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Abstract
In this text, we seek to give a measure theoretic introduction to Brownian Motion and prove two of its
main properties. Part of it is done through the continuity theorem of Kolmogorov, which in itself can be
considered a central result. Furthermore, the paper also includes a construction of a Brownian motion via
the Haar functions by first proving it is an orthonormal basis of L2[0, 1].
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Chapter 1

Introduction

Brownian motion originates as a physical phenomena discovered by Robert Brown, from whom the name
has its clear origin, in 1827 while he was examining pollen particles of a plant submerged in water. He
describes the movement of each particles as very irregular, and seemingly independent of other particles and
its previous path. This notion was further elaborated upon by Albert Einstein, where he described how the
pollen particles were being moved by individual water molecules. Interestingly, this was one of Einstein’s
first scientific contributions only at 26 years of age. As a consequence, this would finally settle the scientific
debate on the existence of atoms. This was done through the work of Jean Perrin, who verified Einstein’s
theoretical work experimentally and was even able to determine the size of certain atoms. It was due to this
work that Perrin was awarded the 1926 Nobel price in physics. Mathematically, it was first given a fully
rigorous construction by Norbert Wiener, who used the language of measure theory to formalize precedent
mathematical efforts of such a construct. [4, Chapter 1]

As a mathematical object, Brownian motion has many intriguing properties and we shall go on to ex-
amine its path regularities. We will state and prove the almost sure Hölder continuity of the sample paths
and the iterated logarithm law. The first of which will be proven through Kolmogorov’s continuity theorem,
which in itself is a theorem we shall state and give a full proof of. Furthermore, the text also includes a
construction of a Brownian motion via the Haar functions, by first showing that those functions is an or-
thonormal basis of L2([0, 1]). These statements relies heavily on the language of measure theory, functional
analysis, probability theory and stochastic processes, which we aim to give a solid presentation of.

Excluding this introductory chapter, the thesis shall be divided into four chapters; each of which discussing
one of the topics mentioned above. We begin by trying to present the reader with an overview of what is
needed for our main results in later chapters along with some side results. The following chapter is devoted to
presenting the full statement and proof of Kolmogorov’s continuity theorem along with relevant information
regarding Hölder-continuity. For our later construction of a Brownian motion, we shall as mentioned before,
need the fact that the Haar functions is an orthonormal basis of L2([0, 1]); something we have devoted an
entire chapter for. The last chapter will be discussing the central part of the thesis, Brownian motion. We
begin by a construction via the Haar functions to, in some sense, show the existence of a Brownian motion.
Further, we state and prove two of its path properties in the final section, which allows us to understand
one of its smoothness properties and one of its limiting behaviours. If time had allowed it, a further topic
included in this chapter would have been the almost sure nowhere differentiability of the sample paths which
may be found in the book of Mörters & Peres [3].
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Chapter 2

Preliminaries

Throughout the text, we seek to make rigorous and precise statements, and to do so, this first chapter will
be used as a building block for being able to make such statements.

2.1 Measure Theory and Functional Analysis
The proof of Theorem 2.1.2 is of the lines of the proof found in Friedman for the same theorem [2, Theorem
6.4.3], but the rest of proofs in this section are either somewhat trivial or my own creation.

Definition 2.1.1. Given a set Ω, we say that a family, A, of subsets of Ω defines a σ-algebra on Ω if the
following three conditions hold

i) ∅ ∈ A,

ii) A ∈ A =⇒ Ac ∈ A,

iii) A1, A2, . . . ∈ A =⇒
∞⋃

n=1

An ∈ A.

Remark 2.1.1. Note that for any countable set of elements A1, A2, . . . ∈ A, both A1 \ A2 ∈ A and
∩∞
n=1An ∈ A since we can write

A1 \A2 = A1 ∩Ac
2 = (Ac

1 ∪A2)
c, and

∩∞
n=1An = ((∩∞

n=1An)
c)c = (∪∞

n=1A
c
n)

c.

Lemma 2.1.1. Given any non-empty family U of subsets of a set Ω, the family given by

σ(U) = ∩{H | H σ-algebra of Ω, U ⊂ H} (2.1)

defines a σ-algebra on Ω. Any sigma algebra that contains U also contains σ(U)
Proof. Since the power set of Ω is a σ-algebra, σ(U) is non-empty. Since properties ii) and iii) holds for all
such σ-algebras H defined above, it also holds for σ(U). The last part of the statement follows trivially since
any intersection of sets ∩∞

n=1Hn is a subset of each Hi, i = 1, 2, . . ..

Definition 2.1.2. We say that σ(U) above is the σ-algebra generated by U . When the σ-algebra is generated
by all the open sets of a topological space, then we call it the Borel σ-algebra. In this text, B(Rn) will denote
the Borel σ-algebra on Rn, where Rn is given the standard topology.

Remark 2.1.2. When we say the standard topology on Rn, we mean that a neighbourhood is defined via
the Euclidean metric.

Lemma 2.1.2. For any set A ⊂ Rn, the following statements are equivalent.

i) A is open,
ii) A can be written as a countable union of open balls of radius

less than or equal to 1,

iii) A can be written as a countable union of open squares.
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Proof. We intend to show that i) ⇒ ii) ⇒ iii) ⇒ i).

Suppose A is open. Then, for every x ∈ A there exists an open ball Brx(x) centered at x of radius rx < 1
that is contained in A. We may thus write A =

⋃
x∈A Brx(x). Now, for each x ∈ A, there exists a point

y ∈ Qn ∩ A such that ∥x− y∥ < rx
3 , which in other words mean that both x ∈ B rx

3
(y) and y ∈ B rx

3
(x).

Furthermore, for each y′ ∈ Q ∩A, let

R(y′) := {x ∈ A | x ∈ B rx
3
(y′)}

and let rx′ = supx∈R(y′) rx, which is finite by our above assumption on rx. Define the ball B(y′) as

B(y′) := B r
x′
3
(y′). (2.2)

There exists an x∗ ∈ R(y′) such that

B(y′) ⊂ Br x∗
2

(y′),

since otherwise rx′ would not be the supremum. Finally, since for any point z ∈ Br x∗
2

(y′), we have that

∥z − x∗∥ ≤ ∥z − y∥+ ∥y − x∗∥ <
rx∗

2
+

rx∗

2
= rx∗ ,

which implies that

B(y′) ⊂ Br x∗
2

(y′) ⊂ Brx∗ (x) ⊂ A.

By our above argument, every point in A is in some B(y′), so in fact

A ⊂
⋃

y∈Qn∩A

B(y) ⊂ A

and we have proved that i) implies ii).

Next, suppose we can write a set A ⊂ Rn as a countable union of open balls with radius less than or
equal to 1, i.e A =

⋃∞
j=1 Brj (xj) where each rj ≤ 1. It is sufficient to show that each Brj (xj) can be written

as a countable union of open squares. Fix some Br(t) from the union above. For each x ∈ Br(t) there exists
a point y ∈ Qn ∩Br(t) and an open square of the form (a, b)n centered at y such that

√
n
b− a

2
=

r − ∥x− t∥
3

,

where the left hand side above denotes the Euclidean distance from the center of the square to each of its
corners. Denote this square by K r−∥x−t∥

3
(y). The existence of such a square comes from the fact that the

square K r−∥x−t∥
3

(x) contains x. But since this square is open there exists at least one point y ∈ Qn ∩Br(t)

that is contained in the square, so we may shift the square K r−∥x−t∥
3

(x) to K r−∥x−t∥
3

(y) and thus be sure
that it contains x. Furthermore, for each y′ ∈ Qn ∩Br(t) let

R(y′) := {x ∈ Br(t) | x ∈ K r−∥x−t∥
3

(y′)}

and let h(y′) = supx∈R(y′) r − ∥x− t∥. Define the square K(y′) as

K(y′) := Kh(y′)(y
′)

and note that there exists a point x∗ ∈ R(y′) such that

K(y′) ⊂ K r−∥x∗−t∥
2

(y′),
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since otherwise h(y′) would not be the supremum. Finally, for any point z ∈ K r−∥x∗−t∥
2

(y′) we have that

∥z − t∥ ≤ ∥z − x∗∥+ ∥x∗ − t∥

<
r − ∥x∗ − t∥

2
+ ∥x∗ − t∥

=
r + ∥x∗ − t∥

2
< r,

which allows us to conclude that

Br(t) ⊂
⋃

y∈Qn∩Br(t)

K(y′) ⊂ Br(t).

Lastly, suppose A can be written as a countable union of open squares. Since any countable union of open
sets is an open set, the statement follows.

Definition 2.1.3. For any sequence of points {xn} ⊂ R, we define limn xn and limn xn as

lim
n

xn = inf
n≥0

( sup
m≥n

xm),

lim
n

xn = sup
n≥0

( inf
m≥n

xm).

Similarly, for any sequence of sets {Fn}, we define

lim
n
{Fn} =

∞⋂

n=0

(

∞⋃

m=n

{Fm}),

lim
n
{Fn} =

∞⋃

n=0

(
∞⋂

m=n

{Fm}).

Lemma 2.1.3. A point x is in limn Fn if and only if x is in Fn for infinitely many n.

Proof. First, suppose x is in Fn for infinitely many n, then for any n, x will be in the set
∞⋃

m=n

Fm,

and so x ∈ limn Fn. On the contrary, suppose that x ∈ limn Fn and suppose for a contradiction that x is
not in infinitely many Fn. Then there exists an n such that x is not in the set

∞⋃

m=n

Fm,

so x /∈ limn Fn and we have established a contradiction.

Definition 2.1.4 (Real Hilbert Space). A non-empty set H is called a real Hilbert space if H is a linear space
over the real field, together with a real-valued mapping, ⟨·, ·⟩ with domain H2 such that for all f, g, h ∈ H
and c ∈ R,

i) ⟨f, f⟩ ≥ 0, and ⟨f, f⟩ = 0 if and only if f = 0,

ii) ⟨f, g⟩ = ⟨g, f⟩,
iii) ⟨f + g, h⟩ = ⟨f, h⟩+ ⟨g, h⟩,
iv) ⟨cf, g⟩ = c⟨f, g⟩,
v) if {fn} is a sequence in H such that ⟨fn − fm, fn − fm⟩ → 0 as n,m → ∞,

then there exists an element f ∈ H such that lim
n
⟨fn − f, fn − f⟩ = 0.

Remark 2.1.3. Since this text will only include real Hilbert spaces, we shall omit the word "real" when
referring to such spaces. However, extending this to the complex field only requires making use of complex
conjugation, so indeed, everything proven in this chapter will be applicable to complex Hilbert spaces.
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Remark 2.1.4. Property v) is the property corresponding to completeness of a normed linear space, but
as we shall see, every Hilbert space H is actually also a complete normed linear space.

Definition 2.1.5. For a Hilbert space H, we say that the mapping ∥·∥ defined via

∥f∥ = ⟨f, f⟩ 1
2

for any f ∈ H, is the norm of f , induced by H.

Theorem 2.1.1 (Cuachy-Schwarz Inequality). For any elements f, g in a Hilbert space H

|⟨f, g⟩| ≤ ∥f∥ ∥g∥

Proof. If f = g = 0 then the statement follows trivially. Suppose therefore that f and g are non-trivial and
note that for any t, we have that

0 ≤ ∥f − tg∥2 = ∥f∥2 − 2t⟨f, g⟩+ t2 ∥g∥2 .

Put t = ⟨f,g⟩
∥g∥2 , so that we get

0 ≤ ∥f∥ − ⟨f, g⟩2
∥g∥2

,

which proves the statement.

Lemma 2.1.4. The norm induced by a Hilbert space H makes H into a complete normed real linear space.

Proof. Recall that the norm of a normed real linear space X need to have the property that for any f, g ∈ X
and c ∈ R,

i) ∥f∥ ≥ 0, and ∥f∥ = 0 if and only if f = 0,

ii) ∥cf∥ = |c| ∥f∥ ,
iii) ∥f + g∥ ≤ ∥f∥+ ∥g∥ .

Suppose therefore that f, g ∈ H and c ∈ R. The first two properties follows by property i) and iv) of the
definition of a real Hilbert space. Next, note that by the Cuachy-Schwarz Inequality, we have that

∥f + g∥2 = ∥f∥+ ∥g∥+ 2⟨f, g⟩ ≤ ∥f∥+ ∥g∥+ 2 ∥f∥ ∥g∥ = (∥f∥+ ∥g∥)2

and the last property follows. For the completeness part, suppose that {fn} is a Cauchy sequence in H. By
the definition of a norm induced by a Hilbert space, we have that

∥fn − fm∥2 = ⟨fn − fm, fn − fm⟩ → 0 as n,m → ∞.

By property v) of the definition of a Hilbert space, we have that there exists an f ∈ H such that

0 = lim
n
⟨fn − f, fn − f⟩ = lim

n
∥fn − f∥2 ,

so every Cauchy sequence in H converges to a point in H and thus the statement follows.

Lemma 2.1.5. The norm of a normed linear space X is a continuous function.

Proof. Fix ε > 0 and a point f ∈ X. Let g be any point in X such that

∥f − g∥ < ε,

so that by the reverse triangle inequality we get that

| ∥f∥ − ∥g∥ | ≤ ∥f − g∥ < ε,

which proves the statement.
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Lemma 2.1.6. Let S be a continuous function from a normed linear space X into another normed linear
space Y and suppose {xn} ⊂ X is a sequence such that limn xn = x. Then

lim
n

S(xn) = S(x).

Proof. Fix ε > 0 and note that since S is continuous, there exists a δ > 0 such that

∥y − x∥ < δ ⇒ ∥S(y)− S(x)∥ < ε.

Since limn xn = x, there exists a natural number N such that for all n > N

∥xn − x∥ < δ,

which then implies that

∥S(xn)− S(x)∥ < ε

and the statement follows.

Corollary 2.1.1. Let {xn} be a sequence in a normed linear space that converges to x, then

lim
n

∥xn∥ = ∥x∥ .

Proof. This follows by Lemma 2.1.5 and Lemma 2.1.6.

The following remark is only a side note and is not needed for the coherence of the remainder of this text.

Remark 2.1.5. The reader might be familiar with the concept of a measure space (X,A, µ) and the space
L1(X,A, µ) consisting of all all real valued A-measurable functions f such that |f | is integrable. This is a
normed linear space with the norm given by

∥f∥ =

∫

X

|f |dµ.

Furthermore, by the above corollary, it follows that for any sequence of non-negative functions fn that
converges to f , it holds that

lim
n

∫

X

fdµ =

∫

X

fdµ,

which is a special case of the dominated convergence theorem.

Definition 2.1.6. A sequence {fn} in a Hilbert space H is called orthonormal if

⟨fn, fm⟩ =
{

0 if n ̸= m

1 otherwise .

Theorem 2.1.2. Let {fn} be an orthonormal sequence in a Hilbert space and let {cn} be any sequence of
real numbers. Then the series

∑
cnfn converges if and only if

∑
c2n converges, and in that case

∥∥∥∥∥
∞∑

n=0

cnfn

∥∥∥∥∥

2

=

∞∑

n=0

c2n.

Proof. By completeness, the first series in the statement converges if and only if, for N > M

∥∥∥∥∥
N∑

n=M

cnfn

∥∥∥∥∥

2

→ 0 as N,M → ∞.
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Consider the computations

∥∥∥∥∥
N∑

n=M

cnfn

∥∥∥∥∥

2

= ⟨
N∑

n=M

cnfn,

N∑

j=M

cjfj⟩ =
N∑

n=M

cn⟨fn,
N∑

j=M

cjfj⟩

=
N∑

n=M

cn

N∑

j=M

cj⟨fn, fj⟩,

and since ⟨fn, fj⟩ equals 1 if and only if n = j and otherwise equals 0 we get that the above equals

M∑

n=M

c2n,

so the first part of the statement follows. For the second part, suppose both series converges. Then, by
Corollary 2.1.1, we have that

∥∥∥∥∥limN
N∑

n=0

cnfn

∥∥∥∥∥

2

= lim
N

∥∥∥∥∥
N∑

n=0

cnfn

∥∥∥∥∥

2

,

so by our previous computations, the theorem follows.

2.2 Probability Theory
The proofs of this section was mostly just clarified from what was found in Baldi and Friedman [1], [2].
However, some proofs are solely my own creation; for example Lemma 2.2.4 and Theorem 2.2.1. Both the
Examples in this section were created by myself.

Definition 2.2.1 (Probability space). Given a set Ω and a family A of subsets of Ω such that A is a
σ-algebra, we say that the space (Ω,A) is a measurable space. Further, a function IP from A into the unit
interval is called a probability measure on (Ω,A) if it maps the empty set to 0, the whole space Ω to 1 and
has the property that for any mutually disjoint, countable family of sets {An} ⊂ A,

IP(
∞⋃

n=1

An) =
∞∑

n=1

IP(An).

We say that the space (Ω,A, IP) is a probability space. Further, we say that a probability space (Ω,A, IP)
is complete if for any A in A such that IP(A) = 0 and for any B ⊂ A, we must have that B is also in A.
In this text, (Ω,A, IP), will denote a complete probability space. The reason for working with a complete
probability space will become clear once we have defined the notion of measurability; see Remark 2.2.2.

Since the measure IP measures sets in Ω, every time we talk about the measure IP, it is implied that it
measures sets in Ω. We will write

IP(Cond1(ω),Cond2(ω), . . .) := IP(ω ∈ Ω | Cond1(ω),Cond2(ω), . . .),

where Condi(ω) is some condition on ω. However, in some cases this notation might be somewhat ambiguous;
in such cases, more detailed notation will be used. Furthermore, when a condition is satisfied by all points
ω in a set A, where IP(A) equals 1, we shall say that the condition is true almost surely, or a.s. for short.
Conversely, we call sets of probability 0 negligible.

Remark 2.2.1. For the sake of compactness of the text, we sometimes will use non-trivial, but nevertheless
standard statements regarding the probability measure IP that may all be found in the book of Friedman
[2, Chapter 1.2].

Definition 2.2.2. Given a probability (or more generally a measure) space (Ω,A, IP) and a function X
from Ω into Rn, we say that X is A-measurable, if the preimage of any Borel set in Rn is in A. Such
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measurable functions are also called random variables. Every random variable induces a probability measure
on (Rn,B(Rn)), called the law of the random variable, defined via

µX(B) = IP(X−1(B)),

where B is any Borel set in Rn. In this way, we have actually constructed a new probability space
(Rn,B(Rn), µX). Further, we can also consider the j:th marginal law, µXj

, defined via

µXj
(D) = IP(X−1

j (D)),

where D is any borel set in R and Xj is the j:th component of X.

For every random variable, and thus for every induced probability measure on Rn, we can consider the
distribution function FX(x), defined as

FX(x) = µX(C),

where x = (x1, . . . , xn) and C = (−∞, x1]× . . .× (−∞, xn]. Hence, the distribution function may be written
as

FX(x) = IP(X1 ≤ x1, . . . , Xn ≤ xn).

Actually, as we shall see in the following lemma, our definition of measurability is equivalent to just consid-
ering sets of the same form as C.

Remark 2.2.2. Now, one will be able to understand the importance of having a complete probability space.
Suppose we do not have a complete probability space, i.e there exists some set B ⊂ Ω such that B ⊂ A and
IP(A) = 0, where A ∈ A. Further, suppose we have a random variable X from Ω into Rn and a function Y
from Ω into Rn such that Y (ω) = X(ω) for all ω ∈ Ω \ B. However, Y need not be a random variable on
this space since the set B /∈ A. This is of course unwanted since they are equal almost surely.

Lemma 2.2.1. A function X from Ω into Rn is a random variable if and only if for any set C ⊂ Rn of the
form C = (−∞, x1],× . . .× (−∞, xn], the pre-image of C under X is in A.

Proof. First, assume X is a random variable. Since C ∈ B(Rn), the statement follows. On the contrary,
suppose for any C on the form above that the preimage of C under X is in A. For any real numbers a < b

(a, b) =

∞⋃

n=1

((a, b− 1

n
]) =

∞⋃

n=1

((−∞, b− 1

n
] \ (−∞, a]), (2.3)

and thus, any set of the form A = (a, b)n may be written as a Cartesian product of sets which the right hand
side of (2.3) has. By Lemma 2.1.2, any set in B(Rn) may be written as a countable union of open squares.
Hence the preimage of any set in B(Rn) under X is in A.

Remark 2.2.3. Some immediate consequences of the previous lemma are the following.

The above lemma can be stated the same way but with the sets C being of the form C = (−∞, x1) ×
. . .× (−∞, xn). This is just because we can write (a, b) = (−∞, b) \ (−∞, a].

The Borel σ-algebra on Rn is also generated by the n-fold Cartesian products of sets of the form (−∞, cj ].

A function X from Ω into Rn is a random variable if and only if each function Xj for j = 1, . . . , n from Ω
into R is a random variable.

If X is a random variable and if k ∈ Rn and λ ∈ R, then λX+k and λX−k are both random variables. Indeed
since if λ ̸= 0 we may write the set {λX1 + k1 < c1, . . . , λXn + kn < cn} = {X1 < c1−k1

λ , . . . , Xn < cn−kn

λ }
and if λ = 0, the result is trivial.

Lemma 2.2.2. If X,Y are random variables into Rn, then the set

K = {X1 < Y1, . . . , Xn < Yn}

is in A.
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Proof. Since the rationals are countable, there exists a sequence {rk} that is the sequence of all rational
numbers. Since if X1(ω) < Y1(ω) there exists a rational number r such that X1(ω) < r < Y1(ω); we may
thus write the set K above as

∞⋃

k1=1

. . .

∞⋃

kn=1

({X1 < rk1} ∩ . . . ∩ {Xn < rkn} ∩ {Y1 > rk1} ∩ . . . ∩ {Yn > rkn})

which is in A by the previous remark.

Corollary 2.2.1. If X,Y are random variables into Rn then X + Y and X − Y are random variables.

Proof. By Lemma 2.2.2, if X and Y are random variables, the set K = {X1 < Y1, . . . , Xn < Yn} is in A and
since we may rewrite sets of the form

{X1 + Y1 < c1, . . . , Xn + Yn < cn} = {X1 < c1 − Y1, . . . , Xn < cn − Yn}

and similarly for X − Y , the statement follows by Remark 2.2.3.

Remark 2.2.4. In the case when the random variable X takes values in Rn for n ≥ 2, we sometimes call it
a random vector. Note that a random vector X = (X1, . . . , Xn) can be viewed as a list of length n, where
each Xj is a one-dimensional random variables on the probability space (Ω,A, IP).

Definition 2.2.3. For a probability (or more generally a measure) space (Ω,A, IP) and any positive number
p, we define the space Lp(Ω,A, IP) to be the set of equivalence classes of real valued random variables X
such that |X|p is integrable. The equivalence relation ” ∼ ” is defined via X1 ∼ X2 if X1 = X2 a.s.. We
define a norm on this space via

∥X∥Lp = (

∫

Ω

|X|pdµ) 1
p ,

for any X ∈ Lp(Ω,A, IP).

Remark 2.2.5. Usually, we omit the phrase "in some equivalence class of" when we say that a random
variable X is in Lp.

Remark 2.2.6. As shown in Friedman, for p ≥ 1, this is in fact a complete, metric space [2, Theorem 3.2.3].
Since metric spaces are normed spaces, we may say that for p ≥ 1, the above is in fact a complete normed
linear space.

Lemma 2.2.3. The space L2(Ω,A, IP) is a Hilbert space with the inner product defined as

⟨f, g⟩ =
∫

Ω

fgdIP.

Proof. properties i) to iv) of Definition 2.1.4 follow by the linearity of integration and the final property
follows by the above remark.

First time readers of formal probability theory may find the use of the word random to be confusing, since
there is nothing random about a random variable; it is merely a function. The “randomness” occurs in the
probability space (Ω,A, IP). Thus, to help the reader acquire some intuition for the concept of probability
spaces and random variables, we shall consider two examples.

Example 2.2.1. Suppose we want to measure the height of random citizens of the earth. Let Ω be the set
of all people on the globe and let A be the power set of Ω. Define the probability measure IP via IP(ω) = 1

|Ω| ,
for every ω ∈ Ω, i.e every person on earth has equal likelihood to be chosen in this experiment. Now, define
the random variable X from Ω into R which maps every person ω to their height. As we can see, there
is nothing random about this random variable; its “randomness” comes from the uncertainty of which ω is
“picked” .

Furthermore, we could construct many more random variables on this probability space that could for
example map each person ω to their favourite colour, number of kids, or whatever else you may want to
measure.
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An example that we shall revisit in a later section is the following

Example 2.2.2. Consider a particle that starts at the point 0 and at each second changes position to a
neighbouring integer; i.e after the first second it will go to either 1 or −1 and so on. The particle will do
this for n seconds and then stop. A probability space may be constructed as follows. Let Ω be the set of
all sequences of points ω0, ω1, . . . , ωn such that ω0 = 0 and for any i ∈ {1, . . . , n}, |ωi − ωi−1| = 1. Let the
σ-algebra A be the power set of Ω and let the probability measure IP be defined as IP(ω) = 1

|Ω| =
1
2n , i.e it

maps each n+ 1 sequence of points to equal probability.

As before, we may wish to construct random variables on this probability space. Let Xi be the mapping that
maps the i:th element ωi of the sequence ω ∈ Ω to |ωi|. In other words, it measures the particles distance
from the origin after i seconds. Note that this leads to a sequence of random variables {Xi}i∈{0,1,...,n}, on
(Ω,A, IP), something we shall explore further in a later chapter.

Similar to how we can generate a σ-algebra from a family of subsets of Ω, we can generate a σ-algebra from
a family random variables:

Definition 2.2.4. For an arbitrary family of random variables {Xt}, we define σ{Xt} to be the σ-algebra
on Ω with the property that for any σ-algebra F such that every Xt is measurable, σ{Xt} is contained in
F . We call this σ-algebra the σ-algebra generated by {Xt}.
Remark 2.2.7. It is of course equivalent to say that σ{Xn} is the intersection over all F defined as above.

Lemma 2.2.4. For a random variable X from Ω into Rn and A ∈ σ{X}, there exists a set B ∈ B(Rn) such
that A = X−1(B).

Proof. Suppose for a contradiction that for some set A ∈ σ{X}, we have the property that for every
B ∈ B(Rn), A ̸= X−1(B). Then for Ac the same has to be true since if Ac = X−1(C), for some C ∈ B(Rn),
then A = X−1(Cc). Further, for any sets A1, A2, . . . such that A = ∪∞

n=1An, there cannot exist sets
D1, D2, . . . such that X−1(Di) = Ai for every i, since then, we could write A = X−1(∪∞

n=1Di).

By these observations, we wish to construct a new family as follows. Take σ{X} and first remove the
set A and Ac. Then, consider all sequences of sets A1, A2, . . ., such that A = ∪∞

n=1An or Ac = ∪∞
n=1An. For

each such sequence, consider the sets Ai, which have the property that for all B ∈ B(Rn), Ai ̸= X−1(B).
The existence of such a set is guaranteed by the above. Now, remove all such sets Ai together with their
respective complements from σ{X}. Let this new family of subsets we have constructed be denoted by E .
This family is in fact a σ-algebra for which X is measurable. Indeed, the empty set is in E , and for any set
we removed from σ{X} we also removed its complement. The last property of the σ-algebra holds since for
any set A we removed, we also removed at least one set from every possible union of A. The measurability
property comes from the fact that for each set A we removed from σ{X}, it was a set which had the property
that for all B ∈ B(Rn), A ̸= X−1(B). We have now established a contradiction since we have constructed a
σ-algebra E for which X is measurable but E does not contain σ{X}.

Definition 2.2.5 (Independence). For a family {Xi} of k random variables, we say that they are independent
if for every choice of B1 ∈ B(Rn), . . . , Bk ∈ B(Rn),

IP(X−1
1 (B1) ∩ . . . ∩X−1

k (Bk)) = IP(X−1
1 (B1)) · . . . · IP(X−1

k (Bk)).

Similarly, for a collection {Ai} of k families of sets such that Ai ⊂ A for every i, we say that they are
independent if for every choice of A1 ∈ A1, . . . Ak ∈ Ak,

IP(A1 ∩ . . . ∩Ak) = IP(A1) · . . . · IP(Ak).

Further, when any of these families are infinite, we shall instead define them being independent if any finite
collection of them are independent. Lastly, we say that a random variable X is independent of the σ-algebra
U if σ{X} and U are independent.

Lemma 2.2.5. If two events A1, A2 ⊂ A are such that

IP(A1 ∩A2) = IP(A1)IP(A2),

then

IP(A1 ∩Ac
2) = IP(A1)IP(Ac

2).
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Proof. Suppose A1, A2 ⊂ A are such that IP(A1 ∩ A2) = IP(A1)IP(A2). Since A1 ∩ A2 and A1 ∩ Ac
2 are

disjoint, it follows that

IP(A1 ∩Ac
2) = IP(A1)− IP(A1 ∩A2) = IP(A1)(1− IP(A2))

= IP(A1)IP(Ac
2),

which proves the statement.

Corollary 2.2.2. Any finite family {Xi} of k random variables are independent if and only if the σ-algebras
{σ(Xi)} are independent.

Proof. This follows directly from Lemma 2.2.4.

Definition 2.2.6 (Expected value). for any random variable X = (X1, . . . , Xn) such that Xj is in the space
L1(Ω,A, IP), then we define the expected value of Xj with respect to IP as

E[Xj ] :=

∫

Ω

Xj(ω)dIP(ω), (2.4)

and if the random variable Xj is not in L1(Ω,A, IP), we say that Xj has infinite absolute expectation.
Further, we define the expected value of X as

E[X] = (E[X1], . . . , E[Xn]).

In this text, the notation 1A will be used to denote the characteristic function, defined as

1A(x) =

{
1 if x ∈ A

0 otherwise.

Remark 2.2.8. Similarly to what is mentioned in Remark 2.2.1, we wish to also use non-trivial, yet standard
statements regarding the Lebesgue integral. These may also be found in the book of Friedman [2, Chapter
2.5-2.6].

Theorem 2.2.1. Any two independent random variables X,Y with finite absolute expectation satisfies the
property that

E[XY ] = E[X]E[Y ].

Proof. First, we intend to show that XY is integrable. This will be done using the definition in Friedman,
which states that a real-valued, measurable function f is integrable if there exists a sequence of simple func-
tions fn that converges point-wise almost everywhere to f and is Cauchy in the mean [2, Definition 2.6.1].
Recall that a sequence {fn} is Cauchy in the mean if

∫
Ω
|fn − fm|dIP → 0 as n,m → ∞.

By this definition, since X and Y are assumed integrable, there exists sequences of simple functions Xn

and Yn that converges point-wise almost everywhere to X and Y respectively and are Cauchy in the mean.
Xn and Yn may be written as

Xn =
n∑

j=0

xj1Ej

Yn =
n∑

j=0

yj1Fj
,

where Ej and Fj are sets in A. Since we can write the functions X and Y of the form X = X+−X−, where
both X+ and X− are positive, it follows by the triangle inequality that we can pick Xn and Yn to converge
absolutely. Hence, the Cauchy product of limn Xn and limn Yn converge to XY , i.e XY may be written as

XY = lim
n

n∑

j=0

xj1Ej lim
n

n∑

j=0

yj1Fj

= lim
n

n∑

j=0

j∑

k=0

xkyj−k1Ek∩Fj−k
.
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Now we wish to show that XnYn is Cauchy in the mean; without loss of generality, we may assume that
n > m, so that we can compute

E[(XnYn −XmYm)] = E[(Xn −Xm)Yn + (Yn − Ym)Xm]

= E[(Xn −Xm)Yn] + E[(Yn − Ym)Xm]

= E[

n∑

j=m+1

n∑

k=0

xjyk1Ej∩Fk
] + E[

n∑

j=m+1

n∑

k=0

yjxk1Ek∩Fj ]

=

n∑

j=m+1

n∑

k=0

xjykIP(Ej ∩ Fk) +

n∑

j=m+1

n∑

k=0

yjxkIP(Ek ∩ Fj)

=

n∑

j=m+1

n∑

k=0

xjykIP(Ej)IP(Fk) +

n∑

j=m+1

n∑

k=0

yjxkIP(Ek)IP(Fj)

= E[Xn −Xm]E[Yn] + E[Yn − Ym]E[Xm],

which tends to 0 since Xn and Yn are Cauchy in the mean; hence, XY is integrable. By the definition
mentioned above, we may therefore write

E[XY ] = E[lim
n

n∑

j=0

j∑

k=0

xkyj−k1Ek∩Fj−k
]

= lim
n

n∑

j=0

j∑

k=0

xkyj−kIP(Ek ∩ Fj−k)

= lim
n

n∑

j=0

j∑

k=0

xkyj−kIP(Ek)IP(Fj−k)

= E[X]E[Y ],

which completes the proof.

Definition 2.2.7. Let X be a random variable from Ω into R such that it is in the space L2(Ω,A, IP). Then
we define the variance of X as

Var(X) = E[(X − E[X])2]. (2.5)

Remark 2.2.9. By linearity of the integral, we can rewrite the above as

E[(X − E[X])2] = E[X2 − 2XE[X] + E[X]2]

= E[X2]− E[2XE[X]] + E[E[X]2]

= E[X2]− 2E[X]2 + E[X]2 = E[X2]− E[X]2.

This is a very convenient rewriting for computational purposes. Also note that for any a ∈ R

Var(aX) = E[(a(X − E[X]))2] = a2Var(X).

Corollary 2.2.3. For any two independent random variables with X,Y ∈ L2(Ω, IP), we have that

Var(X + Y ) = Var(X) + Var(Y ).

Proof. By the triangle inequality, the sum of any L2-functions is an L2-function, so we can consider

Var(X + Y ) = E[(X + Y − E[X + Y ])2] = E[(X − E[X] + Y − E[Y ])2]

= E[(X − E[X])2 + 2(X − E[X])(Y − E[Y ]) + (Y − E[Y ])2]

= Var(X) + Var(Y ) + 2E[(X − E[X])(Y − E[Y ])],
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but by Theorem 2.2.1

E[(X − E[X])(Y − E[Y ])] = E[XY −XE[Y ]− Y E[X] + E[X]E[Y ]]

= E[XY ]− E[X]E[Y ]− E[Y ]E[X] + E[X]E[Y ]

= 0,

so the statement follows.

Definition 2.2.8. A random variable X from Ω into R is called Gaussian (or normal) with expected value
µ and variance σ if its induced distribution function is given by

FX(x) =
1

σ
√
2π

∫ x

−∞
e−

(t−µ)2

2σ2 dt,

and we write X ∼ N(µ, σ) to denote that X is Gaussian.

Remark 2.2.10. As many probably know from elementary probability theory, the integrand (along with
the constant) above is known as the density of the Gaussian distribution. This is in fact an application of
the Radon-Nikodym theorem, which we shall not delve into in this text. Nevertheless, it is important to
know that not all random variables have a density function, but the Gaussian distribution has and it is given
by

1

σ
√
2π

e−
(t−µ)2

2σ2 .

One reason why it is useful is that we can compute expected values with it. This can be stated as, for a
Gaussian random variable X and a measurable function g, we have that

E[g(X)] =
1

σ
√
2π

∫

R
g(x)e−

(x−µ)2

2σ2 dx.

A useful fact about the Gaussian is the following lemma

Lemma 2.2.6.
∫

R
e−x2

dx =
√
π.

Proof. First, consider
∫ ∞

−∞
|e−x2 |dx =

∫ −1

−∞
e−x2

dx+

∫ 1

−1

e−x2

dx+

∫ ∞

1

e−x2

dx

≤
∫ −1

−∞
−xe−x2

dx+

∫ 1

−1

e−x2

dx+

∫ ∞

1

xe−x2

dx

≤ 1

2e
+ 2e+

1

2e
< ∞,

So the integral is finite, which means that

(

∫ ∞

−∞
e−x2

dx)2

is also finite. Hence by applying Fubini’s Theorem, we can compute as

(

∫ ∞

−∞
e−x2

dx)2 =

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)dxdy =

∫ 2π

0

∫ ∞

0

e−r2rdrdθ

=

∫ 2π

0

[−e−r2

2
]∞0 dθ =

∫ 2π

0

1

2
dθ = π

and the statement follows.
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Theorem 2.2.2 (Markov’s Inequality). For all positive numbers δ and β and for any random variable X

IP(|X| ≥ δ) ≤ E[|X|β ]
δβ

.

Proof. Since |X|
δ < 1 if and only if 1{|X|≥δ} = 0, it follows that |X|

δ ≥ 1{|X|≥δ}. From this, we deduce that
( |X|

δ )β ≥ 1{|X|≥δ}, since either the left hand side is greater than 1 or the right hand side is equal to 0. Hence

E[1{|X|≥δ}] = IP(|X| ≥ δ) ≤ E[|X|]β
δβ

,

which completes the proof.

2.3 Stochastic Processes
The proofs and the example of this section are my own creation, expect for the Second Borel-Cantelli lemma,
for which I got the tip to use the logarithm by a fellow student.

Below, we will use the notation that T is some subset of R+.

Definition 2.3.1. Given a set Ω and a σ-algebra A on Ω, we say that a family {At}t∈T , of σ-algebras such
that for all 0 ≤ i < j, Ai ⊂ Aj ⊂ A, is a filtration of (Ω,A).

Definition 2.3.2. Given an indexed family {Xt}t∈T of random variables and a filtration {At}t∈T of (Ω,A)
we say that {Xt}t∈T is {At}t∈I -adapted if for every t in T , Xt is At-measurable.

Lemma 2.3.1. Given an indexed family of random variables {Xt}t∈T and a filtration {At}t∈T , for which
{Xt}t∈T is adapted to, then for any s, u, v ∈ T such that v ≤ u ≤ s, we have that both σ{Xu −Xv} ⊂ As

and σ{Xu +Xv} ⊂ As.

Proof. By the definition of a filtration, both Xu and Xv is As-measurable. Then, by Corollary 2.2.1, both
Xu +Xv and Xu −Xv is As-measurable, and so by the definition of the generated sigma algebra, it follows
that σ{Xu −Xv} ⊂ As and σ{Xu +Xv} ⊂ As.

Definition 2.3.3. Let (Ω,A, IP), be a probability space. If {At}t∈T is a filtration of (Ω,A) and a family of
random variables {Xt}t∈T are {At}t∈T -adapted, we say that the quintuple (Ω,A, {At}t∈T , {Xt}t∈T , IP) is a
stochastic process.

To help the reader better understand the concept of a filtration we shall give a rather simple extension of
Example 2.2.2.

Example 2.3.1. Consider the same probability space and notation as given in Example 2.2.2. Let T =
{0, 1, . . . , n} and define a sequence of random variables {Xt}t∈T via Xt(ω) = |(ωt)|. We shall now construct
a filtration {At}t∈T such that {Xt}t∈T is adapted to that filtration.

Let A0 = {∅,Ω}. This is a σ-algebra and since X0(ω) = 0 for every ω ∈ Ω, X0 is A0-measurable. Further-
more, since X1(ω) = 1 for every ω ∈ Ω, we shall again let A1 = {∅,Ω}, which is by the same reason as
before a σ-algebra such that X1 is A1-measurable. However, since X2 equals either 0 or 2, we can no longer
consider the trivial σ-algebra. Let U ⊂ Ω be the set of all sequences ω = ω0, ω1, . . . , ωn, with ω2 equal to 2
or −2. Thus, we shall let A2 = {∅,Ω,U ,Uc}. Because Uc will be the set of sequences ω, with ω2 = 0. this
is in fact a σ-algebra such that X2 is A2 adapted since for any set B ∈ B(R)

X−1
2 (B) =





∅ if B ∩ ({0} ∪ {2}) = ∅
Ω if B ∩ ({0} ∪ {2}) = {0} ∪ {2}
U if B ∩ ({0} ∪ {2}) = {2}
Uc if B ∩ ({0} ∪ {2}) = {0}.

Further, since X3 may take the values 1 or 3, we may let V be the set of all sequences ω ∈ Ω such that
ω3 equals 3 or −3. Note that Vc is the set of sequences ω ∈ Ω with ω3 equal to 1 or −1. By the defini-
tion of a filtration, we want A2 ⊂ A3, so we need to let A3 equal σ(A2 ∪ V). Continuing in this fashion,
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for A4, . . . ,An, one may construct the whole filtration {At}t∈T , making (Ω,A, {At}t∈T , {Xt}t∈T , IP) into a
stochastic process.

As one might have recognized, constructing a filtration in this explicit manner is rather cumbersome. There-
fore, we shall make the following definition.

Definition 2.3.4. Given an arbitrary family of random variables {Xt}t∈T , on a probability space (Ω,A, IP),
we can always consider a filtration on (Ω,A) with respect to {Xt}t∈T , defined as

At = σ{Xs, s ≤ t}.

This is called the natural filtration and it is easily seen that this is the coarsest filtration such that {Xt}t∈T

is {At}t∈T -adapted.

Remark 2.3.1. As mentioned before, the filtration constructed in Example 2.3.1 is the natural filtration,
but it is certainly not the only filtration that could have been constructed. Consider for example the trivial
filtration At = A for every t. Nevertheless, the natural filtration shall be the most common filtration used
in this text.

Lemma 2.3.2 (First Borel-Cantelli Lemma). For any sequence of sets (Fn)n∈N ⊂ A, such that

∞∑

n=1

IP(Fn) < ∞

then it holds that IP(limn Fn) = 0.

Proof. Since limn Fn =
⋂∞

k=0

⋃∞
j=k Fj , it follows that

IP(lim
n

Fn) ≤ IP(
∞⋃

j=k

Fj) ≤
∞∑

j=k

IP(Fj),

for every natural number k. Hence, for every ε > 0, there exists a kε such that

IP(lim
n

Fn) ≤
∞∑

j=kε

IP(Fj) < ε,

which proves the statement.

Lemma 2.3.3. For x ∈ [0, 1]

− log(1− x) ≥ x

Proof. Let x ∈ [0, 1) and Consider the power series expansion of − log(1− x)

− log(1− x) = −
∞∑

n=1

(−1)n−1(−x)n

n
=

∞∑

n=1

xn

n
= x+

x2

2
+

x3

3
+ . . . ≥ x,

since all the terms in the series are positive. Lastly, − log(1− 1) = ∞ > 1 so the statement follows.

Lemma 2.3.4 (Second Borel-Cantelli Lemma). For any sequence of independent sets (Fn)n∈N ⊂ A such
that

∞∑

n=1

IP(Fn) = ∞,

it is also true that IP(limn Fn) = 1
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Proof. Suppose (Fn)n∈N ⊂ A is a sequence of independent sets such that
∑∞

n=1 IP(Fn) = ∞. We want to
show that

IP(lim
n

Fn) = 1 ⇐⇒ IP((lim
n

Fn)
c) = 0.

Since if x ∈ ∩∞
n=NF c

n, then x ∈ ∩∞
n=N+1F

c
n for all N , it follows that

IP((lim
n

Fn)
c) = IP((∩∞

N=1 ∪∞
n=N Fn)

c) = IP((∪∞
N=1 ∩∞

n=N F c
n))

= IP(lim
N

∩∞
n=NF c

n) = lim
N

IP(∩∞
n=NF c

n),

as the sequence ∩∞
n=NF c

n is monotone increasing, the last equality is an application of what is written in
Remark 2.2.1. Note that since the range of any probability measure is a subset of [0, 1],

lim
N

IP(∩∞
n=NF c

n) = 0 ⇐⇒ lim
N

log(IP(∩∞
n=NF c

n)) = −∞

⇐⇒ lim
N

− log(IP(∩∞
n=NF c

n)) = ∞.

Now, since limN − log(IP(∩∞
n=NF c

n)) = limN − log(IP(limK ∩K
n=NF c

n)) and ∩K
n=NF c

n is monotonically decreas-
ing with K we have again by Remark 2.2.1, that

lim
N

− log(IP(∩∞
n=NF c

n)) = lim
N

lim
K

− log(IP(∩K
n=NF c

n))

= lim
N

lim
K

− log(IP(F c
N ) · . . . · IP(F c

K))

= lim
N

lim
K

K∑

n=N

− log(IP(F c
n))

= lim
N

lim
K

K∑

n=N

− log(1− IP(Fn)),

as by Lemma 2.2.5, the sets F c
n are independent. Lastly, by Lemma 2.3.3, we have that

lim
N

lim
K

K∑

n=N

− log(1− IP(Fn)) ≥ lim
N

lim
K

K∑

n=N

IP(Fn) = ∞

so the statement follows.
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Chapter 3

Kolmogorov’s Continuity Theorem

In this chapter, | · | will denote the euclidean norm in Rn. Which n it refers to will be implicit from the
argument.

3.1 Hölder Continuity
All the proofs in this section are my own.

Definition 3.1.1. For γ > 0, we say that a function f from D ⊂ Rn into Rm is locally γ-Hölder continuous
if there exists ε > 0 such that

sup
0<|x−y|<ε

|f(x)− f(y)|
|x− y|γ < ∞.

Furthermore, we say that f is γ-hölder continuous on a subset A ⊂ D if

sup
x,y∈A,
x̸=y

|f(x)− f(y)|
|x− y|γ < ∞.

Lemma 3.1.1. If a function f from D ⊂ Rn into Rm is locally γ-Hölder contiuous, then f is continuous at
each point x ∈ D.

Proof. Suppose f is locally γ-Hölder continuous. This means that there exists ξ > 0 such that

sup
0<|x−y|<ξ

|f(x)− f(y)|
|x− y|γ ≤ Cξ,

For some Cξ. Fix ε > 0 and a point x ∈ D. First, for all points y such that |x− y| < ξ, we have that

|f(x)− f(y)| ≤ Cξ|x− y|γ < Cξξ
γ .

Now if, Cξξ
γ < ε, we are done. Otherwise, we have that

Cξξ
γ ≥ ε ⇐⇒ ξ ≥ (

ε

Cξ
)

1
γ ,

so by picking δ = ( ε
Cξ

)
1
γ , we have that

|x− y| < δ =⇒ |f(x)− f(y)| ≤ Cξ|x− y|γ < ε,

which proves the statement.

Lemma 3.1.2. If a function f from D ⊂ Rn into Rm is locally γ-Hölder continuous, then f is γ-Hölder
continuous on each compact subset of D.

22



Proof. Suppose f is locally γ-Hölder continuous and let ε be given as in Definition 3.1.1. Fix a compact
subset K ⊂ D and consider any two points x, y ∈ K with 0 < |x − y| < L. If L ≤ ε, the statement follows
and if L > ε, we have that since continuous functions are bounded on compact sets, we trivially have that

sup
|x−y|>L

|f(x)− f(y)|
|x− y|γ < ∞

since the numerator and the denominator is both bounded.

3.2 Kolmogorov’s Continuity Theorem
The proofs of this section was found in Baldi [1, Section 2.2]. Nevertheless, there were some mistakes and
skipped steps, for which I have filled in the details.

Theorem 3.2.1 (Kolmogorov’s Continuity Theorem). Let D ⊂ Rm be an open set and let {Xy}y∈D be
a family of d − dimensional random variables on (Ω,A, IP) such that there exist positive numbers α, β, c
satisfying

E[|Xy −Xz|β ] ≤ c|y − z|m+α, y, z ∈ D. (3.1)

Then there exists a family {X ′
y}y∈D of d-dimensional random variables such that Xy = X ′

y IP-a.s for every
y ∈ D. Furthermore, for every ω ∈ Ω, the map y 7→ X ′

y(ω) is γ-Hölder continuous on every compact subset
of D for every γ < α

β .

Remark 3.2.1. The map y 7→ X ′
y(ω) is also called the sample paths of X or in the context of a stochastic

process, we refer to it as the sample paths of the stochastic process.

To prove this theorem, we shall first need the following lemma

Lemma 3.2.1. Let the assumptions of Kolmogorov’s continuity theorem be given and let DB be the set of
dyadic points in D. Then, for every γ < α

β , there exists a negligible set N such that for all ω ∈ N c, the
restriction of the map y 7→ Xy(ω) to DB is locally γ-Hölder continuous.

Remark 3.2.2. Dyadic points are points where the coordinates are give by rational numbers with multiples
of 2:s in the denominator. Later on in the text, we shall use the notion of dyadic intervals, which are similar
but not to be confused with. Furthermore, the set of dyadic points in the reals are dense in the reals since
every real number has a binary expansion.

Proof. By Lemma 2.1.2, the open set D may be written as a countable union of open squares, so it is
sufficient to prove the statement for open squares. Furthermore, by scaling and translation, it is actually
enough to prove the lemma for the open unit square. Thus, let D = (0, 1)m and for a fixed natural number
n, let An ⊂ DB be the set of all points in DB of the form k2−n where k is a natural number. Let γ < α

β
and define

Γn = {ω ∈ Ω | ∃y, z ∈ An, s.t |y − z| = 2−n and |Xy(ω)−Xz(ω)| > 2−nγ}.

Now, for fixed y, z ∈ An such that |y − z| = 2−n we have, by Markov’s inequality, and by assumption (3.1)
in the Continuity Theorem, that

IP({ω ∈ Ω | |Xy −Xz| > 2−nγ}) ≤ 2nβγE[|Xy −Xz|β ]
≤ 2nβγc|y − z|m+α

= c2n(βγ−m−α).

The set of pairs y, z ∈ An such that |y − z| = 2−n has less than 2m2nm elements because for each point
y ∈ An there is at most 2m number of points z such that |y − z| = 2−n and since the set An has (2n − 1)m

number of elements we obtain the desired bound for the number of elements. Hence we get the inequality

IP(Γn) ≤ c2m2nm+n(βγ−α−m) ≤ d2−nµ,
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where d = c2m and µ = α− βγ, which is positive by the assumption on γ. Hence
∞∑

n=1

IP(Γn) ≤ d
∞∑

n=1

2−nµ < ∞

and so by the first Borel-Cantelli lemma, IP(limn Γn) = 0. Let N = limn Γn and note that for each ω ∈ N c,
there exists an n such that ω ∈ Γc

k for every k > n since otherwise ω would be in N , by Lemma 2.1.3. Now,
fix ω ∈ N c and pick such an n as above. First, assume that m = 1 and let y ∈ DB , so for v > n and
y ∈ [i2−v, (i+ 1)2−v), there exists an r ≥ v + 1 such that

y = i2−v +
r∑

j=v+1

aj2
−j

where the coefficients aj are either 0 or 1. Now, for k ∈ {v, v + 1, . . . , r} consider the sequence

yk =

{
i2−v +

∑k
j=v+1 aj2

−j if k ≥ v + 1

i2−v if k = v.

Note that yr = y, so that we may write

|Xy −Xi2−v | = |
r−1∑

k=v

Xyk+1
−Xyk

|,

which by the triangle inequality yields

|Xy −Xi2−v | ≤
r−1∑

k=v

|Xyk+1
−Xyk

|.

Since |yk+1 − yk| = ak+12
−(k+1) but if ak+1 = 0, then yk+1 = yk so there is nothing to prove; suppose

therefore that ak+1 = 1. Since w ∈ Γc
k+1 and |yk+1 − yk| = 2−(k+1), by the definition of Γn, it has to be the

case that

|Xy −Xi2−v | ≤
r−1∑

k=v

2−(k+1)γ .

Put l = k − v to obtain that the right hand side above equals

r−v−1∑

l=0

2−(l+v+1)γ ≤ 2−vγ
r−v−1∑

l=0

2−lγ = 2−vγ 1− 2−γ(r−v)

1− 2−γ

≤ 2−vγ 1

1− 2−γ
,

where the last inequality comes from the fact that 0 < 2−γ(r−v) < 1. Now, let y, z ∈ DB be such that
|y − z| ≤ 2−v, for some v > n. There are two cases; either there exists an i such that (i − 1)2−v ≤ y ≤
i2−v ≤ z < (i+ 1)2−v or y, z ∈ [i2−v, (i+ 1)2−v. For the first case, we have by the above that

|Xy −Xz| ≤ |Xz −Xi2−v |+ |Xy −X(i−1)2−v |+ |Xi2−v −X(i−1)2−v |

≤ 2−vγ(1 +
2

1− 2−γ
),

and for the other case, we have that

|Xy −Xz| ≤ |Xy −Xi2−v |+ |Xz −Xi2−v | ≤ 2

1− 2−γ
2−vγ .

Hence we have shown that for any points y, z ∈ DB with |y − z| ≤ 2−v, we obtain the following desired
inequality

|Xy −Xz|
|x− y|γ ≤ 1 +

2

1− 2−γ
,
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which proves the statement for m = 1. Now, let m > 1 and Let S be any square of dyadic points of the form

S = {x ∈ DB | x ∈ (c1, c2)
m, 0 < |c2 − c1| ≤ 2−v}. (3.2)

For y, z ∈ S and i = 0, . . . ,m, define x(i) ∈ S as

x
(i)
j =

{
yj if j ≤ i

zj otherwise

and note that x(0) = z, x(m) = y and for i = 1, . . . ,m, x(i−1) and x(i) differ at only one coordinate. Hence,
we get that

|Xy −Xz| = |
m∑

i=1

Xx(i) −Xx(i−1) | ≤
m∑

i=1

|Xx(i) −Xx(i−1) |,

but for each i, we can view Xx(i) −Xx(i−1) as a one dimensional random variable, since it is non-vanishing
at only one coordinate. Thus, by our previous computations, we obtain the inequality

m∑

i=1

|Xx(i) −Xx(i−1) | ≤ (1 +
2

1− 2−γ
)

m∑

i=1

|x(i) − x(i−1)|γ

≤ m(1 +
2

1− 2−γ
)|y − z|γ ,

as |x(i) − x(i−1)| ≤ |y − z|. Hence we have shown that for every γ < α
β there exists a negligible set N such

that for all ω ∈ N c the restriction of the map y 7→ Xy(ω) to DB is locally γ-Hölder continuous. Indeed, by
the above, if we let ε =

√
m2−v, we have that

sup
0<|y−z|<ε

|Xy −Xz|
|y − z|γ < ∞,

since if |y − z| < ε there exists a square S of the form (3.2) such that both y and z are points of S.

Remark 3.2.3. If the reader is not convinced about the choice of ε above, ask yourself "what is the furthest
distance between any two points of a square?"

Remark 3.2.4. In the following, we will use the notation C = 1 + 2
1−2−γ .

We shall now prove the Continuity Theorem

Proof. By the previous lemma, we have that for γ < α
β , there exists a negligible event N such that for

ω ∈ N c, the restriction of the map y 7→ Xy(ω) to DB is locally γ-Hölder continous, where DB is the set of
dyadic points in D. Now, we wish to construct a family of d-dimensional random variables {X ′

y}y∈D such
that Xy = X ′

y a.s. for every y ∈ D and that for every ω ∈ Ω the map y 7→ X ′
y(ω) is γ-Hölder continuous on

every compact subset of D, for all γ < α
β .

For ω ∈ N c, we wish to define
X ′

y(ω) = lim
n

Xyn
(ω), (3.3)

where {yn} is some sequence of dyadic points in D converging to y. However, in order to do so, we need to
justify that the right hand side converges and is independent of our choice of sequence. Hence, let {yn} be
a sequence of dyadic points in D that converges to y. By local γ-Hölder continuity of the previous lemma,
we have that there exists a natural number N such that for all n and k greater than N , we have that

|Xyn
(ω)−Xyk

(ω)| ≤ C|yn − yk|γ

and since {yn} is convergent, it is also a Cauchy sequence. Therefore, the sequence {Xyn} is also a Cauchy
sequence, so it converges. For the other part, let {zn} be another sequence of dyadic points that converges
to y. Again, by local γ-Hölder continuity of the previous lemma, we have that there exists a natural number
N ′ such that for all n larger than N ′ we have that

|Xyn −Xzn | ≤ C|yn − zn|γ ,
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and since the right hand side converges to 0, so does the left hand side. Hence, for ω ∈ N c, we may define
X ′

y(ω) as in (3.3) and for ω ∈ N , we simply put X ′
y(ω) = 0. We shall now show that for ω ∈ Ω, the map

y 7→ X ′
y(ω) is locally γ-Hölder continuous. This is trivial if ω ∈ N ; hence fix ω ∈ N c and let ε > 0 be the

ε from the proof of the previous lemma. Consider two distinct points y, z in D such that |y − z| < ε. By
Corollary 2.1.1, we get that

|X ′
y −X ′

z| = | lim
n
(Xyn

−Xzn)| = lim
n

|Xyn
−Xzn |

≤ lim
n

C|yn − zn|γ = C|y − z|γ ,

so for each ω ∈ Ω, the map y 7→ X ′
y(ω) is in fact locally γ-Hölder continuous on D. By Lemma 3.1.2, we

have that for each ω ∈ Ω, the map y 7→ X ′
y(ω) is in fact γ-Hölder continuous on each compact subset of D.

Lastly, to show that Xy = X ′
y IP-a.s. we shall make use of Fatou’s lemma, which can be found in Friedman

[2, Theorem 2.10.5]. By (3.1), we have that

E[|Xy −X ′
y|β ] = E[lim

n
|Xy −Xyn |β ] ≤ lim

n
E[|Xy −Xyn |β ]

≤ lim
n

|y − yn|m+α = sup
n≥0

( inf
m≥n

|y − yn|m+α)

but for every n ≥ 0, infm≥n |y − yn|m+α = 0 since yn converges to y so we have that

E[|Xy −X ′
y|β ] = 0, (3.4)

and as shown in Friedman, (3.4) is true if and only if |Xy − X ′
y|β = 0 IP-a.s. [2, Theorem 2.7.3]. This

simplifies to Xy = X ′
y IP-a.s. and we may finish the proof.

Remark 3.2.5. When we say "let ε > 0 be the ε from the proof of the previous lemma", one could have
also said, "let ε > 0 be the ε from Definition 3.1.1, for which the restriction of the map y 7→ Xy(ω) to DB

is locally γ-Hölder continuous."
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Chapter 4

The Haar Functions

4.1 The Haar Functions
The content of the following section is inspired by the lecture notes made by Lenya Ryzhik [5]. Also,
similar to as been mentioned twice before, we shall use non-trivial statements regarding the theory of linear
transformations and orthonormal sets, which may be found in Friedman [2, Chapter 4.4 & Chapter 6.4].

Definition 4.1.1 (Haar functions). The functions defined on [0, 1] via

h0(t) = 1,

hk
n(t) = 2

n
2 1[ 2k

2n+1 , 2k+1

2n+1 )(t)− 2
n
2 1[ 2k+1

2n+1 , 2k+2

2n+1 )(t),

where n is any non-negative integer and k is any element of {0, 1, . . . , 2n − 1}, are called Haar functions on
the unit interval.

In order to to simplify some computations, we state an alternative, yet equivalent definition of the Haar
functions.

Lemma 4.1.1. Let ρ(t) = 1[0, 12 )
(t)− 1[ 12 ,1)

(t). We may then write the Haar functions as

h0(t) = 1,

hk
n(t) = 2

n
2 ρ(2nt− k).

Remark 4.1.1. Note that ρ(t) is defined to be h0
0(t). This function ρ(t) is from now on exclusively used to

denote 1[0, 12 )
(t)− 1[ 12 ,1)

(t).

Proof. Since t ∈ [ 2k
2n+1 ,

2k+1
2n+1 ) if and only if (2nt−k) ∈ [0, 1

2 ) and t ∈ [ 2k+1
2n+1 ,

2k+2
2n+1 ) if and only if (2nt−k) ∈ [ 12 , 1)

the statement follows.

Lemma 4.1.2. Any Haar function except h0(t) has the property that
∫ 1

0

hk
n(s)ds = 0

Proof.
∫ 1

0

hk
n(s)ds = 2

n
2 (

∫ 1

0

1[ 2k

2n+1 , 2k+1

2n+1 )ds−
∫ 1

0

1[ 2k+1

2n+1 , 2k+2

2n+1 )ds)

= 2
n
2 (

1

2n+1
− 1

2n+1
) = 0.

Lemma 4.1.3. The set of Haar functions are orthonormal in L2([0, 1],B([0, 1]), λ), where λ is the Lebesgue
measure.
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Proof. We begin to show that ⟨hk
n, h

k′
n′⟩ = 0 if either n ̸= n′, or if k ̸= k′. First, if n = n′ and k ̸= k′, hk

n and
hk′
n have disjoint support, so their inner product is trivially 0. For the other case, suppose that n ̸= n′ and

without loss of generality we may also assume that n < n′ and consider

⟨hk
n, h

k′
n′⟩ =

∫ 1

0

hk
n(s)h

k′
n′(s)ds = 2

n+n′
2

∫ 1

0

ρ(2ns− k)ρ(2n
′
s− k′)

= 2
n+n′

2 −n′
∫ (1+k)2−n

k2−n

ρ(t)ρ(2n
′−n(t+ k)− k′)dt,

where the last equality comes from the substitution t = 2ns− k. Note that k2−n = 2k
2n+1 and (k + 1)2−n =

2k+2
2n+1 , so with C = 2

n+n′
2 −n′

, we get that the above equals

C(

∫ 1
2

0

ρ(2n
′−n(t+ k)− k′)dt−

∫ 1

1
2

ρ(2n
′−n(t+ k)− k′)dt)

= 2n−n′
C(

∫ 2n
′−n(k+ 1

2 )−k′

2n′−nk−k′
ρ(r)dr −

∫ 2n
′−n(k+1)−k′

2n′−n(k+ 1
2 )−k′

ρ(r)dr),

as we made the substitution r = 2n
′−n(t+ k)− k′. Now, by our assumption of n′ > n, we have that 2n

′−n is
some natural number that is a multiple of 2. It follows that all the bounds of integration above are integers
and thus, by the support of ρ(t) and Lemma 4.1.2, ⟨hk

n, h
k′
n′⟩ = 0. Lastly,

⟨hk
n, h

k
n⟩ =

∫ 1

0

(hk
n(s))

2 = 1

and the statement follows.

Definition 4.1.2. We say that the inner product

⟨f, hk
n⟩ =

∫
f(x)hk

n(x)dx =: cnk

are the Haar coefficients with respect to f ∈ L2([0, 1],B([0, 1]), λ) and we define the Haar series of f as

h(f)(x) := ⟨f, h0⟩h0 +
∞∑

n=0

2n−1∑

k=0

cnkh
k
n(x).

Remark 4.1.2. We shall prove the convergence of the Haar series later on.

Definition 4.1.3. Let Dn be the set of dyadic intervals of length 2−n in [0, 1). We use the notation
Dn = {In,k | k ∈ {0, 1, . . . , 2n − 1}}, where

In,k = [
2k

2n+1
,
2k + 2

2n+1
).

Further, we shall use the notation mI(f) to denote the average value of f over the interval I; i.e

mI(f) =
1

|I|

∫

I

f(s)ds.

Lastly, for any f ∈ L2([0, 1],B([0, 1]), λ), where λ denotes the Lebesgue measure, we say that

Pn(f)(x) =
∑

I∈Dn

mI(f)1I(x)

is the dyadic projection of f in L2([0, 1],B([0, 1]), λ).
Remark 4.1.3. Clearly, for each n, all intervals in Dn are disjoint.

Lemma 4.1.4. The set {Pn} of dyadic projections on L2([0, 1],B([0, 1]), λ), is a family of bounded linear
operators with norms less than or equal to 1.
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Proof. The fact that it is a linear operator is a direct consequence of the properties of integration. To prove
that it is bounded, we use the above remark to write

∥Pn(f)∥2L2 =

∫ 1

0

|Pn(f)(s)|2ds =
∑

I∈Dn

∫

I

|Pn(f)(s)|2ds.

By the definition of Pn(f), we have that for s ∈ I, Pn(f)(s) = mI(f), which is a constant, so we get that
the above equals

∑

I∈Dn

∫

I

|mI(f)|2ds =
∑

I∈Dn

|mI(f)|2|I| =
∑

I∈Dn

1

|I| |(
∫

I

f(t)dt)2|

≤
∑

I∈Dn

1

|I| (
∫

I

|f(t)|dt)2 =
∑

I∈Dn

1

|I| (∥f∥L1[I])
2

≤
∑

I∈Dn

1

|I| (∥1∥L2[I] ∥f∥L2[I])
2

=
∑

I∈Dn

∫

I

|f(t)|2dt =
∫ 1

0

|f(t)|2dt,

where the second inequality is an application of Hölder’s inequality. We have thus obtained that

∥Pn(f)∥L2 ≤ ∥f∥L2 ,

which proves the statement.

Lemma 4.1.5. For any f ∈ L2([0, 1],B([0, 1]), λ), Pj(f)(x) equals the (j − 1):th partial sum of the Haar
series of f .

Proof. First, note that each interval In,k may be written as a disjoint union in the following way

In,k =[
2k

2n+1
,
2k + 2

2n+1
) = [

2k

2n+1
,
2k + 1

2n+1
) ∪ [

2k + 1

2n+1
,
2k + 2

2n+1
)

=[
4k

2n+2
,
4k + 2

2n+2
) ∪ [

4k + 2

2n+2
,
4k + 4

2n+1
) = In+1,2k ∪ In+1,2k+1.

Define I ln,k := In+1,2k and Irn,k := In+1,2k+1. Clearly, |I| = 2|I l| = 2|Ir|, so by linearity of integration we
can rewrite mI(f) as

mI(f) =
1

2
(mIl(f) +mIr (f)).

With this in mind, fix an interval In,k ∈ Dn and suppose first that x ∈ I ln,k, then

Pn+1(f)(x)− Pn(f)(x) =
∑

I∈Dn+1

mI(f)1I(x)−
∑

I∈Dn

mI(f)1I(x)

= mIl
n,k

(f)−mIn,k
(f)

= mIl
n,k

(f)− 1

2
(mIl

n,k
(f) +mIr

n,k
(f))

=
1

2
(mIl

n,k
(f)−mIr

n,k
(f)).

For x ∈ Irn,k, we have by similar calculations, that

Pn+1(f)(x)− Pn(f) = −1

2
(mIl

n,k
(f)−mIr

n,k
(f)).

Since for any non negative integer n and for any k in {0, 1, . . . , 2n − 1}, |In,k| = 2−n, the Haar function hk
n

may be rewritten as

hk
n(x) =

1√
|In,k|

(1Il
n,k

(x)− 1Ir
n,k

(x)).
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Thus, for x ∈ In,k

Pn+1(f)(x)− Pn(f)(x) = ⟨f, hk
n⟩hk

n(x).

Hence, for any x ∈ [0, 1],

Pn+1(f)(x)− Pn(f)(x) =
2n−1∑

k=0

⟨f, hk
n⟩hk

n(x),

since if x = 1 both sides are 0. Furthermore, for any j ≥ 1 and x ∈ [0, 1], we can write

Pj(f)(x)− P0(f)(x) =

j−1∑

n=0

(Pn+1(f)(x)− Pn(f)(x))

=

j−1∑

n=0

2n−1∑

k=0

⟨f, hk
n⟩hk

n(x),

and since P0(f) = ⟨f, h0⟩h0, the statement is proved.

Theorem 4.1.1. For any f ∈ L2([0, 1],B([0, 1]), λ), the Haar series of f converges to f in the L2-norm.

Proof. Since the set of continuous function on the unit interval, C[0, 1], is dense in L2[0, 1], we begin by
considering functions g ∈ C[0, 1]. Recall that continuous functions on compact intervals are uniformly
continuous, so we use the fact that for every ε > 0, there exists a natural number Nε such that for all n ≥ Nε

|x− y| ≤ 2−n =⇒ |g(x)− g(y)| < ε.

By the mean value theorem, for every dyadic interval I ⊂ [0, 1], there exists an interior point cI of I such
that

mI(g) =
1

|I|

∫

I

g(s)ds = g(cI).

Now, fix ε ≥ 0 and pick an Nε such that for all n ≥ Nε and for every x ∈ [0, 1], there exists a point
cIn,k

∈ In,k for some k such that

|x− cIn,k
| ≤ 2−n =⇒ |g(x)− g(cIn,k

)| = |g(x)−mIn,k
(g)| = |g(x)− Pn(g)(x)| < ε,

where the last equality comes from the fact that the intervals In,k ∈ Dn are disjoint. This means that for
any g ∈ C[0, 1], the sequence of functions x 7→ Pn(g)(x) converges uniformly to g, so by Lemma 4.1.5, the
Haar series of g converges uniformly to g. This implies L2-convergence in [0, 1] since

∥Pn(g)− g∥2L2[0,1] =

∫ 1

0

|Pn(g)(s)− g(s)|2ds ≤ 1 sup
s∈[0,1]

|Pn(g)(s)− g(s)|2

= ( sup
s∈[0,1]

|Pn(g)(s)− g(s)|)2

which tends to 0 by our previous argumentation.

Now, we want to extend this to the whole space L2([0, 1],B([0, 1]), λ). Fix ε > 0 and let f ∈ L2([0, 1],B([0, 1]), λ),
since C[0, 1] is dense in L2[0, 1], there exists a function g ∈ C[0, 1] such that

∥f − g∥L2 <
ε

3
.

By our previous discussion on uniform continuity, there exists a natural number N such that for all n ≥ N

∥Pn(g)− g∥L2 <
ε

3
.

Thus, by Lemma 4.1.4, in combination with Minkowski’s inequality, we have that

∥Pn(f)− f∥L2 ≤ ∥Pn(f)− Pn(g)∥L2 + ∥Pn(g)− g∥L2 + ∥f − g∥L2

= ∥Pn(f − g)∥L2 + ∥Pn(g)− g∥L2 + ∥f − g∥L2

≤ ∥Pn∥ ∥f − g∥L2 + ∥Pn(g)− g∥L2 + ∥f − g∥L2 ≤ 3
ε

3
= ε

so by 4.1.5, the statement follows.
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Corollary 4.1.1. The set of Haar functions forms an orthonormal basis for L2([0, 1],B([0, 1]), λ).

Proof. By Lemma 4.1.3, the set of Haar functions are orthonormal in L2([0, 1],B([0, 1]), λ) and by Theorem
4.1.1, every function in f ∈ L2([0, 1],B([0, 1]), λ) may be written as

f(x) = ⟨f, h0⟩h0 +

∞∑

n=0

2n−1∑

k=0

cnkh
k
n(x),

which means that the Haar functions span L2([0, 1],B([0, 1]), λ).
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Chapter 5

Brownian motion

5.1 A Construction of a Brownian motion
The outline of the following construction was found in the lecture notes of Sanz-Solé [6, Section 2.2].

Definition 5.1.1. A real valued stochastic process B = (Ω,A, {At}t∈T , {Bt}t∈T , IP) is said to be a one-
dimensional Brownian motion if the following conditions are satisfied

i) B0 = 0 a.s.,
ii) if 0 ≤ s ≤ t, then Bt −Bs is independent of As,

iii) if 0 ≤ s ≤ t, then Bt −Bs is Gaussian with mean 0 and variance t− s.

Lemma 5.1.1. Let B = (Ω,A, {At}t∈T , {Bt}t∈T , IP) be a Brownian motion. Then, for any 0 ≤ u ≤ v ≤
s ≤ t, Bt −Bs and Bv −Bu are independent.

Proof. By Corollary 2.2.1, we have that for any D ∈ B(Rn), (Bv −Bu)
−1(D) ∈ Av. Since Av ⊂ As, we have

by property ii) of the above definition that for any D1, D2 ∈ B(Rn)

IP((Bt −Bs)
−1(D1) ∩ (Bv −Bu)

−1(D2)) = IP((Bt −Bs)
−1(D1))IP((Bv −Bu)

−1(D2)),

which proves the statement.

Lemma 5.1.2. Let f ∈ L2([0, 1],B([0, 1]), λ) and let {N0, N
k
n} be a family of independent Gaussian random

variables with mean 0 and variance 1. The transform IN from L2([0, 1],B([0, 1]), λ) to L2(Ω,A, IP)

IN (f) = ⟨f, h0⟩N0 +
N∑

n=0

2n−1∑

k=0

⟨f, hk
n⟩Nk

n ,

converges in L2(Ω) to

I(f) = ⟨f, h0⟩N0 +
∞∑

n=0

2n−1∑

k=0

⟨f, hk
n⟩Nk

n .

as N tends to ∞.

Proof. We begin by showing that IN (f) is a Cauchy sequence. Let

SN (f) =

N∑

n=0

2n−1∑

k=0

|⟨f, hk
n⟩|2.

By Remark 2.2.9, we have that

∥IN (f)− IM (f)∥2L2 = E[(IN (f)− IM (f))2]

= V ar(IN (f)− IM (f)) + E[IN (f)− IM (f)]2.
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Since the family {N0, N
k
n} consists of independent random variables, we may by Corollary 2.2.3 compute

the variance above as

V ar(IN (f)− IM (f)) =V ar(

N∑

n=

2n−1∑

k=0

⟨f, hk
n⟩Nk

n) =

N∑

n=

2n−1∑

k=0

⟨f, hk
n⟩2V ar(Nk

n)

= SN (f)− SM (f),

and since

E[IN (f)− IM (f)] = E[
N∑

n=

2n−1∑

k=0

⟨f, hk
n⟩Nk

n ]

=
N∑

n=

2n−1∑

k=0

⟨f, hk
n⟩E[Nk

n ] = 0,

we get that

∥IN (f)− IM (f)∥2L2 = SN (f)− SM (f),

which tends to 0 as N and M goes to infinity by Theorem 4.1.1. By Corollary 2.1.1 we have that

lim
N

∥IN (f)∥ =
∥∥∥lim

N
IN (f)

∥∥∥ = ∥I(f)∥ ,

which proves the statement.

Remark 5.1.1. We may now for any f ∈ L2([0, 1],B([0, 1]), λ) refer to I(f) as the transform above.

Corollary 5.1.1. The transform I is an isometry between L2([0, 1],B([0, 1]), λ) and L2(Ω,A, IP).

Proof. To shorten the notation we shall use the notation L2([0, 1]) and L2(Ω) to denote the two spaces of
interest. By the computations of the proof of the previous lemma, we have that

∥I(f)∥2L2(Ω) = lim
N

∥IN (f)∥2L2(Ω) = lim
N

E[IN (f)2]

= lim
N

(V ar(IN (f)) + E[IN (f)]2)

= ⟨f, h0⟩2V ar(N0) + lim
N

N∑

n=0

2n−1∑

k=0

< f, hk
n >2 V ar(Nk

n)

= ⟨f, h0⟩2 +
∞∑

n=0

2n−1∑

k=0

< f, hk
n >2= ∥f∥2L2([0,1]) ,

where the last equality comes from Theorem 2.1.2.

Theorem 5.1.1. The stochastic process (Ω,A, {At}t∈[0,1], {Bt}t∈[0,1], IP), where the family {Bt}t∈[0,1] of
random variables is defined via Bt = I(1[0,t]) and {At}t∈[0,1] is given by the natural filtration, defines a
one-dimensional Brownian motion.

Proof. First, note that for 0 ≤ s ≤ t ≤ 1, Bt − Bs = I(1(s,t]). We check the conditions of Definition 5.1.1.
Trivially, B0 = 0 so the first condition is satisfied. For the proof of the second and third condition we shall
refer to Schilling & Partzsch [4, Section 3.1].

Remark 5.1.2. The proof made in to Schilling & Partzsch above is done using characteristic functions, (i.e
the Fourier Transform), which we haven’t discussed in this text. However, it uses the fact that if a random
vector (X,Y ) is jointly Gaussian and the components are uncorrelated, i.e that E[XY ] = E[X]E[Y ], then X
and Y are independent. Hence, if one shows that (I(1(s,t]), I(1(0,r])), is jointly Gaussian for any r ≤ s, then
we simply use the isometry property to calculate E[I(1(s,t])I(1(0,r])] = ⟨I(1(s,t]), I(1(0,r])⟩ = 0. Nevertheless,
we still need to show that I(1(u,v]) have law N(0, v − u) for any u ≤ v to prove both properties.
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5.2 Regularity of the Brownian Motion
The first Theorem below is of the lines of what is given in the lecture notes of Sanz-Solé [6, Section 2.2].
The outline of the proof for the Iterated Logarithm Law along with the relevant lemmas were found in Baldi
[1, Section 3.4].

Theorem 5.2.1. For a one-dimensional Brownian motion B = (Ω,A, {At}t∈T , {Xt}t∈T , IP), the sample
paths of {Xt}t∈T are almost surely γ-Hölder continous on any compact subset of T , for any γ ∈ (0, 1

2 ).

Proof. We intent to use Kolmogorov’s Continuity Theorem, so we need to show that there exists α, β, c > 0
such that for every s, t ∈ T ,

E[|Xt −Xs|β ] ≤ c|t− s|1+α.

In this proof we shall use what is mentioned in Remark 2.2.10. Hence, for any natural number k, and with
the notation that L = 1

(t−s)
√
2π

, we can compute as follows

E[|Xt −Xs|2k] = E[(Xt −Xs)
2k] = L(

∫

R
x2ke−

1
2 (

x
(t−s)

)2dx)

= L([x2k−1(−(t− s)2e−
1
2 (

x
(t−s)

)2)]∞−∞

+

∫

R
(2k − 1)x2k−2(t− s)2e−

1
2 (

x
(t−s)

)2dx)

= L(2k − 1)(t− s)2
∫

R
x2k−2e−

1
2 (

x
(t−s)

)2dx.

Continuing in this fashion and using Lemma 2.2.6, we obtain

L(2k − 1)(2k − 3)(2k − 5) · . . . · 3 · 1(t− s)2
k
2

∫

R
e−

1
2 (

x
(t−s)

)2 =
(2k)!

2kk!
(t− s)k.

Therefore, with α = k − 1, β = 2k, c = (2k)!
2kk!

, we find that

E[|Xt −Xs|β ] ≤ c|t− s|1+α.

Since for any γ ∈ (0, 1
2 ) there exists a k such that γ < α

β . Indeed, since when k tends to infinity, α
β tends to

1
2 . Hence the statement follows by Kolmogorov’s Continuity Theorem.

Corollary 5.2.1. The sample paths of a one-dimensional Brownian motion are almost surely continuous.

Proof. This follows by the previous theorem and Lemma 3.1.1.

Lemma 5.2.1. Let (Ω,A, {At}t∈T , {Xt}t∈T , IP) be a Brownian motion, then for any real non-negative
numbers x and T ,

IP( sup
0≤t≤T

Xt > x) ≤ 2IP(XT > x).

Proof. Let I = {t0, t1, . . . , tn}, be an increasing sequence of points in [0, T ] such that tn = T and such that
{tj | Xtj (ω) > x}, if no such sequence exists, then the statement follows trivially. Assume therefore that
such a sequence exists and let τ(ω) = inf{tj | Xtj (ω) > x}. If XT (ω) > x, then τ(ω) ≤ T , which implies
that {ω ∈ Ω | XT (ω) > x} ⊂ {ω ∈ Ω | τ(ω) ≤ T}. Furthermore, the sets of the form

{ω ∈ Ω | τ(ω) = tj , XT > x}

where j is an integer such that 0 ≤ j ≤ n, are disjoint. We can thus proceed with the following computations

IP(XT (ω) > x) = IP(τ(ω) ≤ T,XT > x)

=
n∑

j=0

IP(τ(ω) = tj , XT (ω) > x)

≥
n∑

j=0

IP(τ(ω) = tj , XT (ω)−Xtj (ω) ≥ 0),
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as when τ(ω) = tj , we have that Xtj > x. By the definition of τ(ω), we may write

{ω ∈ Ω | τ(ω) = tj} = {ω ∈ Ω | Xt0(ω) ≤ x, . . . ,Xtj−1
(ω) ≤ x,Xtj (ω) > x},

which by Remark 2.2.3 and the definition of a stochastic process is an element of Atj . By Lemma 2.2.1 we
also have that

{ω ∈ Ω | XT −Xtj ≥ 0} ∈ σ(XT −Xtj ).

By definition 2.2.8 and the result of Lemma 2.2.6, we easily compute that IP(XT −Xtj ≥ 0) = 1
2 . By the

definition of Brownian motion, we have that Atj and σ(XT −Xtj ) are independent, so we may thus compute
as

IP(XT (ω) > x) ≥
n∑

j=0

IP(τ(ω) = tj)IP(XT (ω)−Xtj (ω) ≥ 0)

=
1

2

n∑

j=0

IP(τ(ω) = tj)

which by disjointedness of the sets {ω ∈ Ω | τ(ω) = tj} equals

1

2
IP(∪n

j=0{τ(ω) = tj}) =
1

2
IP(∪n

j=0{Xt0(ω) ≤ x, . . . ,Xtj−1
(ω) ≤ x,Xtj (ω) > x})

=
1

2
IP({Xt0(ω) > x} ∪ {Xt0(ω) ≤ x,Xt1(ω) > x}

∪ {Xt0(ω) ≤ x,Xt1(ω) ≤ x,Xt2(ω) > x} ∪ . . .

∪ {Xt0(ω) ≤ x, . . . ,Xtn−1(ω) ≤ x,Xtn(ω) > x})

=
1

2
IP({ω ∈ Ω | sup

t∈I
Xt(ω) > x}),

where one can see this last equality by picking an ω and checking if Xt0(ω) > x and if not, checking Xt1 and
so on.

Now, let In be a sequence of finite subsets of [0, T ] that increases to Q ∩ [0, T ], such that for each n the last
point of In equals T and where the set {tj | Xtj > x} is non-empty, where the tj :s denotes the points of In.
The existence of such a sequence comes from Corollary 5.2.1. Since the sets {ω ∈ Ω | supt∈In Xt(ω) > x}
increases with n, we obtain that

IP( sup
t∈[0,T ]

Xt > x) = IP( sup
t∈Q∩[0,T ]

Xt > x) = lim
n

IP(sup
t∈In

Xt > x)

≤ lim
n

2IP(XT > x) = 2IP(XT > x)

and the statement follows.

Lemma 5.2.2. for x > 0

(x+
1

x
)−1e−

x2

2 ≤
∫ ∞

x

e−
y2

2 dy ≤ 1

x
e−

x2

2 .

Proof. Since we are integrating over the interval (x,∞), we have that
∫ ∞

x

e−
y2

2 dy ≤ 1

x

∫ ∞

x

ye−
y2

2 dy =
1

x

[
− e−

y2

2

]+∞

x

=
1

x
e−

x2

2 ,

which proves the right hand side inequality. Furthermore, since

d

dx

1

x
e−

x2

2 = −(1 +
1

x2
)e−

x2

2 ,

and because (1 + 1
x2 ) decreases for positive x, we have

1

x
e−

x2

2 =

∫ ∞

x

(1 +
1

y2
)e−

y2

2 dy ≤ (1 +
1

x2
)

∫ ∞

x

e−
y2

2 dy,

which by dividing by (1 + 1
x2 ) on both sides yields the left hand side of the statement.
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Theorem 5.2.2 (Iterated Logarithm law). Let (Ω,A, {At}t∈T , {Xt}t∈T , IP) be a Brownian motion, then for
any decreasing sequence {tn} ⊂ T , which converges to 0, it holds that

IP(lim
n

Xtn

(2tn log log
1
tn
)

1
2

= 1) = 1.

Remark 5.2.1. Note that by Corollary 5.2.1 a one-dimensional Brownian motion is continuous, so if the
statement is true for one such sequence {tn} as above, it holds for all such sequences {tn} above.

Proof. We begin to show that

lim
n

Xtn

(2tn log log
1
tn
)

1
2

≤ 1 a.s.

Let ϕ(tn) = (2tn log log
1
tn
)

1
2 , fix δ > 0 and define

An = {ω ∈ Ω | Xtn(ω) > (1 + δ)ϕ(tn)}.

If we can show that IP(limn An) = 0, then the desired inequality is proven. Indeed, by Lemma 2.1.3 the set
of points that are in infinitely many An:s have probability 0, so for every δ > 0 there exists an n such that

IP( sup
m>n

{ Xtn

ϕ(tn)
> 1 + δ}) = 0,

which implies that

lim
n

Xtn

ϕ(tn)
≤ 1 a.s..

Since ϕ is increasing,

An ⊂ { sup
0≤t≤tn

Xt > (1 + δ)ϕ(tn+1)},

and since Xtn√
tn

∼ N(0, 1), it follows by Lemma 5.2.1 and Lemma 5.2.2, that for tn+1 < 1
e , we have that

IP(An) ≤ IP( sup
0≤t≤tn

Xt ≥ (1 + δ)ϕ(tn+1)) ≤ 2IP(Xtn ≥ (1 + δ)ϕ(tn+1)

= 2IP(
Xtn√
tn

≥ (1 + δ)(2
tn+1

tn
log log

1

tn+1
)

1
2 ) =

2√
2π

∫ +∞

xn

e−
y2

2 dy

≤
√

2

π

1

xn
e−

x2
n
2 ,

where

xn = (1 + δ)(2
tn+1

tn
log log

1

tn+1
)

1
2 .

By Remark 5.2.1 we can restrict ourselves to the case when tn = qn for some q between 0 and 1, such that
λ = q(1 + δ)2 > 1. Now if we write α = log 1

q , which is positive, we get that

xn = (1 + δ)(2q log[(n+ 1) log
1

q
])

1
2 = [2λ log(α(n+ 1))]

1
2 .

Note that, for each q there exists a k such that xj > 1 for all j ≥ k. Fix such a k, so that by the computations
above, we obtain the upper bound

∞∑

j=k

IP(Aj) ≤
∞∑

j=k

√
2

π

1

xj
e−

x2
j
2 ≤

∞∑

j=k

√
2

π
elog(α(j+1))−λ

= α

√
2

π

∞∑

j=k

1

(j + 1)λ
< +∞
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since λ > 1, so the desired inequality follows by the first Borel-Cantelli lemma. We now intend to prove the
reverse inequality, namely

lim
t→0+

Xt

(2t log log 1
t )

1
2

≥ 1 a.s.

Again, let ϕ(t) be defined as before and let {tn} be a sequence in T converging to 0. For any δ > 0, define
the set

Fn = {ω ∈ Ω | Xtn(ω) > (1− δ)ϕ(tn)}.

In a similar fashion as before the above inequality is equivalent to showing that for any δ > 0, IP(limn Fn) = 1.
However, as will become clear later, we first intend to show that for every ε > 0 the set

Gn = {ω ∈ Ω | Xtn −Xtn+1
> (1− ε)ϕ(tn)}

has the property that IP(limGn) = 1. Fix ε > 0 and note that by the definition of Brownian motion and by
Lemma 5.1.1, Zn = Xtn −Xtn+1 are independent random variables with law N(0, tn − tn+1) for any n; in
particular, the family {Gn} is an independent family. Further, by Remark 2.2.9, we have that Zn√

tn−tn+1
are

N(0, 1) random variables. Hence, by Lemma 5.2.2, we have that for every x > 1

IP(
Zn√

tn − tn+1
> x) =

1√
2π

∫ +∞

x

e−
z2

2 dz

≥ x

x2 + 1

1√
2π

e−
x2

2

>
1

2x
√
2π

e−
x2

2 ,

as for x > 1,

1 >
1

x2
⇐⇒ x

x2 + 1
>

1

2x
.

Now, let tn = qn, where q is any number between 0 and 1 such that

β =
2(1− ε)2

1− q
< 2

and let α = log 1
q . Put

xn = (1− ε)
ϕ(tn)√
tn − tn+1

=
1− ε√
1− q

√
2 log(n log

1

q
)

=

√
2(1− ε)2

1− q
log(n log

1

q
) =

√
β log(αn)

since α > 0 for any q, there exists a natural number k such that xn > 1 for every n ≥ k. Hence fix such a k
and plug in xn in the above calculations to obtain the inequality

IP(Zn > (1− ε)ϕ(tn)) = IP(Gn) ≥
c

n
β
2

√
log n

.

Which means that
∞∑

n=k

IP(Gn) ≥
∞∑

n=k

c

n
β
2

√
log n

= ∞,

so by the second Borel-Cantelli lemma we have that IP(limn Gn) = 1. Fix δ > 0 recall that we wish to show
that

IP(lim
n

Fn) = IP(lim
n
{ω ∈ Ω | Xtn(ω) > (1− δ)ϕ(tn)}) = 1.
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Furhter, recall the set An from above and consider the Brownian motion induced by {−Xt}t∈T , then we
have that for any ξ > 0

IP(lim
n
{−Xtn+1 > (1 + ξ)ϕ(tn+1)}) = 0

which is equivalent to saying that

IP(lim
n
{−Xtn+1 ≤ (1 + ξ)ϕ(tn+1)}) = 1.

Since for any ξ > 0, IP(limn Gn) = 1, we get that

1 = IP(lim
n
({Xtn −Xtn+1

> (1− ξ)ϕ(tn)} ∪ {−Xtn+1
≤ (1 + ξ)ϕ(tn+1)}))

≤ IP(lim
n
{Xtn + (1 + ξ)ϕ(tn+1) > (1− ξ)ϕ(tn)})

= IP(lim
n
{Xtn > ϕ(tn)((1− ξ − (1 + ξ)

ϕ(tn+1)

ϕ(tn)
)}).

By Remark 5.2.1, we may pick the sequence tn again as tn = qn for any 0 < q < 1. Since log log 1
qn =

log n+ log log 1
q and limn

log(n+1)
logn = 1, we obtain

lim
n

ϕ(tn+1)

ϕ(tn)
= lim

n

(2qn+1 log log 1
qn+1 )

1
2

(2qn log log 1
qn )

1
2

=
√
q,

so for every ρ > 0 there exists a natural number N such that for n > N ,

ϕ(tn)(1− ξ − (1 + ξ)
ϕ(tn+1)

ϕ(tn)
) < ϕ(tn)((1− ξ − (1 + ξ)(

√
q − ρ))

and thus we obtain the bound

1 = IP(lim
n
({Xtn > ϕ(tn)(1− ξ − (1 + ξ)

ϕ(tn+1)

ϕ(tn)
)})

≤ IP(lim
n
({Xtn > ϕ(tn)((1− ξ − (1 + ξ)(

√
q − ρ))})

= IP(lim
n
({Xtn > ϕ(tn)(1− (ξ +

√
q + ξ

√
q − ρ− ξρ)}).

Lastly, we may pick ρ = ξ = δ and q = (δ − c)2, for some c > 0 such that q ∈ (0, 1) since then

1− (ξ +
√
q + ξ

√
q − ρ− ξρ) = 1− (δ − c+ δ(δ − c)− δ2))

= (1− (δ − c+ δ(δ − c)− δ2)

= 1− (δ − c− cδ) > 1− δ.

This allows us to finally write

1 = IP(lim
n
({Xtn > ϕ(tn)(1− (ξ +

√
q + ξ

√
q − ρ− ξρ)})

≤ IP(lim
n
({Xtn > ϕ(tn)(1− δ}) = IP(lim

n
Fn)

which proves the second inequality and subsequently the whole theorem.
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