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Abstract

The fundamental group of a topological space is the group of based homotopy
classes at a point. The Zariski topology for schemes is not fine enough and lacks
several desirable properties to construct such a group. Under suitable conditions
the group of cover automorphisms of a universal covering is isomorphic to the
topological fundamental group. Grothendieck introduced the étale topology and
used finite étale covers to define an algebraic fundamental group of a scheme in
[SGA71]. The goal of this thesis is to give an introduction to the étale fundamental
group of schemeswithout going throughGrothendieck’smore general construction
of Galois categories.
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Chapter 1

Introduction

In the early days of Galois theory one studied permutation groups of the roots to
polynomials and their symmetries to gain information about their solubility. In
modern language this corresponds to a permutation group action and through the
study of Galois groups Gal𝑘(𝐿) of Galois extensions 𝑘 ⊂ 𝐿. The group action only
depends on the separable closure 𝑘𝑠 of the base field 𝑘 from which the polynomial
has its coefficients and not the extension itself. After all, the set of morphisms
Hom𝑘(𝐿, 𝑘𝑠) where 𝐿 is a finite extension of a field 𝑘 and 𝑘𝑠 the separable closure
corresponds to the finite set of roots of a polynomial defined by 𝐿. If the group
action is transitive on the finite set of roots then the extension must be a Galois
extension.

Changing focus for a moment, a guiding principle in traditional algebraic
topology is to understand topological spaces through the means of invariants1

and combinatorics. One of the examples being the fundamental group 𝜋1(𝑋 , 𝑥)
of a topological space 𝑋 with a base point 𝑥. The group measures to what extent
loops in 𝑋 based at 𝑥 can be continuously deformed. This fundamental group can
be studied through topological covers 𝑝∶ 𝑌 → 𝑋 of the space 𝑋 and the group
of automorphisms of such covers. We can, in fact, find a universal cover if the
space is nice enough that has a similar role to the separable closure of a field in
the Galois theory case.

Grothendieck’s new theory in [SGA71] captured the essence of both examples
by constructing what are called Galois categories, which unifies both while switch-
ing focus to the automorphism groups of a functor. The Galois theory example
has a special fibre functor sending a separable extension 𝐿 by

𝐹𝑘𝑠 ∶ 𝐿 ↦ Hom𝑘(𝐿, 𝑘𝑠)

and in the algebraic topology the functor sends a cover to its fibre by

𝐹𝑥∶ 𝑝 ↦ 𝑝−1(𝑥).
1Invariants are typically captured by functors because functors carry data between categories

and their representations or simplifications.
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He went further and through this formalism of Galois categories gave rise to the
theory of algebraic fundamental group of schemes.

The natural thing to try to develop a theory of a fundamental group of schemes
is to try to apply covers to a scheme over the Zariski topology. This approach fails,
however, because there are not enough Zariski ”locally trivial” covers, meaning
that covers become simply copies of the object they cover after restricting to
a sufficiently small set. To give an example, the complex manifold ℂ ⧵ {0} has
fundamental group isomorphic to ℤ generated by the number of loops around
the removed origin. The equivalent scheme 𝔸1

ℂ ⧵ {0} has no Zariski locally trivial
cover that is connected. This is because the distinguished open sets in ℂ𝑛 are
complements of hypersurfaces and are ”too large”.

The Zariski topology of schemes was also noted to not behave as expected
in classical geometry in other ways. Some constructions of schemes over a base
scheme 𝑋 → 𝑆 which normally gave vector bundles did not have the property
of being locally trivial. Serre observed, see discussion in [DIE72], that in many
cases an extension of the base 𝑇 → 𝑆, where 𝑇 is an étale covering of 𝑆, was
enough to make them so. This was one of the starting points for Grothendieck to
replace the Zariski topology with the étale topology, which is not a topological
space in the traditional sense but a Grothendieck topology. In the language of
Grothendieck a Zariski covering, not to be confused by the topology notion of a
covering which is different, of a scheme 𝑇 is a covering of 𝑇 with open immersions
{𝑇𝑖 → 𝑇} that correspond to open subsets in a topology. The étale topology is
defined by coverings with étale morphisms {𝐸𝑖 → 𝐸} which in a sense represent
morphisms which are open and in a certain sense local isomorphisms. This results
in a much finer Grothendieck topology which can ”zoom in” even further than the
Zariski topology.

Wewill see how these realizations help in constructing étale covers and allow us
to study an algebraic version of the fundamental group, called the étale fundamental
group. We will avoid the language of Galois categories by following [SZA09] to a
large extent especially in the choice of topics. This thesis is expository in nature.
We assume, nonetheless, familiarity with Galois theory, category theory and some
exposure to algebraic geometry, although we will review the latter in the language
of schemes. Knowledge of algebraic topology is helpful to draw parallels between
the different fundamental group constructions. We also try to often show more
details regarding the theory than would be otherwise prudent in a traditional
text on the subject, and focus on examples that are directly applicable to the étale
fundamental group.

3



Notation Explanation Reference
|𝑆| The underlying set of a categorical object –
♯|𝑆| The cardinality of a finite set –
𝑘̄ Algebraic closure of a field 𝑘 –
𝑘𝑠 Separable closure of a field 𝑘 –
𝐷(𝑓 ) Distinguished open set of a scheme at the element 𝑓. 2.2.4
ℱ Presheaf or sheaf over a topological space 𝑋 2.3.1, 2.3.3
𝑓∗ Pushforward of a morphism of sheaves 2.3.6
𝜅(𝔭) Residue field of a scheme 2.3.13
𝐴𝑓 Localization of a ring at set generated by powers of 𝑓 2.3.8
ℱ𝑥 Stalk of a presheaf at a point 𝑥 ∈ 𝑋 2.3.10
(𝑋 ,𝒪𝑋) (locally) ringed space with the topology 𝑋 and sheaf

𝒪𝑋

2.3.13

𝐴𝔭 Localization of a ring at the set evading the prime ideal
𝔭.

2.3.14

𝑋 ×𝑆 𝑌 Fibre product of 𝑆-schemes 𝑋 and 𝑌 2.5.4
𝑋𝑝 Scheme theoretic fibre of 𝑓∶ 𝑋 → 𝑌 at the point 𝑝 ∈ 𝑌 2.5.10
̄𝑠 Geometric point of a scheme 𝑆. 2.5.14
𝑋 ̄𝑠 Geometric fibre at the geometric point ̄𝑠. 2.5.14
Ω1
𝐵|𝐴 Kähler differentials of the 𝐵-algebra 𝐴. 2.7.6

Ω1
𝑋 |𝑌 Kähler differentials of the 𝑌-scheme 𝑋. 2.7.14

𝒪𝐺
𝑋 𝐺-invariant sheaf of 𝒪𝐺 2.8.6

𝐿𝐺 The field of fixed elements of 𝐿 under 𝐺 –
Fib ̄𝑠 Fibre functor over a geometric point ̄𝑠 4.1.13

Category Explanation
ℛ𝑖𝑛𝑔 Commutative and unital rings
𝒜𝒮𝑐ℎ Affine schemes
𝒮𝑐ℎ, 𝒮𝑐ℎ/𝑆 Schemes and 𝑆-schemes, respectively
𝒯𝑜𝑝(𝑋)op Opposite category of open sets on the topological space 𝑋 with

morphisms being the inclusions
𝒯𝑜𝑝𝒢𝑟𝑝 Topological groups
ℱ𝑖𝑛ℰ𝑡/𝑆 Finite étale morphisms over 𝑆
𝒮𝑒𝑡, ℱ𝑖𝑛𝒮𝑒𝑡 Sets and finite sets, respectively
𝐺-𝒮𝑒𝑡 Sets with a group action of 𝐺
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Chapter 2

Review of Algebraic Geometry

”The very idea of scheme is of infantile simplicity—so simple, so
humble, that no one before me thought of stooping so low. So childish,
in short, that for years, despite all the evidence, for many of my erudite
colleagues, it was really ’not serious’!”

— Alexander Grothendieck, 1985–1987 - [REC85]

We begin by reviewing some aspects of algebraic geometry like the introduction
of a scheme and other machinery that will be necessary to construct the étale
fundamental group of a scheme. All rings will be assumed to be commutative and
unital.

2.1 Limits and colimits

Wequickly recall the definitions of limits and colimits based on cofiltered categories.
The reader might use the familiar inverse and direct limits respectively from
category theory if they choose and can skip this section. It will be needed for the
last section when we study the étale fundamental group.

Definition 2.1.1. A cofiltered category is a category ℐ for which the following
hold:

(i) 𝒞 has at least one object.

(ii) For every pair of objects 𝑃𝑖, 𝑃𝑗 ∈ ℐ there is an object 𝑃𝑘 ∈ ℐ such that the
arrows 𝑃𝑗 ← 𝑃𝑘 → 𝑃𝑖 exist.

(iii) For every pair of objects 𝑃𝑖, 𝑃𝑗 ∈ ℐ and every pair of arrows 𝑓 , 𝑔∶ 𝑃𝑖 → 𝑃𝑗
there is an arrow ℎ∶ 𝑃 → 𝑃𝑖 such that 𝑓 ∘ ℎ = 𝑓 ∘ ℎ.

A cofiltered diagram in a category 𝒞 is a functor 𝑃∶ ℐ → 𝒞 where ℐ is a
cofiltered category.
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Remark 2.1.2. We will sometimes denote the arrows 𝑃𝑖 → 𝑃𝑗 as 𝑖 ≤ 𝑗.

Definition 2.1.3. A limit of a cofiltered diagram 𝑃∶ ℐ → 𝒞 is denoted by
lim←−−𝑃𝑖∈𝑃

𝑃𝑖 and is an object of 𝒞 together with morphisms 𝑝𝑗∶ lim←−−𝑃𝑖∈𝑃
𝑃𝑖 → 𝑃𝑗

such that:

1. For 𝜙∶ 𝑃𝑖 → 𝑃𝑗 a morphism in ℐ we have 𝑝𝑗 = 𝑃(𝜙)𝑝𝑖,

2. For any object 𝑊 ∈ 𝒞 and a family of morphisms 𝑞𝑖∶ 𝑊 → 𝑃𝑖 such that for
all morphisms 𝜙∶ 𝑃𝑖 → 𝑃𝑗 in ℐ we have 𝑞𝑗 = 𝑃(𝜙)𝑞𝑖, there exists a unique
morphism 𝑞∶ 𝑊 → lim←−−𝑃𝑖∈𝑃

𝑃𝑖 such that 𝑞𝑖 = 𝑝𝑖𝑞 for all 𝑖 ∈ ℐ.

Remark 2.1.4. With the cofiltered diagram having a target in 𝒮𝑒𝑡 the cofiltered
limits are realized as the product of all 𝑃𝑖 with ”compatible” elements. That is

lim←−−
𝑃𝑖∈ℐ

𝑃𝑖 = {(𝑥𝑖)𝑃𝑖∈ℐ ∈ ∏
𝑃𝑖∈ℐ

𝑃𝑖∶ for all 𝜙 ∶ 𝑃𝑖 → 𝑃𝑗 in ℐ, 𝑃(𝜙)(𝑥𝑖) = 𝑥𝑗}.

The dual notion is that of colimits.

Definition 2.1.5. A colimit of a cofiltered diagram 𝑃∶ ℐ → 𝒞 is denoted by
lim−−→𝑃𝑖∈𝑃

𝑃𝑖 and is an object of 𝒞 together with morphisms 𝑠𝑗∶ lim−−→𝑃𝑖∈𝑃
𝑃𝑖 → 𝑃𝑗 such

that:

1. For 𝜙∶ 𝑃𝑖 → 𝑃𝑗 a morphism in ℐ we have 𝑠𝑗 = 𝑠𝑖𝑃(𝜙),

2. For any object 𝑊 ∈ 𝒞 and a family of morphisms 𝑡𝑖∶ 𝑃𝑖 → 𝑊 such that for
all morphisms 𝜙∶ 𝑃𝑖 → 𝑃𝑗 in ℐ we have 𝑡𝑖 = 𝑡𝑗𝑃(𝜙), there exists a unique
morphism 𝑡∶ lim−−→𝑃𝑖∈𝑃

𝑃𝑖 → 𝑊 such that 𝑡𝑖 = 𝑡𝑠𝑖 for all 𝑖 ∈ ℐ.

Remark 2.1.6. With the cofiltered diagram having a target in 𝒮𝑒𝑡 the cofiltered
colimits are realized as the disjoint union subject to an equivalence relation. That
is

lim−−→
𝑃𝑖∈ℐ

𝑃𝑖 = ∐
𝑃𝑖∈ℐ

𝑃𝑖/ ∼

where the equivalence relation is defined by two elements 𝑥𝑖 ∈ 𝑃𝑖 and 𝑥𝑗 ∈ 𝑃𝑗 being
equivalent if there is a 𝑘 such that 𝑥𝑘 ∈ 𝑃𝑘 and there are morphisms 𝑝𝑖𝑘∶ 𝑃𝑖 → 𝑃𝑘
and 𝑝𝑗𝑘∶ 𝑃𝑗 → 𝑃𝑘 with 𝑃(𝑝𝑖𝑘)(𝑥𝑖) = 𝑃(𝑝𝑗𝑘)(𝑥𝑗). So that two elements are equal if
they are ”eventually” equal down the colimit.

2.2 Spectrum of a ring

The classic point of view is to study the geometry over an algebraic closed field
𝑘 = 𝑘̄ and focus on a subset𝑀 ⊂ 𝑘[𝑥1, … , 𝑥𝑛] of polynomials. One views irreducible
varieties as the set of points on which all functions in 𝑀 vanish, that is 𝑉 (𝑀) ∶=
{(𝑥1, … , 𝑥𝑛) ∈ 𝑘𝑛 ∶ 𝑓 (𝑥1, … , 𝑥𝑛) = 0 for all 𝑓 ∈ 𝑀}.
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A corollary of one of the main results in classic algebraic geometry is that if 𝐼
is an ideal which makes 𝐴 = 𝑘[𝑥1, … , 𝑥𝑛]/𝐼 into a finitely generated 𝑘-algebra, then
we can recover 𝑉 (𝐼 ) from 𝐴 by looking at its maximal ideals by the Nullstellensatz.
This is because having a morphism ̄𝑓 ∶ 𝐴 ⟶ 𝑘 is the same as the one that
factors through 𝑓∶ 𝑘[𝑥1, … , 𝑥𝑛] ⟶ 𝑘 with 𝐼 ⊂ ker(𝑓 ). In other words we have an
equivalence between zero sets of polynomials over algebraically closed fields and
finite type 𝑘-algebra morphisms.

Proposition 2.2.1. 𝑉 (𝐼 ) = Hom𝑘(𝐴, 𝑘) where 𝐴 = 𝑘[𝑥1, … , 𝑥𝑛]/𝐼 is a finitely
generated 𝑘-algebra.

Curiosity can lead us to wonder what happens if we generalize this to ring
homomorphisms between a commutative ring 𝐴 and a field 𝑘, Homℛ𝑖𝑛𝑔(𝐴, 𝑘). For
any prime ideal 𝔭 ⊂ 𝐴 we have a natural map of rings

𝐴 ⟶ 𝐴/𝔭 ⟶ Frac(𝐴/𝔭).

The inclusion of 𝐴 into its field of fractions gives us a natural map. We de-
note the field of fractions by 𝜅(𝔭). Since there are awfully many morphisms in
Homℛ𝑖𝑛𝑔(𝐴, 𝑘) we want to glue compatible ones by the following construction.

Definition 2.2.2. Define the spectrum Spec𝐴 of a ring 𝐴 to be the collection of
equivalence classes of ring morphisms 𝐴 → 𝑘 for 𝑘 a field where two maps 𝐴 → 𝑘𝑖,
𝐴 → 𝑘𝑗 are identified if there exists a ring morphism 𝑘𝑖 → 𝑘𝑗 which makes the
diagram commute.

𝐴

𝑘𝑖 𝑘𝑗

We say, informally, that Spec𝐴 ≔ lim←−−𝑘𝑖
Hom(𝐴, 𝑘𝑖) even though this object

might not exist as a set because of set theoretic size considerations. This construc-
tion doesn’t mention prime ideals. But there is of course an identification between
this and the classic definition of Spec𝐴 which is that of the set of prime ideals of
𝐴.

Proposition 2.2.3. The set isomorphism Spec𝐴 ≅ {prime ideals 𝔭 ⊂ 𝐴} is given
by the bijection of taking a map (𝑓∶ 𝐴 → 𝑘) ∈ Spec𝐴 and sending it to its kernel
ker(𝑓 ) ⊂ 𝐴.

Proof. The map is well-defined by the commutativity of the diagram in the defini-
tion. If 𝑓∶ 𝐴 → 𝑘 is a map then 𝑓 (𝑥𝑦) = 𝑓 (𝑥)𝑓 (𝑦) = 0 are all elements of a field,
which implies that either 𝑥 or 𝑦 are in ker(𝑓 ) and so ker(𝑓 ) is a prime ideal.

To construct the inverse we use our aforementioned inclusion into the field of
fractions. That is with a prime ideal 𝔭 we can construct the natural inclusion

𝐴 ⟶ 𝐴/𝔭 ⟶ 𝜅(𝔭)

7



of 𝐴 into its field of fractions, giving us a map we call 𝑓𝔭 with kernel 𝔭. If we
have another map 𝑓∶ 𝐴 → 𝑘 with ker(𝑓 ) = ker(𝑓𝔭) we know that by the universal
property of field of fractions that they must be in fact equal.

Proposition 2.2.4. The spectrum Spec𝐴 of 𝐴 is a quasi-compact topological space,
called the Zariski topology on Spec𝐴, whose points are the prime ideals of 𝐴 and a
basis of open sets is given by the distinguished open sets 𝐷(𝑓 ) given by

𝑋 ⧵ 𝑉 (𝑓 ) = 𝐷(𝑓 ) ≔ {𝔭∶ 𝔭 is a prime ideal with 𝑓 ∉ 𝔭}

for all 𝑓 ∈ 𝐴.

Proof. See [GW10, Proposition 2.5]

These topologies Spec𝐴 will be the building blocks of schemes as we will see
soon. First we must define what we mean by ”functions” on this topology. The
key point is to give a notion of how we can restrict functions to subsets and glue
them together on a topological space.

2.3 Ringed spaces

In a certain sense the minimal amount of structure necessary to speak of something
that could have a resemblance of a ”geometrical space” is given by a sheaf ℱ
together with a topological space1 𝑋. These can be seen as functors from a category
of open sets over a topological space2 𝑋 to a category of interest 𝒞. That is

ℱ∶ 𝒯𝑜𝑝(𝑋)op → 𝒞.

The objects ℱ(𝑈 ), for an open set 𝑈, in 𝒞 carry some resemblance as a collection
of functions. Further we require to be able to ”glue” functions together, that is
given an open covering {𝑈𝑖 → 𝑈} we need to be able to construct ℱ(𝑈 ) from the
components ℱ(𝑈𝑖). This can be encoded in the limit of the following diagram (the
limit is just the same as an equalizer diagram in this special case)

ℱ(𝑈 ) → ∏
𝑖
ℱ(𝑈𝑖) −−−→−−−→ ∏

𝑖,𝑗
ℱ(𝑈𝑖 ∩ 𝑈𝑗).

The first part says that if such a gluing exists then it is unique and the second
shows that the glued object exists.

We summarize this discussion.

Definition 2.3.1. A presheaf over a topological space 𝑋 with values in a category
𝒞 is a functor

ℱ∶ 𝒯𝑜𝑝(𝑋)op → 𝒞

where 𝒯𝑜𝑝(𝑋) is the category of open sets of 𝑋 with inclusion restrictions as
morphisms. The image of an inclusion morphism is called a restriction morphism.

1In more generality over a general category with a Grothendieck topology, that is a site.
2The objects being open sets of a topological space 𝑋 and the morphisms being inclusions.
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Remark 2.3.2. For inclusions of open subsets 𝑊 ⊂ 𝑉 ⊂ 𝑈 of 𝑋 this means that
there are restriction morphism ℱ(𝑈 ) → ℱ(𝑉 ) → ℱ(𝑊 ) and this morphism is the
same as the one gotten from 𝑊 ⊂ 𝑈 and ℱ(𝑈 ) → ℱ(𝑊 ).

Definition 2.3.3. A presheaf3 ℱ is a sheaf if for any open covering 𝑈 = ∪𝑖𝑈𝑖 of
an open set of 𝑋 the following diagram is commutative

0 → ℱ(𝑈 )
𝑑0→ ∏

𝑖
ℱ(𝑈𝑖)

𝑑1→ ∏
𝑖,𝑗
ℱ(𝑈𝑖 ∩ 𝑈𝑗).

The morphisms are defined as 𝑑0∶ 𝑠 ↦ (𝑠𝑖) where 𝑠𝑖 are the restriction maps
coming from 𝑈𝑖 → 𝑈 and 𝑑1∶ (𝑠𝑖) ↦ (𝑠𝑖|𝑈𝑖∩𝑈𝑗 − 𝑠𝑖|𝑈𝑖∩𝑈𝑗).

Remark 2.3.4. Recall that a morphism of sheaves is a morphism of functors and
thus respects the restriction maps.

Remark 2.3.5. The objects ℱ(𝑈 ) for a sheaf over 𝑋 are called the sections of ℱ
over 𝑈. The elements of the objects are our ”functions” on the sets 𝑈. For the case
of 𝑈 = 𝑋 we call them the global sections.

Definition 2.3.6. Let 𝑓∶ 𝑋 → 𝑌 and let ℱ,𝒢 be sheaves on 𝑋 and 𝑌, respectively.
The pushforward sheaf 𝑓∗ℱ on 𝑌 is defined by

𝑓∗ℱ(𝑈 ) ≔ ℱ(𝑓 −1(𝑈 )).

Definition 2.3.7. A ringed space is a pair (𝑋 ,𝒪𝑋) consisting of sheaf 𝒪𝑋 of rings
on the topological space 𝑋.

Morphisms (𝑓 , 𝑓 ♯)∶ (𝑋 ,𝒪𝑋) → (𝑌 ,𝒪𝑌) of ringed spaces are pairs (𝑓 , 𝑓 ♯)where
𝑓∶ 𝑋 → 𝑌 is a continuous morphism and 𝑓 ♯∶ 𝒪𝑌 → 𝑓∗𝒪𝑋 is a morphism of
sheaves.

Proposition 2.3.8. There is a unique sheaf of rings 𝒪𝑋 on 𝑋 = Spec𝐴 satisfying

𝒪𝑋(𝑋) = 𝐴, 𝒪𝑋(𝐷(𝑓 )) = 𝐴𝑓

for all 𝑓 ∈ 𝐴 where 𝐴𝑓 is the ring of fractions of 𝐴 with denominators in the
multiplicative set {1, 𝑓 , 𝑓 2, …} ⊂ 𝐴. We have, in particular, the global sections being
equal to the ring 𝒪𝑋(𝑋) = 𝐴.

Proof. See [GW10, Theorem 2.33]. In particular the proof uses a ubiquitous ”unity
of partition” argument that is actually very deep and has roots in more modern
treatments of ”descent theory”.

Example 2.3.9. We will now show an example of how we can look at elements
of a ring as functions that might be a bit confusing at first.

3With values in an abelian category so that we can simplify the equalizer/limit shown earlier to
an exact sequence.
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Let 𝑋 = Spec𝐴. If 𝑓 is a ”global function” on 𝑋, that is an element of the ring
𝒪𝑋(𝑋) = 𝐴, and 𝑥 ∈ Spec𝐴 is a topological point represented by the prime ideal
𝔭𝑥. Then the value 𝑓 (𝑥) is the residue class of 𝑓 given by the image of the canonical
morphisms

𝑓∶ 𝐴 ⟶ 𝐴/𝔭𝑥 ⟶ 𝜅(𝑥).

We see that 𝑓 ∈ 𝔭𝑥 is equivalent to 𝑓 (𝑥) = 0. Technically all the values 𝑓 (𝑥) live
inside different rings 𝜅(𝑥) and hence we can identify 𝑓 ∈ 𝐴 with the map

Spec𝐴 ⟶ ∐
𝑥∈Spec𝐴

𝜅(𝑥).

If𝐴 is a 𝑘-algebra over an algebraically closed field we see that 𝜅(𝑥) = 𝑘 for all 𝑥 ∈ 𝑋
and the function can be seen as a function in the regular sense 𝑓∶ Spec𝐴 → 𝑘.

For example if 𝐴 = ℝ[𝑥] and 𝑥 = (𝑥2 + 1) ∈ Spec𝐴 then the ”function”
𝑓 = 𝑥3 + 𝑥2 + 𝑥 + 1 has values the values

𝑓 (𝑥2 + 1) = 0, 𝑓 (𝑥2 − 1) = 2𝑥 + 2, 𝑓 (𝑥 − 5) = 156,

which can be found by the euclidean algorithm.

Definition 2.3.10. The stalk of a presheaf ℱ at a point 𝑥 ∈ 𝑋 is defined as

ℱ𝑥 ≔ lim−−→
𝑥∈𝑈

ℱ(𝑈 )

where the colimit is taken over all open sets 𝑈 ⊂ 𝑋 that contain 𝑥 with restriction
morphisms as morphisms of the limit.

Remark 2.3.11. The stalk of a presheaf ℱ𝑥 therefore allows us to zoom in on a
point 𝑥 and consider all the sections that pass through 𝑥 in an ”infinitesimal”
neighborhood.

Proposition 2.3.12. A morphism of ringed spaces (𝑓 , 𝑓 ♯)∶ (𝑋 ,𝒪𝑋) → (𝑌 ,𝒪𝑌)
induces a morphism on the stalks

𝑓 ♯𝑥 ∶ 𝒪𝑌 ,𝑓 (𝑥) → 𝒪𝑋,𝑥.

Definition 2.3.13. A morphism of local rings 𝐴 → 𝐵 is called local if the image
of the maximal ideal of 𝐴 is a subset of the maximal ideal of 𝐵.

A locally ringed space is a ringed space (𝑋 ,𝒪𝑋) such that for all 𝑥 ∈ 𝑋 the stalk
𝒪𝑋,𝑥 is a local ring. A morphism of locally ringed spaces is a morphism of ringed
spaces such that the map on stalks 𝑓 ♯𝑥 ∶ 𝒪𝑌 ,𝑓 (𝑥) → 𝒪𝑋,𝑥 is a local ring morphism,
that is 𝑓 ♯𝑋(𝑚𝑓 (𝑥)) ⊂ 𝑚𝑥 where 𝑚𝑓 (𝑥) ⊂ 𝒪𝑌 ,𝑓 (𝑥) and 𝑚𝑥 ⊂ 𝒪𝑋,𝑥 are the respective
maximal ideals.

We call 𝜅(𝑥) ≔ 𝒪𝑋,𝑥/𝑚𝑥 the residue field of 𝑋 at 𝑥.

Proposition 2.3.14. The ringed space (Spec𝐴,𝒪Spec𝐴) is a locally ringed space
that has stalks satisfying 𝒪Spec𝐴,𝑥 = 𝐴𝔭𝑥 where 𝔭𝑥 is the prime ideal associated to
𝑥 ∈ Spec𝐴 and the localization 𝐴𝔭𝑥 ≔ 𝑆−1𝐴 with 𝑆 = 𝐴 ⧵ 𝔭𝑥.

Proof. See [GW10, Theorem 2.33].
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2.4 Schemes

Definition 2.4.1. A locally ringed space (𝑋 ,𝒪𝑋) is called an affine scheme if there
exists a ring such that (𝑋 ,𝒪𝑋) is isomorphic to (Spec𝐴,𝒪Spec𝐴). The sheaf𝒪Spec𝐴
is called the structure sheaf.

Remark 2.4.2. From a map of rings 𝑓∶ 𝐴 → 𝐵 we have a morphism of affine
schemes Spec(𝑓 )∶ Spec𝐵 → 𝐴 by sending the prime ideal 𝔭 ∈ Spec𝐵 to the
prime ideal 𝑓 −1(𝔭) ∈ Spec𝐴. This corresponds to the sheaf morphism above. We
also have a map from affine schemes to rings given by (𝑋 ,𝒪𝑋) ↦ 𝒪𝑋(𝑋).

Proposition 2.4.3. The functors Spec(−) and 𝒪−(−) define an anti-equivalence
between the category of rings and the category of affine schemes.

𝒮𝒜𝑓 𝑓 ℛ𝑖𝑛𝑔.
𝒪𝑋(𝑋)

Spec𝑅

Proof. See [GW10, Theorem 2.35].

This is a hallmark result that shows one can translate problems in algebra to
problems in geometry and vice-versa. It demonstrates how so many geometric
problems can be translated to problems in commutative algebra.

Definition 2.4.4. A scheme is a locally ringed space (𝑋 ,𝒪𝑋) having an open
covering 𝑋 = ∪𝑖𝑈𝑖 such that all locally ringed spaces (𝑈𝑖,𝒪𝑈𝑖) are affine schemes.

Proposition 2.4.5. Let 𝑋, 𝑌 be schemes and {𝑈𝑖}𝑖 an open affine covering of 𝑋. Then
a family of morphisms {𝑈𝑖 → 𝑌}𝑖 glues to a morphism 𝑋 → 𝑌 if and only if the
morphisms coincide on the intersections 𝑈𝑖 ∩ 𝑈𝑗 and the resulting morphism 𝑋 → 𝑌 is
uniquely determined.

Proof. See [GW10].

Proposition 2.4.6. Let (𝑋 ,𝒪𝑋) be a scheme4 and 𝑌 = Spec𝐴 an affine scheme.
Then there is a natural bijection:

Hom(𝑋 , Spec𝐴) → Hom(𝐴,𝒪𝑋(𝑋)).

Proof. Let 𝑋 = ⋃𝑖 𝑈𝑖 be an affine open covering. We know from 2.4.3 that the
natural map

Hom(𝑈𝑖, 𝑌 ) → Hom(𝐴,𝒪𝑋(𝑋))

is a bijection. For a general affine 𝑉 ⊂ 𝑈𝑖 ∩𝑈𝑗 the following diagram is commutative:

Hom(𝑈𝑖, 𝑌 ) Hom(𝐴,𝒪𝑈𝑖(𝑈𝑖))

Hom(𝑉 , 𝑌 ) Hom(𝐴,𝒪𝑉(𝑉 )).

4This is proven in [EGA71, Proposition 1.6.3] for (𝑋 ,𝒪𝑋) a locally ringed space.
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Because of 2.4.5 we can glue the morphisms like in the bottom row of the diagram
into a global bijection because of the sheaf property.

Example 2.4.7. Let 𝑋1, … , 𝑋𝑛 be a finite number of affine schemes and 𝑋𝑖 =
Spec𝐴𝑖. Then the disjoint union∐𝑋𝑖 is also an affine scheme which is isomorphic
to Spec(∏𝐴𝑖) by 2.4.3.

Example 2.4.8. If 𝑘 is a field then the underlying topological space Spec 𝑘 consists
of a single point, and the stalk of the structure sheaf at this point is 𝑘. While it’s a
boring object topologically we will see later that it is an incredibly rich object as a
scheme through the étale fundamental group.

More generally if 𝐴 ≅ ⨁𝐿𝑖 is a 𝑘-algebra for finite separable extensions 𝑘 ⊂ 𝐿𝑖,
then Spec𝐴 is the disjoint union of the one point schemes Spec 𝐿𝑖.

Example 2.4.9. The affine scheme Specℤ has closed points corresponding to the
prime numbers and a non-closed point, the ideal (0) called the generic point. The
generic point is dense in Specℤ. The structure sheaf over an open set 𝑈 is the ring
of rational numbers with denominator divisible by the primes not touching 𝑈.

Example 2.4.10. Let 𝐴 = 𝐵[𝑥1, … , 𝑥𝑛] be the polynomial ring of a ring 𝐵 in 𝑛
variables. The affine 𝑛-space over 𝐵 is then 𝔸𝑛

𝐵 ≔ Spec(𝐴).

Example 2.4.11. If 𝑘 is a field and 𝐴 is a finitely generated 𝑘-algebra then the
closed points of 𝑋 = Spec𝐴 constitute what is traditionally called an affine variety.
See [HAR77, Proposition 2.6]. The difference between the variety and scheme is
that 𝑋 contains non-closed points corresponding to non-maximal prime ideals.

Example 2.4.12. Given a scheme 𝑋 and an open subset 𝑈 ⊂ 𝑋. Then the locally
ringed space (𝑈 ,𝒪𝑋|𝑈) is a scheme, an open subscheme of 𝑋. Furthermore, let
𝑗∶ 𝑈 ⊂ 𝑋 be the topological inclusion that also defines a morphism of schemes.
Then the morphism of sheaves 𝒪𝑋 → 𝑗∗𝒪𝑈 is called an open immersion.

Example 2.4.13. A morphism 𝑍 → 𝑋 of affine schemes is a closed immersion if it
corresponds to a quotient map 𝐴 → 𝐴/𝐼 by 2.4.3 for some ideal 𝐼. A general mor-
phism is a closed immersion if the induced topological map is a closed immersion
(a homeomorphism onto a closed subset) and the map of sheaves 𝑓 ♯∶ 𝒪𝑋 → 𝑓∗𝒪𝑍
is surjective.

2.5 Fibre product

Let 𝑘 be an algebraically closed field. Then the topological product of 𝔸1
𝑘 × 𝔸1

𝑘
is the product topology of two affine lines over 𝑘. As the open sets in a Zariski
topology are complements of finite sets the product topology will be coarser than
we would expect from 𝔸2

𝑘 . Indeed, the set 𝐷(𝑥 − 𝑦) in is not open in the product
topology. For this reason 𝔸1

𝑘 × 𝔸
1
𝑘 is not isomorphic to 𝔸2

𝑘 as schemes. For this
reason we need another notion of products of schemes.
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We will introduce a notion to be able to look at schemes relative to a base
scheme.

Definition 2.5.1. Fix a scheme 𝑆. We define 𝒮𝑐ℎ/𝑆 to be the category of schemes
over 𝑆. That is:

(i) Objects are morphisms 𝑋 → 𝑆 with the fixed target 𝑆.

(ii) A morphism from 𝑋 → 𝑆 to 𝑌 → 𝑆 is a morphism 𝑋 → 𝑌 that makes the
diagram

𝑋 𝑌

𝑆

commute.

Remark 2.5.2. The schemes we’ve defined before are equivalent to 𝒮𝑐ℎ/ Specℤ.
Generally we call a scheme in𝒮𝑐ℎ/ Spec𝐴 an𝐴-scheme. The advantage of working
with schemes in the relative sense is that for an 𝐴-scheme the sections 𝒪𝑋(𝑈 ) have
a structure of an 𝐴-algebra.

It is implicit that an 𝑆-scheme 𝑋 comes with a structure morphism 𝑋 → 𝑆.

Remark 2.5.3. It is important to keep track of the base scheme. For example
AutSpec(ℚ̄)(ℚ̄) is trivial because there are no non-trivial 𝜎 such that

Spec ℚ̄ Spec ℚ̄

Spec ℚ̄

𝜎

id
id

commutes. Meanwhile, AutSpecℚ(Spec ℚ̄) is very rich.

Definition 2.5.4. Let 𝑋 and 𝑌 be two 𝑆-schemes. Then the fibre product 𝑋 ×𝑆 𝑌 is
the scheme defined by the universal property that given morphisms 𝑌 ← 𝑇 → 𝑋
that make the diagram commute:

𝑇

𝑋 ×𝑆 𝑌 𝑌

𝑋 𝑆

there exists a unique morphism 𝑇 → 𝑋 ×𝑆 𝑌 that factors through the diagram.

Proposition 2.5.5. The category of schemes has fibre products. In the affine case of
𝑋 = Spec𝐴, 𝑌 = Spec𝐵, 𝑆 = Spec𝑅 we have 𝑋 ×𝑆 𝑌 = Spec(𝐴 ⊗𝑅 𝐵).
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Proof. The idea of a proof is to show the proposition for affine schemes by traveling
to the algebraic world through 2.4.3 and show the corresponding statement for
the tensor product. The general case is done by using open covers {𝑋𝑖} , {𝑌𝑖} , {𝑆𝑖} of
𝑋, 𝑌 , 𝑆 and show that one can glue together the schemes 𝑋𝑖 ×𝑆𝑖 𝑌𝑖 into 𝑋 ×𝑆 𝑌 and
have the diagram commute. See [HAR77] for the full proof.

Remark 2.5.6. Note that the fibre product 𝑋 ×𝑆 𝑌 implicitly comes with morphisms
𝑋 → 𝑆 and 𝑌 → 𝑆 that make the diagram above commute.

Remark 2.5.7. Recall that an 𝑆-scheme is a morphism of schemes 𝑋 → 𝑆. If we
have a morphism 𝑇 → 𝑆 we would want to change the base of the 𝑆-scheme 𝑋 to 𝑇.
This is possible by pulling back 𝑋 → 𝑆 along 𝑇 → 𝑆 giving precisely 𝑇 ×𝑆 𝑋 → 𝑇
which is often denoted as 𝑋𝑇 → 𝑇 and called the base change of 𝑋. This is one of
the powerful features of schemes as opposed to classic varieties, where the fibre
product does not exist.

To give examples of fibre product we will introduce the fibre of a scheme. But
first we need some lemmas.

Lemma 2.5.8. Let 𝑘 be a field and 𝑋 a scheme. Then giving a morphism Spec 𝑘 → 𝑋
is equivalent to giving a point 𝑥 ∈ 𝑋 and an extension 𝜅(𝑥) ⊂ 𝑘.

Proof. Given 𝑓∶ Spec 𝑘 → 𝑋 we obtain a point 𝑥 ≔ 𝑓 ((0)). The associated
morphism 𝒪𝑋,𝑥/𝑚𝑥 → 𝒪Spec 𝑘,(0)/𝑚(0) must be injective since 𝑚(0) ⊂ 𝑚𝑥 by the
local property of the morphism of locally ringed spaces. This gives injectivity of
𝜅(𝑥) → 𝑘.

Conversely, we get the local morphisms 𝒪𝑋,𝑥 → 𝜅(𝑥) → 𝑘 which induces a
morphism of sheaves and hence our morphism Spec 𝑘 → 𝑋 defined by inclusion.

We get, in particular, the following result which allows us to speak of fibres of
scheme morphisms since it is the natural scheme associated to a point of a scheme
over a field.

Lemma 2.5.9. Let 𝑋 be a 𝑘-scheme. Then for any point 𝑥 ∈ 𝑋 there is a canonical
inclusion of schemes

𝑖∶ Spec 𝜅(𝑥) → 𝑋.

Definition 2.5.10. Let 𝑓∶ 𝑋 → 𝑌 and a topological point 𝑝 ∈ 𝑌. The fibre of 𝑓 at
𝑝 is the scheme 𝑋𝑝 ≔ 𝑋 ×𝑌 Spec 𝜅(𝑝).

Remark 2.5.11. The underlying topological space of the fibre of 𝑓 at 𝑝 is isomorphic
to 𝑓 −1(𝑝) which also perhaps explains the name.

Example 2.5.12. Let 𝑘 be a field of characteristic 0 and consider the morphism
of schemes induced by 𝜙𝑛∶ 𝑘[𝑦] → 𝑘[𝑥] and 𝑦 ↦ 𝑥𝑛 for an integer 𝑛 > 1. The
corresponding map of schemes between 𝜙♯𝑛 ∶ 𝑋 → 𝑌 by letting 𝑋 = Spec 𝑘[𝑥], 𝑌 =
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Spec 𝑘[𝑦] gives raise to the fibres𝑋𝑝 = 𝑋×𝑌Spec 𝜅(𝑝). We have that at 𝑘[𝑥, 𝑦]/(𝑥𝑛−
𝑦) ≅ 𝑘[𝑥] the fibre is given by

𝑋𝑝 = Spec 𝑘[𝑥, 𝑦]/(𝑥𝑛 − 𝑦) ×𝑘[𝑦] 𝜅(𝑝)

for 𝑝 ∈ 𝑌.
If 𝑝 = (𝑦) that is the prime ideal corresponding to 𝑦 = 0 we get that 𝜅((𝑦)) =

𝑘[𝑦]/(𝑦) = 𝑘 and so 𝑋(𝑦) = Spec 𝑘[𝑥]/(𝑥𝑛) which is a non-reduced point of order
𝑛.

If we look at the situation over 𝑘 = ℚ with a point 𝑦 ≠ 0 and 𝑛 = 2 we get an
interesting situation. The fibre of the point 𝑦 = 1 is given by

𝑋(𝑦−1) = Specℚ[𝑥, 𝑦]/(𝑥2 − 𝑦) ×ℚ[𝑦] ℚ[𝑦]/(𝑦 − 1)

≅ Specℚ[𝑥, 𝑦]/(𝑥2 − 𝑦, 𝑦 − 1)
≅ Specℚ[𝑥]/(𝑥2 − 1)

≅ Specℚ[𝑥]/(𝑥 − 1)∐ Specℚ[𝑥]/(𝑥 + 1)

which is ”unramified”. However at 𝑦 = −1 the fibre becomes

𝑋(𝑦+1) = Specℚ[𝑥, 𝑦]/(𝑥2 − 𝑦) ×ℚ[𝑦] ℚ[𝑦]/(𝑦 + 1)

≅ Specℚ[𝑥, 𝑦]/(𝑥2 − 𝑦, 𝑦 + 1)
≅ Specℚ[𝑥]/(𝑥2 + 1)
≅ Specℚ[𝑖]

which is a reduced point of which is a field extension of degree 2 over ℚ and thus
”ramified”.

This is an important example to keep in mind because it gives an example of
an obstruction to the morphism 𝜙𝑛 being étale at the ramified point 𝑦 = 0.

Example 2.5.13. The concept of a fibre allows us to see a morphism 𝑓∶ 𝑋 → 𝑌
as a family of schemes 𝑋𝑝 parametrized by 𝑌 or as a family of deformations 𝑋𝑝 of
some special fibre 𝑋0.

A particularly enlightening case is when we have a family 𝑋 ⟶ Specℤ. By
taking the fibre over the generic point (0) ∈ Specℤ we get a scheme 𝑋(0) defined
over the residue field of (0), i.e. ℚ. If we on the other hand take (𝑝) for some prime
number 𝑝 we get a fibre 𝑋(𝑝) defined over the finite field ℤ/𝑝ℤ. This provides
a glance into why schemes are important in number theory. The scheme 𝑋𝑝 is
called the reduction of 𝑋 modulo 𝑝.

Definition 2.5.14. Let Ω be an algebraically closed field and 𝑋 a scheme over 𝑆.

(i) (Geometric point) We call a morphism ̄𝑠 ∶ SpecΩ → 𝑆 a geometric point of 𝑆.

(ii) (Geometric point lying over) The unique image of ̄𝑠 is a point 𝑠 ∈ 𝑆 and ̄𝑠 is
the geometric point lying over 𝑠.
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(iii) (Geometric fibre) The geometric fibre 𝑋 ̄𝑠 is defined as the fibre product

𝑋 ̄𝑠 ≔ 𝑋 ×𝑆 SpecΩ

induced by ̄𝑠 and the structure morphism of 𝑋 as an 𝑆-scheme.

Remark 2.5.15. We will sometimes interchangeably view a geometric point ̄𝑠 as
a morphism and as the singleton set SpecΩ. Thus we will, by abuse of notation,
denote a geometric morphism by ̄𝑠 → 𝑆. Explicitly we have the identifications
𝑘 = 𝜅( ̄𝑠) and ̄𝑠 = Spec 𝜅( ̄𝑠) and 𝑠 = Im( ̄𝑠).
Remark 2.5.16. We could define the geometric fibre as

Hom𝑆(SpecΩ, 𝑋) = { ̄𝑥 ∶ ̄𝑥 is a lift of ̄𝑠}

because of a natural bijection with the set of 𝑋 ̄𝑠 using 2.5.12. The geometric fibre
can be thus seen as the set of geometric points of 𝑋 that are lifts of geometric
points of 𝑆 making the second diagram below commute:

𝑋 ×𝑆 SpecΩ 𝑋

SpecΩ 𝑆

𝑋

SpecΩ 𝑆̄𝑠

̄𝑥

̄𝑠

bijection

Definition 2.5.17. The diagonal map coming from a morphism 𝑋 → 𝑌 is defined
to be Δ∶ 𝑋 → 𝑋 ×𝑌 𝑋, defined by the identity morphisms 𝑋 → 𝑋. A morphism
𝑋 → 𝑌 is separated if the diagonal map Δ is a closed immersion. The morphism
𝑋 → 𝑌 is quasi separated if Δ is quasi compact.

2.6 Finiteness conditions

Finiteness conditions in algebraic geometry are frequently important as they are
in commutative algebra. In a way they can be seen as abstractions of the notion of
a variety in the classical sense being defined by a finite number of equations and
variables.

We will review some of the notions that are useful in defining and understand-
ing étale morphisms which will be our main point of study in later chapters.

Definition 2.6.1. We say that a scheme is locally Noetherian if it admits an affine
open covering by the spectra of Noetherian rings.

We say that a scheme is Noetherian if it is locally Noetherian and quasi compact.
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Definition 2.6.2. A ring homomorphism 𝐴 → 𝐵 is of finite presentation if 𝐵 is
isomorphic to 𝐴[𝑥1, … , 𝑥𝑛]/𝐼 for some finitely generated ideal 𝐼. It is of finite type
if there exists a surjection of 𝐴-algebras 𝐴[𝑥1, … , 𝑥𝑛] → 𝐵.

A morphism of schemes 𝑓∶ 𝑋 → 𝑌 is locally of finite presentation (respectively
of locally of finite type) if for every affine open subscheme 𝑉 ⊂ 𝑌 and every affine
open subscheme 𝑈 ⊂ 𝑓 −1(𝑉 ) the induced morphism 𝒪𝑉(𝑉 ) → 𝒪𝑋(𝑈 ) is of finite
presentation (respectively of finite type)

The morphism 𝑓 is of finite type if in addition to being locally of finite type it
is also quasi compact.

Example 2.6.3. The morphism ∐∞𝔸1
𝑘 → 𝔸1

𝑘 is of locally finite type but not
finite type.

When can a morphism be defined by a finite number of polynomials? In the
non-Noetherian situation it is often not enough to assume that morphisms are
of finite type. Even if one can embed 𝑋 as a closed subscheme of an affine space
𝔸𝑛

𝑌 which is possible if 𝑋 → 𝑌 is of finite type, it is possible that infinitely many
equations are needed to define the subscheme 𝑋. But in the Noetherian situation
they are thankfully equivalent.

Lemma 2.6.4. For a morphism of schemes 𝑓∶ 𝑋 → 𝑌 with 𝑌 locally Noetherian the
following are equivalent:

1. 𝑓 is locally of finite type

2. 𝑓 is locally of finite presentation

Proof. If 𝑓 is locally of finite type then 𝑋 is locally Noetherian, it follows that 𝑓 is
quasi-separated and hence of finite presentation. See [STA22, Lemma 01TX]. The
other direction is clear from the definition.

A notion that is slightly stronger than that of finite type is the following.

Definition 2.6.5. Let 𝑓∶ 𝑋 → 𝑌 be a morphism of schemes. We call the morphism
affine if 𝑌 has a covering by affine open subsets {𝑉𝑖}𝑖such that the open subschemes
𝑓 −1(𝑉𝑖) are affine schemes.

Definition 2.6.6. A ring morphism 𝐴 → 𝐵 is finite if 𝐵 is finite as an 𝐴-module.
A morphism of schemes 𝑓∶ 𝑋 → 𝑌 is finite if it is affine and the induced ring

morphisms 𝒪𝑌(𝑉𝑖) → 𝒪𝑋(𝑓 −1(𝑉𝑖)) are finite for all 𝑖.

Example 2.6.7. For a field 𝑘 the morphism Spec(𝑘[𝑥, 𝑦]/(𝑥𝑛 − 𝑦)) → Spec 𝑘[𝑦]
is a finite morphism since 𝑘[𝑥, 𝑦]/(𝑥𝑛 − 𝑦) ≅ 𝑘[𝑦] ⊕ 𝑘[𝑦][𝑥] ⊕ … ⊕ 𝑘[𝑦][𝑥𝑛−1] as
𝑘[𝑦]-modules.

Example 2.6.8. The structure morphisms 𝔸𝑛
𝑘 → Spec 𝑘 and ℙ1𝑘 → Spec 𝑘 of finite

type but not finite.

Example 2.6.9. Finite morphisms are affine by definition.
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Remark 2.6.10. Intuitively finite type means that the fibres 𝑋𝑦 of a morphism
𝑓∶ 𝑋 → 𝑌 are finite dimensional and finite means they are of zero dimension. It is
not true however that finite fibres implies the morphism being finite.

Proposition 2.6.11. The notions of finite, (locally) finite type and locally finite
presentation are all stable under composition and base change.

Proof. See [GW10, Chapter 10]

2.7 Kähler differentials

Our main goal of this section is to pave the way and define a form of calculus
or differential structure on schemes based with the help of so called Kähler dif-
ferentials. These will be a tool for the computation and determination of certain
morphism of schemes being unramified which is at heart of this thesis. For that
reason we need to make a slight detour and enlarge the category of locally ringed
spaces in another direction.

2.7.1 Quasi-coherent Sheaves

Note that given a morphism of schemes 𝑓∶ 𝑋 → 𝑌 the sheaf morphism 𝑓 ♯∶ 𝒪𝑌 →
𝑓∗𝒪𝑋 makes 𝑓∗𝒪𝑋(𝑈 ) into a 𝒪𝑌(𝑈 )-module for each open subset 𝑈 ⊂ 𝑋. For this
and other reasons5 we make the following definition.

Definition 2.7.1. Let (𝑋 ,𝒪𝑋) be a ringed space. Then a sheaf of 𝒪𝑋-modules is a
sheaf of abelian groupsℳ on 𝑋 together with a morphism of sheaves𝒪𝑋×ℳ → ℳ
such thatℳ(𝑈 ) has a 𝒪𝑋(𝑈 )-module structure for all open 𝑈 ⊂ 𝑋.

In the case whenℳ is an ideal in 𝒪𝑋(𝑈 ) for all open 𝑈 ⊂ 𝑋 we say it’s a sheaf
of ideals on 𝑋.

The following construction gives any affine scheme a module structure.

Definition 2.7.2. Let 𝑀 be an 𝐴-module. Define the presheaf 𝑀̃ on 𝑋 = Spec𝐴
on the basis of distinguished opens by

𝑀̃(𝐷(𝑓 )) ≔ 𝑀 ⊗𝐴 𝐴𝑓 = 𝑀𝑓.

Proposition 2.7.3. Let 𝑀̃ be as in the definition above. Then there is a unique
𝒪𝑋-module 𝑀̃ satisfying

𝑀̃(𝐷(𝑓 )) ≔ 𝑀 ⊗𝐴 𝐴𝑓 = 𝑀𝑓.

Proof. One uses completely similar arguments to 2.3.8.
5One of the strengths of the category of 𝒪𝑋-modules is that it forms an abelian category just like

the category of 𝐴-modules.
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Definition 2.7.4. Let 𝑋 be a scheme. A quasi-coherent sheafℳ on 𝑋 is a sheaf
of 𝒪𝑋-modules for which there is an open covering {𝑈𝑖} of 𝑋 by open affines
𝑈𝑖 = Spec𝐴𝑖 and 𝐴𝑖-modules 𝑀𝑖 such thatℳ|𝑈𝑖 ≅ 𝑀̃𝑖.

If each 𝑀𝑖 is finitely generated over 𝐴𝑖 thenℳ is a coherent sheaf. Moreover
ℳ is locally free if we can choose the datum of a quasi-coherent sheaf in such a
way that 𝑀𝑖 are free 𝐴𝑖-modules.

The class of affine morphisms is a sufficient restriction on the morphism for
the pushforward 𝑓∗𝒪𝑋 to be a quasi-coherent sheaf as seen by this lemma for the
case ℱ = 𝒪𝑋.

Lemma 2.7.5. Let 𝑓∶ 𝑋 → 𝑌 be an affine morphism and ℱ a quasi-coherent sheaf
on 𝑋. Then 𝑓∗ℱ is a quasi-coherent sheaf on 𝑌.

Proof. This is true because the inverse image of a distinguished open set is a
distinguished open. The one uses the affine condition to glue the sheaf together
over general opens.

2.7.2 Kähler Differentials

We are now ready to briefly introduce the algebraic analogue of differential forms
found in differential geometry based on the exposition in [Qin02].

Definition 2.7.6. Let 𝐴 → 𝐵 be a morphism of rings. The 𝐵-module Ω1
𝐵|𝐴 of

Kähler differentials is defined as the free 𝐵-module on the set of formal symbols
{𝑑𝑏}𝑏∈𝐵 divided by the submodule generated by the following relations for 𝑏1, 𝑏2 ∈ 𝐵:

1. 𝑑(𝑏1 + 𝑏2) = 𝑑(𝑏1) + 𝑑(𝑏2).

2. 𝑑(𝑏1𝑏2) = 𝑏1𝑑(𝑏2) + 𝑑(𝑏1)𝑏2 which is the Leibniz rule.

3. 𝑑(𝑎) = 0 for all 𝑎 ∈ 𝐴.

Example 2.7.7. Let 𝐴 be a ring and 𝐵 be the polynomial ring 𝐴[𝑥1, … , 𝑥𝑛]. Then
Ω1
𝐵|𝐴 is the free 𝐵-module generated by the symbols {𝑑𝑥𝑖}. To see that they are

free we have a 𝐵-module morphism 𝑓𝑖∶ Ω1
𝐵|𝐴 → 𝐵 with 𝑑𝑥𝑗 ↦ 𝜕𝑥𝑗/𝜕𝑥𝑖 = 𝛿𝑖𝑗 for all

𝑖. Assume that 𝑃 = ∑𝑃𝑖𝑑𝑥𝑖 = 0 then 𝑓𝑖(𝑃) = 𝑃𝑖 = 0 for all 𝑖.
For a polynomial we get 𝑑𝑃(𝑥1, … , 𝑥𝑛) = ∑ 𝜕𝑃/𝜕𝑥𝑖𝑑𝑥𝑖 as expected.

Example 2.7.8. If 𝐵 is a localization or a quotient of 𝐴 then Ω1
𝐵|𝐴 = 0. Indeed if

𝐴 → 𝐵 is surjective then 𝑑(𝑏) = 𝑎𝑑(1) = 0 for all 𝑎 ∈ 𝐴 that is the inverse image of
𝑏. Suppose that 𝐵 = 𝑆−1𝐴 is a localization of 𝐴 then for any 𝑏 ∈ 𝐵 there is a 𝑡 such
that 𝑡𝑏 ∈ 𝐴 and so 𝑡𝑑(𝑏) = 𝑑(𝑡𝑏) = 0 and so 𝑑(𝑏) = 0 because 𝑡 is invertible in 𝑏.

Proposition 2.7.9. We have the following properties for the module of Kähler
differentials with 𝐴 → 𝐵 a ring morphism and 𝐴′ an 𝐴-algebra.

1. (Base change) Ω1
𝐵⊗𝐴𝐴′|𝐴′ ≅ Ω1

𝐵|𝐴 ⊗𝐴 𝐴′
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2. (Localization) Let 𝑆 be a multiplicative subset of 𝐵. Then Ω1
𝐵𝑆|𝐴

≅ Ω1
𝐵|𝐴 ⊗𝐵 𝐵𝑆.

3. Let 𝜓∶ 𝐵 → 𝐶 be a ring morphism, then the following sequence is exact

Ω1
𝐵|𝐴 ⊗𝐵 𝐶

𝛼
→ Ω1

𝐶|𝐴 → Ω1
𝐶|𝐵 → 0

4. Let 𝐶 = 𝐵/𝐼 then the following sequence is exact

𝐼 /𝐼 2 → Ω1
𝐵|𝐴 ⊗𝐵 𝐶 → Ω1

𝐶|𝐴 → 0

where the first morphism sends 𝑏 ↦ 𝑑𝑏 ⊗ 1.

Proof. The morphism 𝛼 is defined as 𝑑(𝑏) ⊗ 𝑐 ↦ 𝑐𝑑(𝜓 (𝑏)) See [Qin02, Chapter 6.
Proposition 1.8] for the full proof.

We are interested in separable field extensions since they are the building
blocks for étale algebras which in turn help us define étale morphisms. We will
see that this generalizes when we define those.

Corollary 2.7.10. Let 𝑘 ⊂ 𝐿 be a finite extension with 𝐿 = 𝑘(𝛼) = 𝑘[𝑥]/(𝑓 ) for a
minimal polynomial 𝑓 of 𝛼. Then we have

1. Ω1
𝐿|𝑘 ≅ 𝐿 for 𝐿 non-separable over 𝑘.

2. Ω1
𝐿|𝑘 = 0 for 𝐿 separable over 𝑘.

Proof. By the last item in the proposition above we see that

(𝑓 )/(𝑓 )2 → 𝐿𝑑𝑥 → Ω1
𝐿|𝑘 → 0.

The first morphism maps 𝑓 ↦ 𝑓 ′(𝑥)𝑑𝑥 = 𝑓 ′(𝛼)𝑑𝑥 where 𝑓 ′(𝑥) is the image of
𝑓 ′(𝑥) in 𝐿. If 𝑘 ⊂ 𝐿 is separable then 𝑓 ′(𝛼) ≠ 0 and thus Ω1

𝐿|𝑘 = 0. If it is not
separable then 𝑓 ′(𝑥) = 0 and Ω1

𝐿|𝑘 = 𝐿𝑑𝑥.

We can find a unique quasi-coherent sheaf Ω̃1
𝐵|𝐴 on Spec𝐵 that satisfies

Ω̃1
𝐵|𝐴(𝐷(𝑓 )) ≅ Ω1

𝐵𝑓|𝐴

for all distinguished open sets 𝐷(𝑓 ) ⊂ Spec𝐵 from by the help of the localization
part of 2.7.9. We will use this to travel from the local of affine schemes to the
global of schemes as follows.

Proposition 2.7.11. Let 𝑓∶ 𝑋 → 𝑌 be a morphism of schemes. Then there exists a
unique quasi-coherent sheaf Ω1

𝑋 |𝑌 on 𝑋 such that for all affine open Spec𝐴 ⊂ 𝑌 and
𝑈 ⊂ 𝑓 −1(Spec𝐴) with 𝑥 ∈ 𝑈 we have

Ω1
𝑋 |𝑌|𝑈 ≅ Ω̃1

𝒪𝑋(𝑈 )/𝐴
and (Ω1

𝑋 |𝑌)𝑥 ≅ (Ω̃1
𝒪𝑋(𝑈 )/𝐴

)𝑥.
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Proof. One first defines the stalks of the sheaf and then uses an étale space type
argument by forcing the collection of stalks to be compatible and form a sheaf for
arbitrary opens. See [Qin02, Chapter 6, Proposition 1.26] for the full proof.

Example 2.7.12. If 𝑋 = Spec(𝐴[𝑥1, … , 𝑥𝑛]) over a ring 𝐴 then Ω1
𝑋 | Spec𝐴 ≅ 𝒪𝑛

𝑋.

Remark 2.7.13. The diagonal morphism Δ∶ 𝑋 → 𝑋 ×𝑌 𝑋 is locally a closed immer-
sion andΩ(𝑋) is closed in an open subset 𝑈 of 𝑋 ×𝑌𝑋. Ifℐ = ker(Δ♯) is the sheaf of
ideals defining the closed subset Δ(𝑋) then one can show that Ω1

𝑋 |𝑌 ≅ Δ∗(ℐ/ℐ2)
where Δ∗ is the pullback of the 𝒪Δ(𝑋)-module ℐ/ℐ2 along 𝑋 ∼⟶ Δ(𝑋).

Definition 2.7.14. For 𝑓∶ 𝑋 → 𝑌 the quasi-coherent sheaf Ω1
𝑋 |𝑌 defined in the

proposition above is called the sheaf of Kähler differentials of 𝑋 over 𝑌.

2.8 Quotients of schemes

We need the theory of quotients of schemes to be able to speak of a Galois corre-
spondence of Galois covers later on in the text.

Definition 2.8.1. Given a morphism of schemes 𝑓∶ 𝑋 → 𝑆 define Aut(𝑋/𝑆) be
the group of automorphisms 𝜎∶ 𝑋 → 𝑋 for which the diagram below commutes:

𝑋 𝑆
𝑓

𝑓 ∘𝜎

Remark 2.8.2. Let ̄𝑠 ∶ SpecΩ → 𝑆 be a geometric point, then there is a natural left
action of Aut(𝑋/𝑆) on 𝑋 by 𝜎 ⋅ 𝑥 ≔ 𝜎(𝑥). This extends to an action on any fibre
𝑋 ̄𝑠 = 𝑋 ×𝑆 SpecΩ by acting on the first fibre product term.

Remark 2.8.3. There are many interesting actions on schemes. Let 𝑘 ⊂ 𝑘̄ be a
Galois extension with 𝑘̄ the algebraic or separable closure. For 𝜎 ∈ Gal(𝑘) we
have a corresponding natural automorphism Spec(𝜎)∶ Spec 𝑘̄ → Spec 𝑘̄. Because
Spec(𝜎1) ∘ Spec(𝜎2) = Spec(𝜎2 ∘ 𝜎1) we have a left action of Gal(𝑘)op on Spec 𝑘.
This also extends to a Gal(𝑘)op action on the fibres 𝑋 ̄𝑠.

Definition 2.8.4 (Categorical quotient). Let 𝐺 be a finite group acting on a scheme
𝑋. A quotient scheme 𝑋/𝐺 consists of a scheme 𝑌 and morphism 𝜋∶ 𝑋 → 𝑌
satisfying the universal property:

(i) 𝐺-invariance. That is For every 𝜎 ∈ 𝐺 we have 𝜋 = 𝜋 ∘ 𝜎 as morphism of
locally ringed spaces.

(ii) Any morphism 𝜓∶ 𝑋 → 𝑍 satisfying (i) factors uniquely through 𝜋.

𝑋 𝑌

𝑍

𝜋

̃𝑓𝑓
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Proposition 2.8.5. Let 𝐺 be a finite group acting on a scheme 𝑋. The quotient
scheme 𝑋/𝐺 exists if and only if every point 𝑥 ∈ 𝑋 has an affine open neighborhood
𝑈 that is stable under 𝐺. That is for all 𝜎 ∈ 𝐺 and 𝑥 ∈ 𝑋 we have 𝜎 ⋅ 𝑥 ∈ 𝑈.

Proof. [SGA71, Exposé V, Proposition 1.8].

The quotient scheme does not always need to exist in the category of schemes
as is evident by the proposition above. This is in fact one of the reasons why
algebraic spaces and later stacks were introduced. In the case of stacks one also
keeps track of isomorphisms between objects in the category and not only the
objects themselves. See [FAN] for an introduction to stacks.

A special case of the above theorem is when the group action on the scheme 𝑋
is ”nice enough” in a way that every point has a neighborhood where 𝐺 won’t act
transitively across the orbits.

We won’t need the full theorem above but are satisfied with the following
weaker version for our purposes.

Remark 2.8.6. Let 𝑓∶ 𝑋 → 𝑆 be an affine and surjective morphism of schemes
and 𝐺 ⊂ Aut𝑆(𝑋) a finite subgroup. We can define a ringed space (𝑋/𝐺,𝒪𝑋/𝐺) by
putting on the quotient topology on 𝑋 by 𝜋∶ 𝑋 → 𝑋/𝐺. 𝐺 then acts on 𝑋. We
also get a canonical group action of 𝐺 on 𝒪𝑋 by 𝜎 ∈ 𝐺 inducing a sheaf morphism
𝒪𝑋 → 𝜎∗𝒪𝑋. Define 𝒪𝑋/𝐺 ≔ (𝜋∗𝒪𝑋)𝐺 where the right part are the 𝐺-invariant
elements of 𝜋∗𝒪𝑋.

The property of𝐺-invariancemeans explicitly that 𝜙(𝑥 ⋅𝜎) = 𝜙(𝑥) as topological
spaces and (𝜙 ⋅ 𝜎)# = (𝜙∗𝜎#) ∘ 𝜙# as maps of sheafs due to the slightly unexpected
composition of the pushforward.

For a simple example 𝑋 = Spec𝐴 an affine scheme of a ring 𝐴 and 𝐺 ⊂ Aut(𝐴).
The quotient scheme is simply 𝑋/𝐺 = Spec(𝐴𝐺) where 𝐴𝐺 are the elements of 𝐴
that are invariant under the action of 𝐺.

Proposition 2.8.7. Let 𝑓∶ 𝑋 → 𝑆 be an affine and surjective morphism and 𝐺 a
finite subgroup of the automorphism group Aut𝑆(𝑋). Then the quotient scheme 𝑋/𝐺
exists with underlying set as the set of orbits of 𝑋 under 𝐺 and the structure sheaf the
subsheaf of 𝐺-invariants of the pushforward 𝒪𝑋/𝐺 ≔ (𝜋∗𝒪𝑋)𝐺 and 𝜋∶ 𝑋 → 𝑋/𝐺 is
the quotient topology morphism.

Proof. [SZA09, Proposition 5.3.6]

2.9 Representations of schemes

The famous Hilbert Nullstellensatz carries many forms and is central in geometry
over algebraically closed fields. Let 𝑋 is an affine variety over an algebraically
closed field 𝑘. The functor6 that sends 𝑋 to its set of points over 𝑘, that is 𝑋 ↦
Hom(Spec 𝑘, 𝑋), is faithfull due to the Nullstellensatz. Faithfullness allows us to

6Also called the functor of points.
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talk about morphisms between affine varieties over 𝑘 as functions between the
sets of points of the varieties.

Definition 2.9.1. We call a category 𝒞 with a faithful functor 𝐹∶ 𝒞 → 𝒮𝑒𝑡 a
concrete category.

The functor usually maps an object in 𝒞 to the underlying set. Faithfulness
means that morphisms in𝒞 can be identified with morphisms of sets. It is only sat-
isfactory to call Hom(Spec 𝑘, 𝑋) the set of points of 𝑋 over 𝑘 if the functor above is
faithful. This is because in that case Spec 𝑘 is a one point set and soHom(Spec 𝑘, 𝑋)
can be identified with 𝑋 by faithfulness. This fails badly as soon as we leave the
space of algebraically closed fields. The affine scheme 𝑋 = Specℝ[𝑥]/(𝑥2 + 1)
has no points over ℝ, this is equivalent to the functor of points not being able to
distinguish into or out of 𝑋.

The functor 𝐹∶ 𝒞 → 𝒮𝑒𝑡 can fail to be faithful if the morphisms in 𝒞 have
extra structure that is not visible at the level of the underlying sets, for example
the category of CW-complexes or homotopy classes of morphisms which require
a ”higher level” of ”bookkeeping”.

Definition 2.9.2. Let 𝒞 be a category. Fix an object 𝐶 ∈ 𝒞, a functor7 𝐹∶ 𝒞op →
𝒮𝑒𝑡 to the category of sets is representable if there is an object 𝐶 ∈ 𝒞 and a natural
isomorphism of functors

Hom(−, 𝐶) ∼⟶ 𝐹.

We say that 𝐶 represents 𝐹 and that 𝐹 is representable if it is represented by some
𝐶.

Example 2.9.3. The global sections functor 𝒪−(−) is represented by 𝔸1. To see
this let 𝑋 = Specℤ[𝑥] then for every scheme 𝑇 we have

Hom(𝑇 ,𝔸1) ∼⟶ Hom(ℤ[𝑥],𝒪𝑇(𝑇 )) ≅ 𝒪𝑇(𝑇 )

by 2.4.6.

Example 2.9.4. More generally we see that if 𝐴 is a ring and 𝑓 ∈ 𝐴[𝑥] and let
𝑋 = Spec(𝐴[𝑥]/(𝑓 )) and 𝑇 be a scheme over Spec𝐴, then we have

Hom(𝑇 , 𝑋) ∼⟶ Hom(𝐴[𝑥]/(𝑓 ),𝒪𝑇(𝑇 )) ≅ {𝑡 ∈ 𝒪𝑇(𝑇 )∶ 𝑓 (𝑡) = 0}

where the last isomorphism sends an 𝐴-algebra morphism 𝜙 to 𝜙(𝑥). The set
Hom(𝑇 , 𝑋) is called the 𝑇-valued points of 𝑋 and is denoted by 𝑋(𝑇 ). So the
functor 𝑋(−) that sends a scheme 𝑇 ↦ 𝑋(𝑇 ) is represented by Spec(𝐴[𝑥]/(𝑓 )).

Lemma 2.9.5 (Yoneda’s lemma). For a functor 𝐹∶ 𝒞op → 𝒮𝑒𝑡 from a category 𝒞
the map

Hom(Hom𝒞(−, 𝑋), 𝐹 ) → 𝐹(𝑋), 𝜙 ↦ 𝜙(𝑋)(id𝑋)

is bijective and functorial in 𝑋.
7Such a functor is by definition a presheaf
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Proof. For 𝜙 ∈ 𝐹(𝑋) define 𝛼𝜙(𝑌 )∶ 𝐻𝑜𝑚𝒞(𝑌 , 𝑋) → 𝐹(𝑌 ) by 𝑓 ↦ 𝐹(𝑓 )(𝜙) for
𝑓 ∈ 𝐻𝑜𝑚𝒞(𝑌 , 𝑋). Then 𝜙 ↦ 𝛼𝜙 is an inverse map.

One of the hallmarks of category theory is the Yoneda lemma. It demonstrates
why representability is so powerful because it shows that we can embedd the
category of schemes into the category of such functors and thus allows us to
consider schemes as functors instead. The schemes that lie in the essential image
of the Yoneda embedding are the ones which are representable.

In fact one can show that the points of a scheme can be recovered from all
𝑘-valued points.

Proposition 2.9.6. Let 𝑋 be a scheme, then

|𝑋 | = ∐
Fields 𝑘

Hom(Spec 𝑘, 𝑋)/ ∼= ∐
Fields 𝑘

𝑋(𝑘)/ ∼,

where two extensionsHom(Spec 𝑘, 𝑋) andHom(Spec 𝑘′, 𝑋 ) are equivalent whenever
there’s a third field 𝑘″ such that Spec 𝑘″ ≅ Spec 𝑘′ × Spec 𝑘.

Proof. See [STA22, Lemma 01J9]-

It will be necessary that we allow for an enlargement for the category we work
in, in a sense. We will see that we will want to allow for colimits of representable
functors and arrive at the following definition due to Grothendieck.

Definition 2.9.7 (Pro-representable). We say that the functor 𝐹∶ 𝒞 → 𝒮𝑒𝑡 is
pro-representable by ̃𝑃 if there is a cofiltered diagram ̃𝑃 ∶ ℐ → 𝒞 indexed by a
directed set ℐ and a natural isomorphism

Hom( ̃𝑃 , −) ≔ lim−−→
𝑖∈ℐ

Hom(𝑃𝑖, −)
∼⟶ 𝐹.

Remark 2.9.8. Note that the colimit lim←−−𝑖∈ℐ
𝑃𝑖 does not need to exist in the category

𝒞 but the limit lim−−→𝑖∈ℐ
Hom(𝑃𝑖, 𝐶) for 𝐶 ∈ 𝒞 does exist in 𝒮𝑒𝑡. If the colimit does

exist and equals 𝑃 then

lim−−→
𝑖∈ℐ

Hom(𝑃𝑖, −) ≅ Hom(lim←−−
𝑖∈ℐ

𝑃𝑖, −) ≅ Hom(𝑃, −) ∼⟶ 𝐹

so that 𝐹 is actually representable.
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Chapter 3

Étale morphisms

3.1 Finite étale morphisms

In this section and going forward we require our schemes to be locally Noetherian
to simplify some proofs and definitions, we will come back to this in a moment.

This section is based largely upon [SZA09, Chapter 5.2] but restructured
and with additional material. Our aim is two-fold. On one hand to develop a
corresponding notion to a local isomorphism in differential geometry and on the
other to develop an algebraic analogue of a finite topological cover. It’s good to
keep those two goals in mind as we get to know our main protagonists, étale
morphisms. We will see throughout the coming sections how these goals are
gradually fulfilled. We will also demonstrate the connection to a more modern
definition in terms of non-ramification and flatness.

Definition 3.1.1. Let 𝑓∶ 𝑋 → 𝑆 be a finite morphism of schemes. It is finite
locally free if the sheaf 𝑓∗𝒪𝑋 is a finite locally free 𝒪𝑆-module.

Remark 3.1.2. This means that for open subsets 𝑈 ⊂ 𝑆 we have (𝑓∗𝒪) ∣ 𝑈 ≅ 𝒪𝑛
𝑈 for

some 𝑛 depending on 𝑈.

Definition 3.1.3. Let 𝐴 be an algebra that is finite dimensional over 𝑘. We say
that 𝐴 is étale over 𝑘 if 𝐴 ≅ ∏𝑛

𝑖 𝐿𝑖 where 𝑘 ⊂ 𝐿𝑖 are separable extensions of 𝑘.
When 𝑘𝑖 are finite extensions we say that 𝐴 is a finite étale algebra.

Remark 3.1.4. Étale algebras naturally occur during base change, specifically that
of a geometric fibre.

Proposition 3.1.5. Let 𝐴 be a finite dimensional 𝑘-algebra. Then the following are
equivalent:

1. 𝐴 is étale over 𝑘.

2. 𝐴 ⊗𝑘 𝑘̄ ≅ 𝑘̄𝑛.

3. Ω1
𝐴|𝑘 = 0.
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Proof. Suppose that 𝐴 ≅ ∏𝑛
𝑖 𝐿𝑖 for 𝐿𝑖 finite and separable extensions of 𝑘. Further

by the primitive element theorem we can find elements 𝛼𝑖 ∈ 𝐿𝑖 such that 𝐿𝑖 = 𝑘(𝛼𝑖)
with 𝑝𝑖 the minimal polynomial of 𝛼𝑖. For a fixed 𝑖 we have

𝐿𝑖 ⊗𝑘 𝑘̄ ≅ 𝑘̄[𝑥]/(𝑝(𝑥)) ≅
𝑛

∏
𝑖
𝑘̄[𝑥]/(𝑥 − 𝑎𝑖) ≅

𝑛
∏
𝑖
𝑘̄, 𝑎𝑖 ∈ 𝑘̄.

The second isomorphism is because of the ”Chinese remainder theorem” and 𝐿𝑖
being separable over 𝑘 the minimal polynomial 𝑝𝑖 has coprime factors. The other
direction is found in [SZA09, Proposition 1.5.6]

For (1) ⇒ (3) we have 𝐴 ≅ ∏𝑛
𝑖 𝐿𝑖 with 𝐿𝑖 finite separable extensions of 𝑘. The

maximal ideals 𝑚𝑖 of 𝐴 are the kernels of the projections onto each factor. Then
Ω1
𝐴|𝑘 = 0 if and only if (Ω1

𝐴|𝑘)𝑚𝑖 = Ω1
𝐿𝑖|𝑘

= 0 for all 𝑚𝑖. This holds because the 𝐿𝑖 are
finite separable extensions, see 2.7.10.

For (3) ⇒ (1) see [SZA09, Proposition 5.1.31].

Definition 3.1.6. Let 𝑓∶ 𝑋 → 𝑆 be a finite locally free morphism of schemes. It
is finite étale if each fibre 𝑋𝑠 of 𝑓 is the spectrum of a finite étale 𝜅(𝑠)-algebra.

A surjective finite étale morphism is called an étale cover.

Remark 3.1.7. In the literature one can frequently see finite étale morphisms and
finite étale covers be used interchangeably. A cover in our terminology is strictly
a surjective morphism.

The following lemma shows us that any finite étale morphism 𝑋 → 𝑆 is
automatically an étale cover when 𝑆 is connected and 𝑋 is non-empty.

Lemma 3.1.8. Let 𝑓∶ 𝑋 → 𝑆 be a finite and locally free morphism with 𝑆 connected.
Then 𝑓 (𝑋) is both open and closed.

Proof. Since 𝑓 is finite 𝑓 (𝑋) is closed. Furthermore 𝑓 open because we can find
a neighborhood 𝑁 of 𝑓 (𝑥) for 𝑥 ∈ 𝑋 such that (𝑓∗𝒪𝑋)𝑠 ≅ 𝒪𝑛

𝑈 ≠ 0 for all 𝑠 ∈ 𝑁
and some 𝑈 ⊂ 𝑆. If 𝑠 ∉ 𝑓 (𝑋) then since the complement of 𝑓 (𝑋) is open we can
find a neighborhood 𝑈 ⊂ 𝑁 such that 𝑓 −1(𝑈 ) = ∅. Contradicting the non-zero of
support assumption above.

Corollary 3.1.9. Let 𝑓∶ 𝑋 → 𝑆 be a finite étale morphism with 𝑆 connected. Then
𝑓 is an étale cover if and only if 𝑋 is non-empty.

Proof. Using above lemma this means that 𝑓 is surjective if and only if 𝑋 is non-
empty because 𝑆 is connected.

Example 3.1.10. Let 𝐾 ⊂ 𝐿 be a field extension. Then the corresponding mor-
phism of affine schemes Spec 𝐿 → Spec𝐾 is finite and locally free of degree
dim𝐾(𝐿). It is finite étale if and only if the field extension is finite and separa-
ble. This shows that finite étale morphisms generalizes the notion of finite and
separable field extensions.
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Example 3.1.11. Let 𝑘 be a field of characteristic zero and 𝜙𝑛∶ 𝑘[𝑦] → 𝑘[𝑥] with
𝑦 ↦ 𝑥𝑛 for 𝑛 > 1. Then the morphism of affine schemes is finite and locally free
of degree 𝑛. But it’s not étale because the fibre at the origin is not a finite étale
𝜅(0)-algebra as we saw in 2.5.12.

Example 3.1.12. Let 𝐴 be a ring and 𝐵 = 𝐴[𝑥]/(𝑓 ) and 𝑆 = Spec𝐴, 𝑋 = Spec𝐵
for 𝑓 a monic polynomial of degree 𝑑. B is patently a finitely generated 𝐴-module
with the images of the monomials 𝑥 𝑖 so the morphism Spec𝐵 → Spec𝐴 is finite
and locally free. If we further assume that (𝑓 , 𝑓 ′) = 𝐴[𝑥] then the morphism
is finite étale. The fibre 𝑋𝑝 over a prime 𝑝 ∈ 𝑆 is by definition the spectrum of
𝐵 ⊗𝐴 𝜅(𝑝) ≅ 𝜅(𝑝)[𝑥]/(𝑓 ). We only have, by assumption, simple roots and so by
the Chinese Remainder Theorem it is a finite étale 𝜅(𝑝)-algebra.

Example 3.1.13. Let 𝑥 ↦ 𝑥2 be a morphism. The associated morphism𝔸1
ℂ⧵{0} →

𝔸1
ℂ ⧵ {0} is an étale cover because we removed the ramified point at the origin.

But it is not a covering in the Zariski topology.

3.2 Étale morphisms

We will now draw the connection to more modern definitions of finite étale
morphisms that generalize to not necessarily finite étale morphisms easier which
is used in the theory of étale cohomology. We do so to make it easier for the reader
to compare the different notions presented here with other sources. Furthermore,
we also explain the notion of ramification that we have only alluded to earlier.

3.2.1 Unramified morphisms

Recall that for a morphism of Riemann surfaces 𝑓∶ 𝑋 → 𝑌 we have an associated
map between the fields of meromorphic functions ℳ(𝑋) → ℳ(𝑌 ). The fields
contain stalks of holomorphic functions at 𝑥 and 𝑓 (𝑥). That is 𝒪𝑋,𝑥 ⊂ ℳ(𝑋) and
𝒪𝑌 ,𝑓 (𝑥) ⊂ ℳ(𝑌 ), respectively. We get an induced morphism of stalks 𝒪𝑌 ,𝑓 (𝑥) →
𝒪𝑋,𝑥 with the maximal ideal of holomorphic functions vanishing at a point 𝑚𝑓 (𝑥)
mapping into the corresponding maximal ideal 𝑚𝑥. In fact considering the local
structure of morphism between Riemann surfaces we have 𝑚𝑓 (𝑥)𝒪𝑋,𝑥 = 𝑚𝑒𝑥𝑥 where
𝑒𝑥 is the ramification index of 𝑓 at 𝑥 which corresponds to the number of branches
of 𝑓. The points for which 𝑒𝑥 > 1 are called branching points. Topologically a
branching point has no neighborhood where 𝑓 is a local isomorphism. The function
𝑓 is unramified at 𝑥 if 𝑒𝑥 = 1.

Another motivating example comes from the land of algebraic number theory.
When 𝑋 = Spec𝐵, 𝑆 = Spec𝐴 are affine and the morphism comes from an integral
extension of Dedekind domains 𝐴 ⊂ 𝐵. It can then be shown that 𝑓∶ 𝑋 → 𝑆
is an étale cover, see [SZA09, Lemma 5.2.4]. The points of the fibre over 𝔭 ∈ 𝑆
correspond to factors 𝔭𝑖 in the decomposition of the extension

𝔭𝐵 = 𝔭𝑒11 ⋯𝔭𝑒𝑟𝑟
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In particular 𝑋𝔭 is finite étale if and only if all the 𝑒𝑖 are equal to 1. In algebraic
number theory one says that the prime ideal 𝔭 is unramified in this case. We also
see that localizing 𝑓 at 𝔭𝑖 we get

𝔭𝐵𝔭𝑖 = 𝔭1𝐵
𝑒1
𝔭1 ⋯𝔭𝑟𝐵

𝑒𝑟
𝔭𝑟 = 𝔭𝑖𝐵𝔭𝑖𝑒𝑖 ,

in other words 𝑓 is unramified at 𝔭𝑖 if and only 𝑒𝑖 = 1.
With these examples as motivation and adding a separability criterion we

arrive at the following definition:

Definition 3.2.1. A morphism of locally of finite type 𝑓∶ 𝑋 → 𝑆 is unramified at
𝑥 ∈ 𝑋 if for the induced map of local rings 𝒪𝑆,𝑓 (𝑥) → 𝒪𝑋,𝑥 we have:

1. The maximal ideal 𝑚𝑓 (𝑥) ⊂ 𝒪𝑆,𝑓 (𝑥) generates the maximal ideal 𝑚𝑥 ⊂ 𝒪𝑋,𝑥,
that is 𝑚𝑓 (𝑥)𝒪𝑋,𝑥 = 𝑚𝑥.

2. The corresponding field extension 𝜅(𝑥)/𝜅(𝑓 (𝑥)) is separable.

If 𝑓 is unramified at all points in 𝑋 we say that 𝑓 is unramified.

Remark 3.2.2. In [EGA71] and several other sources the notion of an unramified
morphism is required to be locally of finite presentation and not locally of finite
type. The reason why we require our schemes to be locally Noetherian is so that
we can forget about technicalities of some notions of unramified morphisms or
étale morphisms only being true if they are assumed to be locally of finite type
or locally of finite presentation1. Proposition 2.6.4 shows that under a locally
Noetherian base we don’t need to care about this distinction.

Proposition 3.2.3. Let 𝑓∶ 𝑋 → 𝑆 be a finite and flat morphism. The following are
equivalent:

(i) The morphism 𝑓 is étale.

(ii) The sheaf of relative differentials vanishes, i.e. Ω1
𝑋/𝑆 = 0.

(iii) The diagonal morphism Δ∶ 𝑋 → 𝑋 ×𝑆 𝑋 coming from 𝑓is an isomorphism of 𝑋
onto an open and closed subscheme of 𝑋 ×𝑆 𝑋.

Proof. We outline the proof for (i) ⇒ (ii), the rest of the directions are found in
[SZA09, Proposition 5.2.7]. It suffices to show that (Ω1

𝑋 |𝑆)𝑥 = 0 for all 𝑥 ∈ 𝑋.
Since stalks are local we may assume that 𝑋 = Spec𝐵, 𝑆 = Spec𝐴 and the sheaf
morphism makes Ω1

𝑋 |𝑆 into a finitely generated 𝐵-module. Now we have reduced
the problem to that of 𝑀 ≔ Ω1

𝐵𝑞|𝐴𝑝
being zero for every 𝑞 ∈ Spec𝐵. The ring 𝐵𝑞 is

local with the maximal ideal 𝑞𝐵𝑞 and by Nakayama’s lemma

𝑀 ⊗𝐵𝑞 𝜅(𝑞) = 𝑀/𝑞𝑀 = 0

1For example the description of unramified morphism in terms of fibres or in terms of vanishing
of Kähler differentials require locally of finite type
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if and only if 𝑀 = 0. So we have reduced it to prove Ω1
𝐵𝑞|𝐴𝑝

⊗𝐵𝑞 𝜅(𝑞) = 0. But

because the morphism 𝑓 is ramified we must have 𝐵𝑞 ⊗𝐴𝑝 𝜅(𝑝) = 𝜅(𝑞). This leads
to the chain

Ω1
𝐵𝑞|𝐴𝑝

⊗𝐵𝑞 𝜅(𝑞) = Ω1
𝐵𝑞|𝐴𝑝

⊗𝐵𝑞 (𝐵𝑞 ⊗𝐴𝑝 𝜅(𝑝)) = Ω1
𝐵𝑞⊗𝐴𝑝𝜅(𝑝)|𝜅(𝑝)

= Ω1
𝜅(𝑞)|𝜅(𝑝) = 0.

The last equality is due to 2.7.10 and the second is due to 2.7.9.

The third condition gives us a practical criterion to check for a map being
finite étale.

Example 3.2.4. Let 𝑓∶ Specℤ[𝑖] → Specℤ be the natural map. Then since
ℤ[𝑖] ≅ ℤ[𝑥]/(𝑥2 + 1) we have that by the short exact sequence in 2.7.9

Ω1
ℤ[𝑖]/ℤ ≅ ℤ[𝑖]𝑑𝑥/ℤ[𝑖]𝑑𝑓 ≅ ℤ[𝑖]/(2ℤ[𝑖])

because 𝑑𝑓 = 𝑑(𝑥2 + 1) = 2𝑑𝑥 and by the exact sequence in 2.7.9.

3.2.2 Flat morphisms

One doesn’t get very far in algebraic geometry before hearing the notion of
”flatness”. It’s often what one has in mind when one looks for a ”nice” morphism of
schemes. The definition is somewhat algebraic and non-geometric. But miracles
happen when you observe it in the geometric world, after all for a morphism
𝑋 → 𝑌 it ensures that the fibres 𝑋𝑦 are ”deformed” continuously as 𝑦 ∈ 𝑌 varies.

Definition 3.2.5. An 𝐴-module 𝐵 is flat if the functor − ⊗𝐴 𝐵 is exact. A ring
morphism 𝐴 → 𝐵 if 𝐵 is flat as an 𝐴-module.

A morphism of schemes 𝑓∶ 𝑋 → 𝑌 is flat at 𝑥 ∈ 𝑋 if the corresponding map of
local rings 𝒪𝑌 ,𝑓 (𝑥) → 𝒪𝑋,𝑥 is flat. We say that 𝑓 is flat if it is flat at all points 𝑥 ∈ 𝑋.

Example 3.2.6. Flatness show up naturally in the nature, like:

1. Most things over a field are flat, like field extensions seen as vector spaces.

2. Free and thus also projective modules are flat.

3. The localization of a ring 𝑆−1𝑅 has a natural map from 𝑅 which makes it a
flat 𝑅-module and thus gives rise to a flat morphism of schemes.

Definition 3.2.7. We call a finite morphism of schemes 𝑓∶ 𝑋 → 𝑌 étale if it is flat
and unramified.

Remark 3.2.8. We need 𝑌 to be locally Noetherian for this notion of étale and finite
together be equivalent to finite étale above in 3.1.6. But as long as we assume
𝑌 is so, we can move interchangeably between the definitions, as the following
proposition shows.
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Proposition 3.2.9. A morphism 𝑓∶ 𝑋 → 𝑌 where 𝑌 is locally Noetherian is finite
étale (as in 3.1.6) if and only if it is finite and étale (as in 3.2.7).

Proof. See [LEN, Proposition 6.9].

Schemes over a field 𝑘 are automatically flat. This allows for an easier descrip-
tion of étale morphisms for schemes over 𝑘. Compare it with the definition of an
étale algebra over 𝑘 in 3.1.3.

Proposition 3.2.10. Let 𝑘 be a field and 𝑋 a scheme over 𝑘. Then the following are
equivalent:

(i) 𝑋 → Spec 𝑘 is étale.

(ii) 𝑋 → Spec 𝑘 is unramified.

(iii) 𝑋 ≅ ∐𝑛 Spec 𝐿𝑖, for 𝑘 ⊂ 𝐿𝑖 finite and separable field extensions.

Proof. Over a field flatness is automatic, so we have equality of the first two points.
It is clear that the last implies unramified.

So we need to show that being étale implies the last. 𝑋 is of locally of finite
type. Since the property is local on 𝑋 we may reduce it to 𝑋 = Spec𝐴 for a finitely
generated 𝑘-algebra 𝐴. By the definition of unramified we have that the local rings
𝒪𝑋,𝑥 are finite separable extensions of 𝑘 and so dim(𝐴) = 0. For that reason 𝐴
is Artinian and a finite product of local Artinian rings each of which is a finite
separable extension of 𝑘. See [AM69, Theorems 8.5 and 8.7].

3.2.3 Comparison to topological covers

For the notion of étale cover to be an algebraic generalization of its topological
cousin we need to check some geometric properties.

Proposition 3.2.11. Let 𝑓∶ 𝑋 → 𝑆 be a finite étale morphism of schemes and ̄𝑠 a
geometric point of 𝑆. The cardinality of the geometric fibre 𝑋 ̄𝑠 is equal to the rank
of the stalk (𝑓∗𝒪𝑋) ̄𝑠 ≅ 𝒪𝑛𝑠

𝑆,𝑠. The rank is a locally constant function on 𝑆, it is in
particular constant if 𝑆 is connected.

Proof. By the definition of a finite locally free morphism we see that there exists a
neighborhood for every point in 𝑆, that is 𝑠 ∈ 𝑈 ⊂ 𝑆, such that (𝑓∗𝒪𝑋) restricted
to 𝑈 is free of rank 𝑛𝑠. The stalk of every point in 𝑈 will be free of rank 𝑛𝑠 over
𝒪𝑆 and thus locally constant. It is constant if 𝑆 is connected by the definition of a
connected topological set.

By 3.1.5 we see that the cardinality of 𝑋 ̄𝑠 is equal to the rank of the stalk, 𝑛𝑠, at
any geometric point of 𝑆.

Definition 3.2.12. Let 𝑓∶ 𝑋 → 𝑆 be an étale cover we call it a trivial cover if:

1. 𝑋 is isomorphic to a finite disjoint union of copies of 𝑆 as an 𝑆-scheme.
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2. 𝑓 restricts to the identity map on each component.

If a scheme 𝑆 has no non-trivial étale covers we say it is simply connected.

Proposition 3.2.13. Let 𝑆 be a connected scheme and 𝜙∶ 𝑋 → 𝑆 an affine surjective
morphism. Then 𝜙 is a finite étale cover if and only if there is a finite locally free and
surjective morphism 𝜓∶ 𝑌 → 𝑆 such that 𝑋 ×𝑆 𝑌 is a trivial cover of 𝑌.

Proof. See [SZA09, Proposition 5.2.9].

We have thus shown that étale covers 𝑓∶ 𝑋 → 𝑆 over 𝑆 connected behave
similarly to finite topological covers and as we would expect geometrically. Étale
morphisms are after all a good approximation of what a ”local isomorphism” should
mean in terms of a flat and unramified morphism. Also that the geometric fibre
over each geometric point has a constant finite number of points in 3.2.11. And
finally that étale covers over a connected set are locally trivial 3.2.13, in other
words there’s a morphism 𝑌 → 𝑆 so that 𝑋 ×𝑆 𝑌 becomes a trivial cover of 𝑌 for a
sufficiently ”small” morphism 𝑌 → 𝑆.

3.2.4 Category of finite étale morphisms

The prior section showed us that the notion of an étale morphism is interesting
in its own right, and we will now present some technical lemmas so that collec-
tion of finite étale morphisms constitutes a category as a step closer to the étale
fundamental group.

Lemma 3.2.14. Let 𝑓∶ 𝑋 → 𝑆 and 𝑔∶ 𝑌 → 𝑋 be morphisms of schemes.

1. If 𝑔 ∘ 𝑓 is finite and 𝑓 is separated, then 𝑔 is finite.

2. If, additionally, 𝑔 ∘ 𝑓 and 𝑓 are finite étale, then so is 𝑔.

Remark 3.2.15. The lemma above shows that in any commutative triangle of
morphism of schemes if any two of the morphisms are finite étale then so is the
third.

Proof. [SZA09, Lemma 5.3.2]

Lemma 3.2.16. Let 𝑓∶ 𝑋 → 𝑌 and 𝑔∶ 𝑌 → 𝑍 be finite étale morphisms and 𝑋 an
𝑆-scheme. Then

(i) (Closed under composition) 𝑔 ∘ 𝑓 is finite étale

(ii) (Stable under base change) Let 𝑇 → 𝑆 be amorphism, then the inducedmorphism

𝑋 ×𝑆 𝑇 → 𝑌

is also finite étale.
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Proof. This is somewhat straightforward from the definition in terms of finite
locally free morphisms.

Using these two propositions and lemmas we can see that we can form a
category of finite étale morphisms over a scheme 𝑆.

Definition 3.2.17. Fix a scheme 𝑆. We defineℱ𝑖𝑛ℰ𝑡/𝑆 to be the category of finite
étale morphisms over 𝑆. That is:

(i) Objects are finite étale morphisms 𝑋 → 𝑆 with the fixed target 𝑆.

(ii) A morphism from 𝑋 → 𝑆 to 𝑌 → 𝑆 is a morphism 𝑋 → 𝑌 that makes the
diagram

𝑋 𝑌

𝑆
commute.

Note that this is also the full subcategory of 𝒮𝑐ℎ/𝑆 where the objects are
restricted to be finite étale. 𝒮𝑐ℎ/𝑆 is also known as the category of relative schemes
over 𝑆 or the slice category of 𝒮𝑐ℎ over 𝑆.

Example 3.2.18. In the most atomic example let 𝑘 be an algebraically closed field
and 𝑆 = Spec 𝑘. Then ℱ𝑖𝑛ℰ𝑡/𝑆 is equivalent to the category of finite sets ℱ𝑖𝑛𝒮𝑒𝑡.
This is because a finite étale scheme over 𝑘 is the disjoint union of spectra of finite
separable fields extensions of 𝑘. See Proposition 3.2.10.

Proposition 3.2.19. Let 𝑓∶ 𝑋 → 𝑆 be a étale cover and 𝑠∶ 𝑆 → 𝑋 a section of 𝑓.
Then 𝑠 is an isomorphism of 𝑆 onto a closed and open subscheme of 𝑋.

Proof. By Lemma 3.2.14 we see that 𝑠 is finite étale. A section must be injective
because 𝑓 ∘ 𝑠 = id𝑆 and so an isomorphism onto its image. By 3.1.8 the image of 𝑠
is open and closed.

Remark 3.2.20. Note that in particular if 𝑆 is connected then the section maps 𝑆
isomorphically onto a whole connected component of 𝑋.

The following corollary will be one of the central pieces of building an algebraic
fundamental group.

Corollary 3.2.21. If 𝑍 → 𝑆 is a connected 𝑆-scheme and 𝑓1, 𝑓2∶ 𝑍 → 𝑋 are two
𝑆-morphism to a finite étale 𝑆-scheme 𝑋 with 𝑓1( ̄𝑧) = 𝑓2( ̄𝑧) for some geometric point
̄𝑧 → 𝑍 then 𝑓1 = 𝑓2.

Proof. We may assume that 𝑆 = 𝑍 by passing to the fibre product 𝑍 ×𝑆 𝑋 → 𝑍
and use that étale morphisms are stable under base change. Then we prove that
if two sections of an étale cover 𝑋 → 𝑆 of a connected scheme coincide at a
geometric point, then they are equal. But this follows from 3.2.19 as each section
is an isomorphism of 𝑆 onto a connected component of 𝑋 and thus determined by
the image of a geometric point.
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Remark 3.2.22. The corollary generalizes an algebraic topology fact that says if
two ”path lifts” of a point are equal then the paths 𝑓1, 𝑓2 must be equal.

Remark 3.2.23. It also generalizes the following fact from Galois theory that, for
𝑘 ⊂ 𝐿 a finite and separable extension, the morphism Aut𝑘(𝐿) → Hom𝐾(𝐿, 𝐾𝑠) is
injective. The reader might remember that 𝑘 ⊂ 𝐿 is Galois whenever the morphism
is bijective.

In the world of geometry the proposition above shows that for 𝑓∶ 𝑋 → 𝑆
a connected étale cover the ”evaluation morphism” Aut𝑆(𝑋) → 𝑋 ̄𝑠 which sends
𝜎 ↦ 𝜎( ̄𝑥) where ̄𝑥 ∈ 𝑋 ̄𝑠 is injective. We will see when this is bijective when we
touch upon the Galois theory of étale covers.
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Chapter 4

Fundamental groups of
schemes

”A different image came to me a few weeks ago. The unknown
thing to be known appeared to me as some stretch of earth or hard marl,
resisting penetration … the sea advances insensibly in silence, nothing
seems to happen, nothing moves, the water is so far off you hardly hear
it … yet it finally surrounds the resistant substance.”

— Alexander Grothendieck, 1985–1987 - [REC85]

4.1 Galois theory of étale covers

We will now define a generalization of Galois extensions to that of étale covers.
The topologically inclined reader will note that this also corresponds to regular
covers.

Definition 4.1.1. Let 𝑋 be an 𝑆-scheme with structure morphism 𝜙∶ 𝑋 → 𝑆.
Define Aut𝑆(𝑋) to be the group of scheme automorphisms of 𝑋 preserving 𝜙. That
is 𝜎 ∈ Aut𝑆(𝑋) if 𝜎 ∘ 𝜙 = 𝜎.

Remark 4.1.2. Given a finite étale morphism 𝑓∶ 𝑋 → 𝑆 and a geometric point ̄𝑠 ∈ 𝑆
there is a natural left action on 𝑋 ̄𝑠 by Aut𝑆(𝑋) by base change of the action on 𝑋.
Remark 4.1.3. Note that we can also define an action on 𝑋 ̄𝑠 by the action on
geometric points by the alternative definition of the geometric fibre as in 2.5.16 as
follows. Given 𝜎 ∈ Aut𝑆(𝑋) and ̄𝑥 define 𝜎 ⋅ ̄𝑥 ≔ 𝜎 ∘ ̄𝑥.

Proposition 4.1.4. Let 𝑓∶ 𝑋 → 𝑆 be a connected étale cover. Then Aut𝑆(𝑋) is finite
and acts freely on 𝑋 ̄𝑠.

Proof. Let 𝜎 be an element of Aut𝑆(𝑋) not the identity. Suppose that 𝜎 fixes a
geometric point ̄𝑥. Then Corollary 3.2.21 applied to 𝜎 and id𝑋 gives that 𝜎 = id𝑋
which is a contradiction. Let 𝑓1 = 𝑓 and 𝑓2 = 𝑓 ∘ 𝜎, then by the above we must
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find some geometric point of 𝑋 that maps to different points. So the action on any
geometric fibre is free, or the permutation representation of Aut(𝑋/𝑆) is faithful.
Since the morphism 𝑓 is finite étale each geometric fibre is finite as a set, implying
that Aut(𝑋/𝑆) is itself finite.

Remark 4.1.5. For a connected 𝑋 ∈ ℱ𝑖𝑛ℰ𝑡/𝑆 and ̄𝑠 a geometric point we have that
the morphism

Aut𝑆(𝑋) → 𝑋 ̄𝑠

is injective as touched upon in 3.2.23. Now let 𝑆 = Spec 𝑘 for an algebraically
closed field 𝑘. Then 𝑋 ≅ Spec 𝐿 where 𝐿 is a finite separable extension of 𝑘 by
3.2.10. In the algebraic world we get a map

Aut𝑘(𝐿) → 𝐿 ⊗𝑘 𝑘̄

with the choice of a geometric point ̄𝑠 ∈ 𝑆 corresponding to a choice of separable
closure. If 𝑘 ⊂ 𝐿 is a Galois extension then we have a bijection

Aut𝑘(𝐿) → 𝐿 ⊗𝑘 𝑘̄ ≅
|Aut𝑘(𝐿)|
∏
𝑖=1

𝑘̄.

What it actually tells us is that Aut𝑆(𝑋) acts transitively on 𝑋 ̄𝑠. For this reason we
have the following definition of a Galois cover.

Definition 4.1.6. A connected étale cover 𝑓∶ 𝑋 → 𝑆 is defined to be Galois cover,
or regular, if Aut𝑆(𝑋) acts transitively on geometric fibres 𝑋 ̄𝑠 for a geometric point
̄𝑠 ∶ SpecΩ → 𝑆.

Lemma 4.1.7. Let 𝜙∶ 𝑋 → 𝑆 be a finite étale morphism and 𝐺 ⊂ Aut𝑆(𝑋) a
subgroup. Let 𝑌 → 𝑆 be a flat morphism of schemes. Then there is a canonical
isomorphism (𝑋 ×𝑆 𝑌 )/𝐺 ≅ (𝑋/𝐺) ×𝑆 𝑌.

Proof. The natural map 𝑋 ×𝑆 𝑌 → (𝑋/𝐺) ×𝑆 𝑌 is constant on 𝐺-orbits. It therefore
induces a map (𝑋 ×𝑆 𝑌 )/𝐺 → (𝑋/𝐺) ×𝑆 𝑌.

To see that this is an isomorphism we can argue that over an affine neigh-
borhood Spec𝐴 of each point of 𝑆 with preimages Spec𝐵 in 𝑋 and Spec 𝐶 in 𝑌.
Note that 𝐶 is flat 𝐴-algebra by assumption. The isomorphism then reduces to
𝐵𝐺 ⊗𝐴 𝐶 ≅ (𝐵 ⊗𝐴 𝐶)𝐺 as we pass to the algebraic world by 2.4.3.

The sequence of 𝐵-modules

0 → 𝐵𝐺 → 𝐵 → ⨁
𝑔∈𝐺

𝐵

with rightmost morphism defined bymapping 𝑏 ↦ (𝑔(𝑏)−𝑏)𝑔∈𝐺 is exact. Tensoring
by 𝐶 gives us the exact sequence

0 → 𝐵𝐺 ⊗𝐴 𝐶 → 𝐵 ⊗𝐴 𝐶 → ⨁
𝑔∈𝐺

𝐵 ⊗𝐴 𝐶.

Because (𝐵 ⊗𝐴 𝐶)𝐺 is the kernel of the right most map in the exact sequence we
are done.
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Lemma 4.1.8. Let 𝑓∶ 𝑋 → 𝑆 be a connected finite étale cover and 𝐺 ⊂ Aut(𝑋/𝑆) a
subgroup. Then the quotient scheme 𝑋/𝐺 exists and all morphisms in the diagram
below are étale covers.

𝑋 𝑋/𝐺

𝑆
𝑓

𝜋

̃𝑓

Proof. [SZA09, Proposition 5.3.7]

Lemma 4.1.9. Let 𝑓∶ 𝑋 → 𝑆 be a connected étale cover and ̄𝑠 a geometric point in
𝑆. It is Galois if and only if one of the following conditions are satisfied:

(i) The evaluation morphism Aut𝑆(𝑋) → 𝑋 ̄𝑠 is bijective.

(ii) |Aut𝑆(𝑋)| = |𝑋 ̄𝑠|

(iii) The canonical morphism 𝑋/Aut𝑆(𝑋) → 𝑆 is an isomorphism.

(iv) Aut𝑆(𝑋) acts transitively on one geometric fibre 𝑋 ̄𝑠.

In particular, the notion of a Galois cover is, a posteriori, independent of the fibre
functor.

Proof. The first condition is clear from our discussions in the previous remarks, the
second follows from the first. For the third note that the final objects in ℱ𝑖𝑛ℰ𝑡/𝑆
are morphisms 𝑆 → 𝑆 and in ℱ𝑖𝑛𝒮𝑒𝑡 the single element sets. By 4.1.7 we have

𝑆 ̄𝑠 ≅ (𝑋/Aut𝑆(𝑋)) ̄𝑠 ≅ 𝑋 ̄𝑠/Aut𝑆(𝑋)

with the left hand being a final object in ℱ𝑖𝑛𝒮𝑒𝑡 by the isomorphism assumption.
It follows that the right-hand object is a final object inℱ𝑖𝑛𝒮𝑒𝑡 so that Aut𝑆(𝑋) acts
transitively on 𝑋 ̄𝑠. For the last condition we assume that Aut𝑆(𝑋) acts transitively
on 𝑋 ̄𝑠 for a specific point geometric ̄𝑠. Choose an element in ̄𝑥 ∈ 𝑋 ̄𝑠 and define
a map Aut𝑆(𝑋) → 𝑋 ̄𝑠 by evaluation of 𝜎 ↦ 𝜎( ̄𝑥). Since the action is free and
transitive we have a bijection.

Proposition 4.1.10 (Galois correspondence of étale covers). Let 𝑓∶ 𝑋 → 𝑆 be a
Galois cover and suppose 𝑔∶ 𝑍 → 𝑆 is an intermediate connected étale cover and the
diagram

𝑋 𝑍

𝑆
𝑓

𝜋

𝑔

commutes. Then the following holds

(i) 𝜋∶ 𝑋 → 𝑍 is a Galois cover and in fact 𝑍 ≅ 𝑋/𝐻 for some subgroup 𝐻 ⊂
Aut𝑆(𝑋).
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(ii) There is a bijection between subgroups of Aut𝑆(𝑋) and intermediate covers

{𝐻 ⊂ Aut𝑆(𝑋)} ⟷ {𝑋 → 𝑍 → 𝑋}

(iii) The correspondence is bijection on normal subgroups of Aut𝑆(𝑋) and Galois
covers 𝑍 → 𝑆, in this case Aut𝑆(𝑍) ≅ Aut𝑆(𝑋)/𝐻.

Proof. Use 3.2.21, 3.2.19, 4.1.8 and 4.1.9.

Remark 4.1.11. Note that for a Galois cover 𝑓∶ Spec 𝐿 → Spec 𝑘we have by earlier
discussions that 𝑘 ⊂ 𝐿 is a Galois extension. Then the proposition above is exactly
the classical Galois correspondence.

Proposition 4.1.12 (Galois closure). Let 𝑓∶ 𝑋 → 𝑆 be a connected étale cover. Then
there exists a morphism 𝜋∶ 𝑃 → 𝑋 such that 𝑓 ∘ 𝜋∶ 𝑃 → 𝑆 is a Galois cover.

Proof. This proof is due to Serre represented from [Méz00]. Let ̄𝑠 be a geometric
point in 𝑆 and let 𝐹 = { ̄𝑥1, … , ̄𝑥𝑛} be the points of 𝑋 ̄𝑠. Any ordering of the points ̄𝑥𝑖
induces a geometric point ̄𝑥 in 𝑋 𝑛 ≔ 𝑋 ×𝑆 ⋯ ×𝑆 𝑋 with ̄𝑥𝑖 in the 𝑖-th component.
This is because of the natural bijection

𝑋 𝑛 ×𝑆 SpecΩ → (𝑋 ×𝑆 SpecΩ)𝑛.

Let 𝜋∶ 𝑃 → 𝑋 𝑛 → 𝑋 be the composition of the embedding of the connected
component 𝑃 of 𝑋 𝑛 containing ̄𝑥 and the projection onto the first coordinate. Both
𝜋 and 𝑓 ∘ 𝑝𝑖 are finite étale by 3.2.16 and 𝑃 is an étale cover of 𝑆.

Let 𝜋𝑖𝑗∶ 𝑋 𝑛 → 𝑋 ×𝑆 𝑋 be the projection onto the product of factors 𝑖 and 𝑗. Let

Δ ≔ ⋃𝜋−1𝑖𝑗 (Δ(𝑋))

where Δ(𝑋) is the diagonal of image 𝜋𝑖𝑗(𝑋) in 𝑋 ×𝑆 𝑋. By 3.2.3 the diagonal of 𝑋 is
open and closed and therefore so is its inverse image. If 𝑃 ∩ Δ is not empty then
𝑃 ⊂ Δ as 𝑃 is connected. This can not occur since ̄𝑥 ∉ Δ. Whence 𝑃 ∩ Δ is empty
and all elements of 𝑃 ̄𝑠 is represented by an 𝑛-tuple with distinct elements.

To see that 𝑃 is Galois we argue as follows. Every permutation 𝜎 of the ̄𝑥𝑖
induces an 𝑆-automorphism 𝑓𝜎 of 𝑋 𝑛 permuting the components. Hence, Aut𝑆(𝑃)
can be identified with a subgroup 𝐺 of the symmetric group on 𝑛 elements. If
𝑓𝜎( ̄𝑥) ∈ 𝑃 ̄𝑠 then since 𝜎(𝑃) ∩ 𝑃 is not empty and 𝑃 is connected then 𝜎(𝑃) = 𝑃 and
𝜎 ∈ Aut𝑆(𝑃). Hence, the action of Aut𝑆(𝑃) is transitive on one geometric fibre and
by 4.1.9 𝑃 is Galois.

Definition 4.1.13. Let 𝑆 be a scheme and fix a geometric point ̄𝑠 ∶ SpecΩ → 𝑆.
Define the fibre functor Fib ̄𝑠 as the composition of the geometric fibre functor
𝑋 ↦ 𝑋 ×𝑆 SpecΩ and the forgetful functor 𝒮𝑐ℎ/𝑆 → 𝒮𝑒𝑡 which sends a scheme to
its underlying set. That is:

Fib ̄𝑠∶ ℱ𝑖𝑛ℰ𝑡/𝑆 → ℱ𝑖𝑛𝒮𝑒𝑡

𝑋 ↦ |𝑋 ̄𝑠| = |𝑋 ×𝑆 SpecΩ|.
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Remark 4.1.14. Note how we need to fix a geometric point ̄𝑠 in the definition of
the fibre functor similarly to how one specifies a base point in the topological
fundamental group.

Remark 4.1.15. Note that for 𝑋 ∈ ℱ𝑖𝑛ℰ𝑡/𝑆 we have defined an action of Aut𝑆(𝑋)
on 𝑋 ̄𝑠 before. We can define an action of Aut𝑆(𝑋) on Fib ̄𝑠(𝑋) in the same manner
by 𝜎 ⋅ ̄𝑥 ↦ Fib ̄𝑠(𝜎)( ̄𝑥). Although we could denote that element 𝜎( ̄𝑥) we choose the
former to be more explicit that it’s the functor Fib and not merely the object in the
target we’re interested in.

To define an algebraic monodromy action we need to introduce the concept of
an automorphism of the fibre functor.

Definition 4.1.16. Let 𝐹∶ 𝒞 → 𝒟 be a functor between two categories. Let
Aut(𝐹 ) be the automorphism group of 𝐹 which consists of invertible natural trans-
formations under composition.

In effect this means that an automorphism 𝜎 ∈ Aut(𝐹 ) is a collection of bi-
jections 𝜎𝑋∶ 𝐹(𝑋) → 𝐹(𝑋) for each object 𝑋 ∈ 𝒞. Given morphisms 𝑓∶ 𝑋 → 𝑌
these bijections satisfy the commutative diagram

𝐹(𝑋) 𝐹(𝑌 )

𝐹(𝑋) 𝐹(𝑌 )

𝜎𝑋
𝐹(𝑓 )

𝜎𝑌

𝐹(𝑓 )

4.2 Topological groups

We need to make a quick detour to the world of topological groups before we take
our penultimate step in the journey.

Definition 4.2.1. A topological group 𝐺 ∈ 𝒯𝑜𝑝𝒢𝑟𝑝 is a group where the under-
lying set has a topology and group structure that is continuous with respect to
this topology.

Example 4.2.2. A finite group with the discrete topology is a topological group
because the multiplication and inverse operations are automatically continuous.

Example 4.2.3. Let 𝐺 = ℂ with the standard topology. Then the additive group
structure is continuous and ℂ is a topological group. Similarly, 𝐺 = ℂ× the complex
numbers with the origin removed is a topological group with the multiplicative
group structure.

Remark 4.2.4. If 𝑁 is a neighborhood of an element 𝑔 in a topological group 𝐺 then
𝑔−1𝑁 is a neighborhood of the identity element. 𝑁 is open if and only if 𝑔−1𝑁 is
open. This is a common way of translating things to neighborhoods of the identity
elements when considering topological groups.
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Definition 4.2.5. An action of a group 𝐺 on a topological space 𝑋 is continuous
if the associated maps are continuous.

Definition 4.2.6 (Pro-finite group). Let 𝐺∶ ℐ → 𝒯𝑜𝑝𝒢𝑟𝑝 be a cofiltered diagram
where ℐ is the cofiltered subcategory of finite discrete topological groups. Then a
topological group is called pro-finite if it is a limit of a cofiltered diagram 𝐺.

Example 4.2.7. Take ℐ to be the category of all finite subgroups of the group of
integers 𝐺 = ℤ with morphisms between 𝑛ℤ → 𝑚ℤ if and only if 𝑛ℤ ⊂ 𝑚ℤ. Then
the pro-finite group is denoted ℤ∧.

Example 4.2.8. Takeℐ to be the category of all finite subgroups, with cardinality
𝑝𝑘 for some 𝑘, of the group of integers 𝐺 = ℤwith morphisms between 𝑝𝑘ℤ → 𝑝𝑙ℤ
if and only if 𝑘 ≤ 𝑙. Then the pro-finite group is ℤ𝑝, the additive group of 𝑝-adic
integers.

Proposition 4.2.9. Let 𝑘 ⊂ 𝐿 a Galois extension of fields and let ℐ be the cofiltered
category of finite Galois subextensions 𝑘 ⊂ 𝐿𝑖 ⊂ 𝐿. Then we have the isomorphism

Gal𝑘(𝐿) ≅ lim←−−
𝑘⊂𝐿𝑖⊂𝐿

Gal𝑘(𝐿𝑖).

Proof. Let 𝜙∶ Gal𝑘(𝐿) → ∏Gal𝑘(𝐿𝑖) be a group homomorphism that sends a 𝑘-
automorphism 𝜎 to its restriction. Because all subextensions are Galois we see that
𝜎(𝐿𝑖) ⊂ 𝐿𝑖 for all 𝑖. The morphism 𝜙must be injective because if it’s not then there’s
an element 𝛼 that’s not fixed by 𝜎 and for which the restriction of 𝜎 to 𝑘(𝛼) ⊂ 𝐿𝑘
is nontrivial, for some 𝑘. To show that the image of 𝜙 is the limit we can argue
as follows. Take an element (𝜎𝐿𝑖) of lim←−−Gal𝑘(𝐿𝑖) and define a 𝑘-automorphism
𝜎 of 𝐿 by 𝜎(𝛼) ≔ 𝜎𝐿𝑘(𝛼) where 𝐿𝑘 is the extension which contains 𝑘(𝛼). This is
well-defined because ℐ constitutes a cofiltered diagram.

Remark 4.2.10. If 𝐺 is a pro-finite group then we can endow each 𝐺𝑖 with the
discrete topology, their product with the product topology and 𝐺 ⊂ ∏𝐺𝑖 with the
subspace topology. This is the weakest topology for which the projection maps
𝐺 → 𝐺𝑖 are continuous. In fact the following is true

Lemma 4.2.11. Let 𝐺∶ ℐ → 𝒯𝑜𝑝𝒢𝑟𝑝 be a cofiltered diagram with every 𝐺𝑖
equipped with the discrete topology. The limit lim←−−𝐺𝑖∈ℐ

𝐺𝑖 is a closed topological

subgroup of ∏𝐺𝑖.

Proof. See [SZA09, Lemma 1.3.8].

Proposition 4.2.12. A profinite group is compact and totally disconnected. The
open subgroups correspond precisely to the closed subgroups of finite index.

Proof. See [SZA09, Corrollary 1.3.9].
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Definition 4.2.13 (Pro-finite completion). Let 𝐺 be a topological group and let
ℐ be the category with objects the open normal subgroups 𝐺𝑖 of finite index in
𝐺. Define the morphism 𝐺𝑖 → 𝐺𝑗 exist if and only if 𝐺𝑖 ⊂ 𝐺𝑗. This constitutes a
cofiltered category and the functor 𝐺∶ ℐ → 𝒯𝑜𝑝𝒢𝑟𝑝 defined by sending 𝐺𝑖 ↦
𝐺/𝐺𝑖 is a cofiltered diagram. The pro-finite completion of 𝐺 is defined as the limit

𝐺∧ ≔ lim←−−
𝐺𝑖∈ℐ

𝐺/𝐺𝑖.

Definition 4.2.14. Let 𝐺 be a group. A 𝐺−set, 𝑆, is a set 𝑆 along with a group
action of 𝐺 on 𝑆. A 𝐺-equivariant map is a set map between 𝐺−sets 𝑓∶ 𝑆 → 𝑆′ for
which 𝑔 ⋅ 𝑓 (𝑠) = 𝑓 (𝑔 ⋅ 𝑠) for all 𝑔 ∈ 𝐺 and 𝑠 ∈ 𝑆

The category of 𝐺-sets is denoted by 𝐺 − 𝒮𝑒𝑡. The full subcategory of finite
𝐺-sets is denoted by 𝐺 −ℱ𝑖𝑛𝒮𝑒𝑡.

Lemma 4.2.15. Let 𝑋 be a topological space with the discrete topology and 𝐺 a
group that acts continuously on 𝑋. Then the stabilizer around a point 𝑥 defined by
𝐺𝑥 ≔ {𝑔 ∈ 𝐺∶ 𝑔𝑥 = 𝑥, for all 𝑥 ∈ 𝑋} is an open subgroup of 𝐺.

Proof. The stabilizer is the inverse image of 𝑥 under the composition of the inclu-
sion and multiplication map and thus open.

Lemma 4.2.16 (Orbit-stabilizer theorem). Let 𝑆 ∈ 𝐺-𝒮𝑒𝑡. Then the orbit 𝐺𝑥 ≔
{𝑔𝑥∶ 𝑔 ∈ 𝐺} of 𝑥 ∈ 𝐺 is isomorphic to 𝐺/𝐺𝑥 in the category of 𝐺-𝒮𝑒𝑡.

Proof. The 𝐺-set morphism 𝜙∶ 𝐺/𝐺𝑥 → 𝐺𝑥 defined by 𝑔𝐺𝑥 → 𝑔𝑥 for 𝑔 ∈ 𝐺 is
well-defined and an isomorphism.

Definition 4.2.17. The action of 𝐺 on 𝑆 is transitive if 𝑆 isomorphic to a 𝐺-set of
the form 𝐺/𝐻.

Remark 4.2.18. The category 𝐺-𝒮𝑒𝑡 has all limits and colimits like 𝒮𝑒𝑡. The coprod-
uct is the disjoint union. Therefore, every 𝐺-set is the disjoint union of orbits. The
morphisms in 𝐺-𝒮𝑒𝑡 are then by the orbit-stabilizer lemma 4.2.16 determined by
morphisms between orbits.

Lemma 4.2.19. Let 𝐺 be a pro-finite group with the natural projections 𝜋𝑘∶ 𝐺 → 𝐺𝑘.
Then the set {ker(𝜋𝑘)}𝑘∈𝒦 forms a basis of open neighborhoods of the identity element
in 𝐺.

Proof. The projections are continuous and the image of each non-identity element
𝑔 ∈ 𝐺 must have a non-trivial image in some 𝜋𝑘 by the definition of a limit.

4.3 Étale fundamental group and main theorem

As mentioned before the overarching goal is to be able to describe étale covers
which we will be able to in a way through the étale fundamental group. In the case
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of a topological fundamental group the universal cover makes the fibre functor
representable. The algebraic fibre functor defined earlier is not representable.
The situation is salvageable by expanding the category and allowing for so called
pro-objects which makes it pro-representable. There are similarities to pro-finite
groups, and we shall see that the somewhat abstract definition below will be
describable by a more tractable and familiar object as we put both a pro-finite and
topological structure on it.

Definition 4.3.1. The étale fundamental group, or algebraic fundamental group,
of a connected scheme 𝑆 at the geometric point ̄𝑠 is defined to be the automorphism
group of the fibre functor over ̄𝑠, namely:

𝜋ét1 (𝑆, ̄𝑠) ≔ Aut(Fib ̄𝑠)

The choice of a base point ̄𝑠 is important and corresponds in the classical case
to choosing a separable closure of the base field. By 3.2.21 we know that it is
sufficient to know the behaviour of the étale covers and their geometric fibres over
a single point.

Remark 4.3.2. For a functor 𝐹 the group of automorphisms Aut(𝐹 ) acts naturally
on the objects 𝐹(𝑐) for 𝑐 ∈ C by 𝜎 ⋅ 𝑐 ≔ 𝜎𝐶(𝐹 (𝑐)) for 𝜎 ∈ Aut(𝐹 ) and where
𝜎𝐶∶ 𝐹(𝐶) → 𝐹(𝐶) is the induced component of 𝜎.

In the case of Fib ̄𝑠∶ ℱ𝑖𝑛ℰ𝑡/𝑆 → 𝒮𝑒𝑡 we have a natural action of 𝜋ét1 (𝑆, ̄𝑠) =
Aut(Fib ̄𝑠) on Fib ̄𝑠(𝑋) for every finite étale scheme 𝑋 over 𝑆. Therefore Fib ̄𝑠 can
be enriched as a functor to 𝜋ét1 -ℱ𝑖𝑛𝒮𝑒𝑡. It maps Galois covers 𝑋 ∈ ℱ𝑖𝑛ℰ𝑡/𝑆 to
𝜋ét1 (𝑆, ̄𝑠)-sets of the form 𝐺 = 𝜋ét1 (𝑆, ̄𝑠)/𝐻 for 𝐻 a normal open subgroup. This is
because the action of 𝜋ét1 (𝑆, ̄𝑠) is transitive on Fib ̄𝑠(𝑋).

In order to understand the étale fundamental group of a connected scheme 𝑆
at a point ̄𝑠 we need to understand the automorphisms of the fibre functor. A first
step is to find a representation of the fibre functor.

Definition 4.3.3. Let 𝑆 be a connected scheme and ̄𝑠 a geometric point. Define
the cofiltered category ℐ and the functor ̃𝑃 ∶ ℐ → ℱ𝑖𝑛ℰ𝑡/𝑆 by

(i) The objects (𝑃𝑖, ̄𝑝𝑖) ∈ ℐ where the first factor comes from a subcategory
of ℱ𝑖𝑛ℰ𝑡/𝑆 with the objects 𝑃𝑖 connected 𝑆 and the second from a set of
distinguished geometric points ̄𝑝𝑖 ∈ 𝐹 ̄𝑠(𝑃𝑖) for every 𝑃𝑖.

(ii) The morphisms between 𝜙𝑖𝑗∶ (𝑃𝑖, ̄𝑝𝑖) → (𝑃𝑗, ̄𝑝𝑗) satisfying 𝐹 ̄𝑠(𝜙𝑖𝑗)( ̄𝑝𝑗) = ̄𝑝𝑖 are
denoted by the partial order 𝑖 ≤ 𝑗, if such morphisms exist.

Remark 4.3.4. Wewill denote the objects ofℐ by 𝑃𝑖 instead of (𝑃𝑖, ̄𝑝𝑖)when possible
without causing confusion, but we also keep in mind that they are ”pointed”.

Lemma 4.3.5. Let 𝑆 be a connected scheme and ̄𝑠 a geometric point. Further, let
𝑓∶ 𝑋 → 𝑆 be an étale cover with a fixed geometric point ̄𝑥 ∈ Fib ̄𝑠(𝑋). Then there
exists a 𝑃𝑘 ∈ ℐ that is a Galois cover over 𝑆 with a morphism 𝜋∶ 𝑃𝑘 → 𝑋 such that
̄𝑥 is the pullback of the distinguished point ̄𝑝𝑘 ∈ 𝑃𝑘 by 𝜋. In other words we have

Fib ̄𝑠(𝜋)( ̄𝑝𝑘) = ̄𝑥.
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Proof. Let 𝑍 be the connected component 𝑓∶ 𝑍 → 𝑋 that lies over ̄𝑥. Proposition
4.1.12 gives us a Galois closure, that is a 𝑃𝑘 ∈ ℐ and 𝜋∶ 𝑃𝑘 → 𝑍 that factors through
𝑓 by 𝑓 ∘ 𝜋∶ 𝑃𝑘 → 𝑋. As 𝜋 is a Galois cover it is connected and hence surjective, this
means we can find a ̄𝑝 ∈ 𝑃𝑘 such that Fib ̄𝑠(𝑓 ∘ 𝜋)( ̄𝑝) = ̄𝑥. As Aut(𝑃𝑘) is transitive
we can find a 𝜎 ∈ Aut(𝑃𝑘) such that 𝜎( ̄𝑝) = ̄𝑝𝑘, this is in fact unique by 3.2.21. We
thus have Fib ̄𝑠(𝑓 ∘ 𝜋 ∘ 𝜎)( ̄𝑝𝑘) = ̄𝑥 as wanted.

Lemma 4.3.6. The functor ̃𝑃 defined in 4.3.3 constitutes a cofiltered diagram for a
set of distinguished geometric points ̄𝑝𝑖 ∈ 𝐹 ̄𝑠(𝑃𝑖) for all 𝑃𝑖 ∈ ℐ. For each 𝑋 ∈ ℱ𝑖𝑛ℰ𝑡/𝑆
we have a colimit

Hom( ̃𝑃 , 𝑋 ) ≔ lim−−→
𝑃𝑖∈ℐ

Hom(𝑃𝑖, 𝑋 ).

Proof. It is clear that the set ℐ is partially ordered. We show it is also directed.
If 𝑃𝑖, 𝑃𝑗 ∈ ℐ then 𝑓∶ 𝑃𝑖 ×𝑆 𝑃𝑗 → 𝑆 is finite étale. We can then apply 4.3.5 to 𝑓

and get a 𝑃𝑘 ∈ ℐ an 𝑆-morphism 𝜋∶ 𝑃𝑘 → 𝑃𝑖 ×𝑆 𝑃𝑗 that satisfies Fib ̄𝑠( ̄𝑝𝑘) = ( ̄𝑝𝑖, ̄𝑝𝑗).
Compose 𝜋 with the projections of the fibre product onto respective factor to get
that 𝑖 ≤ 𝑘 and 𝑗 ≤ 𝑘.

Lemma 4.3.7. Let𝒦 be the subcategory of ℐ restricting to the objects 𝑃𝑖 that are
Galois covers. 𝒦 is then a cofinal set which that there is a natural equivalence

lim−−→
𝑃𝑖∈ℐ

Hom(𝑃𝑖, 𝑋 ) ≅ lim−−→
𝑃𝑘∈𝒦

Hom(𝑃𝑘, 𝑋 ).

The transition maps of the rightmost colimit 𝜙𝑖𝑗∶ 𝑃𝑗 → 𝑃𝑖 are unique if they exist.

Proof. Let 𝑃𝑖 ∈ ℐ. Then by 4.3.5 we can find a 𝑃𝑘 ∈ 𝒦 such that 𝑃𝑖 ≤ 𝑃𝑘. Uniqueness
of the transition morphism comes from 3.2.21.

Without loss of generality we will therefore assume henceforth that the cofil-
tered category in the functor ̃𝑃 runs over Galois covers instead of simply connected
covers.

Proposition 4.3.8. Let 𝑆 be a connected scheme and ̄𝑠 a geometric point. The functor
Fib ̄𝑠 is pro-representable by the co-filtered diagram ̃𝑃 ∶ 𝒦 → ℱ𝑖𝑛ℰ𝑡/𝑆 defined in
4.3.3. That is we have the natural isomorphism of functors for every 𝑋 ∈ ℱ𝑖𝑛ℰ𝑡/𝑆.

Hom( ̃𝑃 , 𝑋 ) ≔ lim−−→
𝑃𝑘∈𝒦

Hom(𝑃𝑘, 𝑋 ) ∼⟶ Fib ̄𝑠(𝑋).

Proof. For each 𝑃𝑘 ∈ 𝒦 and 𝑋 ∈ ℱ𝑖𝑛ℰ𝑡/𝑆 we have a map of sets defined by

Hom(𝑃𝑘, 𝑋 ) → Fib ̄𝑠(𝑋), 𝜙 ↦ Fib ̄𝑠(𝜙)( ̄𝑝𝑘).

We claim that this map is injective. Assume 𝑓 , 𝑔∶ 𝑃𝑘 → 𝑋 be two Galois covers
such that Fib ̄𝑠(𝑓 )( ̄𝑝𝑘) = Fib ̄𝑠(𝑔)( ̄𝑝𝑘) then by 4.3.5 we see that 𝑓 = 𝑔 as required.
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This map is ”functorial” in the sense that it respects the diagram ̄𝑃 by sending
a morphism 𝜃𝑘𝑙∶ 𝑃𝑙 → 𝑃𝑘 to Hom(𝑃𝑙, 𝑋 ) → Hom(𝑃𝑘, 𝑋 ) by composition. By the
universal property of the colimit Hom( ̃𝑃 , 𝑋 ) we have a unique morphism Φ of
functors defined on the objects by

Φ𝑋∶ Hom( ̃𝑃 , 𝑋 ) → Fib ̄𝑠(𝑋), [𝜙] ↦ Fib ̄𝑠(𝜙)( ̄𝑝𝑘),

where the representative of [𝜙] is 𝜙∶ 𝑃𝑘 → 𝑋. The map Φ is injective because the
maps Φ𝑋 are.

For surjectivity we note that given ̄𝑥 ∈ Fib ̄𝑠(𝑋) for an étale cover 𝑋 we can find
a 𝑃𝑘 ∈ 𝒦 and an 𝑆 morphism 𝜋∶ 𝑃𝑘 → 𝑋 such that Fib ̄𝑠(𝜋)( ̄𝑝𝑘) = ̄𝑥. This implies
surjectivity of Φ.

Further if 𝑓∶ 𝑋 → 𝑌 is a morphism inℱ𝑖𝑛ℰ𝑡/𝑆 then the induced maps defined
by 𝐺𝑘(𝑓 )∶ Hom(𝑃𝑘, 𝑋 ) → Hom(𝑃𝑘, 𝑌 ) for all 𝑃𝑘 ∈ 𝒦 gives a map 𝐺(𝑓 ) between
the colimits and the diagram below commutes

Hom( ̃𝑃 , 𝑋 ) Fib ̄𝑠(𝑋)

Hom( ̃𝑃 , 𝑌 ) Fib ̄𝑠(𝑌 )

Φ𝑋

Fib ̄𝑠(𝑓 )

Φ𝑌

𝐺(𝑓 )

As Φ𝑋 are maps of sets and bijection is equivalent to isomorphism in the category
of sets. Therefore the functors Hom( ̃𝑃 , −) and Fib ̄𝑠(−) are naturally equivalent
and Fib ̄𝑠 is pro-representable.

Theorem 4.3.9 (Grothendieck). The étale fundamental group of a connected scheme
𝑆 with a geometric point ̄𝑠 is a profinite group with the isomorphism of groups

𝜋ét1 (𝑆, ̄𝑠) ≅ lim←−−
𝑃𝑘∈𝒦

Gal𝑆(𝑃𝑘).

where Gal𝑆(𝑃𝑘) ≔ Aut𝑆(𝑃𝑘)op. The transition maps 𝜓𝑖𝑗 are, in particular, surjective.

Proof. Recall that𝒦 is the restriction of the cofiltered category defined in 4.3.3 to
Galois covers. The associated diagram has uniquemorphisms 𝜙𝑖𝑗∶ (𝑃𝑖, ̄𝑝𝑖) → (𝑃𝑗, ̄𝑝𝑗)
that satisfy Fib ̄𝑠(𝜙𝑖𝑗)( ̄𝑝𝑗) = ̄𝑝𝑖. We have bijections 𝜆𝑘∶ Aut𝑆(𝑃𝑘) → Fib ̄𝑠(𝑃𝑘) defined
by 𝜎 ↦ Fib ̄𝑠(𝜎)( ̄𝑝𝑘). For any 𝑗 ≤ 𝑖 we define 𝜓𝑖𝑗∶ Aut𝑆(𝑃𝑗) → Aut𝑆(𝑃𝑖) as the
composition Aut𝑆(𝑃𝑗) → Aut𝑆(𝑃𝑖) in the following diagram

Aut𝑆(𝑃𝑗) Fib ̄𝑠(𝑃𝑗)

Aut𝑆(𝑃𝑖) Fib ̄𝑠(𝑃𝑖)

𝜆𝑗
Fib ̄𝑠(𝜓𝑖𝑗)

𝜆−1𝑖
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For 𝜎 ∈ Aut𝑆(𝑃𝑗) the element 𝜓𝑖𝑗(𝜎) is determined automorphism of 𝑃𝑖 that
satisfies the commutativity of the diagram

𝑃𝑗 𝑃𝑖

𝑃𝑗 𝑃𝑖

𝜎
𝜙𝑖𝑗

𝜓𝑖𝑗(𝜎)

𝜙𝑖𝑗

It is unique due to the transitivity of the action on fibres, that is

Fib ̄𝑠(𝜓𝑖𝑗(𝜎))( ̄𝑝𝑗) = Fib ̄𝑠(𝜙𝑖𝑗 ∘ 𝜎)( ̄𝑝𝑖).

The map transition maps 𝜓𝑖𝑗 are clearly group homomorphisms. Furthermore
they are clearly surjective since by the transitivity proved by the above diagram
each 𝜓𝑖𝑗 ∘ 𝜙𝑖𝑗 is of the form 𝜙𝑖𝑗 ∘ 𝜎. We therefore have a limit lim←−−𝑃𝑘∈𝒦

Gal𝑆(𝑃𝑘). The

contravariant Yoneda embedding 𝑃𝑘 ↦ Hom(𝑃𝑘, −) gives a morphism

lim←−−
𝑃𝑘∈𝒦

Gal𝑆(𝑃𝑘) → Aut(Hom( ̃𝑃 , −))

that is seen to be a bijective group morphism by the uniqueness of the transition
maps for both (co)limits.

Remark 4.3.10. This theorem shows that for a geometric point ̄𝑥 ∈ Fib ̄𝑠(𝑋) that is
dominated by a Galois cover 𝑃𝑘 ∈ 𝒦 then the action of 𝜋ét1 (𝑆, ̄𝑠) on ̄𝑥 is factored
through and action from Gal𝑆(𝑃𝑘). This means that the action is continuous and
the above isomorphism is in fact an isomorphism of topological groups.

Theorem 4.3.11. (Grothendieck) Let 𝑆 be a connected scheme and ̄𝑠 a geometric point.
The functor Fib ̄𝑠 induces an equivalence of ℱ𝑖𝑛ℰ𝑡/𝑆 and the category of continuous
and finite 𝜋ét1 (𝑆, ̄𝑠)-sets. Furthermore we have

1. Connected covers correspond to sets with transitive 𝜋ét1 (𝑆, ̄𝑠)-action and

2. Galois covers correspond to finite quotients 𝜋ét1 (𝑆, ̄𝑠)/𝐻 with 𝐻 a normal sub-
group.

Proof. (Step 1. Fully faithfull.) Let 𝑓 , 𝑔∶ 𝑋 → 𝑌 ∈ ℱ𝑖𝑛ℰ𝑡/𝑆 be two étale covers
such that Fib ̄𝑠(𝑓 ) = Fib ̄𝑠(𝑔). Pick out a connected component through 𝑖∶ 𝑍 → 𝑋.
Then obviously Fib ̄𝑠(𝑓 ∘ 𝑖) = Fib ̄𝑠(𝑔 ∘ 𝑖) and by 3.2.21 we have 𝑓 ∘ 𝑖 = 𝑔 ∘ 𝑖. Doing
this for all connected components we come to the conclusion that 𝑓 = 𝑔. This
shows the functor is faithful.

The ”full” part of the proof is based on an adaptation of [LEN, Section 3.18].
Let 𝑋, 𝑌 be étale covers over 𝑆 and 𝐹∶ Fib ̄𝑠(𝑋) → Fib ̄𝑠(𝑌 ) a morphism. We need
to construct a morphism 𝑓∶ 𝑋 → 𝑌 which gets sent to 𝐹 by the fibre functor
to show it’s full. We start by showing that we can reduce the problem to 𝑋, 𝑌
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both being connected. Let 𝑋 = ⊔𝑠𝑋𝑖 be a decomposition of 𝑋 into connected
components. Then Hom(𝑋 , 𝑌 ) ≅ ⊔𝑠Hom(𝑋𝑖, 𝑌 ) and similarly for Fib ̄𝑠 since it
preserves coproducts. In similar fashion we can assume that 𝑌 is connected.

We know that 𝜋ét1 (𝑆, ̄𝑠) acts transitively on both Fib ̄𝑠(𝑋) and Fib ̄𝑠(𝑌 ). Therefore
the map 𝐹 will be determined by the image of ̄𝑥 ∈ 𝑋, denote it by ̄𝑦 ≔ 𝐹( ̄𝑥). Let
𝜋∶ 𝑃𝑘 → 𝑋 ×𝑆 𝑌 be a Galois cover that maps Fib ̄𝑠(𝜋)( ̄𝑝𝑘) = ( ̄𝑥, ̄𝑦), one exists by 4.3.5.
Let 𝜋𝑋, 𝜋𝑌 be the respective projections onto each factor then Fib ̄𝑠(𝜋𝑋)( ̄𝑝𝑘) = ̄𝑥 and
Fib ̄𝑠(𝜋𝑌)( ̄𝑝𝑘) = ̄𝑦.

Note that 𝑋 is a quotient 𝑃𝑘/Aut𝑋(𝑃𝑘) and an intermediate cover of 𝑃𝑘 → 𝑌.
We therefore have a unique morphism 𝑓∶ 𝑋 → 𝑌 such that 𝜋𝑋 ∘ 𝑓 = 𝜋𝑌.

𝑃𝑘 𝑃𝑘

𝑋 𝑌

𝜎

𝜋𝑋 𝜋𝑌
𝑓

Now choose an element ̄𝑞𝑘 ∈ Fib ̄𝑠(𝑃𝑘) with Fib ̄𝑠(𝜋𝑌)( ̄𝑞𝑘) = Fib ̄𝑠(𝑓 ∘ 𝜋𝑋)( ̄𝑝𝑘) and a 𝜎
that maps Fib ̄𝑠(𝜎)( ̄𝑝𝑘) = ̄𝑞𝑘. It is then clear by use of 3.2.21 that the commutative
diagram above commutes and Fib ̄𝑠(𝑓 )( ̄𝑥) = ̄𝑦 and so Fib ̄𝑠(𝑓 ) = 𝐹.

(Step 2. Essentially surjective.) This part of the proof is based on an adaptation of
[SZA09] and [STA22, 0BN4] Let 𝐸 be a finite continuous 𝜋ét1 -set. We can decompose
𝐸 into a finite number of orbits and with each orbit being a transitive 𝜋ét1 -set. This
is because the functor Fib ̄𝑠 preserves finite coproducts because the fibre product of
schemes does. So without loss of generality we may assume that 𝐸 is a transitive
𝜋ét1 -set. Let 𝐺 ≔ 𝜋ét1 (𝑆, ̄𝑠) then the stabilizer 𝐻 ≔ 𝐺𝑥 of a point 𝑥 ∈ 𝐸 is open
by 4.2.15 and 𝐸 ≅ 𝐺/𝐻 as 𝜋ét1 -sets. We need to find an étale cover 𝑋 such that
Fib ̄𝑠(𝑋) ≅ 𝐸.

Looking at the natural projections 𝜋𝑘∶ 𝜋ét1 (𝑆, ̄𝑠) → Gal𝑆(𝑃𝑘) from the pro-finite
group structure we see that the finite subset of {ker 𝜋𝑘}𝑘∈𝒦 forms a neighborhood
of 1 in 𝜋ét1 (𝑆, ̄𝑠) by 4.2.19. Then 𝐻 contains some 𝑈 = ker 𝜋𝑘 for some 𝑘. Since 𝑃𝑘
is Galois we have that Fib ̄𝑠(𝑃𝑘) ≅ 𝐺/𝑈 as 𝜋ét1 -sets for some open 𝑈 ⊂ 𝐺. Again
because 𝑃𝑘 is Galois Gal𝑆(𝑃𝑘) acts transitively on Fib ̄𝑠(𝑃𝑘) which implies that 𝑈 is a
normal subgroup and 𝑈 ⊂ 𝐻. Full faithfullness gives us the following

Aut𝑆(𝑃𝑘) ≅ Aut𝜋1(Fib ̄𝑠(𝑃𝑘)) ≅ Aut𝜋1(𝐺/𝑈 ) ≅ 𝐺/𝑈

and further 𝐻/𝑈 ⊂ 𝐺/𝑈. Finally we define the étale cover 𝑋 ≔ 𝑃𝑘/(𝐻/𝑈 ) then

Fib ̄𝑠(𝑋) = Fib ̄𝑠(𝑃𝑘/(𝐻/𝑈 )) ≅ Fib ̄𝑠(𝑃𝑘)/(𝐻/𝑈 ) ≅ (𝐺/𝑈 )/(𝐻/𝑈 ) ≅ 𝐺/𝐻

by 4.1.7 and we are done.

We will now very briefly touch upon how the étale fundamental group is
a common generalization of the Galois theory and the topological fundamental
group.
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4.3.1 Galois theory

We recall that an extension 𝑘 ⊂ 𝐿 is Galois if 𝐿Aut𝑘(𝐿) = 𝑘, that is Aut𝑘(𝐿) fixes 𝑘
nothing else. Recall the classic theorem of Galois theory.

Theorem 4.3.12. (Galois theory for finite extensions) Let 𝑘 ⊂ 𝐿 be a finite Galois
extension with Galois group G. The maps that send subfields𝑀 to 𝐻 ≔ Aut𝑀(𝐿) and
subgroups 𝐻 to fixed fields 𝑀 ≔ 𝐿𝐻 is an inclusion reversing bijection.

Let 𝑘 be a field and 𝐴 a finite étale 𝑘-algebra. For a fixed separable closure
𝑘𝑠 of 𝑘 there is a Gal(𝑘) ≔ Gal𝑘(𝑘𝑠) action on 𝑘𝑠 that translates to an action on
Hom𝑘(𝐴, 𝑘𝑠). Grothendieck’s version that includes infinite Galois extensions is the
following.

Theorem 4.3.13. The contravariant functor 𝐹 ≔ 𝐴 ↦ Hom𝑘(𝐿, 𝑘𝑠) gives an anti-
equivalence between the category of finite étale 𝑘-algebras and the category of finite
sets with continuous and transitive left-Gal(𝑘)-action. Galois extensions give rise to
finite sets isomorphic to some finite quotient of Gal(𝑘).

Lemma 4.3.14. The separable closure 𝑘𝑠 of a field 𝑘 is the colimit over all of its finite
Galois subextensions 𝐿. We have the isomorphisms

Gal(𝑘) ≅ lim←−−
𝐿

Hom𝑘(𝐿, 𝑘𝑠) ≅ lim←−−
𝐿

Gal𝑘(𝐿)

which means that the absolute Galois group is profinite.

Proof. The first part is just a reformulation of the definition of separable closure,
that is 𝑘𝑠 ≅ lim−−→𝐿

𝐿. Further the endomorphisms of a separable 𝑘-extension is an
automorphism so that

Gal(𝑘) = Hom𝑘(𝑘𝑠, 𝑘𝑠) = Hom𝑘(lim−−→
𝐿

𝐿, 𝑘𝑠) ≅ lim←−−
𝐿

Hom𝑘(𝐿, 𝑘𝑠).

We also have that the image of such an extension 𝐿 → 𝑘𝑠 must necessarily be
𝐿 itself. On the other hand any morphism 𝐿 → 𝐿 that fixes 𝑘 can be extended
to 𝐿 → 𝑘𝑠 by the properties of separable closure. Therefore we can identify
Hom𝑘(𝐿, 𝑘𝑠) with Hom𝑘(𝐿, 𝐿) = Gal𝑘(𝐿) and we get the desired result.

Now to the proof of 4.3.13.

Proof. (Theorem 4.3.13) Let 𝑆 = Spec 𝑘 where 𝑘 is a field. Then the automorphism
group of Fib ̄𝑠 is the absolute Galois group of 𝑘. That is

Aut(Fib ̄𝑠) ≅ Gal𝑘(𝑘𝑠).

After all, an étale cover 𝑋 of 𝑆 = Spec 𝑘 is Spec𝐴 for 𝐴 a finite étale 𝑘-algebra
like we’ve seen several times before. The functor Fib ̄𝑠 maps 𝑋 ↦ Spec(𝐴 ⊗𝑘
Ω). Since we may restrict ourselves to connected covers which correspond to
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finite separable extensions 𝑘 ⊂ 𝐿 with [𝐿 ∶ 𝑘] = #|Hom𝑘(𝐿, 𝑘̄)| = 𝑛, all distinct
morphisms. But since Spec(𝐴 ⊗𝑘 Ω) ≅ ∐𝑛Ω the spectrum has precisely 𝑛 points
so we have a bijection. The image of those morphisms lie in the separable closure
and thus Fib ̄𝑠(𝑋) ≅ Hom𝑘(𝐿, 𝑘𝑠). As a mere curiosity we also see that the fibre
functor consists of the roots of the minimal polynomial defining 𝐿 and that the
automorphism group of the fibre functor acts on these roots. By the above theorems
we see that 𝜋ét1 (𝑆, ̄𝑠) ≅ Gal(𝑘).

4.3.2 Topological coverings

We start by giving a quick introduction to topological coverings and the topological
fundamental group. Let 𝑋 be a connected, locally connected and locally simply
connected topological space.

Definition 4.3.15. A cover of 𝑋 is a topological space 𝑌 with a continuous mor-
phism 𝑝∶ 𝑌 → 𝑋 such that each point of 𝑋 has a neighborhood 𝑉 for which
the fibre 𝑝−1(𝑉 ) decomposes as a disjoint union of subsets 𝑈𝑖 ⊂ 𝑌 and such that
𝑝(𝑈𝑖) ≅ 𝑉. A cover with finite fibres is called a finite cover.

Remark 4.3.16. Note that the fibres are discrete sets and that given 𝑥 ∈ 𝑋 the
fundamental group 𝜋1(𝑋 , 𝑥) acts on the fibre 𝑝−1(𝑥) by the so called monodromy
action by lifting a loop representative [𝛾 ]∶ [0, 1] → 𝑋 from 𝜋1(𝑋 , 𝑥) to a path
[ ̄𝛾 ]∶ [0, 1] → 𝑌 of 𝑌 by starting at 𝑦 ≔ 𝑝−1(𝑥).

Definition 4.3.17. A covering 𝑝∶ 𝑌 → 𝑋with a transitive group action ofAut𝑋(𝑌 )
is a Galois covering.

Remark 4.3.18. Note that this is in similarity to a Galois extension in how a
Galois extension has a transitive action by Gal(𝑘) and to that of an Galois cover of
schemes.

Theorem 4.3.19. The fibre functor

Fib𝑥∶ (𝑝∶ 𝑌 → 𝑋) ↦ 𝑝−1(𝑥)

equipped with the monodromy action gives an equivalence of the category of covers
of 𝑋 with the category of sets with left 𝜋1(𝑋 , 𝑥) action. Galois covers correspond to
coset spaces of normal subgroups of 𝜋1(𝑋 , 𝑥).

Proof. See [SZA09, Theorem 2.3.4].

Remark 4.3.20. The fibre functor is in fact representable by a universal cover
𝜋∶ ̃𝑋𝑥 → 𝑋 so that Fib𝑥 ≅ Hom( ̃𝑋𝑥, −). The existence of the universal cover ̃𝑋𝑥
corresponds in analogy to the existence of the separable closure of a base field.
The choice of a point 𝑥 corresponds to the choice of a separable closure, and finally
the fundamental group is analogous to the absolute Galois group Gal(𝑘).

Because of the representability one can see that

Aut( ̃𝑋𝑥) ≅ Aut(Fib𝑥) ≅ 𝜋1(𝑋 , 𝑥).

47



Corollary 4.3.21. The functor Fib𝑥 induces an equivalence of the category of finite
covers of 𝑋 with the category of finite continuous sets with left 𝜋1(𝑋 , 𝑥)∧ action.
𝜋1(𝑋 , 𝑥)∧ denotes the profinite completion of 𝜋1(𝑋 , 𝑥).

Proof. See [SZA09, Corollary 2.3.9]

For 𝑋 a scheme of finite type over ℂ one can define an analytic space 𝑋 an

associated with 𝑋 by embedding the ℂ-points of 𝑋 into ℂ𝑚. This is a topological
space. See [HAR77, Appendix B].

A morphism of ℂ-schemes of finite type 𝜙∶ 𝑌 → 𝑋 induces a morphism of
analytic spaces 𝜙an∶ 𝑌 an → 𝑋 an. In fact it can be shown that if 𝜙 is a finite étale
morphism then 𝜙an is a local isomorphism.

The étale fundamental group is, while powerful, also notoriously difficult to
compute in practice. Grothendieck proved the following theorem that in some
cases allows one to compute the étale fundamental group through the pro-finite
completion of the topological fundamental group.

Theorem4.3.22. Let𝑋 be a connected scheme of finite type overℂ and ̄𝑥 ∶ Specℂ →
𝑋 a geometric point. The functor (𝑌 → 𝑋) ↦ (𝑌 an → 𝑋 an) induces an equivalence
of the category of finite étale covers of 𝑋 with that of finite topological covers of 𝑋 an.

This functor induces an isomorphism

𝜋1(𝑋 an, ̄𝑥)∧ ≅ 𝜋ét1 (𝑋 , ̄𝑥).

The left-hand side is the pro-finite completion of the topological fundamental group
of 𝑋 with the base point ̄𝑥.

Proof. The theorem relies on deep theorem of algebraisation of finite topological
covers. See [SGA71, Exposé XII, Corollary 5.2].
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