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Abstract

A Jordan algebra is a nonassociative, commutative algebra that satisfies
a weaker form of associativity known as the Jordan identity. We go through
some basic properties and look at of some the most important classes of Jor-
dan algebras: full, Hermitian, and quadratic factors. We formalize the notion
of composition algebras which appear naturally as coordinates of certain Jor-
dan matrix algebras. We state Macdonald’s theorem and explore some of its
important consequences, and give a brief exposition of Peirce decompositions
used in studying the structure of Jordan algebras. Finally we sketch the de-
velopment of the structure theory for Jordan algebras since their inception in
1933.
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1

Introduction
Jordan algebras were first introduced in 1933 by Pascual Jordan in order to find a
suitable model of quantum mechanical observables. An observable in physics is any
physical quantity that can be measured. In classical mechanics, the mathematical
model for an observable is a real-valued function defined on the set of all possible
states of a system. In the Copenhagen interpretation of quantum mechanics, observ-
ables are modelled by certain linear operators on a Hilbert space. The eigenvalues of
these operators are always real numbers, and the collection of eigenvalues correspond
to the possible values that the observable can be measured as having.

In finite dimensions, observables can be represented by Hermitian matrices. A
Hermitian or self-adjoint matrix is a complex square matrix that is equal to its own
conjugate transpose. There are many ways to combine Hermitian matrices into new
Hermitian matrices, and Jordan sought to formalize this “algebra of observables”.
Many of the basic matrix operations do not preserve the Hermitian property, how-
ever. For example, multiplying a Hermitian matrix by a complex scalar does not
produce a Hermitian matrix unless the scalar is a real number, and the product of
two Hermitian matrices is not Hermitian unless the matrices commute. Represent-
ing observables as Hermitian matrices is therefore susceptible to the criticism that
many matrix operations are not “observable”; they are not intrinsic operations and
do not correspond to anything physically meaningful.

Jordan wanted to find an axiomatic framework that captured the algebraic prop-
erties of observables that would not be reliant on some ambient, outer structure with
operations that did not make sense for observables. He set out to study the algebraic
properties of Hermitian matrices in order to see what other possible non-matrix sys-
tems would satisfy these axioms. This led him to define the notion of a Jordan
algebra, or an r-number system, as it was initially called. After some investigation,
Jordan thought that all the algebraic properties of Hermitian matrices could be de-
rived from two basic properties (this later turned out to be false). The first was
commutativity. A product in a Jordan algebra needed to be commutative since it
is only when two Hermitian matrices commute that their matrix product is again
Hermitian. The second is known as the Jordan identity:

(x2 · y) · x = x2 · (y · x).
We can think of this property as a form of weaker associativity, requiring merely
that for any element y, multiplying with some x and its square x2 := x · x can be



done in any order.
The Hermitian matrices live inside the full matrix algebra of complex square

matrices. In general one can from any associative algebra A constuct a Jordan
algebra A+ by replacing the product xy of A with a derived product called quasi-
multiplication or the Jordan product:

x • y =
1

2
(xy + yx).

A Jordan algebra that lives inside some governing associative algebra is called
special, otherwise it is called exceptional. Jordan’s quest was to find an exceptional
setting for quantum mechanics.

In 1934, Jordan, John von Neumann and Eugene Wigner showed in [JNW34]
that every finite-dimensional, formally real Jordan algebra could be written as a
direct sum of simple ones, and that these simple building blocks came in five basic
types: Four of these were different types of Hermitian matrix algebras Hn(A), living
inside full associative matrix algebras Mn(A). The last type was of a different
nature. This was H3(O), a 27-dimensional algebra of 3× 3 Hermitian matrices with
entries from the Cayley algebra (or octonions) O, known now as an Albert
algebra. The Albert algebra did not seem special since its entries came from the
nonassociative algebra O. When the coordinates of matrices are not associative,
then matrix multiplication is not associative, so H3(O) did not appear to live inside
any associative algebra. Shortly after, A. A. Albert was able to prove in [AAA34]
that it was indeed exceptional.

The classification of finite-dimensional, formally real Jordan algebras came as a
disappointment to physicists. There were only one exceptional algebra in this list,
of dimension 27. This was of course insufficient to serve as a model of quantum
mechanics, and moreover, it provided little information as to the possible existence
of an infinite-dimensional exceptional one. Hope remained that one could find ex-
ceptional Jordan algebras of infinite dimensions.

In 1979-1983, mathematician Efim Zelmanov showed in a series of papers [Zel79a],
[Zel79b], [Zel83] that even in the infinite-dimensional case, there were no simple ex-
ceptional Jordan algebras other than the Albert algebras. He also gave a classifica-
tion similar to the finite-dimensional case, but for arbitrary simple Jordan algebras
of any dimension. This was the conclusive end to the search for an exceptional
setting for quantum mechanics.

While the initial objective had failed, it later became apparent that Jordan alge-
bras had a rich and interesting theory in their own right, with many applications to
various other areas of mathematics. The application of Jordan algebras to the theory
of Lie algebras was historically the first example, and the connections between Lie
algebras and Jordan algebras brought about continuous interest to Jordan theory.
Another important connection was with differential geometry and symmetric spaces.

In 1994, Zelmanov was awarded the Fields Medal for his solution to the Restricted
Burnside Problem (english translation in [Zel91],[Zel92]). Burnside’s original prob-
lem asks whether periodic groups (every element has finite order) that are finitely
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generated are necessarily finite. The answer to Burnside’s original problem was an-
swered in the negative by Golod in 1964. However, there were several variants to
the original problem, among them the restricted Burnside problem. It was known
that this problem could be reduced to a problem regarding certain Lie p-rings (Lie
algebras over Zp for a prime p). Zelmanov found that there was a natural Jordan
algebra structure in characteristic p that could be used to solve the problem about
the Lie p-rings. Notably for characteristic p = 2, both Lie algebras and ordinary,
“linear” Jordan algebras don’t work very well since the Jordan product xy+ yx and
the Lie bracket xy − yx become indistinguishable. The theory of Jordan algebras
had developed over fields of characteristic ̸= 2 due to the nature of the Jordan prod-
uct, but in 1967 Kevin McCrimmon gave a definition of a quadratic Jordan algebra,
with a product which, loosely speaking, looked like (x, y) 7→ xyx. This definition
filled the gap of characteristic 2, and it was precisely the quadratic formulation that
enabled Zelmanov to use Jordan algebras to solve the problem.
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2

Preliminaries

2.1 Algebras

Definition 2.1.1 (Multilinear map). Let V1, V2, . . . , Vn,W be vector spaces over
the same field F . A map f : V1 × V2 × · · · × Vn → W is called n-multilinear if it
is linear in each of its n arguments: for each i and any v1, . . . , vi−1, vi+1, . . . , vn, the
map

vi 7→ f(v1, . . . , vi−1, vi, vi+1, . . . , vn)

is linear. In particular for n = 2 and n = 3 a multilinear map is called bilinear and
trilinear, respectively.

Definition 2.1.2 (Algebra over a field). An algebra over a field F , or simply an
algebra, is a vector space A over F together with a bilinear product p : A×A→ A.
The product is usually abbreviated as concatenation xy := p(x, y). Explicitly, we
have for all x, y, z ∈ A, α, β ∈ F

(x+ y)z = xz + yz,

z(x+ y) = zx+ zy,

(αx)(βy) = (αβ)(xy).

An algebra is called associative if it is associative with respect to p, and commu-
tative if it is commutative with respect to p. An algebra is called unital if it has a
two-sided identity element with respect to p, i.e. if there exists some element 1 ∈ A
such that 1a = a1 = a for all a ∈ A.

In some situations, associativity of the product is assumed in the definition of an
algebra. Since we are interested in Jordan algebras whose product is not necessarily
associative, we shall never make the assumption that an algebra is associative unless
explicitly mentioned. An algebra that is not assumed to be associative is sometimes
called a nonassociative algebra, meaning it may or may not be associative.

Definition 2.1.3 (Algebra homomorphism). An algebra homomorphism is a
linear map φ : A→ B between algebras A,B that preserves multiplication: φ(xy) =
φ(x)φ(y). If the algebras are unital, we impose the additional requirement that
φ(1A) = 1B.



Definition 2.1.4 (Subalgebras and ideals). For any algebra A, a subalgebra S
of A is a vector subspace that is closed under multiplication with itself: SS ⊂ A.
For unital algebras, we must also require that 1 ∈ S. A (two-sided) ideal I of A
is a vector subspace closed under left and right multiplication by A: AI ⊂ I and
IA ⊂ I. A proper ideal is an ideal that is different from the improper ideals A
and 0.

Definition 2.1.5 (Subalgebra generated by a set). Let A be an algebra over a field
F and let S ⊂ A. The subalgebra of A generated by S is the smallest subalgebra
of A containing S, i.e. it is the intersection of all subalgebras of A containing S.

Definition 2.1.6 (Quotient algebra). Any ideal I of an algebra A is the kernel
of the canonical projection homomorphism π : x 7→ x from A to the quotient
algebra A/I consisting of all cosets x = x+I with the induced operations λx = λx,
x+ y = x+ y, and x y = xy.

Definition 2.1.7 (Direct sum and product). The direct product
∏

i∈I Ai of a
family of algebras {Ai}i∈I indexed by some set I is the Cartesian product of the
underlying sets equipped with the usual componentwise operations of scalar multi-
plication, addition, and multiplication.

The direct sum
⊕

i∈I Ai is the subalgebra of
∏

i∈I Ai consisting of all tuples
with all but finitely many entries equal to zero. An element of the direct sum can
be represented as a finite sum ai1 + . . . ain of elements aj ∈ Aj. When necessary,
the symbol ⊞ is used to denote an algebra direct sum to distinguish it from a mere
vector space direct sum.

For each i ∈ I there are canonical projections πi of both the direct product and
direct sum onto the ith component Ai.

Definition 2.1.8 (Simple algebra). An algebra A is called simple if it is nontrivial
(A · A ̸= 0) and has no proper ideals. An algebra A is semisimple if it is a finite
direct sum of simple algebras.

Definition 2.1.9 (Associator and commutator). In any algebra A, there is a tri-
linear map [−,−,−] : A × A × A → A defined by [x, y, z] = (xy)z − x(yz) called
the associator. Similarly one defines the bilinear map [x, y] = xy − yx called the
commutator. Saying that an algebra is associative is thus to say that [x, y, z] = 0
for all x, y, z, and similarly an algebra is commutative iff [x, y] = 0 for all x, y.

We may think of the associator as in some sense measuring “how far” three ele-
ments are from associating, and the commutator as measuring how far two elements
are from commutating.

Definition 2.1.10 (Nucleus and center). The nucleus Nuc(A) of an algebra A is
the part that associates with every element of the algebra:

Nuc(A) := {n ∈ A | [n, a, a′] = [a, n, a′] = [a, a′, n] = 0 for all a, a′ ∈ A}.
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The center Cent(A) is the “scalar” part of the algebra, the elements that commute
and associate with all elements of the algebra:

Cent(A) := {c ∈ Nuc(A) | [c, a] = 0 for all a ∈ A}.

A unital algebra A can always be considered as an algebra over its center. When
A is unital, it contains a copy F1 of the base field in its center (via the map λ 7→ λ·1).
An algebra A is called central if its center is precisely the scalar multiples F1, and
we say that A is central-simple if it is simple and central. We collect some basic
properties of the nucleus and center.

Proposition 2.1.1. Let A be an algebra over a field F .

(i). The nucleus Nuc(A) is an associative subalgebra of A, and the center Cent(A)
is a commutative and associative subalgebra of A.

(ii). The nucleus and the center are invariant as sets under any automorphism of
A.

(iii). If A is unital, then λ1 ∈ Cent(A) for all λ ∈ F .

(iv). If A is unital, then Cent(A) is a commutative unital ring and A can be con-
sidered as an algebra over Cent(A).

(v). If A is unital and simple, then Cent(A) is a field.

We have the usual isomorphism theorems, or fundamental homomorphism theo-
rems, for algebras:

Theorem 2.1.1 (Fundamental homomorphism theorems).

(i) If φ : A → B is an algebra homomorphism, then kerφ is an ideal of A, the
image φ(A) is a subalgebra of B, and A/ ker(φ) is isomorphic to φ(A).

(ii) There is a bijective correspondence between the ideals (subalgebras, respec-
tively) C of the quotient algebra A/B and those C of A which contain B. For
any such ideals C, we have (A/B)/C ∼= A/C.

(iii) If B is an ideal of A and C a subalgebra of A, then C/(C ∩B) ∼= (C +B)/B.

In Jordan matrix algebras, the entries are in a natural way elements of alternative
algebras. The most important example of alternative algebras are the octonion
algebras of dimension 8.

Definition 2.1.11 (Alternative algebra). An alternative algebra A is an algebra
that satisfies the following two conditions for all x, y:

x(xy) = (xx)y (2.1.1)

(yx)x = y(xx). (2.1.2)
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The two identities (called the left and right alternative laws) become in terms
of associators

[x, x, y] = [y, x, x] = 0, x, y ∈ A. (2.1.3)

Every associative algebra is alternative, and one may view alternativity as a weaker
notion than associativity. The reason for the name “alternative” is that the associ-
ator in an alternative algebra A alternates in the sense that if π is any permutation
of 1, 2, 3, then

[xπ(1), xπ(2), xπ(3)] = sign(π)[x1, x2, x3], (2.1.4)

where sign(π) is the number 1 if π is even and −1 if π is odd. To see this, it is
enough to show that

[x, y, z] = −[y, x, z] = [y, z, x]

for all x, y, z ∈ A, since a transposition and a cycle generate all the permutations.
Using linearity of the associator, we have

[x+ y, x+ y, z] = [x, x, z] + [x, y, z] + [y, x, z] + [y, y, z]

= [x, y, z] + [y, x, z] = 0,

showing [x, y, z] = −[y, x, z]. In the same way [y, z, x] = −[y, x, z].
In particular 0 = [x, x, y] = −[x, y, x], so every alternative algebra satisfies the

flexible law :
(xy)x = x(yx).

Thus we may write products xyx unambiguously, omitting brackets. From this we
can derive the Moufang identities

(xax)y = x(a(xy)),

y(xax) = ((yx)a)x,

(xy)(ax) = x(ya)x

for all x, y, a ∈ A. For the first identity, we have

(xax)y − x(a(xy)) = [xa, x, y] + [x, a, xy]

= −[x, xa, y]− [x, xy, a]

= −(x(xa))y + x((xa)y)− (x(xy))a+ x((xy)a)

= −(x2a)y − (x2y)a+ x((xa)y + (xy)a)

= −[x2, a, y]− [x2, y, a]− x2(ay)− x2(ya) + x((xa)y + (xy)a)

= x(−x(ay)− x(ya) + (xa)y + (xy)a)

= x([x, a, y] + [x, y, a])

= 0.

The second identity can be proved by considering the opposite algebra Aop, defined
the vector space A with product x·opy := yx. In Aop, the left alternative law becomes
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the right alternative law and vice versa, so Aop is alternative if A is. The first and
second Moufang identities have the same reciprocal relationship as the alternative
laws. The third identity follows from the first:

(xy)(ax)− x(ya)x = [x, y, ax] + x(y(ax)− (ya)x)

= −[x, ax, y]− x[y, a, x]

= −(xax)y + x((ax)y − [y, a, x])

= −x(−[a, x, y] + [y, a, x])

= 0.

The second Moufang identity is equivalent to the identity

[y, xa, x] = −[y, x, a]x, (2.1.5)

since

[y, ax, x] = (y(xa))x− y(xax) = (y(xa))x− ((yx)a)x = −[y, x, a]x.

With x = x+ z, (2.1.5) becomes

[y, xa, z] + [y, za, x] = −[y, x, a]z − [y, z, a]x. (2.1.6)

A useful way to characterize an alternative algebra as a weakened form of an
associative algebra is a result due to Artin.

Theorem 2.1.2 (Artin). The subalgebra generated by any two elements of an al-
ternative algebra is associative.

The proof is from Theorem III.3.1 in [Schaf66].

Proof. Let A be an alternative algebra. Let p(x, y) denote an arbitrary nonassocia-
tive product of k elements zi, i = 1, . . . , k where each zi is equal to either x or y.
Denote the number k of p(x, y) with d(p(x, y)). To show that a subalgebra generated
by two elements x and y is associative, we must show that

[p, q, r] = 0

for all nonassociative products p = p(x, y), q = q(x, y) and r = r(x, y). We proceed
by induction on n = d(p) + d(q) + d(r). For n = 1, 2 the statement clearly holds.
Suppose [p, q, r] = 0 whenever n < k for some integer k. Then in particular d(p) < n,
thus writing p as a product of any three parts p1, p2, p3 shows that any way of putting
parentheses is equivalent; [p1, p2, p3] = 0 for any choice of parts of p by the induction
hypothesis. Extending the associative law to the generalized associative law, we
find that all parentheses in p are unnecessary, and we may write p = z1 . . . zd(p)
unambiguously. Since p, q, r are in x, y, two of p, q, r must begin with the same
element, say x. We may use the fact that the associator map is alternating for an
alternative algebra, and assume without loss of generality that q and r begin with x
for which only the sign of the associator may have changed. The situation can now
be divided into four cases:
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1. d(q) = d(r) = 1. Then [p, q, r] = [p, x, x] = 0 by the right alternative law.

2. If only one of q or r has degree > 1, say d(r) = 1 and d(q) > 1, then we may
write q = xq′, so that [p, q, r] = [p, xq′, x] = −[p, x, q′]x using (2.1.5). By the
induction hypothesis [p, x, q′] = 0.

3. If both d(q) > 1 and d(r) > 1, write q = xq′ and r = xr′. Put y = xr′, a = q′

and z = p in (2.1.6) to get

[p, q, r] = [p, xq′, xr′] = −[xr′, xq′, p]

= [xr′, pq′, x] + [xr′, x, q′]p+ [xr′, p, q′]x

= −[pq′, xr′, x]

= [pq′, x, r′]x

using (2.1.5). Now d(pq′) + d(x) + d(r′) = d(p) + d(q′) + 1 + d(r′) < d(p) +
d(q) + d(r), so the above is zero by the induction hypothesis.

Another weak form of associativity is power associativity. An algebra is said to
be power associative if the subalgebra generated by any single element is asso-
ciative. This means that in any repeated product of x with itself, the order of the
operations does not matter, e.g. ((xx)x)x = (xx)(xx). Equivalently, an algebra A
is power associative if xnxm = xn+m for all nonnegative integers m,n. Every asso-
ciative algebra is of course power associative, and every alternative algebra is power
associative, so power associativity is a weaker notion than alternativity. Almost all
interesting algebras are power associative, and Jordan algebras are no exception.

A division algebra is an non-trivial algebra D such that whenever xy = 0, we
have either x = 0 or y = 0. IfD is an associative algebra, thenD is a division algebra
if and only if it is unital and every non-zero element x ∈ D has a multiplicative
inverse x−1 ∈ D: xx−1 = x−1x = 1. This is not true in general for nonassociative
algebras.

There is a more general notion of an algebra over a ring, which is defined in
precisely the same way except that the field F is now a commutative unital ring
R, and A is an R-module rather than a vector space. In the theory of associative
algebras, one may define an algebra over a commutative unital ring R as a ring A
together with a ring homomorphism from R into the center of A. Since the definition
of a ring requires that multiplication is associative, this is not applicable for general
nonassociative algebras.

2.2 Categories

We shall state some of the results informally in the language of category theory. A
category C consists of a collection of objects O and a set M(X, Y ) of morphisms
for each pair of objects X, Y , satisfying:

13



1. For objects X, Y and Z, we have a binary composition operation M(Y, Z)×
M(X, Y ) → M(X,Z) that is associative, and every object X has an identity
morphism 1X ∈ M(X,X):

(h ◦ g) ◦ f = h ◦ (g ◦ f), f ◦ 1X = 1Y ◦ f

for all f ∈ M(X, Y ), g ∈ M(Y, Z) and h ∈ M(Z,W ).

We think intuitively of objects as sets with some kind of additional structure, and
morphisms as set-theoretic maps that preserve that structure. However, it is im-
portant to keep in mind that a category is an abstract notion and its objects and
morphisms can be anything for which the axioms hold.

A (covariant) functor F : C → D from a category C to a category D is a mapping
that associates each object X in C to an object F (X) in D, and each morphism
f ∈ M(X, Y ) to a morphism F (f) : F (X) → F (Y ), such that F (1X) = 1F (X) for
all X in C, and

F (g ◦ f) = F (g) ◦ F (f)
for all f ∈ M(X, Y ) and g ∈ M(Y, Z).

We think of a functor as a construction of D-objects out of C-objects in a
way that uses only ingredients from the C-object. Any morphism of the C-object
preserves these ingredients, and therefore induces a morphism of the constructed
D-object. Some examples are constructions of free algebraic objects from sets, such
as free groups, free modules, and polynomial rings. These constructions are functors
from the category of sets with morphisms ordinary set functions, to the category
of some algebraic structure with morphisms the maps that preserve that structure:
group homomorphisms, module homomorphisms, etc. In the other direction, we
can for any algebraic object consisting of an underlying set with some additional
structure consider functors that “forget” all structure and keeps only the underlying
set; these are the forgetful functors from a category of some type of algebraic object
to the category of sets that sends each object to its underlying set and each structure-
preserving homomorphism to its underlying set function.
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3

Overview
In section 4, we discuss the inception of Jordan algebras beginning in the 1930s
when Pascual Jordan investigated the algebraic properties of Hermitian matrices.
The theory of infinite-dimensional algebras was not developed at this time even
in the associative case. Jordan hoped that by capturing the algebraic properties
of finite-dimensional operators in the form of Hermitian matrices in an axiomatic
system, he could then set out to classify the resulting structures and hopefully find
a suitable family of finite-dimensional algebras parametrized by natural numbers n,
so that letting n tend to infinity one could obtain a suitable setting for quantum
mechanics in infinite dimensions.

We have a first look at three examples of Jordan algebras in section 5: full,
Hermitian, and spin factors, before turning to the first classification result from
the fundamental 1934 paper by Jordan, von Neumann and Wigner in section 6. In
section 7, we go over some basic concepts such as multiplication operators and lin-
earization. We give a linearized version of the Jordan identity, define some auxiliary
products and show that Jordan algebras are always power associative. We present
the definition of a quadratic Jordan algebra finalized by McCrimmon in 1967 using
the auxiliary U -product.

In section 8, we formalize the notion of composition algebras. The exceptional Al-
bert algebras consists of matrices with entries from 8-dimensional octonion algebras,
a type of composition algebra obtained through the Cayley-Dickson construction.
We prove a famous theorem of Hurwitz asserting that the only composition algebras
are the base field of dimension 1, a quadratic extension of dimension 2, a quaternion
algebra of dimension 4 and an octonion algebra of dimension 8. At the end of the
section I prove that the Hermitian 2 × 2 matrix algebras appearing in Jordan, von
Neumann and Wigner’s classification are isomorphic to spin factors.

In the following three sections 9, 10, 11 we return to the examples of full, Hermi-
tian and spin factor Jordan algebras of section 5 in slightly more detail. In section
9 we will see how a Jordan algebra can be constructed from an alternative algebra.
In section 10 we show how full Jordan algebras arises as certain Hermitian Jordan
algebras, and we define on the most important class of Hermitian Jordan algebras
with finiteness conditions: the matrix algebras. In section 11 we show how we can
construct a Jordan algebra from a vector space and a quadratic form, and how the
spin factors from 5 arise as special cases of this construction.

In section 12 we define the notion of free Jordan algebras and state Macdonald’s



theorem. We explore some of the many consequences of Macdonald’s theorem, in
particular Cohn’s reversible theorem and Cohn symmetry. We introduce the notion
of i-special and i-exceptional Jordan algebras and discuss how the failure of Jordan’s
axiomatic framework to capture all of the algebraic properties of Hermitian matrices
led to some unintended fortunate consequences, most notably the Albert algebras. I
show how operator power-associativity for the U -operator follows from Macdonald’s
theorem.

Next we give a brief exposition in 13 of the method of Peirce decomposition
in the Jordan case. In the classical Artin-Wedderburn theory of associative alge-
bras, decomposition with respect to a family of orthogonal idempotents is a key
tool used to break up an algebra into smaller pieces with multiplication behaving
like multiplication of elementary matrices Eij (1 at entry ij and the rest zeroes).
Peirce decompositions play an important role also in the structure theory of Jordan
algebras. We finish the section by showing how the entries in a Hermitian matrix
algebra come naturally from an alternative algebra.

In section 14 we note some similarities and differences between Jordan algebras
and Lie algebras. In particular we will see how the class of special Jordan algebras
cannot be characterized by identities in the same way as with Lie algebras. We give
some results as to when and how homomorphic images of special Jordan algebras
are special, and we give an example of an i-special, or identity-special, but excep-
tional Jordan algebra. We also mention some surprising connections between the
exceptional Albert algebras and the exceptional simple Lie algebras.

In the final section 15, we briefly sketch the development of the Jordan structure
theory from its inception in the 1930s to Zelmanov’s complete classification of simple
Jordan algebras of arbitrary dimensions in the early 1980s.
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4

Jordan’s initial definition

Definition 4.0.1 (Hermitian matrix). A Hermitian matrix, or self-adjoint ma-
trix, is a complex square matrix X that is equal to its own conjugate transpose, i.e.
xij = xji for all indices i and j, where x denotes the complex conjugate of x.

The first step in analysing the algebraic properties of Hermitian matrices was
to decide what the basic “observable” operations were. Mathematically, this means
finding ways of combining Hermitian matrices to get another Hermitian matrix.
While the sum of two Hermitian matrices is always Hermitian, the ordinary matrix
product is in general not Hermitian—this happens only if the two matrices commute.
The set of Hermitian n× n matrices does not form a vector space over the complex
numbers C, since the set is not closed under multiplication by complex scalars. For
example, the identity matrix In is equal to its own conjugate transpose, but i · In
is not. The Hermitian matrices are closed under multiplication by real scalars,
however, and forms a vector space over R.

There many ways to combine Hermitian matrices to obtain new ones, but after
some experimentation, Jordan found that they could all be expressed in terms of
quasi-multiplication, which later became known as the Jordan product:

A •B =
1

2
(AB +BA).

Here AB is ordinary matrix multiplication. Given two Hermitian matrices, the
Jordan product is also Hermitian, as we shall see. The Jordan product is bilin-
ear, making the R-vector space of Hermitian matrices into an R-algebra with this
product.

Jordan investigated what laws or axioms the algebra of Hermitian matrices
obeyed. He thought that the key property of the Jordan product besides it be-
ing commutative, was a weaker form of associativity:

(A • A) • (B • A) = ((A • A) •B) • A.

Today, this is known as the Jordan identity.

Another important property of the algebra of Hermitian matrices under the Jor-
dan product is positive-definiteness or formal reality.



Definition 4.0.2 (Symmetric bilinear form). Let V be a vector space over a field
F . In general, a multilinear map f : V1 × · · · × Vn → W is called a n-multilinear
form if the codomain W = F is the field of scalars. An 1-multilinear form is called
a linear form (or linear functional, one-form, co-vector), and a 2-multilinear form
is called a bilinear form. A bilinear form b : V1 × V2 → F is symmetric if
V1 = V2 =: V and b(u, v) = b(v, u) for all u, v ∈ V .

A symmetric bilinear form b : V × V → F on a real or complex vector space
V is called positive definite if b(x, x) > 0 for all nonzero x. Let A = (aij) be a
Hermitian n×n matrix, i.e. aij = aji for all i, j = 1, . . . , n. Looking at the diagonal
entries of the square A2 = (a′ij) (under ordinary matrix multiplication), we have

a′ii =
n∑

j=1

aijaji =
n∑

j=1

aijaij =
n∑

j=1

|aij|2.

If b is the trace bilinear form b(A,B) := tr(AB), then

b(A,A) = tr(A2) =
n∑

i=1

n∑

j=1

|aij|2,

so that b(A,A) > 0 unless all aij are zero, so b is positive definite. This property
had algebraic consequences for the Jordan product. Namely, a sum of squares A2 +
B2 + . . . is never equal to zero unless all A,B, · · · = 0. Indeed, if A2 +B2 + · · · = 0,
then tr(A2) + tr(B2) + · · · = 0, and every term is nonnegative, forcing each term to
be zero, which happens precisely when A,B, · · · = 0.

More generally, for any F -algebra A on which there exist a symmetric positive
definite bilinear form b : A× A→ F , we have

x21 + x22 + · · ·+ x2n = 0 ⇐⇒ x1 = x2 = · · · = xn = 0.

Jordan was familiar with this “formal reality” property from the Artin-Schreier
theory of formally real fields.

After some experimentation, it seemed to Jordan that all other laws satisfied by
the Jordan product were consequences of commutativity, the Jordan identity, and
positive-definiteness (formal reality), although he did not make formal reality as part
of the axioms. He made the following definition.

Definition 4.0.3 (Jordan’s initial definition). A Jordan algebra J = (V, p) con-
sists of a vector space V over R equipped with a bilinear product p : V × V → V ,
abbreviated p(x, y) = x • y, satisfying

x • y = y • x (Commutativity)

(x • x) • (y • x) = (x • x) • y) • x (Jordan identity)

A Jordan algebra is called Euclidean or formally real if

x21 + x22 + · · · = 0 =⇒ x1 = x2 = · · · = 0 (x2 := x • x).
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Jordan originally called these r-number algebras. The term “Jordan algebra”
was first used by A. A. Albert in 1946.

We know now that Jordan had overlooked some algebraic properties of Hermitian
matrices, and his initial definition had captured something slightly more general than
what was intended. The quadratic product xyx and the inverse x−1 were two natural
operations on Hermitian matrices that were not considered. These can be defined
using the Jordan product, but it was not noticed for another 30 years. The quadratic
product and the inverse were later used by McCrimmon to provide an alternative
axiomatic formulation for Jordan algebras (see Definition 7.3.2).

Something else that was overlooked were the n-tad products, defined as

{x1, . . . , xn} = x1x2 . . . xn + xnxn−1 . . . x1.

If X1, . . . , Xn are Hermitian matrices, then so is {X1, . . . , Xn} for all n. The 2-tad is
just twice the Jordan product 2x•y. For n = 3, the triad {x1, x2, x3} can, somewhat
surprisingly, also be expressed in terms of the Jordan product as we will see in section
7. However, for n ≥ 4, the n-tads cannot be written as Jordan products. The n-tad
operations for n ≥ 4 were thus not included in the theory for Jordan algebras. In
particular the exclusion of the tetrad for n = 4 lead to some interesting unintended
Jordan algebras. These were the spin factors and the exceptional Albert algebras,
both of which are not closed under the tetrad.

Jordan also missed some laws, or identities, that could not be built up from
the Jordan bullet product. The first and smallest of these is Glennie’s Identity G8

(Definition 12.2.3), an expression in three variables of degree 8 that was discovered
in 1963.
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5

Examples

LetMn(C) be the R-algebra of complex n×n matrices. The set Hn(C) of Hermitian
matrices is a subspace of Mn(C), and we may equip it with the Jordan product,
making it into a Jordan algebra.

In general, given any associative algebra A, we can construct a Jordan algebra
A+ by taking the vector space part of A and equipping it with the Jordan product
x • y = 1

2
(xy + yx) derived from the original product in A. The Jordan product

is clearly commutative with the square x • x = x2 coinciding with the associative
square, and it satisfies the Jordan identity:

((x • x) • y) • x =
1

4

[
(x2y + yx2)x+ x(x2y + yx2)

]

=
1

4

[
x2yx+ yx3 + x3y + xyx2

]

=
1

4

[
x2(yx+ xy) + (yx+ xy)x2

]

= (x • x) • (y • x).

The construction of A+ is an example of a special Jordan algebra.

Definition 5.0.1 (Special and exceptional). A Jordan algebra J is called special
if it is isomorphic to a subalgebra of A+ for some associative algebra A. A Jordan
algebra that is not special is called exceptional.

We shall frequently identify special Jordan algebras J as a subsets of A+.
The algebra A+ is not associative in general. For example, take A =M2(R) and

let Eij denote the elementary matrix with entry 1 at ij and 0 elsewhere, and let

X =

(
0 1
1 0

)
.

Then in the ordinary matrix product of A we have E11E22 = E22E11 = 0, and a
straightforward computation shows that

(E11 • E22) •X = 0, E11 • (E22 •X) =
1

4
X.



5.1 Full

The first example of Jordan algebras are the full algebras A+ we have just seen.
These are obtained by taking an associative algebra and “symmetrizing” it, replacing
its product with the Jordan product.

Definition 5.1.1 (Full Jordan algebra). Given a (not necessarily associative) alge-
bra A over R with product xy, we define A+ to be the algebra obtained from the
vector space A equipped with the Jordan product

x • y :=
1

2
(xy + yx).

We saw that when A is associative, A+ is a Jordan algebra. Later, we shall see
that we can weaken the assumption on A from being associative to being alternative
and still obtain a Jordan algebra through this construction (Theorem 9.0.2).

The full Jordan algebras are rarely formally real. For example, if we take A =
Mn(R) to be the algebra of n×n matrices with entries from an arbitrary unital ring
R, then A+ is never formally real for n ≥ 2. Indeed, consider any elementary matrix
Eij. Squaring Eij, one finds that E2

ij = 0 whenever i ̸= j. However, if we restrict
ourselves to the set of symmetric real matrices or the Hermitian complex matrices,
then A+ will be formally real.

5.2 Hermitian

The Jordan algebra of complex Hermitian matrices is an example of a more general
class of Jordan algebras. These are algebras obtained from an alternative algebra
by means of an involution.

Definition 5.2.1 (Algebra involution). Let A be any algebra, not necessarily com-
mutative nor associative. An involution ⋆ : A → A on A is an anti-automorphism
on A of period 2. That is, it is a linear map from A to itself that reverses the order
of products:

(xy)⋆ = y⋆x⋆ ∀x, y ∈ A,

and for which (x⋆)⋆ = x for all x ∈ A.

The notion of involutions generalizes complex conjugation in C. Conjugation in
C is an involution, but due to commutativity conjugation in C is just an ordinary
automorphism of period 2.

Definition 5.2.2. A ⋆-algebra (“star-algebra”) or algebra with involution (A, ⋆)
is any algebra A together with a choice of involution. A ⋆-algebra homomorphism
φ : (A, ⋆) → (A′, ⋆′) is an algebra homomorphism that respects the involution:
φ(x⋆) = φ(x)⋆

′
, or φ ◦ ⋆ = ⋆′ ◦ φ. Similarly, a ⋆-ideal of (A, ⋆) is the same as

an algebra ideal I of A except that it must also be invariant under the involution:
x ∈ I =⇒ x⋆ ∈ I.
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The archetypical example of a ⋆-algebra is the algebra of complex numbers with
conjugation. Other important involutions are the standard trace involutions on a
quaternion or octonion algebra in section 8.

Definition 5.2.3 (Hermitian elements). Let (A, ⋆) be a ⋆-algebra. An element
x ∈ A fixed by the involution, x⋆ = x, is called Hermitian, or self-adjoint, and
the set of all Hermitian elements is denoted with H(A, ⋆). If (A, ⋆) is a composition
algebra (Definition 8.0.2) equipped with its standard trace involution, we may simply
write H(A).

There are two general ways to construct a Hermitian element out of an arbitrary
x ∈ A, the norm n(x) := xx⋆ and the trace t(x) := x + x⋆. If the base field has
characteristic different from 2, then every Hermitian element x is a trace 1

2
t(x), and

when A is unital, every trace t(x) is a norm n(x+ 1)− n(x)− n(1).

Remark 5.2.1. The term “norm” has no connection to the concept of norms in
metric spaces. Rather, the trace and the norm are polynomial functions analogous
to the trace and the determinant of a matrix. There is a general notion of norm in
finite-dimensional power associative algebras A over a field F . If x1, . . . , xn is a basis
for A, then the element x = t1x1 + . . . tnxn in the polynomial ring F [t1, . . . , tn] is a
generic element of A in the sense that every element of A arises as x through the
specialization ti 7→ λi of the indeterminates to scalars in F . The generic element x
satisfies a generic minimum polynomial that looks like the characteristic polynomial
for matrices:

xk − a1(x)x
k−1 + · · ·+ (−1)kak(x)1 = 0,

where the ai(x) can be shown to be polynomial functions ai ∈ F [t1, . . . , tn] that are
homogeneous of degree i in the indeterminates t1, . . . , tn. The functions a1(x) =: t(x)
and ak(x) =: n(x) are called the generic trace and generic norm of A, and the
number k is the degree of the algebra. See e.g. [Jac89] for a detailed treatment.

When A = Mn(C) is the algebra of complex square matrices and ⋆ is the con-
jugate transpose involution, then H(A, ⋆) is the set of ordinary Hermitian complex
matrices. If A = Mn(R) is the algebra of real matrices, then H(A, ⋆) is the set of
symmetric matrices.

When the ⋆-algebra A is associative, it is easy to verify that the Hermitian
elements H(A, ⋆) form a Jordan algebra under the Jordan product.

Theorem 5.2.1. Let (A, ⋆) be a ⋆-algebra. If A is associative, then H(A, ⋆) is a
Jordan subalgebra of A+ under the Jordan product x • y = 1

2
(xy + yx).

We prove this in section 10 when we cover Hermitian Jordan algebras in more
detail. Note that while H(A, ⋆) is closed under the Jordan product, it is not in
general closed under the possibly noncommutative product xy of A, since (xy)⋆ =
y⋆x⋆ = yx for x, y ∈ H(A, ⋆). Hence H(A, ⋆) is a Jordan subalgebra of A+, but not
a subalgebra of A.
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Given a unital associative ⋆-algebra A with involution denoted with x 7→ x, we

can define an involution on the matrix algebra A := Mn(A) by X 7→ X
T
, i.e. by

sending a matrix X = (xij) to its conjugate transpose X
T
= (xji). This construction

gives us the most important class of Hermitian Jordan algebras.

Theorem 5.2.2. Let (A,−) be a unital associative ⋆-algebra over a field F with

involution denoted with x 7→ x. The conjugate transpose mapping X 7→ X
T
is an

involution on the algebra Mn(A) of all n×n matrices with entries from A under the
usual matrix product XY . The set Hn(A,−) := H(Mn(A),−T ) of all “Hermitian”

matrices (X
T
= X) under this involution is closed under the Jordan productX•Y =

1
2
(XY + Y X) and forms a Jordan algebra. If A is a composition algebra equipped

with its standard trace involution, we may simply write Hn(A).
Such a Jordan matrix algebra is formally real if the ⋆-algebra A is formally real

in the sense that ∑

j

xjxj = 0 =⇒ all xj = 0 xj ∈ A.

In particular, taking A = R to be the algebra of real numbers with trivial in-
volution: r = r for all r ∈ R, then Hn(A,−) is a formally real Jordan algebra of
symmetric real matrices under the Jordan product. If we take A = C to be the alge-
bra of complex numbers over itself with involution defined as complex conjugation,
we get a formally real Jordan algebra of Hermitian matrices.

Similar to how we may think of complex numbers a + bi as pairs (a, b) of real
numbers, Hamilton’s quaternionsH can be thought of as pairs of complex numbers.
The quaternions is an associative, noncommutative R-algebra on which there is a
natural involution, defined using the involution on C. Thus Hn(H,−) is a Jordan
algebra. When we construct the Cayley algebra, or the octonions O as pairs of
quaternions by the same recipe as for constructing C and H, we will find that O is
neither commutative nor associative. Hence Hn(O) is no longer guaranteed to be a
Jordan algebra. Specifically, Hn(O) is not a Jordan algebra for n ≥ 4, but for n = 3
it is (cf. Theorem 13.2.3). For n = 3 we obtain an Albert algebra H3(O) which is
an exceptional Jordan algebra.

5.3 Spin factors

The first Jordan algebras that were not Hermitian matrix algebras were discovered
by Max Zorn. These are called the spin factors. Let ⟨−,−⟩ denote the usual inner
product (dot product) on the vector space Rn, and set Jspin(n) := Rn ⊕ R. Define
a product on the space Jspin(n) by

(x, α) • (y, β) := (βx+ αy, ⟨x,y⟩+ αβ).

The unit element on Jspin(n) is (0, 1). The product is commutative since the inner
product is symmetric:
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(x, α) • (y, β) = (βx+ αy, ⟨x,y⟩+ αβ)

= (αy + βx, ⟨y,x⟩+ βα)

= (y, β) • (x, α).

To see that the product satisfies the Jordan identity, note that

(x, a)2 = (2ax, ⟨x,x⟩+ a2) = (⟨x,x⟩ − a2)(0, 1) + 2a(x, a).

This shows (x, a)2 is a linear combination of (x, a) and the unit element. If A is any
commutative unital algebra over R, x, y ∈ A and x2 = α1 + βx for some α, β ∈ R,
then

(x2y)x = x(x2y) = x((α1 + βx)y) = α(xy) + βx(xy),

and

x2(yx) = x2(xy) = (α1 + βx)(xy) = α(xy) + βx(xy),

so that (x2y)x = x2(yx) and the Jordan identity holds. In general, any unital
commutative algebra for which every element satisfies a degree 2 equation (i.e., the
algebra is of degree 2, cf. remark 5.2.1) is automatically a Jordan algebra (Lemma
11.1). The Jordan algebra Jspin(n) is also formally real. This follows from the fact
that an inner product is positive-definite, and that

∑

j

(xj, aj)
2 =

∑

j

(2ajxj, ⟨xj,xj⟩+ a2j)

= 2

(∑

j

ajxj, 0

)
+

(∑

j

⟨xj,xj⟩+ a2j

)
(0, 1),

where the coefficient of (0, 1) is zero if and only if all xj = 0 by positive-definiteness
of the inner product and all aj = 0.

The reason the Jordan algebras Jspin(n) is called spin factors comes from some-
thing called the spin group in physics. The spin group is the universal covering space
of the special orthogonal group SO(n). The special orthogonal group is sometimes
called the rotation group due to the fact that its elements act on R2 as rotations
around a point (or around a line in R3).

It turns out that even though the spin factors Jspin(n) are not constructed as
Hermitian matrix algebras, there is nevertheless an embedding of Jspin(n) into a
large Jordan algebra of real hermitian (symmetric) 2n × 2n matrices, so the spin
factors Jspin(n) are special Jordan algebras.
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6

Classification of finite-dimensional
formally real Jordan algebras
After Jordan had decided on the basic axioms of his then-called r-number systems,
he sought to classify them. An algebra suitable for quantum mechanics would have
to be infinite-dimensional, but at this point in time the theory of infinite-dimensional
algebras was not well developed even in the associative case. Obtaining a full classi-
fication of infinite-dimensional Jordan algebras seemed out of reach. Instead, Jordan
thought that if, in the finite-dimensional case, one could find a family of exceptional
Jordan algebras Jn parametrized by natural numbers n, one could let n tend to in-
finity and hopefully find a suitable infinite-dimensional exceptional Jordan algebra.

Jordan called in the help of physicist Eugene Wigner and mathematician John
von Neumann, and in their joint paper published in 1934 they were able to show that
every finite-dimensional, formally real Jordan algebra were built out of Hermitian
matrix algebras and the spin factors Jspin(n).

Theorem 6.0.1 (Jordan, von Neumann, Wigner). Every finite-dimensional for-
mally real Jordan algebra is a direct sum of simple ideals, of which there are five
types. Four types are Hermitian matrix algebras corresponding to the four real com-
position division algebras R,C,H,O of dimensions 1,2,4,8, and the last type are spin
factors. Every finite-dimensional formally real simple Jordan algebra is isomorphic
to one of the following:

1. Hn(R);

2. Hn(C);

3. Hn(H);

4. H3(O);

5. Jspin(n).

The division algebras R,C,H,O all carry a positive definite quadratic form

q
(∑

λixi

)
=
∑

λ2i
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relative to suitable bases xi. The form q admits composition in the sense that q(xy) =
q(x)q(y) for all x, y. A famous theorem of Hurwitz (Theorem 8.1.3) states that
the only possible composition algebras over any field are the field itself (dimension
1), a quadratic extension (dimension 2), a quaternion algebra (dimension 4) and
an octonion algebra (dimension 8). We shall formalize the notion of composition
algebras in Section 8.

When n = 1, the Jordan algebras H1(A) for A = R,C,H,O are just the sets of
Hermitian elements under the Jordan product. The elements of C that are equal to
their own conjugate is just the real numbers, and the same is true for H and O. In
general, an involution on an algebra A over F is called scalar if the set of Hermitian
elements are contained in the scalar multiples of the unit: H(A, ⋆) ⊂ F1. Thus the
algebras H1(A) are all isomorphic to the Jordan algebra R+.

For n = 2, the algebra H2(R) of symmetric real matrices is isomorphic to the
spin factor Jspin(2) = R2⊕R, and the algebra H2(C) of complex Hermitian matrices
is isomorphic to Jspin(3) = R3 ⊕ R. Similarly we have H2(H) ∼= Jspin(5) and
H2(O) ∼= Jspin(9) (Proposition 8.1.2).

From the example of Hermitian Jordan algebras, we have seen that the first
three algebras of the classification are special, living inside the full associative matrix
algebras Mn(A) for the associative coordinate algebras A = R,C,H. We have also
noted that Jspin(n) can be embedded in an algebra of large Hermitian matrices, so
that it too is special.

However, the fourth item H3(O) on the list did not seem to be special since it had
entries from the nonassociative Cayley algebra. Jordan, Wigner and von Neumann
were not able to prove that this was the case, but soon after, Abraham Adrian
Albert was able to show that H3(O) was indeed exceptional. An element of H3(O)
looks like 


λ1 x y
x λ2 z
z y λ3




where λ1, λ2, λ3 are Hermitian elements in R1, and x, y, z ∈ O. Since the dimension
of O is 8, we see that there are 8 + 8 + 8 + 1 + 1 + 1 = 27 degrees of freedom for
such a matrix, and the dimension of H3(O) is 27.

Due to Albert’s proof of its exceptionality and his later constructions of Jordan
division algebras that are forms of H3(O), these 27-dimensional exceptional algebras
are now known as Albert algebras.

Definition 6.0.1 (Form of an algebra). IfK/F is a field extension and A an algebra
over F , we say that A is a form of an algebra B over K if A becomes isomorphic
to B when we extend its scalars to K:

K ⊗F A ∼= B.

Here, the extension K ⊗F A of A is defined as the tensor product as vector spaces
with the induced multiplication

(a⊗ x) · (b⊗ y) := (ab)⊗ (xy).
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7

Jordan algebras: basics

In this section, we give the basic definition of a Jordan algebra over an arbitrary
field of characteristic different from 2, and define some auxiliary operations. We
show that a Jordan algebra is always power associative, i.e. that any subalgebra of
a Jordan algebra generated by a single element is associative, and give the definition
of a quadratic Jordan algebra.

We assume that all fields have characteristic different from 2 in order to make
sense of the examples we have seen with the Jordan bullet product x • y.

Definition 7.0.1 (Jordan algebra). Let F be a field of characteristic different from
2. A Jordan algebra J over F is an algebra with product x • y satisfying

[x, y] = 0 (Commutative law)

[x • x, y, x] = 0 (Jordan identity)

for all x, y ∈ J .

With F as in the definition, an associative algebra A over F is a Jordan algebra
if and only if it is commutative. If A is not commutative, we can equip it with
the Jordan product to obtain a Jordan algebra A+, thereby “symmetrizing” it as
in the full example (Section 5.1). When A is associative and has an involution ⋆,
the Hermitian elements H(A, ⋆) form a Jordan subalgebra over F of A+ under the
Jordan product.

Usually, but not always, we shall denote the product of a Jordan algebra with a
bullet •, and when we refer to the Jordan product x • y := 1

2
(xy + yx) defined in

terms of the product xy of some associative algebra we shall make this clear from
context.

Definition 7.0.2 (Jordan algebra homomorphism). A homomorphism of Jordan
algebras is the same as an algebra homomorphism, i.e. an F -vector space homomor-
phism (a linear map) φ that preserves multiplication: φ(x • y) = φ(x) •′ φ(y).

We shall use the abbreviation x2 for x • x. Since a Jordan algebra is nonas-
sociative, however, when the exponent is > 2, xn is a priori not defined unless
we specify an order of multiplication. When the product is the Jordan product,
x • x = 1

2
(xx+ xx) = xx coincides with the ordinary associative square.
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The axioms defining a Jordan algebra, and many other properties, can be ex-
pressed concisely using multiplication operators.

Definition 7.0.3. Let A be any algebra over a field or commutative ring F and
a ∈ A any element. The (left) multiplication operator La : A → A is the map
defined by

La(b) = ab.

Similarly we define Ra(b) = ba.

Remark 7.0.1. Let F be a field, and suppose A and B are two vector spaces over
F . Let HomF (A,B) be the set of all F -linear maps (vector space homomorphisms)
from A to B. The set HomF (A,B) itself inherits a vector space structure by defining
addition in the usual pointwise fashion, and scalar multiplication in the obvious way:
(λf)(x) := λf(x). If A = B, we write EndF (A) for the vector space HomF (A,A).
In this situation, the composition f ◦g of two linear maps f, g ∈ EndF (A) is defined,
and is again a linear map from A to itself. Additionally, composition of maps obeys
the associative law. Hence EndF (A) carries a unital associative F -algebra structure
under composition of maps, with multiplicative identity given by the identity map.

The preceding also holds more generally when F = R is a commutative ring and
A is an R-module. The set EndR(A) = HomR(A,A) then carries a unital associative
R-algebra structure.

The definition of an algebra A over a field or over a commutative unital ring R
requires that the product is bilinear. This can be expressed in terms of multiplication
operators as saying that the map L : A→ EndR(A) defined by a 7→ La is linear (an
R-module homomorphism) from the R-module A into the R-module EndR(A), and
likewise for a 7→ Ra. Indeed, saying that L is linear means that for all a, b ∈ A,

La+b(x) = La(x) + Lb(x), and Lλa(x) = λLa(x)

for all x ∈ A, which is equivalent to the element identities

(a+ b)x = ax+ bx, and (λa)x = λ(ax)

for all a, b, x ∈ A. The other algebra axioms follow from linearity of a 7→ Ra. The
maps L and R given by a 7→ La and a 7→ Ra are known as the left and right regular
representations of the algebra A. As long as A has a multiplicative unit, the left
and right regular representations are injective since La = Lb implies ax = bx for all
x ∈ A so a = b for x = 1 (and similarly for R).

Saying that A is commutative is saying that La = Ra for all a ∈ A, i.e. that
the left and right regular representations coincide. Expressing the associative law
(ab)c = a(bc) in terms of operator identities can be done in three ways, depending
on which element one views as the variable:

Lab = LaLb, RcRb = Rbc, RcLa = LaRc.

28



Here, concatenation ST of operators S, T is the product in End(A), i.e. function
composition.

The Jordan identity can be expressed as Lx2Lx = LxLx2 , or [Lx2 , Lx] = 0 using
the commutator. Hence a Jordan algebra is an algebra for which Lx = Rx and
[Lx2 , Lx] = 0 for all x.

7.1 Linearizing the Jordan identity

There is a useful technique, particularly in nonassociative algebras, called lineariza-
tion or polarization. For any homogeneous (all terms have the same degree) poly-
nomial of degree n in one variable p(x), we can define a polynomial p′(x1, . . . , xn)
that is multilinear and coincides with p(x) on the “diagonal”: p(x) = p′(x, . . . , x).
For example, the linearizations of x2 and x3 are

1

2
(x1x2 + x2x1),

1

6
(x1x2x3 + x1x3x2 + x2x1x3 + x2x3x1 + x3x1x2 + x3x2x1).

As long as we are in a field of characteristic 0 one can do this freely, but one must
take care in general, for linearizing requires division with n!. The process can be
described more formally as follows.

Replace x with a formal linear combination x1 + λx2 for some indeterminate
scalar λ; expanding p(x1 + λx2), we have

p(x1 + λx2) = p(x1) + λp1(x1, x2) + λ2p2(x1, x2) + · · ·+ λnp(x2)

where pi(x1, x2) is homogeneous with degree n − i in x1 and i in x2. Intuitively,
we obtain pi(x1, x2) from replacing i x1’s in p(x1) by x2’s in all possible ways. The
coefficient p1(x1, x2) of λ is now linear in x2 and of degree n−1 in x1. We repeat this
process until we obtain a full linearization (apart from a factor of n!). Equivalently,
by immediately replacing x with λ1x1 + . . . λnxn, we obtain the full linearization of
p(x) as the coefficient of λ1 . . . λn in p(λ1x1 + · · ·+ λnxn).

Proposition 7.1.1. Any Jordan algebra J over a field F , char(F ) ̸= 2, satisfies the
linearized Jordan identities :

[x2, y, z] + 2[x • z, y, x] = 0 (JL1)

[x • z, y, w] + [z • w, y, x] + [w • x, y, z] = 0 (JL2)

Proof. The associator [x2, y, x] in the Jordan identity [x2, y, x] = 0 is homogeneous
of degree 3. First, replace x with x + λz for some scalar λ. The constant term is
[x2, y, x] and the λ3-term is λ3[z2, y, z]. Subtract these terms to obtain

[(x+ λz)2, y, x+ λz]− [x2, y, x]− λ3[z2, y, z]

= λ
(
[x2, y, z] + 2[x • z, y, x]

)
+ λ2

(
[z2, y, x] + 2[z • x, y, z]

)
.
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Now the identity [x2, y, x] = 0 holds for x = x, x = z and x = x + λz individually,
so the above must equal zero. With

f(x, y, z) := [x2, y, z] + 2[x • z, y, x],

we may rewrite the above as

λf(x, y, z) + λ2f(z, y, x) = 0.

This equation must hold for any λ ∈ F , so in particular taking λ = 1 and subtracting
from it the equation for λ = −1 we find 2f(x, y, z) = 0. Since char(F ) ̸= 2,
f(x, y, z) = 0, showing (JL1).

The expression f(x, y, z) is of degree 2 in x and of degree 1 in y and z, so
linearizing again with x = x + λw and subtracting the constant and λ3 terms, we
obtain

2λ
(
[x • w, y, z] + [x • z, y, w] + [w • z, y, x]

)
,

which is equal to 0 by applying the original Jordan identity to x, w and x + λw.
Taking λ = 1

2
, we obtain the second identity.

7.2 Power associativity

Lemma 7.1. From the Jordan identity, we obtain the operator identities

Lx2•y = −2LxLyLx + Lx2Ly + 2Lx•yLx (7.2.1)

L(x•z)•y = −LxLyLz − LzLyLx + Lz•xLy + Lx•yLz + Lz•yLx (7.2.2)

Proof. The identity (JL1) in Proposition 7.1.1 considered with z as the variable,
becomes in terms of operators

0 = (Lx2•y − Lx2Ly) + 2(RxRyLx −Ry•xLx)

= (Lx2•y − Lx2Ly) + 2(LxLyLx − Lx•yLx),

using commutativity. Thus (7.2.1) holds. Now we linearize (7.2.1) with x 7→ x+ 1
2
z,

so that the left hand side becomes

L(x+ 1
2
z)2•y = Lx2•y + L(x•z)•y +

1

4
Lz2•y.

Using (7.2.1) for the first and third of the terms on the right and subtracting this
from the above, one obtains (7.2.2):

L(x•z)•y = −LxLyLz − LzLyLx + Lz•xLy + Lx•yLz + Lz•yLx.

Proposition 7.2.1. Let J be a unital Jordan algebra, and define powers of x ∈ J
inductively by x0 = 1, x1 = x and xn+1 = x • xn. Then
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(i) All multiplication operators Lxn are polynomials in the commuting operators
Lx and Lx2 , and therefore they all commute: [Lxn , Lxm ] = 0 for all m,n.

(ii) J is power associative: For any x, the subalgebra of J generated by x is
associative; we have

xm • xn = xm+n.

Proof. To show (i), we use induction on n. For n = 0, 1, 2 the assertion is trivial,
so suppose it holds for all powers smaller than n + 2. Now put y 7→ x, z 7→ xn in
Lemma 7.1(ii) to obtain

Lxn+2 = L(x•xn)•x

= −LxLxLxn − LxnLxLx + Lxn•xLx + Lx2Lxn + Lxn•xLx

= Lxn+1Lx + (Lx2 − LxLx)Lxn + (Lxn+1 − LxnLx)Lxn .

By induction, Lxn , Lxn+1 are polynomials in Lx, Lx2 , hence so is Lxn+2 .
For (ii), we use induction on n + m. For n + m = 0, 1, 2 the result holds, so

assume it holds for exponents smaller than n+m with m ≥ 2. Then

xn • xm = (LxnLx)(x
m−1) = (LxLxn)(xm−1) = Lx(x

n+m−1) = xn+m,

where the second equality follows from commutativity using (i), and the third by
the induction hypothesis.

7.3 Auxiliary products and the quadratic definition

Definition 7.3.1 (Auxiliary products). If J is any Jordan algebra with product
denoted with x · y for brevity, we define the following auxiliary products (squares,
brace products, U -products, triple products and V -products):

x2 := x · x
{x, y} := 2(x · y)
Ux(y) := 2(x · (x · y))− x2 · y = (2L2

x − Lx2)(y)

{x, y, z} := Ux,z(y) := (Ux+z − Ux − Uz)(y) = 2
(
x · (z · y) + z · (x · y)− (x · z) · y

)

Vx(y) := {x, y}
Vx,y(z) := {x, y, z} = Ux,z(y).

The brace product {x, y} has the same notation as the n-tad {x, y} for n = 2
since when the product is the Jordan bullet product they coincide.

The same is true for the Jordan triple product {x, y, z}. The expression for
the Jordan triple product arises from the ordinary triple product, defined in any
associative algebra:

xyz + zyx.
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Of course, the triple product does not make sense for general nonassociative algebras.
However, in an associative algebra it is possible to express the triple product in terms
of the Jordan bullet product x • y = 1

2
(xy + yx):

xyz + zyx = 2
(
(x • y) • z + (y • z) • x− (x • z) • y

)
.

We use this expression to define a triple product {x, y, z} in any Jordan algebra.

Note that {x, y, x} = 2Ux(y), and Vx = Vx,1 = Ux,1 = V1,x = 2Lx. We think of
the U -operator as simultaneous left and right multiplication, or outer multiplication,
and the V operators as left plus right multiplications. This is precisely what these
operators correspond to in special Jordan algebras: If J is a subalgebra of A+ for
some associative algebra A, then in terms of the associative product xy in A,

Ux(y) = xyx

Vx(y) = xy + yx

Vx,y(z) = Ux,z(y) = {x, y, z} = xyz + zyx.

Also note that the U -operator is quadratic, in the sense that Uλx = λ2Ux, and
its linearization

Ux,y = Ux+y − Ux − Uy = 2(LxLy + LyLx)− (Lxy + Lyx)

= 2(LxLy + LyLx − Lx•y)

is bilinear in x, y.

The n-tads and brace products use the same notation as for finite sets, which
could potentially cause some confusion particularly in section 12, but it should
always be clear what is meant from context.

One advantage with the auxiliary products, in particular the U -product, is that
they are not limited to when the base field has characteristic different from 2, unlike
the Jordan bullet product x•y = 1

2
(xy+yx). If one could find a definition of Jordan

algebras that made sense for arbitrary fields or rings of scalars, it would not only fill
the gap of characteristic 2, but also make possible the study of Jordan rings, where
the ring of scalars is taken to be Z (a Z-algebra is a ring similar to how a Z-module
is an abelian group).

In 1958, I.G. Macdonald first proved the fundamental formula for arbitrary
Jordan algebras:

UUx(y) = UxUyUx. (7.3.1)

The U -operator simplified many notions that were more cumbersome to express with
L- or R-operators. The search began for an axiomatic definition of Jordan algebras
in terms of the quadratic U -operator such that it would coincide with the ordinary
definition when the field or ring of scalars contained 1

2
.

In 1967, Kevin McCrimmon finalized a quadratic definition of Jordan algebras.
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Definition 7.3.2 (Quadratic Jordan algebra). Let R be a commutative unital ring.
A unital quadratic Jordan algebra is an R-module J equipped with a product
Ux(y) that is linear in y and quadratic in x (i.e. the map x 7→ Ux is a quadratic
mapping from J to EndF (J)), together with a choice of unit element 1, such that
the following three operator axioms hold strictly :

1. U1 = 1J

2. Vx,yUx = UxVy,x

3. UUx(y) = UxUyUx

That the axioms hold strictly means that these axioms hold not only for all x, y ∈ J ,
but they also continue to hold in all scalar extensions of J .

8

Composition algebras
Recall from Definition 5.2.2 that a ⋆-algebra is an algebra A over a field F together
with an involution, i.e. a map ⋆ : A → A that is an anti-isomorphism of order 2:
(x⋆)⋆ = x and (xy)⋆ = y⋆x⋆. In any ⋆-algebra we can build Hermitian elements from
traces t(x) := x+ x and norms n(x) := xx.

First, we begin by formalizing the notion of a composition algebra. We begin
with some basic terminology of quadratic and bilinear forms.

Definition 8.0.1 (Quadratic form). Let F be a field and V a vector space over F .
A quadratic form q is a map V → F such that q(λv) = λ2q(v) for all λ ∈ F and
all v ∈ V , and such that the associated map q̂ : V × V → F defined as

q̂(u, v) := q(u+ v)− q(u)− q(v)

is bilinear.

We call q̂(u, v) the bilinear form associated with q. Note that q̂ is symmetric.
From the definition, we have

q̂(v, v) = q(2v)− 2q(v) = 4q(v)− 2q(v) = 2q(v),

so as long as char(F ) ̸= 2, we can recover the quadratic form from the associated
bilinear form, and the theory of quadratic and bilinear forms over fields of charac-
teristic ̸= 2 is essentially the same.
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In general, a symmetric bilinear form b(x, y) is called nondegenerate if for any
x ∈ V ,

b(x, y) = 0 for all y ∈ V =⇒ x = 0.

A quadratic form q is nondegenerate if its associated bilinear form q̂ is nondegenerate.
In this case

b(x, z) = b(y, z) for all z =⇒ x = y (8.0.1)

since b(x, z)− b(y, z) = b(x− y, z) = 0 for all z.
A vector v ∈ V is called isotropic if q(v) = 0, and anisotropic if q(v) ̸= 0. A

form is isotropic if it has nonzero isotropic vectors, and anisotropic if it has none, i.e.
if q(v) = 0 ⇐⇒ v = 0. If the quadratic form q is anisotropic, then it is necessarily
nondegenerate since for any v ̸= 0 we have 0 ̸= q(v) = 1

2
q̂(v, v).

Definition 8.0.2 (Composition algebra). A composition algebra A is a unital,
not necessarily associative algebra over a field F together with a nondegenerate
quadratic form q, satisfying the composition law :

q(ab) = q(a)q(b) for all a, b ∈ A.

The quadratic form q is referred to as the norm on A.
The composition law together with nondegeneracy has significant algebraic con-

sequences. From q(x) = q(1x) = q(1)q(x) we immediately conclude q(1A) = 1F . We
also have

q̂(xy, xz) = q(x)q̂(y, z),

q̂(yx, zx) = q̂(y, z)q(x).

If we take the latter of these and replace x with x1 + x2, then by linearity

q̂(yx1+yx2, zx1+zx2) = q̂(yx1, zx1)+q̂(yx1, zx2)+q̂(yx2, zx1)+q̂(yx2, zx2). (8.0.2)

On the other hand, the left hand side is

q̂(yx1 + yx2, zx1 + zx2) = q((y + z)(x1 + x2))− q(y(x1 + x2))− q(z(x1 + x2))

= q(x1 + x2)(q(y + z)− q(y)− q(z))

= q(x1 + x2)q̂(y, z).

Subtracting the two terms q̂(yx1, zx1) = q̂(y, z)q(x1) and q̂(yx2, zx2) = q̂(y, z)q(x2)
from (8.0.2), the left hand side becomes

q(x1 + x2)q̂(y, z)− q̂(y, z)q(x1)− q̂(y, z)q(x2) = q̂(x1, x2)q̂(y, z),

hence
q̂(yx1, zx2) + q̂(yx2, zx1) = q̂(y, z)q̂(x1, x2). (8.0.3)

We have linearized the equation q̂(yx, zx) = q̂(y, z)q(x) with respect to x, which we
may write x → x1, x2 for short. Taking y = x, z = y, x1 = 1 and x2 = x in (8.0.3)
gives a special case

q̂(x, yx) + q̂(x2, y) = q̂(x, y)q̂(1, x). (8.0.4)
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Proposition 8.0.1. Let A be a composition algebra with norm q. Then

x2 − q̂(x, 1)x+ q(x)1 = 0 (8.0.5)

for all a ∈ A.

Proof. We have

q̂(x2 − q̂(x, 1) + q(x)1, y) = q̂(x2, y)− q̂(x, 1)q̂(x, y) + q(x)q̂(1, y)

= q̂(x2, y)− q̂(x, 1)q̂(x, y) + q̂(x, yx)

= 0,

where the last equality follows from (8.0.4). Since y was arbitrary and q̂ is nonde-
generate, the claim is proved.

In other words, every element of a composition algebra satisfies a generic mini-
mum polynomial of degree 2 (cf. remark 5.2.1).

If we linearize x→ x, y in (8.0.5), we obtain

xy + yx− q̂(x, 1)y − q̂(y, 1)x+ q̂(x, y)1 = 0. (8.0.6)

Corollary 8.0.0.1. The norm q on a composition algebra A is uniquely determined
by the algebra structure of A.

Proof. For x = λ1 ∈ F1, we have q(x) = q(λ1) = λ2, and when x /∈ F1, the equation
(8.0.5) is the unique polynomial of minimum degree for x.

Definition 8.0.3 (Involution and trace). Let A be any algebra and q : A → F a
quadratic form. If q(c) = 1 for some c ∈ A, we say that q has a base point c. For
such a q we define the trace linear form

T : V −→ F

x 7−→ q̂(x, c)

and the standard trace involution x 7→ x on V by x := T (x)c− x.

Note that the trace and the standard trace involution are linear maps by defini-
tion. Any composition algebra has q(1) = 1, so the multiplicative unit is always a
base point in a composition algebra.

Proposition 8.0.2. For any algebra A with quadratic form q with base point c, the
standard trace involution preserves base points, norms and traces and is of period
2:

c = c (8.0.7)

T (x) = T (x) (8.0.8)

q(x) = q(x) (8.0.9)

x = x. (8.0.10)
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Proof. First, note that T (c) := q̂(c, c) = 4q(c) − 2q(c) = 2, so c := T (c)c − c =
2c− c = c, showing (8.0.7). Also

T (x) = T (T (x)c− x) = T (x)T (c)− T (x) = T (x),

showing (8.0.8). Now

q(x) = q(T (x)c+ (−x)) = q̂(T (x)c,−x) + q(T (x)c) + q(−x)
= T (x)T (−x) + T (x)2q(c) + (−1)2q(x)

= −T (x)2 + T (x)2 + q(x)

= q(x),

showing (8.0.9). Lastly,

x = (T (x)c− x) = T (x)c− x = T (x)c− (T (x)c− x) = x.

Proposition 8.0.3. When A is a composition algebra, the standard trace involution
is an algebra involution, and we have

xx = xx = q(x)1 (8.0.11)

(xy) = y x (8.0.12)

T (x)1 = x+ x (8.0.13)

Proof. (8.0.11) follows from Proposition 8.0.1:

xx = x(T (x)1− x) = T (x)x− x2 = q(x)1,

and similarly xx = q(x)1. For (8.0.12), we have

y x = (T (y)1− y)(T (x)1− x)

= T (x)T (y)1− T (x)y − T (y)x+ yx

= q̂(x, 1)q̂(y, 1)1− xy − q̂(x, y)1 using (8.0.6)

= q̂(xy, 1)1− xy by (8.0.3)

= (xy).

Lastly, x+ x = x+ T (x)1− x = T (x)1 is immediate from the definition.

Corollary 8.0.0.2. Any composition algebra is simultaneously a ⋆-algebra under
the standard trace involution. Moreover, when char(F ) ̸= 2, the involution is scalar,
i.e. every Hermitian element is a scalar multiple of 1: H(A) ⊂ F1 ⊂ A.

Proof. Every Hermitian element x = x in A is a trace 1
2
t(x) = 1

2
(x + x), which by

(8.0.13) lie in F1.
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As long as A is unital, all traces are built from norms:

t(x) = n(x+ 1)− n(x)− n(1).

Hence for unital ⋆-algebras over a field of characteristic not 2, it is enough for all
norms xx = xx to lie in F1 to conclude that all Hermitian elements do too.

Proposition 8.0.4. Let A be a composition algebra with norm q.

(i). A satisfies the left and right adjoint formulas :

q̂(xy, z) = q̂(y, xz), and q̂(xy, z) = q̂(x, zy). (8.0.14)

(ii). The left and right Kirmse identities hold:

x(xy) = x(xy) = q(x)y, (yx)x = (yx)x = q(x)y. (8.0.15)

(iii). A is always alternative.

Proof. (i). The left adjoint formula follows from linearity and symmetry of q̂ and
taking y = x, z = 1, x1 = y, x2 = z in (8.0.3):

q̂(y, xz) = q̂(y, (q̂(x, 1)1− x)z) = q̂(x, 1)q̂(y, z)− q̂(y, xz)

= q̂(xy, z) + q̂(xz, y)− q̂(y, xz)

= q̂(xy, z).

The right adjoint formula the left one and Proposition 8.0.2:

q̂(xy, z) = q̂(y, xz) = q̂(y, (xz)) = q̂(y, zx) = q̂(zy, x) = q̂(x, zy).

(ii). To prove the left Kirmse identity, we have for any z ∈ A

q̂(x(xy), z) = q̂(xy, xz) by the left adjoint formula

= q(x)q̂(y, z) since q(x) = q(x)

= q̂(q(x)y, z).

Since q̂(x(xy), z) = q̂(q(x)y, z) for all z ∈ A we have x(xy) = q(x)y by (8.0.1). If
we replace x by x, we obtain x(xy) = q(x)y = q(x)y. The right identity is obtained
from the left by taking y = y and conjugating:

q(x)y = q(x)y = x(xy) = (xy)x = (yx)x.

Finally (yx)x = q(x)y = q(x)y by taking x = x in the above.
(iii). Recall that an alternative algebra is one for which x(xy) = (xx)y and

(yx)x = y(xx) for all x, y. In terms of operators these identities can be written
L2
x = Lx2 and R2

x = Rx2 . Either Kirmse identity (8.0.15) applied to y = 1 gives

37



xx = xx = q(x)1, which is equivalent to the degree 2 equation in Proposition 8.0.1
since

0 = x2 − T (x)x+ q(x)1 = (x− T (x)1)x+ q(x)1 = −xx+ q(x)1.

In terms of operators, the left Kirmse identity is then equivalent to left alternative
law. With I and 0 denoting the identity operator and the zero operator on A
respectively, we have

0 = LxLx − q(x)IA = LT (x)1−xLx − q(x)L1 = LT (x)x−x2 − q(x)L1

= LT (x)x−q(x)1 − L2
x

= Lx2 − L2
x,

and similarly for right alternativity.

8.1 The Cayley-Dickson construction and Hurwitz’s the-

orem

Definition 8.1.1 (Cayley-Dickson construction). Let A be a unital ⋆-algebra over a
field F , and let λ ∈ F be a nonzero (invertible) element. Define CD := CD(A, λ) :=
A ⊕ A as the vector space direct sum of two copies of A, and define a product on
CD(A, λ) by

(a, b) · (c, d) := (ac+ λd⋆b, da+ bc⋆),

and an involution by

(a, b)⋆ := (a⋆,−b).

We call the resulting algebra CD(A, λ) the Cayley-Dickson algebra obtained from
the unital ⋆-algebra A and the invertible scalar λ by the Cayley-Dickson con-
struction or doubling process.

Let u = (0A, 1A) = (0, 1). Elements in CD of the form (a, 0) are identified with
a ∈ A by a 7→ (a, 0). Elements of the form (0, b) can be written as (b, 0) · (0, 1), or
bu. In this way we may express every (a, b) ∈ CD as a sum a+bu, and CD = A⊕Au.
The product and involution on CD in this formulation looks like:

(a⊕ bu) · (c⊕ du) = (ac+ λd⋆b)⊕ (da+ bc⋆)u,

and

(a⊕ bu)⋆ = a⋆ − bu.

For instance when A is the ⋆-algebra R of real numbers over itself with involution
defined as the identity map, then CD(R,−1) is isomorphic to the complex numbers
C (and u is denoted with the imaginary unit i).
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Proposition 8.1.1. The algebra CD(A, x) is a unital ⋆-algebra, and its product
can be broken up into the following product rules : for all a = (a, 0) and b = (b, 0),

au = ua⋆, (CD1)

ab = ab (i.e. (a, 0)(b, 0) = (ab, 0)), (CD2)

a(bu) = (ba)u, (CD3)

(au)b = (ab⋆)u, (CD4)

(au)(bu) = λb⋆a. (CD5)

Proof. A simple computation shows 1CD = (1, 0) is a multiplicative identity in CD.
It is clear that the involution ⋆ on CD is of period 2, and its linearity follows from
the linearity of the involution on A. To show that it is an anti-homomorphism, we
compute:

(
(a, b) · (c, d)

)⋆
= ((ac+ xd⋆b)⋆,−(da+ bc⋆))

= (c⋆a⋆ + xb⋆d,−bc⋆ − d(a⋆)⋆)

= (c⋆,−d) · (a⋆,−b) = (c, d)⋆ · (a, b)⋆.

For the first product rule, (a, 0) · (0, 1) = (0, a) and (0, 1) · (a⋆, 0) = (0, (a⋆)⋆) =
(0, a). The second is immediate from the definition of the product in CD.

For the third, bu = (0, b) and (a, 0) ·(0, b) = (0, ba) whereas (b, 0) ·(a, 0) = (ba, 0),
and (ba, 0) · (0, 1) = (0, ba).

Fourth, au = (0, a) and ab⋆ = (ab⋆, 0), thus (0, a) · (b, 0) = (0, ab⋆) = (ab⋆, 0)u.
Lastly, (au)(bu) = (0, a) · (0, b) = (λb⋆a, 0) = λb⋆a.

The following theorem is Theorem II.2.5.2 in [Cri04].

Theorem 8.1.1 (Inheritance theorem). Let A be a unital ⋆-algebra over a field F
with involution written a 7→ a, and λ ∈ F a nonzero element. Then the Cayley-
Dickson algebra CD(A, λ) satisfies the following properties.

(i) The involution on CD(A, λ) is always nontrivial (i.e. never the identity map).
Moreover, the involution on CD(A, λ) is a scalar involution if and only if the
involution on A is scalar: If the involution on A is such that aa = q(a)1 ∈
F1 ⊂ A and a + a⋆ = t(a)1 ∈ F1 ⊂ A for some quadratic norm form q and
linear trace t (and hence all Hermitian elements lie in F1), then the involution
CD(A, λ) is scalar with new norm and trace

Q(a⊕ bu) = q(a)− λq(b), T (a⊕ bu) = t(a).

(ii) CD(A, λ) is commutative if and only ifA is commutative with trivial involution.

(iii) CD(A, λ) is associative if and only if A is both commutative and associative.
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(iv) CD(A, λ) is alternative if and only if A is associative with central involution, i.e.
all Hermitian elements H(A, ⋆) of A lie in the center of A: H(A, ⋆) ⊂ Cent(A).

Proof. (i). It is clear that the involution is nontrivial (at the very least, as long as
0 ̸= 1 and char(F ) ̸= 2). If the original involution on A is scalar with a+ a = t(a)1,
then a = t(a)1− a commutes with a and aa = aa = q(a)1. The new trace in CD is
then

(a⊕ bu) + (a⊕ bu) = (a⊕ bu) + (a⊕−bu) = (a+ a)⊕ 0 = t(a)1,

and the new norm is

(a⊕ bu)(a⊕ bu) = (a⊕ bu)(a⊕−bu) = (aa− λbb)⊕ (−ba+ ba)u = (q(a)− λq(b))1.

(ii). Note that A is a subalgebra of CD(A, λ) since it is a subspace closed under
multiplication by Proposition 8.1.1(2), so it is certainly necessary that A is com-
mutative. It is also necessary that the involution is trivial, since the commutator
[a, u] = au− ua = (a− a)u must vanish in CD(A, λ). These two conditions are also
sufficient for making the product

(a1 ⊕ b1u) · (a2 ⊕ b2u) = (a1a2 + λb1b2)⊕ (a1b2 + b1a2)u

symmetric in the indices 1 and 2.
(iii). For CD(A, λ) to be associative it is necessary that the subalgebra A is

associative. Commutativity of A is also necessary for the associator [a, b, u] = (ab)u−
a(bu) = (ab − ba)u (using (CD3)) to vanish. To show that these conditions are
sufficient, we show that any associator in CD(A, λ) vanishes under these conditions:

[a1⊕b1u, a2 ⊕ b2u, a3 ⊕ b3u]

=
(
(a1a2 + λb2b1)a3 + λb3(b1a2 + b2a1)− a1(a2a3 + λb3b2)− λ(b2a3 + b3a2)b1

)

+
(
(b1a2 + b2a1)a3 + b3(a1a2 + λb2b1)− (b2a3 + b3a2)a1 − b1(a2a3 + λb3b2)

)
u.

Under commutativity and associativity, this expression becomes
(
a1a2a3 + λb1b2a3 + λa1b2b3 + λb1a2b3 − a1a2a3 − λa1b2b3 − λb1a2b3 − λb1b2a3

)

+
(
b1a2a3 + a1b2a3 + a1a2b3 + λb1b2b3 − a1b2a3 − a1a2b3 − b1a2a3 − λb1b2b3

)
u

= 0.

(iv). If CD(A, λ) is alternative, then its associator alternates (2.1.4). To see that
associativity of A is necessary, we compute

[c, au, b] + [au, c, b] =
(
(ac)b− (ab)c+ (ac)b− a(cb)

)
u

=
(
(at(c)1)b− [a, b, c]− a(bt(c)1)

)
u = −[a, b, c]u.
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The left hand side vanishes in an alternative algebra, in which case all associators
in A vanish. A central involution is also necessary, which can be seen by computing

[au, au, bu] =
(
λb(aa)− a(λba)

)
u = λ

(
b(aa)− (aa)b

)
u.

Letting b = 1, we see that the above is zero if and only if aa = aa (for b = 1),
and that this element commutes with all b. Thus all norms lie in Cent(A) for an
associative A, and hence also all traces due to char(F ) ̸= 2. Since all Hermitian
elements are traces, this shows H(A, ⋆) ⊂ Cent(A). A straightforward computation
shows that associativity of A implies that CD(A, λ) is alternative, see e.g. [Schaf66]
Ch. III.4.

There is a natural way in which Cayley-Dickson doubling process takes place
inside a composition algebra, and one can repeatedly perform the doubling until the
entire composition algebra is exhausted. We will see that all composition algebras
have finite dimension. A priori we do not know this, so we shall focus for the moment
on finite-dimensional subalgebras of composition algebras.

Recall that for two vectors v, w ∈ V are orthogonal with respect to a symmetric
bilinear form b : V → V if b(v, w) = 0, and if W ⊂ V is a subspace, the orthogonal
complement W⊥ of W is the set of vectors of V that are orthogonal to all vectors
in W .

We shall make use of the following linear algebra fact. Let W be a vector space,
possibly infinite-dimensional, equipped with a symmetric bilinear form b, and let
V ⊂ W be a subspace. Every vector v ∈ V determines a linear map from V into its
dual space V ∗ := Hom(V, F ) by v 7→ (v′ 7→ b(v′, v)) or v 7→ b( · , v) for short. When
b is nondegenerate on V , this map is injective, so V is isomorphic to a subspace of
V ∗. If in addition V is finite-dimensional, v 7→ b( · , v) is an isomorphism V → V ∗,
because V and V ∗ have the same finite dimension. Likewise every w ∈ W produces
an element b( · , w) of V ∗. For every such w there must be some v ∈ V for which
b( · , w) = b( · , v) by the isomorphism V → V ∗, so b( · , w − v) = 0 and w − v ∈ V ⊥.
Hence every element w ∈ W decomposes into a sum v + (w − v) where v ∈ V ,
w − v ∈ V ⊥.

The following result (which I assume is due to Nathan Jacobson) is Theorem
II.2.6.1 in [Cri04].

Theorem 8.1.2 (Jacobson necessity theorem). Suppose A is a proper (A ̸= 0, C)
finite-dimensional (unital) subalgebra of a composition algebra C over some field F .
Assume that q is nondegenerate on A. Then there are elements u ∈ A⊥ for which
q(u) = −λ ̸= 0, and for any such element, A + Au is a subalgebra of C that is
isomorphic and isometric to the Cayley-Dickson algebra CD(A, λ).

Proof. Since q is nondegenerate on A and q̂(A,A⊥) = 0, we have A ∩ A⊥ = 0.
Since A is finite-dimensional, we get a decomposition C = A⊕ A⊥. By assumption
A is proper, so A⊥ is nonzero. Since q is nondegenerate on C, 0 ̸= q̂(A⊥, C) =
q̂(A⊥, A + A⊥) = q̂(A⊥, A⊥), so q̂ is not identically zero on A⊥. Hence there must
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exist some u ∈ A⊥ with nonzero norm; define λ := −q(u). We shall show that the
algebra A+Au has the structure of the Cayley-Dickson algebra CD(A, u) = A⊕Au.

First, we show that A+ Au = A⊕ Au, i.e. that A ∩ Au = 0. This follows since
A ∩ A⊥ = 0 and Au ⊂ A⊥, the latter because

q(au,A) = q(u, aA) ⊂ q(u,A) = 0,

using the left adjoint formula (8.0.14) and the fact that A is a subalgebra and
orthogonal to u.

The fact that Au ⊂ A⊥ also implies that

q(a+ bu) = q(a) + q̂(a, bu) + q(b)q(u) = q(a)− λq(b),

since q̂(a, bu) = 0 and q(u) = −λ. Also T (au) = q(1, au) ⊂ q(A,Au) = 0 (using that
A is unital), so the involution on A⊕Au becomes a+ bu = T (a+ bu)1− (a+ bu) =
T (a)1− a− bu = a− bu. Thus the norm and the involution are the same on A+Au
and CD(A, λ):

q(a+ au) = q(a)− λq(b), a+ bu = a− bu. (8.1.1)

It remains to show that the product on A + Au and on CD(A, λ) coincide. We
will do this by showing that all the product rules in Proposition 8.1.1 hold. Notice
first that u2 = λ1, since u2 = −uu by the involution above, and −uu = −q(u)1 by
either Kirmse identity taking y = 1, and −q(u)1 = λ1 by definition of u.

Now (CD1) follows directly from the involution: ua = −u a = −(au) = au.
The second is trivial. For (CD3), we linearize the right Kirmse identitiy (8.0.15)
(yx)x = q(x)y with x→ x1, x2 to get

(yx1)x2 + (yx2)x1 = q̂(x1, x2)y. (8.1.2)

Then

a(bu)− (ba)u = −a(bu) + (ba)u by the involution (8.1.1)

= −(1a)bu− (1(bu))a+ (bu)a+ (ba)u

= −1q̂(a, bu) + bq̂(a, u) using (8.1.2)

= 0 since Au ⊂ A⊥.

For (CD4), we have

(ab)u− (au)b = (ab)u+ (au)b by (8.1.1)

= aq̂(b, u) by (8.1.2)

= 0 since Au ⊂ A⊥.

Finally, we use the linearized left Kirmse identity

x1(x2y) + x2(x1y) = q̂(x1, x2)y (8.1.3)
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to show (CD5):

λba− (au)(bu) = u2(ba) + (au)(bu) by (8.1.1) and u2 = λ1

= b(au2) + (au)(bu) since u2 ∈ Cent(A+ Au)

= b((au)u) + (au)(bu) by right alternative law (2.1.2)

= q(b, au)u by (8.1.3)

= 0 since Au ⊂ A⊥.

Hence all the rules for multiplying in the Cayley-Dickson algebra hold, and A+Au ∼=
CD(A, λ).

We can now combine the inheritance theorem 8.1.1 with the above to prove
Hurwitz’s theorem.

Theorem 8.1.3 (Hurwitz’s Theorem). Any composition algebra A over a field F
of characteristic ̸= 2 has finite dimension 1, 2, 4 or 8 and is one of the following.

1. The base field A0 = F1 of dimension 1 that is commutative, associative and
has trivial involution.

2. A binarion algebra A1 = CD(A0, λ1) of dimension 2 that is commutative,
associative with nontrivial involution.

3. A quaternion algebra A2 = CD(A1, λ2) of dimension 4 that is associative and
noncommutative.

4. An octonion algebra A3 = CD(A2, λ3) of dimension 8 that is noncommutative
and nonassociative but alternative.

Proof. The subalgebra A0 = F1 of A has dimension 1 and is unital, commutative and
associative with trivial involution: λ1 = λ1 = λ1. The norm form is nondegenerate
because char(F ) ̸= 2: q̂(α1, β1) = αβT (1) = 2αβ. If A0 = A, we are done.

If A0 ⊊ A, then by Theorem 8.1.2 we can pick i orthogonal to A0 with q(i) =
−λ1 ̸= 0 and obtain a subalgebra A1

∼= CD(A0, λ1) of dimension 2. By the inheri-
tance theorem 8.1.1, A1 is commutative and associative with nontrivial involution.

If A1 ⊊ A, then by Jacobson necessity we can pick j orthogonal to A1 with
N(j) = −λ2 ̸= 0 and obtain a 4-dimensional subalgebra A2

∼= CD(A1, λ2) that is
associative but not commutative.

If A2 ⊊ A, we proceed in the same way to obtain an 8-dimensional subalgebra
A3

∼= CD(A2, λ3) that is neither commutative nor associative, but is alternative.
Now suppose that A3 is still not the whole algebra A. Then we repeat the process

to obtain a 16-dimensional subalgebra CD(A3, λ4). But this is no longer alternative
since A3 is not associative, so it cannot be a composition algebra by 8.0.4(iii). Hence
A3 = C, and the process must stop.
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Since Hurwitz’s theorem makes no assumption of finite-dimensionality, this shows
that finite-dimensionality is an intrinsic property of composition algebras.

If we take A0 = R to be the composition algebra of real numbers (over itself) with
trivial involution and norm q(r) = r2, with λ1 = λ2 = λ3 = −1 in the Cayley-Dickson
doubling, then A1 is the complex numbers C, A2 is the Hamilton quaternion algebra
H and A3 is the Cayley algebra of octonions O, as in Theorem 6.0.1. As algebras
over R, these are the only possible composition algebras by Hurwitz’ theorem. They
are also division algebras: xy = 0 if and only if x = 0 or y = 0. Indeed, when
the norm q is anisotropic, every nonzero x has an inverse: xx = xx = q(x)1 hence
x−1 = x

q(x)
. For associative algebras, the existence of multiplicative inverses for all

nonzero elements is equivalent to being a division algebra. It is clear that R,C,H are
division algebras. However, for nonassociative algebras this is not true in general.
Indeed, if we apply the Cayley-Dickson doubling to the octonions following the same
recipe, we get a 16-dimensional algebra called the sedenions. The elements of this
algebra all have multiplicative inverses as before, but the sedenions have zero divisors
and is not a division algebra.

Note that the norm q(r) = r2 on R is positive definite, i.e. q(r) > 0 for all nonzero
r ∈ R. The new norm in C := CD(R,−1) becomes q((a, b)) = q(a) + q(b) = a2 + b2

which is positive definite if and only if the norm on R is. Thus the norms in R,C,H,O
are all positive definite. In particular the nonassociative algebra O is a division
algebra, for if xy = 0, then q(x)q(y) = 0 so either q(x) or q(y) is zero, which by
positive definiteness implies either x = 0 or y = 0. This fails for the sedenions
because the norm no longer admits composition.

We finish this section by showing that the Hermitian 2×2 matrix algebras H2(A)
in the classification theorem 6.0.1 are isomorphic to spin factors (Example 5.3).

Let {e0, e1, . . . , e7} be a basis for O and x = x0e0 + x1e1 + . . . x7e7 an arbitrary
element, where we identify the multiplicative unit e0 with the real number 1. Then

q(x) =
∑

x2i ,

and

T (x) := q̂(x, 1) := q(x+ 1)− q(x)− q(1)

= (x0 + 1)2 +
7∑

i=1

x2i −
7∑

i=0

x2i − 1

= 2x0.

The involution looks like

x := T (x)1− x = 2x0e0 − x = x0e0 − x1e1 − · · · − x7e7.

The bilinear form is just twice the ordinary dot product:

q̂(x, y) = q(x+ y)− q(x)− q(y) =
∑

((xi + yi)
2 − x2i − y2i ) = 2

∑
xiyi.

Similar statements hold also for R,C,H for suitable bases.
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Proposition 8.1.2. The Hermitian matrix algebras H2(A) for A = R,C,H,O are
isomorphic to the spin factor Jspin(n) for n = dimA+ 1.

Proof. An arbitrary element of H2(A) looks like

X =

(
α x
x β

)
α, β ∈ R1, x ∈ A.

We may rewrite this as

X =

(
a+ b x
x a− b

)

for a = 1
2
(α+ β), b = 1

2
(α− β). We claim that H2(A) ∼= (A⊕R)⊕R via the linear

map φ sending X 7→ ((x, b), a). Indeed, if

Y =

(
c+ d y
y c− d

)
,

then the product in H2(A) becomes

X • Y =
1

2
(XY + Y X) =

1

2

(
2(a+ b)(c+ d) + xy + yx 2ay + 2cx

2cx+ 2ay 2(a− b)(c− d) + xy + yx

)
.

Now

xy + yx = xy + (xy) = T (xy)1 = q̂(xy, 1)1 = q̂(x, y)1

by the right adjoint formula (8.0.14). Similarly xy + yx = T (xy)1 = q̂(xy, 1) =
q̂(x, y)1 by the left adjoint formula. Hence

X • Y =
1

2

(
2(ac+ bd) + q̂(x, y) + 2(ad+ bc) 2ay + 2cx

2cx+ 2ay 2(ac+ bd) + q̂(x, y)− 2(ad+ bc)

)
.

Thus

φ(X • Y ) = ((ay + cx, ad+ bc),
1

2
q̂(x, y) + ac+ bd).

On the other hand, in the spin factor (A⊕ R)⊕ R, the product becomes

((x, b), a) • ((y, d), c) = (c(x, b) + a(y, d), ac+ (x, b) · (y, d)).

The dot product in A ⊕ R, which is isomorphic to Rk ⊕ R for k = dimA as vector
spaces, is just (x, b) · (y, d) = 1

2
q̂(x, y) + bd. Thus φ(X • Y ) = φ(X) • φ(Y ), so φ

is an algebra homomorphism. It has an obvious inverse ((x, b), a) 7→ X, so it is an
isomorphism. The dimension of A⊕R over R is dimA+1, completing the proof.

45



8.2 Split composition algebras

One can show that in each of the dimensions 2, 4 and 8 there are up to isomorphism
exactly one composition algebra with isotropic norm, i.e. any two composition
algebras with isotropic norm of the same dimension are isomorphic (see e.g. [SV00]
Theorem 1.8.1). This makes it particularly easy to describe them.

Definition 8.2.1 (Split composition algebras). The split composition algebras
over a field F are the ⋆-algebras of dimension 1, 2, 4, 8 isomorphic to the following
models.

Split unarions U(F ) = F , the scalars F with trivial involution and norm q(x) = x2.

Split binarions B(F ) = F ⊞F (a direct algebra sum) of scalars with the exchange
involution (x, y) 7→ (y, x) and norm q((x, y)) = xy.

Split quaternions Q(F ), the algebra M2(F ) of 2 × 2-matrices with symplectic
involution

x :=

(
d −b
−c a

)
, x =

(
a b
c d

)
,

with norm q(x) = det(x).

Split octonions O(F ) = Q(F )⊕Q(F )ℓ with standard involution x⊕ yℓ = x− yℓ
and norm q(x⊕ yℓ) = det(x)− det(y).

As algebras over the real numbers R, the split composition algebras are in a sense
completely opposite to the division algebras R,C,H,O. These are obtained from
the Cayley-Dickson process by choosing λi = 1 instead of λi = −1.

9

Full algebras
We now return to the examples in section 5 in some more detail, starting with the
full algebras.

Recall from Definition 5.1.1 that for any algebra A, we define A+ to be the
vector space A equipped with the Jordan product x • y = 1

2
(xy + yx) derived from

the product xy in A.

Theorem 9.0.1 (Full properties). Let A be any algebra with product xy.

(i). If A is associative, then A+ is a Jordan algebra.
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(ii). If A is associative, then the auxiliary Jordan products are

x2 = xx, {x, y} = xy + yx, Ux(y) = xyx, {x, y, z} = xyz + zyx.

(iii). Any homomorphism or anti-homomorphism of associative algebras A → B is
simultaneously a homomorphism of Jordan algebras A+ → B+. Any associa-
tive subalgebra (ideal) of A is also a Jordan subalgebra (ideal) of A+.

(iv). A+ is unital if and only if A is unital, in which case their units coincide.

(v). A+ is unital and simple as a Jordan algebra if and only if A is unital simple
as an associative algebra.

Proof.

(i). The Jordan product is clearly commutative, and satisfies the Jordan identity due
to associativity of A:

((x • x) • y) • x =
1

4

[
(x2y + yx2)x+ x(x2y + yx2)

]

=
1

4

[
x2yx+ yx3 + x3y + xyx2

]

=
1

4

[
x2(yx+ xy) + (yx+ xy)x2

]

= (x • x) • (y • x).

(ii). The first two are trivial, and the fourth follows from the third by linearization.
The third one follows from

2Ux(y) = {x, {x, y}} − {x2, y} = x(xy + yx) + (xy + yx)x− (xxy + yxx) = 2xyx.

(iii). It is clear that any map that preserves or reverses the ordinary product xy in A
also preserve the symmetric Jordan product. Any subspace that is closed under the
associative product xy is certainly also closed under the derived Jordan product.

(iv). If 1A is the associative unit of A, then clearly x • 1A = 1A • x = x for all x.
For the converse direction, note that a Jordan unit 1 is in particular an idempotent
(12 = 1) with respect to the associative product. On the one hand U1(y) = y by
definition of U and the unit element, but U1(y) = 1y1 by (ii), so y = 1y1. Then
1y = 1(1y1) = (11)y1 = 1y1 = y and similarly y1 = y, so 1 is an associative unit.

(v). If A+ is simple, then it is necessary that A is simple, since any proper associative
ideal is automatically a proper Jordan ideal. Suppose conversely that A is simple.
If I is a proper ideal of A+, then B = {aba : a ∈ A, b ∈ I} generates an associative
ideal of A for any nonzero b ∈ I. Since A is unital, B is not the zero ideal. But
any aba ∈ B can be written in terms of the Jordan bullet product as Ua(b); hence
0 ̸= B ⊂ I and B is a proper associative ideal of A, contradicting the simplicity
assumption.
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The requirement that A is associative for A+ to be a Jordan algebra can be
weakened somewhat. The proof follows § 1.5 Theorem 3 in [Jac68].

Theorem 9.0.2. Suppose A is a unital algebra over a field F (char(F ) ̸= 2) for
which the left alternative law (2.1.1) holds. Then A+ is a special Jordan algebra.

Proof. In operator form, the left alternative law becomes

Lx2 = L2
x.

Then
L(x+y)2 = L2

x+y = (Lx + Ly)
2 = L2

x + LxLy + LyLx + L2
y,

and
L(x2+xy+yx+y2) = Lx2 + LxLy + LyLx + Ly2 .

Since L2
x = Lx2 , we get Lxy+yx = LxLy + LyLx, and hence that

Lx•y = Lx • Ly

in terms of the Jordan product. By assumption A has an identity 1, so the left
regular representation x 7→ Lx is injective. Moreover, the map x 7→ Lx is, by the
above, a Jordan homomorphism of A+ into EndF (A)

+. Hence A+ is isomorphic to
a subalgebra EndF (A)

+ for the associative algebra EndF (A), so A
+ is special.

We can describe the construction of A+ by saying that we have a plus functor
from the category of associative F -algebras to the category of Jordan F -algebras
that sends A to A+ and is the identity on the morphisms.

The full algebra A+ is in some sense too close to being associative, and the more
important roles in the theory of Jordan algebras are played by certain subalgebras
of A+: the Hermitian algebras and the quadratic factors.

10

Hermitian Jordan algebras
The archetypical example of Jordan algebras is the class of Hermitian Jordan alge-
bras. These are subalgebras selected from an algebra A+, A associative, by means
of an involution. Recall that a ⋆-homomorphism φ : (A, ⋆) → (A′, ⋆′) is a homomor-
phism of ⋆-algebras, i.e. an algebra homomorphism for which φ(x⋆) = φ(x)⋆

′
, and

the ⋆-ideals are the kernels of ⋆-homomorphisms; they are ideals invariant under the
involution.
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Theorem 10.0.1 (Hermitian properties). Let (A, ⋆) be an associative ⋆-algebra.

1. The set of hermitian elements H(A, ⋆) forms a Jordan subalgebra of A+ which
is unital if A is. Any ⋆-homomorphism or anti-homomorphism (A, ⋆) → (A′, ⋆′)
restricts to a Jordan homomorphism H(A, ⋆) → H(A′, ⋆′).

2. Let B be a subalgebra and I and ideal of A. Then H(B, ⋆) is a Jordan
subalgebra and H(I, ⋆) a Jordan ideal of H(A, ⋆).

3. If (A, ⋆) is ⋆-simple, then H(A, ⋆) is a simple Jordan algebra.

Proof. The anti-automorphism ⋆ is in particular a Jordan automorphism of A+ by
Theorem 9.0.1(iii), so the set of fixed points H(A, ⋆) forms a Jordan subalgebra,
since the set of fixed elements under any Jordan automorphism forms a Jordan
subalgebra.

Any ⋆-homomorphism or anti-homomorphism is a homomorphism A+ → (A′)+

by 9.0.1(iii) that takes Hermitian elements to Hermitian elements: x ∈ H(A, ⋆) =⇒
φ(x)⋆

′
= φ(x⋆) = φ(x) ∈ H(A′, ⋆′).

For any C ⊂ A, H(C, ⋆) = C ∩ H(A, ⋆) so the second assertion follows since
intersections of subalgebras (ideals) are again subalgebras (ideals).

For the simplicity assertion we refer to [Cri04] II.3.2.2.

For any algebra A, we can define the opposite algebra Aop by reversing the
order of the product: x ·op y := y · x.

Proposition 10.0.1 (Exchange involution embedding). Every algebra A is a sub-
algebra of a ⋆-algebra, namely, its exchange algebra Ex(A) := (A⊞Aop, ex) with
exchange involution ex(a, b) := (b, a).

The symbol ⊞ refers to the algebra direct sum, the cartesian product under the
usual componentwise operations. The map a 7→ (a, 0) is the embedding mentioned.
The Hermitian elements are given by H(Ex(A), ex) = {(a, a) : a ∈ A}.

Proposition 10.0.2. For any algebra A,

A+ ∼= H(Ex(A), ex).

Proof. The map a 7→ (a, a) is linear and a bijection A+ → H(Ex(A), ex) that
preserves the bullet product:

(a, a) • (b, b) = 1

2
(ab+ ba, ba+ ab) = (a • b, b • a) = (a • b, a • b).

Initially, the Hermitian Jordan algebra H(A, ⋆) arises as a certain subalgebra of
the full algebra A+, but the above shows that at the same time A+ arises as a certain
Hermitian algebra.

The most important Hermitian Jordan algebras are the Hermitian n× n matrix
algebras.
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Hermitian matrix algebras. Let (D,−) be a (unital) ⋆-algebra over some field

F with involution denoted d 7→ d and let X⋆ := X
T
be the standard conjugate trans-

pose involution on the algebra Mn(D) of all n× n matrices with entries in D under
the ordinary matrix product XY . The Hermitian matrix algebra Hn(D,−) is
the algebra given by the vector space H(Mn(D), ⋆) over F of Hermitian matrices
equipped with the Jordan bullet product X •Y = 1

2
(XY +Y X) or the brace product

{X, Y } := XY + Y X.

With Eij the elementary matrices with ij-entry 1 and all other entries zero, the
algebra Hn(D,−) is spanned by the basic Hermitian elements written in Jacobson
box notation (see [Jac68] Ch. 3.2 or [Cri04] II.3.2.4) as

δ[ii] := δEii for Hermitian δ ∈ H(D,−),

d[ij] := dEij + dEji for any d ∈ D,

d[ij] = d[ji].

For the ordinary matrix square X2 = XX and the brace product {X, Y } =
XY + Y X and for distinct indices i, j, k, we have the basic product rules

δ[ii]2 = δ2[ii], {δ[ii], γ[ii]} = (δγ + γδ)[ii],

d[ij]2 = dd[ii] + dd[jj], {d[ij], b[ij]} = (db+ bd)[ii] + (db+ bd)[jj],

{δ[ii], d[ij]} = δd[ij], {d[ij], δ[jj]} = dδ[ij],

{d[ij], b[jk]} = db[ik],

as well as an orthogonality rule

{d[ij], b[kℓ]} = 0 if {i, j} ∩ {k, ℓ} = ∅.

When n ≥ 4, in order for Hn(A, ⋆) to be a Jordan algebra the relations the
elements of A must satisfy forces A to be associative, but for n = 3 it suffices for
the entries to be from an alternative algebra (Theorem 13.2.3). The algebra Hn(O)
is Jordan also for n < 3; but is isomorphic to the base field R and a spin factor
Jspin(9) for n = 1 and n = 2 respectively. This explains why Hn(O) appears only
for n = 3 in the classification theorem 6.0.1.

From a category theoretic perspective, we have a Hermitian functor from the
category of associative ⋆-algebras with ⋆-homomorphisms to the category of Jordan
algebras, sending (A, ⋆) to H(A, ⋆) and ⋆-morphisms φ to their restrictions φ|H(A,⋆)

.
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11

Quadratic factors
Another important class of Jordan algebras are the quadratic factors. These are
Jordan algebras constructed from quadratic forms with a base point.

Lemma 11.1. Suppose A is a unital and commutative algebra such that every
x ∈ A satisfies a degree 2 equation:

x2 − αx+ β1 = 0

for some α, β ∈ F depending on x. Then A is a Jordan algebra.

Proof. We only need to show that the Jordan identity holds. The degree 2 equation
implies that we have [x2, y, x] = [αx−β1, y, x] = α[x, y, x]−β[1, y, x], but [1, y, x] = 0
since 1 ∈ Nuc(A) and [x, y, x] = 0 since (xy)x = x(xy) = x(yx) holds in any
commutative algebra.

11.1 Quadratic factors

Theorem 11.1.1 (Quadratic factor construction). Suppose J is a vector space
equipped with a quadratic form q : J → F with a base point q(c) = 1 for some
c ∈ J . Define a product on J with

x • y :=
1

2

(
T (x)y + T (y)x− q̂(x, y)c

)
. (11.1.1)

(i) J under this product is a unital Jordan algebra with multiplicative unit c, and
every x ∈ J satisfies the degree 2 identity:

x2 − T (x)x+ q(x)c = 0. (11.1.2)

(ii) The standard trace involution is an algebra involution, i.e. x • y = x • y, and
the auxiliary U -product is given in terms of the trace involution by

Ux(y) = q̂(x, y)x− q(x)y,

and the form q permits Jordan composition with U :

q(Ux(y)) = q(x)q(y)q(x).
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(iii) If q is nondegenerate, then J is a simple Jordan algebra unless J is 2-dimensional
and q is isotropic.

Proof. The product is symmetric in x, y as q̂ is symmetric, so commutativity is clear.
Letting y = c in (11.1.1) gives

x • c = c • x =
1

2

(
T (x)c+ 2x− T (x)c

)
= x

since T (c) = q̂(c, c) = 2 and q̂(x, c) = T (x). Hence 1 := c is a multiplicative unit.
The degree 2 identity follows from (11.1.1) by setting y = x, since q̂(x, x) = 2q(x).

Thus J is a Jordan algebra by Lemma 11.1.
Since the standard trace involution is linear and preserves traces and norms and

fixes the base point c (Proposition 8.0.2), it also preserves the product x • y that is
built out of these components.

To obtain the expression for the U -operator, we have

Ux(y) := 2x • (x • y)− x2 • y
= x •

(
T (x)y + T (y)x+ q̂(x, y)c

)
−
(
T (x)x− q(x)c

)
• y

=
(
T (x)x • y + T (y)x2 − q̂(x, y)x

)
−
(
T (x)x • y − q(x)y

)

= T (y)
(
T (x)x− q(x)c

)
− q̂(x, y)x+ q(x)y

=
(
T (x)T (y)− q̂(x, y)

)
x− q(x)

(
T (y)c− y

)

= q̂(x, y)x− q(x)y,

where the last equality follows from y = T (y)c− y and q̂(x, c) = T (x). We now use
this expression for the U -operator to show that q permits Jordan composition:

q(Ux(y)) = q(q̂(x, y)x− q(x)y)

= q̂(x, y)2q(x)− q̂(x, y)q(x)q̂(x, y) + q(x)2q(y)

= q(x)2q(y).

To prove the simplicity claim, note that if I is any proper ideal of J , then I
cannot contain any nonzero scalar multiple of the unit c (since then c ∈ I because
F is a field), so I must be totally isotropic: for any b ∈ I, by (11.1.2) we have
q(b)1 = T (b)b − b2 ∈ I, so we must have q(b) = 0. Moreover, no nonzero b ∈ I
can have zero trace, because if T (b) = q̂(1, b) = 0, then by nondegeneracy of q there
must be some x ∈ J for which q̂(x, b) ̸= 0. Scaling x if necessary so that q̂(x, b) = 1
and using that {x, y} := x • y + y • x = T (x)y + T (y)x− q(x, y)c, we would have

c = q̂(x, b)c = T (x)b+ T (b)x− {x, b} = T (x)b− {x, b}.

The right hand side is in I, so c ∈ I contradicting the fact that I was proper. Since
T is linear, it must be injective into the base field F when restricted to I, which
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means I can only be one-dimensional. If we scale b so that T (b) = 1, then for any
y ∈ J

y − q̂(y, b)c = T (b)y − q̂(y, b)c = {y, b} − T (y)b,

where the right hand side is in I. Hence all y ∈ J lie in F1 + I = F1 + Fb, so J is
2-dimensional and q is isotropic.

We call the Jordan algebra of Theorem 11.1.1 a quadratic factor and denote
it with J (q, c).

From a category-theoretic perspective, we can form the category of quadratic
forms with base point by taking the objects to be pairs (q, c) of quadratic forms with
base point c, and as morphisms the F -linear isometries φ : (q, c) → (q′, c′) which
preserve the base point: q′(φ(x)) = q(x) and φ(c) = c′. Such a map φ automatically
preserves traces:

T ′(φ(x)) = q̂′(φ(x), c′) = q̂′(φ(x), φ(c)) = q̂(x, c) = T (x)

and hence also preserves the product x • y in J , so it is a Jordan algebra homomor-
phism. Thus we have a quadratic functor from the category of F -quadratic forms
with base point to unital Jordan algebras over F , with (q, c) 7→ J (q, c) on objects
and the identity φ→ φ on morphisms.

11.2 Spin factors

Theorem 11.2.1 (Spin factor construction). Let V be an F -vector space and σ a
symmetric bilinear form. Let J := F1⊕ V and define a product on J by

(α1⊕ v) • (β1⊕ w) := (αβ + σ(v, w))1⊕ (βv + αw).

Then J is a unital Jordan algebra, which we denote with Jspin(V, σ), called a spin
factor.

Proof. The spin factor Jspin(V, σ) is equal to the quadratic factor J (q, c) for

c = 1⊕ 0, q(α1⊕ v) = α2 − σ(v, v), T (α1⊕ v) = 2α.

The associated bilinear form becomes

q̂(α1⊕ v, β1⊕ w) = q((α + β)1⊕ (v + w))− q(α1⊕ v)− q(β1⊕ w)

= 2αβ − 2σ(v, w)

using that σ is symmetric. Thus the product in J (q, c) becomes

(α1⊕ v) • (β1⊕ w) =
1

2

(
2α(β1⊕ w) + 2β(α1⊕ v)− (2αβ − 2σ(v, w)) • (1⊕ 0)

)

= (αβ + σ(v, w))1⊕ (αw + βv).
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Since we are only dealing with the cases where char(F ) ̸= 2, we can reverse this
process: every quadratic factor J (q, c) is naturally isomorphic to the spin factor
Jspin(V, σ) for σ(v, w) = −1

2
q̂(v, w), the negative of the restriction of 1

2
q̂ to V :=

c⊥ = {x ∈ J : T (x) = q̂(x, c) = 0} since we have the natural decomposition
J = Fc⊕ V .

In category theoretical terms, we can form a category of symmetric F -bilinear
forms whose morphisms are F -linear isometries φ : σ → σ′ (i.e. σ′(φ(v), φ(w)) =
σ(v, w)). The spin factor construction is then a spin functor from the category
of symmetric F -bilinear forms to unital Jordan algebras over F given by σ 7→
Jspin(V, σ), where the Jordan homomorphism corresponding to an F -linear isometry
is defined by extending φ unitally to J = F1⊕ V : Jspin(φ)(α1⊕ v) := α1⊕ φ(v).

Remark 11.2.1. All nondegenerate quadratic forms q on vector spaces of dimension
n + 1 over an algebraically closed field Ω for char(Ω) ̸= 2 are equivalent, i.e. there
exists a bijective Ω-linear isometry between them. Such a quadratic form can be
represented, relative to a suitable basis, as the dot product on Ωn+1: q(v) = σ(v, v) =
vTv for column vectors v. This means that every resulting Jordan algebra J (q, c) is
isomorphic to Jspin(Ω

n, ·) where · is the dot product.

When V = Rn and σ the ordinary dot product, then Jspin(V, σ) = Jspin(n) as in
the spin factor example 5.3.

12

Free algebras. Macdonald’s the-
orem.
Macdonald’s theorem is a general result in Jordan algebras which says that any
identity (i.e. equality between two expressions) in three variables that is of degree
at most 1 in one of the variables and holds in every special Jordan algebra will hold
in any Jordan algebra.

In order to state the theorem, we must make precise the notions of free algebras,
in particular free nonassociative algebras. Free algebras, like other free objects
(such as free groups, free modules, polynomial rings, etc.) can be thought of as a
generalisation of the notion of bases in vector spaces. Similar to how a linear map
between vector spaces is entirely determined by its values on the basis elements of
its domain, a homomorphism from a free algebraic object into some other object of
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the same kind is determined by its values on the generating set of the free object.
An associative algebra A can be thought of as a vector space with a monoid

structure, i.e. A is simultaneously a vector space and a set equipped with an asso-
ciative binary multiplication operation p : A × A → A, such that the vector space
structure interacts nicely with the monoid structure (multiplication distributes over
addition, etc.). Similarly we may regard a nonassociative algebra as a vector space
and a set with a nonassociative binary operation.

12.1 Free Jordan algebras

Definition 12.1.1 (Monoid). A (unital) monoid is a set X equipped with an
associative binary operation X×X → X , written xy, with a distinguished element
1 ∈ X for which 1x = x1 = x for all x ∈ X. A map φ : M → M ′ between two
monoids is called a monoid homomorphism if φ(xy) = φ(x)φ(y) and φ(1M) =
1M ′ .

Definition 12.1.2 (Magma). If the binary operation in the above definition is not
assumed to be associative, the structure is instead called a (unital) magma. A
magma homomorphism is defined in the same way as for monoids; it is a map
between (unital) magmas for which φ(xy) = φ(x)φ(y) (and φ(1) = 1).

Let us first examine the case for associative algebras. If A is a (unital) associative
algebra over a field F , then A is a monoid with respect to the multiplication in A.
Now supposeM is a monoid and F a field. Consider the vector space A over F with
M as a basis (i.e. the free F -module A with basis M). We can define a product on
A by (∑

aimi

)
·
(∑

bjnj

)
:=
∑

aibj(minj)

where ai, bj ∈ F and mi, nj ∈ M . This product makes A into an associative unital
algebra over F . Indeed, associativity follows directly from the fact that the binary
operation of M is associative, and the multiplicative identity of A is identified with
1M in the canonical inclusion M ↪→ A. If we take M to be a magma instead, this
construction yields a nonassociative algebra.

Definition 12.1.3 (Free monoid). Let X be a nonempty set. A word on X is a
finite sequence x1 . . . xk of elements of X (i.e. a word is a map f : {1, . . . , k} → X).
Denote with

M(X) := {x1 . . . xk | k ∈ N, xi ∈ X}
the set of all finite sequences of elements of X, where we include the empty word, the
empty sequence of zero length, which we denote with 1. We think of the elements
of X as letters. The length of a word x1 . . . xk is the number k, and the length of
the empty word 1 is 0. Define a binary operation by concatenation:

(x1 . . . xk) · (y1 . . . yℓ) = x1 . . . xky1 . . . yℓ.
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It is clear that this operation is associative, with 1 acting as the identity element.
The set M(X) with this binary operation is called the free monoid on X.

Free monoids have the following universal property. Suppose M is any monoid,
X any set, and φ : X → M an arbitrary set function. Then there is a unique
monoid homomorphism φ̃ :M(X) →M extending φ, i.e. φ̃|X = φ. Put differently,

every set function φ factors uniquely through the inclusion ι : X →M(X) (sending
x ∈ X to the word x ∈ M(X)) via a homomorphism φ̃ : M(X) → M of monoids:
φ = φ̃ ◦ ι.

Indeed, every element m ∈M(X) can be expressed as the concatenation of one-
letter words (words of length 1), so if m = x1 . . . xk, then a monoid homomorphism
φ̃ with the desired properties must satisfy φ̃(m) = φ̃(x1) . . . φ̃(xk) = φ(x1) . . . φ(xk).
We therefore define

φ̃(m) := φ(x1) . . . φ(xk), m = x1 . . . xk ∈M(X)

with φ̃(1) := 1M , we find that φ̃ is the desired monoid homomorphism.

Definition 12.1.4 (Free unital magma). LetX be a nonempty set. Define nonasso-
ciative words by induction on degree. The only word of degree 0 is the word 1. Each
x ∈ X is a nonassociative word of degree 1. If all nonassociative words of degree up
to k − 1 are defined, then the words of degree k are precisely all (mn) (an object
consisting of m followed by n, surrounded by parentheses) for words m,n of degrees
dm, dn > 0 such that dm + dn = k. Let N(X) be the set of all nonassociative words,
and define a multiplication on N(X) by (a, b) 7→ (ab) if a, b ̸= 1, and (1, a) 7→ a and
(a, 1) 7→ a. This defines a unital magma N(X).

For instance if a = x4((x1x2)x3) and b = (x5x6), then their product is

a · b = (x4((x1x2)x3)(x5x6)).

We have the following universal property. Let X be a set andM a unital magma.
For every map of sets φ : X → M , there exists a unique unital magma homomor-
phism φ̃ : M(X) → M extending φ. The unique homomorphism is constructed as
follows. We define φ̃ inductively on degree n. For n = 0 we set φ̃(1) = 1M , and
for n = 1 we define φ̃(x) := φ(x). If φ̃ is defined for all nonassociative words up to
degree n, then we define φ̃((xy)) := φ̃(x)φ̃(y).

Definition 12.1.5 (Free associative algebra generated by a set). Let X be a set
and M(X) the free monoid on X, and let F be a field. The free (unital) asso-
ciative algebra A(X) on X is the free F -module with basis M(X) together with
multiplication defined by


 ∑

mi∈M(X)

aimi


 ·


 ∑

nj∈M(X)

bjnj


 :=

∑

mi,nj∈M(X)

aibjminj ai, bj ∈ F,
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i.e. the product of basis elements is the product of M(X), and the product of two
elements of A(X) is determined by the requirement that the product in an algebra
is bilinear.

Another way to think of free associative algebras generated by a setX is that they
are noncommutative analogues of polynomial rings. If we think of X = {x1, x2, . . . }
as indeterminates, then the product in A(X) is identical to the product of polyno-
mials in the polynomial ring F [x1, x2, . . . ], except that the indeterminates no longer
commute. We identify X as a subset of A(X) by the map ι : X ↪→M(X) ↪→ A(X)
sending x ∈ X to the associative polynomial 1x. The free associative algebra A(X)
has the universal property that any set function φ : X → A into a unital asso-
ciative algebra A factors uniquely through ι via a unital algebra homomorphism
φ̃ : A(X) → A. In other words, for any such φ there exists a unique associative
homomorphism φ̃ such that φ̃ ◦ ι = φ. The map φ̃ is the map whose values on
basis elements m = x1 . . . xk ∈ M(X) is defined by φ(x1)φ(x2) . . . φ(xk) as in the
universal property of free monoids. We extend φ̃ linearly to arbitrary elements of
A(X).

Definition 12.1.6 (Free nonassociative algebra generated by a set). In the previous
definition, we may take the (unital) magma N(X) rather thanM(X) and define the
free (unital) nonassociative algebra A′(X) on X as the free F -module with
basis N(X), with product defined in the same way:


 ∑

mi∈N(X)

aimi


 ·


 ∑

nj∈N(X)

bjnj


 :=

∑

mi,nj∈N(X)

aibj(minj),

where (minj) denotes the product in N(X).

The universal property of A′(X) says that any set function φ : X → A into
a nonassociative unital algebra A factors uniquely through the natural inclusion
ι : X ↪→ N(X) ↪→ A′(X) via a unital algebra homomorphism φ̃ : A′(X) → A.
The map φ̃ is defined on basis elements as in the universal property of N(X), and
extended linearly to A′(X).

We may now define the notion of a free special Jordan algebra. Recall that a
Jordan algebra is special if it is isomorphic to a subalgebra of A+ for some associative
algebra A. Suppose for simplicity that A is a unital associative algebra and that J
is a subalgebra of A+ containing the multiplicative unit of A, so the unit of A is also
the unit of J (Theorem 9.0.1(iv)).

The free unital associative algebra A(X) can be equipped with an involution,
called the reversal involution ρ, defined by reversing the order of products of
basis elements: ρ(x1x2 . . . xk) = xk . . . x2x1. This map is the identity on the gener-
ators X, and is clearly of period 2. Also, ρ(x1 . . . xky1 . . . yℓ) = yℓ . . . y1xk . . . x1 =
ρ(y1 . . . yℓ)ρ(x1 . . . xk), so ρ is indeed an involution on A(X).
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Definition 12.1.7 (Free special unital Jordan algebra). Let (A(X), ρ) be the ⋆-
algebra A(X) equipped with the reversal involution ρ. The set H(A(X), ρ) of Her-
mitian elements of A(X) fixed by ρ becomes a special Jordan algebra (a subalgebra
of A(X)+) under the Jordan product that contains X and 1. The Jordan subalgebra
of H(A(X), ρ) generated by X and 1 is called the free (unital) special Jordan
algebra FSJ(X).

Alternatively we may define FSJ(X) as the subalgebra of A(X)+ generated by
1 and X. In this case it is clear that FSJ(X) ⊂ H(A(X), ρ) since the Hermitian
elements contain 1 and X.

Proposition 12.1.1 (Universal property of free special Jordan algebras). Let J
be an arbitrary unital special Jordan algebra, where we identify J as a subalgebra
J ⊂ A+ for some associative algebra A. Let X = {x1, . . . , xk}. Then for any
y1, . . . , yk ∈ J , there exists a unique homomorphism of FSJ(X) into J sending
1 7→ 1 and xj 7→ yj for j = 1, . . . , k.

Proof. Let φ : X → A be the set function such that φ(xj) = yj for j = 1, . . . , k. By
the universal property of free unital associative algebras, this extends uniquely to
a homomorphism φ̃ : A(X) → A such that φ̃(1) = 1 and φ̃(xj) = yj, j = 1, . . . , k.
The map φ̃ is simultaneously a homomorphism A(X)+ to A+ of Jordan algebras
(Theorem 9.0.1). If we restrict this map to FSJ(X), then since the yj are in J ,
we get a map from FSJ(X) into J for which 1 7→ 1 and xj 7→ yj, j = 1, . . . , k.
Since the elements 1, x1, . . . , xk generate FSJ(X), this resulting homomorphism is
unique.

Remark 12.1.1. If X and Y are sets of the same cardinality, then FSJ(X) is iso-
morphic to FSJ(Y ). If f : X → Y is a bijection, then by the universal property
the set functions f : X → Y ⊂ FSJ(Y ) and f−1 : Y → X ⊂ FSJ(X) induce
homomorphisms φ : FSJ(X) → FSJ(Y ) and ψ : FSJ(Y ) → FSJ(X). Now the
identity set function f ◦ f−1 : X → X ⊂ FSJ(X) induces the identity homomor-
phism FSJ(X) → FSJ(X), so by uniqueness φ ◦ ψ must be the identity. Similarly
one finds ψ◦φ to be the identity on FSJ(Y ), and FSJ(X) ∼= FSJ(Y ). We may un-
ambiguously write FSJk for the special Jordan algebra on a set of k elements. The
same is true also for other free objects constructed from sets, such as free groups,
free modules, and so on.

The idea for constructing the free unital Jordan algebra is to take the free nonas-
sociative algebra and quotient out the ideal generated by all elements of the form
(ab)− (ba) and ((((aa)b)a)− ((aa)(ba))), corresponding to the commutative law and
the Jordan identity.

Definition 12.1.8. The free (unital) Jordan algebra FJ(X) on a set X is the
quotient algebra A′(X)/I where I is the ideal generated by all elements ((ab)− (ba))
and (((aa)b)a)− ((aa)(ba)) for a, b ∈ A′(X).
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The algebra FJ(X) = A′(X)/I has a unit 1A′ + I and satisfies the commutative
law and the Jordan identity by this construction, so is a unital Jordan algebra. The
algebra FJ(X) has the universal property that any set function φ : X → J of a
set X into a unital Jordan algebra has a unique extension into a homomorphism
φ̃ : FJ(X) → J . When X = {x1, . . . , xk} we may write FJk to denote the unique
(up to isomorphism) free unital Jordan algebra on k elements (in view of the above
remark applying analogously in this case).

If X ⊂ Y , then FJ(X) can be identified with the Jordan subalgebra of FJ(Y )
generated by X. The homomorphism of FJ(X) onto this subalgebra induced by
X ↪→ Y ↪→ FJ(Y ) is surjective. It is also injective because it has a left inverse
FJ(Y ) → FJ(X) induced by Y → X ∪ {0} where x ∈ X 7→ x and y ∈ Y \X 7→ 0.
In particular we shall make use of this in the case of two and three generators by
identifying FJ({x, y}) with the elements of FJ({x, y, z}) of degree 0 in z.

Remark 12.1.2. The constructions of free objects can be described in category
theoretic terms as saying we have a functor F from the category of sets to the
category of monoids, associative algebras, special Jordan algebras, etc. that sends
a set X to the free object F (X) constructed from that set, and a set function
φ : X → Y to the homomorphism F (f) := φ̃ : F (X) → F (Y ) induced by the
universal property by X → Y ↪→ F (Y ).

For any associative unital algebra A and any set function φ : X → A, the
induced map φ̃ : A(X) → A can be thought of as an evaluation map in the
following sense. If X = {x1, . . . , xn}, then φ̃ takes an arbitrary generic associative
polynomial p(x1, . . . , xn) ∈ A(X) to p(a1, . . . , an) ∈ A, obtained by substituting the
elements ai = φ(xi) for the variables xi. In a similar way we think of elements
of A′(X) as generic nonassociative polynomials, and elements of FSJn as generic
special Jordan polynomials, and so on.

Definition 12.1.9. A Jordan polynomial f(x1, . . . , xn) in n variables is an ele-
ment of FJ({x1, . . . , xn}).

As is the case with any polynomial, f determines a map (a1, . . . , an) 7→ f(a1 . . . , an)
from Jn → J for any Jordan algebra J by evaluating the variables. This is just
the universal property: the map φ sending xi 7→ ai induces a homomorphism
φ̃ : FJ({x1, . . . , xn}) → J and f(a1, . . . , an) = φ̃(f(x1, . . . , xn)). We say that f
vanishes on J if f(a1, . . . , an) = 0 for all ai ∈ J . This process of evaluating poly-
nomials is sometimes called specializing the indeterminates xi to the values ai; note
however that a Jordan polynomial can be evaluated in any Jordan algebra, not just
special Jordan algebras.

12.2 Macdonald’s theorem

We may now state Macdonald’s theorem (as in [Jac68], Ch. 1.9).
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Theorem 12.2.1 (Macdonald’s theorem). Let FJ3 be the free unital Jordan alge-
bra generated by three elements x, y, z, similarly let FSJ3 be the free special unital
Jordan algebra generated by u, v, w. Let φ̃ : FJ3 → FSJ3 be the unique homomor-
phism sending 1 7→ 1, x 7→ u, y 7→ v and z 7→ w, and let J ′ be the set of elements
of FJ3 that have degree at most 1 in z. Then ker φ̃ ∩ J ′ = 0.

Proof. See [Jac68] Ch. 1.9 or [Cri04] IV.B.

Macdonald’s theorem says that the homomorphism φ̃ induced by the universal
property is injective on the elements of degree at most 1 in z. Note that a Jordan
polynomial f(x, y, z) vanishes on all Jordan algebras if and only if it vanishes in FJ3

by the universal property: f(x, y, z) = 0 in FJ3 if and only if f(a, b, c) = 0 for all
evaluations x, y, z 7→ a, b, c of elements in any Jordan algebra J . The same is true also
for FSJ3. Hence the theorem says that any Jordan polynomial f(x, y, z) ∈ FJ3 of
degree at most 1 in z that vanishes in all special Jordan algebras necessarily vanishes
in all Jordan algebras. In particular, if f vanishes in all A+ for associative algebras
A, then it necessarily vanishes in all Jordan algebras, i.e. is an identity (i.e. an
equality of expressions f = 0) for Jordan algebras. The condition that one of the
variables has degree at most 1 is necessary, as we shall see. Macdonald’s theorem
has a number of useful consequences.

IfM ∈ EndF (A) is an operator in an algebra A, then the operator identityM = 0
is equivalent to the element identity M(z) = 0 for all z. This is always linear in
the variable z. If f(x, y, z) is a Jordan polynomial with all terms having z-degree 1,
then f(x, y, z) =Mx,y(z) defines a multiplication operator in x and y, and f(x, y, z)
vanishes on an algebra J if and only ifMx,y does. Macdonald’s theorem thus implies
that

any multiplication operator in two variables that vanishes on all special
Jordan algebras vanishes on all Jordan algebras.

In particular, we have the following.

Corollary 12.2.1.1. The Jordan U - and V -operators satisfy

Uxn = Un
x , Vxn,xm = Vxm+n .

More generally, for any polynomials f, g in the subalgebra F [x] generated by x,

Uf(x)Ug(x) = U(fg)(x), Vf(x),g(x) = V(fg)(x).

Proof. When J ⊂ A+ is special, the U -operator amounts to simultaneous left and
right multiplication with respect to the associative product in A (Theorem 9.0.1).
Since any Jordan algebra is power associative (Proposition 7.2.1), the subalgebra
F [x] is associative (and commutative) and consists of polynomials in the variable x.
The product of two such polynomials f(x), g(x) is the ordinary product (fg)(x) of
polynomials, and

(Uf(x)Ug(x))(z)− U(fg)(x)(z) = f(x)(g(x)zg(x))f(x)− (fg)(x)z(fg)(x) = 0
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vanishes on all special Jordan algebras, hence on all Jordan algebras by Macdonald’s
theorem. Similarly, using the definition of the V -product (Definition 7.3.1) and
Theorem 9.0.1,

Vf(x),g(x)(z) = {f(x), g(x), z} = f(x)g(x)z + zg(x)f(x)

= (fg)(x)z + z(fg)(x)

= {(fg)(x), z} = V(fg)(x)(z).

Taking f(x) = g(x) = x, we obtain U2
x = Ux2 and Vx,x = Vx2 , and the case for

general n follows inductively.

Another important corollary is that any free Jordan algebra generated by two
elements is special.

Corollary 12.2.1.2 (Shirshov’s theorem). A free Jordan algebra generated by two
elements X = {x, y} is special: the homomorphism φ̃ : FJ(X) → FSJ(X) induced
by the map φ : X → FSJ(X) sending x 7→ x, y 7→ y is an isomorphism.

Remark 12.2.1. Macdonald’s original version of the theorem in 1958 only con-
cerned Jordan polynomials f(x, y, z) of z-degree equal to 1. The assertion for poly-
nomials of degree 0 in z is precisely Shirshov’s theorem. The version of Macdonald
given above is the union of the original 1958 theorem and Shirshov’s earlier 1956
theorem.

Proof. The homomorphism φ̃ determined by φ is surjective since its image contains
the generators x, y. We show that it is also injective. As noted before, we can
identify FJ({x, y}) and FSJ({x, y}) with the subalgebras B ⊂ FJ({x, y, z}) and
B′ ⊂ FSJ({x, y, z}) generated by {x, y}. The map φ̃ is then equal to the restriction
of the universal surjective homomorphism ψ : FJ({x, y, z}) → FSJ({x, y, z}) to
B, with ψ(B) = B′. By Macdonald’s theorem, the map ψ is injective on Jordan
polynomials f(x, y, z) of degree at most 1 in z, so in particular ψ is injective on B.
Hence φ is injective.

In Definition 12.1.7, we defined the free special unital Jordan algebra FSJ(X) as
the subalgebra of the Hermitian elements H(A(X), ρ) containing X. By definition
FSJ(X) ⊂ H(A(X), ρ), and a natural question to ask is how close these special
Jordan algebras are from being equal. Recall from Section 4 that the n-tad products
are the maps defined by

{x1, . . . , xn} = x1x2 . . . xn − xnxn−1 . . . x1.

In particular when n = 4 we have the tetrad : {x1, x2, x3, x4} = x1x2x3x4−x4x3x2x1.
For n ≤ 3, the n-tads are all expressible as Jordan bullet products. The tetrad
however is a reversible element that can not be written as a Jordan product. To show
this, it suffices to give an example of a special Jordan algebra J ⊂ A+ containing
some elements x1, x2, x3, x4 but not the element x1x2x3x4 + x4x3x2x1 (where the
product is the associative product of A).
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Definition 12.2.1 (Exterior algebra). Let X = {x1, . . . , xn} be a set and consider
the 2n expressions

xj1 ∧ xj2 ∧ · · · ∧ xjk
where j1, . . . , jk is a strictly increasing subsequence of 1, 2, . . . , n. Given a field F
of characteristic different from 2, let

∧
(X) denote the vector space (free F -module)

with these expressions as basis elements. Equip
∧
(X) with a product, denoted also

with a wedge ∧, satisfying

xj ∧ xj = 0, xi ∧ xj = −xj ∧ xi.

These conditions together with the requirements that the product is associative and
bilinear makes

∧
(X) into an associative algebra, called the exterior algebra on

the set X. We can adjoin a multiplicative unit 1 by including the relations

1 ∧ xj = xj ∧ 1 = xj 1 ∧ 1 = 1.

Remark 12.2.2. The exterior algebra can be defined abstractly as the quotient
of the tensor algebra T (V ) of a vector space V over an arbitrary field F by the
two-sided ideal generated by elements v ⊗ v for v ∈ V . If char(F ) ̸= 2, this ideal
coincides with the ideal generated by elements of the form v ⊗ w + w ⊗ v, since

v ⊗ w + w ⊗ v = (v + w)⊗ (v + w)− v ⊗ v − w ⊗ w.

Consider the (unital) exterior algebra
∧
(X) on four generatorsX = {x1, x2, x3, x4}.

Let J be the subspace of elements of the form λ1+
∑4

j=1 λjxj in
∧
(x) (i.e. J is the

subspace of F -linear combinations of generators or wedges of length 1). Then J is
trivially a special Jordan subalgebra of

∧
(X)+, since

xi ∧ xj = −xj ∧ xi =⇒ 1

2
(xi ∧ xj + xj ∧ xi) = 0.

However, J does not contain tetrads, since by repeated use of the alternating prop-
erty xi ∧ xj = −xj ∧ xi one has

x1 ∧ x2 ∧ x3 ∧ x4 + x4 ∧ x3 ∧ x2 ∧ x1 = 2(x1 ∧ x2 ∧ x3 ∧ x4)

which is not an element of J .

It turns out that the tetrads are precisely the things we need to add to the
generating set X in order to generate all reversible elements. We have the following
result due to Cohn (see e.g. [Cri04], A.2 or [Jac68] Ch. 1.2).

Theorem 12.2.2 (Cohn reversible theorem). The Jordan algebra H(A(X), ρ) is
equal to the subalgebra generated by FSJ(X) together with all increasing tetrads
{x1, x2, x3, x4} for distinct x1 < x2 < x3 < x4, in some ordering of X = {x1, . . . , xk}.
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Proof. Let B be the subalgebra generated by FSJ(X) and the increasing tetrads.
A reversible element a ∈ A(X) for which ρ(a) = a, i.e. an element in H(A(X), ρ),
is of the form a′ + ρ(a′) for some a′ ∈ A(X). Elements of H(A(X), ρ) are thus
generated by basis elements of the form x1x2 . . . xn+xnxn−1 . . . x1 for xi ∈ X. These
are precisely the n-tads, where we define the 0-tad to be the multiplicative identity
1 and the 1-tad to be the identity map, so {x1} = x1 and not x1 + x1. Our task
is to show that all n-tads are zero when reduced modulo B, from which it follows
that B = H(A(X), ρ). For n = 0, 1, this is trivial. When n = 2, we have the 2-tad
x1x2 − x2x1, which is just 2(x1 • x2), so algebra elements generated by 2-tads lie in
FSJ(X). For n = 3 we have the triad, or the triple product x1x2x3 − x3x2x1 which
can be expressed in terms of the Jordan bullet product, so elements generated by
triads lie also in FSJ(X).

When n = 4, first note that in the tetrad {x1, x2, x3, x4}, if two adjacent argu-
ments are equal, then this reduces to a Jordan triple product, e.g. {x1, x1, x3, x4} =
{x21, x3, x4}. Another way of saying this is that the tetrad map is alternating “mod-
ulo B”, i.e. if any two of the xi’s are equal, we may interchange adjacent arguments
until the two equal xi’s are adjacent, and then conclude that the tetrad is equal to
0 modulo B since the result reduces to a Jordan triple product. Thus for n = 4,
it suffices to consider tetrads for which the xi’s are all distinct. We may arrange
the xi’s in increasing order, changing only possibly the sign of the tetrad modulo B.
The elements generated by increasing tetrads are in B by definition.

We now proceed with induction. Assume n > 4 and that all elements generated
by k-tads are in B for all k < n. Let xI = {x1, . . . , xn} be the n-tad determined by
the n-tuple I = (1, 2, . . . , n). We have

{x1, {x2, x3, . . . , xn}} = x1(x2 . . . xn + xn . . . x2) + (x2 . . . xn + xn . . . x2)x1

= {x1, x2, . . . , xn}+ {x2, . . . , xn, x1}
= xI + xσ(I),

where σ is the the n-cycle permutation (12 . . . n). By the induction hypothesis,
{x1, {x2, . . . , xn}} ≡ {x1, 0} = 0 modulo B, so

xσ(I) ≡ −xI mod B.

If we repeat this permutation, we have xI = xσn(I) ≡ (−1)nxI , so when n is odd we
have 2xI ≡ 0, and thus xI ≡ 0 modulo B.

Suppose therefore that n is even. Since xσ(I) ≡ −xI , we have xσ2(I) ≡ xI . Let
τ = (12) be a transposition. We have

{x1, x2, {x3, . . . , xn}} = x1x2(x3 . . . xn + xn . . . x3) + (x3 . . . xn + xn . . . x3)x2x1

= {x1, x2, . . . , xn}+ {x3, x4, . . . , xn, x2, x1}
= xI + x(σ2τ)(I).

Now xI +x(σ2τ)(I) ≡ xI +(−1)2xτ(I). By the induction hypothesis, {x3, . . . , xn} ≡ 0,
so the above is ≡ 0, hence

xτ(I) ≡ −xI mod B.
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Any permutation in π ∈ Sn can be written as a product of τ and σ (the transposition
τ and the n-cycle σ generate Sn). Thus,

xπ(I) ≡ sign(π)xI mod B.

Since B contains the tetrads and is closed under Jordan products, we have by the
induction hypothesis

0 ≡ {{x1, x2, x3, x4}, {x5, . . . , xn}}
= {x1, x2, x3, x4, x5, . . . , xn}+ {x4, x3, x2, x1, x5, . . . , xn}
+ {x5, . . . , xn, x1, x2, x3, x4}+ {x5, . . . , xn, x4, x3, x2, x1}

= xI + x(14)(23)(I) + xσ4(I) + x(14)(23)σ4(I)

≡ xI + (−1)2xI + (−1)4xI + (−1)2(−1)4xI

= 4xI .

Hence xI ≡ 0 mod B, showing that all n-tads are contained in B.

In particular when |X| ≤ 3, there are no tetrads with distinct variables, and we
obtain the following important result as a special case.

Corollary 12.2.2.1 (Cohn symmetry). If X is a set of at most 3 elements, then
H(A(X), ρ) = FSJ(X). Hence any symmetric (Hermitian with respect to ρ) asso-
ciative polynomial in at most three variables can be written as a Jordan product.

When the degree of z is greater than 1, the conclusion of Macdonald’s theorem
no longer holds, and there are Jordan polynomials that vanish on all special algebras
but not on all Jordan algebras.

Definition 12.2.2. An s-identity is a Jordan polynomial (i.e. an element of a free
Jordan algebra) that vanishes on all special Jordan algebras, but not on all Jordan
algebras. A Jordan algebra is called i-special (identity-special) if it satisfies all
s-identities, otherwise it is called i-exceptional (identity-exceptional).

For a Jordan algebra it is easier to be i-special than to be special, for it need only
externally appear special in the sense of satisfying s-identities, while not necessarily
living inside an associative algebra. Similarly, being i-exceptional is harder than
being merely exceptional, for an i-exceptional Jordan algebra cannot even appear
special.

Macdonald’s theorem says that there are no s-identities in three variables if
one of the variables has degree at most 1. The initial goal of Pascual Jordan was
to capture the algebraic properties of Hermitian operators with his axioms, so the
existence of s-identities was unintended: the s-identities are certainly satisfied by the
special Jordan algebras consisting of Hermitian matrices, so they express algebraic
properties that were intended to be consequences of the axioms. In 1959, A. A.
Albert and Lowell J. Paige gave a non-constructive proof showing that there must
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exist nonzero Jordan polynomials in three variables that vanish on all special Jordan
algebras. The first s-identities were discovered by Charles Glennie in 1963. These
are Jordan polynomials in three variables of degree 8 and 9, respectively.

Definition 12.2.3 (Glennie’s identities). Glennie’s identities are the Jordan
polynomials Gn(x, y, z) := fn(x, y, z) − fn(y, x, z) of degree n = 8, 9 (degree 3 in
x and y and degree 2 and 3 in z respectively), where

f8(x, y, z) := {(UxUy)(z), z, {x, y}} − (UxUyUz)({x, y}),
f9(x, y, z) := {Ux(z), (Uy,xUz)(y

2)} − (UxUzUx,yUy)(z).

Theorem 12.2.3. Glennie’s identities are s-identities: they vanish in all special
Jordan algebras, but not on all Jordan algebras, since they do not vanish on the
Albert algebra H3(O).

Proof. The easy part is to show that the identities vanish on special algebras J ⊂ A+,
where the auxiliary products correspond to associative products in algebra A. For
example, f8(x, y, z) reduces to

(xyzyx)z(xy + yx) + (xy + yx)z(xyzyx)− xyz(xy + yx)zyx

= {x, y, z, y, x, z, x, y}+ {x, y, z, y, x, z, y, x} − {x, y, z, y, x, z, y, x}
= {x, y, z, y, x, z, x, y}.

Then f8(y, x, z) = −f8(x, y, z), so G8 vanishes on J . The case for G9 holds similarly.
To show that G8 and G9 do not vanish on all Jordan algebras, it can be shown
that in a Hermitian matrix algebra H3(D), the G8 and G9 vanish if and only if
the coordinate ⋆-algebra D is associative. Hence they do not vanish on an Albert
algebra H3(O) with entries from a nonassociative octonion algebra O. We refer the
reader to [Cri04], Theorem B.5.3 for a complete proof.

Corollary 12.2.3.1. The Albert algebras H3(O) are i-exceptional; in particular
they are exceptional.

Note that i-exceptional algebras were not what Jordan initially set out to find;
the goal was to find an exceptional but i-special algebra so that it would enjoy the
algebraic properties of Hermitian operators and in order to form a suitable setting
for quantum mechanics.
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13

Peirce decomposition
We turn to a brief exposition of Peirce decompositions. In associative rings and
algebras, a decomposition 1 = e1 + · · · + en of the multiplicative unit into pairwise
orthogonal idempotent elements produces a decomposition of the algebra A into a
direct sum

⊕
Aij, where the rules for multiplying elements of these components

look like the rules for multiplying elementary matrices: AijAkℓ ⊂ δjkAiℓ (δjk = 1 if
j = k, otherwise zero). This is an important tool in the Artin-Wedderburn theory
of associative rings and algebras. The structure of A can be understood by studying
the structure of the individual components Aij and how they are combined to form
A. There are similar Peirce decompositions for Jordan algebras, and they are a key
tool for their structure theory and classification.

The classical structure theory for Jordan algebras with finiteness conditions that
had been developing since 1934 culminated in 1983 when Nathan Jacobson formu-
lated a classification of Jordan algebras in terms of algebras with capacity. Roughly,
a Jordan algebra has capacity n if its multiplicative unit decomposes into a sum of
n pairwise orthogonal “primitive” idempotents (section 15).

Given a vector space V and two projection operators P1, P2 on V , i.e. linear
maps Pi : V → V such that P 2

i = Pi, when the projection operators are orthogonal
in the sense that P1P2 = P2P1 = 0, the space V decomposes into a direct sum of
the images: V = V1 ⊕ V2 where Vi = Pi(V ). If A is a unital associative algebra and
e ∈ A is an idempotent, left and right multiplication by e and its complementary
idempotent e′ = 1− e define projection operators on A, and the decomposition

IA = L1 = Le+e′ = Le + Le′

of the identity operator IA on A gives a one-sided decomposition A = eA⊕ e′A into
two subspaces, and the decomposition

IA = L1R1 = LeRe + LeRe′ + Le′Re + Le′Re′

gives a two-sided decomposition A = eAe⊕ eAe′ ⊕ e′Ae⊕ e′Ae′ into four subspaces.
In unital Jordan algebras, the decomposition of the quadratic U -operator

1J = U1 = Ue+e′ = Ue + Ue,e′ + Ue′

gives a decomposition into three subspaces J = J2 ⊕ J1 ⊕ J0, where J2 corresponds
to eAe, J1 to e′Ae′, but J0 corresponds to eAe′ ⊕ e′Ae.
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Definition 13.0.1 (Idempotent elements). Let J be a (unital) Jordan algebra. An
idempotent e ∈ J is an element for which e2 = e. An idempotent is proper if
e ̸= 0, 1. If J contains a proper idempotent, we say that the algebra J is reduced.
If e, f ∈ J are idempotents, we say that they are orthogonal if e • f = 0.

If e ∈ J is an idempotent, then all its powers are equal to itself: en = e for all
n ≥ 1, as is seen using induction with en+1 := e • en as in Proposition 7.2.1. When
J is unital, we define for any idempotent e ∈ J the complementary idempotent
e′ := 1− e, which is an idempotent:

(e′)2 = (1− e)2 = 1− 2e+ e2 = 1− 2e+ e = 1− e,

and orthogonal to e, since

e • (1− e) = e− e2 = e− e = 0.

Whenever two or more pairwise orthogonal idempotents sum to the multiplicative
identity, we call them supplementary.

Definition 13.0.2 (Peirce projections). Let J be a unital Jordan algebra. The
Peirce projections Ei(e), i = 0, 1, 2 determined by e are defined as the U -operators

E2 := Ue, E1 := Ue,e′ , E0 := Ue′ .

Theorem 13.0.1 (Peirce Decomposition Theorem). The Peirce projections are a
supplementary set of projection operators on J , i.e.

E0 + E1 + E2 = IJ

and
EiEj = δijEi

where δij is the Kronecker delta; equal to 1 if i = j, otherwise equal to 0. Hence J de-
composes into a direct sum of their ranges, and we have the Peirce decomposition
of J into Peirce subspaces

J = J2 ⊕ J1 ⊕ J0, Ji := Ei(J).

Proof. That the Peirce projections sum to the identity operator is immediate from
the fact that e and e′ are supplementary idempotents:

E2 + E1 + E0 = Ue + Ue,e′ + Ue′ = Ue+e′ = U1 = IJ .

Next, note that e and e′ lie in the subalgebra F [e] = F1 + Fe generated by the
idempotent e, so by power associativity of operators (Corollary 12.2.1.1), for any
x, y ∈ F [e] we have UxUy = Ux•y. Linearizing, we obtain

UxUy,z = Ux(Uy+z − Uy − Uz)

= Ux•y+x•z − Ux•y − Ux•z

= Ux•y,x•z
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for all x, y, z ∈ F [e]. In particular, UxUy = UxUy,z = Uy,zUx = 0 whenever x • y = 0.
Taking x = e and y = e′, we find that E2 = Ue, E1 = Ue,e′ and E0 = Ue′ are pairwise
orthogonal since e • e′ = 0. This also shows that E2 and E0 are projections, since
idempotent elements x2 = x always give rise to idempotent U -operators UxUx =
Ux2 = Ux using operator power associativity again. The complement E1 = IJ −
(E2 + E0) must then also be a projection. We can also verify this directly by
linearizing further:

Ux,yUz,w = Ux•z,y•w + Ux•w,y•z,

so that

E2
1 = Ue,e′Ue,e′ = Ue•e,e′•e′ + Ue•e′,e′•e = Ue,e′ = E1.

The Peirce decomposition of a Jordan algebra was first introduced by A. A.
Albert in [AAA47] as a decomposition of the algebra into eigenspaces for the right
multiplication operator Re (= Le), which satisfies the operator equation (T −1)(T −
1
2
)(T − 0) = 0. However, the Peirce projections have simpler expressions in terms of

the U -operator, with the added benefit that its formulation does not require 1
2
.

The underlying idea behind Peirce decompositions is that they behave similar
to matrix decompositions. If Eij denotes the elementary matrix with ij-entry 1
and the rest zeroes, a Peirce decomposition is like a decomposition of a matrix
algebra M2(A) into subspaces AEij which multiply like the elementary matrices
themselves. The important difference in the case with Jordan algebras compared
to the associative case is that the “off-diagonal” spaces AE12 and AE21 cannot, in
general, be separated.

Theorem 13.0.2 (Peirce multiplication rules). Let J be a Jordan algebra and
e ∈ J an idempotent, and let Ji = Ei(J) be the corresponding Peirce subspaces for
i = 0, 1, 2. Then the following multiplication rules hold:

1. For the diagonal Peirce spaces Jk, k = 0, 2, we have

J2
k ⊂ Jk, {Ji, J1} ⊂ J1 J2

1 ⊂ J2 + J0.

2. UJi(Jj) ⊂ J2i−j, for i, j = 0, 1, 2, where we understand Ji = 0 for any i ̸= 0, 1, 2.

3. For i, j, k = 0, 1, 2,

{Ji, Jj, Jk} ⊂ Ji−j+k.

4. If k = 0, 2 is a diagonal index and i ̸= k,

{Jk, Ji} = {Jk, Ji, J} = UJk(Jk) = 0.

Proof. See [Cri04] II.8.2.1.
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13.1 Examples

We give some examples of idempotents and their Peirce decompositions. When
J = A+ is a full algebra, J has the same Peirce decomposition as the associative
algebra A, and in particular the off-diagonal space J1 decomposes into two pieces.
This is atypical for Jordan algebras.

Associative Peirce decomposition. Let A be a unital associative algebra and
e ∈ A an idempotent, with e′ := 1− e. Then any x ∈ A decomposes as

x = 1x1 = (e+ e′)x(e+ e′) = exe+ exe′ + e′xe+ e′xe′.

We obtain the associative Peirce decomposition

A =
⊕

i,j=0,1

Aij

with respect to e, where Aij := eiAej and e1 = e, e0 = e′. Since

AijAkℓ = (eiAej)(ekAeℓ) = δjk(eiAejAeℓ) ⊂ δjk(eiAeℓ),

the Peirce subspaces satisfy the multiplication rules

AijAkℓ ⊂ δjkAiℓ.

Full Peirce decomposition. For an associative algebra A with an idempotent e ∈
A, the corresponding full Jordan algebra J = A+ has Jordan Peirce decomposition

A+ = A+
2 ⊕ A+

1 ⊕ A+
0

where
A+

2 = A11, A+
1 = A10 ⊕ A01, A+

0 = A00.

The Peirce multiplication rules 13.0.2 are the same as the rules for multiplying
matrices. If we take A = M2(D) to be the algebra of 2 × 2 matrices with entries
from some associative algebra D and we take e ∈ A to be the elementary matrix
E11, then the Peirce subspaces relative to e are the matrices having all entries 0
except for the ij-entry:

A11 =

(
D 0
0 0

)
, A10 =

(
0 D
0 0

)
, A01 =

(
0 0
D 0

)
, A00 =

(
0 0
0 D

)
.

When the associative algebra A comes equipped with an involution, we can
extract the Jordan subalgebra of Hermitian elements inside A. As in the full case,
the off-diagonal Peirce subspace J1 is a mix of associative ones, but it no longer
decomposes into two disjoint parts A10 and A01.
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Hermitian Peirce decomposition. Let (A, ⋆) be an associative ⋆-algebra and
let e be an idempotent fixed by the involution: e⋆ = e. Then the associative Peirce
spaces satisfy A⋆

ij = Aji, the idempotent e lies in the Jordan subalgebra H(A, ⋆) and
the Peirce decomposition is induced from the Full Peirce decomposition:

H(A, ⋆) = J2 ⊕ J1 ⊕ J0

where
J2 = H(A11, ⋆), J0 = H(A00, ⋆),

and
J1 = H(A10 ⊕ A01, ⋆) = {x⊕ x⋆ : x ∈ A10}.

13.2 Multiple Peirce decomposition

The notion of Peirce decompositions can naturally be extended for multiple idem-
potents. See [Cri04] section II.13 for details.

For idempotents e1, . . . , en ∈ J , we say that {e1, . . . , en} is an orthogonal fam-
ily of idempotents if ei • ej = 0 whenever i ̸= j. Any such family can be made into
a supplementary family of n+ 1 idempotents by adding

e0 = 1−
∑

i

ei

as long as J is unital. We define the Peirce projections Eij = Eji determined by
an orthogonal family of idempotents to be the operators

Eii := Uei , Eij = Uei,ej = Eji

for i, j = 0, 1, . . . , n, i ̸= j.

Theorem 13.2.1 (Multiple Peirce decomposition). The Peirce projections deter-
mined by an orthogonal family of idempotents form a supplementary family of pro-
jection operators on J :

IJ =
∑

0≤i≤j≤n

Eij, EijEkℓ = δi,kδj,ℓEij,

thus decomposing J into a direct sum of their ranges:

J =
⊕

i≤j

Jij, Jij = Jji := Eij(J).

As in Peirce decompositions with respect to one idempotent, the advantage with
decomposing an algebra down to smaller Peirce subspaces is that multiplication
becomes simpler. As was the case with Peirce decomposition with respect to one
idempotent, the Peirce subspaces in the multiple idempotent case also behave like
subspaces DEij ⊂Mn(D) and multiply like elementary matrices Eij.
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Theorem 13.2.2 (Multiple Peirce multiplication rules). For distinct i, j, k, we have
the brace rules

J2
ii ⊂ Jii, J2

ij ⊂ Jii + Jjj, {Jii, Jij} ⊂ Jij, {Jij, Jjk} ⊂ Jik.

For distinct i, j, we have the U -product rules

UJii(Jii) ⊂ Jii, UJij(Jii) ⊂ Jjj, UJij(Jij) ⊂ Jij.

For arbitrary indices i, j, k, ℓ we have the triple product rule

{Jij, Jjk, Jkℓ} ⊂ Jiℓ.

Finally we have the orthogonality rules:

{Jij, Jkℓ} = 0 if the indices cannot be linked: {i, j} ∩ {kℓ} = ∅,
UJij(Jkℓ) = 0 if {k, ℓ} ⊈ {i, j},

{Jij, Jkℓ, Jrs} = 0 if the indices cannot be linked.

Note that for the orthogonality rules, we may interchange indices as Jij = Jji for
all i, j.

One important application of multiple Peirce decompositions is to obtain con-
ditions on the coordinate algebras D that populate the Hermitian matrix algebras
Hn(D,−). The following is Theorem II.14.1.1 in [Cri04].

Theorem 13.2.3 (Jordan coordinate theorem). Let A be a ⋆-algebra with involu-
tion a 7→ a, and let Hn(A,−) be the Hermitian matrix algebra constructed from A
and assume n ≥ 3. If Hn(A,−) is a Jordan algebra, then A must be alternative with
nuclear involution: H(A,−) ⊂ Nuc(A). If n ≥ 4, then A is associative.

Proof. It will suffice to prove the following:

(i) If n ≥ 4, [a, b, c] = 0, a, b, c ∈ A;

(ii) [a, a, b] = 0 for all a, b ∈ A;

(iii) [h, b, c] = 0 for h ∈ H(D,−), b, c ∈ A.

Indeed, (i) shows A is associative for n ≥ 4, and (ii) and (iii) show that

[a, a, b] = [a+ a, a, b]− [a, a, b] = 0,

since a+a ∈ H(D,−). Now [a, a, b] = 0 is the left alternative law (2.1.3) in associator
form. In particular for any a, b ∈ A we have [a, a, b] = 0, or (a2)b = a(ab). Applying
the involution to both sides gives the right alternative law ba2 = (ba)a, thus showing
A is alternative. Finally (iii) shows H(D,−) is contained in the nucleus Nuc(A).
By the Peirce orthogonality rules 13.2.2, for all a, b, c ∈ A and all h ∈ H(D,−), we
have
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1. 2{b[13], a[21], c[34]} = 0 for n ≥ 4;

2. 2Ua[12](b[23]) = 0;

3. 2{b[21], h[22], c[13]} = 0,

The first of these is equal to

{b[13], {a[21], c[34]}}+ {{a[21], b[13]}, c[34]} − {a[21], {b[13], c[34]}}

by the definition of the triple product {x, y, z}. Using the product rules and the
orthogonality rule for Hermitian matrix algebras, we find

{b[13], {a[21], c[34]}}+ {{a[21], b[13]}, c[34]} − {a[21], {b[13], c[34]}}
= {b[13], 0}+ {ab[23], c[34]} − {a[21], {bc[14]}}
= 0 + (ab)c[24]− a(bc)[24] = [a, b, c][24].

Hence [a, b, c] = 0. For the second, we use the brace definition of the U -operator:
2Ux(y) = 4(x • (x • y)) − 2x2 • y = {x, {x, y}} − {x2, y}, then apply the Hermitian
matrix algebra product rules (in particular we use that a[12] = a[21]):

2Ua[12](b[23]) = {a[21], {a[12], b[23]}} − {a[12]2, b[23]}
= {a[21], ab[13]} − {aa[11] + aa[22], b[23]}
= a(ab)[23]− {aa[11], b[23]} − {aa[22], b[23]}
= a(ab)[23]− 0− (aa)b[23]

= −[a, a, b][23].

Finally for the third we get

2{b[21], h[22], c[13]}
= {b[21], {h[22], c[13]}}+ {{h[22], b[21]}, c[13]} − {h[22], {b[21], c[13]}}
= {b[21], 0}+ {hb[21], c[13]} − {h[22], bc[23]}
= 0 + (hb)c[23]− h(bc)[23]

= [h, b, c][23].

Hence [a, b, c] = −[a, a, b] = [h, b, c] = 0 finishing the proof.

The converse is also true: if n ≥ 4 and A is associative, then Hn(D,−) is Jordan;
it is a subalgebra of Mn(A)

+ and thus special. When n = 3, the argument is more
involved (see e.g. [Cri04] C.1.3).
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14

Lie algebras and Jordan algebras

Similar to how we can construct a Jordan algebra A+ from a given associative algebra
A, there is another nonassociative algebra A− we can construct from A. Define the
Lie bracket

[x, y] := xy − yx.

This product satisfies the two identities

[x, y] = −[y, x], (Anticommutativity)

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0. (Jacobi identity)

This makes A into a Lie algebra A− under the bracket product. There is a basic
result in the theory of Lie algebras that conversely every Lie algebra is isomorphic
to a subalgebra of an algebra of the form A− for an associative algebra A (take A
to be the universal enveloping algebra). This means we have a characterization in
terms of identities of the algebras which are isomorphic to subalgebras of algebras
A−, and all Lie algebras are “special” in this sense.

For A+ and Jordan algebras, however, it turns out that a similar characterization
does not exist. That is, there is no characterization in terms of identities or axioms of
the class of algebras that are isomorphic to special Jordan algebras. The reason for
this is that there are special Jordan algebras that have homomorphic images which
are not special. If a class of algebras are defined by identities or axioms written with
the algebra operations, then any homomorphic image of such an algebra must also
satisfy the same identities, since homomorphisms preserve the relevant structure and
therefore also the identities. Thus one cannot characterize special Jordan algebras
by identities or axioms. However, the class of homomorphic images of special Jordan
algebras does have a characterization in terms of identities: these are precisely the
class of i-special or identity-special Jordan algebras (cf. Definition 12.2.2) which are
characterized by the s-identities.

Nevertheless, a homomorphic image of a special Jordan algebra is still special
under certain circumstances. The following result is A.3.1 in [Cri04]. See also Ch.
1.3 Lemma 1 in [Jac68].

Theorem 14.0.1 (Cohn speciality criterion). Any homomorphic image of a special
Jordan algebra is isomorphic to FSJ(X)/K for some set of generators X and some
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ideal K of FSJ(X). This image is special if and only if the associative ideal K̂ of
A(X) generated by K still intersects FSJ(X) precisely in the original K, i.e. iff

K̂ ∩ FSJ(X) = K.

This is equivalent to the seemingly more general statement that FSJ(X)/K is
special if and only if K = I ∩ FSJ(X) for some ideal I of A(X).

Proof. By the universal property of free special Jordan algebras, if X is a generating
set for a special Jordan algebra J , then there is a surjective homomorphism from
FSJ(X) → J (we may take X = J). Any homomorphic image of J into some
J ′ is therefore also an image of some free special Jordan algebra FSJ(X) via the
composite map FSJ(X) ↠ J → J ′. Thus FSJ(X)/K is isomorphic to Im(J),
where K is the kernel of the composite map.

Next we show that the two statements are equivalent. If K̂ ∩ FSJ(X) = K
where K̂ is the ideal of A(X) generated by K, then clearly also the statement
that K = I ∩ FSJ(X) for some ideal I of A(X) holds; for the converse, suppose

K = I ∩ FSJ(X) for some I of A(X). Then K ⊂ I, so K̂ ⊂ I. Thus K ⊂
FSJ(X) ∩ K̂ ⊂ FSJ(X) ∩ I = K, and hence K = FSJ(X) ∩ K̂. Thus the two
criteria in the theorem are equivalent. We shall prove the latter.

Suppose first that K = I ∩FSJ(X) for some ideal I of A(X). We want to show
that FSJ(X)/K is special, i.e. that it is isomorphic to some subalgebra of A+ for
an associative algebra A. Recall that the second isomorphism theorem (Theorem
2.1.1) says that U,W are subalgebras of V , then (U +W )/W ∼= U/(U ∩W ). Using
this fact, we have

FSJ(X)/K = FSJ(X)/(I ∩ FSJ(X)) ∼= (FSJ(X) + I)/I.

Now (FSJ(X) + I)/I is a subalgebra of (A(X)/I)+ generated by 1 + I and x + I
for x ∈ X. Hence FSJ(X)/K is special.

For the other direction, assume FSJ(X)/K is special. This means that we have
an injective homomorphism φ : FSJ(X)/K → A+ for some associative algebra A.
Consider the composite map

ψ : X ↪→ FSJ(X)
π−↠ FSJ(X)/K

φ−→ A+,

where the first map is the canonical inclusion and the second is the natural projection
onto the quotient FSJ(X)/K. The map ψ : X → A+ is a set function, and we may
consider it as a map X → A since A = A+ as sets. By the universal property of
free associative algebras, ψ extends uniquely to a homomorphism ψ̃ : A(X) → A.
Consider the restriction ψ̃|FSJ(X)

of ψ̃ to FSJ(X) ⊂ A(X). Since ψ̃ preserves the

associative algebra product, it also preserves the Jordan product 1
2
(xy + yx) so it

is a Jordan algebra homomorphism on FSJ(X) into A+. The map φ ◦ π is also
a Jordan homomorphism FSJ(X) → A+. Moreover, both ψ̃|FSJ(X)

and φ ◦ π are
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equal to ψ on the set of generators X. By the universal property of FSJ(X), there
can only be one such homomorphism, thus ψ̃|FSJ(X)

= φ ◦ π. Hence

ker(ψ̃) ∩ FSJ(X) = ker
(
ψ̃|FSJ(X)

)
= ker(φ ◦ π) = K.

When X consists of only one or two elements, then all homomorphic images are
special ([Cri04] A.3.2 or [Jac68] Ch. 1.3 Theorem 1). In other words, every i-special
Jordan algebra on at most two generators is special.

Theorem 14.0.2 (Cohn 2-speciality). When X consists of one or two elements,
every homomorphic image of FSJ(X) is special: it is isomorphic to H(A, ⋆) for
some associative ⋆-algebra A.

Proof. We prove the result for two generators X = {x, y}. For the case with one
generator, simply replace all y’s with x’s. Let J be a homomorphic image of FSJ(X).
Then

J ∼= FSJ(X)/K

for some idealK of FSJ(X) = H(A(X), ρ), using Corollary 12.2.2.1. Let K̂ ⊂ A(X)
be the set of linear combinations of elements of the form pkq, where p and q are
associative products in x and y (i.e. p, q ∈M(X)) and k ∈ K. Then K̂ is certainly
contained in the associative ideal B of A(X) generated by K. But any element

of K̂ multiplied from either side by some associative polynomial
∑
λiri for some

ri ∈ M(X) is again some linear combination of elements of the form pkq. Thus K̂

is an ideal for which K ⊂ K̂ ⊂ B; hence K̂ = B.
Every k ∈ K is reversible: ρ(k) = k. Since K̂ is generated by elements of the

form pkq, it follows that K̂ must be closed under ρ, since ρ(pkq) = ρ(q)kρ(p). Hence

K̂ is a ⋆-ideal of H(A(X), ρ).
By Theorem 14.0.1, the homomorphic image of FSJ(X)/K is special if and only

if

K̂ ∩ FSJ(X) = K.

The set K̂ ∩ FSJ(X) = K̂ ∩ H(A(X), ρ) consists of all reversible elements of K̂.

These elements have the form k + ρ(k) for k ∈ K̂, and they are generated by
elements of the form m(k) := pkq + ρ(q)kρ(p). We claim that m(k) ∈ K for each

k ∈ K̂. In the free associative algebra A({x, y, z}) on three generators, the element
m(z) := pzq+ρ(q)zρ(p) is reversible (p, q as before), so by Corollary 12.2.2.1 m(z) is
a Jordan polynomial that is homogeneous of degree 1 in z. The element m(z) is thus
of the formMx,y(z) for a Jordan multiplication operator in x and y (cf. the discussion
following Theorem 12.2.1). In the associative algebra homomorphism A({x, y, z}) →
A({x, y}) induced by x 7→ x, y 7→ y and z 7→ k, the Jordan polynomial m(z) is sent
to m(k) = Mx,y(k). The image Mx,y(k) is a Jordan multiplication operator on an
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element k of the Jordan ideal K, so m(k) ∈ K. Thus

K̂ ∩ FSJ(X) = K,

and J is special.
In the proof of Theorem 14.0.1, we saw that

J ∼= FSJ(X)/K = FSJ(X)/(FSJ(X) ∩ K̂) ∼= (FSJ(X) + K̂)/K̂ ⊂ A(X)/K̂.

Let A := A(X)/K̂. Since K̂ is invariant under ρ, the associative algebra A inherits
a reversal involution ⋆ on the quotient whose reversible elements are of the form

a+a⋆ = π(r)+π(ρ(r)) for r ∈ A(X), where π is the canonical projection A(X)
π−↠

A(X)/K. Now π(r) + π(ρ(r)) = π(r+ ρ(r)) = π(h) for h ∈ H(A(X), ρ) = FSJ(X)
by Corollary 12.2.2.1. Hence H(A, ⋆) is the image of FSJ(X) under π, which is the

same as (FSJ(X) + K̂)/K̂ ∼= J , finishing the proof.

In 1959, Cohn combined his 2-speciality theorem (14.0.2) with Shirshov’s theorem
(12.2.1.2) to obtain the result that any Jordan algebra on two generators, not just
a free one, is special.

Theorem 14.0.3 (Shirshov-Cohn theorem). Any (unital) Jordan algebra generated
by two elements x, y is special: it is isomorphic to H(A, ⋆) for some associative ⋆-
algebra A.

Proof. Any Jordan algebra J generated by two elements X = {x, y} is a homo-
morphic image of FJ(X). By Shirshov’s theorem (Corollary 12.2.1.2), FJ(X) ∼=
FSJ(X), and by Cohn 2-speciality, any image of FSJ(X) is special and of the form
H(A, ⋆).

When the generating set X consists of three or more elements, homomorphic
images of special Jordan algebras are no longer guaranteed to be special, as the next
example shows.

Proposition 14.0.1 (Non-special example). If K is a Jordan algebra ideal gen-
erated by k = x2 − y2, the homomorphic image FSJ({x, y, z})/K of the natural
projection to the quotient is exceptional.

Proof. See [Cri04] A.3.3 or [Jac68] Ch. 1.3 Theorem 2.

The homomorphic image in the above is an example of an i-special exceptional
Jordan algebra.

The first connection between the theory of Jordan algebras and other areas of
mathematics was with Lie algebras and Lie theory. The exceptional Albert al-
gebra H3(O) in particular had some unexpected connections with exceptional Lie
groups and Lie algebras. The exceptional Lie groups G2, F4, E6, E7, E8 were dis-
covered in the 1890s by Élie Cartan and Wilhelm Killing. Initially they were only

76



known through their multiplication tables and did not have concrete characteriza-
tions. Later it was discovered that the smallest of the exceptional simple Lie groups
G2 of dimension 14 (more precisely, its compact real form) could be realized as the
group of automorphisms Aut(O) of the Cayley algebra O, and its corresponding Lie
algebra g2 as the derivation algebra Der(O) of O. A derivation δ of an algebra A is
a linear map δ : A→ A satisfying the product rule, or Leibniz’ rule:

δ(xy) = δ(x)y + xδ(y).

If D(A) denotes the set of all derivations of A, then D(A) is a vector space over
F with addition and scalar multiplication defined in the canonical way. Moreover,
D(A) becomes a Lie algebra under the bracket product

[δ1, δ2] = δ1 ◦ δ2 − δ2 ◦ δ1.

The second smallest of the exceptional Lie groups is called F4 and is of dimension
52. In 1950, Claude Chevalley and Richard Schafer showed in [CS50] that F4 could
be characterized as the automorphism group of the Albert algebra H3(O(F )) over
an algebraically closed field F , and the corresponding Lie algebra f4 as the derivation
algebra of H3(O(F )). Note that over an algebraically closed field, there is only one
Albert algebra up to isomorphism (O(F ) are the split octonions in 8.2.1).

In analogue with how Hermitian Jordan algebras H(A, ⋆) are subalgebras of full
algebras A+ selected by means of an involution ⋆, there are a couple of methods for
obtaining Lie subalgebras of A−. One method is to use traces: If A = GLn(F ) is
the associative algebra of n × n invertible matrices with entries from a field F and
A− =: gln(F ) the corresponding Lie algebra, then the subspace

sln(F ) := {X ∈ gln(F ) : Tr(X) = 0}

of matrices with zero trace is closed under the bracket product:

Tr([X, Y ]) = Tr(XY )− Tr(Y X) = 0

since Tr(XY ) = Tr(Y X). Hence sln(F ) is a Lie subalgebra of gln(F ). More gener-
ally, for any F -vector space V we have an associative algebra EndF (V ) of F -linear
maps (with multiplication taken to be composition of maps), and we may define a
Lie algebra g := EndF (V )−. When V is the vector space F n we get the above special
case.

A second method uses involutions as in the Jordan case. For any associative
⋆-algebra A, the subspace of skew elements x⋆ = −x is closed under the Lie bracket:

[x, y]⋆ = (xy)⋆ − (yx)⋆ = y⋆x⋆ − x⋆y⋆ = [y⋆, x⋆] = [−y,−x] = [y, x] = −[x, y],

so is a Lie algebra. Lastly, given any algebra A over a field or a commutative ring,
the set End(A) of linear transformations of A carries a natural associative algebra
structure, and the subspace Der(End(A)) of derivations is a Lie algebra under the
bracket product.
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In 1966, Jacques Tits found a general construction of a Lie algebra L(C, J) from
a composition algebra C and a Jordan algebra J of “degree 3”. Similar to how one
can construct a Jordan algebra J (q, c) from a quadratic form (Theorem 11.1.1),
there is another class of Jordan algebras that can be constructed from cubic forms.
These are called cubic factors. If (D, ⋆) is a unital alternative ⋆-algebra with scalar
involution, then one can show that the 3× 3 Hermitian matrix algebra H3(D,−) is
a cubic factor (see [Cri04] II.4.4.1).

The ingredients for the Lie algebra L(C, J) are one of the four real division
composition algebras C = R,C,H,O, and a Jordan algebra J = H3(C) or J = R+.
This construction was developed independently by Hans Freudenthal. The results
of this construction are given by the Freudenthal-Tits magic square:

L(C, J)

C ↓, J → R+ H3(R) H3(C) H3(H) H3(O)
R 0 A1 A2 C3 F4

C 0 A2 A2 ⊕ A2 A5 E6

H A1 C3 A5 A6 E7

O G2 F4 E6 E7 E8

15

Structure and classification

We quickly sketch how the tools and concepts introduced so far relate to the devel-
opment of the classical structure theory of Jordan algebras. The first classification
result by Jordan, von Neumann and Wigner in 1934 (Theorem 6.0.1) concerned for-
mally real Jordan algebras over R. The next classification result (see [Cri04] I.2.13)
considers Jordan algebras over an arbitrary algebraically closed field K. The radi-
cal of a Jordan algebra J is the largest nilpotent ideal of J , and the quotient of J
by its radical is semisimple: it can be written as a finite direct sum of simple ideals.
The classification of the simple building blocks uses techniques similar to the 1934
result, looking at the maximal number n of supplementary orthogonal idempotents
of a Jordan algebra in analogy with the elementary matrices Eii. When n = 1 the
simple algebras are full algebras K+, and for n = 2 they are spin factors. When
n ≥ 3, the simple Jordan algebras are all Hermitian matrix algebras Hn(C) where
the coordinates C were one of the split composition algebras (8.2.1). The only ex-
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ceptional algebra in this list is the Albert algebra H3(O(K)) with entries from the
split octonions.

The next step was achieving a classification of finite-dimensional Jordan algebras
over arbitrary fields F (char(F ) ̸= 2). When moving to non-algebraically closed
fields, new kinds of simple algebras appear. There may be several non-isomorphic
algebras A over F which are not themselves split algebras S(F ) over F , but never-
theless become isomorphic to a split algebra S(K) over K when we extend scalars to
the algebraic closure K of F , i.e. K⊗F A ∼= S(K). Such algebras A are called forms
of the split algebra S (Definition 6.0.1). The general strategy for a classification over
arbitrary fields F is to start with the known simple algebras S(K) over the algebraic
closure K and try to determine all possible forms of a given S(K). In other words,
one needs to determine which simple Jordan algebras become Albert algebras over
K, which ones become spin factors and which ones become Hermitian matrix alge-
bras. In Lie theory, a Lie algebra g is said to be of type S (e.g. S = g2, f4, . . . ) if
gK := K ⊗F g is the unique simple Lie algebra g2, f4, . . . over K. In this sense the
problem becomes to classify Lie algebras of a given type.

In general, it is not an easy task to determine all possible forms of a given type.
McCrimmon gives an example for the octonion algebras:

The only octonion algebra over an algebraically closed field K is the split octo-
nions O(K). Over a non-algebraically closed field F (of characteristic not 2), every
octonion algebra O can be obtained from the Cayley-Dickson construction by a
triple of nonzero scalars λ1, λ2, λ3 as in Theorem 8.1.3. However, the question as to
whether two such triples yields isomorphic octonion algebras is not obvious, and it is
difficult to give a precise description of the isomorphism classes of octonion algebras
over F . Nevertheless all octonion algebras are forms of the split algebra O(K)

Another thing that arises in algebras over non-algebraically closed fields are
division algebras. The notion of inverse elements in Jordan algebras is different
from the usual case of associative algebras, where an element y is an inverse to an
element x if xy = yx = 1. It turns out that this condition is not restrictive enough
to be useful in Jordan algebras.

Definition 15.0.1. A Jordan inverse for an element x in a Jordan algebra is an
element y for which x • y (= y • x) = 1 and x2 • y = x. A Jordan algebra for which
every nonzero element has an inverse is called a Jordan division algebra.

For associative algebras, the only finite-dimensional division algebra over an al-
gebraically closed field K is the field K itself (see e.g. [DF03] VI.18.2 Prop. 9).
Over the real numbers R, the only associative division algebras are R itself as well
as C and H (this is known as the Frobenius Theorem on real division algebras). For
Jordan algebras, we have similar results: the only finite-dimensional Jordan division
algebra over an algebraically closed field K is K+, but over a general field F there
may be others.

The structure theorem of Jordan algebras over arbitrary fields F expands on the
result over algebraically closed fields: the quotient of a Jordan algebra J by its radi-

79



cal is semisimple, and can be expressed as a finite direct sum of simple ideals. Every
simple algebra is automatically central-simple over its center, and its center is a field.
Thus the task at hand is to classify central-simple Jordan algebras over F of char-
acteristic different from 2. There were no big surprises on the list: a central-simple
Jordan algebra is either a finite-dimensional Jordan division algebra, a quadratic
factor, or a type of Hermitian matrix algebra. The only exceptional algebras in the
list were the Albert algebras H3(O) of dimension 27 with entries from an octonion
algebra, with the possible exception for some exceptional division algebras. At this
point there were no known methods for classifying the Jordan division algebras, in
particular whether there were any which were not Albert algebras. The full list can
be found in [Cri04] I.3.10.

The next step in the classification was to classify Jordan algebras over rings
of scalars R. Here R no longer has to be a field, only a unital commutative ring
containing an element 1

2
. During the 1960s, Max Koecher and his students found

connections between formally real Jordan algebras and real and complex differen-
tial geometry. These connections made use of triple products, in particular the
U -operator and its inverse. The U -operator also appeared in Nathan Jacobson’s
algebraic study of Jordan algebras. One important notion that came naturally from
the U -operator was the notion of “one-sided” ideals for Jordan algebras. In general,
a commutative algebra has no notion of one-sided ideals, since every left or right
ideal is automatically a two-sided ideal. However, the quadratic product xyx has an
inside and an outside; we multiply y by x from the outside, or x by y on the inside.
The notion corresponding to a one-sided ideal for Jordan algebras is an inner ideal
(called quadratic ideal in some literature).

Definition 15.0.2 (Inner ideal). A submodule S ⊂ J of a Jordan algebra J over a
ring of scalars R is an inner ideal if it is closed under multiplication on the inside
by all of J : US(J) ⊂ S.

For example, any left ideal I of an associative algebra A is an inner ideal of A+,
since for any x ∈ I, y ∈ A+ we have Ux(y) = xyx = x(yx) ∈ I, and the same
is true for right ideals of A. In a Hermitian algebra H(A, ⋆), for any x ∈ A the
collection of elements I = {xhx⋆ : h ∈ H(A, ⋆)} forms an inner ideal of H(A, ⋆),
since (xhx⋆)⋆ = xhx⋆ and Uxhx⋆(h′) = xhx⋆h′xhx⋆, where hx⋆h′xh ∈ H(A, ⋆).

The second important concept that uses the U -operator is the notion of semi-
simplicity for Jordan algebras over R. An element x in a Jordan algebra J is trivial
if its U -operator vanishes: Ux(J) = 0. A Jordan algebra is nondegenerate if it has
no nonzero trivial elements.

In 1966, Jacobson defined artinian Jordan algebras, analogous to artinian asso-
ciative algebras, and obtained a kind of Artin-Wedderburn structure theorem. A
Jordan algebra J is artinian if every collection {Ik} of inner ideals has a minimal
element, or equivalently, any strictly descending chain I1 ⊃ I2 ⊃ . . . of inner ideals
stops after a finite number of terms.

The outline of Jacobson’s structure theorem is as follows. We consider Jordan
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algebras J over rings of scalars R containing 1
2
. The degenerate radical D(J)

is the smallest ideal whose quotient J/D(J) is nondegenerate. A Jordan algebra
is nondegenerate and artinian if and only if it has a unique decomposition into a
finite direct sum of simple nondegenerate artinian ideals. A Jordan algebra is simple
nondegenerate artinian if and only if it is isomorphic to one of

1. a Jordan division algebra;

2. a quadratic factor J (q, c);

3. a Hermitian algebra H(A, ⋆);

4. an exceptional Albert algebra of dimension 27.

The question of the structure of Jordan division algebras remained unsolved. The
problem was that they contained neither any proper idempotents e ̸= 0, 1 nor any
proper inner ideals, which were the two main tools in the classification techniques
used so far. See [Cri04] I.4.11 for more details.

In 1983, Jacobson reformulated his structure result using the notion of algebras
with finite capacity. The key to this approach are division idempotents. Division
idempotents function similar to primitive idempotents in the theory of associative
algebras. A primitive idempotent p in an associative algebra A is an idempotent
that cannot be written as a sum p = p1 + p2 for some nonzero idempotents p1, p2.
If a (unital) associative algebra A can be written as a direct sum A = Ap1 ⊕Ap2 of
two left modules for idempotents p1, p2, then Ap1 and Ap2 are indecomposable (i.e.
cannot be decomposed further into direct sums of nonzero submodules) if p1 and p2
are primitive.

Definition 15.0.3 (Division idempotent). An idempotent e ∈ J determines a sub-
algebra Ue(J) of a Jordan algebra J by the multiplication rules for Peirce decompo-
sitions. If Ue(J) is a Jordan division algebra, we call e a division idempotent.

Definition 15.0.4 (Capacity). A Jordan algebra J is said to have capacity n if it
has a unit 1 which is a sum of n pairwise orthogonal division idempotents.

Nondegenerate artinian Jordan algebras all have finite capacity n for some n
([Cri04] II.20.1.3). Hence the classification of Jordan algebras of finite capacity
was to some extent more general than the previous Artin-Wedderburn-like structure
theorem.

If J has capacity 1, then U1(J) = J and thus

Theorem 15.0.1 (Capacity 1 theorem). A Jordan algebra has capacity 1 if and
only if it is a Jordan division algebra.

It is not obvious that the capacity of a Jordan algebra is an invariant, i.e. that
all decompositions of 1 into pairwise orthogonal division idempotents have the same
length, but this was eventually proved by Holger P. Petersson.
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Definition 15.0.5 (Connected idempotents). Let J be a unital Jordan algebra
with Peirce decomposition

⊕
i≤j Jij relative to a supplementary family of orthogonal

idempotents e1, . . . , en. We say that ei and ej are connected if there exists an
element uij ∈ Uei,ej(J) that is invertible in the subalgebra Uei+ej(J). If in addition
the element uij can be chosen such that u2ij = ei + ej, we say that ei and ej are
strongly connected.

For instance if J = Mn(D)+ is the full Jordan matrix algebra of n× n matrices
with entries in some division algebraD with involution, then the diagonal elementary
matrices Eii are supplementary orthogonal division idempotents with UEii

(J) =
DEii. These idempotents are strongly connected by the elements uij := Eij + Eji.

Correspondingly, we say that a Jordan algebra J has connected or strongly
connected capacity n if its unit 1 can be written as a sum of n connected (strongly
connected) pairwise orthogonal division idempotents. One can show that a nonde-
generate Jordan algebra with finite capacity splits into a direct algebra sum of a
finite number of nondegenerate ideals, each having connected finite capacity ([Cri04]
II.20.2.3). Moreover, a nondegenerate Jordan algebra with finite capacity n is sim-
ple if and only if its capacity is connected ([Cri04] II.20.2.4). Hence the problem is
reduced to classifying nondegenerate Jordan algebras of finite connected capacity n.

The classification for capacity 2 is the most difficult case. When a Jordan algebra
J has capacity 2, we have 1 = e1 + e2 for orthogonal division idempotents, and the
resulting Peirce spaces J2 = Ue(J) and J0 = U1−e1(J) are Jordan division algebras.
Osborn’s capacity 2 theorem ([Cri04] II.22.2.1) says that the simple nondegenerate
Jordan algebras of capacity 2 are isomorphic either to a full matrix algebra M2(D)+

over an associative division algebra D, a Hermitian matrix algebra H2(D) over an
associative division algebra, or a reduced spin factor (i.e. a spin factor that has
proper idempotents e ̸= 0, 1).

For capacity n ≥ 3, all simple nondegenerate Jordan algebras are matrix algebras
([Cri04] II.23.1.1). They are either full matrix algebras Mn(D)+ over division alge-
bras, Hermitian matrix algebras Hn(D) over division algebras, or Hermitian matrix
algebras Hn(C) for a composition algebra C of dimension 1,2,4 or 8 over its center,
with standard involution. The dimension 8 case only occurs when n = 3, and this
is the only case where the matrix entries are from a nonassociative algebra, so all
other cases are automatically special algebras.

The search for an exceptional setting for quantum mechanics that Pascual Jordan
had initiated reached its definitive end when Efim Zel’manov in a series of papers
([Zel79a],[Zel79b],[Zel83]) published in 1979-1983 proved that there were no other
exceptional Jordan algebras than the Albert algebras, even in infinite dimensions.

Theorem 15.0.2 (Zel’manov). The only simple exceptional Jordan algebras of any
dimension are the Albert algebras of dimension 27.

Zel’manov also gave a complete classification of Jordan division algebras, showing
that the only division algebras were the ones already known from the earlier theory,

82



and there was nothing new here either. These were of four types: the full division
algebrasD+ for an associative division algebraD and the Hermitian division algebras
H(D, ⋆) for an associative division algebra D with involution, as well as two types
of division algebras determined by a quadratic form and a cubic form respectively.

He also classified all simple Jordan algebras in arbitrary dimensions. Again, his
result showed that the only simple algebras were of the same types that were known
since before. They were of quadratic type, Hermitian type, or Albert algebras of
dimension 27 constructed from cubic forms.

In the original Jordan-von Neumann-Wigner paper, they considered the Hermi-
tian algebras and the Albert algebra as being of similar nature, since their elements
both consisted of Hermitian matrices. We know now that the Albert algebras are
fundamentally a different type of Jordan algebra, constructed from certain cubic
forms. The Albert algebras are i-exceptional; they do not satisfy the s-identities as
Hermitian algebras do.
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