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Abstract

The paper looks at the generalisation of the Catalan numbers ak(n)
defined by ak(0) = 1 and ak(n+1) =

∑
j≥0,k|j ak(j)ak(n−j) introduced by

Per Alexandersson, Samuel Asefa Fufa, Frether Getachew, and Dun Qiu
in 2022. We first look at combinatorial interpretations of the Fuss-Catalan
numbers then we generalise these into interpretations of ak(n). Finally
we give a combinatorial proof of the identity ak(n) = Am(k + 1, j + 1)
where Am(p, r) are the Raney-numbers.
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Introduction

The Catalan numbers is the sequence of numbers (Cn)n≥0 given by C0 = 1
and Cn+1 =

∑
k≥0 CkCn−k. These numbers have many combinatorial inter-

pretations (in fact at least 214 [6]) with applications within various fields of
mathematics.

There are of course several generalisations of the Catalan numbers. An easy
one is the Fuss-Catalan numbers which are given by the following:

Ck
0 = 1, Ck

n+1 =
∑

j1+···+jk=n
ji≥0

Ck
j1 · · ·Ck

jk
, for n ≥ 0.

Here we see that when we let k = 2 we get the classical Catalan numbers.
There are many interpretations and uses for the Fuss-Catalan numbers [2, 3, 4,
7, 5] they often lend themselves to generalizing interpretations of the Catalan
numbers. For instance, one interpretation of the Catalan numbers is binary
trees with n edges. The Fuss-Catalan numbers then counts the amount of k-ary
trees with n edges.

A further generalisation are the Raney-numbers. They are usually intro-
duced by their summation formula:

An(k, r) =
r

nk + r

(
nk + r

n

)
.

These turn out to be the Fuss-Catalan numbers for r = 1. They also satisfy
the relation that An(k, k) = An+1(k, 1).

Finally we have the sequences (ak(n))n≥0 which was recently introduced in
[1], given by the following:

ak(0) = 1 ak(n + 1) =
∑

j≥0
k|j

ak(j)ak(n− j), for n ≥ 0.

This sequence satisfies the identity

0 ≤ j ≤ k ak(km + j) = Am(k + 1, j + 1). (1)

This sequence offers a new way to look at the Raney Numbers. The most
interesting consequence of the identity is that ak(km) = Am(k + 1, 1) = Ck+1

m .
This means that any combinatorial interpretation of this sequence also gives us
a combinatorial interpretation of the Fuss-Catalan numbers.

For any interpretations of the Fuss-Catalan numbers we can attempt to
consider it an interpretation of ak(n) for n = km instead and see whether we
can find interpretations for when k6 |n.

In this paper we will see four interpretations of the Fuss-Catalan numbers.
We will then extend these interpretations into interpretations of the sequence
ak(n). Finally we’ll use the interpretation of kx-avoiding paths to give a com-
binatorial proof of the identity (1), a previously open problem.
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1 Combinatorial interpretations of the Fuss-Catalan
numbers

These are generalisations of objects counted by the Catalan numbers. In Stan-
ley’s book [6] he has numbered the interpretations from 1 to 214. The index
for each interpretation refers to the number of the interpretation of the classic
Catalan numbers from the book.

To prove that objects are counted by a sequence defined by recursion, we
can show that the objects themselves satisfy the same recurrence. This is the
main method used in this thesis but otherwise one usually proves this either by
finding a bijection to another interpretation or by showing that the objects are
counted by the closed formula for the sequence.

1.1 k-ary trees

Defenition 1 A k-ary tree is either empty or consists of a root vertex with k
sub-trees, all of which are k-ary trees.

Based on the recursion, k-ary trees with n vertices are in some sense the
most natural interpretation of Ck

n. Each sub-tree is independent so the total
number of ways for a given distribution of the nodes is a product of the possible
ways to make k smaller trees. We sum is over the ways to distribute n vertices
among the sub-trees with the additional final node being the root. When k = 2
these are binary trees[6, Item 4].

Figure 1: The 12 possible 3-ary trees with 3 vertices.

Proof. There is only one k-ary tree with 0 vertices, the empty tree. Let the
children of the root be the sub trees T1, . . . , Tk. For a tree with n+1 vertices, let
Ti have ji vertices. Assuming that for all n′ ≤ n the number of k-ary trees are
counted by Ck

n′ , the number of ways to create a tree with this exact distribution
of vertices is Ck

j1
· · ·Ck

jk
. The total number of ways to create a k-ary tree with

n + 1 vertices is then given by
∑

j1+···+jk=n

Ck
j1 · · ·Ck

jk
.
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By induction, the amount of k-ary trees with n vertices is counted by Ck
n.

T1 T2 Tk

Figure 2: A k-ary divided into the sub-trees T1, . . . , Tk.

1.2 Divisions of convex polygons

Defenition 2 Given a d-gon P , let a division D of P be a set of diagonals of
P that do not cross within P . If every area within P in D borders exactly k + 1
edges, D is said to divide P into (k + 1)-gons.

The Catalan numbers was first found as the number of triangulations of a
(n + 2)-gon [6, Item 1]. We wish to extend this into divisions into (k + 1)-gons
(since a triangle is a (2 + 1)-gon). For the divisions to be even we find that the
polygon has to have ((k − 1)n + 2) vertices for some integer n. We now prove
that the number of divisions of convex ((k − 1)n + 2)-gons into (k + 1)-gons is
counted by Ck

n.

Figure 3: The 12 ways to divide a octagon into quadrilaterals.

Proof. For n = 0 there is one way to do this to a 2-gon (or line). Consider a
((n+1)(k−1)+2)-gon and assume that the the divisions of polygons with fewer
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vertices follow the formula. Fix a edge in the polygon. Let the (k + 1)-gon this
edge neighbours be A. A then splits the polygon into k new polygons where
the i:th one will have ji(k − 1) + 2 edges (this since it is already divided into
(k + 1)-gons).

We have that

(j1 + · · ·+ jk)(k − 1) + 2k − k + 1 = (n + 1)(k − 1) + 2

j1 + · · ·+ jk = n.

Fix A. The number of possible divisions of the i:th polygon is counted by
Ck

ji
. Thus the number possible divisions containing A will be Ck

j1
· · ·Ck

jk
. All

possible ways is then counted by

∑

j1+···+jk=n

Ck
j1 · · ·Ck

jk
.

By induction the divisions of the polygons are counted by the sequence.

A

P1

P2

Pk

Figure 4: The polygon being being split by A into the k smaller polygons
P1 . . . Pk.

1.3 Plane trees

Defenition 3 A plane tree consists of a root vertex r and a sequence of sub-trees
each of which is a plane tree. The root of each of the sub-trees are considered
the children of r.
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The number of plane trees with n edges are counted by the classic Catalan
numbers [6, Item 6]. What makes this generalisation to the Fuss-Catalan num-
bers interesting is that instead of extending or changing the objects we restrict
them. We find that the number of plane trees with (k − 1)n edges where each
vertex has a number of children divisible by (k−1) are counted by the Ck

n. The
interpretations that Ck

n counts are among the ones counted by C2
(k−1)n.

Figure 5: The 14 possible plane trees with four edges.
Note that there are exactly 3 for which all vertices have an even amount of

children.

Proof. There is only one plane tree with 0 edges, which is the tree containing
only the root. Otherwise the root has at least (k − 1) children. Consider the
sub-trees of the first (k − 1) children of the root, let the i:th one have (k − 1)ji
edges. Then the edges in the remaining tree can be described with (k − 1)jk.
We get that

(j1 + · · ·+ jk)(k − 1) = (n + 1)(k − 1)− (k − 1)

j1 + · · ·+ jk = n.

By inductive assumption each sub-tree can be drawn in Ck
ji

ways. We then
get that the total number of ways to draw the tree will be

∑

j1+···+jk=n

Ck
j1 · · ·Ck

jk
.

By induction the trees are counted by the sequence.
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Figure 6: A plane tree with its (k − 1) first sub-trees separate from the rest of
the tree

1.4 (k − 1)x-avoiding paths

Defenition 4 A kx-avoiding path from (0, 0) to (a, b) is a lattice path from
(0, 0) to (a, b) consisting of the steps (1, 0) (east) and (0, 1) (north) with no step
ending below the line y = kx

The number of 1x-avoiding pats from (0, 0) to (n, n) are counted by Cn[6,
Item 24](Although item 24 stays below the line instead). To extend this we
increase the slope of the line. We get that the number of (k − 1)x-avoiding
paths from (0, 0) to (n, n(k − 1)) are counted by Ck

n.

Figure 7: The 5 possible 1x-avoiding paths from (0, 0) to (3, 3)

Proof. When n = 0 there is only one path from (0, 0) to (0, 0).
Consider the path from (0, 0) to (n + 1, (k − 1)(n + 1)). The final step will

always be a east step since otherwise the previous step would have ended below
the line y = (k − 1)x.

Let P be a path from (0, 0) to (n, (k− 1)(n + 1)). The final point of P is at
the line Lk, given by y = (k− 1)x+ (k− 1), meaning there is at least one north
step leaving each of the lines Li, given by y = (k − 1)x + (i− 1) for 0 < i < k.
Let si be the last north step leaving Li. For 1 < i < k let pi be the subpath of
P beginning at the end of si−1 and ending at the beginning of si. Let p1 be the
subpath from (0, 0) to the beginning of s1 and pk the subpath from the end of
sk−1 to (n, (k−1)(n+1)). Let ji be the number of east steps in pi. The path pi
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will both start and end at the line Li and can not go below it since then either
P is not (k − 1)x-avoiding or there is a step leaving Li−1 in pi, contradicting
si−1 being the final step to leave Li−1.

Taking the steps of pi starting at (0, 0) will thus give us a (k− 1)x-avoiding
path to (ji, (k−1)ji). By the inductive assumption the number of ways to make
such a path is Ck

ji
and for a given placement of s1, . . . , sk−1 we get that there

are Ck
j1
· · ·Ck

jk
paths with the placement. Since P contain n east steps we get

that j1 + · · ·+ jk = n so all possible paths are given by

∑

j1+···+jk=n

Ck
j1 · · ·Ck

jk
.

By induction, the paths are counted by the sequence.

p1

p2

pk

n

(k − 1)n

Figure 8: The path being split up into the sub-paths p1, . . . , pk by s1, . . . , sk−1.
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2 Combinatorial interpretations of ak(n)

We will now look at interpretations of the sequence ak(n) such that the interpre-
tation specializes to our previous interpretations of the Fuss-Catalan numbers.

Let n = km + j where 0 ≤ j ≤ k. We note here that when k|n we might
have two interpretations, either n = km+ k or n = k(m+ 1) + 0. In these cases
we’ll show that either the objects are identical or that they are equinumerous.

2.1 (k + 1)-ary trees

To turn these into an interpretation of ak(n) we in some sense add the sub-trees
one at a time. We let the trees have m + 1 edges and only allow nodes in the
first j + 1 sub-trees.
Proof. Given j = k we get a (k + 1)-ary tree with m + 1 vertices. For j = 0 we
instead get a root with one child which is a (k + 1)-ary tree containing m + 1
vertices, the bijection between the two is obvious.

For n = 0 there is the empty tree and also the tree where the first child is
empty. We wish to show that the amount of trees for n + 1 = km + j + 1 is
counted by ak(n + 1). Consider the (j + 2)th sub-tree, let it have l nodes. The
later sub-trees are empty and since this will be a proper (k + 1)-ary tree it will
be counted by ak(lk). The remaining tree can be constructed from n− l nodes
and a root which only has j + 1 children, thus it is counted by ak(n− lk). We
then get that the total number of ways to create the tree is

∑

l

ak(kl)ak(n− kl) =
∑

k|j
ak(j)ak(n− j).

By induction the trees are counted by ak(n).

Figure 9: The tree being split into the full (k + 1)-ary in red and the remaining
tree in blue.
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2.2 Divisions of convex polygons

For these to specialize into the Fuss-Catalan interpretation we wish for them to
be (n+ 2)-gons divisible into (k + 2)-gons. However, if k6 |n, the (n+ 2)-gon will
not be divisible into (k + 2)-gons. If we let our division contain one (j + 2)-gon
this is solved. Restricting the (j + 2)-gon to neighbour the a specific edge of the
polygon we get that they are counted by ak(n). We now state it properly.

The number of divisions of a convex (n+ 2)-gon with a bottom edge into m
(k + 2)-gons and one (j + 2)-gon that neighbours the bottom edge is counted
by ak(n).

Proof. For j = k the shape consists of m (k + 2)-gons and one (k + 2)-gon
that neighbours the bottom edge. This is the same as m + 1 (k + 2)-gons and
a 2-gon which neighbours (and is) the bottom edge.

A line (or 2-gon) can be divided like this in exactly one way. Assume that
ak(n′) counts the number of divisions for for all n′ ≤ n.

Given a convex (n+ 3)-gon, index the vertices clockwise around the polygon
such that the bottom edge joins vertices 0 and n + 2. Consider the vertices
with indexes on the form kl + 1 such that kl + 1 < n + 2. The triangle given
by the bottom edge and one of these vertices split the polygon into two new
convex polygons, A with kl + 2 edges and B with k(m − l) + j + 1 edges. Let
the bottom edge of each be the one neighbouring the triangle. The amount of
ways to divide these are ak(kl) and ak(n− kl) for A and B respectively.

A, when divided, will only consist l (k + 2)-gons while B will have a (j + 2)-
gon neighbouring the triangle and (m− l) (k+2)-gons. The (j+2)-gon together
with the triangle creates a (j + 3)-gon.

By induction the divisions are counted by ak(n).

Figure 10: The polygon being split by the triangle into A in red and B in blue.
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2.3 Plane trees

For the specialisation we want the trees to have n edges. Similar to the polygons
we find that if every vertex has a number of children divisible by k, the number
of edges will be a multiple of k. To fix this, we add an exception for the root
which should have a number of children congruent to j mod k. Properly stated:

The number of plane trees with n edges where each node has a number
of children divisible by k except for the root which has a number of children
congruent to n mod k is given by ak(n).

Proof. Since 0 ≡ k mod k, both j = 0 and j = k result in the same objects.
There is one plane tree with 0 edges, the tree containing only the root.
Consider the rightmost child of the root in a tree with n + 1 edges. The

sub-tree under it will contain an amount of edges divisible by k which we can
represent as lk. The ways to make this sub-tree will be ak(lk). Consider the
remaining part of this tree, it will contain n+ 1− lk− 1 = n− lk edges and the
root will have an amount of children congruent to n mod k. The ways to make
this tree is thus given by ak(lk)ak(n− lk) summing over all the possible values
of l we get the amount of ways to make one of these trees with n + 1 vertices.
By induction the trees are counted by ak(n).

Figure 11: The plane tree split into the last child in read and the remaining
tree in blue.
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2.4 kx-avoiding paths

When j = 0 we want the interpretation to be the number of kx-avoiding paths
from (0, 0) to (m,n) for the specialisation. It turns out that this definition is
enough for when j > 0 as well.

Proof. The difference between the cases j = 0 and j = k is that when j = 0
we go one extra step to the right. However, this extra step to the right has to
be the last since otherwise the path would go below the line y = kx. Thus each
path in the j = 0 case is a path in the j = k case with an extra step to the right
at the end.

Assume that ak(n′) counts the objects for n′ ≤ n. For a path from (0, 0) to
(m, km + j + 1) that stays above y = kx, consider the last step that the path
leaves the line y = kx. The step begins at (l, kl) so the path before it will be
counted by ak(kl) the remaining path will go from (l, kl+ 1) to (m, km+ j + 1)
which will stay above the line y = kx+ 1. This is the same as a path from (0, 0)
to (m− l, n− kl) staying above y = kx which is counted by ak(n− kl). All the
ways to create the path is then counted by the sum of ak(kl)ak(n− kl) for the
potential values of l from 1, . . . ,m. Thus by induction the number of paths are
counted by ak(n).

m

km

j

Figure 12: The path split up by the last step leaving y = kx.

12



3 Combinatorial proof of the closed formula for
ak(n)

We now give a combinatorial proof of the closed formula for the sequence ak(n).
This proof is based on the one for the classic Catalan numbers in [6]. The
original proof uses ballot strings (strings of +1s and −1s such that all partial
sums are non-negative) these are analogous to 1x-avoiding paths so we’ll use
our interpretations of kx-avoiding paths for the proof. Firstly we need to define
rotating a path and strict kx−avoiding paths.

Defenition 5 Given a lattice path P of length n with steps si, 0 ≤ i < n. Let
a rotation P ′ for some integer 0 ≤ k < n be a path such that the i:th step is sj
where j ≡ i + k mod n.

Figure 13: The 6 rotations of the path north-north-east-north-east-east

Defenition 6 Let a strict kx-avoiding path be a kx-avoiding path such that the
path never touches the line y = kx except at the point (0, 0).

Next, the proof finds the proportion of strict kx-avoiding from (0, 0) to
(m,n + 1). It finds this by considering the equivalence classes along rotation.
This is where the proof becomes more complicated. In the original case there
where exactly one rotation in each class which resulted in a strict path. Addi-
tionally all the equivalence classes where the same size. In our cases we may
have both equivalence classes of different sizes and several paths within them
being strict, complicating the proof somewhat.

Lemma 7 For any given path P from (0, 0) to (a, ak + b), where a, b positive
integers, there are exactly b rotations which are strict kx-avoiding paths.

Proof. Let si be the i:th step in P . Let c be the smallest integer such that
the path intersects kx+ c at some point. Let sj be the last step that leaves the
line. Let P ′ be P rotated j steps. Then P ′ is a strict kx-avoiding path since

� All steps from sj and onwards in P will not hit the line that sj leaves.

� All steps before sj that used to hit kx+c will now instead hit kx+(b−c).
Since (b− c) is positive, this will be larger than kx and since these are the
lowest points, all points in this part stays strictly above kx as well.

For P ′ consider the steps that are the last to leave the lines
kx + 1, . . . , kx + b − 1. Rotating to begin with these steps will by the same
argumentation as before create a strict kx-avoiding path since (b− c) is positive
for 1 ≤ c ≤ b− 1. Rotating to begin with any other step (that isn’t the starting
step) will either give us that:
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� If the step is leaving one of the lines, it will hit the line again before the
end of P ′, making the rotation non-strict.

� If the step is not leaving one of the lines, it must be leaving kx + b or
higher, but kx + b is hit at the last step, making the rotation non-strict.

Thus for a strict kx-avoiding path from (0, 0) to (ak + b) there are b steps
to rotate to (including step 0) such that the result is a strict kx-avoiding path.
Since any path has a rotation that is a strict kx-avoiding path, the lemma holds
for all paths from (0, 0) to (a, ak + b). �

Lemma 8 Given all unique paths from (0, 0) to (a, ak + b) the proportion of
strict kx-avoiding paths is

b

a(k + 1) + b
.

Proof. Two paths are considered equivalent if you can rotate one to create
the other. For a given equivalence class, suppose there are a(k+1)+b elements.
Then, by lemma 7 we have that there are exactly b of them which are strict
kx-avoiding paths.

We note that for a = 1 or b = 1 this is always the case since then

gcd(a, ka + b) = gcd(a, b) = 1.

Assume that the lemma holds for all equivalence classes of paths from (0, 0) to
(a′, b′) where a′ < a and b′ < b.

Suppose the equivalence class has fewer than a(k+1)+b elements. Then the
path in this equivalence class must be repeating, since the same pattern occurs
when beginning at different steps. If the path repeats m times then m|a and
m|(ak + b) thus, we’ll also have that m|b. Let a = a′m and b = b′m. Since the
first a′(k + 1) + b′ steps repeat m times, checking if these steps stays strictly
above kx is equivalent to checking if the entire path stays strictly above kx.
By our inductive assumption, we have that the proportion of strict kx-avoiding
paths in the equivalence class is

b′

a′(k + 1) + b′
=

b′m
(a′(k + 1) + b)m

=
b

a(k + 1) + b
.

Since every equivalence class has the same proportion of strict paths, the
lemma holds. �

We are now ready to state the main result of this thesis.

Theorem 9 A combinatorial interpretation of the Raney numbers Am(p, r) is
given by all kx-avoiding paths from (0, 0) to (m, (p− 1)m + r − 1).

Proof. Consider all strict kx-avoiding paths from (0, 0) to (m, (p− 1)m+ r).
All these paths must begin with a step to the north and removing this step, these
paths are exactly the kx-avoiding paths from (0, 0) to (m, (p− 1)m+ r− 1). By
lemma 8 we have that the proportion of strict kx-avoiding paths is r/(mp+ r),
thus we get the number of kx-avoiding paths as

r

mp + r

(
mp + r

m

)
= Am(p, r).
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�
In particular we get the following corollary, which now gives a combinatorial

proof of the identity in [1]. This identity was proven therein using Lagrange
inversion and generating functions, it was an open problem to provide a combi-
natorial proof of the following.

Corollary 10 For 0 ≤ j ≤ k

ak(km + j) = Am(k + 1, j + 1).

Proof. Since they both share the interpretation of the number of kx-avoiding
paths from (0, 0) to (m, km + j), the equality must hold. �
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