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Abstract

This thesis introduces some knot theory, focusing on the knot group and related ideas.
Knots are defined as smooth embeddings of the circle in three-dimensional space, and
the initial part of the thesis is dedicated to different notions of knot equivalence as well
as certain geometric concepts. The knot group of a knot is defined as the fundamental
group of the complement of the knot, and much of the thesis revolves around proving
that knots are inequivalent by showing that they have non-isomorphic knot groups.
A proof is given for a method of calculating a presentation of a knot group, the so-
called ‘Wirtinger presentation’. Next, an infinite class of knots called ‘torus knots’ is
introduced, and their knot groups are analyzed and classified. The knot group fails to
distinguish some knots that are nonetheless different, a problem adressed in the final
part of the thesis through the so-called ‘peripheral system’, which augments the knot
group with additional information about the knot, giving a more powerful invariant.
Two applications of the peripheral system are presented: showing that no torus knot
is equivalent to its mirror image, and proving two other specific knots inequivalent.

Sammanfattning

Denna uppsats introducerar delar av knutteori, med fokus p̊a knutgrupper. Knutar
definieras som släta (oändligt deriverbara) inbäddningar av en cirkel i tredimensionellt
rum, och första delen av uppsatsen handlar om olika sorter av knutekvivalens och olika
geometriska koncept. Knutgruppen av en knut definieras som fundamentalgruppen av
knutens komplement, och en stor del av uppsatsen kretsar kring att bevisa att knutar
är olika genom att bevisa att deras knutgrupper ej är isomorfa. Ett bevis presen-
teras för en metod för att beräkna en presentation av en knutgrupp, den s̊a kallade
’Wirtingerpresentationen’. En oändlig klass av knutar, s̊a kallade ’torusknutar’, intro-
duceras därnäst, och deras knutgrupper analyseras och klassificeras. Ett problem med
knutgrupper är att de inte kan göra skillnad p̊a alla knutar, vilket kan lösas genom att
utöka knutgruppen med ytterligare information om knuten, i en mer kraftfull invariant
som kallas ’periferalsystemet’, som behandlas i sista delen av uppsatsen. Tv̊a tillämp-
ningar av periferalsystemet presenteras: ett bevis att ingen torusknut är ekvivalent
med sin spegelbild, och ett bevis att tv̊a andra specifika knutar ej är ekvivalenta.
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1 Introduction and background

This thesis concerns knot theory. In this introductory section, some basic concepts are
introduced. The latter sections focus on knot groups, which give a way of studying
knots through group theory. Some familiarity with group theory (e.g. as presented
in [DF91]) and topology (e.g. as presented in [Lee10]) is assumed throughout the
thesis. Homology is sometimes referenced, though it is not required for understanding
the thesis. Our basic definitions of knots rely on smooth (i.e. infinitely differentiable)
functions and diffeomorphisms (i.e. smooth homeomorphisms whose inverses are also
smooth). The theory of these functions, as well as some results we reference, can be
found in [Hir76] and [Mil97], but as we do not explore this theory per se, the thesis
is readable without that background.

1.1 Knots

The intuitive picture of a mathematical knot is that of a piece of string placed in
three-dimensional space with both its ends tied together. In the literature on knot
theory this notion has been made precise in many slightly different but practically
equivalent ways. We will use the following definition.

Definition 1. A knot K is a smooth embedding of the circle S1 in 3-dimensional
Euclidean space: K : S1 → R3, or the image of such an embedding: K ⊂ R3.

The image of the embedding corresponds to the imagined loop of string. It will
usually be irrelevant whether knots are considered as embeddings or simple subsets,
but sometimes one is more convenient than the other. Another minor detail is the
ambient space, which is sometimes taken as S3 instead of R3, which is more convenient
in some cases but has little overall effect on the theory. The role of smoothness in the
definition is more important, however: it serves to avoid certain ‘infinitely tangled’
knots that could occur otherwise.1

One would like to think of two knots as identical if either one of them can be
moved around freely without intersections, and in this way be transformed into the
other. This is made precise in the following way.

Definition 2. Two knots K,K ′ : S1 → R3 are smoothly isotopic (s.i.) or simply
equivalent if there exists a smooth function f : S1 × [0, 1] → R3 such that f(x, 0) =
K(x) and f(x, 1) = K ′(x) for all x, and x 7→ f(x, t) is an embedding for all t.

In definition 2 it is crucial that the isotopy as a whole is smooth. If arbitrary
topological isotopies were allowed, even if all embeddings given by a fixed t were
required to be smooth, all (smooth) knots would be isotopic: a knotted portion of a
string could simply be ‘pulled tight’ to shrink into a point, which would be continuous
but not differentiable in t.

Smooth isotopy will be proved to be an equivalence relation in section 1.3, allowing
us to talk about equivalence classes of knots with respect to this relation. In that
section we also introduce other notions of knot equivalence, which will let us better
understand smooth isotopy. The questions investigated in this thesis all revolve around
classifying knots up to this kind of equivalence.

We have yet to see any examples of knots, as we have not introduced our main
tool for illustrating knots: knot diagrams.

1Such knots have been called wild, as opposed to the tame knots we study. For some examples
of wild knots, see e.g. [BZ03, p. 3]. Instead of using smoothness, many authors instead require knots
to be piecewise linear, which results in a similar theory.
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Figure 1: Diagrams of an unknot 01, a trefoil knot 31, and a figure-eight knot 41.

Definition 3. A diagram of a knot K is a projection of K onto a plane such that
there are only finitely many points where the projection intersects itself, and each of
these points results from exactly one strand of the knot crossing over another, where
all crossings are marked to indicate which strand passes over the other.

This definition is somewhat informal, as the details will not be relevant to us.
A more rigorous treatment can be found in [BZ03, Chapter 2]. Knot diagrams are
initially useful in that they are easily drawn and unambiguously identify exactly
one equivalence class (though each class is of course represented by infinitely many
diagrams). However, some methods such as the Wirtinger presentation of a knot group
(which we will later derive and use) also make use of the two-dimensional structure
of knot diagrams to calculate certain properties of knots.

Example 1. Figure 1 shows three knot diagrams. To the left is shown the simplest
possible knot diagram, without any crossings. This knot is called the unknot, and it is
particular in many ways. The middle and right diagrams have three and four crossings
respectively. We will later prove that all three of these knots are inequivalent.

Note that in any knot diagram with a nonzero number of crossings, each arc of
the diagram has two endpoints at (not necessarily different) crossings, so the number
of arcs equals the number of crossings. Diagrams with no crossings (representing the
unknot) must be excluded as they nonetheless have one arc.

Proving that two knots are equivalent is usually done by simply manipulating
a diagram in a series of comprehensible steps, going from one knot to the other,
without giving any explicit formulas for isotopies.2 Figure 2 gives an example of this,
illustrating a figure-eight knot transforming into the same shape, but with all the
orientation of all crossings reversed.

Any knot may be assigned a ‘crossing number’, namely the smallest number of
crossings a diagram of that knot can have. The three knots just seen (including the
mirror image of the trefoil, which is different as we will later show) are the only knots
with crossing number ≤ 4, though we will not prove this. To find the equivalence
classes of knots up to crossing number n, a simplistic method would be to draw every
possible (essentially distinct) diagram with n crossings or fewer, exhibit equivalence
proofs for the diagrams that are equivalent, and finally prove that the resulting classes
of knots really are inequivalent. The number of distinct knots grows quickly, so this is
only a feasible method for small n. Early tables of knots compiled in this way (though
not always completely rigorously) have contributed a traditional notation system for
knots: the knots with crossing number n are enumerated as n1, n2, . . . , in an arbitrary
order. This explains the notation in figure 1.

2There exists, in fact, a set of three operations on knot diagrams (so-called Reidemeister moves)
such that not only do the operations produce equivalent diagrams, but any equivalent diagrams may
be transformed into one another by a sequence of such operations. A proof of this can be found in
[BZ03, Proposition 1.14].
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Figure 2: Illustration of a figure-eight knot turning into its mirror image. The first
step moves only the blue strand, the second step only adjusts the shapes of the strands
without affecting the crossings, and the last step is a rotation.

Figure 3: Diagrams of a trefoil knot 31 and its mirror image 3∗1.

1.2 Geometric concepts

In this section we introduce some geometric operations and properties of knots.

Definition 4. Given a knot K : S1 → R3 we form its mirror image K∗ as the
composition of K with a reflection of R3 in some plane.

This definition is a well-defined operation on equivalence classes of knots, since
all reflections may be smoothly transformed into each other. If the mirroring plane
is taken to be the same as the one projected to when forming a knot diagram, it is
clear that reversing the orientation of each crossing in a diagram yields a diagram of
the mirror knot. Therefore figure 2 proves that the figure-eight knot is equivalent to
its mirror image. We will call a knot amphichiral if it has this property, and chiral if
does not.3 We will later prove that the trefoil is chiral (as a special case of a more
general fact: all torus knots are chiral), so the knots in figure 3 are inequivalent.

Definition 5. If an oprientation of the circle S1 is chosen, a knot K : S1 → R3 can
be said to be oriented. An oriented diagram of a knot marks the orientation of each
strand (say, with arrows at the ends of strands).

Orienting a diagram divides its crossings into two essentially distinct types, de-
pending on whether the undercrossing strand points to the left or to the right from
the perspective of the overcrossing strand. Figure 4 shows an orientation of the 62
knot as well as the different kinds of crossings. Just as with mirror images, one might
ask if the two orientations of a knot are the same. Knots whose two oriented versions
can be transformed into each other by a smooth isotopy are called invertible. All knots
studied in this thesis are invertible, but non-invertible knots do exist.

3In knot-theoretic literature, the word amphichiral is often encountered as amphicheiral. This is
the form used by Peter Tait, who introduced the term in the 1870s [Tai77]. One might argue that
the spelling with -ei- more closely matches the Ancient Greek χείρ (khéır) ‘hand’ from which the
word derives, but all other English words derived from this root (e.g. chirality) are spelled with -i-
in almost all sources, so we will use the spelling that is consistent with these other terms.
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Figure 4: An oriented diagram of the 62 knot. The upper four crossings (blue) and
the lower two (red) are different.

Figure 5: The square knot 31#3∗1 and the granny knot 31#31.

Another operation commonly studied in knot theory is that of taking ‘sums’ of
knots, which we define informally:

Definition 6. If K and K ′ are knots, their sum is denoted K#K ′, and is formed
by removing a small arc of each of two knots, and connecting the two knots to each
other with unknotted arcs between those endpoints.

Figure 5 shows the sum of a trefoil with its mirror image (a so-called ‘square knot’)
as well as the sum of a trefoil with itself (a so-called ‘granny knot’). It turns out that
every knot has a unique decomposition into a sum of knots that themselves cannot be
written as a knot sum (except that the sum may include the unknot, as taking a sum
with the unknot never changes a knot). Knots which cannot be decomposed further
are called ‘prime’ knots. All knots we will see in this thesis are prime, except for the
square and granny knots (see e.g. [BZ03, Chapter 7]).

Finally, we introduce tubular neighborhoods of knots, which are necessary for
many definitions and arguments throughout the thesis.

Definition 7. If K ⊂ R3 is a knot, a tubular neighborhood of K is the image of
any embedding of a solid torus D in R3 such that the circle forming the core of D is
embedded as K.

In effect, a tubular neighborhood of a knot looks like the knot (and deformation
retracts onto it) but as a tube with nonzero width instead of just a curve. It should be
noted that this is a special case of a more general definition of tubular neighborhood,
which in [Hir76, p. 109] is shown to exist for all smooth submanifolds of R3. We can
therefore take the existence of tubular neighborhoods of knots for granted. If knots
were not required to be smooth, however, the existence of tubular neighborhoods
would not be guaranteed.
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1.3 Knot equivalences

We will now further study our main notion of knot equivalence, smooth isotopy, as
well as other kinds of equivalence. We begin by proving that we are even justified in
talking about equivalence classes under smooth isotopy.

Proposition 1. Smooth isotopy is an equivalence relation.

Proof. Let K,K ′,K ′′ : S1 → R3 be knots such that K is s.i. to K ′ through f , and K ′

is smoothly isotopic to K ′′ through f ′.
Reflexivity and symmetry are simple: K is smoothly isotopic to itself through

(x, t) 7→ K(x), and K ′ is smoothly isotopic to K through (x, t) 7→ f(x, 1− t).
Transitivity is more involved since we have to ensure that the resulting isotopy is

smooth. We can choose (e.g. as the integral of a bump function) a smooth function
s : [0, 1] → [0, 1] such that there is an ε > 0 such that s(x) = 0 if 0 ≤ x ≤ ε and
s(x) = 1 if 1− ε ≤ x ≤ 1. Then K is isotopic to K ′′ through:

(x, t) 7→
{
f(x, s(2t)) 0 ≤ x ≤ 1

2

f ′(x, s(1− 2t)) 1
2 ≤ x ≤ 1

This isotopy is independent of t (agreeing with K ′) at an open interval around t = 1
2 ,

so it is smooth everywhere.

We introduce two more equivalences, which we will use to better understand
smooth isotopy:

Definition 8. Let K,K ′ : S1 → R3 be two knots.

• K and K ′ are ambient diffeomorphic if there exists a diffeomorphism h : R3 →
R3 such that h ◦K = K ′.

• K andK ′ are smoothly ambient isotopic if there exists a smooth function f : R3×
[0, 1] → R3 such that if ft : R3 → R3 is the function given by ft(x) = f(x, t),
the following conditions hold: f0 is the identity function, ft is a diffeomorphism
for all t, and f1 ◦K = K ′.

These terms and definitions are not common in knot-theoretic literature: usually,
neither equivalence is required to be smooth. For isotopy of the knot itself, smoothness
was important, but it turns out that requiring the isotopy to transform the ambient
space solves the same problem, even without requiring smoothness. For this reason,
authors not working with smooth knots usually take ambient isotopy as the basic
notion of equivalence.

Proposition 2. Ambient diffeomorphism and smooth ambient isotopy are both equiv-
alence relations. Furthermore, smooth ambient isotopy is a refinement of ambient
diffeomorphism.

Proof. Let K,K ′,K ′′ : S1 → R3 be knots and suppose that K is ambient diffeomor-
phic to K ′ through h and that K ′ is ambient diffeomorphic to K ′′ through h′. Then K
is ambient diffeomorphic to itself through the identity function, K ′ is ambient diffeo-
morphic to K since h−1◦K ′ = h−1◦h◦K = K, and K is ambient diffeomorphic to K ′′

since h′ ◦ h ◦K = h′ ◦K ′ = K ′′. Ambient diffeomorphism is therefore an equivalence
relation. Smooth ambient isotopy may be proven to be an equivalence relation in the
same way as in proposition 1. Finally, if K and K ′ are smoothly ambient isotopic
through f , they are ambient diffeomorphic through f1 by definition.
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It turns out that it is possible to describe with some precision just how much finer
ambient isotopy is: each ambient diffeomorphism class consists of either one or two
smooth ambient isotopy classes: the former case occurs for amphichiral knots, and
in the latter case, the two isotopy classes are mirror images. The proof relies on the
following fact about orientation-preserving maps:

Proposition 3. If h : R3 → R3 is an orientation-preserving diffeomorphism, then h
is isotopic to the identity.

A proof of this (in fact valid for all Rn) can be found in [Mil97, p. 34]. The result
about isotopies is a direct consequence:

Proposition 4. If K and K ′ are ambient diffeomorphic, K is smoothly ambient
isotopic either to K ′ or to the mirror image of K ′.

Proof. Let h : R3 → R3 be a diffeomorphism such that h◦K = K ′. If h is orientation-
preserving, it is isotopic to the identity, which makes K smoothly ambient isotopic
to K ′. If h is orientation-reversing, choose a reflection r : R3 → R3: then, r ◦ h is
orientation-preserving and isotopic to the identity, and since (r◦h)◦K = r◦(h◦K) =
r ◦K ′, K is smoothly ambient isotopic to the mirror image of K ′.

Finally we will see how this relates to smooth isotopy. We use the isotopy extension
theorem, whose statement and proof can be found in [Hir76, p. 180].

Proposition 5. Smooth ambient isotopy and smooth isotopy of knots are identical
relations.

Proof. If the knots K and K ′ are smoothly ambient isotopic through f , they are
smoothly isotopic through f ◦K. The other direction requires the isotopy extension
theorem, whose assumptions are satisfied since S1 is compact and R3 lacks boundary.
The theorem tells us that any smooth isotopy from K to K ′ can be extended to a
smooth isotopy of R3.

8



2 Knot groups

Knot equivalence is a topological question, but considered as spaces, all knots are
homeomorphic, by definition. Instead, the complement of a knot is a more useful
object of study. In fact, it has been shown that two knots are equivalent (up to mirror
images) if and only if their complements are homeomorphic. The forwards direction of
this statement is an immediate consequence of ambient diffeomorphism (and is proved
as part of proposition 6 below), but the fact that the complement determines the knot
was a long-standing conjecture first proved in 1989 by Gordon and Luecke [GL89].
We will however not study the topology of knot complements directly, but initially
limit our focus to their fundamental groups, which is a weaker invariant of knots, but
it is more approachable. In section 4 we will see how the fundamental group can be
augmented with some extra information to produce a stronger invariant.

2.1 Definition and calculation for the unknot

Definition 9. The knot group of a knot K refers to the fundamental group of its
complement: π1(R3 −K,x), for some choice of x ∈ R3 −K.

We will usually omit the basepoint from the notation for the fundamental group,
as the knot complement is path-connected.4

Proposition 6. Equivalent knots have homeomorphic complements and isomorphic
knot groups.

Proof. Let K and K ′ be equivalent knots and let h : R3 → R3 be a diffeomorphism
satisfying h(K) = K ′ (which exists since smooth isotopy is stronger than ambient
diffeomorphism). Since h(x) ∈ K ′ if and only if x ∈ K we may define a homeomor-
phism g : R3 − K → R3 − K ′ as a restriction of h. Since the fundamental group is
a homeomorphism invariant (up to isomorphism), π1(R3 −K) and π1(R3 −K ′) are
isomorphic.

Our main tool for showing that two knots are inequivalent will be to show that
they have non-isomorphic knot groups. The next sections are dedicated towards de-
veloping theory capable of giving presentations for knot groups as well as telling these
presentations apart in certain cases. We should note that the fundamental group on
its own cannot differentiate mirror images, as they have homeomorphic complements
(but the methods of section 4 do not have this problem).

As an initial example we will directly compute the knot group of the unknot.

Example 2. Let K = {(x, y, 0) : x2 + y2 = 1} ⊂ R3 be the unknot, and let

Z = {(x, y, z) : x2 + y2 + z2 = 4} ∪ {(0, 0, z) : −2 < z < 2}
be a sphere surrounding K, together with a diameter of the sphere along the z-axis,
passing through the middle of K. Then by a construction presented in [Hat02] we may
form a deformation retraction of R3−K onto Z by letting points outside of the sphere
move directly onto it, and letting points inside the sphere move in a straight line away
from the closest point of K onto either the sphere of Z or its diameter. This shows that
R3−K is homotopy equivalent to a sphere with a diameter, which in turn is homotopy
equivalent to the wedge sum S2 ∨ S1 by moving one endpoint of the diameter onto
the other. This final space has fundamental group π1(S2 ∨ S1) = π1(S1) = Z, since
π1(S2) = 0, proving that the knot group of the unknot K is infinite cyclic.

4This is an intuitive fact but is not very easy to prove with the methods we have available,
though it follows as a direct consequence of Alexander duality.
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Figure 6: A trefoil knot in standard position.

We will not calculate other knot groups directly in this way, and in general, knot
groups will not be as simple as Z.5 The most useful tool for computing knot groups
is the Seifert–van Kampen theorem, specifically the version of the theorem which
operates on group presentations (see e.g. [Lee10, Theorems 10.1 and 10.3]).

2.2 The Wirtinger presentation

There is a simple procedure to produce a presentation of a knot group from an ori-
ented knot diagram, called the Wirtinger presentation. This procedure requires an
orientation of the knot to be chosen: this has no effect on the group itself, but the
relations are computed using an orientation which needs to be consistent. We will
need knots to be positioned in a specific way:

Definition 10. A knot is in standard position if it lies wholly in the z = 0 plane,
except for underpasses extending down to z = −1 at each crossing.

Any knot diagram may be turned into a knot in standard position and vice versa,
with arcs in the diagram corresponding to sections in the z = 0 plane. Figure 6 shows
a trefoil knot in standard position: the solid lines are at z = 0, and the dotted lines
extend down to z = −1. Since the number of arcs (and the number of crossings) is
finite for any knot in standard position, we can always choose an ε > 0 much smaller
than the length of the shortest arc or the shortest distance between two arcs.

Given a knot in standard position we can now introduce the generators of the
presentation and find their respective relations, and subsequently prove that those
generators indeed generate the entire knot group.

Definition 11. Let K be an oriented knot in standard position with n arcs labeled
α1, . . . , αn and choose a point P in the z = 0 plane, P 6∈ K. Choose a small ε > 0
and encircle each αi with a circle γi of radius ε. For each αi form an element ai of
π1(R3 −K,P ) as the following path:

1. Go from P to a point of γi, staying in the z > 0 half-space except at the start.
2. Go around γi once, clockwise from the perspective of the oriented arc αi.
3. Go back to P by the same path.

The elements {a1, . . . , an} ⊂ π1(R3 −K,P ) are called Wirtinger generators of K.

5In fact, the unknot is the only knot whose group is Z, but this result is relatively difficult; a
proof can be found in [Rol03] where it is called the ‘unknotting theorem’. This result (together with
proposition 8 in this document) implies that all nontrivial knots have nonabelian groups.
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Figure 7: Wirtinger generators of the trefoil knot (in red).
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Figure 8: Wirtinger relations at two types of crossings.

Figure 7 shows Wirtinger generators of the trefoil knot. In all following diagrams,
Wirtinger generators will be presented as arrows passing under their respective arcs,
representing the oriented bottom half of γi, with the connections to and from a base-
point implicitly understood. It should be noted that this definition depends strongly
on the projection chosen for the knot diagram. There are natural relations present
between the Wirtinger generators at the crossings of the diagram:

Proposition 7. The Wirtinger generators conform to the relation acal = arac at
each crossing, where ac is the generator for the overcrossing arc, and ar and al are the
generators for the undercrossing arcs to the right and left of the directed overcrossing
arc, respectively.

Proof. There are two types of crossings we need to consider: those where the under-
crossing strand comes from the left and those where it comes from the right. Both
are shown in figure 8 with labels placed appropriately. By composing the arrows in
the figure we see that the relation acal = arac holds for both crossings.

It turns out that these generators and relations are sufficient to present the group,
a result which has been credited to Wilhelm Wirtinger, though the original discovery
was never published.

Theorem 1. Given an oriented n-crossing diagram of a knot K, there is a group
presentation

π1(R3 −K) = 〈 a1, . . . , an | crossing relations 〉,
where the generators ai correspond to the n arcs in the diagram, and there are n
crossing relations acar = alac as in proposition 7.

Proof. The following argument is adapted from [Sti93, p. 146]. Place K in standard
position according to the diagram, choosing a basepoint in the z = 0 plane, and let V
be a tubular neighborhood of K consisting of the points that have distance at most ε
to the knot, for some small ε > 0 and split the complement into two sections A and
B:

A = {(x, y, z) ∈ R3 − V : z > −1}; B = {(x, y, z) ∈ R3 − V : z < −1 +
ε

2
}

11



Figure 9: Homotopy between a half-space minus a handle and a half-space with a
handle.

These are now open sets whose union is R3−T . B is simply connected, but A has
n tubular holes, one for each arc of the knot diagram. The fundamental group of A
is free on n generators. To see this, push out the tubular holes according to figure 9
below to form a half-space with n handles, and contract the half-space to a ball or
a point, forming a space clearly isotopic to a bouquet of n circles. Specifically, the
generators of A can be chosen to coincide with the Wirtinger generators a1, . . . , an.

The intersection A∩B is an infinite sheet of width ε
2 with a hole for each crossing

in the diagram, so its fundamental group is also free on n generators. Generators
for A ∩ B can be chosen to each go around one of the holes, making them equal to
acara

−1
c a−1l in π1(A) at each crossing by proposition 7.

Applying the Seifert–van Kampen theorem to A and B then gives the desired
presentation.

The existence of the Wirtinger presentation gives some immediate insights into
the possible structure of knot groups. The abelianization of a group is its quotient
by its commutator subgroup, or equivalently by the relation generated by letting all
elements of the group commute.

Proposition 8. If G is a knot group, G is finitely presented, and its abelianization
GAb is isomorphic to Z.

Proof. The Wirtinger presentation is always finite, proving the first assertion.
In GAb, all elements commute, so the Wirtinger relation acar = alac implies

ar = al. Thus all generators are equal, and all relations are satisfied by default,
leaving only a single generator and giving the presentation GAb = 〈 a | − 〉 = Z.

The abelianization of the fundamental group is isomorphic to the first homology
group of the same space, and it is not a coincidence why this is the same for all
knots: it is known by Alexander duality that the homology of the complement of a
knot does not depend on the embedding chosen for the knot, so the homology of knot
complements is not a useful knot invariant.6

Example 3. By theorem 1, the figure-eight knot shown in figure 10 has the following
presentation:

〈 a, b, c, d | ad = ba, bc = ab, cd = ac, dc = bd 〉.
Using just the first three relations, we get that dc = a−1bac = a−1bcd = bd, so

the fourth relation is redundant. This corresponds to deforming the loop represented
by dc to the loop of bd by only passing under the crossings not represented by the
fourth relation. In general, any one of the relations in the Wirtinger presentation may
always be deduced from the others in this way, see e.g. [Rol03, p. 57].

6However, the homology of covering spaces of knot complements turns out to be useful; see e.g.
[Rol03, Chapter 6].
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a

c

b
d

Figure 10: Oriented diagram of a figure-eight knot with named generators.

Simplifying further, we may make the substitutions c = b−1ab (relation 2) and d =
a−1ba (relation 1), giving relation 3 as b−1aba−1ba = ab−1ab, which after multiplying
by b from the left gives the following presentation for the figure-eight knot group:

〈 a, b | aba−1ba = bab−1ab 〉.

Example 4. The Wirtinger presentation of the trefoil knot is

〈 a, b, c | ab = ca, bc = ab, ca = bc 〉.

Clearly, the third equation follows from the first two. From the second we substitute
c = b−1ab in the first, giving the relation ab = b−1aba. A presentation of the trefoil
knot is therefore

G = 〈 a, b | aba = bab 〉.
In section 3.2, a different method of presenting the group of a trefoil knot is described
(as a special case of a more general calculation). However, that method produces the
presentation H = 〈α, β | α2 = β3 〉 (written here with different letters for clarity).
These presentations must define isomorphic groups, and this can indeed be seen by
letting α = aba and β = ba. This preserves the relation since α2 = (bab)(aba) = β3,
and α and β generate the whole group since αβ−1 = aba(ba)−1 = a and β2α−1 =
baba(aba)−1 = b.

Example 5. In section 1.2 we defined the square knot as 31#3∗1 and the granny knot
as 31#31. Knot groups do not distinguish mirror images from each other so we know
that the trefoil itself has the same group as its mirror image, but even though (as we
will see in section 4.3) the square and granny knots are not ambient isotopic or even
mirror images, they still have the same group, which we now show.

We use a method for simplifying the calculation of the group of knot sums pre-
sented in [Rol03, p. 61]. Call one trefoil T1 and the other T2, and let K = T1#T2 be
their sum, regardless of orientation. Encase T1 and T2 in solid non-intersecting balls
B1 and B2. Then,

π1(R3 −K ∪B1) = π1(R3 − T2) = 〈 a1, b1 | a1b1a1 = b1a1b1 〉,
π1(R3 −K ∪B2) = π1(R3 − T1) = 〈 a2, b2 | a2b2a2 = b2a2b2 〉,

as K ∪B1 is just T2 with a part of the knot ‘thickened’ where T1 would be, and vice
versa. We also have

π1((R3 −K ∪B1) ∩ (R3 −K ∪B2)) = π1(R3 −K ∪B1 ∪B2) = 〈x | − 〉.

We can choose the generators a1, b1, a2, b2 such that a1 and b2 correspond to the
strand of the trefoil that is connected to the other in the knot sum, corresponding to
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B1 B2

Figure 11: The construction for the group of the square and granny knots.

the generator x of the intersection. Finally we apply the Seifert–van Kampen theorem,
which gives

π1(R3 −K) = π1((R3 −K ∪B1) ∪ (R3 −K ∪B2))

= 〈 a1, b1, a2, b2 | a1b1a1 = b1a1b1, a2b2a2 = b2a2b2, b1 = a2 〉
= 〈 a, x, b | axa = xax, bxb = xbx 〉

As this method calculates the same knot group for K regardless of orientations, it is
the group of both the square knot and the granny knot.

2.3 Homomorphisms to finite groups

Having a presentation of a knot group only helps us classify knots as different if
we can actually prove that two presentations are not isomorphic. This is not an
easy problem: the general problem of deciding whether two finite presentations define
isomorphic groups is in fact not even decidable [Rab58].7 There are, however, methods
that are useful in many cases. One such method is to consider homomorphisms from
a finitely presented group G into some finite group H. This is practical since such a
homomorphism is always determined by the images of the generators of G. We will
use this to prove that the three knots in figure 1 are all pairwise distinct.

Proposition 9. The trefoil knot is not ambient isotopic to the unknot.

Proof. We will consider a homomorphism into the finite nonabelian group

S3 = {e, (12), (13), (23), (123), (132)}.

Let G = 〈 a, b | a2 = b3 〉 be the trefoil group, and let f : G → S3 be generated
by f(a) = (12) and f(b) = (123). Since (12)2 = (123)3 = e, f is a well-defined
homomorphism, but (12) and (123) generate S3, so f(G) = S3. Since G has an
epimorphism onto S3 which is not cyclic, it cannot be Z. The trefoil and the unknot
therefore have non-isomorphic knot groups and cannot be ambient isotopic.

Proposition 10. The trefoil knot is not ambient isotopic to the figure-eight knot.

Proof. We will prove that there is no epimorphism of the figure-eight knot group onto
S3, which together with the previous result shows that the trefoil and the figure-eight
are distinct.8 Let H = 〈 a, b | aba−1ba = bab−1ab 〉 be the figure-eight knot group
and suppose that f : H → S3 is a homomorphism. Let x = f(a) and y = f(b).

7For the special case of knots and knot groups the problem is decidable but not by any practically
useful method, according to [Sti93, p. 226], citing works by Friedhelm Waldhausen.

8This method is suggested without a computation in [CF77].
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Then xyx−1yx = yxy−1xy. If x is an odd permutation and y even, or vice versa,
one side of the equation will be odd and the other even, so x and y are both odd or
both even. If they are both even, they are both part of the A3 subgroup and cannot
generate S3. Finally, if x and y are both odd, they are both transpositions, and they
are their own inverses. Any two transpotitions t1 and t2 in S3 have the property
that t1t2t1 equals the third transposition that is neither t1 nor t2, which means that
xyx−1yx = xyxyx = xzx = y for z 6= x, y, and likewise yxy−1xy = x, so x = y and
the image of f is just the 2-element subgroup generated by a transposition. Therefore,
f cannot be an epimorphism.

Proposition 11. The figure-eight knot is not ambient isotopic to the unknot.

Proof. As the previous examples have shown, the figure-eight knot has the same
homomorphisms into S3 as the unknot, but we can make a similar argument to that
of proposition 9 by instead considering the alternating group on 4 letters:

A4 = {e} ∪ {(123), (132), (124), (142), (134), (143), (234), (243)}
∪ {(12)(34), (13)(24), (14)(23)}.

Let H = 〈 a, b | aba−1ba = bab−1ab 〉 be the figure-eight group, and let f : H → S3 be
generated by f(a) = (123) and f(b) = (142). We get the following calculations:

(123)(142)(123)−1(142)(123) = e = (142)(123)(142)−1(123)(142)

(142)(123) = (143) 6= (234) = (123)(142).

This shows that f is a well-defined homomorphism and that f(a)f(b) 6= f(b)(a).
Therefore ab 6= ba, so H 6= Z.

It is not hard to program a computer to perform analyses such as the above for
various given groups and knots (in the general case, by counting the total number of
homomorphisms between the groups), and this method may be used to distinguish
many different knots from each other.
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3 Torus knots

In this section we investigate a certain class of knots in detail.

3.1 Definition and geometry

A torus knot is a knot lying on a torus surface embedded in R3, by which a ‘standard’
or ‘unknotted’ embedding of the torus is meant. An example of a torus knot is the
trefoil knot, as shown in figure 12.

Figure 12: A trefoil knot on the surface of a torus.

We can view any torus knot as a map from the circle S1 to the torus S1 × S1,
ignoring for the moment the question of precisely how the torus is embedded.

Proposition 12. Taking S1 to be represented by the complex unit circle and letting
p, q ∈ Z be such that gcd(p, q) = 1, the map S1 → S1 × S1 given by z 7→ (zp, zq) is
injective.

Proof. Let a, b ∈ S1 ⊂ C be such that (ap, aq) = (bp, bq). This implies

p arg a = p arg b+ 2πm; q arg a = q arg b+ 2πn

for m,n ∈ Z. Letting d = arg a − arg b, we get d
2π = m

p = n
q ∈ Q. If this rational

number is written in reduced form as r
s , then pr

s = m and qr
s = n are integers, so s|p

and s|q, but gcd(p, q) = 1, so s = 1. Thus arg a − arg b = d = 2πr and since r ∈ Z
and |a| = |b| = 1, this implies that a = b.

We now return to the question of how to embed the torus in R3. We choose an
embedding such that S1 × {0} maps to a longitude, i.e. a loop going around the
‘outside’ hole of the torus, and {0}×S1 maps to a meridian, i.e. a loop going around
the ‘inside’ hole of the torus,9 as in figure 13. This allows us to define a collection of
knots:

Definition 12. A (p, q)-torus knot is given by the map z 7→ (zp, zq) for p, q ∈ Z with
gcd(p, q) = 1, composed with the embedding of the torus described by figure 13.

We can view the longitude as a (1, 0)-torus knot and the meridian as a (0, 1)-torus
knot (though in R3 they are ambient isotopic), and consequently a (p, q)-torus knot
is one that wraps around the torus p times in the longitudinal direction and q times
in the meridional direction. For example, the trefoil knot is a (2, 3)-torus knot.

One thing might seem lacking from this definition: we have not specified a standard
orientation of S1 or the embedding, and we might as well have said that the trefoil

9This is the standard terminology, though it is perhaps confusing: on a globe, a meridian is
a curve of constant longitude, while ‘latitude’ describes the perpendicular coordinate. At least one
author, [Sti93], indeed talks about meridians and latitudes instead, but we will stick to the established
convention.
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Figure 13: In blue: S1 × {0}, a longitude. In red: {0} × S1, a meridian.

knot in the picture is a (−2, 3)-torus knot for a different choice of orientation. For our
purposes, this is not a problem, as long as we keep in mind that there is always an
implicit choice of orientation.

So far we have only shown that (p, q)-torus knots actually exist: we have not shown
that all knots on a torus surface are (p, q)-torus knots, and we have not shown which
torus knots are isomorphic and which are not. We will focus on the latter question,
but we first give an overview of the former. We may take the meridian µ and longitude
λ as generators of π1(S1 × S1) = Z × Z. Any closed curve on the torus is therefore
homotopic to µaλb for integers a, b. The following facts about curves on tori form the
core of the argument.

Proposition 13. Any simple closed curve on S1×S1 is null-homotopic or homotopic
to µaλb for relatively prime integers a and b. Furthermore, any two homotopic simple
closed curves on S1 × S1 are ambient isotopic on S1 × S1.

These assertions are proven in the first chapter of [Rol03] by a series of geometric
arguments which we will not repeat here. It follows that the isotopy classes of simple
closed curves on S1 × S1 are exactly the (p, q)-torus knots if a loop that is null-
homotopic on S1 is added as a ‘(0, 0)-torus knot’ (our actual definition does not cover
this case), but for knots in R3 this addition does not make a difference.

We now investigate which torus knots are equivalent as knots in R3:

Proposition 14. The (p, q)-torus knot is ambient isotopic to torus knots of the types
(q, p), (−p,−q), and (−q,−p), and the mirror image of the (p, q)-torus knot is ambient
isotopic to the (p,−q)-torus knot.

Proof. The easiest way to see that (p, q) is (q, p) is to work in S3 = R3 ∪{∞} instead
of R3: in that case, the inside and the outside of the torus surface are both solid tori,
which can be exchanged by an ambient isotopy.

Rotating the knot 180◦ around an axis passing through the torus twice turns the
(p, q) type into (−p,−q) (which implies that torus knots are invertible).

Mirroring the torus knot in the plane aligned with the core of the torus turns the
meridian (0, 1) into (0,−1) but does not affect the longitude, so (p, q)∗ = (p,−q).

Proposition 15. For all n ∈ Z, the torus knots of types (n, 1), (n,−1), (1, n), and
(−1, n) are all isotopic to the unknot.

Proof. The (1, n)-torus knot, as seen from above, has no crossings, so it is an unknot.
The others follow from proposition 14.

In our later investigation of torus knots, we will usually restrict ourselves to the
case when p, q ≥ 2.
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Figure 14: Generators for the group of the (3, 5)-torus knot.

3.2 Calculating a presentation

For torus knots, the Wirtinger method does not produce a very practical presentation,
but applying the Seifert–van Kampen theorem directly turns out to be relatively
simple, allowing us to prove the following presentation.

Theorem 2. The knot group of a (p, q)-torus knot is presented by 〈 a, b | ap = bq 〉.
Proof. Let T be an unknotted torus in R3 and let K be a (p, q)-torus knot on the
surface of T . Let NK be a closed tubular neighborhood of K, and let NT be an open
neighborhood of T thin enough that NT − NK is homotopy equivalent to T − K,
i.e. such that NK extends outside NT all along the knot on both sides of the torus
surface. R3−T has two components: let A0 be the bounded component inside T , and
let B0 be the unbounded component outside of T , and form

A = (A0 ∪NT )−NK ; B = (B0 ∪NT )−NK .

Now A and B are open sets in R3, A ∪ B = R3 − NK and A ∩ B = NT − NK .
Since A is a solid torus, just with ‘trenches’ dug out along the surface where the
knot is, it has π1(A) = π1(S1) = Z, and by the same argument as in example 2
we get π1(B) = π1(S2 ∨ S1) = Z. Let a and b be generators for π1(A) and π1(B)
respectively. The intersection A∩B = NT −NK is homotopy equivalent to T −K, so
it has fundamental group Z which we may give a generator c. The generator c wraps
around the torus p times longitudinally, like K, so it equals ap in π1(A). Similarly,
it equals bq in π1(B). By the Seifert–van Kampen theorem, we get a presentation for
π1(R3 −K) = π1(A ∪ B) by joining the generators (a and b) and relations (none) of
π1(A) and π1(B) together with the relation ap = bq, as desired.

3.3 Torus knots are different

The method of considering all homomorphisms into a suitably chosen finite group
presented in section 2.3 is a powerful method of distinguishing any two given knots,
but it is not easy to apply to the general case of all torus knots. In this section we will
instead investigate the torus knot groups directly, and prove them non-isomorphic,
establishing the existence of infinitely many inequivalent knots. This is the penulti-
mate step in classifying all torus knots, leaving only the proof that torus knots are
chiral, which is done in section 4.2.

Torus knot groups were first proven to all be inequivalent by Otto Schreier in
[Sch24], whose analysis we will follow. We begin by proving a property of free products
of groups which we will need.

Proposition 16. If G and H are nontrivial groups, G ∗H has trivial center.
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Proof. Let w be any non-identity element of G ∗H, as a reduced word, and assume
that it begins with an element of G. It can be written either as w = g0h1g1 . . . hngn
or as w = g0h1g1 . . . hngnhn+1 where all gi ∈ G− {e} and hi ∈ H − {e}. Choose any
non-identity element h ∈ H. The element hw is already in reduced form, and begins
with h. The element wh may either be in reduced form, or be subject to a reduction
of a product in H at the end. Either way, wh will begin with g0, so hw 6= wh, and w
cannot be central. Similarly, w cannot be central if it begins with an element of H,
so Z(G ∗H) is trivial.

Theorem 2 gives a presentation of the group of a (p, q)-torus knot as 〈 a, b | ap =
bq 〉, which we will denote as Gp,q throughout this section and the next. We also
denote the center of this group as Cp,q, the quotient by the center as Bp,q, and the
abelianization of that quotient as Ap,q:

Gp,q = 〈 a, b | ap = bq 〉; Cp,q = Z(Gp,q); Bp,q = Gp,q/Cp,q; Ap,q = (Bp,q)
Ab

Our efforts will be focused on understanding these groups. We will start by using
proposition 16 to calculate the center.

Proposition 17. Cp,q is the infinite cyclic subgroup of Gp,q generated by ap.

Proof. Let H ⊂ Gp,q be the cyclic subgroup generated by ap, and let h = apn = bqn

be any element of H. Then ha = apn+1 = ah and hb = bqn+1 = bh, so h commutes
with the generators of Gp,q. Therefore, H ⊂ Cp,q, so H is a normal subgroup of Gp,q.

We can form the quotient Gp,q/H = 〈 [a], [b] | [a]p, [b]q 〉 which is equal to the free
product 〈 [a] | [a]p 〉 ∗ 〈 [b] | [b]q 〉. Neither factor is trivial, so Gp,q/H has only a trivial
center per proposition 16. If x is a central element of Gp,q, [x] must be central in
Gp,q/H, so Cp,q ⊂ H, which implies that Cp,q is exactly H.

The result in proposition 17 is interesting in its own right, as it turns out that the
center of all knot groups not belonging to torus knots is actually trivial, as proved by
Burde and Zieschang in [BZ66].

We turn our attention to Bp,q, which can be represented as 〈 [a], [b] | [a]p, [b]q 〉 or
equally as 〈 [a] | [a]p 〉 ∗ 〈 [b] | [b]q 〉, thanks to the calculation of Cp,q.

Proposition 18. If [x] ∈ Bp,q has finite order, [x] is conjugate to a power of [a] or
to a power of [b].

Proof. Suppose [g] ∈ Bp,q = 〈 [a] | [a]p 〉 ∗ 〈 [b] | [b]q 〉 such that [g]r = 1. This element
has a normal form

[g] = [a]α1 [b]β1 . . . [a]αm [b]βm

where the only exponents allowed to be 0 are α1 and βm, for some integer m. Since
the word ([a]α1 [b]β1 . . . [a]αm [b]βm)r cannot be reduced unless the normal form begins
and ends with a power of the same element, either α1 = 0 or βm = 0.

If m = 1, then [g] must be a power of [a] or [b] (so it is of course also conjugate
to one). Now assume the result for all elements of finite order whose normal form has
fewer than m terms from either group. In that case we do two calculations depending
on which of α1 and βm is zero:

α1 = 0 =⇒ [b]−β1 [g][b]β1 = [a]α2 . . . [b]βm+β1

βm = 0 =⇒ [a]αm [g][a]−αm = [a]α1+αm . . . [b]βm−1

In both cases, [g] is conjugate to an element whose normal form has fewer than m
terms from either group, and which has order r like [g], making it conjugate to a
power of [a] or [b] by assumption. The result follows from induction.
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We are now ready to prove the main theorem by finding an isomorphism invariant
that distinguishes the torus knot groups.

Theorem 3 (Schreier). For the groups Gp,q, given that 0 < p < q and gcd(p, q) = 1,
the pair of integers (p, q) is an isomorphism invariant.

Proof. This proof should be thought of as calculating p and q from the structure of
Gp,q using only information that is isomorphism-invariant. If an element of Bp,q has
finite order, the order divides p or q by proposition 18, so the largest finite order of
an element in Bp,q is q. Now consider the the abelianization Ap,q:

Ap,q = 〈 [a], [b] | [a]p = 1, [b]q = 1, [a][b] = [b][a] 〉 ∼= Zp × Zq.

Any isomorphic groups will have isomorphic quotients by their centers and isomorphic
abelianizations, so q as well as Zp×Zq are invariantly derived from Gp,q, from which
we can recover p as the order of Ap,q (which is pq), divided by q.

3.4 Group automorphisms

Schreier’s analysis did not stop at proving the groups inequivalent: he also calculated
all automorphisms of these groups. We will present Schreier’s calculation of the au-
tomorphisms below, and use it to prove that torus knots are chiral in section 4.2. We
start with finding the automorphisms of Bp,q.

Proposition 19. All automorphisms f of Bp,q = 〈 [a], [b] | [a]p = [b]q = [1] 〉 are given
by f([a]) = [t][a]r[t]−1 and f(b) = [t][b]s[t]−1, for integers r, s such that gcd(p, r) =
gcd(q, s) = 1, and an element [t] ∈ Bp,q.

Proof. Since f([a])p = 1, the order of f([a]) must divide p (and is finite). By propo-
sition 18, f([a]) must then be conjugate to a power of [a] or [b]. Since (conjugates
of) powers of [b] have have orders dividing q and gcd(p, q) = 1, and f([a]) cannot
have order 1 as [a] 6= 1, we must have f([a]) = ρ[a]rρ−1 for some integer r and some
ρ ∈ Bp,q. Similarly, we must have f([b]) = σ[b]sσ−1 for some integer s and some
σ ∈ Bp,q. It remains to prove that r and s are relatively prime to p and q, and that
there is a single element [t] ∈ Bp,q that can replace both conjugating factors.

Consider now the abelianization Ap,q ∼= Zp × Zq with the abelianizing homomor-
phism g : Bp,q → Ap,q having g([a]) = (1, 0) and g([b]) = (0, 1). Since f and g are
surjective, g ◦ f must also be surjective. Under g, conjugating factors cancel, giving
g ◦ f([a]) = g([a]r) = (r, 0) and g ◦ f([b]) = f([b]s) = (0, s), assuming that 0 ≤ r < p
and 0 ≤ s < q are chosen. The elements (r, 0) and (0, s) must generate the whole
group Zp × Zq, so we must have gcd(p, r) = gcd(q, s) = 1.

Consider now conjugation by ρ−1, which is an (inner) automorphism of Bp,q.
Letting τ = ρ−1σ, the elements ρ−1f([a])ρ = [a]r and ρ−1f([b])ρ = τ [b]sτ−1 are
generators of Bp,q. If a reduced word of τ were to contain the sequence [b]β [a]α for
nonzero α, β, then no word on [a]r and τ [b]sτ−1 including [b] could be cancelled to
have length 1, so [b] cannot be generated. This implies that τ = [a]x[b]y (allowing one
or both of x and y to be 0), so σ = ρτ = ρ[a]x[b]y. Letting [t] = ρ[a]x we get:

f([a]) = ρ[a]rρ−1 = ρ[a]x[a]r[a]−xρ−1 = [t][a]r[t]−1

f([b]) = σ[b]sσ−1 = ρ[a]x[b]y[b]s[b]−y[a]−xρ−1 = [t][b]s[t]−1

This has the required form.

Finally we prove Schreier’s characterization of the automorphisms of the full group.
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Proposition 20. All automorphisms f of Gp,q = 〈 a, b | ap = bq 〉 are given by
f(a) = taεt−1 and f(b) = tbεt−1, where ε ∈ {−1, 1} and t ∈ Gp,q.

Proof. An automorphism of Gp,q induces automorphisms of the center Cp,q and of
Gp,q/Cp,q = Bp,q. Since the center is infinite cyclic, generated by ap, we must have

f(a)p = f(ap) = aεp = bεq = f(bq) = f(b)q

for some choice of ε ∈ {−1, 1}. We know that in Bp,q we must have [f(a)] = [t][a]r[t]−1

and [f(b)] = [t][b]s[t]−1, corresponding to:

f(a) ∈ [tart−1] =⇒ f(a) = tar+npt−1

f(b) ∈ [tbst−1] =⇒ f(b) = tbs+mqt−1

for some integers m,n. Combining these results, aεp = f(a)p = ta(r+np)pt−1, but
a(r+np)p is central, so aεp = a(r+np)p, implying ε = r + np as ap has infinite order.
Similarly, ε = s+mq.

21



4 The peripheral system

The knot group has proven useful for distinguishing multiple different knots, but it has
two apparent flaws: it cannot distinguish mirror images from each other, and it cannot
distinguish certain knot sums like the square and granny knots from each other. Both
of these problems are solved by augmenting the knot group with information about
certain curves on the boundary of a tubular neighborhood of a knot. Variations on
these methods go back to [Deh14] in which they are used to prove that the trefoil
knot is chiral, and were also used (in the form of ‘peripheral subgroups’) in [Fox52] to
distinguish the square and granny knots. We will use the specific notion of a peripheral
system (presented in [BZ03, Section 3C]) to give a generalization of Dehn’s result to
all torus knots (following [Sch24], [Sti93] and [BZ03]), as well as to present Fox’s result
in terms of the peripheral system.

4.1 Meridian and longitude

We introduced meridian and longitude curves on a standard torus in section 3.1.
Curves on the tubular neighborhood of a knot can be identified by the same principle,
though our definition no longer relies on any particular embedding of the torus.

Definition 13. Let K be an oriented knot with tubular neighborhood V .

• A meridian of K is a simple closed curve µ on δV that is null-homotopic in V
but not in δV .

• A longitude of K is a simple closed curve λ on δV that is homotopic to K in V .

The meridian and longitude identified in section 3.1 as generators of π1(S1 × S1)
satisfy definition 13 (after embedding the torus S1×S1 as V ), so there exists at least
one meridian and at least one longitude, which we may call µ0 and λ0, respectively.

These are not uniquely determined: the orientation of the meridian is ill-defined,
and while the longitude always has its orientation aligned with the knot, it is nonethe-
less more ambiguous than the meridian. Any number of ‘twists’ may be added to a
longitude, as in the bottom right of figure 15. This twisting is equivalent to repeated
composing with a meridian (after an isotopy). There is a natural way to choose an
unambiguous meridian-longitude pair, however:

Definition 14. A preferred meridian-longitude pair of an oriented knot K is a merid-
ian µ and a longitude λ such that µ∩λ is a single point, µ goes clockwise around the
knot, and λ, when viewed as an element of G = π1(R3−K,µ∩λ), represents 0 in the
abelianization of G.

The requirement that λ abelianizes to 0 has many equivalent statements, some of
them perhaps more intuitive, using e.g. linking numbers or homology, but we have
not developed the theory needed for those; details may be found in [Rol03, p. 132],
for example.

Proposition 21. Any two preferred meridians or longitudes are related by an ambient
isotopy of δV .

Proof. Taking µ0 and λ0 to be fixed (not necessarily preferred) meridian and longitude
generators of π1(δV ), we know that since µ0 is null-homotopic in V , a curve homotopic
to µa0λ

b
0 on δV is homotopic to λb0 in V .

This implies that all meridians are (nonzero) powers of µa0 , but only µ0 and µ−10

are represented by simple curves by proposition 13, so the choice of orientation is
enough to disambiguate the meridian.
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Since every longitude must be homotopic to K in V , all longitudes are homotopic
to µa0λ0. Since µ0 represents a Wirtinger generator, it abelianizes to 1 or −1, which
means that there is exactly one a such that µa0λ0 abelianizes to 0. Hence, all preferred
longitudes are homotopic on δV , and thus ambient isotopic on δV by proposition 13.

We have not proven that the same isotopy may be chosen to map both curves onto
their counterparts simultaneously, but we will not need that, either.

Definition 15. Let K be an oriented knot with knot group G = π1(R3 −K,x) for
any choice of basepoint x ∈ R3 −K, and a preferred meridian-longitude pair (µ, λ),
and let γ be any path from x to µ∩λ. Then, the triple (G, [γµγ−1], [γλγ−1]) is called
a peripheral system of K.

We will think of the peripheral system as the group G together with two distin-
guished elements, corresponding to a meridian and a longitude. Later in the section
we will have no need to consider paths explicitly, and we will then simply write pe-
ripheral systems as (G,µ, λ), using µ and λ to denote elements of G. For the next
proposition, showing that the peripheral system is unique up to conjugation by a
common element, we stick to the bracket notation:

Proposition 22. If K is a knot with knot group G = π1(R3−K,x) and two peripheral
systems:

(G, [γµγ−1], [γλγ−1]) and (G, [γ′µ′γ′−1], [γ′λ′γ′−1]),

there is an inner automorphism of G (i.e. conjugation by a fixed element of G) map-
ping one peripheral system onto the other.

Proof. By proposition 21, there is an isotopy of δV taking λ to λ′. Let δ be the path
taken by µ∩λ on δV in this isotopy, ending at µ′ ∩λ′. We then know that δ−1µδ and
δ−1λδ are homotopic in δV to the images under the isotopy of µ and λ, respectively.
For the longitude, this image is exactly λ′. For the meridian, the image of µ is a
meridian with the same orientation, which means that it is homotopic to µ′.

Now consider γ′δ−1γ−1. This is a loop based at x, so it generates an element of
G. We conjugate by this element:

[γ′δ−1γ−1][γµγ−1][γ′δ−1γ−1]−1 = [γ′δ−1µδγ′−1] = [γ′µ′γ′−1]

[γ′δ−1γ−1][γλγ−1][γ′δ−1γ−1]−1 = [γ′δ−1λδγ′−1] = [γ′λ′γ′−1]

This maps one peripheral system onto the other.

The following proposition gives a way of calculating a peripheral system of a knot,
given a diagram.

Proposition 23. Let a1, . . . , an be Wirtinger generators for an oriented knot K with
a given diagram. The generator a1 may be taken as a meridian element of π1(R3−K).
An expression for a corresponding longitude element is constructed as follows: travel
along the knot starting at the arc corresponding to a1. At each undercrossing, letting ac
be the generator for the overcrossing strand, write down ac if the overcrossing strand
points to the right, and let a−1c if it points to the left. After completing a circuit around
the knot, write down the power of a1 that makes the exponents add to 0.

Proof. Any Wirtinger generator fulfills the requirements for a meridian element by
definition. The choice of a1 as a meridian determines where the longitude must begin
and end. The procedure described in the proposition amounts to composing the arrows
representing Wirtinger generators, with the directions fixed so that they follow the
knot, so some longitude must be produced in this way. The final step ensures that the
longitude abelianizes to 0.
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Figure 15: The 62 knot with Wirtinger generators and with a longitude.

Example 6. To illustrate the process, figure 15 shows the so-called 62 knot and red
Wirtinger generators (a, . . . , f) to the left. We start at the arc of the generator a and
move in the direction of b. At the first crossing, f has the opposite orientation to
the one needed to follow the knot, so we write down f−1, and so on. We initially get
f−1e−1ab−1c−1d in this way, to which we add a2 to get an element corresponding to
the preferred longitude f−1e−1ab−1c−1da2 shown to the right in figure 15.

We can now investigate how the peripheral system may be useful when we have
more than one knot.

Proposition 24. If f is an ambient isotopy between the knots K and K ′, a preferred
meridian-longitude pair (µ, λ) of K gets mapped by f onto a preferred meridian-
longitude pair (µ′, λ′) of K ′.

Proof. We must check that the isotopy preserves the properties in definitions 13 and
14. The intersection of the curves being a single point is preserved by any bijec-
tive function. The isotopy induces isomorphisms of all relevant fundamental groups,
so the homotopic properties are also preserved. The ambient isotopy is orientation-
preserving, so µ′ is a preferred meridian. Finally, the image under the abelianization
map is preserved under an isomorphism, so λ′ is a preferred longitude.

Proposition 25. If K and K ′ are equivalent knots with peripheral systems (G,µ, λ)
and (G′, µ′, λ′), then there is an isomorphism f : G → G′ such that f(µ) = µ′ and
f(λ) = λ′.

Proof. The equivalence can be taken as an ambient isotopy, which maps (G,µ, λ)
onto some peripheral system of K ′, and since all peripheral systems of the same knot
are related by conjugation, the isomorphism induced by the ambient isotopy can be
composed with conjugation to form f .

Proposition 26. Let the knot K have peripheral system (G,µ, λ). If K is amphichi-
ral, there exists an automorphism f : G→ G such that f(µ) = µ−1 and f(λ) = λ.

Proof. A knot and its mirror image have isotopic groups, as mirroring in a plane is a
homomorphism. If the intersection between the meridian and the longitude is taken
as the basepoint, the mirroring reverses the orientation of a meridian with respect to
the knot, but maintains the longitude (figure 16).

Equally, invertible knots necessarily have an automorphism reversing both µ and
λ, though we will not use this.

A fact of theoretical interest is that the implication of proposition 25 has a converse
(see e.g. [BZ03] on the peripheral system), so the peripheral system is a complete
invariant of knots, but the proof of this is far beyond our scope.
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Figure 16: Effect of mirroring on a meridian and a longitude.

4.2 Torus knots are chiral

Max Dehn was the first to prove that the trefoil knot is chiral, through showing that an
ambient isotopy between the trefoil and its mirror image would lead to an impossible
automorphism of its knot group. The group-theoretic part of that work was simplified
and generalized by Schreier, whose results we have presented in section 3.4.

We will apply the peripheral system to torus knots in general. To do this, we
need to express meridian and longitude curves in terms of the generators of the knot
group. We begin by proving a geometric fact about curves on tori, along the lines of
proposition 12.

Proposition 27. If p, q, r, s are integers such that ps−qr ∈ {−1, 1}, the closed curves
S1 → S1 × S1 defined by z 7→ (zp, zq) and z 7→ (zr, zs) intersect in only one point.

Proof. Let a, b ∈ S1 ⊂ C be such that (ap, aq) = (br, bs), i.e.

p arg a = r arg b+ 2πm; q arg a = s arg b+ 2πn

for m,n ∈ Z. Assuming that arg a 6= 0, we get:

(p arg a)(s arg b+ 2πn) = (q arg a)(r arg b+ 2πm)

ps arg b+ 2πpn = qr arg b+ 2πqm

(ps− qr) arg b = 2π(qm− pn)

arg b = ±2π(qm− pn)

Therefore at least one of arg a and arg b is an integer multiple of 2π, giving either
a = 1 or b = 1. If a = 1 we have (br, bs) = (1, 1) and if b = 1 we have (ar, as) = (1, 1)
but since ps − qr = 1 implies both gcd(p, q) = 1 and gcd(r, s) = 1, proposition 12
gives a = b = 1 in both these cases.

We may now use these curves to calculate a peripheral system of torus knots,
following an argument presented in [BZ03] for knots on any handlebodies, which this
is a special case of.

Proposition 28. If the torus knot group Gp,q is presented as 〈 a, b | ap = bq 〉 in the
usual way, and r, s are integers such that ps−qr = 1, then µ = a−rbs and λ = apµ−pq

are a meridian and a longitude of the knot.

Proof. We take the knot to be the curve κ = z 7→ (zp, zq), and overlay the curve
χ = z 7→ (zr, zs), as shown in figure 17. Choose a meridian µ intersecting χ twice and
split it into two parts: v inside the torus (dashed in the figure) and v′ outside the torus
(solid in the figure) such that µ = vv′. For all relevant spaces we take the start of v
as the basepoint. Denote the section of χ outside the tubular neighborhood as χ′. We
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Figure 17: A torus cross-section (red) with a torus knot κ (black) and a once-
intersecting curve χ (black), as well as a tubular neighborhood of κ (blue).

then have [χ′v−1] = ar in π1(inside of torus) and [χ′v′] = bs in π1(outside of torus),
so v is homotopic to a−rχ′ and v′ is homotopic to χ′−1bs. Hence,

µ = vv′ = a−rχ′χ′−1bs = a−rbs.

The fact that κ and χ only intersect once is crucial, as otherwise the latter could
not extend into both the inside and the outside of the torus in this way.

Having calculated an expression for the meridian, we know that all longitudes are
of the form apµn. We may take an abelianization (to Z) of Gp,q as a 7→ q and b 7→ p,
in which case setting n = −pq gives the abelianization of apµn as

pq + (−qr + ps)(−pq) = pq − pq = 0.

We have previously calculated all automorphisms, in section 3.4, and now we only
need to show that none of them can satisfy the relations required by the peripheral
system.

Theorem 4. All (p, q)-torus knots for p, q ≥ 2 are chiral.

Proof. Assume that such a knot is amphichiral. Then there exists an automorphism
f of the group Gp,q = 〈 a, b | ap = bq 〉 such that

f(a−rbs) = b−sar; f(ap(a−rbs)−pq) = ap(a−rbs)−pq

for integers r, s such that ps − qr = 1. We know that f , like any automorphism of
Gp,q, must have f(a) = taεt−1 and f(b) = tbεt−1 for some ε ∈ {−1, 1} and t ∈ Gp,q.
Putting this into the equation for the meridian we get

b−sar = f(a−rbs) = f(a)−rf(b)s = ta−εrbεst−1

The first expression abelianizes to −ps+qr = −1, and the last expression abelian-
izes to −εqr + εps = ε, so ε = −1. Using f(ap) = a−p and f(a−rbs) = (a−rbs)−1, we
get

ap(a−rbs)−pq = f(ap(a−rbs)−pq) = f(a)pf(a−rbs)−pq = a−p(a−rbs)pq.

This implies a2p = (a−rbs)2pq, but this is impossible: the left-hand side is in the
center, but the right-hand side is not (it does not commute with a, for example).

A consequence of this is that any amphichiral knot cannot be a torus knot. In
particular, we have proved that the figure-eight knot is not a torus knot.
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4.3 The square and granny knots

We showed that the square and granny knots have isomorphic groups in example 5.
In this section we will prove that they are nonetheless not ambient isotopic. The
argument roughly follows [Fox52].

The main idea is to show that the peripheral systems for the two knots are inequiv-
alent by considering homomorphisms into the symmetric group S5. As a preliminary
step, we consider the trefoil on its own.

Proposition 29. Let G = 〈 a, b | aba = bab 〉 be the group of the trefoil knot. If
f : G→ S5 is a homomorphism such that f(a) = (12345), then either f(b) = (12345)
or f(b) = (12345)k(13254)(12345)−k for some integer k.

Proof. For convenience let α = f(a) = (12345) and β = f(b), so αβα = βαβ. We
know that β is also a 5-cycle since α and β are conjugate:

(ab)a(ab)−1 = bab(ab)−1 = b.

If β = αk for some k, then αβα = βαβ implies αk+2 = α2k+1, so k = 5n + 1 for
some integer n, giving the only solution α = β = (12345).

If β is not a power of α, there are 20 other 5-cycles it may map to. However,
conjugation of β by a power of α respects the group relation as shown just below, so
we only need to check one representative from each group of cycles related by such a
conjugation.

αβα = βαβ ⇐⇒ αnαβαα−n = αnβαβα−n

⇐⇒ α(αnβα−n)α = (αnβα−n)α(αnβα−n).

Conjugation by αk is easy to calculate, as it simply adds k (cyclically) to each letter.
The table below shows the resulting groups of 5-cycles.

β (12354) (12453) (12543) (13254)
αβα−1 (23415) (23514) (23154) (24315)
α2βα−2 (34521) (34125) (34215) (35421)
α3βα−3 (45132) (45231) (45231) (41532)
α4βα−4 (51243) (51342) (51432) (52143)

We check one element of each group to see if it can be chosen as β:

β = (12354) =⇒ βαβ = (15432) 6= (14532) = αβα

β = (12453) =⇒ βαβ = (243) 6= (153) = αβα

β = (12543) =⇒ βαβ = (354) 6= (345) = αβα

β = (13254) =⇒ βαβ = (23)(45) = αβα

From this we get the other class of possible homomorphisms.

We now prove by example that the square knot has a certain property (which we
later show that the granny knot does not).

Proposition 30. Let (G,µ, λ) be a peripheral system for the square knot. Then there
is a homomorphism f : G→ S5 such that the image f(G) is nonabelian, µ is mapped
to a 5-cycle, and λ is mapped to the identity.
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Figure 18: Generators for the square knot.

Proof. Let G = 〈 a, µ, b | aµa = µaµ, bµb = µbµ 〉 as in figure 18, where we take the
Wirtinger generator µ as the meridian element of the peripheral system. There are
two generators labeled µ in the picture, as they represent the same homotopy class
in the fundamental group. The expression a−1µa follows from the Wirtinger relation
at the crossing at beginning of its arc, and b−1µb follows from the relation at the
crossing at the end of its arc. By proposition 23, the longitude corresponding to µ is

λ = aµ(a−1µa)(b−1µb)−1µ−1b−1

Consider the homomorphism generated by f(µ) = (12345) and f(a) = f(b) =
(13254), which is well-defined by the same calculation as in the previous proof. We
need to check that it satisfies the necessary properties. The image is nonabelian:

f(aµ) = (13254)(12345) = (153)

f(µa) = (12345)(13254) = (142)

The meridian µ is mapped onto a 5-cycle by definition, and we calculate the longitude
using f(a) = f(b):

f(λ) = f(aµ(a−1µa)(b−1µb)−1µ−1b−1) = f(aµa−1µa)f(bµb−1µb)−1 = e.

We have shown that f has all the required properties.

We finally prove that the granny knot does not have the property just confirmed
for the square knot, completing the proof that they are inequivalent.

Proposition 31. Let (G,µ, λ) be a peripheral system of the granny knot. Then there
is no homomorphism f : G→ S5 such that the image f(G) is nonabelian, µ is mapped
to a 5-cycle, and λ is mapped to the identity.

Proof. To begin, it should be noted that if such a homomorphism did exist, composing
it (from the right) with an inner automorphism of G would not change the relevant
properties, so a proof for a specific choice of peripheral system is equally valid for
all peripheral systems of the same knot. Composition (from the left) with an inner
automorphism of S5 also preserves the relevant properties, so we only need to consider
classes of homomorphisms up to inner automorphism.

Let now G = 〈 a, µ, b | aµa = µaµ, bµb = µbµ 〉 as in figure 19. This is similar,
but not identical to the situation for the square knot. We again choose the Wirtinger
generator µ as the meridian element of the peripheral system, and we get the corre-
sponding longitude:

λ = aµ(a−1µa)bµ(b−1µb)µ−6.

We will find all homomorphisms mapping µ to a 5-cycle, and show that none of
them satisfy the other two properties. Since we only need to consider mappings up to
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Figure 19: Generators for the granny knot.

inner automorphism of S5, so we may choose that f(µ) = (12345), remembering that
this still allows us to freely conjugate by any power of (12345).

The subgroup A = 〈 a, µ | aµa = µaµ 〉 of G is isomorphic to the trefoil group, and
so is B = 〈µ, b | bµb = µbµ 〉. For each subgroup separately, there are two distinct
options for how it might be mapped into S5, as shown in proposition 29: given that
µ maps to (12345), the other generator either also maps to (12345) or to (13254)
conjugated by a power of (12345). Any combination of choices for the two subgroups
gives a well-defined homomorphism. We therefore have four cases to consider. For the
sake of readability we let τ = (12345):

1. The first case is when f(a) = f(b) = τ . In this case, all the generators of G map
to the same 5-cycle, so f(G) is abelian.

2. Second, we consider f(a) = τ and f(b) = τn(13254)τ−n, for some integer n. We
can choose an inner automorphism so that n = 0. The longitude must then map
to the following:

f(λ) = τ3(13254)τ(13254)−1τ(13254)τ−6 = (15432)

3. Third, the opposite scenario: f(a) = τm(13254)τ−m and f(b) = τ , for some
integer m. We can choose an inner automorphism so that m = 0. The longitude
must then map to the following:

f(λ) = (13254)τ(13254)−1τ(13254)τ−3 = (15432)

4. Fourth: f(a) = τm(13254)τ−m and f(b) = τn(13254)τ−n, for integers m and n.
We can choose an inner automorphism so that m = 0, but n is arbitrary. We
perform an intermediate calculation:

f(bµb−1µb) = τn(13254)τ−nτ(τn(13254)τ−n)−1ττn(13254)τ−n

= τn(13254)τ(13254)−1τ(13254)τ−n

= τn(13524)τ−n

We now get the meridian as the following:

f(λ) = (13524)τn(13524)τ−n−6

There are 5 values of n that can produce distinct products, and for all values
the product is (14253).

The first case is rejected because f(G) is abelian, and the others because the longitude
λ is not mapped to the identity element, concluding the proof.
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The above propositions demonstrate that the square and granny knots are not
ambient isotopic. It should be noted that since the square knot is amphichiral (and it
is not just ambient isotopic to its mirror image, but identical to it, if the reflection is
taken to map one trefoil onto the other) this also shows that the square and granny
knots are not each other’s mirror images, which in turn shows that the knot group on
its own fails to distinguish more ambient isotopy classes than just mirror images.
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