
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Discover arbitrage through the lens of linear programming

av

Rasmus Ringqvist

2022 - No K35

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM





Discover arbitrage through the lens of linear programming

Rasmus Ringqvist

Självständigt arbete i matematik 15 högskolepoäng, grundnivå

Handledare: Yishao Zhou

2022





| I

Abstract

Geometry being one of the first branches of mathematics it is early introduced
in school to lay one of many foundations of modern mathematics. While linear
programming trying to reach the best outcomes given constraints can be used
separately and combined to discover economical models and assumptions, which
this thesis aims to shed light on. This by presenting several mathematical the-
orems and discover its applications and similarities to economical models and
lastly presenting a method for solving such problems.
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1 Introduction

’A finance professor and a normal person go on a walk and the normal person
sees a e100 bill lying on the street. When the normal person wants to pick it
up, the finance professor says: “Don’t try to do that! It is absolutely impossible
that there is a e 100 bill lying on the street. Indeed, if it were lying on the
street, somebody else would already have picked it up before you”.’

The classical joke originally mentioned in [7] but here quoted from [17] points
on some aspects of arbitrage, mainly that it is more reasonable to assume that
there don’t exist any e100 bills lying around, however, this opportunity is what
’finance-people’ calls arbitrage opportunity. The notion of arbitrage is essential
in modern finance and mathematical finance, being the cornerstone for options
pricing due to the work by F. Black, M. Scholes and R. Merton. The theory
behind arbitrage is rather simple and basically consists of the idea that there is
’no free lunch’ in financial markets and if there is they exist only for a brief
time. This since if arbitrage opportunities were normal this would point to the
fact that the market are not in any equilibrium. One example of arbitrage from
financial markets could be if one could buy Apple-shares for $90 in USA and
directly after sell them in London for 100$, obviously this is obscured.

Obviously arbitrage opportunities are seldom and today almost only something
HFT (High Frequency Traders) can take advantage of by using large amount of
data and place orders for just a few seconds before any one else can make the
trade [11], however, this subject is out of the scope for this thesis. Instead this
thesis aims to take a look at the theory of arbitrage in finance and it’s
connections to mathematics and linear programming, Farkas’ Lemma,
especially. In the end a discussion for it’s practical uses will be presented.

Aim of the Study

This thesis aims to explore arbitrage in finance theory and explore it’s
connections to mathematics and linear programming in particular.

This thesis will only cover some parts of the more basic connections to,
hopefully, shed light on the extensive use of mathematics in finance.
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Structure of the Thesis

The thesis starts with mentioning some basic mathematical and economic
concepts that lays the foundation for the rest of the thesis. However, this
should not be seen as comprehensive but as a help. After the preliminaries,
theorems get introduced and proved. They are later used in an economic
setting and to prove the arbitrage theorem. Thenceforth linear programming is
introduced and used to prove the fundamental theorem of asset pricing. Lastly,
we go through a method for solving linear programming problems and discuss
arbitrage in the real life.
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2 Preliminaries

This section aims to highlight both important mathematical and
economical/finance points that have to be grasped to understand the rest of the
thesis. Especially the economical terms since the main group of readers have
only a mathematical background. In the thesis to show transpose, x⊤ is used to
not confuse with t meaning time for the economical interpretations.

2.1 Mathematical background

Here we remind the reader the concepts of distances and convex sets [4]. Recall
that if a set S ⊆ Rn contains the limit point of each convergent sequence of
points in S the set is closed. If we consider a nonempty and closed set S ⊆ Rn

and a point z ∈ Rn we define the distance from z to S by z:
ds(z) = inf{∥s− z∥ : s ∈ S}, where we use the euclidean norm. Further we say
that s0 ∈ S is a nearest point of S to z if ds(z) = ∥s0 − z∥.
Definition 1 (cone) A set K ∈ Rn is regarded as a cone, if
x ∈ K =⇒ αx ∈ K for any α ≥ 0 [3].

Figure 1: Cone

Definition 2 (conic hull) Given a set S, we can denote the conic hull of S as
cone(S) being the set of all non-negative combinations of the points in S,
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meaning [3]:

cone(S) =

{
n∑

i=1

αixi : αi ≥ 0, xi ∈ S

}
.

Figure 2: Conic hull

Definition 3 (affine combination) A affine combination is defined as [21]:

n∑

i=1

αixi = α1x1 + α2x2 + · · ·+ αnxn

where we have αi ∈ R and
∑n

i=1 αi = 1.
Definition 4 (Convex set) If all line segments between any two points in the
set C, the set C is convex, meaning: ∀x, y ∈ C, ∀θ ∈ [0, 1]: θx+ (1− θ)y ∈ C.
We can generalize this definition to an arbitrary number of points where a
convex combination of points x1, x2, . . . , xn ∈ C is any point in the form
θ1x1 + θ2x2 + · · ·+ θnxn and θi ≥ 0, i = 1 . . . n and

∑n
i=1 θi = 1, then the set C

is convex if any convex combination of points in C is in C [5].
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Figure 3: sets

Definition 5 (Supporting hyperplane) Consider a set S in Euclidian space
Rn, a supporting hyperplane is a hyperplane that has the two following
properties [20]:

• The set is totally contained in one of the two closeed half-spaces limited
by the hyperplane,

• The set has minimum one boundary-point on the hyperplane.

Figure 4: Supporting Hyperplane
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Further, we can show that a nearest point always exist. Fix z and let ω be
some point in C. Minimizing ∥z − x∥ over all x ∈ C is equivalent to minimizing
the continuous function:

g(x) =
1

2
∥z − x∥2

over the set of all x ∈ C such that ∥z − x∥ ≤ ∥x− ω∥, which is a bounded and
closed set in Rn (thus compact). Then there is a minimizer. Accordingly, a
closed non-empy set S assures that a nearest point exists. Note however that
this may not be unique. This is true unless the set C ⊆ RN is convex, that is,
if: λx+ (1− λ)y ∈ C for all x, y ∈ C and λ ∈ [0, 1]. This can be interpreted
geometrically as whenever we choose two points in the set, all points on the line
segment between these two points also lie in C’ [20].Furthermore we can show
that the nearest point for convex sets is unique. That is, if C ⊆ Rn is a closed
and non-empty convex set. Then there is a unique nearest point c to z in C for
every z ∈ Rn. The proof goes as follows.

Proof. If we assume that c0 and c1 are nearest points to z in C and
d = dC(z) = ∥z − c0∥ = ∥z − c1∥. This would led to both points being on the
boundary of the closed ball B with its center in z and radius d where
B = {y ∈ Rn : ∥y − z∥ ≤ d}. However, there is a contradiction here because the
midpoint c∗ = 1

2
c0 +

1
2
c1 lies in C since C is convex and c∗ lies in the interior of

B. Thus: ∥c∗ − z∥ < d, hence a contradiction which proves that the nearest
point must be unique.

2.2 Finance background

2.2.1 Payoff matrices

Consider an investor [14], having an array of investment opportunities including
stocks, bonds, currency, options and so on, available. We can simply by
assuming that there are n possible choices of investments available and the
investor can at time t invest any amount of his finances in each of these
possibilities. Consider time moving forward and at the end of a fixed time
period every investment possibility will be worth some amount, meaning that
changes in value of every investment can be represented as an n-dimensional
vector. We can simplify further by assuming that there is a finite quantity of
mutually exclusive scenarios that can occur and that each of these leads to a
specific gain or loss for each investment. Because of these assumptions we can
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represent the returns, or changes in value, in an m× n payoff matrix where
each row corresponds to each scenario and column to each investment. In the
matrix, the i, j entry ai,j gives us the return for investment i at the end of the
time period for a unit invested under scenario j, see array 1.

I1 I2 . . . In

Scenario 1 a11 a12 . . . a1n

Scenario 2 a21 a22 . . . a2n
...

...
... . . . ...

Scenario m am1 am2 . . . amn

(1)

2.2.2 Arbitrage

There exists several definitions for arbitrage [9], being similar but different in
some aspects (mainly if arbitrage should be guaranteed profit or at least 0
profit without risk), however, the implication is the same for all definitions: we
can not make any profit if we do not take any risk. When there are mismatches
in the markets we call them arbitrage opportunities.

As an example consider an asset, which costs 10 $ in Sweden but only 9 $ in
Denmark, clearly we can make a profit by buying this asset in Denmark and
sell it in Sweden. While we do this the price in Sweden will go down while it
goes up in Denmark, but we will have made a nice profit without taking any
risk. Clearly this shows that the market is not in equilibirum. Being able to do
trades like this,i.e, to be guaranteed a profit without taking any risk is what
economists calls an arbitrage trade. In theory this should not be possible since
all assets should be equally priced in all markets, and if deviation occurs these
will be quickly correlated and the markets is in equilibrium once again.

The assumption that arbitrage do not exist in markets is as fundamental as
Newton’s laws for physics and his third law [14]: for every action there is an
equal and oppposite reaction bears semantic meaning as in finance; everything
that can be bought can also be sold. This means that for every payoff column
there exists an investment opportunity that has the exactly opposite effect, i.e,
change the signs. This can seem counterintuintative but in finance there is
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something called short sell1, the consequence is that a column in a payoff
matrix can be replaced by any nonzero multiple of the column where the
modified matrix represents the same investment opportunities.

Given a payoff matrix A including all possible investments and scenarios, we
say that an arbitrage opportunity exists if there is a linear combination of
columns of A with strictly positive entries. Hence, the arbitrage opportunity is
a combination of buys and sells that for all scenarios yields a net gain.

Arbitrage opportunities is in theory possible everywhere, but to get a better
understanding some examples are:

• Buying asset X in one market and selling in another market where the
price is higher.

• Triangular arbitrage including three currencies where one currency is
converted into another, which is then converted to a third currency and
finally, back to the original currency.

This small list is in no way exhaustive but shows possible arbitrage
opportunities.

2.2.3 The Arbitrage Theorem

The arbitrage theorem gives a convenient and interesting characterization of
the no arbitrage condition [14]. If we have a payoff matrix A of the size m× n

and an n-vector x, then result from investing xi in investment i for
i = 1, 2, . . . , n can be obtained by using the product Ax which is a payoff
vector. Hence, all possible combinations of investments corresponds to the
column space col(A) for a payoff matrix A, representing the set of payoff
vectors which construct the subspace of Rn of dimension at most n.

Theorem 1 Given payoff matrix A, which is a an m× n, exactly one of these
two statements holds:

A1 Some payoff vector in col(A) has all positive components, i.e. Av > 0 for
some v ∈ Rn.

A2 The probability vector π = [π1, . . . , πm]
⊤ exists that is orthogonal to every

column of A, meaning that: π⊤A = 0, where π⊤ ≥ 0 and π⊤ = 1, and 1 is
1Short sell is a strategy or investment that profit from the decline in a stock.[2]
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an all one-vector.

This means that the absence of arbitrage and the existence of an assignment of
scenarios with probabilities where every investment has en expected return of
zero is equal.

To further clarify we take an example, here u stands for up meaning that the
asset goes up in price while d means down and that the asset goes down in
price, r is the risk-free asset which is the return we want to not lose the real
value of money (this since we could invest in the risk-free asset we consider this
the bottom line) consider a situation in which our payoff matrix contains a
column of the form: [

−1 + Pu

(1+r)

−1 + Pd

(1+r)

]

Where Pu is the price if the asset goes up in value, Pd if it goes down and to
calculate the change we divide with the price times 1 and the risk free rate, r
during the period. This means that, according to the absence of arbitrage there
is a probability vector: [

πu

πd

]

This vector is orthogonal to every column of the payoff matrix and it follows
that: πu = 1+r−d

u−d
and πd = 1− πu = u−1−r

u−d
. This probability assignment is

practical since under the assumption of no arbitrage all investments will have
an expected payoff of zero. Hence, we can use these probabilities to establish
the price of all securities where the payoff depends on the behavior of the stock.
Further, we can suppose there exists an opportunity to invest in a security with
the price P today and tomorrow Pu or Pd depending on it goes up or down,
hence we can add a column to the pay off matrix:

[
−1 + Pu

P (1+r)

−1 + Pd

P (1+r)

]
,

which describes the present value to a investment of one unit. With the
absence of arbitrage we can now conclude:

πu

(
−1 +

Pu

P (1 + r)

)
+ πd

(
−1 +

Pd

P (1 + r)

)
.
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If we now solve for P we obtain:

P =
πuPu

(1 + r)
+

πdPd

(1 + r)
= 0.

This price can be interpreted as the investments no-arbitrage price meaning
that it is equal to its discounted payoff.

The Arbitrage Theorem is an example of a theorem of the alternative that
appears in convex analysis in which one asserts the existence where a vector
satisfy exactly one of two possible properties, one fundamental result of this
type is Farkas’ Lemma that we will prove later on.
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3 The separating hyperplane theorem

A hyperplane is defined as a ’generalized plane’ [4], more formally: a set
H ⊆ Rn on the form H = {x ∈ Rn : a⊤x = α} for some real number α and
nonzero vector a. a is a normal vector of the hyperplane. In R2, the hyperplane
is a line while in R3 it is a plane. Further, we denote
Ha,α = H = {x ∈ Rn : a⊤x = α} while the halfspaces is defined as:

H−
a,α = {x ∈ Rn : a⊤x ≤ α}

H+
a,α = {x ∈ Rn : a⊤x ≥ α}

The halfspaces represents the two different sides of the hyperplane, as we easily
can think of in R2 and R3, but for higher dimensions must trust our theory.

We say that the hyperplane Ha,α strongly separates the sets S and T if there
exists an ϵ > 0 such that S ⊆ H−

a,α−ϵ and T ⊆ H+
a,α+ϵ or the other way around.

If we consider R2 this would mean that the sets S and T exists on different
sides of the line Ha,α and that neither of the sets intersects the line.

3.1 Theorem

If we let C ⊆ Rn and z ∈ Rn, where C is a nomnempty and closed convex set
while z ̸∈ C, then C and z can be strongly separated.

3.2 Proof

If we consider the sets C and z as above, further, let the unique nearest point
to x in C be p, x ∈ C and 0 < λ < 1. Since C is convex,
(1− λ)p+ λ(x− z) ∈ C and p is a nearest point, we subsequently have
∥(1− λ)p+ λ(x− z)∥ ≥ ∥p− z∥, that is, ∥(p− z) + λ(x− p)∥ ≥ ∥p− z∥. If we
square both sides and calculate their inner product we obtain:
∥p− z∥2 + 2λ(p− z)⊤(x− p) + λ2∥x− p∥2 ≥ ∥p− z∥2. We now reduce by
subtract ∥p− z∥2 on both sides, divide by λ, let λ+ −→ 0 and lastly multiply
by −1, which gives us the equality:

(z − p)⊤(x− p) ≤ 0 for all x ∈ C.



The separating hyperplane theorem | 12

Now consider the hyperplane H which contains p and having a := z − p as
normal vector, that is, H = {x ∈ Rn : a⊤x = α} where α = a⊤p. Our inequality
above shows that C ⊆ H−

a,α and z ̸∈ H−
a,α as z ̸= p since z ̸∈ C. If we now

consider the paralell hyperplane H∗ to H, having the same normal vector,
which cointains the point 1

2
(z + p), then we can see that H∗ separates z and C

as desired.
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4 Farkas’ Lemma

By making use of the separating hyperplane theorem (stated above) we can
now prove Farkas’ Lemma [4]. This lemma characterizes when systems of linear
inequalities has a solution and is central in optimization.

4.1 Theorem

In other words exactly one of these two statements holds: (i) There exists
x ≥ 0 so that Ax = b, (ii) There exists y so that y⊤A ≥ 0 and y⊤b < 0.

4.2 Proof

If we denote the columns of the matrix A as a1, a2, . . . , an, we can consider the
set C = {∑n

j=1 λja
j : λj ≥ 0 for j = 1, . . . , n} ⊆ Rm which is called the convex

cone generated by a1, a2, . . . , an, then C is closed. We also observe that only if
b ∈ C can we have a nonnegative solution x to Ax = b.

Now assume that x ≥ 0 and that x satisfies Ax = b, if y⊤A ≥ 0,
y⊤b = y⊤(Ax) = (y⊤A)x ≥ 0 follows as the inner product of two nonnegative
vectors. In contrast, if we assume that there exists no nonnegative solutions to
Ax = b, b ̸∈ C follows. But according to the separating hyperplane theorem, C
and b can be strongly separated and, there is a nonzero vector y ∈ Rn and
α ∈ R with y⊤x ≥ α for every x ∈ C and y⊤b < α. As o ∈ C, we have α ≤ 0

and we can claim that for each x ∈ C we have y⊤x ≥ 0, this since, if y⊤x < 0

for some x ∈ C it would exist a point λx ∈ C where λ > 0 such that y⊤(λx) < α

which is a contradiction. Subsequently as aj ∈ C, y⊤aj ≥ 0 so y⊤A ≥ o and
since y⊤b < 0 we have also proven the other direction of Farkas’ Lemma. □

4.3 Understanding Farkas’ Lemma geometrically

Remember the defintions on a cone and conic hull from section 2.1 and the
separating hyperplane theorem in section 2.1. Using these the geometric
interpretation of Farkas Lemma is: Consider the matrix A and let ã1, . . . , ãn

express the columns and let cone(ã1, . . . , ãn) be the cone of of all their possible
nonnegative combinations. Then if we have b ̸∈ cone(ã1, . . . , ãn) we can
seperate it from the cone using a hyperplane.
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Figure 5: Farkas’ Lemma Geometrically

4.4 Using Farkas’ Lemma to prove the Arbitrage Theorem

Proof. If we assume that A1 and A2 from The Arbitrage Theorem section
2.2.3 are satisfied we have [14]:

π⊤Av = 0v = 0

But since Av > 0 we have π⊤Av > 0, this because the entries in π sum to one
and are nonnegative, hence, it follows that A1 and A2 are mutually exclusive.
If A2 does not hold we have no solution to

[
A⊤

1

]
π =

[
0

1

]

with a nonnegative π since according to Farkas It follows that (i) fails for

Ã =

[
A⊤

1

]
and b̃ =

[
0

1

]
and since Farkas can guarantee that (ii) holds and

hence there exists an n+ 1 vector which we can call y so that y⊤Ã ≥ 0 and

y⊤b̃ < 0. If v = [v1, . . . , vn]
⊤, s ∈ R and we write y =

[
v

s

]
these conditions

claim that Av + s ≥ 0 and s < 0 and we can therefore conclude that Av > 0

leading to A1 being valid. □
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5 One period economic model

5.1 Model setup

This one period model will allow us to state and prove two different
fundamental theorems in mathematical finance without the need of technical
detail, however, this theorem hold for more general models [18].

One period model means that we will only consider two points in time, called
t = 0 and t = 1. The model lives on a finite space sample space
Ω = {ω1, ..., ωM}, we have a probibility measure P defined on 𭟋 = 𭟋1 = 2Ω and
P (ωi) = p1 > 0, i = 1, ...,M .

If we consider a market with N + 1 assets on the market and denote the price
of asset i at time t by Si

t , let:

St =




S0
t

S1
t
...

SN
t




Here we assume that S1 ∈ 𭟋 and that S0 is deterministic. We will also assume
that the asset number 0 is strictly positive: S0

0(ω) > 0 and S0
1(ω) > 0 for

ω ∈ Ω, since it allows us to use it as a numeraire asset. A numeraire asset is
acts as a benchmark when comparing the value of similar assets, allowing for
comparisons between different assets, one such asset in real life is money [12].

5.2 Absence of arbitrage

Having asset 0 as the numerarie, allow us to compare money at different times,
in this model, today where t = 0 and money in the future when t = 1.

Definition 6: We define the normalized price process as:

Zt =
St

S0
t

=




S0
t

S0
t
= 1
S1
t

S0
t...

SN
t

S0
t




.
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We normalize since it allows us to construct a Martingale process [19]. Note
that if S0 is a bank account we are only discounting everything to its present
value, further, in the normalized economy we have Z0 ≡ 1. This means that it
corresponds to a bank with zero interest rate.

Definition 7: The vector h = (h0, h1, ..., hN)⊤ is a portfolio and the value
process V S corresponding to a portfolio h is defined as:

V S(t) =
N∑

i=0

hiSi
t = h⊤St,

For a portfolio the normalized value process V Z is defined as:

V Z(t) =
N∑

i=o

hiZi
t = h⊤Zt =

V S(t)

S0
t

Further, an portfolio that is an arbitrage portfolio such that:

V S(0) = 0,

V S(1) ≥ 0 with probability 1,

EP [V S(1)] > 0,

Where EP stands for the expected i.e. the last row means that we expect the
profit to be over zero. Given our assumption on S0, we can also write this as:

V Z(0) = 0,

V Z(1) ≥ 0 with probability 1,

EP [V Z(1)] > 0.

Proposition 1.
We are now ready to state a fundamental theorem of mathematical finance [18]:
that the market is free of arbitrage if and only if there exists a probability
measure Q on Ω such that:

Q(ω) > 0, for all ω ∈ Ω, (i)



One period economic model | 17

Si
0

S0
0

= EQ

[
Si
1

S0
1

]
i = 1, 2, ..., N. (ii)

In other words, the condition on Q in (i) means that P and Q are equivalent,
meaning:

P (A) = 0 ⇐⇒ Q(A) = 0,

which also could be written as:

P (A) = 1 ⇐⇒ Q(A) = 1.

So the measures agree on what happens with probability one and what happens
when the probability is zero.

The second condition for (ii) in proposition 1 means that Zt, the normalized
price process, is martingale under Q. For formal definition of martingale and
the martingale measure, which are beyond the scope of this text, we refer to [1].

Keep in mind that a different numeraire asset gives different martingale
measures and that it is easier to find a risk-neutral measure Q when the sample
space is larger, that is, M is larger. Now we prove the Proposition by
construction of Q by the Farkas lemma.

As we know, only one of the following systems can be solved:

E1 :




Aλ = g

λ ≥ 0
, E2 :




g⊤x < 0

A⊤x ≥ 0
⇐⇒ E2 :




x⊤g < 0

x⊤A ≥ 0

Proof. We are now going to prove proposition 1:

Let matrix D, a (N + 1)×M matrix be given by:

D =




Z0
1(ω1) Z0

1(ω2) . . . Z0
1(ωM)

Z1
1(ω1) Z1

1(ω2) . . . Z1
1(ωM)

...
...

...
ZN

1 (ω1) ZN
1 (ω2) . . . ZN

1 (ωM)



.

The first row consists of only ones since Z0
1 ≡ 1, while the first column is the

normalized price vector for the outcome ω1, Z1(ω1) at time t = 1. So we can
see what the other systems look like, we intend to write the arbitrage portfolio
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definition as either E1 or E2. To do this, we can start with rewrite V Z(0) = 0

as:
V Z
0 ≥ 0, and V Z

0 ≤ 0.

As earlier stated: V Z
0 = h⊤Z0, we can use this to get:

h⊤Z0 ≥ 0, and h⊤Z0 ≤ 0,

or, equivalently:
h⊤Z0 ≥ 0 and − h⊤Z0 ≥ 0.

Further, we can rewrite the condition V Z(1) ≥ 0:

h⊤D ≥ 0.

While the condition EP [V Z(1)] > 0 can be rewritten as:

−h⊤Dp < 0,where p = (P (ω1), . . . , P (ωM))⊤ .

If we let the portfolio h play the role of x there will not exist any arbitrage
portfolios if we can’t solve E2 with:

g = −Dp and A = [Z0 − Z+D].

Hence, A is an (N + 1)× (M + 2)-matrix.

So if we can not solve the system E2 with the given matrices it means that
there is no arbitrage since these statements are equivalent. Thus, we can
conclude that no arbitrage is equivalent, according to Farkas’ Lemma, to use
the given matrices to solve the system E1, that is:

[Z0 − ZoD]λ = −Dp, λ ≥ 0 or Z0(λ2 − λ1) = D(p+ λ∗).

Here λ∗ = (λ3, . . . , λM+2), with λ ≥ 0, the first equation is interpreted as:

λ2 − λ1 =
M∑

i=1

(pi + λ∗
i ) =⇒

1

λ2 − λ1

M∑

i=1

(pi + λ∗
i ) = 1.
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Now, if we let:

Q(ωi) = qi =
1

λ2 − λ1

M∑

i=1

(pi + λ∗
i ),

since then qi > 0, i = 1, . . . ,M and Z0 = Dq = EQ[Z1] where
q = (Q(ω1), . . . , Q(ωM))⊤ we are done. □
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6 Linear programming duality

Linear programming, shortened LP, or linear optimization, is the method to
maximize a linear function in n variables that is subject to a finite number of
linear constraints that are linear inequalitites and/or linear equations. A linear
programming standard problem is often in the form [4]:

sup{c⊤x : Ax ≤ b}.

Further, the m× n matrix A, c ∈ Rn, are given b ∈ Rn and x ∈ Rn is a decision
variable. This problem is called the primal problem, this is feasible if there
exists an x satisfying Ax ≤ b and hence, such an x is called a feasible solution.
If a solution x0 exists and c⊤x0 = sup{c⊤x : Ax ≤ b} it is considered optimal,
this also leads to supremum being attained and we can write max instead. In
the problem above, if no solution exists we define supremum to be −∞ and
+∞ if it is unbounded which means that there exists a sequence (xk) of feasible
solutions so that c⊤xk → ∞ as k → ∞.

To each primal LP problem there is another associated LP problem with it,
called its dual problem, this is for the primal problem above:

inf{b⊤y : A⊤y = c, y ≥ O}

For this problem we use the terms feasible solution, feasible problem, and
optimal solution, just as for the primal problem. The infimum in the dual
problem is defined as ∞ if the problem is not feasible and −∞ if unbounded
meaning there exists a sequence (yk) of feasible solution so that b⊤yk → ∞ as
k → ∞. These two problems together make up one of the main theorems in
optimization, the LP duality theorem.

6.1 Linear programming duality theorem

1. First assume that the primal problem has a finite solution that is optimal,
this leads to the dual problem having a optimal solution as well [4] and

max{c⊤x : Ax ≤ b} = min{b⊤y : A⊤y = y, y ≥ 0}. (1)
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2. If either the primal or dual problem is unbounded it means that the other
is not feasible. Thus we have
max{c⊤x : Ax ≤ b} = min{b⊤y : A⊤y = y, y ≥ 0} when at least one
problem is feasible.

Proof

Let x and y be feasible in the primal and dual problem respectively, so Ax ≤ b

and A⊤y = c and y ≥ 0, we have:

c⊤x = (A⊤y)⊤x = y⊤Ax ≤ y⊤b = b⊤y.

The inequality is from Ax ≤ b as y ≥ 0. If we now take the supremum for the
feasible x and infiumum over feasible y in the inequality we get:

sup{c⊤x : Ax ≤ b} ≤ inf{b⊤y : A⊤y = c, y ≥ 0} (2)

If we let the optimal solution for the primal problem be x0, a⊤i denote the i:th
row in the matrix A, define I = {i ≤ m : a⊤i x0 = b} correspnding to the indices
of inequalitites from Ax ≤ b that holds for x = x0. We can now claim that for
z ∈ Rn satisfying a⊤i z ≤ 0 for i ∈ I leads to the inequality c⊤z ≤ 0 holds. If this
were not the case there would be a z ∈ Rn with A⊤

i z ≤ 0 for all i ∈ I and
c⊤z > 0, leading to for a small ϵ > 0, the point x′ = x0 + ϵz satisfies Ax′ ≤ b

since: 2. we have for all i ∈ I; a⊤i x′ = a⊤i x0 + ϵa⊤i z = bi + ϵa⊤i ≤ bi as well as, 2.
for i ≤ m with i ̸∈ I we have: a⊤i x

′ = a⊤i x0 + ϵa⊤i z = bi + ϵa⊤i z ≤ b, and hence
a⊤i x

′ ≤ bi for small ϵ . But since we have x0 as the optimal solution we can not
have: c⊤x′ = c⊤x0 + ϵc⊤z > c⊤x0 and it is therefore a contradiction.

This claim makes it possible for us to apply Farkas’ lemma (Section 4) to the
matrix A where the vectors ai for i ∈ I is the column resulting in the fact that
is must exist nonnegative numbers yi for i ∈ I so that

∑
i∈I yiai = c. Hence,

where y ∈ Rn A⊤y = c is the vector consisting of yi for i ∈ I or yi = 0. one
feasible is y in the dual problem since A⊤y = c and y ≥ 0, further, if we use
yi = 0 for i ̸∈ I we obtain:

c⊤x0 = y⊤Ax0 =
∑

i∈I
yi(a

⊤
i x0) =

∑

i∈I
yibi = b⊤y.
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Due to the inequality (2), this proves that y is for the dual problem an optimal
solution and that the maximum in the first, primal, problem is equal to the
minimum in the dual problem, leading to the equality (1) holds.

If we consider the second case in the theorem, that is when the primal problem
is unbounded and the inequality (2), we can conclude that the dual problem is
not feasible since this would mean that b⊤y would be upper bound on c⊤x

because of the (2). This means that both sides would be ∞, the same is true if
the dual problem is unbounded but the two sides of (2) would be −∞.
However, if the supremum is finite in (2) it is possible to prove that the
supremum is attained and "sup=max=min=inf" due to the first part. □

To conclucde there exists three different possible solutions for an LP problem

1. Optimal finite solution exist for both problems and the optimal values are
equal.

2. It is not feasible

3. The solution is unbounded
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7 Proof of the fundamental theorem of asset pric-

ing using LP

We will now apply LP to prove the fundamental theorem of asset pricing [4]
(absence of arbitrage) and to find a dominant trading strategy. For this we use
the following notations:

• K: number of scenarios, or states, n: number of assets

• P = [pij]: K × n payoff matrix, pij is payoff for asset k under state i

• s ∈ Rn: a strategy where we buy sj units of j which is an asset

• x ∈ RK : the payoff for a specific trading strategy for different states

• I: identity matrix with a suitable size, O: the zero vector and e: vector
consisting of only ones

• Nul(A): nullspace and col(A): columnspace, both for matrix A

A vector y with positive components that has a sum that equals one so that the
dot product of the vector and each column in P is zero means that it is a
risk-neutral probability measure, this means that the expected payoff is zero for
each asset.

LP model to find arbitrage

Consider the problem:

max
K∑

i=1

xi (3)

subject to: x = Ph, x ≥ 0

In this problem x = Ph relates the trading strategy s and payoff x where the
linear equation tells us that x is a linear combination of the columns in P . The
nonnegative x is desirable since this means that we will not lose money under
any state, the objective is to maximize the sum of the payoffs when we sum
over all states, or in other words, look for positive payoffs for at least one
scenario, that is, an arbitrage possibility. An arbitrage exists if and only if the
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LP problem has a optimal value that is positive.

Proof for the arbitrage theorem using LP

We can prove this theorem by the duality theory [4] to the problem (3), we
start by writing it in the form of a primal problem by using Ph = x is
equivalent to Ph− x ≤ O, −Ph+ x ≤ O, this results in:

max
{
[Oe ]

⊤ [hx] :
[
P −I
−P I
O −I

]
[hx] ≤

[
O
O
O

]}

The dual problem is:

min
{[

O
O
O

]⊤ [
y1

y2

y3

]
:
[
P⊤ −P⊤ O
−I I −I

] [y1
y2

y3

]
= [Oe ] , y

1, y2, y3 ≥ O

}

Observe that the objective function is 0 and by substituting y = y2 − y1, z = y3

the dual problem becomes:

min{0 : P⊤y = O, y = z + e, z ≥ O}.

If and only if there exist a vector y ∈ Nul(P⊤) = Col(P⊥) such as y ≥ e the
problem above has a feasible solution. This is equivalent to the fact that there
exists a y ∈ Nul(P⊤) with yi > 0 (i ≤ K) and

∑
i yi = 1 which follows by y

being scaled. We have now proved that the following points are equivalent:

• The LP problem has a optimal value of zero

• there exists a vector y ∈ Nul(P⊤) with
∑

i yi = 1 which is strictly
positive, further this is a risk-neutral probability measure

• there exists no arbitrage.

The proof is therefore complete.□

LP to find a dominant trading strategy 2 This problem contains the
variable for the former problem and ϵ ∈ R, we can write it as:

max ϵ (4)
2Dominant trading strategy is a portfolio that has the same cost as another but is guaranteed

to out-perform it [15]
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subject to x = Ph, x ≥ ϵe

The second constraint implies that for each j ≤ n we have xj ≥ ϵ, also note
that objective is to find the optimal ϵ, i.e, a trading strategy that maximizes
the minimum outcome, also notice that the problem has a feasible solution in
the zero vector. This means that there exists a dominant trading strategy if
and only if the optimal value of (4) is positive.

Theorem. There exists no dominant trading strategy if and only if it exist a
linear pricing measure.

Proof. We can prove this by a similar method as above, we start to rewrite the
LP problem (4) as a primal problem:

max

{[
O
O
1

]⊤ [
h
x
ϵ

]
:
[
P −I O
−P I O
O −I e

] [
h
x
ϵ

]
≤

[
O
O
O

]}

Hence, the dual problem is:

min{0 : P⊤(y1 − y2) = 0, −y1 + y2 − y3 = 0, e⊤y3 = 1, y1, y2, y3 ≥ O}

By substituting y = y2 − y1 and π = y3 we can eliminate y and simplify to:

min{0 : P⊤π = 0,
∑

j

πj = 1, π ≥ O}

Since a feasible solution is a linear pricing measure we have proved that the
following statements are equivalent:

• there exist no dominant trading strategy

• there is a pricing measure that is linear

• the optimal value to (4) is zero

So the proof is complete. □
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8 Methods for solving linear programming prob-

lems

There exist several methods for solving linear programming problems divided
into two different classes, simplex or interior. Here we will focus on one method
that is simple to understand but for problems with a large number of unknown
variables and/or constraints are not always practical or possible in real world
time to use since the complexity is very high compared to other methods like
the simplex algorithm. This method, called Fourier-Motzkin eliminiation [10],
is however simple to understand and for small problems an alternative.

The idea behind the method is very simple, we have a n-variable problem to an
equivalent (n− 1)-problem, here equivalent means that the first system of
inequalities has a feasible solution if and only if the second one does. This
procedure is then iterated to eliminate one variable at a time until we only have
one left which is easy to solve since we only need to check if there exists any
number between the greatest lower bound and least upper bound. We will then
be able to trace back our steps and by using a solution (if it exists) to the
1-variable problem to find solutions to the 2-variable problem and so on to the
n-variable problem. The proof for the method is omitted in this text but if of
interest please see "Fourier-Motzkin Elimination and Its Dual*" by George B.
Dantzig and B. Curtis Eaves [6].

8.1 Procedure

If we suppose we have variables x1, x1, . . . , xn and we want to eliminate xn we
start with solving for xn, for each inequality as:

a1x1 + a2x2 + · · ·+ anxn ≤ b

there is two possible inequalities we can get:

xn ≤ b− aa1x1 − a2x2 − · · · − an−1xn−1

an

or
xn ≥ b− aa1x1 − a2x2 − · · · − an−1xn−1

an
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this depending on whether an is greater than or smaller than 0, if an = 0 we
don’t include the inequality since it doesn’t include xn.
After this we will have a collection of lower and upper bounds:

xn ≥ L1, xn ≥ L2, . . . , xn ≥ Lk

xn ≤ U1, /xn/leU2, . . . , xn ≤ Um.

Here Li and Ui is expressions for the n− 1 variables x1, x2, . . . , nn−1. Now if it
is possible to pick a value for xn that satisfies all these bounds all inequalitites
hold. This is the case if and only if:

max{L1, L2, . . . , Lk} ≤ min{U1, U2, . . . , Um}

since then there is something in between all the upper bounds and all the lower
bounds. However, we can not write this in a single equation since the lower and
upper bounds exists of unknown values so we can not say which ones are larger
or smaller. Instead we need to compromise by writing down k ×m inequalities:

L1 ≤ U1 L1 ≤ U2 · · · L1 ≤ Um,

L2 ≤ U1 L2 ≤ U2 · · · L1 ≤ Um,
...

... . . . ...,
Lk ≤ U1 Lk ≤ U1 · · · Lk ≤ Um.

Now if an xn exists that satisfies all of these constraints, we have for every i

and j, L1 ≤ xm ≤ Uj, meaning that all of these inequalities hold. Further, if all
holds it means that the max-min inequality holds as well and we can pick xn

between max{L1, . . . , Lk} and min{U1, . . . , Um}. This results in a new system
that consists of n− 1 variables and consist of the k ×m inequalities above, plus
any of the original inequalities which didn’t involve xn in them to begin with.

As one can understand this method can lead to the number of inequalities
growing very quickly. If we start with 8 inequalities in n variables, it is possible
that we get 22k+2 inequalities in n− k variables until we get 22n−1+2 inequalities
in 1 variable on the last step. This implies that it is worse than exponential
and hence for larger systems a different method is advised.
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8.2 Example

To get a better understanding of the method we next go through an example of
system of inequalities that includes two variables.





x− y ≥ 1

−x+ 2y ≥ 1

3x− 5y ≥ 1

x, y ≥ 0

We start with eliminating y, this by solving for y:




x− y ≥ 1 =⇒ y ≤ x− 1

−x+ 2y ≥ 1 =⇒ y ≥ x+1
2

3x− 5y ≥ 1 =⇒ y ≤ 3x−1
5

x ≥ 0

y ≥ 0

Now we pair the lower bounds with the higher bounds which gives us five
inequalitites on x: 




x+1
2

≤ x− 1

0 ≤ x− 1

x+1
2

≤ 3x−1
5

0 ≤ 3x−1
5

x ≥ 0

These can be simplified into lower and upper bounds on x:




x ≥ 3

x ≥ 1

x ≥ 7

x ≥ 1
3

x ≥ 0

In this example, it turned out that they all were lower bounds which means
that we know that they can be satisfied, the only constraint is that x needs to
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be at least 7. Now, depending on which value we put in as x we get different
possible values on y. For instance, if we take x = 7 we get: y ≤ 6, y ≥ 4, y ≤ 4,
and y ≥ 0 meaning that y = 4 is a feasible solution.
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9 Arbitrage in real life

So to shortly recap, arbitrage is a term in finance that describes the possibility
to make a profit without taking the risk of losing money. As we have seen, this
idea can be shown and proved by the use of mathematics, but does arbitrage
exist in real life?

According to economic theory, no, according to the markets it is more difficult
to asses since there exist different definitions on arbitrage and market
participants are not willing to show their models. But with the technical
development of faster computers small inequalities in price are smoothed out
(often by high frequency traders) faster than ever, resulting in markets to some
extent moving closer to the economic theory. However, if we consider the high
frequency traders from the outside we still can not say anything regarding
arbitrage since we do not have a complete view of how they operate. But for
the ordinary person who buys and sells on the markets, they should not see
arbitrage as anything they can accomplish but as a economic concept to help
build models to gain an understanding of how economy works in theory.

To circle back to the aim of the thesis, exploring the connection between
arbitrage and mathematics, it is interesting to see how the economic theory can
be build up by using mathematics, mainly linear programming. Even though
its practical use should be seen as insignificant it can spark an interest and idea
of how to develop the models to improve on this point. This especially since
many economists tend to think using economic reasoning rather than
mathematical that has the possibility to deepen the knowledge further.
However, the use of mathematics in finance is increasing and today there exist
several funds consisting of only mathematicians trying to beat the market with
widely different result, for example Renessaince capital [22] who can be
considered one of if not the best hedge fund ever and Long-term capital
management [13] resulting in catastrophe.

For tips on further reading on the subject, I would recommend: Arbitrage and
Geometry (2017 Daniel Q. Naiman and Edward R. Schneinerman [14] who
discuss the geometric meaning and the notion of arbitrage including a
collection of investments and payoff matrices that describes, the return for an
investor under different scenarios. In the end they also ask themselves the
question "given a random payoff-matrix, what is the probability of an arbitrage
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opportunity?". As the article do not include any analysis on a real data-set
there is still blanks to fill. But the discussion and intuition are nonetheless
interesting from a theoretical standpoint.

I would also recommend: Arbitrage opportunities on derivatives: A linear
programming approach by S. Herzel [8] who proposes a test on how to check a
given market for arbitrage opportunities using the LP approach. He also test
the SP500 index traded at CBOE for both call and put options 3 with maturity
4 in August 1999. He finds that with this data he was not able to find an
arbitrage opportunity. For a further explanation of his method we refer to his
article where he also explains why this works and gives a better mathematical
background.

3A option is a financial instrument that gives the holder the right to buy (put) or sell (call)
a underlying instrument connected to the option [16]

4Maturity date is the last day to exercise the option
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