as consisting of two parts, the real
part q0 and the vector part iq1+jq2+kq3, a quaternion whose real part is equal
to zero is called a pure quaternion. The conjugate of a quaternion q is denoted
by q∗ and q∗ = q0−iq1−jq2−kq3, that is, the conjugate of a quaternion is itself
but with a vector part containing opposite signs. Given this, while relatively
tedious, it is easy to show that

qq∗ = q∗q = q20 + q21 + q22 + q23 (6)

q + q∗ = 2q0 = 2Re(q) (7)

√
q∗q = |q| =

√
q20 + q21 + q22 + q23 (8)
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using quaternion multiplication. Using quaternion multiplication, it is also fairly
easy to show that

(qp)∗ = p∗q∗ (9)

Additionally, non-zero quaternions have an inverse q−1 such that

qq−1 = q−1q = 1.

Specifically, using the property in Equation 6, the inverse of an arbitrary quater-
nion q can be described by

q−1qq∗ = q∗qq−1 = q∗

⇒ q−1 =
q∗

|q|2

with the special case of q−1 = q∗ when |q|2 = 1, that is, when dealing with a
quaternion of length 1, or, in other words, a unit quaternion.

4-tuple representation. As was the case with complex numbers, quaternions
can be represented as vectors or points in a space. However, it is vital to note
that, while there may be some similarities in representing complex numbers
as points in space and representing quaternions as points in space, complex
numbers are 2-tuples and quaternions are 4-tuples which makes the two number
systems vastly differ.

Theorem 5. Quaternions q = a+ ib+ jc+ kd can be written in the form q =
(a, b, c, d) in the set R4 of all ordered 4-tuples of real numbers. When represented
in this form, the two quaternions q = q0+ q1+ q2+ q3 and p = p0+ p1+ p2+ p3
have addition, multiplication and multiplication by a real scalar c defined as

q + p = (q0 + p0, q1 + p1, q2 + p2, q3 + p3)

cq = (cq0, cq1, cq2, cq3)

qp = (q0p0 − q1p1 − q2p2 − q3p3,

q0p1 + q1p0 + q2p3 − q3p2, (10)

q0p2 − q1p3 + q2p0 + q3p1,

q0p3 + q1p2 − q2p1 + q3p0).

Matrix representation. Similarly to the complex numbers, quaternions can
be represented using matrices with all real values. One such matrix, namely a
4× 4 matrix can be obtained by commuting the terms in Equation 10:

qp = (q0p0 − q1p1 − q2p2 − q3p3,

q1p0 + q0p1 − q3p2 + q2p3,

q2p0 + q3p1 + q0p2 − q1p3,

q3p0 − q2p1 + q1p2 + q0p3)
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and from here it is clear that the expression visually resembles that of the matrix
multiplication




q0p0 −q1p1 −q2p2 −q3p3
q1p0 q0p1 −q3p2 q2p3
q2p0 q3p1 q0p2 −q1p3
q3p0 −q2p1 q1p2 q0p3


 =




q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0







p0
p1
p2
p3


 .

Theorem 6. The map f:H →








a −b −c −d
b a −d c
c d a −b
d −c b a


 ∈ M4(R)

∣∣∣∣∣∣∣∣
a, b, c, d ∈ R





is bijective and satisfies

f(q + p) = f(q) + f(p)

f(qp) = f(q)f(p)

f(sq) = s · f(q)
f(q∗) = f(q)T

for all q, p ∈ H and s ∈ R.

While tedious, the reader can, using matrix operations, examine that the
matrix representation satisfies these operations. This is essentially having the
same result as the bijection of complex numbers onto a set of 2×2 real matrices.

Rotation. Similarly to how the complex numbers could be used to describe
rotations, quaternions can also be used to describe rotation. However, while
complex numbers are 2-tuples describing rotation in the plane, quaternions are
4-tuples that can be used to describe rotations in three dimensional space. As
has been shown, quaternions can be represented as vectors with four coordinate
values, however, if the real part of a quaternion is set to 0, that is, when dealing
with pure quaternions, it can be treated as a vector with three coordinates.
Geometrically such a vector can be represented in a complex room in three
dimensional space with the three axes corresponding to i, j and k. Thus, a
pure quaternion v = iv1 + jv2 + kv3 can geometrically be represented as a
vector in the three dimensional space being v1 units along the i-axis, v2 units
along the j-axis, and v3 units along the k-axis. Since quaternions can be used to
represent rotation in the three dimensional space, there should exist quaternions
that, when multiplied with, rotate the vector around some axis in the three
dimensional space. However, by multiplying an arbitrary quaternion q = q0 +
iq1 + jq2 + kq3 with v one gets

qv = (q0, q1, q2, q3)(0, v1, v2, v3)

= (− q1v1 − q2v2 − q3v3,

q1v1 + q2v3 − q3v2,

q0v2 − q1v3 + q3v1,

q0v3 + q1v2 − q2v1)
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which is generally no longer a pure quaternion. However, by then multiplying
with q∗ from the right side, the real part of the new quaternion cancels out and
the resulting quaternion qvq∗ is a pure quaternion. Thus, if v is treated as a
vector in three dimensional space, it has now been transformed into another
vector qvq∗ in three dimensional space by the double quaternion multiplication.

Theorem 7. For the arbitrary quaternion q = q0 + q1 + q2 + q3 and pure
quaternion v = v1 + v1 + v3 the product of the multiplication qvq∗ is a pure
quaternion. That is, Re(qvq∗) = 0 if Re(v) = 0.

Proof. By using the distributive property of quaternions and the Equations 6,
7 and 9, one can show that

2Re(qvq∗) = qvq∗ + (qvq∗)∗ = qvq∗ + q∗∗v∗q∗

= qvq∗ + qv∗q∗ = q(v + v∗)q∗

= q(2Re(v))q∗ = 0.

Because it is very tedious to perform the qvq∗ multiplication, it is useful to
have a general formula for the quaternion resulting from the multiplication.

Lemma 2. The quaternion w = qvq∗ with q = q0 + iq1 + jq2 + kq3, v =
iv1 + jv2 + kv3 and |q| = 1 can be obtained from the formula

w = qvq∗ =i((2q20 − 1 + 2q21)v1 + (2q1q2 − 2q0q3)v2 + (2q1q3 + 2q0q2)v3)

+ j((2q1q2 + 2q0q3)v1 + (2q20 − 1 + 2q22)v2 + (2q2q3 − 2q0q1)v3)

+ k((2q1q3 − 2q0q2)v1 + (2q2q3 + 2q0q1)v2 + (2q20 − 1 + 2q23)v3).

Because the calculation needed to arrive at the product above is relatively
easy but extremely tedious, no proof will be presented. However, a sketch of a
proof will now follow.

Sketch of a proof. To facilitate the calculations needed for this proof, one can
perform the needed operations in steps. First, to arrive at the product of qvq∗

one can calculate qv by following the general formula for quaternion multipli-
cation as shown in Theorem 4 and then using the distributive and associative
laws, one can group all real terms and all terms containing i, j and k to get

qv =(q0 + q1 + q2 + q3)(0 + v1 + v2 + v3)

= x0 + ix1 + jx2 + kx3

= −q1v1 − q2v2 − q3v3 (11)

+ i(q1v1 + q2v3 − q3v2) (12)

+ j(q0v2 − q1v3 + q3v1) (13)

+ k(q0v3 + q1v2 − q2v1) (14)

17



with x0, x1, x2 and x3 being equal to the expressions in 11, 12, 13 and 14
respectively. One can then, similarly, perform the multiplication

qv · q∗ = (x0 + ix1 + jx2 + kx3)(q0 − iq1 − jq2 − kq3)

= x0q0 + x1q1 + x2q2 + x3q3

+ i(x1q0 − x0q1 + x3q2 − x2q3)

+ j(x2q0 − x3q1 − x0q2 + x1q3)

+ k(x3q0 + x2q1 − x1q2 − x0q3).

At this point one can simply calculate each term independently and then com-
bine all terms.

Angle and directional vector. Additionally, to facilitate the intuition of ro-
tating in three dimensional space by completing the double quaternion multi-
plication discussed above, if q is set to be a unit quaternion, that is |q| = 1, then
it becomes clear that there is a relationship between

q = q20 + (q21 + q22 + q23) = 1

and

cos2 θ + sin2 θ = 1

where there exists an angle θ such that

cos2 θ = q20

and

sin2 θ = (q21 + q22 + q23).

However, because θ exists in an infinite domain, it can be defined uniquely by
restricting its domain to −π < θ ≤ π. One can then also see that

cos θ = q0

and

sin θ =
√

(q21 + q22 + q23)

for some angle θ. Furthermore, in order to effectively be able to use the rela-
tionship above, it would be beneficial if one could write a quaternion q in terms
of trigonometric functions. This is possible by noting that for a unit quaternion
q

q = q0 + iq1 + jq2 + kq3

= cos θ +
(iq1 + jq2 + kq)

sin θ
sin θ

= cos θ +
(iq1 + jq2 + kq)√
(q21 + q22 + q23)

sin θ.

18



Theorem 8. A quaternion q = q0+iq1+jq2+kq3 with |q| = 1 can be represented
in its polar form as

q = cos θ + sin θ · u

where

u =
(iq1 + jq2 + kq)√
(q21 + q22 + q23)

.

The unit quaternion above can be represented by the angle θ and the unit
vector u. Subsequently, when using this unit quaternion to rotate an arbitrary
pure quaternion, the rotation can be understood as being the rotation around an
axis with the same direction as the vector u by an angle of 2θ. It has previously
been shown that when multiplying a pure quaternion by only one quaternion,
the product was generally no longer a pure quaterion. However, the resulting
quaternion would still have rotated by θ around u. Thus, when performing the
second multiplication by the conjugate of q, the real part cancels out while the
vector is rotated once more. In other words, since the quaternion multiplication
happens twice, in order to not transform the pure quaternion into a quaternion
whose real part is not equal to zero, the vector representing the pure quaternion
is rotated by θ twice.

To further illustrate that the operation qvq∗ can in fact be seen as a rotation
in the three dimensional space, one can, by looking at the quaternion w in
Lemma 2, see that the product qvq∗ for an arbitrary unit quaternion q and pure
quaternion v resembles and can be represented by the matrix transformation

Qv =



2(q20 + q21)− 1 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) 2(q20 + q22)− 1 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) 2(q20 + q23)− 1






v1
v2
v3


 .

In other words, it follows that w = qvq∗ = Qv. However, it remains to test
whether this matrix transformation is a rotation by acknowledging that a rota-
tion matrix Qnxn is a rotation matrix if and only if QTQ = I and det(Q) = 1.

Lemma 3. The matrix

Q =



2(q20 + q21)− 1 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) 2(q20 + q22)− 1 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) 2(q20 + q23)− 1




is a rotation matrix in three dimensional space representing the rotation per-
formed on the pure quaternion v in qvq∗.

The proof of this lemma consists of a long calculation, making use of the
fact that |q| = 1 in order to simplify expressions at key moments. The following
sketch aims to demonstrate the principle of how a proof to Lemma 3 can be
obtained by presenting the calculations for (QTQ)11 and (QTQ)12 as well as
det(Q).
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Sketch of a proof. If Q is a rotation matrix then QTQ = I and det(Q) = 1.
Starting with (QTQ)11 one has

(QTQ)11 =(2(q20 + q21)− 1)2 + (2(q1q2 + q0q3))
2 + (2(q1q3 − q0q2))

2

=4(q20q
2
0 + 2q20q

2
1 + q21q

2
1)− 4(q20 + q21) + 1

+ 4(q21q
2
2 + 2q0q1q2q3 + q20q

2
3)

+ 4(q21q
2
3 − 2q0q1q2q3 + q20q

2
2)

=4(q20q
2
0 + q21q

2
1 + 2q20q

2
1 + q20q

2
2 + q20q

2
3 + q21q

2
2 + q21q

2
3 − q20 − q21) + 1

=4(q20q
2
0 + q21q

2
1q

2
0(1− q20) + q21(1− q21)− q20 − q21) + 1

=4(q40 + q41 + q20 − q40 + q21 − q41 − q20 − q21) + 1

=1.

Subsequently, one can show that

(QTQ)12 =(2(q20 + q21)− 1) · 2(q1q2 − q0q3)

+ 2(q1q2 + q0q3)(2(q
2
0 + q22)− 1)

+ 2(q1q3 − q0q2) · 2(q2q3 + q0q1)

=4(q20q1q2 − q20q0q3 + q21q1q2 − q21q0q3)− 2(q1q2 − q0q3)

+ 4(q20q1q2 + q20q0q3 + q22q0q3 + q22q1q2)− 2(q1q2 + q0q3)

+ 4(q23q1q2 + q21q0q3 − q22q0q3 − q20q1q2)

=4(q21q1q2 + q22q1q2 + q20q1q2 + q23q1q2)− 4q1q2

=4(q1q2(q
2
0 + q21 + q22 + q23)− q1q2)

=0.

Similar calculations can be done for the remaining positions of the resulting
matrix QTQ leading to QTQ = I with I being the identity matrix. Next, it is
also necessary to show that det(Q) = 1. Because the calculations are very long,
this will be done in segments by noting that

det(Q) =a+ b+ c

=(2(q20 + q21)− 1)

∣∣∣∣
2(q20 + q22)− 1 2(q2q3 − q0q1)
2(q2q3 + q0q1) 2(q20 + q23)− 1

∣∣∣∣ (15)

− 2(q1q2 − q0q3)

∣∣∣∣
2(q1q2 + q0q3) 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q20q

2
3)− 1

∣∣∣∣ (16)

+ 2(q1q3 + q0q2)

∣∣∣∣
2(q1q2 + q0q3) 2(q20q

2
2)− 1

2(q1q3 − q0q2) 2(q2q3 + q0q1)

∣∣∣∣ (17)

with a, b and c being equal to the expressions in 15, 16 and 17 respectively.
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Starting with the expression in 15, one has

a =(2(q20 + q21)− 1)

· ((2(q20 + q22)− 1)(2(q20 + q23)− 1)− 2(q2q3 − q0q1) · 2(q2q3 + q0q1))

=(2(q20 + q21)− 1)

· (4(q20q20 + q20q
2
3 + q20q

2
2 + q22q

2
3)− 2(q20 + q22)− 2(q20 + q23) + 1

− 4(q22q
2
3 + q0q1q2q3 − q0q1q2q3 − q20q

2
1))

=(2(q20 + q21)− 1)

· (−2(q22 + q23) + 1)

=− 4(q20q
2
2 + q20q

2
3 + q21q

2
2 + q21q

2
3) + 2(q20 + q21 + q22 + q23)− 1

=− 4(q20q
2
2 + q20q

2
3 + q21q

2
2 + q21q

2
3) + 1

=4(−q20q
2
2 − q20q

2
3 − q21q

2
2 − q21q

2
3) + 1.

For the expression in 16, one has

b =− 2(q1q2 − q0q3)

· (2(q1q2 + q0q3)(2(q
2
0 + q23)− 1)− 2(q2q3 − q0q1) · 2(q1q3 − q0q2))

=− 2(q1q2 − q0q3)

· (4(q20q1q2 + q20q0q3 + q23q1q2 + q23q0q3)− 2(q1q2 + q0q3)

− 4(q23q1q2 − q22q0q3 − q21q0q3 + q20q1q2))

=− 2(q1q2 − q0q3)

· (4(q20q0q3 + q21q0q3 + q22q0q3 + q23q0q3)− 2(q1q2 + q0q3))

=− 2(q1q2 − q0q3)(4q0q3 − 2(q1q2 + q0q3))

=− 8(q0q1q2q3 − q20q
2
3) + 4(q21q

2
2 + q0q1q2q3 − q0q1q2q3 − q20q

2
3)

=8(q20q
2
3 − q0q1q2q3) + 4(q21q

2
2 − q20q

2
3).

For the expression in 17, one has

c =2(q1q3 + q0q2)

· (2(q1q2 + q0q3) · 2(q2q3 + q0q1)− (2(q20 + q22)− 1) · 2(q1q3 − q0q2))

=2(q1q3 + q0q2)

· (4(q22q1q3 + q21q0q2 + q23q0q2 + q20q1q3)

− 4(q20q1q3 − q20q0q2 + q22q1q3 − q22q0q2) + 2(q1q3 − q0q2))

=2(q1q3 + q0q2)

· (4q0q2(q20 + q21 + q22 + q23) + 2(q1q3 − q0q2))

=2(q1q3 + q0q2)(4q0q2 + 2(q1q3 − q0q2))

=8(q0q1q2q3 + q20q
2
2) + 4(q21q

2
3 − q0q1q2q3 + q0q1q2q3 − q20q

2
2)

=8(q0q1q2q3 + q20q
2
2) + 4(q21q

2
3 − q20q

2
2).
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Now all that remains is to calculate det(Q).

det(Q) =a+ b+ c

=4(−q20q
2
2 − q20q

2
3 − q22q

2
2 − q21q

2
3) + 1

+ 8(q20q
2
3 − q0q1q2q3) + 4(q21q

2
2 − q20q

2
3)

+ 8(q0q1q2q3 + q20q
2
2) + 4(q21q

2
3 − q20q

2
2)

=1.

While the loss of commutativity in quaternions and the idea that quater-
nions are a 4-tuple that can be used to describe rotations in three dimensions
might appear artificial and counterintuitive at first, quaternions can be rep-
resented in terms of mathematical objects with real values. Furthermore, the
non-commutativity property of a mathematical object that can be used to de-
scribe three dimensional rotation should appear natural and intuitive not when
compared to the preceding number systems but rather in conjunction with how
three dimensional rotation can be described in the real world. For instance,
if a book is rotated by 90◦ around some axis and then 90◦ around another
axis orthogonal to the first while a different book is first rotated by 90◦ along
the second axis and then 90◦ along the first axis. These two books, starting
with the same orientation will not be parallel after the rotations have been per-
formed. This property of general non-commutativity can be observed in other
mathematical objects describing three dimensional rotation as well, for instance
rotation matrices.

2.4 Number systems of higher dimensions

If viewing the aforementioned number systems as sets in domains of different
dimensions, it becomes interesting to consider whether there are number sys-
tems beyond quaternions and if there is a limit to how many number systems
there are. By using the Cayley-Dickson construction, it is possible to produce
an infinite number of number systems[Wiki1]. However, by carrying out the
Cayley-Dickson construction, the newly produced number systems lose certain
properties; the complex numbers lose order, quaternions, as has been discussed,
lose commutativity, the succeeding number system octonions lose associativity,
following the octonions are the sedenions which together with the all subsequent
number systems produced by the Cayley-Dickson construction lose alternativity.

3 History of complex numbers and quaternions

This section of the text aims to briefly deal with the historical background to
the invention of complex numbers and quaternions. As such, motivations for
the invention of these mathematical objects as well as some words on intuition
will be presented as accounted for in the literature used.
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3.1 Complex numbers

This subsection will draw on discussions in [EHHKMNPR91] and [M06] when
presenting the historical background to complex numbers.

It is said that a problem that mathematicians of the 16th century tried to
find a solution to is the general cubic equation

x3 + ax2 + bx+ c = 0.

According to [M06], the Italian mathematician and professor Scipione del Ferro
first discovered the solution to solving the cubic equation. Subsequently, on his
deathbed, del Ferro passed down this solution to his pupil who in turn challenged
Italian mathematician Niccolò Fontana Tartaglia to a mathematical contest in
which Tartaglia was challeneged to solve cubic equations with imaginary roots.
Tartaglia discovered the formula for solving cubic equations and won the con-
test. He then told the formula to mathematician Gerolamo Cardano who later
published the solution.

As is stated in [EHHKMNPR91], while Cardano was already exploring com-
plex numbers in his book, he still seemed to not entirely grasp how these numbers
behave and as such, he incorrectly wrote in his book that the equation

x(10− x) = 40

has the two solutions

x = 5±
√
−15

suggesting that while he was working with complex numbers, he possibly still
struggled and thus made such incorrect statements. He then later in his book
provides his formula

x = 3

√
q

2
+
√
d+ 3

√
q

2
−

√
d with d =

q

2

2
− p

3

3

to the equation x3 = px+ q.
Thus, it can be seen that the discovery of the complex numbers, while not

necessarily yet as developed as the number system is in contemporary mathe-
mathics, occured as a result of trying to solve the general cubic equation. They
are also, as is well known, used to solve quadratic equations such as x2 = −1.
However, [EHHKMNPR91] write that complex numbers were still, for a long
time, used incorrectly and they were also largely considered to not be useful and
thus not treated equally to other mathematical objects. This reputation started
changing when mathematicians started representing complex numbers geomet-
rically as the numbers on the axis of a plane. Subsequently, the French mathe-
matician Augustin-Louis Cauchy expressed complex numbers as ”any symbolic
expression of the form a + b

√
−1, where a, b denote two real quantities” (as

translated from French by [EHHKMNPR91]) giving the complex numbers a
purely algebraic interpretation. Furthermore, to completely seal the geometri-
cal representation of complex numbers, Irish mathematician Sir William Rowan
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Hamilton formally defined the complex numbers as represented as an ordered
pair of real numbers equipped with addition and multiplication such that the
associative, commutative and distribute laws hold.

3.2 Quaternions

It is explained in [EHHKMNPR91] that Hamilton who defined complex numbers
as pairs of real numbers in the plane R2 became interested in discovering whether
a number system in the three dimensional room R3 equipped with operations
analogous to those of the complex numbers could exist. He first tried with
a+ ib+ jc equipped with the rule i2 = j2 = −1. To test whether such a system
could work, he used the principle that the length of the product of two vectors
should be equal to the length of the product of their individual lengths as is the
case in complex numbers z = a+ ib:

z2 =(a+ ib)2 = a2 − b2 + 2iab

⇒
∣∣∣z2

∣∣∣ =
√
Re(z)2 + Im(z)2

=
√
a4 + b4 + 2a2b2

=a2 + b2

=|z|2 .

However, when, in a similar way, performing this test on his number system
corresponding to vectors in R3, Hamilton realized that the vector a + ib + jc
squared was equal to

(a+ ib+ jc)2 = a2 − b2 − c2 + 2iab+ 2jac+ 2ijbc (18)

while

|a+ ib+ jc|4 = (a2 − b2 − c2)2 + (2ab)2 + (2ac)2.

Meaning that the principle discussed above would hold for ij = 0. However, he
did not like this outcome and realized that instead of writing 2ij in Eqaution 18
he should write ij + ji which in turn caused him to sacrifice the commutative
law. He later discusses, in a letter, that he preferred setting ij = −ji to satisfy
ij + ji = 0. He then set ij = k and ji = −k and realized that he could try to
create a system within R4 by clearly defining k as

k2 = (ij)(ij) = i(ji)j = i(−ij)j = −i2j2 = −1.

Having come to this realization on a walk, he carved the quaternion rule

i2 = j2 = k2 = ijk = −1

on a bridge in Dublin.
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Thus, as opposed to the complex numbers, the quaternions were not invented
with the intention to solve an already existing problem, but rather to investigate
whether it was possible to expand the complex number system representation of
R2 into a different system that would be represented as 3-tuples of real numbers
in R3. Failing to do so, Hamilton instead invented quaternions which can be
represented as 4-tuples in R4 while simultaneously being able to describe vector
transformations in R3.

4 Applications of complex numbers and quater-
nions

Problems in real life can often be solved in a myriad of different manners. There-
fore, the intention behind this section will be to briefly discuss some applications
of complex numbers and quaternions as well as generally illustrate areas where
it might be possible to use other measures to solve certain problems, but where
using complex numbers and quaternions might provide benefits which other
measures might not.

4.1 Complex numbers in physics and engineering

Complex numbers have been discussed in Section 2.2 where varying represen-
tations of complex numbers were made with one intent being to motivate some
sort of intuition that one might derive from these representations and which
might be more difficult to do given different representations. However, a ques-
tion remains of the applications of complex numbers.

Complex numbers are used in a handful of functions within multiple fields
of study. [RTWLTGAN21] briefly mention that complex numbers can often be
used in electromagnetism to simplify calculations of electromagnetic waves. Ad-
ditionally, complex numbers are used in the mathematical transform called the
Fourier transform, which can be used by electrical engineers in signal processing
in order to analyse, identify and modify components of signals [Wiki2].

Furthermore, complex numbers are famously used in wave functions in quan-
tum physics. [RTWLTGAN21] discuss and describe that within quantum physics,
it is possible to motivate both a real quantum theory and a complex quantum
theory. However, it is extensively argued in the article that in recent years,
some scientists have started to shift from a view of complex numbers being used
as tools to facilitate computing in quantum physics to acknowledging that cer-
tain problems require complex numbers in order to be solved. [RTWLTGAN21]
specifically give several examples of problems that can be described using both
real quantum theory and complex quantum theory, but they also provide an ex-
ample involving two entangled particles which they argue cannot be described
using real quantum theory.
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4.2 Quaternions in spatial rotation

As has been discussed in Section 2.3, quaternions can be used to describe rota-
tion in three dimensional space. However, there are many other mathematical
objects that can be used to describe rotation in three dimensional space as well
[H06]. One such mathematical object are the Euler angles; the Euler angles
are sets of three fixed axes in a coordinate system that can be used to describe
three dimensional rotation by rotating about one axis at a time. This manner
of three dimensional rotation does, however, come with certain issues[H06]. An
issue that Euler angles have is that each of the sets of axes can be sequentially
rotated in such a way that one loses one degree of freedom in the rotation. In
other words, one axis of rotation becomes parallel to another leading to both
of them describing the same three dimensional rotation, this phenomenon is
called gimbal lock[H06]. However, quaternions avoid gimbal lock by being able
to rotate along any axis, instead of only being able to rotate along three fixed
axes.

As such, professions dealing with three dimensional computer graphics and
engineers working with rotation in three dimensional space can use quaternions
to describe said rotation instead of Euler angles in order to avoid issues of gimbal
lock[H06].

5 Teaching higher number systems

It is generally agreed among researchers and teachers that the prior knowledge
that students of mathematics carry should be used to facilitate the teaching
of new mathematical concepts or objects [P10][PB17][PLvB19]. Similarly, it
is often discussed that when students are in the process of creating a deeper
understanding of mathematical concepts or objects, it is crucial that they make
connections between the objects, formal definitions as well as individual un-
derstanding of the behaviours of said objects [LR12]. One way to make such
connections is to connect a given concept to mathematical symbols and objects
that are often central when discussing the concept. Furthermore, connections
can be made between different representations of the same concept or object
[P10][PB17][PLvB19]. For instance, a function as a mathematical object maps
elements from a set X to a set Y so that each element in X is mapped to exactly
one element in Y . Functions can, however, be represented by graphs, tables,
algebraic expressions etc. and being able to make connections between the dif-
ferent representations and the function as an object contributes to a deeper
understanding of the concept of function [PST13].

Thus, when teaching complex numbers to students, it is vital to try to draw
on their prior knowledge of mathematics. This can of course be done in many
different manners. It is, however, important to note that in order to teach
complex numbers to students, one also needs to clearly assert that complex
numbers do differ from what the students have learned so far. For example,
the rule i2 = −1 is one that might seem very alien to new learners and thus
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solving a multiplication of two given complex numbers might seem confusing to
said students. But in such a scenario, the teacher can highlight the similarities
that complex numbers have to real numbers in that both are distributive and
commutative and that i can just be treated as some unknown variable x with
the only exception that, unlike a real variable, i2 = −1. This kind of expla-
nation draws on students’ prior knowledge of multiplication and algebra while
introducing one new rule, thus creating connections between variables and the
imaginary number i.

However, there are dangers in carelessly drawing similarities to objects such
as variables because it can cause students to try to view i as a variable that
they need to solve for. Therefore, it can be beneficial to represent complex
numbers as objects which might appear more intuitive to the students. This
can for instance be done by representing complex numbers geometrically in
the complex plane as pairs of two real numbers, thus eliminating the possibly
confusing i while also drawing on their prior knowledge of points and vectors in
two dimensional space.

Given 45 minutes to present complex numbers to a group of upper secondary
school pupils with an adequate and somewhat homogeneous understanding of
concepts that are usually discussed prior to complex numbers, one could struc-
ture a lesson plan similar to the following.

Complex numbers lesson plan:

5 min repetition of the number line and introduction of the imaginary
unit i and the i2 = −1 property of i.

10-15 min example of adding and multiplying complex numbers.

5-10 min comparing previous results to similar real polynomials.

10-15 min comparing the number line with the complex plane and placing
complex numbers in the plane.

5 min explaining i2 = −1 geometrically as a 90° rotation twice.

The main teaching approach argued for in this text revolves around drawing
on student’s prior knowledge; it is thus important to have a brief repetition on
real numbers and, since the plan is to later show the complex plane to hopefully
facilitate the students in understanding the geometrical relationship between
real and complex numbers, this can be done by having a brief repetition of the
number line. It is also important to introduce the imaginary unit i and its
square rule prior to introducing other complex numbers.

Once the rule i2 = −1 has been introduced, it would be beneficial to show
some simple examples of addition and multiplication with i. These examples
should start as very simple multiplications and additions of small real numbers.
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For instance, the teacher could show examples such as

i+ i = 2i

0 + i = i

2 + i = i+ 2

3 · i = 3i

2i · i = −2

0 · i = 0.

Here, the teacher could remind the pupils that these results are not too dissim-
ilar from how addition and multiplication operate with variables; that is, real
numbers do not mix with variables when adding 2+ x = x+2 and that adding
two of the same variable gives x + x = 2x. It is however vital to constantly
remind the pupils that variable multiplication vastly differs from multiplication
of the imaginary number i. Subsequently, the teacher should explain, with the
use of the previously shown operations that an expression written on the form
a+ ib is a complex number. Once these examples are shown and discussed, the
teacher can further show examples of addition and multiplication of complex
numbers with both real and imaginary components such as

(2 + 2i) + (i+ 3) = (2 + 3) + (2i+ i) = 5 + 3i

(1 + i)i = i+ i2 = i− 1

(2 + i)(2 + i) = 2(2 + i) + i(2 + i) = 4 + 4i+ i2 = 4 + 4i− 1 = 4i+ 3.

While this might appear as slightly more advanced to the pupils depending on
the group, the teacher can again draw similarities to polynomial addition and
multiplication with the only difference being that any occurrence of i2 should
be replaced with −1 and here it is also important to explicitly state and stress
that unlike problems containing variables, the pupils should never try to solve
for i as it is not a variable and instead a number. By doing so, the teacher can
show and even explicitly express that complex numbers distribute just like real
numbers do and that performing the operations is per se not any different from
how they are used to doing it with real numbers and variables.

To further illustrate the point that i is not to be solved for and that it
is a number, the teacher can then refer back to the number line and make it
into a complex plane in order to show that like numbers, one can graphically
pinpoint multiples of imaginary numbers on the imaginary axis. Furthermore,
the teacher can then, in order to show the geometrical representation of complex
numbers, mark certain coordinates on the complex plane and have the students
try to figure out what complex number is marked. This would again draw on
the pupils’ knowledge of planes, axes, coordinates, points and vectors.

Finally, to truly motivate the rule i2 = −1, the teacher can show what
happens to complex numbers as represented in the complex plane when they
are multiplied by i; that is, that there is a 90° rotation counterclockwise from
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the given number. This can easily be done by first showing

1 · i = i = i1

i · i = −1 = i2

−1 · i = −i = i3

−i · i = 1 = i4 = i0

and then possibly showing how this transforms other complex numbers in the
same manner.

As is the case with any teaching, however, it is crucial to consider the group
and the current situation in a broader context before teaching complex numbers.
What has hitherto been proposed is simply just an example of how such a lesson
plan could potentially be structured. There are many other, equally yielding
ways of teaching complex numbers, one can for instance do so by expanding on
solving polynomial equations without real roots. However, the main argument
made here is to use the pupils’ prior knowledge and make connections to different
representations and objects when teaching new mathematical concepts.

Teaching quaternions in the upper secondary school context is rare and, in
Sweden to the very least, does not fall under any of the regular mathematics
courses. There are however situations where teaching of more advanced math-
ematical concepts happen. There can for instance exist additional optional
activities for those who perhaps are interested and passionate about mathemat-
ics. Additionally, some schools offer optional courses that teach some sort of
specialized fields of mathematics. I have in my experience as a teacher student
witnessed, during one of my internships in an upper secondary school in Swe-
den, a mathematical course that was offered for last year pupils that have shown
adequate results in mathematics as well as in general subjects. This course re-
volved around mathematics and programming surrounding artificial intelligence
and the teacher of the course was part of a mathematical community collabo-
rating with universities. Among other concepts, this course included set theory
as well as proof by mathematical induction, both of which are generally treated
as being of a level more advanced than upper secondary school mathematics.
It is possible that higher number systems could be taught in some optional
course similar to this. As such, the following proposal of teaching quaternions is
based on the assumption that the group being taught consists of last year upper
secondary school pupils in Swedish programmes that teach more mathematics,
such as the natural sciences. Assuming that a lesson is around 45 minutes long
one could structure it as follows

Quaternions lesson plan:

5 min repetition of complex numbers on Cartesian form.

5 min compare the Cartesian form to complex numbers represented as
2-tuples.

5 min introduce quaternions as 4-tuples.
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5-10 min reconstruct quaternions on the form a+ ib+ jc+ kd from the
4-tuple.

5 min show the i2 = j2 = k2 = ijk = −1 rule and compare it to complex
numbers.

10 min discuss addition and multiplication with real scalar.

10 min discuss the non-commutative property in quaternion multiplica-
tion and create a multiplication table.

Teaching quaternions as a number system can be confusing and unintuitive.
However, in this regard, quaternions have many similarities with complex num-
bers. Complex numbers can be represented as a 2-tuple of real numbers and
quaternions can equally be represented as a 4-tuple of real numbers, thus, draw-
ing on the pupils prior knowledge of complex numbers would be something that
can easily be done given that they have a chance to first have a brief repetition
of complex numbers. By having a repetition of complex numbers as 2-tuples
and as the expression a + ib, it further allows the pupils to make representa-
tional connections within the concept of complex numbers. This connection
that hopefully establishes in the pupils can then be translated to quaternions.

Introducing quaternions as a number system beyond the complex numbers
and representing it as a 4-tuple makes possible for the pupils to make the con-
nection between complex numbers and quaternions as being similar with one
existing in higher dimensions. Now using this 4-tuple, one can try to reconstruct
the quaternion on the a + ib + jc + kd form. It can be beneficial to show an
example with real coefficients such as first showing 3 + 2i which can be repre-
sented as (3, 2) and then showing the 4-tuple (4, 3, 1, 2) and reconstructing it
into 4+3i+ j+2k in order to illustrate that complex numbers and quaternions
can be expressed in similar forms.

It is then beneficial to remind the pupils that the unit number in complex
numbers has to follow the i2 = −1 property, from there the teacher can build
upon how in a similar way both j2 and k2 equal −1 with the addition that ijk
also equals −1 giving the rule i2 = j2 = k2 = ijk = −1.

However, because quaternions lose the commutative property in multiplica-
tion, it becomes vital to first show where similarities between quaternions and
complex numbers lie, by illustrating addition and multiplication by real scalars,
and subsequently explicitly state and discuss the crucial differences of these two
number systems. This can also be done through examples such as

(2 + 4j + k) + (1 + 3i+ 2k) = 2 + 1 + 3i+ 4j + (1 + 2)k = 3 + 3i+ 4j + 3k

2 · (1 + 2i+ 3j + 4k) = 2 + 4i++6j + 8k.

Lastly, the arguably most unique property of quaternions compared to pre-
vious number systems, is that quaternion multiplication is non-commutative.
This needs to clearly be communicated to the pupils and it can seem difficult
if they have not previously considered that mathematical objects can in fact be
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non-commutative. An example of this can be shown if the pupils seem to fully
grasp everything that has been discussed so far and if the teacher is aware of
the precise proficiency level of the pupils, but a proof of this can also be saved
for a later date if need be. What needs to be communicated to the pupils is
that quaternions are generally not commutative and explain how left and right
side multiplication is performed and subsequently it might be useful to, together
with the pupils, create a table such as the one in Lemma 1 by using the rule
i2 = j2 = k2 = ijk = −1.

Finally, again, teaching a new concept to a class or group of pupils can be
done in many more ways than what has just been presented here. For instance,
if the pupils for some reason already have worked with mathematical objects
such as matrices, which are generally not commutative as well, it might be more
helpful for the teacher to draw on this knowledge to facilitate the understanding
of quaternion multiplication.

The main point of this entire section is that learning entirely new mathemat-
ical concepts, such as the two that have been covered here, can cause difficulty
and confusion in pupils and this issue can, to some degree at least, be elimi-
nated by, instead of teaching something in a completely new way, teaching a
new concept by drawing on the pupils’ prior knowledge and thus effectively only
making a small portion of the new concept something that appears as new to
the pupils. Having the pupils be familiar with most operations and properties
of new concepts helps them in only focusing on the concepts that they might
lack prior knowledge to combat, thus reducing their workload.

6 Conclusion

The aim of this text was to explore the complex numbers as well as the quater-
nions; that is, to explore how to compute using them, as well as create some sort
of intuition on them as number systems and mathematical objects. This was
done by representing both the complex numbers and the quaternions in terms of
expressions only containing real values that can geometrically be tied to R2 and
R3 as well as motivating their discovery. Hopefully, the reader can now, how-
ever elementary, grasp that there is intuition to be recovered even from number
systems that do not necessarily appear as natural as others. Additionally, as a
consequence of this paper being part of the teacher education programme, an
approach to teaching higher number systems based on prior knowledge hope-
fully also illustrated that teaching and learning can be facilitated by considering
intuition in the form of prior knowledge.
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