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Abstract

This thesis focuses on formalizing the Lindenbaum-Tarski algebra for proposi-
tional logic in Cubical Agda, an area of mathematical logic that involves the
quotient of the algebra of formulas by an equivalence relation defined in terms
of provability. To achieve this goal, we first formalize classical propositional
logic and its properties in Agda, and define the equivalence relation on formulas.
We then proceed to define the Lindenbaum-Tarski algebra in Cubical Agda and
show that the Lindenbaum-Tarski algebra is a complemented distributive lattice,
which implies that it is a Boolean algebra.
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1 Introduction

Agda is a powerful dependently typed programming language that is based on
Martin Löf’s type theory[5]. Its strong typing and dependent types make it
an ideal proof assistant for formalizing mathematical proofs[1]. Formalizing
mathematics in Agda provides several benefits, such as creating machine-checkable
proofs that ensure the correctness of a proof and detecting errors or gaps in
reasoning that may not be apparent through traditional mathematical proofs.
This deepens our understanding and verification of mathematical concepts and
proofs. In Section 2, we will provide a brief introduction to Agda and type theory.

In algebraic logic different logics are examined by connecting them to classes
of algebras, logical matrices, and other algebraic structures. We can then
investigate how the properties of these logics are related to the properties of
the associated algebras or algebraic structures[4]. The goal is to enhance our
understanding of the logic by studying its associated algebras. The Lindenbaum-
Tarski algebra is a concept of algebraic logic that involves quotienting the algebra
of formulas by an equivalence relation defined in terms of provability[11]. That is,
the Lindenbaum-Tarski algebra of a logical theory T consists of the equivalence
classes of formulas in T . In this thesis, we aim to formalize the Lindenbaum-
Tarski algebra in Cubical Agda, which is a variant of Agda that is extended with
cubical type theory and has native support for quotient types.

The first step towards our goal is to formalize classical propositional logic
and its properties in Agda, defining the equivalence relation on formulas such
that two formulas are equivalent if and only if they are provably equivalent in
the context. This will be the focus of Section 3.

In Section 4, we will move on to define the Lindenbaum-Tarski algebra in
Cubical Agda, proving some properties of the algebra. Our primary goal will
be to formalize that the algebra is a Boolean algebra. We will use the fact
that a Boolean algebra can be viewed as a complemented distributive lattice to
formalize that the Lindenbaum-Tarski algebra is Boolean.

Later, in Section 5, we use the Lindenbaum-Tarski algebra to reason about
the soundness of propositional logic, this by relating a function h, from the
Lindenbaum-Tarski algebra to the minimal algebra, to valuations on formulas in
propositional logic.

This formalization will provide the agda/cubical library with a formalization
of Lindenbaum-Tarski algebra, that is currently missing, and allow for the
verification of mathematical proofs related to Lindenbaum-Tarski algebra in the
future.

2 Agda proof assistant

The Agda programming language allows us to encode mathematical propositions
as types and their proofs as programs, ensuring the correctness and consistency
of our reasoning. The language’s strong type system also provides powerful tools
for automatically verifying the correctness of proofs[2].
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Furthermore, Agda is a total language, which means that any program e of
type T will always terminate with a value in T . This guarantees the absence of
runtime errors and prevents the creation of non-terminating programs, unless
explicitly requested by the programmer[1].

2.1 Propositions as types

Propositions as types is a concept that links logical propositions with types in a
programming language. It is based on the idea that a proof of a proposition is
analogous to a program that satisfies the type associated with the proposition.

In this context, the introduction and elimination rules for logical connectives
can be viewed as operations that construct and destruct values of the corre-
sponding types. For instance, the introduction rule for conjunction states that
given proofs of two propositions, we can construct a proof of their conjunction
by pairing the two proofs together. This can be seen as a function that takes
two values of the corresponding types and returns a pair.

Conversely, the elimination rule for conjunction says that given a proof of a
conjunction, we can extract proofs of its two conjuncts by projecting the pair
onto each component. This can be viewed as functions that takes a pair and
returns the values of the corresponding types.

This is similar to the concept of product types in programming languages,
where a product type represents a pair of values. The introduction form of
a product type is a tuple, and the elimination forms are projection functions
that extract the individual components of the tuple. Table 1 summarizes
the correspondence between propositions and types and between proofs and
programs.

Prop Type
> unit
⊥ void

φ1 ∧ φ2 τ1 × τ2
φ1 ⊃ φ2 τ1 → τ2
φ1 ∨ φ2 τ1 + τ2

Table 1: Propositions as types

This allows us to reason about logical propositions in terms of programming
language types, and to use the tools and techniques of programming languages
like Agda to reason about logical proofs.

2.2 Simply typed functions and data types

A data declaration introduces a new datatype with its name, type, and construc-
tors, along with their types. For instance, the Boolean type can be defined in
Agda as follows:
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data Bool : Type where
true : Bool
false : Bool

Here, Bool is the name of the datatype, and true and false are its constructors.
Functions over the datatype Bool can be defined using pattern matching, similar
to Haskell. For example, the not function can be defined as follows:

not : Bool → Bool
not true = false
not false = true

We start by defining the type of not as a function from Bool to Bool and then
we define the function by pattern matching on the arguments. Agda ensures that
the pattern covers all cases and will not accept a function with missing patterns.

The natural numbers can be defined as an inductively defined type, as follows:

data N : Type where
zero : N
suc : N → N

Here, zero represents the natural number 0, and suc n represents the successor
of the natural number n. We can define addition on natural numbers using a
recursive function, as follows:

+ : N → N → N
zero + m = m
suc n + m = suc (n + m)

If a name contains underscores (’ ’) in the definition, they represent where
the arguments go. So in this case we get an infix operator, and we write ’m + n’
instead of ’+ m n’, which would have been the case if the name was just ’+’.

Data types can also be parameterized by other types. For instance, the type
of lists with elements of an arbitrary type is defined as follows:

data List (A : Type) : Type where
[] : List A
:: : A → List A → List A

This declares the datatype List as a function of a type A that maps to the type
List A. It has two constructors, ’[ ]’ for an empty list and ’::’ for a list that has
an element of type A followed by a list of type List A. The underscore before
’::’ is a placeholder for the first argument of the constructor (an element of type
A), and the underscore after ’::’ is a placeholder for the second argument of the
constructor (a list of type List A).

We can set the precedence of infix operators with infix declarations:

infix 25 +
infix 20 ::
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2.3 Dependent types

A dependent type is a type that depends on elements of another type. An
example of a dependent type is a dependent function, where the result type
depends on the value of the argument. In Agda, this is denoted by (x : A)→ B,
representing functions that take an argument x of type A and produce a result
of type B. A special case is when x itself is a type. For instance, we can define
the polymorphic identity function, as follows:

id : (A : Type) → A → A
id A x = x

This function takes a type argument A and an element x of type A, and
returns x. In Agda it is possible to use implicit arguments. To declare an
argument as implicit we use curly braces instead of parenthesis when declaring
the type argument. In particular, {A : Type} → B means the same thing as
(A : Type) → B, but we don’t need to provide the type A explicitly, the type
checker will try to infer it for us. We can now redefine the identity function
above:

id’ : {A : Type} → A → A
id’ x = x

Note that we no longer need to supply the type A.

2.4 Cubical Agda

In this project, we will be working with quotient types, which motivates the use
of Cubical Agda [10]. Cubical Agda is an extension of Agda that incorporates
features from Cubical Type Theory, that has native support for set quotients[1].
We will use the agda/cubical library, which is the standard library for Cubical
Agda. However, it is important to note that we will only be using a small portion
of the agda/cubical library, and any cubical theory is beyond the scope of this
thesis.

3 Propositional logic in Agda

Propositional logic is a formal system that consists of a set of propositional
constants, symbols, inference rules, and axioms. The symbols in propositional
calculus represent logical connectives and parentheses, and are used to construct
well-formed formulas that follow the syntax of the system. The inference rules
specify how these symbols can be used to derive additional statements from the
initial assumptions, which are given by the axioms of the system.

The reader is expected to be somewhat familiar with propositional calculus
and natural deduction, if not they can refer to [3] or [9] which are the basis for
most of the definitions and rules used in this section.
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3.1 Formulas

In order to represent propositional calculus in Agda we first need to define the
type for formulas and the language in which we express them.

Definition 3.1 (Language). The language L of propositional calculus consists
of

• proposition symbols: p0, p1, . . . , pn,

• logical connectives: ∧,∨,¬,>,⊥,

• auxiliary symbols: ( and ).

Note that we have omitted the common logical connectives → and ↔. This
is because we can define them using other connectives,

φ→ ψ
def
= ¬φ ∨ ψ,

φ↔ ψ
def
= (φ→ ψ) ∧ (ψ → φ),

making them redundant. It is possible to choose an even smaller set of connectives,
in fact, we can ”define” up to logical equivalence all connectives in terms of
{∨,¬}, or {→,¬}, or {∧,¬}, or {→,⊥} [9]. However, we choose this set as it is
convenient.

Definition 3.2 (Well formed formula). The set of well formed formulas is
inductively defined as follows:

• any propositional constant p0, p1, . . . , pn is a well formed formula,

• > and ⊥ are well formed formulas,

• if p is a well formed formula, then so is

¬p,

• if pi and pj are well formed formulas, then so are

pi ∧ pj and pi ∨ pj .

The formula > should be thought of as the proposition that is always true, and
the formula ⊥ interpreted as the proposition that is always false.

Now we are ready to define the type for well formed formulas in Agda using
the definition above. The propositional constants p0, p1, . . . will be represented
using natural numbers. The symbols of the language are already present in Agda.

Agda definition 1 (Well formed formula).

data Formula : Type where
const : N → Formula
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∧ : Formula → Formula → Formula
∨ : Formula → Formula → Formula
¬ : Formula → Formula
⊥ : Formula
> : Formula

3.2 Context

Definition 3.3 (Context). A context is a set of sentences in the language L.
The set is defined inductively as follows:

• the empty set is a context

• if Γ is a context, then Γ ∪ {φ} is also a context, where φ a formula.

We will sometimes write Γ, φ instead of Γ ∪ {φ}, but they should both be
thought of as the latter. In Agda we can represent context as a list type.

Agda definition 2 (Context).

data ctxt : Type where
∅ : ctxt
:: : ctxt → Formula → ctxt

We also need a way to determine if a given formula is in a given context.

Definition 3.4. For all contexts Γ and all formulas φ and ψ

• φ ∈ Γ ∪ {φ},

• if φ ∈ Γ, then φ ∈ Γ ∪ {ψ}.

Agda definition 3 (Lookup).

data ∈ : Formula → ctxt → Type where
Z : ∀ {Γ φ} → φ ∈ Γ :: φ
S : ∀ {Γ φ ψ} → φ ∈ Γ → φ ∈ Γ :: ψ

3.3 Inference rules

Inference rules are used to derive new propositions from existing ones. In order
to formalize the process of proving propositions in our system, we introduce a
new data type for provability.

Agda definition 4.

data ` : ctxt → Formula → Type where

...
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This data type has as its inhabitants all of the possible inference rules that
can be used to prove a given proposition. These inference rules are defined in
the coming sections and are on the form:

rulename : {... : ctxt} {... : Formula}

-> premise 1

-> premise 2

:

-> premise n

-> conclusion

3.3.1 Logical connectives

Rules for the logical connectives come in pairs of introduction and elimination
rules, apart from >, which has only an introduction rule, and ⊥, which has only
an elimination rule.

The introduction rule for conjunction states that if there is a derivation of
φ from Γ, and a derivation of ψ from Γ, then we can conclude that there is a
derivation of φ ∧ ψ from Γ.

Γ ` φ Γ ` ψ
Γ ` φ ∧ ψ

∧-I

Agda definition 5 (Conjunction introduction).

∧-I : {Γ : ctxt} {φ ψ : Formula}
→ Γ ` φ
→ Γ ` ψ
→ Γ ` φ ∧ ψ

The corresponding elimination rules says that if there is some derivation
concluding in φ∧ψ from Γ, then we can conclude that there is a derivation of φ,
and a derivation of ψ, from Γ.

Γ ` φ ∧ ψ
Γ ` φ

∧-E1

Γ ` φ ∧ ψ
Γ ` ψ

∧-E2

Agda definition 6 (Conjunction elimination).

∧-E1 : {Γ : ctxt} {φ ψ : Formula}
→ Γ ` φ ∧ ψ
→ Γ ` φ

∧-E2 : {Γ : ctxt} {φ ψ : Formula}
→ Γ ` φ ∧ ψ
→ Γ ` ψ
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For disjunction, we have two introduction rules. If we can derive a formula φ
from Γ, then we can also derive φ ∨ ψ from Γ. Similarly, if we can derive ψ from
Γ, then we can also derive φ ∨ ψ from Γ.

Γ ` ψ
Γ ` φ ∨ ψ

∨-I1
Γ ` φ

Γ ` φ ∨ ψ
∨-I2

Agda definition 7 (Disjunction introduction).

∨-I1 : {Γ : ctxt} {φ ψ : Formula}
→ Γ ` ψ
→ Γ ` φ ∨ ψ

∨-I2 : {Γ : ctxt} {φ ψ : Formula}
→ Γ ` φ
→ Γ ` φ ∨ ψ

The elimination rule for disjunction is a bit more involved. If φ ∨ ψ can be
deduced from Γ, then we can conclude Γ ` γ if the extended contexts Γ, φ and
Γ, ψ both conclude in γ.

Γ ` φ ∨ ψ Γ, φ ` γ Γ, ψ ` γ
Γ ` γ

∨-E

Agda definition 8 (Disjunction elimination).

∨-E : {Γ : ctxt} {φ ψ γ : Formula}
→ Γ ` φ ∨ ψ
→ Γ :: φ ` γ
→ Γ :: ψ ` γ
→ Γ ` γ

Definition 3.5. A context Γ is inconsistent if Γ ` ⊥. A context that is not
inconsistent, is called consistent.

Definition 3.6 (Law of non-contradiction). The law of non-contradiction states
that a proposition and its negation can not both be true at the same time.

The definition of inconsistency and the law of non-contradiction together
motivates the introduction and elimination rules for negation.

Γ, φ ` ⊥
Γ ` ¬φ

¬-I
Γ ` φ Γ ` ¬φ

Γ ` ⊥
¬-E

Agda definition 9 (Negation introduction).

¬-I : {Γ : ctxt} {φ : Formula}
→ Γ :: φ ` ⊥
→ Γ ` ¬ φ
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Agda definition 10 (Negation elimination).

¬-E : {Γ : ctxt} {φ : Formula}
→ Γ ` φ
→ Γ ` ¬ φ
→ Γ ` ⊥

In Definition 3.2 we mentioned that > should be thought of as the proposition
that is always true. In particular, it needs no premise when introduced and we
write ` > because no context is necessary to deduce >.

` >
>-I

Agda definition 11 (> introduction).

>-I : ∅ ` >

If a context is inconsistent one can derive anything from it, which leads to
the elimination rule for ⊥.

Γ ` ⊥
Γ ` φ

⊥-E

Agda definition 12 (⊥ elimination).

⊥-E : {Γ : ctxt} {φ : Formula}
→ Γ ` ⊥
→ Γ ` φ

3.3.2 Law of excluded middle

Definition 3.7. The law of excluded middle states that for every proposition,
either the proposition or its negation is true.

This principle is equivalent to the statement that φ∨¬φ is a tautology, where
φ is any proposition. Given the above definition, we can introduce an inference
rule for LEM. Similar to > introduction this rule requires no premise.

` φ ∨ ¬φ
LEM

Agda definition 13 (Law of excluded middle).

LEM : {φ : Formula}
→ ∅ ` φ ∨ ¬ φ

By using the LEM inference rule in our system, we can derive new propositions
and prove theorems based on the principle of excluded middle. This, together
with the law non-contradiction which we used to define the negation rules, is
what makes our logic classical.
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3.3.3 Structural rules

Weakening is a structural rule that states that we can extend the hypothesis
with additional assumptions.

Γ ` φ
Γ, ψ ` φ

weakening

Agda definition 14 (Weakening).

weakening : {Γ : ctxt} {φ ψ : Formula}
→ Γ ` ψ
→ Γ :: φ ` ψ

The structural rule of exchange allows us to permute the formulas in the
context. However, we will be using a stricter version of exchange, where we can
only permute the two formulas at the end of the context. This version is easier
to implement and still satisfies our needs.

Γ, φ, ψ ` γ
Γ, ψ, φ ` γ

exchange

Agda definition 15 (Exchange).

exchange : {Γ : ctxt} {φ ψ γ : Formula}
→ (Γ :: φ) :: ψ ` γ
→ (Γ :: ψ) :: φ ` γ

The third common structural rule, contraction, has been omitted here. By
omitting this rule the logic, as we defined it, is an affine logic[6].

3.4 Properties of a propositional logic

In this section we aim to prove some properties of propositional logic as they
will be important later.

3.4.1 Biprovability relation

Definition 3.8. Let S be the set of all the sentences of L. Define the relation
∼ such that for φ, ψ ∈ S,

φ ∼ ψ iff Γ, φ ` ψ and Γ, ψ ` φ

Because the definition of the relation is a pair it is natural to define it in
Agda as a product type.
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Agda definition 16 (Biprovability relation).

∼ : Formula → Formula → Type
φ ∼ ψ = Γ :: φ ` ψ × Γ :: ψ ` φ

Before we prove that this is an equivalence relation we will prove a useful
lemma, which is a version of the cut rule.

Lemma 3.1 (Cut). Given Γ, φ ` ψ and Γ, ψ ` γ, it follows that Γ, φ ` γ

Proof. This is done through natural deduction using the deduction rules defined
previously.

Γ, φ ` ψ
Γ, φ ` ψ ∨ γ

∨-i2

Γ, ψ ` γ
Γ, ψ, φ ` γ

weakening

Γ, φ, ψ ` γ
exchange

γ ∈ Γ, φ, γ

Γ, φ, γ ` γ
axiom

Γ, φ ` γ
∨-E

Agda proof.

cut : ∀ {φ ψ γ : Formula} → Γ :: φ ` γ → Γ :: γ ` ψ → Γ :: φ ` ψ
cut x y = ∨-E (∨-I2 x ) (exchange (weakening y)) (axiom Z)

Remember from Agda definition 3 that Z stands for φ ∈ Γ, φ, hence axiom Z is a
proof of Γ, φ ` φ.

Proposition 3.1. The relation ∼ is an equivalence relation.

Proof. It follows immediately from the axiom rule,

φ ∈ Γ, φ

Γ, φ ` φ
axiom

that φ ∼ φ, so the relation is reflexive.
It should be clear that Γ, φ ` ψ and Γ, ψ ` φ is just a pair of proofs, hence it

does not matter in which order we give them. This means that the relation is
also symmetric.

In order to prove transitivity we need to show that, given φ ∼ γ and γ ∼ ψ,
it holds that φ ∼ ψ. By Definition 3.8 we have the following:

(i) Γ, φ ` γ,

(ii) Γ, γ ` φ,

(iii) Γ, γ ` ψ,

(iv) Γ, ψ ` γ.
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Now we can apply Lemma 3.1 on (i) and (iii) to conclude Γ, φ ` ψ, and again to
(iv) and (ii) to conclude Γ, ψ ` φ. Thus we have shown that φ ∼ ψ.

Since the relation is reflexive, symmetric, and transitive, it is an equivalence
relation.

Agda proof.

∼-refl : ∀ (φ : Formula) → φ ∼ φ
∼-refl = (axiom Z , axiom Z)

∼-sym : ∀ {φ ψ : Formula} → φ ∼ ψ → ψ ∼ φ
∼-sym (A , B) = (B , A)

∼-trans : ∀ {φ ψ γ : Formula} → φ ∼ γ → γ ∼ ψ → φ ∼ ψ
∼-trans (x1 , x2) (y1 , y2) = (cut x1 y1 , cut y2 x2)

3.4.2 Commutativity

Proposition 3.2. Conjunction is commutative, that is φ ∧ ψ ∼ ψ ∧ φ.

Proof. We need to show Γ, φ ∧ ψ ` ψ ∧ φ and Γ, ψ ∧ φ ` φ ∧ ψ. To show
Γ, φ ∧ ψ ` ψ ∧ φ, we use natural deduction:

φ ∧ ψ ∈ Γ, φ ∧ ψ
Γ, φ ∧ ψ ` φ ∧ ψ

axiom

Γ, φ ∧ ψ ` ψ
∧-E2

φ ∧ ψ ∈ Γ, φ ∧ ψ
Γ, φ ∧ ψ ` φ ∧ ψ

axiom

Γ, φ ∧ ψ ` φ
∧-E1

Γ ` ψ ∧ φ
∧-I

The proof of the second part is identical up to renaming of the formulas.
Together they prove the equivalence φ ∧ ψ ∼ ψ ∧ φ.

Agda proof.

∧-comm : ∀ {φ ψ : Formula} → Γ :: φ ∧ ψ ` ψ ∧ φ
∧-comm = ∧-I (∧-E2 (axiom Z)) (∧-E1 (axiom Z))

∼-comm-∧ : ∀ {φ ψ : Formula} → φ ∧ ψ ∼ ψ ∧ φ
∼-comm-∧ = (∧-comm , ∧-comm)

Proposition 3.3. Disjunction is commutative, that is φ ∨ ψ ∼ ψ ∨ φ.
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Proof. We need to show Γ, φ ∨ ψ ` ψ ∨ φ and Γ, ψ ∨ φ ` φ ∨ ψ. Up to renaming
of the formulas, the proofs are identical, so it suffices to show Γ, φ ∨ ψ ` ψ ∨ φ.
Let Γ′ = Γ ∪ {φ ∨ ψ}, then by natural deduction we have:

φ ∨ ψ ∈ Γ′

Γ′ ` φ ∨ ψ
axiom

φ ∈ Γ′, φ

Γ′, φ ` φ
axiom

Γ′, φ ` ψ ∨ φ
∨-I1

ψ ∈ Γ′, ψ

Γ′, ψ ` ψ
axiom

Γ′, ψ ` ψ ∨ φ
∨-I2

Γ′ ` ψ ∨ φ
∨-E

Thus we have shown Γ, φ ∨ ψ ` ψ ∨ φ and Γ, ψ ∨ φ ` φ ∨ ψ, so we have the
equivalence φ ∨ ψ ∼ ψ ∨ φ.

Agda proof.

∨-comm : {φ ψ : Formula} → Γ :: φ ∨ ψ ` ψ ∨ φ
∨-comm = ∨-E (axiom Z) (∨-I1 (axiom Z)) (∨-I2 (axiom Z))

∼-comm-∨ : ∀ {φ ψ : Formula} → φ ∨ ψ ∼ ψ ∨ φ
∼-comm-∨ = (∨-comm , ∨-comm)

3.4.3 Associativity

Proposition 3.4. Conjunction is associative, that is φ ∧ (ψ ∧ γ) ∼ (φ ∧ ψ) ∧ γ.

Proof. We need to show Γ, φ∧(ψ∧γ) ` (φ∧ψ)∧γ and Γ, (φ∧ψ)∧γ ` φ∧(ψ∧γ).
Using natural deduction, we can prove both statements. Since the two proofs
become identical when using the commutativity property and relabeling the
formulas, it suffices to show the first one.

Let Γ′ = Γ∪ {φ∧ (ψ ∧ γ)}. Then we can make a deduction D1 concluding in
Γ′ ` ϕ ∧ ψ,

φ ∧ (ψ ∧ γ) ∈ Γ′

Γ′ ` φ ∧ (ψ ∧ γ)
axiom

Γ′ ` ψ ∧ γ
∧-E2

Γ′ ` ψ
∧-E1

φ ∧ (ψ ∧ γ) ∈ Γ′

Γ′ ` φ ∧ (ψ ∧ γ)
axiom

Γ′ ` φ
∧-E1

Γ′ ` φ ∧ ψ
∧-I

and another deduction D2 concluding in Γ′ ` γ,

φ ∧ (ψ ∧ γ) ∈ Γ′

Γ′ ` φ ∧ (ψ ∧ γ)
axiom

Γ′ ` ψ ∧ γ
∧-E2

Γ′ ` γ
∧-E2
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Now, with the derivations D1 and D2 we can, using conjunction introduction,
conclude that Γ′ ` (φ ∧ ψ) ∧ γ,

D1 D2

Γ′ ` (φ ∧ ψ) ∧ γ
∧-I

Thus we have shown that Γ, φ∧ (ψ∧ γ) ` (φ∧ψ)∧ γ. Together with the omitted
proof we get the equivalence φ ∧ (ψ ∧ γ) ∼ (φ ∧ ψ) ∧ γ.

Agda proof.

∧-ass1 : ∀ {φ ψ γ : Formula} → Γ :: φ ∧ (ψ ∧ γ) ` (φ ∧ ψ) ∧ γ
∧-ass1 = ∧-I (∧-I (∧-E1 (axiom Z)) (∧-E1 (∧-E2 (axiom Z))))

(∧-E2 (∧-E2 (axiom Z)))

∧-ass2 : ∀ {φ ψ γ : Formula} → Γ :: (φ ∧ ψ) ∧ γ ` φ ∧ (ψ ∧ γ)
∧-ass2 = ∧-I (∧-E1 (∧-E1 (axiom Z)))

(∧-I (∧-E2 (∧-E1 (axiom Z)))
(∧-E2 (axiom Z)))

∼-ass-∧ : ∀ {φ ψ γ : Formula} → φ ∧ (ψ ∧ γ) ∼ (φ ∧ ψ) ∧ γ
∼-ass-∧ = (∧-ass1 , ∧-ass2)

Proposition 3.5. Disjunction is associative, that is φ ∨ (ψ ∨ γ) ∼ (φ ∨ ψ) ∨ γ.

Proof. We need to show Γ, φ∨(ψ∨γ) ` (φ∨ψ)∨γ and Γ, (φ∨ψ)∨γ ` φ∨(ψ∨γ).
Proof is done through natural deduction. Let Γ′ = Γ ∪ {φ ∨ (ψ ∨ γ)}, then

φ ∨ (ψ ∨ γ) ∈ Γ′

Γ′ ` φ ∨ (ψ ∨ γ)
axiom

D1 D2

Γ′ ` (φ ∨ ψ) ∨ γ
∨-E

Here we need D1 to be a deduction of Γ′, φ ` (φ∨ψ)∨γ and and D2 a deduction
of Γ′, ψ ∨ γ ` (φ ∨ ψ) ∨ γ. We can construct D1 as follows:

φ ∈ Γ′, φ

Γ′, φ ` φ
axiom

Γ′, φ ` φ ∨ ψ
∨-I2

Γ′, φ ` (φ ∨ ψ) ∨ γ
∨-I2

Now, let Γ′′ = Γ′ ∪ {ψ ∨ γ}, then D2 is constructed as follows:

ψ ∨ γ ∈ Γ′′

Γ′′ ` ψ ∨ γ
axiom

ψ ∈ Γ′′, ψ

Γ′′, ψ ` ψ
axiom

Γ′′, ψ ` φ ∨ ψ
∨-I1

Γ′′, ψ ` (φ ∨ ψ) ∨ γ
∨-I2

γ ∈ Γ′′, γ

Γ′′, γ ` γ
axiom

Γ′′, γ ` (φ ∨ ψ) ∨ γ
∨-I1

Γ′′ ` (φ ∨ ψ) ∨ γ
∨-E

14



The proof of Γ, (φ ∨ ψ) ∨ γ ` φ ∨ (ψ ∨ γ) is identical when relabeling the
formulas and using that disjunction is commutative as proven earlier. With
these results we get the equivalence φ ∨ (ψ ∨ γ) ∼ (φ ∨ ψ) ∨ γ.

Agda proof.

∨-ass1 : ∀ {φ ψ γ : Formula} → Γ :: φ ∨ (ψ ∨ γ) ` (φ ∨ ψ) ∨ γ
∨-ass1 = ∨-E (axiom Z)

(∨-I2 (∨-I2 (axiom Z)))
(∨-E (axiom Z)

(∨-I2 (∨-I1 (axiom Z)))
(∨-I1 (axiom Z)))

∨-ass2 : ∀ {φ ψ γ : Formula} → Γ :: (φ ∨ ψ) ∨ γ ` φ ∨ (ψ ∨ γ)
∨-ass2 = ∨-E (axiom Z)

(∨-E (axiom Z)
(∨-I2 (axiom Z))
(∨-I1 (∨-I2 (axiom Z))))

(∨-I1 (∨-I1 (axiom Z)))

∼-ass-∨ : ∀ {φ ψ γ : Formula} → φ ∨ (ψ ∨ γ) ∼ (φ ∨ ψ) ∨ γ
∼-ass-∨ = (∨-ass1 , ∨-ass2)

3.4.4 Distributivity

Proposition 3.6. Distribution over conjunction holds, that is the equivalence
φ ∧ (ψ ∨ γ) ∼ (φ ∧ ψ) ∨ (φ ∧ γ) holds.

Proof. First we show that Γ, φ∧(ψ∨γ) ` (φ∧ψ)∨(φ∧γ). Let Γ1 = Γ∪{φ∧(ψ∨γ)},
then

φ ∧ (ψ ∨ γ) ∈ Γ1

Γ1 ` φ ∧ (ψ ∨ γ)
axiom

Γ1 ` ψ ∨ γ
∧-E2 D1 D2

Γ1 ` (φ ∧ ψ) ∨ (φ ∧ γ)
∨-E

where D1 is a derivation concluding in Γ1, ψ ` (φ ∧ ψ) ∨ (φ ∧ γ) and D2 a
derivation concluding in Γ1, γ ` (φ ∧ ψ) ∨ (φ ∧ γ). We start by performing the

15



derivation D1:

φ ∧ (ψ ∨ γ) ∈ Γ1

Γ1 ` φ ∧ (ψ ∨ γ)
axiom

Γ1 ` φ
∧-E1

Γ1, ψ ` φ
weakening

ψ ∈ Γ1, ψ

Γ1, ψ ` ψ
axiom

Γ1, ψ ` φ ∧ ψ
∧-I

Γ1, ψ ` (φ ∧ ψ) ∨ (φ ∧ γ)
∨-I2

Then we derive D2:

φ ∧ (ψ ∨ γ) ∈ Γ1

Γ1 ` φ ∧ (ψ ∨ γ)
axiom

Γ1 ` φ
∧-E1

Γ1, γ ` φ
weakening

γ ∈ Γ1, γ

Γ1, γ ` γ
axiom

Γ1, γ ` φ ∧ γ
∧-I

Γ1, γ ` (φ ∧ ψ) ∨ (φ ∧ γ)
∨-I1

This proves the first part of the equivalence. Now let Γ2 = Γ∪{(φ∧ψ)∨(φ∧γ)},
then we want to show Γ2 ` φ∧(ψ∨γ). This means that if we can find derivations
D′

1 concluding in Γ2 ` φ and D′
2 concluding in Γ2 ` (ψ ∨ γ) we can apply

conjunction introduction to get the desired result.
We will start with the derivation tree D′

1:

D′′
1

φ ∧ ψ ∈ Γ2, φ ∧ ψ
Γ2, φ ∧ ψ ` φ ∧ ψ

axiom

Γ2, φ ∧ ψ ` φ
∧-E1

D′′′
1

φ ∧ γ ∈ Γ2, φ ∧ γ
Γ2, φ ∧ γ ` φ ∧ γ

axiom

Γ2, φ ∧ γ ` φ
∧-E1

D′
1

(φ ∧ ψ) ∨ (φ ∧ γ) ∈ Γ2

Γ2 ` (φ ∧ ψ) ∨ (φ ∧ γ)
axiom

D′′
1 D′′′

1

Γ2 ` φ
∨-E

Next we construct the derivation tree D′
2 as follows:

D′′
2

φ ∧ ψ ∈ Γ2, φ ∧ ψ
Γ2, φ ∧ ψ ` φ ∧ ψ

axiom

Γ2, φ ∧ ψ ` ψ
∧-E2

Γ2, φ ∧ ψ ` ψ ∨ γ
∨-I2

D′′′
2

φ ∧ γ ∈ Γ2, φ ∧ γ
Γ2, φ ∧ γ ` φ ∧ γ

axiom

Γ2, φ ∧ γ ` γ
∧-E2

Γ2, φ ∧ γ ` ψ ∨ γ
∨-I1
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D′
2

(φ ∧ ψ) ∨ (φ ∧ γ) ∈ Γ2

Γ2 ` (φ ∧ ψ) ∨ (φ ∧ γ)
axiom

D′′
2 D′′′

2

Γ2 ` ψ ∨ γ
∨-E

Lastly we put them together with conjunction introduction to get the desired
result.

D′
1 D′

2

Γ2 ` φ ∧ (ψ ∨ γ)
∧-I

This concludes the proof that φ ∧ (ψ ∨ γ) ∼ (φ ∧ ψ) ∨ (φ ∧ γ).

Agda proof.

∧-dist1 : ∀ {φ ψ γ : Formula} → Γ :: φ ∧ (ψ ∨ γ) ` (φ ∧ ψ) ∨ (φ ∧ γ)
∧-dist1 = ∨-E (∧-E2 (axiom Z))

(∨-I2 (∧-I (∧-E1 (axiom (S Z))) (axiom Z)))
(∨-I1 (∧-I (∧-E1 (axiom (S Z))) (axiom Z)))

∧-dist2 : ∀ {φ ψ γ : Formula} → Γ :: (φ ∧ ψ) ∨ (φ ∧ γ) ` φ ∧ (ψ ∨ γ)
∧-dist2 = ∧-I (∨-E (axiom Z)

(∧-E1 (axiom Z))
(∧-E1 (axiom Z)))

(∨-E (axiom Z)
(∨-I2 (∧-E2 (axiom Z)))
(∨-I1 (∧-E2 (axiom Z))))

∼-dist-∧ : ∀ {φ ψ γ : Formula} → φ ∧ (ψ ∨ γ) ∼ (φ ∧ ψ) ∨ (φ ∧ γ)
∼-dist-∧ = (∧-dist1 , ∧-dist2)

Proposition 3.7. Distribution over disjunction holds, that is the equivalence
φ ∨ (ψ ∧ γ) ∼ (φ ∨ ψ) ∧ (φ ∨ γ) holds.

Proof. We aim to show Γ, φ∨ (ψ∧γ) ` (φ∨ψ)∧ (φ∨γ) and Γ, (φ∨ψ)∧ (φ∨γ) `
φ ∨ (ψ ∧ γ).

Let Γ1 = Γ ∪ {φ ∨ (ψ ∧ γ)}. We want to use disjunction elimination here, so
we want to find derivations D1 and D2, such that

φ ∨ (ψ ∧ γ) ∈ Γ1

Γ1 ` φ ∨ (ψ ∧ γ)
axiom

D1 D2

Γ1 ` (φ ∨ ψ) ∧ (φ ∨ γ)
∨-E
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This means D1 should conclude with Γ1, φ ` (φ ∨ ψ) ∧ (φ ∨ γ). We construct D1

as follows:

φ ∈ Γ1, φ

Γ1, φ ` φ
axiom

Γ1, φ ` φ ∨ ψ
∨-I2

φ ∈ Γ1, φ

Γ1, φ ` φ
axiom

Γ1, φ ` (φ ∨ γ)
∨-I2

Γ1, φ ` (φ ∨ ψ) ∧ (φ ∨ γ)
∧-I

Then we need to construct D2, concluding in Γ1, ψ ∧ γ ` (φ ∨ ψ) ∧ (φ ∨ γ). This
can be done as follows:

ψ ∧ γ ∈ Γ1, ψ ∧ γ
Γ1, ψ ∧ γ ` ψ ∧ γ

axiom

Γ1, ψ ∧ γ ` ψ
∧-E1

Γ1, ψ ∧ γ ` (φ ∨ ψ)
∨-I1

ψ ∧ γ ∈ Γ1, ψ ∧ γ
Γ1, ψ ∧ γ ` ψ ∧ γ

axiom

Γ1, ψ ∧ γ ` γ
∧-E2

Γ1, ψ ∧ γ ` (φ ∨ γ)
∨-I1

Γ1, ψ ∧ γ ` (φ ∨ ψ) ∧ (φ ∨ γ)
∧-I

This proves Γ, φ ∨ (ψ ∧ γ) ` (φ ∨ ψ) ∧ (φ ∨ γ). To prove the second part we let
Γ2 = Γ ∪ {(φ ∨ ψ) ∧ (φ ∨ γ)}, and then we find D′

1 and D′
2 such that

(φ ∨ ψ) ∧ (φ ∨ γ) ∈ Γ2

Γ2 ` (φ ∨ ψ) ∧ (φ ∨ γ)
axiom

Γ2 ` φ ∨ ψ
∧-E1 D′

1 D′
2

Γ2 ` φ ∨ (ψ ∧ γ)
∨-E

The derivation D′
1 should conclude in Γ2, φ ` φ∨ (ψ∧ γ). This is done as follows:

φ ∈ Γ2, φ

Γ2, φ ` φ
axiom

Γ2, φ ` φ ∨ (ψ ∧ γ)
∨-I2

To derive D′
2, concluding in Γ2, ψ ` φ ∨ (ψ ∧ γ), we need to use disjunction

elimination again. In order to do that we need to find derivations D′′
2 , concluding

in Γ2, ψ, φ ` φ∨ (ψ ∧ γ), and D′′′
2 , concluding in Γ2, ψ, γ ` φ∨ (ψ ∧ γ), such that

this derivation D′
2 holds.

(φ ∨ ψ) ∧ (φ ∨ γ) ∈ Γ2

Γ2 ` (φ ∨ ψ) ∧ (φ ∨ γ)
axiom

Γ2, ψ ` (φ ∨ ψ) ∧ (φ ∨ γ)
weakening

Γ2, ψ ` φ ∨ γ
∧-E2 D′′

2 D′′′
2

Γ2, ψ ` φ ∨ (ψ ∧ γ)
∨-E

We can derive D′′
2 as follows:

φ ∈ Γ2, ψ, φ

Γ2, ψ, φ ` φ
axiom

Γ2, ψ, φ ` φ ∨ (ψ ∧ γ)
∨-I2
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And derivation D′′′
2 is done in the following way:

ψ ∈ Γ2, ψ

Γ2, ψ ` ψ
axiom

Γ2, ψ, γ ` ψ
weakening

γ ∈ Γ2, ψ, γ

Γ2, ψ, γ ` γ
axiom

Γ2, ψ, γ ` ψ ∧ γ
∧-I

Γ2, ψ, γ ` φ ∨ (ψ ∧ γ)
∨-I1

Thus we have also shown that Γ, (φ∨ψ)∧(φ∨γ) ` φ∨(ψ∧γ). So the equivalence
φ ∨ (ψ ∧ γ) ∼ (φ ∨ ψ) ∧ (φ ∨ γ) holds.

Agda proof.

∨-dist1 : ∀ {φ ψ γ : Formula} → Γ :: φ ∨ (ψ ∧ γ) ` (φ ∨ ψ) ∧ (φ ∨ γ)
∨-dist1 = ∨-E (axiom Z)

(∧-I (∨-I2 (axiom Z))
(∨-I2 (axiom Z)))

(∧-I (∨-I1 (∧-E1 (axiom Z)))
(∨-I1 (∧-E2 (axiom Z))))

∨-dist2 : ∀ {φ ψ γ : Formula} → Γ :: (φ ∨ ψ) ∧ (φ ∨ γ) ` φ ∨ (ψ ∧ γ)
∨-dist2 = ∨-E (∧-E1 (axiom Z))

(∨-I2 (axiom Z))
(∨-E (∧-E2 (axiom (S Z)))

(∨-I2 (axiom Z))
(∨-I1 (∧-I (axiom (S Z)) (axiom Z))))

∼-dist-∨ : ∀ {φ ψ γ : Formula} → φ ∨ (ψ ∧ γ) ∼ (φ ∨ ψ) ∧ (φ ∨ γ)
∼-dist-∨ = (∨-dist1 , ∨-dist2)

4 Lindenbaum-Tarski algebra in Cubical Agda

The Lindenbaum-Tarski algebra is an algebraic structure that consists of equiva-
lence classes of logical formulas, where two formulas are considered equivalent if
they have the same logical consequences within the given logical system.

The algebraic operations in the Lindenbaum-Tarski algebra are derived
from the logical connectives present in the underlying logical system. These
operations allow for the manipulation of formulas within the algebraic structure.
In particular, the Lindenbaum-Tarski algebra for propositional logic is the algebra
we get when quotienting the algebra of formulas with the equivalence relation ∼
defined previously. We define the algebraic operations on the equivalence classes
to be conjunction, disjunction, and negation.
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Definition 4.1 (Lindenbaum-Tarski algebra). The Lindenbaum-Tarski algebra
is the quotient algebra obtained by factoring the algebra of formulas by the
equivalence relation ∼.

We use the definition of a set quotient already existing in the agda/cubical
library to define the Lindenbaum-Tarski algebra.

Agda definition 17 (Lindenbaum-Tarski algebra).

LindenbaumTarski : Type
LindenbaumTarski = Formula / ∼

4.1 Binary operations and propositional constants

To define operations on the Lindenbaum-Tarski algebra, we utilize the already
existing functions setQuotBinOp and setQuotUnaryOp from the agda/cubical
library, which operate on set quotients. Our first step is to define conjunction
in the Lindenbaum-Tarski algebra, using setQuotBinOp to create a binary
operation. In order to do this, we must provide proof that the underlying
operation - conjunction on formulas in the propositional logic - respects the
equivalence relation ∼. We will establish this as a lemma.

Lemma 4.1. For all formulas φ, φ′, ψ, ψ′, if φ ∼ φ′ and ψ ∼ ψ′, then φ ∧ ψ ∼
φ′ ∧ ψ′.

Proof. By definition of the relation ∼ we have:

(i) Γ, φ ` φ′

(ii) Γ, φ′ ` φ

(iii) Γ, ψ ` ψ′

(iv) Γ, ψ′ ` ψ

We want to show that then Γ, φ ∧ ψ ` φ′ ∧ ψ′ and Γ, φ′ ∧ ψ′ ` φ ∧ ψ. First, we
show that Γ, φ∧ ψ ` φ′ ∧ ψ′. By the axiom rule and conjunction elimination, we
have:

φ ∧ ψ ∈ Γ, φ ∧ ψ
Γ, φ ∧ ψ ` φ ∧ ψ

axiom

Γ, φ ∧ ψ ` φ
∧-E1

φ ∧ ψ ∈ Γ, φ ∧ ψ
Γ, φ ∧ ψ ` φ ∧ ψ

axiom

Γ, φ ∧ ψ ` ψ
∧-E2

Now we can use Lemma 3.1 on Γ, φ ∧ ψ ` φ and (i) to get Γ, φ ∧ ψ ` φ′, and
similarly on Γ, φ ∧ ψ ` ψ and (iii) to get Γ, φ ∧ ψ ` ψ′. Then, by conjunction
introduction we get the desired result:

Γ, φ ∧ ψ ` φ′ Γ, φ ∧ ψ ` ψ′

Γ, φ ∧ ψ ` φ′ ∧ ψ′ ∧-I

Proving Γ, φ′ ∧ ψ′ ` φ ∧ ψ is identical to the first proof, so we omit it here.
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Agda proof.

∼-respects-∧ : ∀ (φ φ’ ψ ψ’ : Formula)
→ φ ∼ φ’
→ ψ ∼ ψ’
→ (φ ∧ ψ) ∼ (φ’ ∧ ψ’ )

∼-respects-∧ φ φ’ ψ ψ’ (x1 , x2) (y1 , y2) =
∧-I (cut (∧-E1 (axiom Z)) x1) (cut (∧-E2 (axiom Z)) y1) ,
∧-I (cut (∧-E1 (axiom Z)) x2) (cut (∧-E2 (axiom Z)) y2)

Now we are ready to define conjunction on Lindenbaum-Tarski algebra in
Cubical Agda.

Agda definition 18 (Conjunction on Lindenbaum-Tarski algebra).

∧/ : LindenbaumTarski → LindenbaumTarski → LindenbaumTarski
A ∧/ B = setQuotBinOp ∼-refl ∼-refl ∧ ∼-respects-∧ A B

The setQuotBinOp function takes four arguments: two proofs of reflexivity,
the logical conjunction operator ∧/, and a proof that the operator respects the
equivalence relation. In this case, the reflexivity proofs are identical since A and
B are of the same type. The resulting function takes two elements A and B in
the Lindenbaum-Tarski algebra and returns their conjunction.

When defining disjunction we need to prove a similar lemma as for the
conjunction. We must provide proof that the disjunction operator respects the
equivalence relation ∼.

Lemma 4.2. For all formulas φ, φ′, ψ, ψ′, if φ ∼ φ′ and ψ ∼ ψ′, then φ ∨ ψ ∼
φ′ ∨ ψ′.

Proof. By definition of the relation ∼, we have:

(i) Γ, φ ` φ′

(ii) Γ, φ′ ` φ

(iii) Γ, ψ ` ψ′

(iv) Γ, ψ′ ` ψ

We want to show that then Γ, φ ∨ ψ ` φ′ ∨ ψ′ and Γ, φ′ ∨ ψ′ ` φ ∨ ψ. By the
axiom rule and disjunction introduction, we have:

φ ∨ ψ ∈ Γ, φ ∨ ψ
Γ, φ ∨ ψ ` φ ∨ ψ

axiom
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Using (i) we can deduce:

Γ, φ ` φ′

Γ, φ ` φ′ ∨ ψ′ ∨-I2

Γ, φ, φ ∨ ψ ` φ′ ∨ ψ′ weakening

Γ, φ ∨ ψ, φ ` φ′ ∨ ψ′ exchange

Similarly, using (iii) we can deduce:

Γ, ψ ` ψ′

Γ, ψ ` φ′ ∨ ψ′ ∨-I2

Γ, ψ, φ ∨ ψ ` φ′ ∨ ψ′ weakening

Γ, φ ∨ ψ,ψ ` φ′ ∨ ψ′ exchange

Then by using disjunction elimination we get the desired result,

Γ, φ ∨ ψ ` φ ∨ ψ Γ, φ ∨ ψ, φ ` φ′ ∨ ψ′ Γ, φ ∨ ψ,ψ ` φ′ ∨ ψ′

Γ, φ ∨ ψ ` φ′ ∨ ψ′ ∨-E

Proving Γ, φ′ ∨ ψ′ ` φ ∨ ψ is identical to the first proof, so we omit it here.

Agda proof.

∼-respects-∨ : ∀ (φ φ’ ψ ψ’ : Formula)
→ φ ∼ φ’
→ ψ ∼ ψ’
→ (φ ∨ ψ) ∼ (φ’ ∨ ψ’ )

∼-respects-∨ φ φ’ ψ ψ’ (x1 , x2) (y1 , y2) =
∨-E (axiom Z)

(∨-I2 (exchange (weakening x1)))
(∨-I1 (exchange (weakening y1))) ,

∨-E (axiom Z)
(∨-I2 (exchange (weakening x2)))
(∨-I1 (exchange (weakening y2)))

Using setQuotBinOp we can now, with this lemma, define disjunction on
Lindenbaum-Tarski algebra in Cubical Agda.

Agda definition 19 (Disjunction on Lindenbaum-Tarski algebra).

∨/ : LindenbaumTarski → LindenbaumTarski → LindenbaumTarski
A ∨/ B = setQuotBinOp ∼-refl ∼-refl ∨ ∼-respects-∨ A B

Next, in order to define negation on the Lindenbaum-Tarski algebra, we need
to show that the underlying operation of negation in the propositional calculus
respects the equivalence relation ∼. This can be achieved by proving another
lemma.
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Lemma 4.3. For all formulas φ, φ′, if φ ∼ φ′, then ¬φ ∼ ¬φ′.

Proof. From the definition of ∼ we are given Γ, φ ` φ′ and Γ, φ′ ` φ. We aim to
show that Γ,¬φ ` ¬φ′ and Γ,¬φ′ ` ¬φ. The two proofs are identical so we will
only prove Γ,¬φ ` ¬φ′ here. This is done through natural deduction,

Γ, φ′ ` φ
Γ, φ′,¬φ ` φ

weakening

Γ,¬φ, φ′ ` φ
exchange

¬φ ∈ Γ,¬φ
Γ,¬φ ` ¬φ

axiom

Γ,¬φ, φ′ ` ¬φ
weakening

Γ,¬φ, φ′ ` ⊥
¬-E

Γ,¬φ ` ¬φ′
¬-I

Agda proof.

∼-respects-¬ : ∀ (φ φ’ : Formula) → φ ∼ φ’ → (¬ φ) ∼ (¬ φ’ )
∼-respects-¬ φ φ’ (x1 , x2) = ¬-I (¬-E (exchange (weakening x2))

(axiom (S Z))) ,
¬-I (¬-E (exchange (weakening x1))

(axiom (S Z)))

This lemma shows that the negation operation on the propositional calculus
respects the equivalence relation ∼, and allows us to define negation on the
Lindenbaum-Tarski algebra in Cubical Agda.

Agda definition 20 (Negation on Lindenbaum-Tarski algebra).

¬/ : LindenbaumTarski → LindenbaumTarski
¬/ A = setQuotUnaryOp ¬ ∼-respects-¬ A

The setQuotUnaryOp function takes two arguments: a unary operator (¬/)
and a proof that the operator respects the equivalence relation (∼-respects-¬).
The resulting function takes one element A in the Lindenbaum-Tarski algebra
and returns its negation.

To construct the equivalence classes for propositional constants, we can use
the constructor from the definition of a set quotient in the already existing
definition of set quotients in Cubical Agda.

Agda definition 21 (Logical constants in Lindenbaum-Tarski algebra).

>/ : LindenbaumTarski
>/ = [ > ]

⊥/ : LindenbaumTarski
⊥/ = [ ⊥ ]
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4.2 Proof that the Lindenbaum-Tarski algebra is Boolean

To prove that the Lindenbaum-Tarski algebra is a Boolean algebra we can show
that it is a complemented distributive lattice. To do this there first needs to be
a partial order defined on the set of equivalence classes.

Definition 4.2. Let L be the propositional language described previously and let
S be the set of all sentences of L. For each φ ∈ S, let [φ] denote the equivalence
class of φ under the equivalence relation ∼, and let LT be the set of all such
equivalence classes. Define the relation ≤ on LT by

[φ] ≤ [ψ] iff Γ, φ ` ψ

and define join, meet and complementation as follows:

[φ] ∨ [ψ] ≡ [φ ∨ ψ], [φ] ∧ [ψ] ≡ [φ ∧ ψ], ¬[φ] ≡ [¬φ].

Note that the operators on the left hand side are operating on the equivalence
classes, i.e. the elements of the Lindenbaum-Tarski algebra, and the operators
on the right hand side are operating on formulas in the underlying propositional
calculus.

Proposition 4.1. The relation ≤ is a partial order on LT .

Proof. First, we must show that the relation is well defined on LT . If φ2 ∈ [φ1]
and ψ2 ∈ [ψ1], then

[φ1] ≤ [ψ1] implies [φ2] ≤ [ψ2],

or equivalently, using the definition above,

Γ, φ1 ` ψ1 implies Γ, φ2 ` ψ2

where Γ a context. Given φ2 ∈ [φ1], we have that φ1 ∼ φ2 which means that
Γ, φ1 ` φ2 and Γ, φ2 ` φ1. Similarly, since ψ1 ∼ ψ2, we have that Γ, ψ1 ` ψ2

and Γ, ψ2 ` ψ1. By applying Lemma 3.1 to Γ, φ2 ` φ1 and the assumption
Γ, φ1 ` ψ1, we get Γ, φ2 ` ψ1. Applying the lemma again to the previous result
together with Γ, ψ1 ` ψ2 yields Γ, φ2 ` ψ2, showing that the relation is well
defined. The operations join, meet and complementation have been shown to
be well defined in the previous section when we defined the operations on the
Lindenbaum-Tarski algebra.

Now, we need to show that ≤ is an order relation. Reflexivity follows
immediately from the axiom rule. For anti-symmetry, suppose [φ] ≤ [ψ] and
[ψ] ≤ [φ], then we have that Γ, φ ` ψ and Γ, ψ ` φ, so by definition of the
equivalence relation we have φ ∼ ψ. This means that [φ] ≡ [ψ], hence ≤ is
anti-symmetric. Finally for transitivity assume that [φ] ≤ [ψ] and [ψ] ≤ [γ], then
we have Γ, φ ` ψ and Γ, ψ ` γ. Here we can apply Lemma 3.1 and get Γ, φ ` γ,
that is [φ] ≤ [γ]. Hence we can conclude that 〈LT,≤〉 is a partially ordered
set.
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Following are definitions showing the properties of a complemented distribu-
tive lattice.

Definition 4.3 (Lattice). A lattice is a non-empty partially ordered set 〈L,≤〉
where every x, y ∈ L has a supremum x ∨ y, also called join, and an infimum
x ∧ y, also called meet. It follows from this definition that

x ≤ y iff x ∨ y = y iff x ∧ y = x.

Definition 4.4. A lattice L is distributive if for all x, y, z ∈ L,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

Definition 4.5. A lattice L is complemented if there exist both least and greatest
elements in L, denoted ⊥ and >, and for every x ∈ L there exists y ∈ L such
that

x ∨ y = > and x ∧ y = ⊥.

Definition 4.6. A Boolean algebra is a complemented distributive lattice.

Our main goal is to formalize that the Lindenbaum-Tarski algebra is a
Boolean algebra by showing that it is a complemented distributive lattice. To
do this we must show that all the properties in the definitions above hold for
the partially ordered set 〈LT,≤〉.

Theorem 4.1. The Lindenbaum-Tarski algebra is a Boolean algebra.

Proof. First we must show that the 〈LT,≤〉 is a lattice. To do this we must
show that any two elements [φ], [ψ] ∈ LT has both a supremum and infimum,
[φ] ∨ [ψ] and [φ] ∧ [ψ] respectively.

To show that [φ] ∨ [ψ] is an upper bound for {[φ], [ψ]} we need to show both
that [φ] ≤ [φ ∨ ψ] and that [ψ] ≤ [φ ∨ ψ]. From reflexivity we have [φ] ≤ [φ], or
Γ, φ ` φ. Using disjunction introduction we get Γ, φ ` φ ∨ ψ, hence [φ] ≤ [φ ∨ ψ]
which is equivalent to [φ] ≤ [φ] ∨ [ψ]. With an identical argument we also get
that [ψ] ≤ [φ] ∨ [ψ]. To show that this is the least upper bound, assume that
[γ] is any other upper bound for {[φ], [ψ]}, then [φ] ≤ [γ] and [ψ] ≤ [γ]. This
means that we have Γ, φ ` γ and Γ, ψ ` γ. From the axiom rule and disjunction
elimination rule we can deduce

D1

Γ, φ ` γ
Γ, φ, φ ∨ ψ ` γ

weakening

Γ, φ ∨ ψ, φ ` γ
exchange

D2

Γ, ψ ` γ
Γ, ψ, φ ∨ ψ ` γ

weakening

Γ, φ ∨ ψ,ψ ` γ
exchange

φ ∨ ψ ∈ Γ, φ ∨ ψ
Γ, φ ∨ ψ ` φ ∨ ψ

axiom
D1 D2

Γ, φ ∨ ψ ` γ
∨-E
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Then [φ ∨ ψ] ≡ [φ] ∨ [ψ] ≤ [γ]. Hence [φ] ∨ [ψ] is the least upper bound, i.e.
the supremum.

Showing that [φ] ∧ [ψ] is the infimum is similar. It should be clear that
from conjunction elimination we have both Γ, φ ∧ ψ ` φ and Γ, φ ∧ ψ ` ψ, so
[φ ∧ ψ] ≡ [φ] ∧ [ψ] ≤ [φ] and [φ ∧ ψ] ≡ [φ] ∧ [ψ] ≤ [ψ]. Now assume that [γ] is
any other lower bound for {[φ], [ψ]}, then [γ] ≤ [φ] and [γ] ≤ [ψ]. This means
that Γ, γ ` φ and Γ, γ ` ψ, and we can conclude that Γ, γ ` φ ∧ ψ, hence
[γ] ≤ [φ ∧ ψ] ≡ [φ] ∧ [ψ].

We have now shown that 〈LT,≤〉 is a lattice. Distributivity follows from the
distributive properties of propositional calculus, shown in Section 3.4.4. Having
shown that 〈LT,≤〉 is a distributive lattice, all that is left is to show that it is
also complemented. In Definition 4.2 we defined complementation of an element
[φ] to be ¬[φ] = [¬φ]. This complement is unique[8], therefore we need to show
that

[φ] ∨ ¬[φ] ≡ [>] and [φ] ∧ ¬[φ] ≡ [⊥].

Since we have that

[φ] ∨ ¬[φ] ≡ [φ] ∨ [¬φ] ≡ [φ ∨ ¬φ]

it suffices to show that Γ, φ ∨ ¬φ ` > and Γ,> ` φ ∨ ¬φ. This is done with
>-I and LEM respectively, and then applying weakening repeatedly. To show
[φ]∧¬[φ] ≡ [⊥] we first we need to show Γ, φ∧¬φ ` ⊥, this is done by conjunction
elimination and negation elimination,

φ ∧ ¬φ ∈ Γ, φ ∧ ¬φ
Γ, φ ∧ ¬φ ` φ ∧ ¬φ

axiom

Γ, φ ∧ ¬φ ` φ
∧-E1

φ ∧ ¬φ ∈ Γ, φ ∧ ¬φ
Γ, φ ∧ ¬φ ` φ ∧ ¬φ

axiom

Γ, φ ∧ ¬φ ` ¬φ
∧-E2

Γ, φ ∧ ¬φ ` ⊥
¬-E

The other direction, i.e Γ,⊥ ` φ ∧ ¬φ, is just applying ⊥-E. This shows that
〈LT,≤〉 is a complemented distributive lattice, and thus a Boolean algebra.

Before we formalize a proof in Agda we need to be able to do repeated
weakening from the empty context, as the way we have formalized the weakening
rule does not quite allow us to do that. It should be obvious that this is something
that we are allowed to do, but we need to explicitly formalize it in Agda. In
particular, we want to show that if ` φ holds, then Γ ` φ holds. This is done by
induction on Γ.

superweakening : ∀ {Γ : ctxt} {φ : Formula} → ∅ ` φ → Γ ` φ
superweakening {∅} x = x
superweakening {∆ :: ψ} x = weakening (superweakening x )

We can now proceed with the Agda proof of Theorem 4.1.
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Agda proof. We make use of an already existing definition of a distributive lattice
in the agda/cubical library when constructing the distributive lattice for the
Lindenbaum-Tarski algebra. We need only provide the proofs needed for the
arguments. These are proofs of the properties commutativity, associativity,
distributivity, absorption, and identity of the Lindenbaum-Tarski algebra. The
properties follow from the underlying propositional logic.

LindenbaumTarski-DistLattice : DistLattice
LindenbaumTarski-DistLattice = makeDistLattice∧lOver∨l

⊥/
>/
∨/
∧/

isSet-LT
∨/-ass
∨/-id
∨/-comm
∧/-ass
∧/-id
∧/-comm
∧/-abs
∧/-dist

where
isSet-LT : ∀ (A B : LindenbaumTarski) → isProp(A ≡ B)
isSet-LT A B = squash/

∧/-comm : ∀ (A B : LindenbaumTarski)
→ A ∧/ B ≡ B ∧/ A

∧/-comm = elimProp2 (λ → squash/ )
λ → eq/ ∼-comm-∧

∨/-comm : ∀ (A B : LindenbaumTarski)
→ A ∨/ B ≡ B ∨/ A

∨/-comm = elimProp2 (λ → squash/ )
λ → eq/ ∼-comm-∨

∧/-ass : ∀ (A B C : LindenbaumTarski)
→ A ∧/ (B ∧/ C ) ≡ (A ∧/ B) ∧/ C

∧/-ass = elimProp3 (λ → squash/ )
λ → eq/ ∼-ass-∧

∨/-ass : ∀ (A B C : LindenbaumTarski)
→ A ∨/ (B ∨/ C ) ≡ (A ∨/ B) ∨/ C

∨/-ass = elimProp3 (λ → squash/ )
λ → eq/ ∼-ass-∨

∧/-dist : ∀ (A B C : LindenbaumTarski)
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→ A ∧/ (B ∨/ C ) ≡ (A ∧/ B) ∨/ (A ∧/ C )
∧/-dist = elimProp3 (λ → squash/ )

λ → eq/ ∼-dist-∧

∨/-dist : ∀ (A B C : LindenbaumTarski)
→ A ∨/ (B ∧/ C ) ≡ (A ∨/ B) ∧/ (A ∨/ C )

∨/-dist = elimProp3 (λ → squash/ )
λ → eq/ ∼-dist-∨

∧/-abs : ∀ (A B : LindenbaumTarski)
→ A ∧/ (A ∨/ B) ≡ A

∧/-abs = elimProp2 (λ → squash/ )
λ → eq/

(∧-E1 (axiom Z) ,
∧-I (axiom Z) (∨-I2 (axiom Z)))

∨/-abs : ∀ (A B : LindenbaumTarski) → (A ∧/ B) ∨/ B ≡ B
∨/-abs = elimProp2 (λ → squash/ )

λ → eq/
(∨-E (axiom Z) (∧-E2 (axiom Z)) (axiom Z) ,
∨-I1 (axiom Z))

∨/-id : ∀ (A : LindenbaumTarski) → A ∨/ ⊥/ ≡ A
∨/-id = elimProp (λ → squash/ )

λ → eq/
(∨-E (axiom Z) (axiom Z) (⊥-E (axiom Z)) ,
∨-I2 (axiom Z))

∧/-id : ∀ (A : LindenbaumTarski) → A ∧/ >/ ≡ A
∧/-id = elimProp (λ → squash/ )

λ → eq/
(∧-E1 (axiom Z) ,
∧-I (axiom Z) (superweakening >-I))

Lastly we also need to provide the proof that the lattice is complemented.

open DistLatticeStr (snd LindenbaumTarski-DistLattice)

LindenbaumTarski-DistLattice-supremum : (A : fst LindenbaumTarski-DistLattice)
→ A ∨l ¬/ A ≡ 1l

LindenbaumTarski-DistLattice-supremum A = ∨/-comp A
where
∨/-comp : ∀ (A : LindenbaumTarski) → A ∨/ ¬/ A ≡ >/
∨/-comp = elimProp (λ → squash/ )

λ → eq/
(superweakening >-I , superweakening LEM)
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LindenbaumTarski-DistLattice-infimum : (A : fst LindenbaumTarski-DistLattice)
→ A ∧l ¬/ A ≡ 0l

LindenbaumTarski-DistLattice-infimum A = ∧/-comp A
where
∧/-comp : ∀ (A : LindenbaumTarski) → A ∧/ ¬/ A ≡ ⊥/
∧/-comp = elimProp (λ → squash/ )

λ → eq/
(¬-E (∧-E1 (axiom Z)) (∧-E2 (axiom Z)) ,
⊥-E (axiom Z))

4.3 Soundness

Soundness is a fundamental property of logical systems that ensures that the
conclusions drawn from the system are reliable and trustworthy. In particular,
soundness guarantees that if a proposition can be derived using the inference
rules of the logical system from a set of true premises, then that proposition is
true.

So far we have dealt with purely syntactical definitions. To speak about
truth values we must define the semantics.

Definition 4.7. A truth valuation for L is a mapping v from the set of sentences
of L to the set {0, 1}. We define such a truth valuation inductively. First, let
v0 be any function from the propositional variables into the set {0, 1}. Then we
extend v0 uniquely into a function v with all sentences of L as its domain, such
that for all sentences φ and ψ,

v(¬φ) = 1 if and only if v(φ) = 0
v(φ ∨ ψ) = 1 if and only if v(φ) = 1 or v(ψ) = 1
v(φ ∧ ψ) = 1 if and only if v(φ) = 1 and v(ψ) = 1
v(>) = 1
v(⊥) = 0.

If these conditions are met, then v is a truth valuation.

The following proposition is from [8]. We shall not prove it here and the
interested reader may refer to [8] for a detailed proof. However, we will use the
results freely to reason about soundness.

Proposition 4.2. If h : LT → 2, where 2 is the minimal algebra, then h([φ]) =
v(φ) is a truth valuation. Furthermore, if v is a truth valuation, then h : LT → 2
defined by h([φ]) = v(φ) is a homomorphism.

It should be clear that h maps [>] to 1 and will consequently map every
element [φ] ∈ LT where [φ] ≡ [>] to 1 as well. We can use this to reason about
the soundness of propositional logic. If for any formula φ it holds that ` φ, it
should be the case that [φ] ≡ [>].
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Proposition 4.3. For any sentence φ ∈ L, if ` φ then φ ∼ >, meaning
[φ] ≡ [>].

Proof. By definition of the Lindenbaum-Tarski algebra this is equivalent to
showing that, given ` φ, we can prove φ ` > and > ` φ. This can be done using
>-I and weakening.

` >
>-I

φ ` >
weakening

` φ
> ` φ

weakening

Agda proof.

sound : ∀ {φ : Formula} → ∅ ` φ → [ φ ] ≡ >/
sound x = eq/ (superweakening >-I , superweakening x )

5 Conclusions

We successfully formalized the Lindenbaum-Tarski algebra in Cubical Agda. We
ended up needing the structural rules weakening and exchange, but contraction
could be omitted. This resulted in our logic qualifying as an affine logic. It is
worth noting that if we were to add implication to our set of logical connectives
and redefine the biprovability relation as

φ ∼ ψ if and only if Γ ` φ↔ ψ,

then we no longer need the exchange rule. However, an extra connective would
result in more clutter and possible extra cases to account for in proofs.

By having formalized the Lindenbaum-Tarski algebra in Cubical Agda we
can now use it to prove properties about propositional calculus. We did use it
to reason about soundness already, and it is probably possible to reason about
completeness in a similar way. That is, showing that

[φ] ≡ [>] implies ` φ.

However, this direction proved to be more difficult to prove in Agda, and is
yet to be done.

Completeness and other properties about propositional logic can be explored
and formalized in Cubical Agda through algebra now that the Lindenbaum-
Tarski algebra for propositional logic is formalized. Proving such properties
through algebra can lead to shorter and more elegant proofs than the ones done
in the logic itself, which is very interesting and beautiful in its own right.

The full formalization can be found in Appendix A and on Github[7].
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5.1 Future work

We have formalized the Lindenbaum-Tarski algebra over a propositional language,
the next natural step would be to define it over a first order language. The
equivalence relation ∼ and the binary relations together with negation is defined
as previously, but we would need to extend the language with quantifiers and
variables, and implement the rules surrounding these.
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A LindenbaumTarski.agda

{-# OPTIONS --cubical --safe #-}
module LindenbaumTarski where

open import Cubical.HITs.SetQuotients.Base
open import Cubical.HITs.SetQuotients.Properties
open import Cubical.Foundations.Prelude hiding ( ∧ ; ∨ )
open import Cubical.Relation.Binary.Base
open import Cubical.Data.Nat.Base
open import Cubical.Data.Prod.Base
open import Cubical.Data.Bool.Base
open import Cubical.Algebra.DistLattice.Base

-- Definition: Formula

data Formula : Type where
const : N → Formula
∧ : Formula → Formula → Formula
∨ : Formula → Formula → Formula
¬ : Formula → Formula
⊥ : Formula
> : Formula

infix 35 ∧
infix 30 ∨
infixl 36 ¬
infix 20 `
infix 23 ::

-- Definition: Context

data ctxt : Type where
∅ : ctxt
:: : ctxt → Formula → ctxt

-- Definition: Lookup

data ∈ : Formula → ctxt → Type where
Z : ∀ {Γ φ} → φ ∈ Γ :: φ
S : ∀ {Γ φ ψ} → φ ∈ Γ → φ ∈ Γ :: ψ
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-- Definition: Provability

data ` : ctxt → Formula → Type where

∧-I : {Γ : ctxt} {φ ψ : Formula}
→ Γ ` φ
→ Γ ` ψ
→ Γ ` φ ∧ ψ

∧-E1 : {Γ : ctxt} {φ ψ : Formula}
→ Γ ` φ ∧ ψ
→ Γ ` φ

∧-E2 : {Γ : ctxt} {φ ψ : Formula}
→ Γ ` φ ∧ ψ
→ Γ ` ψ

∨-I1 : {Γ : ctxt} {φ ψ : Formula}
→ Γ ` ψ
→ Γ ` φ ∨ ψ

∨-I2 : {Γ : ctxt} {φ ψ : Formula}
→ Γ ` φ
→ Γ ` φ ∨ ψ

∨-E : {Γ : ctxt} {φ ψ γ : Formula}
→ Γ ` φ ∨ ψ
→ Γ :: φ ` γ
→ Γ :: ψ ` γ
→ Γ ` γ

¬-I : {Γ : ctxt} {φ : Formula}
→ Γ :: φ ` ⊥
→ Γ ` ¬ φ

¬-E : {Γ : ctxt} {φ : Formula}
→ Γ ` φ
→ Γ ` ¬ φ
→ Γ ` ⊥

34



⊥-E : {Γ : ctxt} {φ : Formula}
→ Γ ` ⊥
→ Γ ` φ

>-I : ∅ ` >

axiom : {Γ : ctxt} {φ : Formula}
→ φ ∈ Γ
→ Γ ` φ

LEM : {φ : Formula}
→ ∅ ` φ ∨ ¬ φ

weakening : {Γ : ctxt} {φ ψ : Formula}
→ Γ ` ψ
→ Γ :: φ ` ψ

exchange : {Γ : ctxt} {φ ψ γ : Formula}
→ (Γ :: φ) :: ψ ` γ
→ (Γ :: ψ) :: φ ` γ

-- contraction : {Γ : ctxt} {φ ψ : Formula}
-- → (Γ :: φ) :: φ ` ψ
-- → (Γ :: φ) ` ψ

module {Γ : ctxt} where

infixl 25 ¬/

------------------

-- Usefull lemmas

------------------

superweakening : ∀ {Γ : ctxt} {φ : Formula} → ∅ ` φ → Γ ` φ
superweakening {∅} x = x
superweakening {∆ :: ψ} x = weakening (superweakening x )

cut : ∀ {φ ψ γ : Formula} → Γ :: φ ` γ → Γ :: γ ` ψ → Γ :: φ ` ψ
cut x y = ∨-E (∨-I2 x ) (exchange (weakening y)) (axiom Z)
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------------------------------------------------------

-- Defining relation where two formulas are related

-- if they are provably equivalent. Then proving that

-- the relation is an equivalence relation by proving

-- it is reflexive, symmetric and transitive.

------------------------------------------------------

∼ : Formula → Formula → Type
φ ∼ ψ = Γ :: φ ` ψ × Γ :: ψ ` φ

∼-refl : ∀ (φ : Formula) → φ ∼ φ
∼-refl = (axiom Z , axiom Z)

∼-sym : ∀ {φ ψ : Formula} → φ ∼ ψ → ψ ∼ φ
∼-sym (A , B) = (B , A)

∼-trans : ∀ {φ ψ γ : Formula} → φ ∼ γ → γ ∼ ψ → φ ∼ ψ
∼-trans (x1 , x2) (y1 , y2) = (cut x1 y1 , cut y2 x2)

----------------------------------------

-- Properties of propositional calculus

----------------------------------------

-- Commutativity on ∧

∧-comm : ∀ {φ ψ : Formula} → Γ :: φ ∧ ψ ` ψ ∧ φ
∧-comm = ∧-I (∧-E2 (axiom Z)) (∧-E1 (axiom Z))

∼-comm-∧ : ∀ {φ ψ : Formula} → φ ∧ ψ ∼ ψ ∧ φ
∼-comm-∧ = (∧-comm , ∧-comm)

-- Commutativity on ∨

∨-comm : {φ ψ : Formula} → Γ :: φ ∨ ψ ` ψ ∨ φ
∨-comm = ∨-E (axiom Z) (∨-I1 (axiom Z)) (∨-I2 (axiom Z))

∼-comm-∨ : ∀ {φ ψ : Formula} → φ ∨ ψ ∼ ψ ∨ φ
∼-comm-∨ = (∨-comm , ∨-comm)

-- Associativity on ∧
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∧-ass1 : ∀ {φ ψ γ : Formula} → Γ :: φ ∧ (ψ ∧ γ) ` (φ ∧ ψ) ∧ γ
∧-ass1 = ∧-I (∧-I (∧-E1 (axiom Z)) (∧-E1 (∧-E2 (axiom Z))))

(∧-E2 (∧-E2 (axiom Z)))

∧-ass2 : ∀ {φ ψ γ : Formula} → Γ :: (φ ∧ ψ) ∧ γ ` φ ∧ (ψ ∧ γ)
∧-ass2 = ∧-I (∧-E1 (∧-E1 (axiom Z)))

(∧-I (∧-E2 (∧-E1 (axiom Z)))
(∧-E2 (axiom Z)))

∼-ass-∧ : ∀ {φ ψ γ : Formula} → φ ∧ (ψ ∧ γ) ∼ (φ ∧ ψ) ∧ γ
∼-ass-∧ = (∧-ass1 , ∧-ass2)

-- Associativity on ∨

∨-ass1 : ∀ {φ ψ γ : Formula} → Γ :: φ ∨ (ψ ∨ γ) ` (φ ∨ ψ) ∨ γ
∨-ass1 = ∨-E (axiom Z)

(∨-I2 (∨-I2 (axiom Z)))
(∨-E (axiom Z)

(∨-I2 (∨-I1 (axiom Z)))
(∨-I1 (axiom Z)))

∨-ass2 : ∀ {φ ψ γ : Formula} → Γ :: (φ ∨ ψ) ∨ γ ` φ ∨ (ψ ∨ γ)
∨-ass2 = ∨-E (axiom Z)

(∨-E (axiom Z)
(∨-I2 (axiom Z))
(∨-I1 (∨-I2 (axiom Z))))

(∨-I1 (∨-I1 (axiom Z)))

∼-ass-∨ : ∀ {φ ψ γ : Formula} → φ ∨ (ψ ∨ γ) ∼ (φ ∨ ψ) ∨ γ
∼-ass-∨ = (∨-ass1 , ∨-ass2)

-- Distributivity over ∧

∧-dist1 : ∀ {φ ψ γ : Formula} → Γ :: φ ∧ (ψ ∨ γ) ` (φ ∧ ψ) ∨ (φ ∧ γ)
∧-dist1 = ∨-E (∧-E2 (axiom Z))

(∨-I2 (∧-I (∧-E1 (axiom (S Z))) (axiom Z)))
(∨-I1 (∧-I (∧-E1 (axiom (S Z))) (axiom Z)))

∧-dist2 : ∀ {φ ψ γ : Formula} → Γ :: (φ ∧ ψ) ∨ (φ ∧ γ) ` φ ∧ (ψ ∨ γ)
∧-dist2 = ∧-I (∨-E (axiom Z)

(∧-E1 (axiom Z))
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(∧-E1 (axiom Z)))
(∨-E (axiom Z)

(∨-I2 (∧-E2 (axiom Z)))
(∨-I1 (∧-E2 (axiom Z))))

∼-dist-∧ : ∀ {φ ψ γ : Formula} → φ ∧ (ψ ∨ γ) ∼ (φ ∧ ψ) ∨ (φ ∧ γ)
∼-dist-∧ = (∧-dist1 , ∧-dist2)

-- Distributivity over ∨

∨-dist1 : ∀ {φ ψ γ : Formula} → Γ :: φ ∨ (ψ ∧ γ) ` (φ ∨ ψ) ∧ (φ ∨ γ)
∨-dist1 = ∨-E (axiom Z)

(∧-I (∨-I2 (axiom Z))
(∨-I2 (axiom Z)))

(∧-I (∨-I1 (∧-E1 (axiom Z)))
(∨-I1 (∧-E2 (axiom Z))))

∨-dist2 : ∀ {φ ψ γ : Formula} → Γ :: (φ ∨ ψ) ∧ (φ ∨ γ) ` φ ∨ (ψ ∧ γ)
∨-dist2 = ∨-E (∧-E1 (axiom Z))

(∨-I2 (axiom Z))
(∨-E (∧-E2 (axiom (S Z)))

(∨-I2 (axiom Z))
(∨-I1 (∧-I (axiom (S Z)) (axiom Z))))

∼-dist-∨ : ∀ {φ ψ γ : Formula} → φ ∨ (ψ ∧ γ) ∼ (φ ∨ ψ) ∧ (φ ∨ γ)
∼-dist-∨ = (∨-dist1 , ∨-dist2)

---------------------------------------------------------

-- Lindenbaum-Tarski algebra is defined as the quotioent

-- algebra obtained by factoring the algebra of formulas

-- by the above defined equivalence relation.

---------------------------------------------------------

LindenbaumTarski : Type
LindenbaumTarski = Formula / ∼

--------------------------------------------------

-- The equivalence relation ∼ respects operations

--------------------------------------------------

∼-respects-∧ : ∀ (φ φ’ ψ ψ’ : Formula)
→ φ ∼ φ’
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→ ψ ∼ ψ’
→ (φ ∧ ψ) ∼ (φ’ ∧ ψ’ )

∼-respects-∧ φ φ’ ψ ψ’ (x1 , x2) (y1 , y2) =
∧-I (cut (∧-E1 (axiom Z)) x1) (cut (∧-E2 (axiom Z)) y1) ,
∧-I (cut (∧-E1 (axiom Z)) x2) (cut (∧-E2 (axiom Z)) y2)

∼-respects-∨ : ∀ (φ φ’ ψ ψ’ : Formula)
→ φ ∼ φ’
→ ψ ∼ ψ’
→ (φ ∨ ψ) ∼ (φ’ ∨ ψ’ )

∼-respects-∨ φ φ’ ψ ψ’ (x1 , x2) (y1 , y2) =
∨-E (axiom Z)

(∨-I2 (exchange (weakening x1)))
(∨-I1 (exchange (weakening y1))) ,

∨-E (axiom Z)
(∨-I2 (exchange (weakening x2)))
(∨-I1 (exchange (weakening y2)))

∼-respects-¬ : ∀ (φ φ’ : Formula) → φ ∼ φ’ → (¬ φ) ∼ (¬ φ’ )
∼-respects-¬ φ φ’ (x1 , x2) = ¬-I (¬-E (exchange (weakening x2))

(axiom (S Z))) ,
¬-I (¬-E (exchange (weakening x1))

(axiom (S Z)))

-------------------------------------------------------------------

-- Definition: Binary operations and propositional constants in LT

-------------------------------------------------------------------

∧/ : LindenbaumTarski → LindenbaumTarski → LindenbaumTarski
A ∧/ B = setQuotBinOp ∼-refl ∼-refl ∧ ∼-respects-∧ A B

∨/ : LindenbaumTarski → LindenbaumTarski → LindenbaumTarski
A ∨/ B = setQuotBinOp ∼-refl ∼-refl ∨ ∼-respects-∨ A B

¬/ : LindenbaumTarski → LindenbaumTarski
¬/ A = setQuotUnaryOp ¬ ∼-respects-¬ A

>/ : LindenbaumTarski
>/ = [ > ]

⊥/ : LindenbaumTarski
⊥/ = [ ⊥ ]
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-------------------------------------------------------------

-- By proving the Lindenbaum-Tarski algebra can be viewed as

-- a complemented distributive lattice, we prove that it is

-- also boolean.

-------------------------------------------------------------

LindenbaumTarski-DistLattice : DistLattice
LindenbaumTarski-DistLattice = makeDistLattice∧lOver∨l

⊥/
>/
∨/
∧/

isSet-LT
∨/-ass
∨/-id
∨/-comm
∧/-ass
∧/-id
∧/-comm
∧/-abs
∧/-dist

where
isSet-LT : ∀ (A B : LindenbaumTarski) → isProp(A ≡ B)
isSet-LT A B = squash/

∧/-comm : ∀ (A B : LindenbaumTarski)
→ A ∧/ B ≡ B ∧/ A

∧/-comm = elimProp2 (λ → squash/ )
λ → eq/ ∼-comm-∧

∨/-comm : ∀ (A B : LindenbaumTarski)
→ A ∨/ B ≡ B ∨/ A

∨/-comm = elimProp2 (λ → squash/ )
λ → eq/ ∼-comm-∨

∧/-ass : ∀ (A B C : LindenbaumTarski)
→ A ∧/ (B ∧/ C ) ≡ (A ∧/ B) ∧/ C

∧/-ass = elimProp3 (λ → squash/ )
λ → eq/ ∼-ass-∧

∨/-ass : ∀ (A B C : LindenbaumTarski)
→ A ∨/ (B ∨/ C ) ≡ (A ∨/ B) ∨/ C

∨/-ass = elimProp3 (λ → squash/ )
λ → eq/ ∼-ass-∨

∧/-dist : ∀ (A B C : LindenbaumTarski)
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→ A ∧/ (B ∨/ C ) ≡ (A ∧/ B) ∨/ (A ∧/ C )
∧/-dist = elimProp3 (λ → squash/ )

λ → eq/ ∼-dist-∧

∨/-dist : ∀ (A B C : LindenbaumTarski)
→ A ∨/ (B ∧/ C ) ≡ (A ∨/ B) ∧/ (A ∨/ C )

∨/-dist = elimProp3 (λ → squash/ )
λ → eq/ ∼-dist-∨

∧/-abs : ∀ (A B : LindenbaumTarski)
→ A ∧/ (A ∨/ B) ≡ A

∧/-abs = elimProp2 (λ → squash/ )
λ → eq/

(∧-E1 (axiom Z) ,
∧-I (axiom Z) (∨-I2 (axiom Z)))

∨/-abs : ∀ (A B : LindenbaumTarski) → (A ∧/ B) ∨/ B ≡ B
∨/-abs = elimProp2 (λ → squash/ )

λ → eq/
(∨-E (axiom Z) (∧-E2 (axiom Z)) (axiom Z) ,
∨-I1 (axiom Z))

∨/-id : ∀ (A : LindenbaumTarski) → A ∨/ ⊥/ ≡ A
∨/-id = elimProp (λ → squash/ )

λ → eq/
(∨-E (axiom Z) (axiom Z) (⊥-E (axiom Z)) ,
∨-I2 (axiom Z))

∧/-id : ∀ (A : LindenbaumTarski) → A ∧/ >/ ≡ A
∧/-id = elimProp (λ → squash/ )

λ → eq/
(∧-E1 (axiom Z) ,
∧-I (axiom Z) (superweakening >-I))

open DistLatticeStr (snd LindenbaumTarski-DistLattice)

LindenbaumTarski-DistLattice-supremum : (A : fst LindenbaumTarski-DistLattice)
→ A ∨l ¬/ A ≡ 1l

LindenbaumTarski-DistLattice-supremum A = ∨/-comp A
where
∨/-comp : ∀ (A : LindenbaumTarski) → A ∨/ ¬/ A ≡ >/
∨/-comp = elimProp (λ → squash/ )

λ → eq/
(superweakening >-I , superweakening LEM)

LindenbaumTarski-DistLattice-infimum : (A : fst LindenbaumTarski-DistLattice)
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→ A ∧l ¬/ A ≡ 0l
LindenbaumTarski-DistLattice-infimum A = ∧/-comp A

where
∧/-comp : ∀ (A : LindenbaumTarski) → A ∧/ ¬/ A ≡ ⊥/
∧/-comp = elimProp (λ → squash/ )

λ → eq/
(¬-E (∧-E1 (axiom Z)) (∧-E2 (axiom Z)) ,
⊥-E (axiom Z))

-----------------------------------------------

-- If ` φ then [φ] should be the same as >/.
-- We can view this as a form of soundness.

-----------------------------------------------

sound : ∀ {φ : Formula} → ∅ ` φ → [ φ ] ≡ >/
sound x = eq/ (superweakening >-I , superweakening x )
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Errata:

Formalizing Lindenbaum-Tarski algebra for

propositional logic in Cubical Agda

Page 10, missing paragraph at the end of section 3.3.3 Structural rules:

As a final rule we define the axiom rule that states that if a formula φ is
present in the context Γ, then Γ ` φ.

φ ∈ Γ

Γ ` φ
axiom

Agda definition (Axiom).

axiom : {Γ : ctxt} {φ : Formula}
→ φ ∈ Γ
→ Γ ` φ
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