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Abstract

Fractals are undeniably popular, but what exactly is it that they are,
and how do we construct them? Without giving a formal definition of a
fractal, we will see that fractals are metric spaces that are characterized
by having a fractional Hausdorff dimension, and an infinitely intricate
structure that repeats on all scales. To generate examples of fractals, we
use a technique known as “Iterative Function Systems”. It is based on
the idea that the space of compact subsets of a complete metric space
is itself a complete metric space. We will construct fractals as limits of
Cauchy sequences in this “meta” space. By the means provided in M. F.
Barnsley’s Fractals Everywhere we use the random iteration algorithm to
render images for the Sierpinski triangle, the Barnsley fern, a fractal tree,
Koch snowflake, and the dragon curve. We find their fractal dimensions
to be 1.585, 1.45, 1.407, 1.262, and 1.524 respectively, where for the Koch
snowflake and the dragon curve we specifically looked at the dimension of
their boundaries.
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1 Introduction
Fractals are fascinating mathematical objects that can be rendered in pretty
pictures. Some also argue that fractals provide a good mathematical model for
many phenomena in nature. Once you know what to look for you will notice that
fractals, indeed, are everywhere. We come to see that fractal theory is used in
many types of sciences and engineering, as well as artistry. Then, what exactly
are fractals? How do we go about constructing them? Using M. F. Barnsley’s
book Fractals Everywhere we will enter the fascinating world of fractals and
explore their properties!

1.1 What are Fractals?
With the shape of nature in mind, Benoit Mandelbrot formed a theory in ge-
ometry. His goal was to express and measure mathematically the roughness of
objects in nature, such as mountains, trees, coastlines, etc. He introduced the
word “fractal” in 1975 to describe these structures.

There is not a universally agreed upon definition of what a fractal is, though
mathematicians in the field may feel that they recognize one when they see it.
We will refrain from giving a formal definition of a fractal. Rather, we use it
as a somewhat informal term describing spaces that possess one or more of the
following closely related properties:

1. Fractional dimension. The ordinary topological dimension of a space is,
by definition, an integer. But there is another notion of dimension, some-
times called the Hausdorff dimension. Hausdorff dimension agrees with
topological dimension for “nice” spaces like manifolds, but in general it
can take fractional values. Benoit Mandelbrot initially defined a fractal as
“a set for which the Hausdorff dimension strictly exceeds the topological
dimension.” This definition encompasses a large proportion of spaces that
people regard as fractals, but perhaps not all of them.

2. Self-similarity. A fractal is typically a set that is similar, via some standard
geometric transformation, to a part of itself. In many cases a fractal can
be written as a union of several scaled down copies of itself. By recursion,
this often leads to the next property.

3. An infinitely intricate structure that repeats itself on all scales. This in
return means that fractals are “nowhere differentiable”, which implies that
fractals cannot be measured in traditional ways, which was the problem
that gave Mandelbrot the motivation to form his new theory [4].

We are going to be using something called “iterated function systems” to con-
struct our fractals. This concept was first introduced by J. E. Hutchinson in
1981. It was later expanded upon by Michael F. Barnsley [3].
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The main source we will be using is Fractals Everywhere by Michael F. Barnsley
[2]. All of the following definitions, theorems, lemmas, and proofs can be found
in the book unless otherwise stated.

1.2 Background
In this part of the text we will have a look at a few definitions and theorems
that are not necessarily restricted to the theory of fractals, but rather may be
categorized as standard topology. The purpose of this section is to work as a
collection for the reader to refresh their knowledge as well as provide a dictionary
with tools we will later use when forming our theory.

First we will include the definition of a metric space which we will be using
moving forward. We are also covering Cauchy sequences and their significance
to a complete metric space.

Definition 1.1 (Metric Space). A metric space (X, d) is a space X together
with a real-valued function d : X×X→ R, which measures the distance between
pairs of points x and y in X. We require that d obeys the following axioms:

1. d(x, y) = d(y, x) ∀x, y ∈ X

2. 0 < d(x, y) <∞ ∀x, y ∈ X, x 6= y

3. d(x, x) = 0 ∀x ∈ X

4. d(x, y) ≤ d(x, z) + d(z, y) ∀x, y, z ∈ X.

Such a function d is called a metric.

Definition 1.2 (Cauchy Sequence). A sequence {xn}∞n=1 of points in a metric
space (X, d) is called a Cauchy sequence if, for any given number ε > 0, there
is an integer N > 0 so that

d(xn, xm) < ε for all n, m > N.

Definition 1.3 (Complete Metric Space). A metric space (X, d) is complete
if every Cauchy sequence {xn}∞n=1 in X has a limit x ∈ X.

Following three definitions cover specific properties amongst subsets of metric
spaces.

Definition 1.4 (Compact Subset). Let S ⊂ X be a subset of a metric space
(X, d). S is compact if every infinite sequence {xn}∞n=1 in S contains a subse-
quence having a limit in S.

Definition 1.5 (Bounded). Let S ⊂ X be a subset of a metric space (X, d). S
is bounded if there is a point a ∈ X and a number R > 0 so that

d(a, x) < R ∀x ∈ X.
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Definition 1.6 (Totally Bounded). Let S ⊂ X be a subset of a metric space
(X, d). S is totally bounded if, for each ε > 0, there is a finite set of points
{y1, y2, . . . , yn} ⊂ S such that whenever x ∈ X, d(x, yi) < ε for some yi ∈
{y1, y2, . . . , yn}. This set of points {y1, y2, . . . , yn} is called an ε-net.

Theorem 1.1. Let (X, d) be a complete metric space. Let S ⊂ X. Then S is
compact if and only if it is closed and totally bounded.

Proof to theorem above is not included in this paper, but may be found in
Barnsley’s Fractals Everywhere on page 20.

Definition 1.7. Let S denote a set of real numbers. Then the infimum of S
is equal to −∞ if S contains negative numbers of arbitrary large magnitude.
Otherwise the infimum of S = max{x ∈ R : x ≤ s for all s ∈ S}. The infimum
of S always exists because of the nature of the real number system, and it is
denoted by inf S. The supremum of S is similarly defined. It is equal to +∞
if S contains arbritary large numbers; otherwise it is the minimum of the set of
numbers that are greater than or equal to all of the numbers in S. The supremum
of S always exists, and it is denoted by supS.

Lastly we will introduce a notation for when we want to iterate transformations
on a metric space.

Definition 1.8. Let f : X → X be a transformation on a metric space. The
forward iterates of f are transformations f◦n : X → X defined by f◦0(x) = x,
f◦1(x) = f(x), f◦(n+1)(x) = f ◦ f (n)(x) = f(f (n)(x)) for n = 0, 1, 2, . . .. If f is
invertible then the backward iterates of f are transformations f◦(−m)(x) : X→
X defined by f◦(−1)(x) = f−1(x), f◦(−m)(x) = (f◦m)−1(x) for m = 1, 2, 3, . . ..

Now we hopefully have a base that lets us understand the fractal theory we will
be exploring moving forward.

2 The Metric Space of Fractals
Without giving an explicit definition of a fractal, we are interested in a subset
of a metric space with certain properties. To find this, we must first establish
a framework that provides tools that let us execute a search for such subsets.

2.1 Hausdorff Sets
Consider a metric space which points are subsets of a fixed metric space (X, d).
We will construct fractals in X as limits of Cauchy sequences in this space of
subsets of X. Before we figure out exactly how to do so, let us give a proper
definition.

Definition 2.1. Let (X, d) be a complete metric space. Define H(X) to be the
set of all compact subsets of (X, d) other than the empty set. We will call this
set H(X) the Hausdorff set of X.
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So we are looking at metric spaces that are complete, that is, metric spaces
where all Cauchy sequences have a limit (see definition 1.3 for further details.)
A common example of a complete metric space, which also happen to be the
one we will be using, is the Euclidean plane (R2, Euclidean). Note that this
property of completeness amongst the Euclidean spaces is not restricted to the
plane, but actually for any Rn we get a complete metric space.

We are interested in Cauchy sequences in H(X), so we need to construct a
complete metric on this set of sets. How exactly do we measure the distance
between two sets of points? Let us define a way!

2.2 Distance Between Sets
In order to study convergent sequences we need to define a way to measure how
“far away” two points are in the Hausdorff set. Since each point in the Hausdorff
set H(X) is itself a subset of X, we will define the distance between two sets.
We begin this by looking at the distance from one point in X to an entire subset.

Definition 2.2. Let (X, d) be a complete metric space. Consider x ∈ X and
B ∈ H(X). Define

d(x, B) = min{d(x, y) : y ∈ B}
to be the distance from the point x to the set B.

The assumption that B is compact and non-empty guarantees that d(x, B) is
well-defined. We now have a value for the distance from a point x ∈ X to a set
B ∈ H(X). We will use this definition in order to define the distance from a set
A ∈ H(X) to another subset B ∈ H(X).

Definition 2.3. Let (X, d) be a complete metric space. Let A, B ∈ H(X).
Define the distance from the set A to the set B to be

d(A, B) = max{d(x, B) : x ∈ A}.

With this definition, we do not necessarily get that d(A, B) = d(B, A). Ac-
cording to definition 1.1, this does not qualify as a metric due to its asymmetry.
In order to obtain a valid metric we will need to adjust our definition.

Definition 2.4 (Hausdorff Distance). Let (X, d) be a complete metric space.
Consider A, B ∈ H(X). Define

h(A, B) = max{d(A, B), d(B, A)}
to be the Hausdorff distance between two sets.

By this we get a symmetric way to measure distances, but before we proceed
we must indeed confirm that this forms a metric on H(X).
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Proof. Considering our set H(X) and the function h : H(X)×H(X)→ R. For
all A, B, C ∈ H(X), we have the following axioms:

1. h(A, B) = h(B, A),

2. 0 < h(A, B) <∞,

3. h(A, A) = 0,

4. h(A, B) ≤ h(A, C) + h(C, B).

Axiom 1 we have already stated to be true. 3 is apparent since h(A, A) =
max{d(A, A), d(A, A)} = d(A, A) = max{d(x, A) : x ∈ A} = 0. Since A
and B are compact, h(A, B) = d(a, b) for some a ∈ A and b ∈ B, which tells
us that 0 ≤ h(A, B) < ∞. Furthermore, if A 6= B we can assume there is
an a ∈ A so that a /∈ B. This follows that h(A, B) ≥ d(A, B) > 0, which
confirms axiom 2. Lastly, to show that axiom 4 is true we will first show that
d(A, B) ≤ d(A, C) + d(C, B). For any a ∈ A we have

d(a, B) = min{d(a, b) : b ∈ B}
≤ min{d(a, c) + d(c, b) : b ∈ B}∀c ∈ C
= d(a, c) + min{d(c, b) : b ∈ B}∀c ∈ C,

d(a, B) ≤ min{d(a, c) : c ∈ C}+ max{min{d(c, b) : b ∈ B} : c ∈ C}
= d(a, C) + d(C, B),

d(A, B) ≤ d(A, C) + d(C, B)

Similarly,

d(B, A) ≤ d(B, C) + d(C, A), and therefore
h(A, B) = max{d(A, B), d(B, A)}

≤ max{d(B, C), d(C, B)}+ max{d(A, C), d(C, A)}
= h(B, C) + h(A, C),

as desired.

This allows us to form the metric space (H(X), h). This is the metric space that
Barnsley expressed as “the space where fractals live”, which will be the space in
which we will work in moving forward.

2.3 The Complete Metric Space (H(X), h)

If the metric space (H(X), h) is complete, we know that all Cauchy sequences
have a limit. From this we can find a Cauchy sequence whose limit is the subset
we are trying to find; our desired fractal. Before we prove that this metric space
is complete, we need to introduce some tools that will help us in the proof. More
specifically we are interested in the extension of a Cauchy sequence.
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Definition 2.5. Let S ⊂ X and let Γ ≥ 0. Then S + Γ = {y ∈ X : d(x, y) ≤ Γ
for some x ∈ S}.

S + Γ is sometimes called, for example, in the theory of set morphology, the
dilation of S by a ball of radius Γ.

Lemma 2.1. Let A and B belong to H(X) where (X, d) is a metric space. Let
ε > 0. Then

h(A, B) ≤ ε ⇐⇒ A ⊂ B + ε and B ⊂ A+ ε.

Proof. Begin by showing that d(A, B) ≤ ε ⇐⇒ A ⊂ B+ε. Suppose d(A, B) ≤
ε. Then max{d(a, B) : a ∈ A} ≤ ε implies d(a, B) ≤ ε for all a ∈ A. Hence
for each a ∈ A we have a a ∈ B + ε, which means that A ⊂ B + ε. Suppose
A ⊂ B + ε. Consider d(A, B) = max{d(a, B) : a ∈ A}. Let a ∈ A. Since
A ⊂ B+ε, there is a, b ∈ B so that d(a, b) ≤ ε for all a ∈ A. Hence d(a, B) ≤ ε.
This is true for each a ∈ A. So d(A, B) ≤ ε. Since, by definition, h(A, B) =
max{d(A, B), d(B, A)}, which means that h(A, B) ≤ ε if and only if d(A, B) ≤
ε and d(B, A) ≤ ε. We know that d(A, B) ≤ ε ⇐⇒ A ⊂ B + ε, and by
symmetry we know that d(B, A) ≤ ε ⇐⇒ B ⊂ A+ ε, so h(A, B) ≤ if and only
if A ⊂ B + ε and B ⊂ A+ ε.

The following lemma will show us a way to apply this theory on our Haussdorff
sets.

Lemma 2.2 (The Extension Lemma). Let (X, d) be a metric space. Let {An :
n = 1, 2, . . . , ∞} be a Cauchy sequence of points in (H(X), h). Let {nj}∞j=1 be
an infinite sequence of integers

0 < n1 < n2 < n3 < · · · .
Suppose we have a Cauchy sequence {xnj ∈ Anj : j = 1, 2, 3, . . .} in (X, d).
Then there is a Cauchy sequence {x̃n ∈ An : n = 1, 2, . . .} such that x̃nj = xnj ,
for all j = 1, 2, 3, . . ..

Proof. We begin this proof by constructing the sequence {x̃n ∈ An : n =
1, 2, . . .}. For each n ∈ {1, 2, . . . , n1}, choose x̃n to be the closest point, or one of
the closest points, in An to xn1

: x̃n ∈ {x ∈ An : d(x, xn1
) = d(xn1

, An)}. Since
An is compact we know that such point exists. Similarly, for each j ∈ {2, 3, . . .}
and each n ∈ {nj + 1, . . . , nj+1}, choose x̃n ∈ {x ∈ An : d(x, xnj+1

) =
d(xnj+1 , An)}.

Now we show that {x̃n} is an extension of {xnj} to {An}. By construction
x̃nj = xnj and xn ∈ An. To show that it is a Cauchy sequence, let ε > 0 be
given. There is an N1 so that nk, nj ≥ N1 implies d(xnk , xnj ) ≤ ε/3. There is
an N2 so that m, n ≥ N2 implies

d(Am, An) ≤ ε/3.
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Let N = max{N1, N2} and note that, for m, n ≥ N ,

d(x̃m, x̃n) ≤ d(x̃m, xnj ) + d(xnj , xnk) + d(xnk , x̃n),

where m ∈ {nj−1 + 1, nj−1 + 2, . . . , nj} and n ∈ {nk−1 + 1, nk−1 + 2, . . . , nk}.
Since h(Am, Anj ) < ε/3 there exists y ∈ Am∩({xnj}+ε/3) so that d(x̃m, xnj ) ≤
ε/3. Similarly d(xnk , x̃n) ≤ ε/3. Hence d(x̃m, x̃n) ≤ ε for all m, n > N .

We now have the tools necessary in order to prove that the metric space (H(X), h)
is complete. Before we do, we will properly formulate the theorem:

Theorem 2.3 (The Completeness of the Space of Fractals). Let (X, d) be a
complete metric space. Then (H(X), h) is a complete metric space. Moreover,
if {An ∈ H(X)}∞n=1 is a Cauchy Sequence, then

A = lim
n→∞

An ∈ H(X)

can be characterized as follows:

A = {x ∈ X : there is a Cauchy sequence {xn ∈ An} that converges to x}.

This last expression is what we will be using as our definition for A when proving
this theorem.

Proof. In order to show that A 6= ∅ we will show that there exist a Cauchy
sequence {ai ∈ Ai} in X.
Find a sequence N1 < N2 < · · · < Nn < · · · of positive integers so that

h(Am, An) ≤ 1

2i
for m, n ≥ Ni.

Select an element xN1
∈ AN1

. Since h(AN1
, AN2

) ≤ 1
2 , we can pick xN2

∈ AN2

so that d(xN1
, xN2

) ≤ 1
2 . Suppose we choose a finite sequence xNi ∈ ANi

where d(xNi−1 , xNi) ≤ 1
2i−1 where i = 1, 2, . . . , k. Then, since xNk ∈ ANk , and

h(ANk , ANk+1
) ≤ 1

2k
, we can choose xNk+1

∈ ANk+1
such that d(xNk , xNk+1

) ≤
1
2k
. Assume we pick the xNk+1

that is the closest to xNk . By induction we are
able to select an infinite sequence {xNi ∈ ANi} where d(xNk , xNk+1

) ≤ 1
2k
.

Now we want to show that {xNi} is a Cauchy sequence in X. Let ε > 0 and
choose Nε such that

∑∞
i=Nε

1
2i < ε. For m > n ≥ Nε we get that

d(xNm , xNn) ≤ d(xNm , xNm+1
) + d(xNm+1

, xNm+2
) + · · ·+ d(xNn−1

, xNn)

<

∞∑

i=Nε

1

2i
< ε.

By using the Extension lemma we find that there exists a convergent subse-
quence {ai ∈ Ai} where aNi = xNi . This tells us that lim ai exists and by
definition is in A, in other words, A is non-empty.
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Proceeding, we wish to show that A is closed. Suppose that {ai ∈ Ai} is a
sequence that converges to some point a. By showing that a ∈ A we show
that A is indeed closed. For each positive integer i, there exists a sequence
{xi, n ∈ An} such that limn→∞ xi, n = ai. We introduce two more sequences
of positive numbers, one increasing {Ni}∞i=1 such that d(aNi , a) < 1

i , the other
(not necessarily increasing) consists of integers {mi} such that d(xNi,mi , aNi) ≤
1
i . Thus d(xNi,mi , a) ≤ 2

i . If we let ymi = xNi,mi , we see that ymi ∈ Ami and
that limi→∞ ymi = a. Using the extension lemma again, we can extend {ymi}
to a convergent sequence {zi ∈ Ai}, and so a ∈ A. This is what we wanted
to show, therefore is A closed. Since X is complete, we also know that A is
complete from this!

Before we prove that A is totally bounded, we want to prove that for every ε > 0,
there is an N such that for n ≥ N , A ⊂ An + ε. We will use this expression
later in the proof!

Let ε > 0. There exists an N such that for some m, n ≥ N , h(Am, An) ≤ ε.
Now let n ≥ N , then for m ≥ n, we get Am ⊂ An + ε. We want to show that
A ⊂ An + ε. Let a ∈ A. There is a sequence {ai ∈ Ai} that converges to a.
We assume that N is large enough so that for m ≥ N , d(am, a) < ε. Then we
know that am ∈ An + ε since Am is a subset of An + ε. Since An is compact, it
is possible to show that An + ε is closed. Because am ∈ An + ε for all m ≥ N , a
must also be in An + ε, which means that A ⊂ An + ε when n is large enough.

We will prove that A is totally bounded by contradiction. Suppose that A was
not totally bounded. Then for some ε > 0 there would not exist a finite ε-net.
We could then find a sequence {xi}∞i=1 in A such that d(xi, xj) ≥ ε for i 6= j.
We just proved that there exists an n large enough so that A ⊂ An + ε

3 . For
each xi, there is a corresponding yi ∈ An for which d(xi, yi) ≤ ε

3 . Since An
is compact, some subsequence {yni} of {yi} converges. From this converging
sequence we can find points with a desired distance, in particular we select two
points yni and ynj such that d(yni , ynj ) <

ε
3 . Using the triangle inequality we

see

d(xni , xnj ) ≤ d(xni , yni) + d(yni , ynj ) + d(ynj , xnj ) <
ε

3
+
ε

3
+
ε

3
,

which contradicts with the way {xni} was chosen. This would mean that A is
totally bounded. Since we already proved that A is also complete, we also know
that A is compact.

The last piece we need to prove is that limAn = A. We just showed that A
is compact, which would mean that A ∈ H(X). We have acquired tools that
let us boil this down to showing that for ε > 0, there is an N such that, for
n ≥ N , An ⊂ A + ε. We show this by letting ε > 0 and finding N so that
for m, n ≥ N , h(Am, An) ≤ ε

2 . Then for m, n ≥ N , Am ⊂ An + ε
2 . Let
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n ≥ N . We will show that An ⊂ A+ ε. Let y ∈ An. There exists an increasing
sequence {Ni} of integers such that n < N1 < N2 < · · · < Nk < · · · and
for m, n ≥ Nj , Am ⊂ An + ε

2j+1 . Note that An ⊂ AN1
+ ε

2 . Since y ∈ An,
there exists an xN1

∈ AN1
such that d(y, xN1

) ≤ ε
2 . Since xN1

∈ AN1
, there

is a point xN2
∈ AN2

such that d(xN1
, xN2

) ≤ ε
22 . In a similar manner we

can use induction to find a sequence xN1
, xN2

, . . ., such that xNj ∈ ANj and
d(xNj , xNj+1) < ε

2j+1 . Using the triangle inequality a number of times we can
show that

d(y, xNj ) ≤
ε

2
for all j

and also that {xNj} is a Cauchy sequence. From the way n was chosen, each
ANj ⊂ An + ε

2 . {xNj} converges to a point x since An + ε
2 is closed, x ∈ An + ε

2
also. Moreover, d(y, xNj ) ≤ ε implies that d(y, x) ≤ ε. We have thus shown
that An ⊂ A + ε for n ≥ N . This completes the proof that limAn = A and,
since this was the last step, that (H(X), h) is a complete metric space.

This is a rather long proof, but its result will be a powerful tool for us moving
forward. We have now defined an environment where we wish to construct our
fractals, but we have yet to figure out how to do so. In the next section we will
have a closer look at different mappings on metric spaces and how we can use
these combined with our metric space (H(X), h) to create fractals.

3 IFS
There are many ways to go about when constructing a fractal. In this text
our main focus will be on a method called hyperbolic iterated function system.
Since this is a system of functions, we first need to have a closer look on what
functions these are and what they look like on our metric space (H(X), h).

3.1 Transformations
Barnsley mentions multiple types of transformations on different types of metric
spaces, but since our main focus is on the plane R2, we will have a look at those
relevant to that.

3.1.1 Affine Transformations

Definition 3.1. A transformation w : R2 → R2 of the form

w(x1, x2) = (ax1 + bx2 + e, cx1 + dx2 + f),

where a, b, c, d, e, and f are real numbers, is called a (two-dimensional) affine
transformation.
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A more convenient notation for this is to express this with matrices:

w(x) = w

(
x1
x2

)
=

(
a b
c d

)(
x1
x2

)
+

(
e
f

)
= Ax+ t,

where A =
(
a b
c d

)
and t =

( e
f

)
. A can always be expressed with polar coordinates

A =

(
a b
c d

)
=

(
r1 cos θ1 −r2 sin θ2
r1 sin θ1 r2 cos θ2

)
,

which means that (r1, θ1) are the polar coordinates of the point (a, c) and
(r2, (θ2 + π/2)) are those of point (b, d). Like this it is easier to visualize what
happens when you apply A to points in space, since the vector (1, 0) is rotated
by angle θ1 and scaled by factor r1, and (0, 1) is rotated and scaled by θ2 and
r2. If we want to have some affine transformation that only allows translations,
scaling, reflection, and rotation, we may set r1 = r2 and θ1 = θ2. We may give
this sort of mapping a special name.

Definition 3.2. A transformation w : R2 → R2 is called a similitude if it is an
affine transformation having one of the special forms

w

(
x1
x2

)
=

(
r cos θ −r sin θ
r sin θ r cos θ

)(
x1
x2

)
+

(
e
f

)

w

(
x1
x2

)
=

(
r cos θ r sin θ
r sin θ −r cos θ

)(
x1
x2

)
+

(
e
f

)

for some translation (e, f) ∈ R2, some real number r 6= 0, and some angle θ,
0 ≤ θ < 2π. θ is called the rotation angle while r is called the scale factor or
scaling.

3.1.2 Contraction Mappings

Definition 3.3. A transformation f : X→ X on a metric space (X, d) is called
contractive or a contraction mapping if there is a constant 0 ≤ s < 1 such that

d(f(x), f(y)) ≤ s · d(x, y)∀x, y ∈ X.

Any such number s is called a contractivity factor for f .

Theorem 3.1 (The Contraction Mapping Theorem). Let (X, d) be a complete
metric space and let f : X→ X be a contraction mapping. There is exactly one
fixed point xf ∈ X such that for any point x ∈ X the sequence {f◦n(x) : n =
1, 2, . . .} converges to xf . That is,

lim
n→∞

f◦n(x) = xf , for each x ∈ X

Proof. Let x ∈ X, and let 0 ≤ s < 1 be a contractivity factor for f . Then

d(f◦n(x), f◦m(x)) ≤ smin{m,n}d(x, f◦|n−m|)(x) (1)
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for all m, n = 0, 1, 2, . . ., where we have fixed x ∈ X. In particular, for k =
0, 1, 2, . . ., we have

d(x, f◦k(x)) ≤ d(x, f(x)) + (f(x), f◦2(x)) + . . .+ d(f◦(k−1)(x), f◦k(x))

≤ (1 + s+ s2 + · · ·+ sk−1)d(x, f(x))

≤ (1− s)−1d(x, f(x)),

so substituting into equation 1 we obtain

d(f◦n(x), f◦m(x)) ≤ smin{m,n} · (1− s)−1 · (d(x, f(x)),

from which follows that {f◦n(x)}∞n=0 is a Cauchy sequence. Since X is complete
this Cauchy sequence possesses a limit xf ∈ X, and we have

lim
n→∞

f◦n(x) = xf .

Now we need to show that xf is a fixed point of f . Since f is contractive it is
continuous, hence

f(xf ) = f( lim
n→∞

f◦n(x)) = lim
n→∞

f◦(n+1)(x) = xf .

Lastly we need to check if it is possible to have more than one fixed point.
Suppose there are. Let xf and yf be two fixed points of f . Then xf = f(xf ),
yf = f(yf ), and

d(xf , yf ) = d(f(xf ), f(yf )) ≤ sd(xf , yf ),

where (1− s)d(xf , yf ) ≤ 0, which implies d(xf , yf ) = 0 and hence xf = yf .

We are interested in these contraction mappings when applied to the metric
space (H(X), h). Now we want to know how a contraction mapping on the
underlying metric (X, d) translates to our Hausdorff space.

The first two things we are going to note are: A contraction mapping w on the
metric space (X, d) is continuous, and w maps (H(X), h) into itself. So, by
letting a contraction mapping act on a non-empty compact subset of X we in
return get a compact subset of X. The contraction mappings we speak of have
only acted on specific points in the Hausdorff set, but we will now use these in
order to create contraction mappings on (H(X), h). Proofs to the following two
lemmas can be found in Barnsley’s book on pages 79–80.

Lemma 3.2. Let w : X → X be a contraction mapping on the metric space
(X, d) with contractivity factor s. Then w : H(X)→ H(X) defined by

w(B) = {w(x) : x ∈ B} ∀B ∈ H(X)

is a contraction mapping on (H(X), h(d)) with contractivity factor s.
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If we now want to combine multiple contraction mappings on (H(X), h) to make
new contraction mappings on (H(X), h), we may use the following lemma:

Lemma 3.3. Let (X, d) be a metric space. Let {wn : n = 1, 2, . . . , N} be
contraction mappings on (H(X), h), where sn is the contractivity factor for wn
for each n. Define W : H(X)→ H(X) by

W (B) = w1(B) ∪ w2(B) ∪ . . . ∪ wn(B) = ∪Nn=1wn(B),

for each B ∈ H(X). Then W is a contraction mapping with contractivity factor
s = max{sn : n = 1, 2, . . . , N}.

This in return gives us the final tool we need in order to define hyperbolic
iterated function systems!

3.2 Hyperbolic Iterated Function Systems
We finally have the tools necessary in order to introduce the concept of hyperbolic
iterated function systems. We start this off by defining what this is:

Definition 3.4. A (hyperbolic) iterated function system (commonly referred to
as “IFS”) consists of a complete metric space (X, d) together with a finite set of
contraction mappings wn : X→ X, with respective contractivity factors sn, for
n = 1, 2, . . . , N . The notation for the IFS is {X; wn, n = 1, 2, . . . , N} and its
contractivity factor is s = max{sn : n = 1, 2, . . . , N}.

If we now combine all these mappings and let them act together in one trans-
formation, we will find a unique fixed point similar to the one in the contraction
mapping theorem. The following theorem is our main theoretical result. It
combines Theorem 3.1, Lemma 3.2, and Lemma 3.3.

Theorem 3.4. Let {X : wn, n = 1, 2, . . . , N} be a hyperbolic iterated function
system with contractivity factor s. The transformation W : H(X) → H(X)
defined by

W (B) = ∪Nn=1wn(B), for all B ∈ H(X),

is a contraction mapping on the complete metric space (H(X), h(d)) with con-
tractivity factor s. In other words

h(W (B), W (C)) ≤ s · h(B, C), for all B, C ∈ H(X).

There is a unique fixed point A ∈ H(X) such that

A = W (A) = ∪Nn=1wn(A)

and is given by A = limn→∞W ◦n(B) for any B ∈ H(X).
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The attractor of a hyperbolic iterated function system is, in many cases, a
fractal. It follows from Theorem 3.4 that the attractor equals to a union of
scaled down copies of itself, which is one of our defining characteristics of a
fractal. We will see later that in many cases the attractor has a fractional
Hausdorff dimension. The figures we later generate depict the attractor of some
iterated function systems, and in these we can tell that these have the infinitely
intricate, nowhere differentiable structure that we expect of fractals.

In order to find the attractor of a given IFS, we need to start with a non-empty
compact subset A ∈ X, apply the functions w1, w2, . . . , wn to A, take the union
w1(A) ∪ w2(A) ∪ . . . ∪ wn(A), and then repeat the procedure many times. By
theorem 3.4, the process converges to the attractor, so after enough iterations
we will be close to it. In practice, rather than take the union of all wi(A), we
will only apply one randomly selected function wi at each step. This is the
Random Iteration Algorithm, which we will explore further in the next section.

3.3 Algorithms
Despite us often thinking of fractals as “cool pictures”, we have yet to actually
generate pictures of fractals. With the theory we have discussed, we can render
pictures of attractors of different IFS using algorithms and computers. For
simplicity’s sake we will focus on fractals with the underlying space to be in R2.

If we consider hyperbolic IFS {R2; wi : i = 1, 2, . . . , N}, where each of its
mapping is an affine transformation. Using the same notation as Barnsley we
can express such map wi(x) as

wi(x) = wi

(
x1
x2

)
=

(
ai bi
ci di

)(
x1
x2

)
+

(
ei
fi

)
= Aix+ ti.

Now if we use this we can express our IFS in tables. Tables 1–5 show examples
on some IFS we will later generate pictures of. These also include a probability–
column, which we will return to in section 3.3.1.

w a b c d e f p
1 1/2 0 0 1/2 1 1 0.33
2 1/2 0 0 1/2 1 50 0.33
3 1/2 0 0 1/2 50 50 0.34

Table 1: IFS for the Sierpinski triangle.
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w a b c d e f p
1 0 0 0 0.16 0 0 0.01
2 0.85 0.04 −0.04 0.85 0 1.6 0.85
3 0.2 −0.26 0.23 0.22 0 1.6 0.07
4 −0.15 0.28 0.26 0.24 0 0.44 0.07

Table 2: IFS for the Barnsley fern.

w a b c d e f p
1 0 0 0 0.5 0 0 0.05
2 0.42 −0.42 0.42 0.42 0 0.2 0.4
3 0.42 0.42 −0.42 0.42 0 0.2 0.4
4 0.1 0 0 0.1 0 0.2 0.15

Table 3: IFS for a fractal tree.

w a b c d e f p

1 1/2 −
√

3/6
√

3/6 1/2 0 0 0.142
2 1/3 0 0 1/3 1/

√
3 1/3 0.143

3 1/3 0 0 1/3 1/
√

3 −1/3 0.143
4 1/3 0 0 1/3 −1/

√
3 1/3 0.143

5 1/3 0 0 1/3 −1/
√

3 −1/3 0.143
6 1/3 0 0 1/3 0 2/3 0.143
7 1/3 0 0 1/3 0 2/3 0.143

Table 4: IFS for the Koch snowflake.

w a b c d e f p
1 1/2 −1/2 1/2 1/2 0 0 0.5
2 −1/2 −1/2 1/2 −1/2 1 0 0.5

Table 5: IFS for the dragon curve.

3.3.1 The Random Iteration Algorithm

Let {X;w1, w2, . . . , wN} be a hyperbolic IFS, where for each wi (i = 1, 2, . . . , N)
we have a probability pi > 0 with

∑n
i=1 pi = 1. Choose x0 ∈ X and then recur-

sively select

xn ∈ {w1(xn−1), w2(xn−1), . . . , wN (xn−1)} for n = 1, 2, 3, . . . ,

where each event xn = wi(xn−1) has the probability pi. In return we end up
with the sequence {xn : n = 0, 1, 2, . . .} ⊂ X.
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When using the Random Iteration Algorithm we need to associate probabilities
pi > 0 to each wi. Typically one chooses the probabilities as follows:

pi ≈
|detAi|∑N
i=1 |Ai|

for i = 1, 2, . . . , N.

In cases where detAi = 0, pi should be assigned a small positive number, such
as 0.001. By giving the functions these probabilities we get a roughly even
distribution of points over the attractor. Each function’s image signify part of
the attractor. Since the determinant of Ai in some sense is related to the area
of the image, we can calculate approximately the fraction of the attractor that
is contributed from the image of wi, hence distribute the points accordingly.

Together with the IFS shown in tables 1–5 we can now use this method in order
to visualize these fractals. The results are shown in figure 1.
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(a) Sierpinski Triangle (Table 1) (b) Barnsley Fern (Table 2)

(c) Fractal Tree (Table 3) (d) Koch Snowflake (Table 4)

(e) Dragon Curve (Table 5)

Figure 1: Generated images using the random iteration algorithm. Each figure
consists of 100, 000 points of data. The IFS used can be found in tables 1–5.

4 Fractal Dimensions

4.1 New Definition of Dimensions
When talking about dimensions in an everyday-setting it is common to refer to
them as different directions in space, or just as how many coordinates you need
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in order to give a point in space. When discussing fractals and their “roughness”,
we might want to introduce a new definition for dimensions, namely the fractal
dimension.

Definition 4.1. Let A ∈ H(X) where (X, d) is a metric space. For each ε > 0
let N (A, ε) denote the smallest number of closed balls of radius ε > 0 needed to
cover A. If

D = lim
ε→0

{
ln(N (A, ε))

ln(1/ε)

}

exist, then D is called the fractal dimension of A. We will also use the notation
D = D(A) and will say “A has a fractal dimension D.”

We will visualize this definition better using the following example:

Example 4.1. Consider the square with the corners (1, 1), (1, −1), (−1, −1),
and (−1, 1). We can cover this square using one ball with radius

√
2 with

its center at (0, 0). If we divide the radius by 2, we see that we can cover
our square with four balls with the radius

√
2/2, their respective centers at

(1/2, 1/2), (1/2, −1/2), (−1/2, −1/2), and (−1/2, 1/2). Doing this again, we
get 16 balls with the radius

√
2/4. Continuing this we can see that, using closed

balls with the radius
√
2

2n , where n = 0, 1, . . ., we need 4n balls to cover the
square. From the definition we get

D = lim
n→∞

{
ln
(
4n
)

ln
(
2n/
√

2
)
}

= 2.

In other words we see that the fractal dimension of a square is 2. This example
indicates that the fractal dimension agrees with classical dimension for “nice”
spaces.

This definition provide a somewhat tricky method of calculating the fractal
dimension. Therefore we may want to consider alternatives to make this process
easier.

4.2 Determining the Fractal Dimension
Depending on what type of fractals we are working with, we can use different
methods when determining their fractal dimension. We will see that when it
comes to fractal dimensions in nature, we will have to numerically estimate the
answer, while some of our computer generated fractals we are able to theoreti-
cally determine their fractal dimension.

Theorem 4.1. Let {Rm; w1, w2, . . . , wN} be a hyperbolic IFS, and let A denote
its attractor. Suppose wn is a similitude of scaling factor rn for each n ∈
{1, 2, 3, . . . , N}. If the IFS is totally disconnected or just-touching then the
attractor has fractal dimension D(A), which is given by the unique solution of
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N∑

n=1

|rn|D(A) = 1, D(A) ∈ [0, m].

If the IFS is overlapping, then D ≥ D(A), where D is the solution of

N∑

n=1

|rn|D = 1, D ∈ [0, ∞).

Moving forward, we will use the notation D for D(A). To see a sketch of proof
for this theorem, please check Barnsley’s book on page 183.

This is a method that only works when our IFS consists of similitudes. Out of
our five previously generated fractals, three of these fit this criteria. Using this
theorem we can calculate their fractal dimension. Doing this, we will quickly
see that for two of these—the dragon curve and Koch snowflake—we get our
dimension to be 2. How come we get non-fractional dimensions when these are
supposedly fractals? The IFS in table 5 and table 4 are expressed for the area
of the fractals, while these figure’s boundary have a fractional dimension.

Now, let us have a closer look at our fractals’ (or their boundaries’) fractal
dimensions!

4.2.1 Sierpinski Triangle

As for the Sierpinski triangle we can immediately conclude the scaling factor for
all our functions to be 1/2, which—by using theorem 4.1—we get the following:

3∑

n=1

rD = 1

D =
ln(1/3)

ln(1/2)
≈ 1.585

4.2.2 Barnsley Fern

It is not possible to calculate the fractal dimension of the Barnsley fern using
this method. With lack of a better source, according to the wiki page on Math
Images it is only possible to estimate the fractal dimension, and when this has
been estimated as about D = 1.45 [1].

4.2.3 Fractal Tree

For the first function w1 in table 3 we will not be able to determine any scaling
factor as this is not a similitude. However, this function simply works as a way
to fill out the “tree-trunk.” By removing it, we instead get the IFS for the branch
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tips as shown in figure 2. By ignoring w1, we are able to determine the fractal
dimension.

Figure 2: Generated image of the tips of the branches in a fractal tree using the
random iteration algorithm. Figure consists of 100, 000 points of data. The IFS
used can be found in table 3.

We can see that w2 and w3 have the same scaling factor, r2 = r3 = 0.59. As for
w4 we see that r4 = 0.1. Solving 2 · 0.59D + 0.1D = 1 numerically we get that
D = 1.407 [5].

4.2.4 Koch Curve

For the Koch snowflake in figure 1d, we can divide the boundary into three
smaller segments that are all (rotated) copies of themselves (see figure 3.) All
of these segments have the same scaling/rotation matrices Ai, but differs in
placement. Since we only need Ai when calculating the fractal dimension with
our methods, we know that the fractal dimension of the boundary of the whole
Koch snowflake will be the same as the one of the segment. Using table 6, we
get the IFS for the segment shown in figure 3.
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w a b c d e f p
1 1/3 0 0 1/3 0 0 0.25

2 1/6 −
√

3/6
√

3/6 1/6 1/3 0 0.25

3 1/6
√

3/6 −
√

3/6 1/6 1/2
√

3/6 0.25
4 1/3 0 0 1/3 2/3 0 0.25

Table 6: IFS for the Koch curve segment.

Figure 3: Generated image of part of the Koch snowflake’s boundary using the
random iteration algorithm. Figure consists of 100, 000 points of data. The IFS
used can be found in table 6.

From the IFS stated in table 6 applied to theorem 4.1 we get

4∑

n=1

(
1

3

)D
= 4

(
1

3

)D
= 1

Which gives us the dimension D = ln(4)
ln(3) ≈ 1.262 [6].

4.2.5 Dragon Curve

We have already concluded that based on the IFS stated in table 5 we get the
fractal dimension equal to 2. If we want to consider the IFS for the boundary
instead, we need to first break it down into four smaller pieces. The IFS from
these are directly taken from Larry Riddle’s website (see reference [7].) From
these we can, similarly as we did with the Koch snowflake, consider only one of
these four segments.

w a b c d e f p
1 1/2 −1/2 1/2 1/2 0 0 0.5
2 −1/4 −1/4 1/4 −1/4 1/2 1/2 0.25
3 1/4 1/4 −1/4 1/4 1/2 1/2 0.25

Table 7: IFS for dragon curve’s boundary segment.
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Figure 4: Generated image of part of the dragon curve’s boundary using the
random iteration algorithm. Figure consists of 100, 000 points of data. The IFS
used can be found in table 7.

Using the values in table 7 we find that the scaling factor for w1 is r1 = 1√
2
,

while r2 = r3 = 1
2
√
2
. We get the expression

2

(
1

2
√

2

)D
+

(
1√
2

)D
= 1

Riddle solves this equation, but we can also findD numerically to beD = 1.524.

5 Conclusion
We have introduced the concept of fractals and noted that by using a new
definition of dimensions, as a mean to measure “roughness”, we can measure
fractals to have non-integer fractal dimensions.

We defined the complete metric space (H(X), h), and in this used hyperbolic
iterated function systems to construct fractals. We visualized the Sierpinski
triangle, the Barnsley fern, a fractal tree, Koch snowflake, and the dragon curve,
using the random iteration algorithm. We also determined the fractal dimensions
of these to be 1.585, 1.45, 1.407, 1.262, and 1.524 respectively, where for the
Koch snowflake and the dragon curve we specifically looked at the dimension of
their boundaries. Though, it is unconfirmed whether the Barnsley fern’s fractal
dimension of 1.45 is a correct estimate.
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